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ASYNCHRONOUS DYNAMICAL SYSTEMS PART I: DETERMINISTIC DYNAMICS

Kemal Inan

Department of Electrical Engineering andComputer Sciences
and Electronics Research Laboratory

University of California, Berkeley, CA 94720

ABSTRACT

This is the first part of a three part paper on symbolic asynchronous dynamics in which the under
lying deterministic dynamical system formalism is developed . An asynchronous dynamical system
(ADS) is an ^stract model for a symbolic event driven system. It is based on a functional input-output
representation and it diff^ firom the existing models of discrete event systems in this respect. Input,
output and state signals in an ADS are represented by 'marked processes' , a concept recently intro
duced as a unifying model for discrete event processes. Unlike conventional dynamical systems that
op^te arithmetically on synchronous collection of signals ADS operates on signals with interleaved
sequences of symbolic events .

In this paper the basic concepts of ADS are derived. Algebraic operators that model a hetero-
genous det^ministic enviroiunent of interacting discrete event processes are developed , definition and
basic properties of ADS are presented and illustrated with examples.

^ Research st^>poited in part by NSF Grant ECS 8719779, by the MICRO program of theState of California and a
grant bom Pacific Bell.
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1. Introductioii

A discrete event process is a sequence of events each of which signify a qualitative change in the
state of a system. A digital communication network , a flexible manufacturing environment or an
operating system of a computer are examples that incorporate discrete eventprocesses .

Discrete event process models can be timed or logical. In logical models discrete event processes
are defined by constraining the order of events in sequences . A logical discrete event signal is
represented by a collection of feasible event sequences . Models for discrete event processes include
finite state machines , petri-nets [10], extended state machines [11],, finitely recursive processes [1] and
many others . These models are finite symbol representations for processes just as the set of equations
{x=-x ; x(0)=l), is a finite symbol representation for the signal e"'.

A discrete event system operates on discrete event processes and generates new discrete event
processes. For example a computer operating system has to respond to external events such as interrupt
signals that require immmediate servicing ot explicit user demands for compiling or running programs
entered through user terminals. In general the external events may represent a multiplicity of demands
that await servicing firom the opoating system which responds to these demands by servicing the inter
rupt signal , running a program etc. in a logically pre-specified order. By responding it generates new
(output) events corresponding to external (input) demands. Since all this happens in real time such a
syst^ can be conceptualized as a dynamical system operating on some abstract space of input signals
to generate ouqput signals. Therefore it makes good sense for an abstraction of a discrete event system
to recognize , either implicitly or explicitly , the functional nature of input-ouqrut dynamics. Here we
are pointing to a difference of emphasis between a discrete eventprocess and a discrete event system
model . Existing models in literature have a strong process bias whereby recognition of input-output
dynamics is implicit, usually with little , if any , analytical use.

The driving force for disoete event formalisms has come from problems of computer science.
Exploiting parallelism in computation gave rise to new formalisms for expressing complex execution
sequences . Models for discrete event processes have since been used as semantic models for parallel
languages . CSP [3] , CCS [4] , are among the best known examples of such semantic models.

In actual practice input-output classification of events has a descriptive value for discrete event
systems. For example in a relatively complex protocol specification [6] , the inputs - messages at the
input channel- are described as external events and the outputs are described as the sequence of actions
to be taken upon receiving an external input Clearly the descriptive value of this specification is use
ful. On the other hand und^lying models of such descriptions - in this case an event driven extended
state machine - do not treat input-output relations at the functional level of processes and therefore do
not generate tools of analysis in the spirit of control systems . As another example take CSP or CCS
both of which differentiate between immediate inputs and outputs , and has special notations for the
execution , synchronization and hiding of input and output events . There are input-output operators in
CSP such as the "piping" operator of UNIX that describe the restricted parallelism in file transfers. In
short notwithstanding the abundance of operators that mimic well-known multi-programming features ,
concern and use for a functional input-ouq)ut representation is nonexistent

In general semantic models for languages do not recognize control action as a theoretical category
. This category is presumably aggregated in the actual practice of (real-time) programming. Therefore
dynamic input-output representation , which is of central interest to control theory is alien to semantic
models of computer science. In contrast , the supervisory control fiamework [5] is a control oriented
approach to discrete event systems in which the control action is a central category. However , the
recognition of inputs and outputs in supervisory control is implicit Instead of input or output events or
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pnx»sses there are control actions that block or initiate events. The theory has developed by viewing
control as a mechanism of restricting trajectories, much in the spirit suggested by Willems [7]. Among
other approaches only [8] and [9] have explicitly used input-output formulations and have pursued this
to the extent of exploiting some control-theoretic advantage of their respective formulations.

We suggest and partially demonstrate in these pap^ that functional input-output representation ,
which is the main thrust of ADS , is a useful formalism to model and solve problems for discrete event
systems . In the second and third parts of this series of papers we extend these results to an operation
ally feasible non-deterministic environment and formulate the interconnection problem of ADS*s by a
block diagram algebra and an associated setof topological conventions - not unlike the block diagrams
of control systems - and demonstrate that formal specification and verification problems for evaluating
the logical performance of complex discrete event systems can be reduced to block diagram
simplification procedures . In particular it will be shown that the complexity of computing a response
function is dependent upon the largest nested loop in a system of interconnected ADSs and does not
necessarily grow exponentially with the size and the number of the compon^t ADSs . These results ,
which are encouraging in themselves , point to the potential in applying input-ou^ut analysis tech
niques to discrete event systems in the area of supervisory control , anendeavor tobe undertaken as an
independent task in future .

The way we define an input-output map in an asynchronous discrete event environment is related
to the projection of gignak onto signal spaces. We first explain the situation in a conventional discrete
time system .

Supposea system is described by the following equations :

/(x(^+l),*(^)) = 0

where the vector signal x has n components and / has m < n components. In other words there is
n-m degree of freedom in these equations. If / satisfies certain requirements then the specification of
n-m components of the time sequence x(Jc) as the input signal , together with some boundary condi
tions , will uniquely determine the the remaining components of x(k) a subset of which may be desig
nated as the output . This can be viewed as projecting any feasible trajectory on the input and output
signal spaces and then observing that projection on the input space uniquely determines the projection
on the output space. Note that the projections are straightforward operations since each component of
x(Jk) is related to the others as a synchronous ^ component of a vector valued discrete-time signal. Each
choice of components for the input and output signals satisfying a unique solvability requirement wUl
induce a well-defined input-ouqiut map . Among these choices there is a distinguished one of practical
significance which we usually call the response function of the system.

In discrete event systems the signals are not the components of a synchronous vector. Instead , all
events are intertwined with each other according to the logic of event sequences in every trace of the
system. Therefore the projection operator required to filter the input and the output signals is lessobvi
ous than the conventional synchronous case. This is one of the reasons why discrete event formulations
have resisted , at least so far , functional input-output descriptions.

In this paper we develop a new model called an asynchronous dynamical system (ADS) for event
driven systems. ADS is an abstract model that supports a heterogenous environment of input ,ouq)ut
and state processes based on marked process theory . In a recent pap^ [2] it was shown that different

^ By a "synchronous component " wemean the self-evident fact that the components of a vector arccomposed of
scalar signals evaluated at a common instant of time. This self-evident fact ceases to be true in an asynchronous en
vironment
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lepresentations for discrete event processes have a common underlying abstraction with useful algebraic
properties. In this paper we use this unifying abstraction , namely marked processes , for the modelling
of signals in ADS*s. In section 2 we summarize the relevant results on marked processes . In section 3
we define and state the propmies of the basic operators of ADS , namely the projection operator and
the two sum operators. In section 4 we define the ADS and illustrate the concept with examples . We
also discuss and derive results for extending the basic calculus operators of marked process spaces to
ADS representations. Finally in section 5 we discuss our results .

2. Marked Processes

We review below the relevant results for marked processes. The reader is referred [1] and [2] for
a detailed treatment

Throughout A isa fixed, finite set ofevents, A* is the set ofall finite sequences ofevents, called
traces, including the empty trace o. <a> is the trace consisting of the single event a and s^t is the
trace obtaining by concatenating the traces s and t, T ^ A* is (preOxydosed if s'̂ t e T implies
5 e r. Let C(A*) be the family of all closed sets. Let M be a (possibly infinite) fixed set of marks
and let y be a fixed family of functions firom A* into M such that if p. e ^ and 5 € A*, then the
function p/^ e whwe

p/^(0 » t e A*

We call the cartesian product W ?= C(A*) x ^ an embedding set. An element w g W is called
a (marked) process ^ and is denoted as w = (/nv, pw); trw e C(A*) is the set of traces of w and
pw € % regarded as a mapping pw: trw ^ M, is called its marking function; finally, pw(j) is the
marking of the trace s.

Ifw e W and s € trw, the post-process of w after ^ is the processw/s e W defined by

rr(w/5) := {r I e <rw), p(w/j)(r) = pw/5(f) := pw(5^0

The choice function combines arbitrary processes wj, • • • , wjt in W, distinct events ai, • • • , at in A
and any mark m in M to give the processw denoted

w =[ai -^wi \ "' \ Ok wt]n

and defined by

trw := I s e trwi)
t

]Lw (o) := m , pw (<fl,- >"5) := pwf(j)

The post-process and choice functions are the counterparts , in discrete event calculus , of differential
and integral operators of ordinary calculus. They satisfy the familiar fimdamental calculus relation :

w = [ai wl<ai> I • • • I fljk w/<ajk>]„

where

, <a*>) = {5 e fnv I #5 = 1), m = pw(o)

and #5 is the numb^ of events in trace s.

' Strictly speaking a marked process isa member ofa marked process space. For a definition of the latter see bdow.



We call V a subprocess of w if trv&rw and

\lv(s) = \Lw (s) for setrv

We shall use the notation v<w to denote that v is a subprocess of w. It is easy to check that < is a
complete partial order on W every nondecieasing sequence (chain) v,- in Whas a least upper bound
(limit) veW where

trv = yjtrvi
i

and M,v(s) := M.v^(s) for any j for which setrvj. We shall use the notation v = (J v,- to denote the
limit of a chain v,-.

Finally for any non-negative integer n , define the trace projection operator Tn mapping Winto
itself by letting

/r(vtn) := (s € trv I #j < n)

and

p(vtn)(s) :=|iv(s) for s e tr(vtn)

The triple (W, <, {Tn}) is called an embedding space ^ .
A (marked) process space n = (11, ^ {Tn)) is any subset ofan embedding space (W, <, {Tn))

satisfying the following four axioms.

Axiom ofprojection

P e n Ptn € n. n >0

Axiom ofpost-processes

Pen and s e trP ^ Pis e H

Axiom ofprefixing

Let P, Pi, • • •, Pik in n be such that

R —[oI —^ R I *•• I ^R ^ /<fl| >T0 ~ P|To , / —l,*'*,k

Then

[fli —» P1 I • • • I aic PjtliR € n

Axiom of completeness

If the chain Pi < P2 • ** in n conva-ges to P in W, then Pen

Elements of n are called (marked) processes. Any subset of n which also satisfies these axioms
is called a process subspace. It is a fact that arbitrary intosection of process spaces in W is also a pro
cess space.

Generally, a process S[Ktce is specified by an embedding space W and marking axioms that
define a subset n of W and which imply the four axioms above. The next result is quite important
since it shows that marking axioms only need specify "local" behavior.

^ For a more generaldefinition of embedding spacesee [2].
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Proposition 2.1

Let W be an embedding space. Let Wq c and Wj s; be subsets satisfying the following
consistency conditions:

(1) WiTO = Wo

(2) Ifw e W^iand<a> e /rw, then e Wq

Then there exists a unique marked process space n with IlTO = Wo and IlTl = Wi. Conversely, if
n c ly isa marked process space, then Wo := ntO and Wi := IlTl satisfy the consistency conditions.

Proposition 2.1 states that the marked process space n is determined by specifying all "one-shot"
processes of the type

w = [ai woi I • • • I a* wofcL

where /n e M, a,- e A, wq,- e Wo. Otho- processes in 11 are obtained from one-shot processes using
the first three axioms of a mariced process space. A simple pictorial description of a marked process
consists of an infinite tree whae each branch represents an event transition and each node represents
the mark associated with the unique trace from the root to the node in question. In terms of this
description Proposition 2.1 states that the any marked process space is completely defined by its build
ing blocks of dq)th one , i.e. trees of depth onecorresponding to each element of . Theconstruction
of arbitrary processes in this space is accomplished by pasting any one of these trees to any leaf of the
tree inductively.

Examples of marked process spaces are state machines, Petri Nets, CSP , and various extensions
of these models . A function F: n -> n is continuous if for every chain Xi ^X2<" ' in 11,

FQCi) <FQC-^ < • • • is also a chain and

U F(yj = F(U Xn)
ft H

F is constructive (con) if for evoy X e IT and n ^

F(X)Tn+l=F(YTn)tn+l

F is non-destructive (jtdes) if for every X € IT and n >0

F(X)tn =F(XTn)tn

Intuitively, F is con if the (n + l)st event executed by F(X) is determined by the first n events thatX
executes. Evidently con implies ndes. If F has several arguments these definitions t^ply if they apply
to each argument when others are fixed. Extension of these concepts to functions with domain and
range consisting of different marked process spaces are straightforward. The properties of continuity,
con and ndes are preserved under composition of functions. Furthermore, if F is con and G is ndes
then F o G and G o F both are con.

Thechoice function is continuous and con; every projection operator Tn is continuous and ndes; finally,
the post-process is a continuous partial function in the sense that if X^< X2*** is a chain converging
to X and s e trX, then there is an integer / such that X//j ^ X/+i/j < • • • is a chain converging to
Xls.

The following existence result is fundamental to recursive representation of processes.
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Theorem 2.1

Let n be a process space and consider therecursive equation

X=FQC) (2.1)

where F = (Fi. • • •, F„): 11" n". Also given is a setof initial conditions

XiTo=Zoi . i = l, •••,« (2.2)

that is consistent, i.e.

Zqi —Fj(Zoi, **•» £/)T0 , i —1,' • •, /I

If each F/ iscontinuous in X then the process Z = |_j Z* iswell-defined where
Z«:=(Z„„ --.Za,). Z'«:=f(Z»,t/),t ^0

and Z is the minimal solution of (2.1), (2.2), Le. if X satisfies (2.1), (2.2), then Zi ^ Z,-, all i.

If in addition F is con in X then Z is the unique solution of (2.1) and (2.2) .

Afinitely recursive process (FRP) F is a process represented by the equations

X =F(X)

P =G(X)

where the function F satisfies both the existence and uniqueness requirements of the theorem above and
both F and G are composed of members of a fEunily of fiinctions that determine the algebraic structure
of the rqiresentation. The reader is refmed to [2] for a precise and general definition of FRP .

3. Projectioii and Sum Operators

In order to ex{^ess and formulate the relationship of inpuLstate and output signals of discrete
event dynamical systems werely on two operators called projection and sum operators . A third opera
tor we use is the internal sum operator which is a restrictive version of the sum operator. In this section
these operators are defined and their jnoperties are summarized. The projection and sum operators are
tracewise equivalent to the 'projection* and 'disjunction' operators defined in [12] and extend these to
marked spaces.

The projection operator projects the traces of a process in a given marked process space on
another process given in another marked process space . This is done by collapsing each trace of the
original process by removing events from it. The events to be removed are determined dynamically by
the target process onto which the projection is being performed in such a way that the resulting trace
belongs to this target process .

We startby defining the projection of an arbitrary trace ^ on a ( prefix-closed ) set of traces . If
K 6 C{A*^, we define , inductively as follows :

(1) <>iK := <>

(2)

(3)

<a>\fi[ 1= '
<a> if <a>€ K

<> otherwise

s-lfc = (r"<a>)l'f[ rifc " <a
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where for AT e C(A*) we use the notation KIs \o denote thepost-process traces , namely

KIs :=(t eA* \sUeK)

As an example take s :=abaac and K := {< >^<b>Jba JbcJ)ac]t then jijp = bac .
Fact 3.1

(1)

Life

' K ^ Life =K

wh^ L denotes the set of all for ^ € L .

(2) The trace projection distributes over the trace concatenation according to the following formula

(tt "V ^^/(uijp) (3*^)

Definition 3.1

Let n = n(A M) and n= n(A Jlf) be two process spaces over the same event alphabet A and let P
and P be processes in 11 and irrespectively . The projection of P on P denoted P.P is defined as

tr(Pjh^trPi„f
\\.{PP'){s) := |JP(^) for s e tr{P.P) c trP

Fact 3.2

The projection map

(p,p)g nxri^p.P€n

has the properties stated below :

(1)PJP<P.

(2) It is continuous in P butnot necessarily ^ continuous inP . A limited version of continuity is given
by the following formulas where n and m are non-negative integers .

m ^ n => P.(PTm)<P.(Ptn) (3.3)

and

U (.P.i '̂̂ n)) =P.( U )) =PP (3.4)
n n

(3) The following relations hold for arbitrary n :

P.(PTn ) = (P,(Ptn))tn = (Pi)tn (3.5)

(Ptn).P<(P.P)tn (3.6)

In particular the operator is ndes in P but not necessarily so in P .

^ Weuse the word "necessarily" for a property , to remind the reader that in some special marked process space the
property may well hold , but in general it does not In all the counter-examples given in the appendix we use the sim
plest of process spaces , namely that without marks.
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(4) The projection opeiator is not necessarily associative in its arguments , that is , ingeneral:

yet it satisfies the relation : ^

setrP ^ sifjpjQ) = s^Q

and therefore the following idempotency condition :

P.{P.Q) = P'Q

For simple notation we shall use left-to-right evaluation convention , that is we write P.QP to mean
{{P.QW.

(5) The post-process of a projected process is given by the following formula

iPJPys .•= u (HPfOXPIs)) (3.7)
reT,

where

Ts :=(tetrP I tip = s)

and if [Qt ) is a family of processes with consistent marks (see Remark 3.1 below) then wedefine the
167

union yjQt as
teT

triKjQt) := KJtrQt
teT leT

and the mark for each trace is uniquely given by the consistency requirement. If the relation trP g trP
holds then (3.7) reduces to the following important special case

(P^)/s = (P/s)XP/s) (3.8)

(6) If

? :=(fli ->Fi I • • • I a„ )„

then

pj =(at u [(?/«*<at,»)A,] I ••• Iat, ^ U KP'(t'<at,>))-Pit,] (3.9)

where Tj is the set of all traces t of trP such that

(i) for any ^ is not in the trace t

(ii) t " <aj >€ trP.

and the indices kj correspond to non-empty Ti^y

Remark 3.1

1 - The definition of process projection disregards the marks of the projected process P . Therefore ,
what is projected is in fact the traces of P .

^ By aslight abuse of notation we write S•I'q to mean S-^trQ ^ tenns of the previous notation .
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2 - The relation (3.7) deserves explanation since for marked (detaministic) processes ^ union of
processes is not always defined . This is because the two processes may share a trace with different
assignment of marks giving rise to either inconsistency or the necessity to allow marking functions to
be point-to-set mappings. On the other hand if the collection of processes assign consistent marks to
shared traces this problem does not arise. For example let [P ] denote the set ofall subprocesses ofP ^
then the collection [P] has the consistency property since s e trXntrY and X.Te [P] implies that
pX(s) = 1x7(5) . This condition is satisfied in (3.7) since all the processes under the union symbol are
in [P/5] .

A A

3- When both P and P are generated by state machines , the state machine for the process P.P can be
constructed as described below :

A

Let X and Y denote the set of states for P and P respectively. We choose the cartesian product
XxY for the state set of the process P.P where X denotes the set of all subsets of X. The initial

A

State is (Xq^o) wherexq is the initial state of P and xq is the set of all the states in P that can be
reached from the initial state of P via transitions corresponding to events that are distinct firom all

A

the events of the single step transitions of P emanating from Xq. Given any state Cx,x) there is a
transition of event <a> from it if and only if

A

(1) <a> is a transition of P from x , and

(2) <a> is a transition firom some y ex of P.
A

The next state corresponding to the transition <a> is (z,zX where z is the next state in P
corresponding to <a> and z is the set of all states that can be reached firom any state in x via a
sequence of transitions distinct from all the transitions of P from x , except for a single <a>
within the sequence.

As an application of theprocedure outlined above consid^ the simple marked processes P andQ given
by the state machine diagrams in Fig.3.1.(a). The marking used is an assignment of a 0 or a 1 to each
state as shown in the figure . Applying the above procedure to this example we obtain the processes
P.Q and QJ* given in Fig. 3.1.(c) . In Fig. 3.1.(c) the states of the resulting processes are tagged in
terms of the states of its argument processes . For example the initial state of P.Q is the pair ({0,1),0)
where (0,1} signifies the subset of states 0 and 1 of P and 0 signifies the corresponding state of Q .
Observe that the states 1 and 3 of P.Q are process-equivalent (i.e. they generate the same process start
ing from these initial states) and therefore we have P.Q = Q for this example.

4 - It is a fact that if P and P are two FRP in different process spaces , then , in gen^ , there is no
guarantee that PJ* is an FRP. This is because the complexity of the marked space that contains P may
not be expressive enough to represent the projection of P in a finitely recursive way. As an example
take P as the infinite state process represented by the finite recursion

e =(a ^0;P I c -^SKIP )
P =(b ^ SKIP )

where denotes the sequential operator which signifies that the process Q \P should continue with Q
when P terminates through the process SKIP (foran exactdefinition of the sequential operator see [1])
and P generates the traces for arbitrary non-negative integer n . It is well known that the traces
of P constitute a non-regular language and therefore cannot be generated by a finite state machine.
Now if P is an element of the unmarked space 11 where every FRP is also a finite state machine then

^ For a discussion of non-deteiministic maiked processes see [2]
®Forfurther properties <rf [P ] see Fact 3.5.
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Jk A ^ "fc ' f_

PJ' may not possess an FRP representation in n. In pai^cular ifP is defined by trP := {a ^ ,c) , then
P.P does nothave an FRP description since trP = tr(PT) and the former is an infinite state process.

The sii"^ op^tion is a conv®se of the projection operation . It combines a given setofprocesses
in a new sum process such that each component process P/^ is recovered byprojecting the sum process
on Pjk . The novelty of this operator is its heterogenuity. The arguments of a sum operator may belong
to different maiiced process spaces such as Petri-Nets , finite state machines etc. , provided that they
share the same event alphabet.

In order to define the sum operator in a general setting of marked process spaces certain techni
calities have to be resolved . In particular we make sure that both at the embedding space level and the
process space level we have well-defined sum spaces to incorporate sum processes. First we define a
sum embedding space using two given embedding spaces. Let W =^W(A , TO and
W= W(A , Af, T) denote two embedding spaces both with the usual partial order '<* Md the usual
length projection operator 'Tn' . We define the sum embedding space , denoted W®W , as the one
generated by the triple ( A , MxW , T''' ) where *<' and *tn' are as before and is defined as the
following subset of {(<|)xi) : C(A*) ->AfxA/) :

^(s)v(jiw) and fc) :=
for some T*, ye T* and w eW ,v eW

In this setting we inductively (on the length of its traces) define the sum operator below .

Definition 3.2

Let w 6 W and v e Wbe given. Define the sum of w and v , denoted by w©v e W©W , inductively
by:

je/r(iv©v) => js''<fl>€ tr(w©v) or (j"«2>)4'v =s-ly
P(h'©v)(s) := , |iv(j>lv))e AfxA?

When components are finite state machines the result of the sum operator is one version of the usual
product state machine where each state is a pair of states firom the component processes. Asan exam
ple consider the processes P and Q given in Fig. 3.1.(a) . The sum process P®Q is given in Fig.
3.1.(b) . Each state of P©j2 is labeled by ij corresponding to the states i and j in P and Q and the
superscript of each event transition indicates whether the transition is a joint one or an isolated one
belonging to only P or g . In the figure each state is also marked with the ^ropriate pair of 0*s and
I's in accordance with the product definition of marks .

The relevantproperties of the sum operatorare stated below.

Fact 33

(1) The formula for evaluating a post-process is given by :

(w©v)/j = (w/(.y>t'̂ ))©(v/(5iv)) (3.10)

provided that ^ e rr(w©v) (otherwise the formula is not valid) and traces of a sum is larger than each
individual trace in the sense given below

trw\jtrv ^tr(w®v) (3.11)

(2) The sum operator is an associative and ndes operator of its arguments . However it is not neces
sarily a continuous function of its arguments .
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(3) The sum operator is related to theprojection operator by the following formulas :

(w©v).iv=w (3.12)

u.(w®v).w = U.W (3.13)

and

tt.(w®v) < U.W0M.V (3.14)

So far the definition of sum operator is restricted to embedding spaces . In order to extend this
definition to marked process spaces we need the notion of a sum process space . Let 11 (A , M) and
n(A ,Af) be two madced process spaces , embedded in and W respectively . Define the sum
marked process space n©n as the unique process space generated by the pair (see Propo
sition 2.1 ) where:

wg := ((nto)©(frro))
Wf := ((nTl)©(liri))tl

where we have used the notation A©£ to denote the set of all a©b with as A ,beB .

Fact 3.4

The sum space is well-defined , that is :

(1) The generators (W^f , ) satisfy the requirements of Proposition 2.1 .

(2) we 11,Ve ii ^ w©v 6 n©n(i.e. n©nc n©n)

Let n be a given process space. If P is a process in 11 then it does not necessarily follow that the
process that inherits an arbitrary subset of the traces together with their markings ofP is itself in n. If
, however , the process space has the property that it includes all such elements wecall it a solid space.
All the commonly used marked process spaces are solid in this sense. Similarly given a solid process
space n wedefine any set T £ n to be a solid set if all the subprocesses of the processes in r are also
inr.

Example 3.1

Consider the embedding space W with no marks (i.e M is a singletone ) and A := [a , b). Define the
generators (see Proposition 2.1)

Wo := [HALT]

Wi := [(a HALT I b-> HALT))

where HALT is the process with the empty trace. If 11 is the process space generated by then
any process P in II has the propmy that

<a>e tr(p/s) <=s» <b>s tr(Pls)

for each s s trP, Therefore although the process (a —> HALT) e W inherits a trace of
(a HALT I b-^HALT)e n , it is not in n and therefore n is not a solid process space. To make it
a solid space we replace Wi by the version given below :

Wx := {(fl ^ HALT) , (b -^HALT) , (a HALT I b-^HALT)]
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We shall encounto* subsets denoted by [P], who'e P e 11 and [P] is defined as the set of all the
subprocesses of P. The next result shows that the property of being a solid space is a local one. It also
summarizes the properties of the set [P].

Fact 3.5

(1) n is a solid mariced process space if and only if Iltl isa solid setin the embedding space W.

(2) If n is a solid process space then for any P e IT , [P] is a solid and closed (i.e. every chain in [P]
has a limit in [P ] ) subset of n that satisfies the property

j e trXntrY and XJ e [P] ^ \iX(s) = |ir(5)

Henceforth we assume that all process spaces are solid.

The property (2) above states that for all the processes within a set [P] any trace uniquely deter
mines the mark for that trace. Therefore within [P ] we can apply unions int^sections or any other set
op^tions to processes since every operation is uniquely identified by its traces.

The sum operator is the most liberal interleaving operator respecting determinism. It allows all
possible interleavings of the transitions of its argument processes within bounds of determinism. In par
ticular processes are not allowed to block transitions of each other. The following restrictive sum
op^tor gives processes limited blocking power .

Definition 33

Let Xi 6 Hi and X2^ 1121**®" for any xj g [XJ and X2e fX^ we define the internal sum

Xi +X2S [Xi®X2]

of these imx:esses , relative to the cover sets [XJ and [X2] inductively as follows :

(1) ii(xi + X2)(o) := \i{xi ® X2)(o)

(2) <a>e tr(xi + X2) if and only if

<a>e tr(xi ® x^ and

<a> 4 trxi ^ <a> 4 trX^ and

<a> 4 trx2 ^ <a> 4 ^^2

(3) (xi +x^l<a> := Xi/(<fl>ixi) +

where the internal sum on the right hand side is with respect to [Xi/(<a>4x^)1 and \X2f(<^>^x^]
respectively.

According to the definition above a process can blocka transition <a> in the environment of summands
if it does nst make that transition itself but its cover process makes that transition . As an example con
sider the processes p € [P] and ^ e [fi] given by the state diagram in Fig. 3.1.(d) . The internal sum
p + q with respect to covct sets [P] and [Q] is given in Fig. 3.1.(e). For example p blocks the transi
tion <a> tot q at the joint state (2,1) since at 2 the cover process P makes the transition <a> whereas
p does not Note that in order to evaluate the traces of the process p + ^ the traces of all four
processes P ,2 ^, and q must be evaluated jointly since cover processes dynamically progress with the
original processes according to the definition.

Fact 3.6
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(1) The intemal sum operator is an associative /ides and continuous operator with the post-process for
mula

(w + v)/s = w/(jsiw) + v/(jiv) (3.15)

replacing that of (3.10) , where the cover sets for the intemal sum on the left side are [W] and IV] ,
and on the right side are (W/(5>tw)] and [V^/(j iv)] respectively .
(2) The intemal sum operator is related to the projection and sum operators by the formulas

V= zi.vi + • • • + z„.v« (3.16)

Each process zj is arbitrary except for the trace constraint

trv c tr(zj)

where v ?= vi + • • • + v„ andeach vj belongs to the cover set Wj].

(yv + v).V < V (3.17)

u.(W e V) U.W + U.V (3.18)

where the cover sets are W and V in the last two cases .

(3) If w + Ve [W e K] where 1^ = V then

tr(w + v) = tr(w) n tr{v)

In other words everv transition must be shared by both processes. Therefore by equating the cover sets
one enforces total synchronization through the intemal sum operation.

4. Asynchronous Dynamical Systems

In this section we introduce a new formalism called an asynchronous dynamical system (ADS).
ADS is a discrete event syst^ formalism using a functional input-ouq)ut descr^tion. ADS differs from
conventional dynamical systems that operate arithmetically on synchronous instants of signals . It
operates on signals that are symbolic and asynchronous .

Definition 4.1

An Asynchronous Dynamical System Representation R is an ordered triple R ,T) where
U X and Y are marked processes in the process spaces Ilt^ »11^ and 11^ respectively. The processes U

X and Y are called the input. state and output processes and the sets [f/],lX] and [7] are called the
corresponding signal spaces . Processes in either of these ^aces are called signals . The state func
tion of the representation R ^Sr : [£/]-> [X] , is defined by :

trSniu) := (sGtrX I riy e tr(u))
\iSs (u)(s) :=\iX(s);se trSg(«) c trX

and the response function H : [Y] is defined by

Hr(u) SRiu).Y (4.2)

For simplicity in notation we shall drop the subscripts of the state and response functions when
ever there is no ambiguity. The basic properties of state and response factions are summarized by the
following fact.
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Fact 4.1

(1) The state function S is well-defined and is the inverse projection of the input space on the state
space . More precisely the set trS(u) given by (4.1) is prefix-closed and therefore S(u)e [X] is well-
defined on its domain [f/] . Furthermore S(u) satisfies

J=tt ifue[X.U] ....
t<« if «e[£/]

The set [X.f/] is called the projected domain of both the state and response functions . The character
izing property of the projected domain is given by

S(«) = SW ....

where

u:=5(tt).C/

(2) The state function can be expressed in terms of the internal sum and projection operators as

5(«) = (X.(X©f/) + u)X (4.5)

where the internal sum is defined with respect to the cover sets [X©{/] and [£/] respectively .

(3) 5 (.) is a continuous and ndes function and //(.) is a continuous function on [£/] . Moreover restric
tion of 5 to its projected domain [X.f/] is a one-to-one function.

Example 4.1

The following equations are an FRPdescription of an ADS where all spaces are taken as the unmarked
space.

State Process X :

Xi = (n —> X2 )

X2=(e ->X3)

X3 = (/ ->X4 I c -»Xi)

X4 = (a ^Xi)

X =Xi

where the e / ^ ,n and a stand for the discrete events *entCT shop' , 'failed' , 'completed' , 'next job
accepted ' , 'acknowledge failure ' respectively in a job shop managing process. The input process U
is given by

C/i = (n ^ Ui)

U ^Ui

where the inputs f and c are feedback inputs coming firom the actual machine shop and n is an input
coming fix>m the user. The output process Y is given by

Y = ie ->Y I a -» T)

The triple R = {U is an ADS representation. We compute the state function and the response
function for the specific input signal u - representing success cycles - described below
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Ui =(/! -» U2)

»2=(C -> «1 )

U = Ui

The corresponding state andresponse functions can be computed by inspection as

^1 = (rt -^S2)

J2 = (e —> ^3 )

S3 = (c ^ Si )

5(u) = si

and

Hiu) = (e ^//(«))

We can remodel the external complexity of the system by internalizing some of the input and output
transitions to private state transitions. The new ADS representation R={U^S) has the modified ver
sion of the input and output spaces where events that are relevant only to direct machine shop opera
tions are eliminated as shown below.

f/=(rt -^U)
Y={a ^Y)

For this representation the events e , / and c are purestate events invisible at the input and the output
A

The state function evaluated at the input signal u := (n -> HALT) is given by

si = (n S2 )

S2 = (e ^3)

J3 = (/• -» 54 I c -> HALT )

J4 = (fl ^ HALT )

S(ii) = si
A

and the re^nse ftmction is («) = (a HALT ).

Example 4.2

Consider the ADS defined by the processes given in Fig. 4.1 . which describe a simple flow con
trol mechanism using a Petri-Net and twofinite statemachines. The input and state processes are given
by the state machines of Fig. 4.1.(a) and Fig. 4.1.(b) , and the output process is given by the Petri-Net
described by Fig 4.1.(c) . The input transitions and adjust the flow into the place4 of the out
put net by controlling the transitions <b>and <0 by either blocking or releasing them .

The state signals S{ui) and 5(«2) for the two inputs ui and U2 where trui := <+> and
tr«2 •= + ~ respectively are given in Fig. 4.2.(a) and Fig. 4.2.(b). The corresponding ou^uts are ident
ical , i.e. y :=//(«!> = H^ui) where y is given by the Petri-Net in Fig 4.2.(c) . Note that the reason
the inputs gen^te the same outputs is because the effect of the transition *+' is rich enough to contam
inate the output signal even though again restricts the <6> transitions. This is one peculiarity of
untimed models when the response to an earlier input - in this case to input transition + - unleashes an
unbounded set of trajectories as in this example. In order to observe the output restricting effect of the
input transition - after + , we need a model after a specific state trace . Forexample the representation
R := (C//(+-);if/s,y/(siy)) where s is any state trace such that siu = +' wiU capture this effect and
the output //*(<!>) then corresponds to the Petri-Net given by Fig 4.2.(d) - with an initial token adjust
ment to account for the trace s -.
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Also observe that when the state signal makes any of the the transitions of the ou^ut Petri-Net
then the Petri-Net follows this only if its token condition is met as required by the definition of projec
tion . Otherwise this becomes a private state transition without causing an output transition. Therefore
in this model the same event can generate both ouq>ut and privatestate transitions .

Let us now modify this model by interchanging the role of the state and ouq)ut spaces. More pre
cisely suppose that we choose the input and output spaces as simple as possible , namely those given in
Fig.4.3.(a) and Fig.4.3.(b). Can we choose the state space in such a way that theresulting input-output
relation will behave as before as far as the traces of the responses are involved ? The answer is choos
ing a variable topology Petri-Net such that the inputs switch the Petri-Net from one topology to the
other as suggested in Rg.4.3.(c) . In general topologically switched Petri-Nets are not Petri-Nets.
Nevertheless they can be formulated as extended FRP in appropriate process spaces (see [2] p. 33 ,
example 4 fcff finitely recursive representation of Petri-Nets ). Apart from the representation problem of
state space the output space becomes too small in expressibility of finite representations of the signals
//(«) 9 . In this sense the initial model of this example looks , at least formally , easier to handle .

Dynamical systems are interconnected with others to fram more complex systems. Therefore we
need a compact representation for an ADS that has two capabilities : (i) it should characterize its inter
nal input-state-output dynamics ; (ii) it should define the interacting capacity of the system with other
ADS through input and output synchronization. We have already seen that the autonomous dynamics of
an ADS is completely characterized by its state process X. Once X is given the state or output signals
can be expressed for a given input signal u using (4.5). On the other hand interaction with oth^ ADS
can be modeled by making use of the intonal sum operations and cover sets. For this we characterize
ADS's as signals in appropriate cover sets that completely determine the environment of synchroniza
tion . These considmitions are formally elaborated below .

Definition 4.2

Foran ADS representation R=(U^J) the representation signal r(«) is defined as

r(«) :=S(u),Q[ 0 C/ 0 T) (4.7a)

with the cover set and the system signal dQt) is defined as

d{u):=SiuUU ®Y) (4.7b)

with the cover set [(7 0 7].

The representation signal r(u) simultaneously generates the traces of the corresponding state sig
nal 4.e.

/r(r(«)) = rr(S(tt)) (4.8)

and represents the blocking power of the system interconnected to other systems using the internal sum
operation. For example if ^ is another representation with an input process U=Y , then the signal
r(tt) + r(U) generates the traces of the interconnected process where the output of R is connected to

A

(synchronized by) the input of R .

^ See 4 - of Remaik 3.1.

For an application of this construct to the general interconnection algebra of ADS's see pan m ofthis series of
p^rs .
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Every transition in S(a) isvisible in r(«) since S{u) also appears on the right side ofthe projec
tion operator (cf. (3.8)). On the other hand the system signal d(«) is the externally visible version of
r(M) . The difference between r(u) and dQi) is that in r(«) "pure" state transitions (i.e. transitions that
are neither input nor output) are allowed to appear wh^eas in d(u) they are masked out Both signals
can explicitly be expressed as functions of u using internal sums

r(ii) = (r+tt)j- Q
d{u) = (d+u)M

where

r:=x.(xe£/®r)

d:=X.(USY) ^ '

We now relate the representation signal to the basic calculus of processes. First we express its
evolution in terms of post-processes . Using (3.8) and (3.10) we have

r(u)ls =S(u)ls.iS(.uyseUHsi'ay®Y/(,slY))

Motivated by the post-representation signal above we define the post-representation after the execu
tion of the state trace s asRIs (l7/(rii/)^/5,T/(riy)). Similarly for the length projection operator
using (3.5) we have

r(B)tii = (S(«)TB).(S(B)t« ® £/t/i ® yTn )

and as above we define the n-projected representation asiitn :=((/Tn^tn.I'Tn)

Fact A2

(1) The state and the response functions for the representations R and /r are related as follows

SRisiti) = Sj?(tt(tt))/r

«*/.(«) = Hs(«(«)y(.s-lr)

for all u € [U/(rij/)] , whwe «(«)€ [I/] is defined by :

tru(tt) := I t e tr(u))

tiB(B)(t) >= tiVit); t E tru(.u)

(2) Similarly the state and response functions ofR and Tn are related by

SitT«(«) = 5i?(tt)tn

«st.(«) = SsT.(«)-a'T«)

Finally we apply the choice operator to signals . Let = (t/^ , Ty) be a collection of J
ADS representations such that for each j Uj eUu ^XjeUx and Fy € Ily, that is *all input processes
belong to the same marked process space and similiar conditions hold for state and ouQ}ut processes.
Now define a process r via the choice function as :

r := (fli ->ri I • • • I a/ -> r/ (4.14)

where each ry is given by

ry =Xy.(Yy © C/y © Yj)

Unfortunately this definition does not uniquely identify the signal r with a representation triple {UX,Y)

as is the case for the signals ry . This is because the input and output processes U and Y are
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unspecified . On the other hand if t/ and Kare fully specified then r may be inconsistent with (4.14) in
the sense that the inputs U and Y are not connected to individual Uj and Y) in a meaningful way . In
order to resolve this i^oblem of partial specification we define the concept of integration below.

Definition 4.3

Given the collection of representations Rj above , a representation i? = (1/^,7) is said to integrate
this collection if the following equations are satisfied :

X = (fli Xi I • • • \ aj )m^

UI(<uij>iu)=Uj (4-15)
YI(<ai>ir) = Yj

for events ay jy= 1, •••.f . Under these conditions r given by (4,14) is the r^tresentation signal
r(u) evaluated at u=U for the integral representation R .

According to this definition , integration of a given set of representations corresponds to some
prefixing of the state processes of the collection in a choice function such that by an incremental
specification ofthe status - input, output or internal state - ofeach transition ofthe choice function the
minimcil input and output processes U and Y are determined if they are to satisfy the integration
requirements given by (4.15). Equations (4.15) are important in recovering the functional description of
the input and output processes from the usual form of supplied data on the status of individual transi
tions , that is , whether a transition is input oroutput or neither (intonal state) . The pointwise data
is integrated in a recursive manner using the FRP description of the state process X. This is illustrated
by the following example.

Example 4.2

Considerthe following processX expressed in FRP formulation

Xx = (fli X2)

X2 = (61 —♦ Xx I ^2 ^3)

^3 = (^1 -^^4)

X4= (flix —> ^5)

X5 = (f>2 ^2)

X =Xx

We are given the transition status information that in each context nx>^2 2nd b\^2 2re the input and
ouq)ut transitions respectively. We are asked to find the minimal input space [17] and the ouq)ut space
[7] consistent with this ^ata by using (4.15) recursively. We take all the processes tobeunmarked . Let
Uj and 7y- be the variables at each stage j corresponding to Xy. Using the integration definition and
assuming that each FRP equation integrates the collection ofthe processes on its right side we have

U\>iai -^11%)

which is obtained from (4.15) by applying it to the first equation of the FRP description and observing
that

Byminimal wemean thesmallest processes according to thepaitial order onprocess spaces .
For example the TKP.P. gQQ series data link protocol [6] is described by an implied state machine m(^l. listing

the sequence of actimts to be taken (outputs) after each specific external input. The procedure of Example 4.2 using
(4.1S) can beused tocompute the " functional" input and output processes from this pointwise data.
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U —U \l<ci\> —U2

where we used the given Hata that <ai> is an input transition. The reason for the inequality is because
(4.15) is a necessary condition and the input could well be larger. Although we are after the minimal
input process for reasons of consistency we impose this at the end. Similarly we write for the output
process the following equations

since again by (4.15)

where the projection is reduced to the null event.

The rest of the equations are given below :

U2>ia2^U3);U2^Ui

Y2^ibi^Yi);Y2 = Y2

U2 = U^;Y2>(.bi^Y^)

U^>(fli-^Us);Y^^Ys

U5 = U2;Y5^ib2-->Y2)

The minimal solution to these equations is given below

Ui = U2 = Us;U2=^U4

y, = Y2 = Y2;Y4 = Y5

and

U\ (l\ U\ I <l2 ^^3 )

In computing the output process unless we assume that Ti = 74 we may end up in a non-deterministic
solution ( transition <bi> takes 72= 73 into both 7^ and 74 ). Therefore the minimal (deterministic)

ouq)ut solution is

7 = (^1 -> 7 I 62 -> I' )

wh^ 7 is the process that equals all 7y .

Remarks

(1) In the context of a state machine the graphical interpretation of solving (4.15) is simple : tag each
transition as an input or an output (pointwise information) and obtain the input process by hiding all
output transitions and vice-versa. If non-determinacy arises then further merge all the target states of
that non-deterministic transition.

(2) The procedure above computes the minimal solution. In instances where inter-process blocking
through internal sums is desired larger solutions may be selected .

The concept of integration is also important in checking properties of response fiictions. For
example one can attribute an ADS "maximum causality" if its response function maps trajectories (i.e.
signals with a single trace and its prefixes) in [£/] into trajectories in [7] . The conditions under which
a given transition status in the FRP formulated state process of an ADS satisfies the maximum causality
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requirement is not immediate. Deriving these conditions in a more general setting makes use of the
concept of integration. For this reason we present the following properties of the integrated process
without proof .

Fact 43

(1) The r^resentation signal for the integrated process is given by

*•(«)= iii e Ji'.iaj rj(u/<aj>))] I [j

where J1J2 ar® subsets of defined by

jeJi <aj>etr(u)

j e J2 <=> <aj> 4 trU

and we used an indexed notation for the choice function.

(2) Similarly the integrated state function is given by

S(u)= {{j e Jiiiflj ^ Sg^iuf<aj>))] I [je (4.17)

(3) The expression for the response function is more complex and is given by :

H{u)= {[/ e ^ //o (tt/<a^>))] I [/ e liXaj ->Ho (^.18)
jgJ

wh^ the index sets are defined by

je/i <=> <aj>^tr{u) ntrY

ye/2 <aj>4trU and <aj>etrY (4.19)
jeJ <=> <aj>4trY and ye7it^2

and

Ui :=

u/<a;> if j eJi
1 . (4.20)

u otherwise

Note that the union in (4.18) is well-defined since all theprocesses are subprocesses of Y and therefore
have consistent marks.

5. Conclusions

We presented a new logical model called an asynchronous dynamical system (ADS) for discrete
event systems. The model is distinguished by its functional input-state and input-output maps derived
firom projection and sum operators defined on spaces of marked processes. These operators allow for a
variety of discrete event models to participate in a heterogenous synchronization environment. In the
second part of this series of pap^ we generalize these ideas to nondeterministic dynamics and in the
third part we utilize these ideas to construct an int^onnection algebra and demonstrate that formal
verification problems can be reduced to methods of block diagram reduction.

We have not touched upon problems of nondetominism arising out of our definition , inparticular
out of the projection operator. Clearly the implicit assumption of determinism which states that a pro
cess P will progress after a trace s if and only if the process Pis is not the null process (i.e. the pro
cess with only the empty trace < > )is not valid for the output signals in ADS formulation even if the

13 We dealwithproblems causality in ADS in a forthcoming paper.
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input and state signals are assumed to behave deterministically . We shall deal with this issue in part n
of this papCT by developing an appropriate equivalence definition that cjq)tuies the semantics of non-
determinism at a reasonable operational level.

It may be fruitful to investigate the conditions under which a finitely recursive process algebra
couples to the algebra of ADS. By this we mean the investigation of how process operators such as
sequential or parallel composition [1] , or others , intoact with the projection and sum operators of
ADS. Presavation of properties of algebraic structures und» ADS operations may yield usefiil insights
and simplifications in the analysis and design of discrete eventsystems .

APPENDIX

Proof ofFact 3.1

The proof of (3.1) is routine . To prove (3.2) we use induction on the length of v . Bydefinition

Applying the induction hypothesis

= u-lic "

= uijc " (v " <a>)iii:/(tti^)

where we used the transitivity relation

(X/(«i'jf))/(v4/f/(„ijp)) =X/((ttiic) " (V'l'ji:/(ul^))) =K/(m "v)4'ic

which completes the proof.

Proof ofFact 3.2

(1) Follows by definition of the projection operator .

(2) First consider the following counter-example to show that the projection operator is not necessarily
continuous in P:

Take

trP = {o,<fi>^a}
A

trP = >,<«>)

trP- {o,<fl>)
A

then although P <Pwc have

tr(PP) - [< >,<a>)
tr(PF) - {<

which violates the monotonocity requirement of continuity.

Next we claim that

#(ji7>)^n => [sip = (Al)

Proof of Claim :

We use induction on the length of ^ in (Al). Let s = v^<a> then by (3.2)

= (y'<a>}ip = V>l'/» <^>ipf{yip)

sipU= iv^<ti>)ipU = V>l7>Tn "
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and using the induction hypothesis «namely ,

W:= vip = vi'ptn

it remains to prove that

<^>'̂ Ph¥ = <fl>^CPtnyw

which can equivalently be formulated as

w"<a>etrP <=> w " <a>e/r(Ftrt)

To prove the relation above it is enough to show that

w " <a>€ trP ^ w " <fl>e tr(P^n) (A2)

since the revise implication is obvious. But (A2) follows by observing that

w " <a>G trP ^ vip "<a> = (v " <a>)ip

therefore by definition of s

"<»>) = #(s>lp) ^ n => w *<fl>€/r(/'T/i)

This proves the claim (Al) . To prove (3.5) let s e tr{{Pl)\n) then there exists t e trP such that
s^tip and §s^n. But by the claim proved above we have = therefore
s 6 tr(P.{Ptn)yXn . This proves that (?.?)?« <(P.(Ptrt))T/i. Conversely let s e rr(P.(PTrt))tn then
tha-e exists t e trP such that s - tiptn' t>y definition of projection s e rr(Ptn) and therefore
#s < n which implies that s e /r((P.P)tn). We have thus proved that

(Pi)tn = (P.(PTn)tn

and the rest of (3.5) follows easily. Proofs for (3.3) and (3.4) follows using (3.5).

(3) In ordo- to prove (3.6) let s e fr((Ptn).P) , then there exists t 6 /r(PT/») such that #r <n and

s = tip

Using thesame t € trP we show that s e (P.P) and the result follows byobserving that

#s = #(rij5) < m

To show that theprojection operator is not tides in P consid^ the counter-example :

Take

trP = {o,<d>^a)
trP= {<

then

tr(Pi)tl = {<>.<a>)

whereas

(r((PTl)^)Tl = {<>)

(4) First consider the following counts-example :

Take P XI ^ such that

trP = {o,<c>,ci>}

trQ - [o,<b>,<a>/K]

trR = {o,<i»,<c>)
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then we have

»-(P.(fiJ?))={o.<c>)

whereas

rr((P.Q)i?) = {<>.<&>}

which proves that the operator is not necessarily associative. We prove the rest by using induction on
the length of s. Therefore we let j = r ^ <a>etrP and show that

t " <^>>^2 = t (A3)

assuming by induction hypothesis that

t4'q = t^p.Q (A4)

Applying (3.2) and using the induction hypothesis (A4)

t "<a>^Q ^^QKtiQ)
t " <a>ip^Q = tig "

Therefore it remains to show that

which is equivalent to showing that

<a>Gtr{QI{tiQ)) <a>e <r((P.0)/(riQ))

and it is enough to show that

<fl>e /rOg/Cfig)) ^ <a>e tr{{P.Q)l{tiQ))

where the reverse implication follows from the property P.Q < Q . But since t''<a>e trP we have

<a>e tr{Plt) and <a>e tr{QI{tiQ))

which implies that

<a>e tr{{Plt).((2l{tiQ))) c tr{{P.Q)l{tiQ))

where we have used (3.7) which is proved next. This proves (A3) . The idempotency condition is an
immediate consequence.

(5) By the definition of union operation it is enough to prove the equality of the traces of the processes.
Let V e tr{PJP)ls then

s ' Ve tr(P^)

and by definition thoe exists t etrP such that

tip = s"v

By partitioning t appropriately as r = ti ' /2 using (3.2) we obtain

tip= tiJ-/ " tzip/s

where

tiip = s andt2ip/s=v

therefore
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V= t2ipi, e tr{{Pltx).{Pls)) c tr(iPJt).(Pfs))
teTg

Conversely let

V6 tr((?/0.(^/5))
teTg

then th«e exists ti " trP such that

ti4'P = s
tze tr{Plti)

il^PIs = V

therefore as before

(ti' ti)ip-s " ve rr(FJ®)

and

Ve {P^)ls

(6) The proofuses gimiiar approach as in (S) above and is omitted .

Proof of Fact 3.3

(1) (3.10) follows from the definition using induction , (3.11) is a consequence of the property that
argument processes of the sum opoation cannot block each other.

(2) To prove that the sum operator is associative an tides is also simple and omitted . The following
counter-example shows that the sum op^ator is notnecessarily continuous.

Take

/rw = {<>,<b>,<fl>)
trv = {<>.<6>)

/nv {<>,<«>)

so that w . But

tr(w © v) = {<>,<a>,<b>/ibM)
tr(w © v) = {< >,«2>,<b>^)

which violates the monotonicity requirement for continuity .

(3) (3.12) follows firom (3.11) and the definition of projection. We prove (3.13) by using induction on
the length of s e tr{u) to prove the formula :

(s4'(w®v))^tv =

Given s^<a> we evaluate the left side of (A5) using (3.2) twice

where wealready used the induction hypothesis on s given by (AS). It remains to show that

((<a>i(^©yy(,4,^^))iv/(*i^) =

We prove (A6) by first claiming that
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<a>e tr(y/siv) => <a>e /r((w©v)/(5iw®»))

After using (3.10) and the induction hypothesis to evaluate

(w ©v)/(s 4',y0y ) = Vi'/((^ )4'̂ ) ©V/((^ >l'̂ 0v )4'v )

= W/(siw) ® V/(siv)

the claim follows by definition of the sum operator, (A6) then follows firom the claim and the general
obsmration that

= <b> <=> <b>e trP n trQ

We omit the proof of (3.14).

Proof ofFact 3.4

Proofof (1) is obvious. Proofof (2) makes useof the inductive proofof Proposition 2.1. The details are
omitted. The reader is referred to [2] for a proof of Proposition 2.1 .

Proof ofFact 35

(1) If ntl is solid then the generators of 11 are solid subsets in W and the proof of Proposition 2.1 [2]
will reveal (again details are omitted here) by induction that this property extends to the entire space 11.
Proof in the reverse direction is trivial.

(2) If Y inhmts a subset of traces of P together with the marks then it is a process in n since 11 is
solid , and therefore it is a subprocess of P and is a member of [F] by definition. This proves that [P]
is solid. If 7" is a chain in [F] then

tri U C trP

defines the limit which proves that [F ] is closed. Finally let s e trX n trY and X g [F ] , then every
trace of X and Y must belong to F and therefore

Hy(s) = M^(s):=MF(s)

Proof of Fact 3.6

(1) The proof is omitted.

(2) We prove (3.16) for the special case when n=2 . Generalization should be straightforward. We first
prove (3.16) with v replacing zj and Z2 by using induction on the length of traces. Let

s e trv and s e tr(y.vi + V.V2)

and assume that the trace equality holds for all traces with length ^ #s . We compute the post-process
after s of both sides using (3.7) and (3.15) as below :

v/s = Vi/(jivj) +V2/(siv^

whereas

(v.v1+V.V2)/S = U ((v iKs 'I'Vj)
tXi/ = SXy

KJ ((Vl/(/ iv,) + V2/(s
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The proof is complete if we show that for the processes given by the above two equations a transition
<a> belongs to one if and only if it belongs to the other. This is straightforward and we omit the de-

V.Vj ^ Zj.Vj ^ Vj

for y=l,2 , which is valid by the continuity of the internal sum operator.

To prove (3.17) we proceed by induction similarly and compute

((w + v).V)/s = (w/CrJ^if) + v/s).V/s
tiy =S

and therefore if

<a>etr( {w/{tiw) + v/s),V/s)
iS

then <a>e tr(y/s) which completes the induction argument

Finally for (3.18) we compute the post-processes as below

M. (W e V)/s = VJ iu/tUWKsiw) ®^(siv))
w®v

iu.W +uy)/s=^ VJ {u/tUW/siw)+ U («/0.(Wjiv)

and prove the result by demonstrating that if a transition <a> belongs to the first process above then it
belongs to the second one. We omit the details.

The proof of (3) is simple and omitted.

Proof of Fact 4.1

(1) Let sU e trS{u) then using (3.2)

{s^t )ii^ := j "f^unsiy) e rr (u) (A7)

by definition of S{u). We must show thats e rrS(«) or

sitr € tr{u)

which follows from (A7) by noting that it is the prefix of a trace of the process u . To prove (4.3) let
t e ir(u) then since u e [X.U] there exists s e trX such that = r by definition of [X.f/]. But this
implies that s e S(«) by definition and therefore t e tr(S(u).U) . This proves that u <S(u).U . The
reverse inequality is proved similarly.

(2) Proof is straightforward and omitted.

(3) Let S(u) = S(v) then S(u).U = 5(v).C/= « = v by (4.3). Continuity of S follows firom (4.4) using
the continuity of the projection and internal sum operators and the rule of composition. S is ndes in u
since no transitions in u can be made invisible in X by (4.4) . Continuity of the response function fol
lows firom the continuity of the state andprojection functions and the composition rule.

The proofs of Fact 4.2 and Fact 4.3 are omitted.
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Figure Captions

Figure 3.1 Sum and projection of processes : P 0|21P-Q >Q-P *

Figure 4.1 Row controlled Petri-Net example of ADS

Figure 4.2 State and output signals for Example 4.2

Figure 4.3 Altonative switched Petri-Net model for Example 4.2
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