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ABSTRACT

Recently, Polak and Wuu have presented a set of easily solvable, differentiable inequalities,
which are related to the classical Nyquist stability criterion, and which constitute a necessary and
sufficient condition of stability for finite dimensional systems. In thispaper it is shown that a similar set
of easily solvable inequalities can be used to design finite dimensional stabilizing compensators for a
class of infinite dimensional feedback systems. Computational aspects of the new stability test are dis
cussed.

1. INTRODUCTION

Control system design via semi-infinite optimization (see [Pol.3]) requires that all performance

specifications be expressed as (semi-infinite) inequalities. For the finite dimensional case two

approaches are possible. The first is to use Q-parametrization of the design, as in [Boy.l,Pol.5], which

requires co-prime factorization of the plant transfer function. The second is to use a semi-infinite ine

quality, as in [Pol.2, PoL6J. The main advantage of the first approach is that it leads to convex design

problems; its main disadvantages are (i) the design problem convexity is achieved at the expense of

fixing the location of the closed loop poles and using optimization only to manipulate the zeros of the

closed loop transfer functions, and (ii) it does not permit the preselection of the controller order. The

main advantages of the second approach are (i) it can be used in conjunction with broad classes of sta

bility regions, and (ii) it permits the preselection of the controller order, its main disadvantage is that it

does notresult in convex design problems. On balance, we prefer the second approach.

The fi-parametrization approach can also be used for the the design of stabilizing compensators

for infinite dimensional feedback systems [Netl, Vid.1]. Since it generates an infinite dimensional sta

bilizing compensator, it has to be supplemented with approximation and order reduction techniques, and

appears to be rather cumbersome. The results presented in [Cur.l, Sch.l], for the the design of finite

dimensional compensators for infinite dimensional feedback systems, do not appear to be utilizable in a



semi-infinite optimal design setting. In this paper, we develop an extension of the second approach

described above, for the design of finite dimensional compensators for infinite dimensional feedback

systems.

The first attempt to produce a frequency domain stability test for finite dimensional systems,

which is compatible with the requirements of semi-infinite optimization, was presented in [Pol.l]. A

significant improvement was presented in [Pol.2]. The necessary and sufficient stability criterion pro

posed in [Pol.2] is based on the following observation. Suppose that %(s) is a characteristic polynomial.

0

Then all the zeros of %(s) are in C_ £ {«= C, Re(,s) <0) if and only if there exists a polynomial d(s),
o

of the same degree as %(s) and whose zerosare in CL, such that

Re [XO'©) / d(j®)] > 0, V t0€(-oo,eo). (1.1)

The proof of this result is simple. If all the zeros of%(s) are in CL, then set d(s) =%(s) and hence (1.1)

holds. Alternatively, if (1.1) holds then the origin is not encircled by the locus of %0*©)^0'o)) and

hence the conclusion holds as for the Nyquist stability criterion. When used in design, the characteristic

polynomial is also a differentiable function of compensator designable parameters xeJR.\ and has the

form x(*.s); and the normalizing polynomial d(s) is written in a factored form, such as

d{s,q) =s npj (j2 +ajs +bj), which makes it simple to ensure that the zeros of d(s) are in CL (q is a

vector whose components are the aj, bj).

In this paper we extend the computational stability criterion presented in [Pol.2], to a form that

can be used in the design offinite dimensional stabilizing compensators for aclass of feedback systems

with infinite dimensional plants, to be described in Sec. 2. Since in this case the characteristic function

is not a polynomial, there is no simple way to define a normalizing polynomial (of finite degree) for a

test of the form (1.1). Hence approximation theory has to be brought into play. Our new stability test

guarantees not only input-output stability, but also internal stability of the feedback system. Further

more, since the numerical implementation of the test does not depend on the use of a reduced plant

model, the test does not lead to spill-over effects. Finally, because the compensator is parametrized in

the state-space form, the order of the compensator can be assigned by the designer.



The new computational stability criterion will be presented in Sec. 3, and its numerical imple

mentations in Sec. 4. A numerical design example involving a flexible beam will be given in Sec. 5.

2. PRELIMINARY RESULTS

Consider the feedback system S(P,K)t with n{ inputs and n0 outputs, shown in Fig. 1. We assume

that the plant is described by a linear and time-invariant differential equation in a reflexive Banach

space £:

xp(t) = ApXp(t) +B^t); y2(t) = C^i) +Zy2(fl. (2.1)

where xp(t)eE, e&yeTR!*, y2(t)eJRn°t for / £ 0. The operator Ap from E to £, may be an unbounded

operator with domain dense in E, which generates a strongly continuous (C0) semigroup, {e^},* 0- The

operators CP:E -» R"° and Dp.-R"* -> R** are assumed to be bounded. To allow boundary or point con

trol action, we assume that the operator Bp can be unbounded in a certain sense. To clarify the class of

operators Bp that are allowed, we need to extend the state space, as follows. First, we denote the

adjoint operator of Ap by A*, the dual space of Eby E* and the domain and the range of Ap by D(Ap)

andR(Ap), respectively. As in [Cur.l], we then let

rkDjtfixzl? (Z2)

endowed with the graph norm ofA*. Then Z* is a real, reflexive Banach space and the injection of Z*

into E* is continuous and dense. Defining the extended state space Zbe the dual space ofZ\ we obtain

by duality that

E<zZ> (2.3)

with a continuous dense injection.

From now on, we will treat the state of the plant, ^,, as an element of the extended state space Z,

and we will assume that £p:Rn'' -» Z, is bounded. Because Eis dense in Z, Cp can be extended to a

bounded operator from Zto RB°. The operator A* can be regarded as a bounded operator fix>m Z* into

£* and, by duality, Ap extends to a bounded operator from E to Z. Referring to [Cur.l, Sal.l], we see

that this extension, regarded as an unbounded operator on Z, is the infinitesimal generator of the



Aj.extended semigroup [e p)ti0 e L(Z). The exponential growth rate of the semigroup {/*'}, ;>o is the

same on the state spaces E and Z. Furthermore, the spectrum of Ap on the state space Ecoincides with

the spectrum of Ap on Z1.

By the Hille-Yosida theorem [Paz.l], there exist M> 1 and ye R such that
Aj

lle^H £ A/ev, Vt^O. Let oXAp) denote the spectrum ofAp and let p(Ap) denote the resolvent set of

Ap. We define the transfer function ofthe plant, Gp(s), to be Cp(tf - Apy% +Dp, V se p(Ap), which is

analytic on p(Ap) [Kat.l, Theorem m 6.7].

Definitioii 2.1: We will say that a function, g: C -» C, converges at infinity in a domain £> c C, if

there exists a finite complex number, c, such that lim sup \g(s) - c\ = 0, and we shall write
p-*» Irl^p

J6Z)

c = limw _> ^(5). We will say that a matrix function G: C -» C"x" converges at infinity in a domain

D if each of its elements converges at infinity in D. m

It follows from [Jac.l] that there exists aysR such that limu _ ^Gpis) -> Dp.
Rex >y

Definition Z2: For any a £ 0, a semi-group {r(r)}ri0, defined on a Banach space, is said to be

a-stable if there exist 3fe(0,°o) and On > a such that

WnOW^Me^ , V/;>0. (2.4}

For any a >0, we define the stability region £>_« 4 {se € IRefr) <-a), with compliment, in

C» K-o= {J€ CIRe(j)^-a}, whose boundary and interior will be denoted by

3£/_a = Ue C IRe(j) =-a) and UZ* = {«= C IRe(j) >-a).

We assume that the plant in (2.1) is a-stabilizable and a-detectable, i.e., there exist bounded

linear operators K:Z -» R* and F:TRn° -> Zsuch that Ap - BpK and Ap - FCP are the infinitesimal gen

erators of a-stable Co-semigroups. It can be shown that the plant is a-stabilizable and a-detectable if

and only if there exists a decomposition of Z =2L 9Z+, with Z+ finite-dimensional, which induces a

decomposition of the plant (2.1), of the form

Under the above assumptions, model (2.1) can represent a flexible beam with point actuators and sensors [Har.l].



d XpJf) Ap. 0" Xp-(t) v
dt V(0 L° VJ */*(<)

T

w
"(0 ; y(0 = [C^ cy V(0

+ Dpu(t), (2.5)

such that GiApJ <=. U^, (A^, 5^+) is controllable, (A^, C^) is observable, and Ap. is the infinitesimal

generator of an a-stable C0-semigroup on Z_ [Nef.l, Jacl]2. We recall that a plant is a-stabilizable

and a-detectable if and only if there exists a finite dimensional strictly proper compensator such that

the feedback system is a-stable [Jacl]3.

We assume the compensator to be finite dimensional, linear, and time-invariant, with state equa

tions

xe(t) = A^cif)+ Bcex{i); yx(t) = C,jcc(/) + D&Q) . (2.6)

where xe(t)eTR\ ei(t)eJRn°, yi(t)eTRn' and Ac, Bc, Ce and De are matrices ofappropriate dimension. The

compensator transfer function is Ge(s) =Ce(sln<; - AJ~lBe +De. The compensator isalso assumed to be

a-stabilizable and a-detectable. To ensure well-posedness of the feedback system, we assume that

det^ +D^^O.

We define the product space H-Zx JR\ Since ex-ux-y2 and e2 =yx + wi, the state equa

tions for the feedback system are

t -\

XP = A xp + B
"l

.
^l

= c XP + n
"i

w U-i *2 Xc
I J

«2

where

A =

B =

Ap-BpDe(In+DpDe)-lCp Bfi^DcD^Cc
-BMn+DpP^Cp Ac-Be(In+DpDe)-lDpCc

,-iBpDMn+DpD.)-1 Bp{In?DJDp)

Be(In+DpDeTl -Bc(IH+DpDeTlDp

(2.7)

(2.8a)

(2.8b)

2In [Nef.l, Jacl] only O-stability is considered. Our extension to ct-stability is trivial
3Although the state space ofthe plant is assumed to be aHilbert space in [Jacl], the results from [Jacl] used in this sec

tion can be easily seen to remain true if we assume that the state space ofthe plant is areflexive Banach space.



c =

-{In+Dpcy% -iIn+DpD^DpCc
-DMn+DpD^Cp {In+DJ)pTlCe D =

(In+DpDeTl -dn+DpDcT'Dp

De(IH+DpDcTl (In+DcDp)-1
(2.8c)

The domain D(A) =D(AP) x r"ca H. It follows from [Paz.l, p. 76], that because, with the exception

ofAp, all the operators in the matrix Aare bounded, and because diag(Ap,0) generates a C0-semigroup,

theoperator A also generates a C0-semigroup, [e*'),* o-

Let x=[Xp,Xc\eH. Then the formula x(f) =eA'x0 +^ eAi'-x)Bu(x)di defines amtfrf solution of
(2.7) [Paz.l]. We therefore define the exponential stability of the feedback system S(P,K) in terms of

the semigroup [e**}, %o-

Definition 23: For any a £ 0, the feedback system S(P , K) is a-stable if the semi-group [eAt}ti0 is

a-stable. m

It was shown in [Jacl] that, under the above assumptions, the feedback system S(PJ0 is also

a-stabilizable and a-detectable. From the decomposition property in (2.5) for a-stabilizable and

a-detectable systems, we can easily deduce the following relationship between a-stability of the feed

backsystem and the spectrum of A, first established in [Jac.l]:

Proposition 2.1: If the above assumptions hold, the feedback system is a-stable if and only if U^ is

contained in p(A). a

3. A COMPUTATIONAL STABILITY CRITERION

We define the characteristic function %: € -» C, of the feedback system S(P,K), by

%(s) £ dett>/n+ - A^det^ - AJdeu?^ +Ge(s)Gp(s)) , (3.1)

where Ap+ isdefined as in (2.5) and n+ is the dimension ofAp+.

To establish the next result, we have to apply the following Weinstein-Aronszajn formula ([Kat.1,

P. 247]).

The W-A Formula: Let F be a closed operator in the Banach space X. Let Qbe a bounded operator

in X and suppose that R4R(Q) is finite-dimensional. Let y: C-> C, defined by

y(s) = det(/fl + (Q(F - sTf%), be the associated W-A determinant, with IR the identity operator in R



and (jQ(F - sTf1)^ the restriction of Q(F - sl)~l to R. If Ais a domain of the complex plane consisting

of points of p(F) and of isolated eigenvalues of F with finite multiplicities, then y(s) is meromorphic in

A. Next, we define the multiplicity function v(s;y) of y(s) by

v(s;y) =
k if s is a zero of <J> of order k
-k if s is a pole of <J> of order k
0 for other seA

(3.2a)

and, for any closed operator G:X -* X, we define the multiplicity function v (s;G) by

v (s;G) = «

0 ifsesp(G)

dim(P) if s is an isolated point of a(G)
+ <*> in all other cases

(3.2b)

where P is the projection associated with an isolated point of c(G) (see [KaLl, p.180]). Then, the W-A

formula relates the multiplicity function of the operator F+ Q to those of F and y(s), as follows:

v(s;F +0 = v(s;F) +v(j;y), V seA , • (3.2c)

Next, for any function/: C -» C, we define Z(fl») £ [se C\f(s) = 0} to be its set of zeros.

Theorem 3.1: The system S(P,K) is a-stable if and only if Z(x(s)) c £>_<».

Proof: We begin by decomposing the operator A (in (2.8a)) into the form A =F+ Q, as shown

below, with the plant decomposed as in (2.5) and Xe such that Re(Xc) <-a,

F = -Bpflc^+DpyCp. Ap¥-BpJDei!H+Dp^CJ>¥--kJ„ B^+D^C,

-BcHt+Dp^Cp. -B^+Dp,)-}^ Ae-Be(rn+Dp^DpCe-Xj„e
; Q =

o o \jHc

(3.3)
It is easy to see that Fgenerates the Cn-semigroup {/'}r2:o, where e*1 = diag(eAp-'.eV/n+,eV/ne), and

that (F-si) is invertible for se [/_„; Q =A - F is a bounded operator and R(Q) is finite dimensional.

Consider seU^, c p(A^). Since (F - sTf1 exists and is bounded, we can define V(s) by

V(s) = Q(F- sIT1



-Bp_De(rn+Dp2-lCp_(Ar_-sI)-1 -B^^+Dp^C^^T1 Bp.(rH+DtppTlCe^e-sTl

-BJHDc(Itt+Dper1Cp.(Ap.-sI)-1 (A^-BpJ^+Dp^C^-XJ^-sr1 B^+Dfi^C^-sT1
-Be(fn+Dpjr1Cp_(Ap_-sirl -BcVn.-Mp^C^c-s)-1 (Ae-Be(fn+Dp^Dpe - XJ^-s)-

(3.4)
Let B0 £R(Q) =R(BP) x R"c =/?(£,_) xR{B^) xR*c and let VBq(s) denote the restriction of V(s) to

Bq. Then det(/ +V(s)) £ det(/So +VBo(s)) is well defined [KaLl]. We will show that

oWj?0 +Vy =X(s) and then apply the W-A formula.

Let bj =Bpjej, j =1,2,...,it*, where {«y}J£i is the standard unit basis in R*''. Suppose, without loss

of generality, that n< m is a positive integer such that [bfljLi is the largest linearly independent subset

of [bj)jLi. Under the basis (fyjjbi as abasis for R(Bp_), the linear operator Bp. assumes the matrix form

bp- ° Orx »IBp- )e 1RB * where the i-th column ofBp. is obtained by expressing bm in terms of

the basis {fy}jLi. Let J 4 (bife,...^. Then it is easy to show that

BpJfmfDJ>J*Cfrr*y*
BJfafDpj*CJbriy*

(Ae-Be(fn+Dp^DpCe - y„XXe-,)-

(3.5a)

-BpJ>e(!H+Dpj-iM(s) -BpM^+DpyC^-sT1 B^+Dfi^C^-s)-1
= -BpJ^+Dp^MCs) (A^-B^V^pfiC^-XJ^-sr1 B^^Dfi^C^-sf1 . (3.5b)

-Btfn+Dpj-lM(s) -BcVn+Dp^C^c-sT1 (Ae-B^ln+Dp^DpCe - XJ^-s)'1

where M(s) £ Eri(f).r^)....,r^r)]€ C"°*" with rfc)± Cp.(Ap_-sf)-lbh lZiZn. Because each ele

ment in (3.5b) is in matrix form, it is straightforward to showthat

det(/Bo +VBo(s)) =det^ - A^)det(j/nc - Ac)det(/n, +Gc(s)Gp(s)) =%(s). (3.6)

Now we make use of the W-A formula. Let F and Q be defined as in (3.3), so that A =F + Q.

Since U^ e p(F), we can choose A = £/_«. Then %(s) = detfo + (Q(F - siy%), for seU^ and hence

applying the W-A formula, we obtain that v(s;A) =v(s;F) + v(s;%) for all seU^. Since U^ c p(F),

it follows that v(s;F) =0 for all seU^, and hence v(s;A) =v(j;%) for all seU^, which implies that

(i) the operator A has only finitely many eigenvalues in £/_« and (ii)

8



C/_« n c(A) = t/_« n Z(x(s)). (3.7)

Now suppose that the system S(P,K) is a-stable. Then it follows from Proposition 2.1 that

U-a <=• p(A), which is equivalent to saying that £/_« n a(A) is the empty set. Hence it follows from

(3.7) that U^ n Z(x(s)) is the empty seL which implies that Z(x(s)) c />_«.

NexL suppose that Z(x($)) c A^. Then we must have that U^ n Z(x(s)) is empty. It now fol

lows from (3.7) and Proposition 2.1 that S(P,K) is a-stable, which completes our proof. •

Next we introduce an approximation result

Proposition 3.1: Given a £ 0, any function/: C -» € which is analytic in Ui^, continuous ondU^,

and converges at infinity in U^, can be approximated uniformly by a rational function which is also

analytic on the same domain.

Proof: Letf(s) be an analytic function on £/_„. Define the bilinear transformation

. A s-p + a a 1 +z
z = c ; s § -a + p- , (2 g)

s + p + a l-z KD'°}

and letg(z) = f(-a +p(l + z)/(l - z)). Since £/_«, is mapped onto the unit disc, and f(s) is analytic in

J7_o and continuous on dU and converges at infinity, g(z) is analytic in the open unit disc and continu

ous on the unit circle. By Mergelyan's Theorem [Rud.l], g(z) can be uniformly approximated arbi

trarily closely on the unit circle by a polynomial in z. Since the transformation (3.8) is //..-norm

preserving, the desired result follows. •

Theorem 3.2: Let n+ and ne be the dimensions of the matrices Ap+ in (2.5) and Ae in (2.6), respec

tively. Z(x(s)) c £>_« if and only if there exists an integer Nn > 0, and polynomials do(s) and no(s), of

degree Nd = Nn + n3 andNm respectively, with ns = ne+n+, such that

(0 KMs)) c D^ , Z(«o(*)) c />_<, ; {it) Re
X(s)no(s)

do(s)
> 0 V jeac/^ . (3.9)

Proof: (i) Suppose that (3.9) holds. Since Ap. is a-stable, there exists e>0 such that UHa+e) is a

subset of p(A^), and (si - Ap.)'1 is analytical on £/_<a4€). From (3.6), (3.5b), we observe that %(s) is an

analytic function over UHw>y Then it follows from the Argument Principle [Chu.l] that Z(x(s)) c £>_.



(ii) Suppose that Z(x(s)) c £>_<,. We first apply the approximation result given in Proposition 3.1 to

the function %(*)/($ +P)"*, where p£ a. Clearly, there exists some real number Yo >-a such that

limw _ ^Gpis) -> Dp and limw _> „Gc(j) ->Dc. Because the degree of det(s/„ - A^det^/- - Ae) is

/»„ we have that

«~"ttsj?' =&' 7^?. ',det(/*+G^»' =,det^+DJ>&self. ^+ P^ ,6 tt, tf+P)
To To

(3.10a)

Since x(s) is analytic on U<a^ for some e>0, it is uniquely determined by its values over UyQ [Chu.l,

p.286]. Hence4

Note that ldet(/n{ +£>cDp)l is not equal to zero because of the assumption of well-posedness of the feed

back system. Therefore it follows from Proposition 3.1, that for any 5 >0, we can find a rational func

tion d(s)/n(s), such that all the zeros of n(s) c Z>_o, and

\\X(s)/(s +P)"' - d(s)/n(s)\\ 4 jrop \x(s)/(s +P)"' - d(s)/n(s)\ <8. (3 n)

Since ZXx(s))<zD^a and for seU^, l%(r)l->oo as \s\ -> «>. ft is easy to show that

infxiU^ fy(s)\ =c0 >0. Because of (3.10b), for any given i\ >0 sufficiently small, there exists r,, such

that tx(s)Ks +&)n'\>\det(In( +DeDp)\-i\, for all seU^ and \s\ Zr„. Next we show that if

5<min [Idet^. +/>„£>,)! - r\ , c01 (r^ +P)"'}, then Z(d(s)) c D^. If not, then there exists s0eU^

such that d(So) =0. Now, by (3.11), kfoVfo +P)"' - ^o)/«(^o)" =(XfoVC* +P)"'! <5. If 1*1 >r„,

we obtain acontradiction of IxfoVfo, +P)"l >ldet(/„. +A£>,)l -t\>8, while if 1*1 £ rn, we obtain a

contradiction of ty(s0)/(s0 +p)"'l > cq/^ +P)B* >8.

4The following is asketch of the proof for (3.10b). Consider the function/&).• Uy -» £such that/M =. %(*) for seUy . By
using the transformation defined in (3.8), we transform UJq in the splane unto asubset of unit disc in the i plane, which includes
the point i»l. Then there exists a unique analytic extension of the function g(z) mfl-a+pltL) to the unit disk, which is

1+z*(») » X(rO*P^), H£ 1. Therefore (3.10b) is just the consequence ofA(l) =g(l).

10



From (3.10b) and the fact that inf*,^ \%(s)\ = c0> 0, it is easy to show that

inf«av_alx(^)/(^+P)',1 = /o'ftO. From (3.11), if 8</o/2, then for sedU^,

W(j)/n(5)l>lx(5)/(j+P)B1-8>lx(5)/(^+P)n'l/2. Therefore if 8 is chosen less than

min {/</2,ldet(/^ +£><£>,)! - Ti,co/(r„ + P)"'}, from (3.11), we obtain that

W)l(s +P)"' - d(syn(s)\ I\d(s)ln(s)\ <8/ \d(s)/n(s)\ <28 / Ws)/(s +P)"'l <1 , sedU^ . (3.12)

It follows from the above that for allsedU^, \\x(s)n(s)/(s + P)n'd(j)] - II < 1,and hence that

Re[ X(5)T~Sb7 ]>°' VseW^ ' (3-13)(s + P)'d(s)

Let no(s) = n(s) and dois) = (s+ $)n'd(s). This completes our proof. •

4. NUMERICAL IMPLEMENTATION OF THE STABILITY CRITERION

In practice, the test (3.9) can only be used as a sufficient condition, because one must choose in

advance the degree Nd of the polynomial do(s). We shall now sketch out some of the numerical aspects

of using the test (3.9) in the design ofa stabilizing compensators. First, the order nc of the compensa

tors (2.6) must be selected and the elements of the matrices in (2.6) must be made continuously

differentiable in the design parameter vector pe. Second, the polynomials do(s) and no(s) must be

parametrized. In [Pol.2] we find a computationally efficient parametrization for do(s) and no(s) which is

based on the following observation. When a,beTR, Z[(s+a) + a)] c D.a if and only if a > 0, and

Z[(5+a)2 +a(s +a)+b] c D_a if and only if a>0, b>0. Hence, when the degree of do(s) is

odd, we set do(s,qa) £((* +a) +ao)f[((s +a)2 +at{s +a) +bd, where qd k
»=i

(ao,ai,a2, • • • .a^buh, • • • .fe/elR2"*1 and Nd = 2m+l. When Nd is even, the linear term is omit

ted. The polynomial no(s), which is of degree Nn =Nd-ns can be parametrized similarly, with

corresponding parameter vector qn. Asa result, the system of inequalities (3.9) becomes

qi-e^O, fori= 1,2, ••• tfd; ^„-e>0, fori = 1,2, ••• ,NH, (4.1a)

p,/X(-a+M/'c)flfl( -a+j&,qj
Re( 4)(-a+M<fc) >-£^0' V«N, (4.1b)
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where 4d> 4n are the components of qd, qn, and £ isa small positive number.

The design of a stabilizing compensators by means of semi-infinite optimization requires the

evaluation of x(-ct +jto,p£ and its partial derivatives with respect to plc for many values of co. In

[Pol.2] we find an efficient method for evaluating transfer functions, characteristic polynomials, and

their derivatives for finite dimensional systems. This method can be used for evaluating the finite

dimensional parts in (3.1). Thus, it remains to discuss the evaluation of the transfer function Gp(s). A

truly efficient method for evaluating Gp(-a+j<£i) for many values of © remains to be developed. In

our work, we have either been able to obtain a closed-form formula for Gp(-a +j(o), as for the exam

ple below, or else we compute it by solving a two point boundary value problem, using shooting

methods [Kel.l, PoL4]. For example, consider the planar bending motion of a flexible beam, shown in

Fig. 2. One end of the beam is fixed; a particle with mass M is attached to the other end. The *-axis is

the undeformed-beam centroidal line; the y-axis is the cross section principal axis. The associated con

trol system is required to damp out vibrations. Assuming that the beam is of unit length, its bending

motion can be described by the partial differential equation

with boundary conditions

w(t,0) =0,-|^.0) =0, (4.2b)

where w(t,x) is the vibration along the y-axis,/(f) is a control force, and {j(xj) is the influence func

tion of the j-th actuator, centered at x - V; m is the distributed mass per unit length of the beam, c is

the material viscous damping coefficient, E is Young's modulus, M is the end mass, / is the beam sec

tional moment of inertia with respect to y-axis, / is the inertia of the end mass in the direction of y-

axis, and mis the number of actuators. The output sensors can be assumed to bemodeled by

l

y'(0 = fKWMf,v)dv , f£0 , 1<£ i <S n0t (4.3)
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where n0 is the number of the sensors, and k^v.zO is thedistribution function of the i-th sensor centered

atx = z\ The distribution functions £ in (4.2a) and k in (4.3) can be delta functions, since it is shown

in [Har.l] that the resulting operators B and C in the state form (2.1) satisfy the model assumptions in

the space Z. In [Hua.1], it is shown that the resulting infinitesimal generator Ap generates an analytic

semigroup. As a result, it is easy to show that a decomposition of the form (2.5) is possible for the

plant, (4.2a-c), (4.3), as long as the stability margin a <Elc [Gib.l].

Taking the Laplace transforms of the equations (4.2a-c) and (4.3) with respect to time, we obtain,

for each value of s =-a +/co, the ordinary differential equation

(ds +El)*Wj£*> +m^Wis.x) =f F-toC'0c,A 0£x<l, (4.4a)

with boundary conditions

W(s,0) =0,4£(s,0) =0, (4.4b)

(cfr +EI)^r(s,l)+J^is.l) =0. (els +EI)^(s,\) -M^Wis,!) =0. (4.4c)
The Laplace transforms of the output components are given by

i

r(s) =[ '̂(v.zO^.v)^ , l<S/£n0t (4.5)

where W(s,x), F'(s) and r(s) are the Laplace transforms ofw(t,x),f(t) and -/(t), respectively. It follows

that the (i\/>th element of Gp(s) can be obtained by setting FJ(s) = 1 and Fk(s) =0 for all other k and

then solving (4.4a) - (4.4d) and (4.5).

The above boundary-value problem can be solved by shooting methods, using high precision at

critical frequencies, and low precision otherwise. This is preferable to the use of a fixed modal trunca

tion approach which may lead to serious "spill-over" effects.

5. A NUMERICAL EXAMPLE

We shall now describe our numerical experience in designing a fourth order compensator for a

single-input single-output feedback system with the plant described by (4.2a-c), (4.3). We assumed that

13



m = 2, cl = 0.01, £/ = 1,Af = 5,J = 0.5, that the required stability margin a = 0.2, and that the colo-

cated point force actuator and point displacement sensor are located at x = 1.

To obtain an initial compensator design and to provide a testbed for the study of truncation

effects, we carried out a modal expansion of the plant dynamics to obtain the first eight modes:

-0.0023 ±0.6716/, -0.0447 ±2.9890/, -1.3718 ±16.5069/, -9.7845 ±43.1411/. In the corresponding

truncated state space plant model, the matrix Ap has the form Ap =diagiAnA^A33A44), where

An =

^33 =

0 1

-0.451053 -0.004511

0 1

-274.359603 -2.743596

A22 =

A*4 =

0 1

-8.936154 -0.089362

0 1

-1956.894214 -19.568942

(5.1)

Bp =(0,-0^72993.0.-0.112681,0,0.073277,0.-0.047885)7,, Cp = ( -0.545986,0,-0.225362,0 0.146553

, 0 , -0.095770 , 0) , and Dp =0. We chose to design the compensator in transfer function form:

Gc(Pc>s) =coicis2 +C2S+ lXds2 +C4S+ IXdiS2 +d2s +\)(d^+d& + 1), which results in
4

Pc =(c0,cl,c2,c3,c4,dl,d2,d3,d4)T. We set no(s) =1and dois.qj =f{ ((j +a) +at{s +a) +bd, so that
»=i

qd k (al,a2,a3,a4,bl,b2,b3,bJT. We set e =0in (4.1a,b).

Using pole assignment on the fourth order truncated model, we obtained the initial compensator

transfer function: Ge(pe,s) = /^;/31^;,882861^8-58018 . which stabilizes the truncated model.
r + 2.94613s9 + 177J01J2- 3333.83r-7930.13

However, it fails to stabilize the truncated plant oforder 6and 8, as well as the full precision model.

Using this compensator as the starting point for our semi-infinite optimization algorithm, we

obtained in two iterations of a semi-infinite minimax algorithm the following transfer function of the

stabilizing compensator for our controlled flexible structure: Gc(pe,s) =

-1238061* + 206S8.8J3 +942SS.7J2 + 87402,1j + 841483 -ru •»• i e. • , /• . ,
/ +2.12762P +171.7^-326Z91,-7774.42 ' ^ **** ****** mterVal fOT We evaluation of X(Pc,s)

was [0.1 , 200] and the number of sampling points used was 50; 500 points were used to produce the

plots in Figures 3 and 4. The plot corresponding to (4.1b) for the initial value of the compensator is

shown in Fig. 3 and for the final value in Fig. 4.
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It is interesting to observe that when this stabilizing compensator is used with the plant model

truncated to order 4, the resulting feedback system has two unstable poles. However, when this stabil

izing compensator is used with the plant model truncated to order 6 or8, the resulting feedback system

is stable.

6. CONCLUSION

We have developed a new characteristic function for a class of feedback systems with infinite-

dimensional plants, and have used it to construct a necessary and sufficient computational stability cri

terion. We expect that our stability criterion will be useful in the design offinite dimensional compen

sators for a large class of infinite dimensional systems, such as flexible structures with point actuators

and sensors, subject to specified stability margins. Our design example shows that our stability inequal

ities are well conditioned with respect to semi-infinite optimization algorithms. Although we did not do

so in our design example, it should be clear that ourstability inequalities can be combined with other

performance inequalities, ensuring robustness, disturbance rejection, and satisfactory transient responses,

into a tractable, semi-infinite optimal design problem.

There remains a certain amount of numerical analysis type work to be done in developing

efficient techniques for the repeated evaluation offrequency responses ofdistributed parameter systems,

and for the computation of their unstable poles. Furthermore, because of local minima effects, the suc

cessful use ofour stability criterion may be predicated on a good initial design ofa stabilizing compen

sators and normalizing polynomials.
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Figure 1: The feedback system S(P,K).
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Figure 2: Planar bending motion of a flexible beam.
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Figure 3: Modified Nyquist diagram (initial design).
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Figure 4: Modified Nyquist diagram for the stabilized system.
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