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Abstract :

The paper is the result of experimental work performed on the Robotworld

system. Robotic hand design is investigated, with an in depth analysis of the char

acteristics and advantages of compliant contact surfaces. Various assembly task

techniques are also highlighted, and a characterization and solution of the multiple

mobile robot planning problem are developed.
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Chapter 1

Introduction

In today's world people are increasingly looking to robotics as the solution

to their problems. Experts from almost all industrial sectors, and even specialists
from such diverse fields as space exploration and nuclear engineering are demanding
that robots perform complex tasks for them.

Often the result is disappointment. Today's robots are unable to do many
of the tasks their users (and sometimes even their designers) want them to do.

U current robotic requirements are to be met, a substantial increase in

robotic performance and a decrease in the cost/performance ratio will definitely
be needed. One way to achieve this is by reformulating the current strategies for
robotic design and programming. This paper examines some of the issues involved

with robotic hand design and the performance of assembly tasks with these hands.

In the past, the design ofa robot, and the planning and programming of
particular robotic tasks were two separate and distinct functions. What is proposed
is a unified approach which combines these two. In our case we are concerned with

the design of robotic hands. Before even thinking about what the hands should
be like, we examine the set of tasks which we would Uke our hands to do. This is

then allowed to guide the design of the hand, and consequently the programming
and performance of these and similar tasks can exploit the features built into the
hand. It is important that this set oftasks used to guide the design stage is not too
narrow so that the resultant hand is useless for any other tasks, and yet that the



set of tasks is not so large that it cannot dictate specific design features.

The system used for research into the problem of hand design and conse

quent assembly task performance was Robotworld by Automatix Inc. This system

is an excellent testbed for this work because it allows for easy interchanging of

robotic hands, supports multiple robots, and although only recently introduced

into the marketplace, comes with a computing environment which allows relatively

high level robot motion control commands.

Traditionally robotic systems have always been designed to be very rigid.

It was thought that by making systems very rigid, all degrees of freedom could be

controlled very precisely and thus the desired task could be performed. Following

the same pattern of thought, objects being manipulated were held very tightly by

the grippers, and therefore went exactly where the robot put them, and nowhere

else. In this fashion external forces such as gravity had no effect on the objects, and

could be ignored.

In actuality robots are never totally rigid, and if we acknowledge this we

can compensate for this both in the design of robotic hands, and in the programming

of the system, so as to make the task performance robust in the presence of small

position errors. In fact in certain instances compliance can actually be a tremendous

advantage, and we may wish to enhance the compliance of certain parts of the robot.

Similarly gravity can be thought of as a free force, and instead of trying

to eliminate its effects, we could be trying to use them to our advantage. As long

as we realize the force is there, we can easily handle and exploit it.



Chapter 2

Robotworld System Description

A Robotworld system was recently received by Robotics Laboratory at
Berkeley. This system is used as a testbed for research into hand design and assem
bly tasks.

2.1 Hardware

Robotworld consists of a flat drive surface which acts as a ceiling for the
world, a variable number of mobile robots which hover on the ceihng, and a work
surface which acts as floor to the world. See Figure 2.1.

The mobile robot modules are electromagnetically attracted to the ceiling,
and as the ceiling consists ofagrid ofpermanent magnets the module (x,y) position
is also controlled in this fashion. The (x,y) position accuracy is better than a
thousandth of an inch. Modules can either be mobile cameras, in which case theyk
have the two planar degrees of freedom mentioned above, or mobile robots, in which
case they also have an arm that extends down in the z direction, with a two inch
travel and rotational ability.

Modules are levitated from theceiling by air bearings. The compressed air
for this purpose is supplied through umbilical cables at 50psi. Control and power
lines also travel through these cables.

The Berkeley system currently consists of two mobile robots, one mobile
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camera, and one fixed camera which is permanently mounted in the center of the

work surface.

2.2 Software

The software and control hierarchy is shown in Figure 2.2. The system is

controlled by an Apple Macintosh computer. Running on the Mac is a supervisory

program called Rail which interacts with the user and also with the system. The

system can be programmed in the high level Rail robotic prograinming language.
Sample code can be seen in Appendix B.

The Rail program communicates with a Frame Grabber which has a direct

parallel connection to both the mobile camera and fixed camera. This is a bi

directional link.

The Rail program also sends signal out over another parallel port which

control TTL switches. These TTL switches can turn both the compressed air valves

and motor amplifiers for each module on and off. The communication over this port
is uni-directional.

The Rail program is also connected to an RS232 port. From this port a
serial fine carries high level instructions to the CP-499 Motion Control Board and

feedback information from this board back to the Mac.

The CP-499 Motion Control Board features a 68000 cpu, and converts

the high level commands to simple [-10V to +10V] low current input signals to
the module amplifiers. Two fines are used to send signal for each of the x and y
directions of motion, and one fine for each of the z and theta degrees of freedom for
each module. In addition each amplifier has four fines which send back information

to the CP-499 about the current z and theta values. This gives a total of 10 lines
per module amplifier. (Note that no position feedback for the (x,y) planar motion
is present. Force feedback is also not present.)

Each amplifier outputs high current voltages which are sent directly to the
module motors. One again 10 lines with the same functions as those above are used

between the amplifiers and modules.
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2.3 Automatix

Robotworld is produced by Automatix, Inc. whose headquarters are in

Billerica, Massachusetts. Automatix is known for its arc-welding robots which are

used in industry to produce lawn mowers, metal equipment, and jet engines.

The west coast office located in Redwood City, California manufactures

and sells the Robotworld systems, which haveonly recently been brought onto the

market. Currently less than a dozen systems have been delivered.



Chapter 3

Hand Design

12

3.1 Task Oriented Design

One of the keys to success in robotic hand design seems to be the adoption

of a task oriented design approach. There is a philosophical difference between this

and the traditional method of manipulator hand design. Instead of concentrating

on the physical mechanisms of the hand being designed, one first concentrates on

properly defining the tasks that the hand will be required to do. Prom these a set

of task requirements are extracted, which in turn are translatedinto aspects of the

physical/mechanical design.

The translation from task requirements to physical hand design require

ments is a non-trivial function. Initial investigations with robot world hand design

doindicate, however, that a mapping from task requirements to design requirements

can be defined. A sample set of mappings is shown in Table 3.1 on the next page.

A database of mappings of the type shown in the table could be constructed and

could lead to mechanization of the design process.

Once the design requirements have been generated they are combined as

illustrated in Figure 3.1. It should be noted that design requirements may conflict

with one another, and in this case different partsof the hand can satisfy the various

requirements. If this is not possible, then either the task needs to be redefined, or

separate hands are built, each of which can execute a sub-task.



Task Requirement

part alignment on table top
force application without
force feedback availability
part orientation with gravity

Hand Design Requirement

hard smooth surface required on hand
highly compliant surface required

A. pivot point required
B. hand should not restrict rotation
of part in desired direction

Table 3.1: Some Task to Design Mappings

one side of hand with hard smooth surface,
and other side of hand with highly compliant surface

Figure 3.1: Example of Combination of Design Requirements

13
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The entire design process is summarized in the flow diagram of Figure
3.2. Initially a detailed task description is built. From this description the set

of Task Requirements are extracted. It is possible that this extraction could be

accomplished automatically by an expert system with a knowledge database. The

implementation of this is left to the Artificial Intelligence experts.

The set of Task Requirements (either generated manually or by machine)
is then translated into Hand Design Requirements. Once again, this step could

be automated with a detailed list of task requirement to hand design requirement

mappings and a look-up or hash table. The resultant Hand Design Requirements

are then combined and a hand is designed and built.

One the hand design is completed, the robotic system can be programmed

to do the initial task. This programming step is greatly simplified by the existence

of the sets of Task and Design requirements which were developed in previous stages
of the process.

This systemization of the hand design process canbe expected to efficiently

reduce the time required between the arisal of a goal task in a sophisticatedrobotic

system which will require a new hand, and its accomplishment.

3.2 Simplicity

Simplicity is another key to success in hand design. The hand that is

designed should be as simple a hand as possible which simultaneously satisfies all

the design requirements. Of course the fulfillment of these requirements tends to add

to the complexity of the hand, so in effect, what one tries to do is to minimize the

complexityof the hand subject to the constraints implied by the Task Requirements
through the Hand Design Requirements.

The merits of a simple design were found during experimentation with

various prototype hands. Complex designs were more limited in their use with new

tasks or task variations than their simpler counterparts. Complicated hands also

tended to lack the robustness and performance of simpler hands.
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For the most part, the simpler one keeps the design of a hand for a given

task (or set of tasks), the more likely it is that it will be general enough to do a
wider range of similar tasks, as well as other unrelated tasks.

Another type of simplicity is ease of construction. This is especiallyimpor

tant in early prototyping work, where it promotes cheaper and faster construction

of hands, and also allows more experimentation.

3.3 Compliance

Physical compliance is a feature which, if designed into a robotic hand, can

greatly enhance its manipulative abilities. Not only do compliant surfaces increase

the grasping dexterity of a robotic hand, they are also very useful for operations

requiring force application.

3.3.1 Advantages of Compliance at Contact Points

The surface characteristics of a robotic hand are only important at the

points of contact between the hand and the objects that it is manipulating. These

are commonly called the contact points.

Let us first consider the case of a simple finger contact with the surface of

an object. It is easily shown that a single contact point without friction can only

exert forces perpendicular to the surface. Any forces the finger tries to impart to

the surface which are tangential to the surface will only result in the finger sliding

across the surface.

When a friction is present the single point contact will also be able to exert

forces with a limited tangential component. This tangential component is limited

by the expression:

^tangential < Mx ^normal (3-1)

where p. is the coefficient of friction of the surface.

Any force jP = Ftangentiai + FnormcA that satisfies inequality 3.1 is said to he

within the friction cone of the surface.
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If the single contact point described above originates from a compliant

finger tip, then it is called a soft finger contact. In addition to forces within the

friction cone, moments about the normal to the surface can also be exerted on the

surface. Another often overlooked characteristic of the compliant soft finger contact

is that the soft contact increases the coefficient of friction \i and thus the friction

cone is widened. This leads to the conclusion that if one wants a robotic hand to

slideacross the surface of an object (while being in contact with it), the compliance

of the hand should be as low as possible, and the hand should be made of low

coefficient of friction surfaces.

It can be the case that the contact between the hand and the object it

is manipulating is not a point, as considered above, but rather a plane. In this

case there is an infinity of adjacent contact points such that there is a finite area

of contact between the hand surface and the object surface. If this contact areais

frictionless, then forces perpendicular to the object surface as well as moments in

any direction perpendicular to the surface normal can be exerted by the hand on
the object.

If in addition the contact area has friction, then forces in any arbitrary
direction (provided they are not away from the object!), and moments about any
arbitrary axis can be exerted by the hand on the object. This is often a very
desirable situation when the hand is manipulating an object.

Unfortunately slight orientation changes between two rigid surfaces will
often result in a potential contact area becoming a simple contact line or point.
This can, however, be avoided with the introduction of a compliant surface as one
of the two contact surfaces. In our case the robotic hand has a compliant contact

surface, and a solid area contact between the hand and the object can robustly be
maintained. This is illustrated in Figure 3.3.

In summary, compliance is critical to contact point characteristics. If one

wishes to apply a torque about a contact point, some compliance at the contact

point is required. A compliant contact point also enlarges the contact friction cone.

The maintenance of a robust contact area is ensured by the use of a sufficiently
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compliant surface as one of the two contact areas. A sliding contact point requires

a very low compliance.

3.3.2 Compliant Surfaces

CompUant surfaces are very useful on robotic hands because they allow

the robot to apply a force without having an expUcit force feedback mechanism.

The idea of using compliance to apply force is not a new one. One fre

quently encounters spring loaded robotic tools in industry, an example of which is

the spring loaded pen in Figure 3.4. A straight Une trajectory wiU keep the pen
applying a force on the surface, even though the surface being marked by the pen
is not flat and its exact contour is unknown.

A novel idea we propose is to take this comphant advantage and build it
directly into the robotic hand, by having the hand made up of comphant surfaces.
Should different compUances be required for different tasks, the hand can be of a

variable comphant nature. As the the robotworld testbed system does not have any
force feedback devices, and it was desirable to perform tasks which typically require
force feedback for force appUcation, the comphant surfaces on the hands became
quite useful. This wiU be examined in subsequent sections.

Another advantage of comphant surfaces is that they conform to objects
pressed against them. This is a feature constantly exploited in the human hand.

When one holds a pencil between two fingers, one's fingers conform to the contour
of the pencil at the contact areas, and a firm grasp is set up. Similarly a basebaU
pitcher grasps a basebaU firmly along the stitching of the ball so that the fingers
grasping the ball conform to the stitching pattern and thus a sohd grasp of the ball
is achieved. This comphance in the fingers sets up the friction pattern necessary
for the pitcher to throw a curve ball.

Comphance also can play an important role in assembly tasks that require
one robot to come into contact with another. This can happen either directly or via
a third object between them. This is common when two robotic hands are required
to hold an object together. If the robotic hands have rigid surfaces any small
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Figure 3.4: Force Application by Spring Loaded Pen
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position errors in either robot can be disastrous in a position control environment,

(i.e. one in which forces cannot exphcitly be measured.)

This discrepancy between the performance of rigid and comphant surfaces

is illustrated in Figure 3.5. Note how the two comphant robots can grasp the

object robustly in the presence of both positive and negative position errors, while

the rigid robots fail. This feature of comphant surfaces is exploited in the Nut &

Bolt assembly operation discussed in chapter 4.

Finally it should be noted that a compliant surface need not have uniform

comphance in all directions. For example compUance of a single surface in two di

rections (say x and z) can be very high, while compUance in the other (y) direction
can be low. This would be very useful in the scenario where a soft x compUance

allowed the surface to conform to the object, the soft z compUance allowed inacur-

racies in this direction to be tolerated, while the stiff y direction allowed a more

direct connection between robot movement in this direction and the appUcation of
a force on the object in this direction. (See Nut & Bolt assembly in section 4.2 for
a practical example of this.)

3.3.3 Variable Compliance Hands

To experiment with robotic assembly task operations using comphant
hands two variable compliance hands were built for the robotworld system. The
name stems from the fact that the manipulative surface of the hands is actually
divided into four surfaces, each with its own compUance characteristics. One can

then use the surface with the appropriate comphance nature for each task.

This is very much the way the human hand is used. When the hand is

used to knock on a door, the low comphant knuckles are used. When one wishes to

apply a lot of torque with a screwdriver, the soft fleshy palm (high compUance) is
used to hold the handle and establish a firm grasp. When one wants to scratch a

surface, the almost zero comphant nature of finger nails is exploited.

A diagram of the cross section of the variable compUance hand is shown

in Figure 3.6. (A more detailed plan of the hand is given in Figure A.l of Appendix
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Figure 3.5: Rigid vs. Comphant Contact Surfaces
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A.)

On the variable compUance hand, the surface (1) in Figure 3.6 is the

high compUance surface. Contacts using this surface wiU tend to conform to the

object being manipulated. This surface is also ideal for force appUcation while using
position control of the robot.

Surfaces (2) and(3) are the mediumandlowcompUance sides respectively.

The two varyin the thickness of the their surface rubber layers. While side (3) has

a fairly low comphance value, it has the advantage of being able to impart a more

rigid support to the contact, due to the closeness of the underlying hardwood layer.

Surface (4) is a very low compUance surface. The total absence of any

rubber coating also provides this surface with a much lower ft value (factional

coefficient), than the other surfaces. Surface (4) is typically used to align objects

on a table top, when both a rigid contact and one which allows sliding is required.

The variable compUance hands are highlighted in the nut & bolt assembly

task discussed in Chapter 4.

3.3.4 Generalized Value of Compliance

An examination of the robotics Uterature today reveals that compUance is

usually viewedeither as somethingwhichis approximated awaywith point contacts,

or as something which is an undesirable side effect of the construction of tactile

sensors.

Neither of these exploit the inherent value of comphance. CompUance is

not something which holds us back, but which makes possible more stable robotic

grasps, allows the transmission of moderate forces, and generally makes a robotic

system more robust is the presence of position errors.

This latter feature is very relevant, because today most robots are pro

grammed as if they were a chain of rigid bodies. This is in fact not true, and all

robots have some flexing and stretching characteristics. If we acknowledge the ex

istence of this compUance and exploit it, we can design more robust robot control

programs.
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A logical extension of this is that we wiU no longer rely on joint encoder

outputs and rigid approximations of our robots to determine their positions, but in

vestigate other feedback mechanisms such as vision systems, laser rangefinder/sonar

systems, force/moment sensors, etc.
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Assembly Task Techniques
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In this chapter we examine some of the issues in robotic assembly tasks.

4,1 The Free Gravity Force

Traditionally robotic systems were designed to be as physically rigid as

possible, and when the system was programmed to perform a particular assembly

task, all degrees of freedom were precisely controUed. Objects were grasped firmly

by the robots, and were not allowed to move. In this fashion the effects of all

external forces were eliminated.

There is one external force affecting all robotic systems on earth, namely

the force of gravity. As gravity has a very precisely defined force field for all robotic

systems, it need not be viewed as a necessary evil which must be overcome, but

rather as an inherent feature of the environment of the robot. It is actually an

apphed force in the robotic system which one does not have to cause. It is a free

force.

One can exploit the effects of gravity in many assembly tasks to simplify

them. Onepotentiallyvery rewarding wayof making useof the advantage of gravity,

is during object re-orientations. An object is grasped with two point contacts which

allow sliding rotations about the line joining the two contacts. As was discussedin

Section 3.3.1, for this we require the contact points to be relatively hard, as we do
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not want resisting torques to be appUed by the contacts. If the contact points are

stable, that is to say the hne joining the two Ues within the friction cones at both

contact points, and if this hne also does not pass directly over the center of mass

of the object, then gravity wiU cause the object to rotate about this line until it's

center of mass Ues directly beneath the line.

An example of the use of this is the reorientation of a screw held between

two slotted hands. This is iUustrated in the sequence of Figure 4.1. Versions of this

hand were tested on the robotworld system. (See Appendix A for detailed plans.)

Another example of the use of gravity occurs when a robot tries to mate

two objects in an assembly operation. Many objects have certain orientations where

gravity puUs them together to mate correctly. This usually occurs when one object

is mated with another in hne with the gravity vector, (i.e. from the top.) An
illustration of this is shown in Figure 4.2.

This principle of gravity assisted mating can be used to properly seat a

nut on a vertical bolt. Both the nut hole and the bolt end have chamfered edges.
If the robot initially places the nut on the bolt shghtly skewed,, shghtly nudging it
from all sides will allow gravity to center the nut.

4.2 Nut & Bolt Assembly

In this section we wiU examine the task of picking up a nut and tightening
it on a bolt. This is a common industrial assembly requirement. We wiU utiUze

the Robotworld testbed system and two robot modules equipped with the variable
compUance hands described in subsection 3.3.3.

4.2.1 Picking up Nut

The first subtask in nut and bolt assembly is to pick up the nut. We wiU

assume the nut is a six sided hex nut, and in a known location. The orientation of

the nut on the work surface isnot known. These are not unreasonable assumptions
since most industrial vision systems, such as the one which comes with Robotworld,



1.) Hands close in on screw laying on work surface
28

2.) Hands grasp screw in slot.

3.) Hands liftandgravity turns screwinto a vertical configuration.

Figure 4.1: Gravity Reorientation of Screw
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gravity

1.

Figure 4.2: Gravity Assisted Mating of Two Objects



30

wiU find an object and return its 2 dimensional center of mass. Thus one knows its

location, but not orientation.

Fixing the orientation is however not very difficult. The very low comph

ance frictionless surfaces of the two hands are used for this purpose. (Surfaces (4)

in Figure 3.6.) The two hands arebrought together to a distance equal to the width

of the nut, with these two sides parallel and sUding back and forth. The nut wiU

be oriented after this maneuver.

Next the nut must be picked up. The first approach we tried for this

operation involved picking up the nut between two surfaces on the hands. The

medium comphance sides were selected for this because they had enough compUance

to give a good grip (even in the presence of small position inaccuracies), and yet

also had some underlying support from the hardwood. Unfortunately enough force

would have to be imparted by the hands on the nut to overcome the force of gravity

on the nut.

The force of gravity on the nut is given by:

Fgravity = -Mnut X g (4.1)

where Mnut is the mass of the nut, and g is the gravitational constant.

The force opposing gravity imparted by each hand on the nut is Umited by:

Fup < fJt x Finward (4.2)

where as usual p is the coefficient of friction, and Finward is the normal force exerted

on the nut by the hand.

We also know that for the nut not to fall, the force of gravity must be counteracted:

•^uPeotal — ~~* gravity (4*3)

Combining equation 4.1 and inequalities 4.2 and 4.3, and recognizing that

there are two hands exerting forces on the nut, we find the foUowing restriction on

the inward force required to be exerted by each hand to keep the nut from falhng

out of the grasp of the hands:
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Finward > ^ (4.4)
2p

When the robot modules were not moving, there was no problem to gener

ate inward forces which satisfied inequaUty 4.4. Unfortunately this static situation

was not enough. The nut had to be moved to the bolt while being held between the

hands. If at any time the inward force, due to some perturbation, dropped below

the minimum value dictated by inequaUty 4.4, the nut would start shding. This
would cause the p value to decrease as the static coefficient of friction is always
shghtly larger than the sUding one. This in turn would make it impossible for the

hands to regain the grasp in the split second before the nut would fall out of the

hands.

It is obvious that this method of picking up the nut is not very robust. In

fact we are in a constant fight to overcome the force of gravity. This would seem to
go counter to our conclusion in section 4.1 to use gravity to our advantage.

Brief contemplation of the situation reveals that if wewant gravity to work
to ouradvantage in the grasping of the nut, wemust grasp it from underneath. This

is not possible with the current hands, so a new appendage is required to hft the
nut.

The device designed for this mounts on the side of the variable comphance
hand, and is depicted in Figure A.3. It is constructed ofsheet metal, and basically
scoops up the nut. The front of the nut lifter is flanged so that the nut can enter

it in any orientation, and with small position offsets, but the back is straight and
restricted on the sides, so that once the nut is pushed all the way into the Ufter, it
is forced into a known position and orientation.

The nut Ufter is placed on the work surface next to the nut. The other

hand then uses its very low compUance side to firmly push the nut into the Ufter.

The nut can then be lifted off the table and moved to an arbitrary location and
orientation.
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4.2.2 Transferring Nut to Bolt

We are now concerned with the operation of moving the nut from its

location on the table to a location just above the top of the vertically oriented bolt.

Even though the nut is held in place by gravity in the nut Ufter, if we move

the hand too fast on its voyage from the nut's initial location to the bolt location,

the jittering of the hand wiU cause the nut to hop in the Ufter, and eventually to

hop right out. We are thus confronted with two options. We can either move the

hand very slowly, and ensure the nut stays put, or we can somehow hold the nut in

place in the Ufter.

As we are currently not using the second hand, the latter option is de

sirable. Before the hand with the nut Ufter leaves the table top, the second hand

spins around and presses its high comphance side against the nut in the Ufter. This

configuration is illustrated in Figure 4.3.

The two hands then- move in tandem to the location of the bolt. As the

second hand is holding the nut firmly in place in the Ufter, the two hands may

proceed at a rapid rate.

Recalling the advantage of comphant surfaces when two robots come into

contact (section 3.3.2) we have used the high comphance side of the second robot

to make the contact. The contact thus remains robust, even if small position errors
«

are present while the robots move in tandem at a rapid rate.

4.2.3 Seating and Starting Nut

The nut Ufter does not have a bottom, and so the nut can be placed directly

on the bolt. As the top of the bolt is beveled and the nut hole has a chamfer, the

nut seats stably on top of the bolt. The two hands can then be removed.

A number of ways were tested to start the threading of the nut on the

bolt. Skilled humans wiU backdrive a nut (turn it in the opposite direction) until

they feel it drop down a httle, and wiU then forward drive it.

As the Robotworld system does not have force feedback this method was

not possible. Just backdriving for a revolution or so tended to jam the nut on the
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Figure 4.3: Nut Transfer Configuration

Figure 4.4: Nut Tightening Configuration
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bolt in a cross threaded configuration as weU.

Next forward driving while applying a constant downward force (transmit

ted through the compUance of the hands), was attempted. This once again caused

jamming.

Finally it was surmised that very Uttle downward pressure is required to

start the nut. Excessive downward pressure might tend to cause the jamming. The

gravitational puU on the nut could be used to provide the required small downward

force. This is indeed very successful, and allows the nut to start threading. The

nut spins on top of the bolt until a thread bites, and then gets tightened on.

4.2.4 Tightening Nut

Tightening a nut on a bolt in the absence of any force feedback is not a

trivial task. One is required to apply a force to hold and turn the nut, and yet one

can not sense how hard one is pushing.

Once again, compUance comes to the rescue. Using the high compUance

sidesof the variablecomphance hands, the nut canbe efficiently graspedand rotated

even in the presence of small position errors.

The nut is grasped by both hands on opposite sides while it is on the bolt.

If the two hands then move in opposite tangential directions, the nut is rotated on

the bolt. This operation is illustrated in Figure 4.4.

In fact, if the bolt is secured to the table, the tighten sequence can be done

with just one hand on one side. As the hands periodically have to loop around to

begin another tangential tightening pass, it would be interesting to have one hand

tightening while the other is looping back, and vice versa. A definite increase in

tightening speed is to be expected. The speed is currently Umited by the magnetic

contacts between the hands and the robotworld modules. If a tightening pass is

done too fast (more than 15% of maximum Robotworld module linear speed), then

the magnetic contact will slip.

As the nut moves down the bolt during the tightening motion, the z-axis

position of the hands has to be adjusted accordingly. The nut loosening sequence is
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just the reverse of the nut tightening sequence. (A video demonstrating this entire

assembly procedure is available from the Robotics Laboratory at Berkeley.)

It merits mentioning that the exceptional performance of the variable com

phance hands in the nut tightening domain is due in large part to the fact that the

contact surface used on the hands does not have a uniform compUance in all three

directions. The comphance in the direction normal to the surface (the z direction)

is very high, and this allows the hand surface to conform to the nut and estabhsh

a firm grasp. The comphance in the direction along the length of the rubber band

which comprises the side (nominally called the x direction) is quite low. This al

lows the efficient transfer of the translational velocities of the two hands into the

rotational velocity of the nut. Finally the comphance along the direction tangential
to this one and also tangential to the surface normal (i.e. the y direction) is rela
tively high, which allows the nut to travel down the bolt as it is tightened, without
constant compensation for this by the hands as they impart their tangential veloc

ities. This y direction comphance also ehminates the need for shp in this direction,
thereby allowing a firm "large friction cone" grasp on the nut by the two hands.

4.3 Peg in Hole Tasks

Another common assembly task is the Peg in Hole task. Our previous
analysis can contribute a Uttle to this domain as weU.

The main problem with peg in hole assembly is that the peg has a tight fit
in the hole, and during the course ofinsertion small position errors cause the peg's
progress to be impeded. This problem can be solved by either trying to correct for
these errors, or trying to minimize their causes.

Either solution method is helped by doing the insertion vertically, that
is to say in hne with the gravity vector. One can correct for errors by utilizing
chamfered edges on the peg and on the Up of the hole. This utihzes the object
mating principle illustrated in Figure 4.2.

Using acomphant hand to grasp the peg wiU enhance this effect byallowing
the sides of the hole to guide small corrections to keep the peg from jamming. If
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the grasp is rigid, only a perfect initial ahgnment wiU allow a successful insertion.

If more elaborate correction mechanisms are utiUzed, such as force/moment
sensors, then the insertion is stiU aided by beingdone vertically becausein that case

the gravity force is aligned with the motion of the peg, and does not have to be

compensated for. If the insertion were to be done horizontally one would have the

moment introduced by the gravity force on the peg to contend with. (We assume

here that the gravity effects on the manipulator itself can be adequately compen

sated for either by sufficiently high gear ratios and stiff links, or by an apriori coded

knowledge of the Unk masses and momentsof inertia.)



Chapter 5

Motion Planning

37

One final topic that merits analysis is motion planning for Robotworld
modules. The planning of the motion of the two hand modules is currently done
exphcitly by the user when he programs a task. In this chapter we attempt to
formaUze the planning situation and fit it into a constrained framework from which
automated motion planning is possible.

5.1 Outline of the Motion Planning Problem

There are actually many facets to the motion planning problem. On a
very basic level, any motion planning system would have to ensure that moving
Robotworld modules did not bump into obstacles in the workspace. This is very

.important, as no position feedback exists in the x/y plane, and therefore a coUision
usually results in the position counters not corresponding to the actual position of
the module. The system is thus incapacitated, and the only way to resolve this is
to undergo a system recaUbration.

Even if no obstacles exist in the workspace, or if a planning system exists
which can generate coUision free paths around workspace obstacles, it is stiU possible
that two modules collide with one another. The avoidance of this is not a trivial

task, because the location of the modules can be a constantly varying function of
time.
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Furthermore, even if aU hard collisions are avoided, modules can stiU collide

with umbihcal cables of other modules. If sufficient velocities are involved, modules

can get knocked off from their correct positions by this. Another aspect of planning

with umbihcal cables is that the planning system should avoid modules getting each

other's cables wrapped around themselves to such an extent that motion becomes

impaired.

Examples of these types of motion planning problems are iUustrated in

Figure 5.1.

5.2 Stationary Obstacle Avoidance

First we address the problem of avoiding stationary obstacles in the work

space. As the Robotworld system only has two inches of freedom in the vertical

(z) direction, we can create obstacle prisms by translating the obstacles vertically,

and thus reduce the obstacle avoidance planning from a three dimensional one to a

planar one.

Unfortunately the moving robots are not single points in the plane, but

rather modules with substantial area. To compensate for this, we "grow" the ob

stacles by a distance equal to the maximum radius of the module plus some extra

error margin. A grown obstacle is shown in Figure 5.2B.

To plan a trajectory one first simply examines the straight Une path. If this

path does not intersect any grown obstacles, then it is the desired one. If the straight

Une path intersects an obstacle, then the shortest path which ends at the desired

endpoint and visits a subset of the obstacle vertices along the way, and consists of

straight Une segments, is chosen. Such a path is also shown in Figure 5.2B.

It should be noted that this strategy is good for polygonal obstacles, but

should an obstacle not be polygonal, it can be encased in an imaginary polygon.

This polygon becomes the new obstacle. Very little performance is lost by making

this approximation.
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5.3 Avoiding Inter-module Collisions

Once our planning system avoids collisions with stationary obstacles, it

must be extended to avoid inter-module collisions. A very simple solution seems

to be readily available to this problem. One simply allows all motions that the

stationary obstacle avoidance planner generates. If one module is about to crash into

another one, it is stopped in its current location, until the other one has passed, and

then allowed to continue on its journey. This technique is illustrated in Figure 5.3.

Unfortunately this simple "Waiting Planner" is not a very good one in

many situations. As shown in Figure 5.4 time trajectories can exist for two modules

where each module ends up permanently waiting for the other to move out of the
way.

What one would desire is for one of the two modules to be able to know

where the other one was going to be going, and to stop before it obstructed the
other module's future path and thus allow it to pass.

Our proposed solution to this planning problemcalls for modules to claim

certain paths in advance. We outhne this first for the two robot situation.

Inherent in this situation is the assignment of priority to one of the two

modules. A logical way to do this is to give top priority to the module that starts

moving on its trajectory first. This is not, however, completely straightforward, as
the two modules could be executing independent asynchronous tasks. We require
a semaphore which the planner for both robots can access via a single cycle test &
set operation. Once the semaphore is claimed by the first robot, the other cannot
claim it until the first robot releases it.

Once a robot claims the semaphore by being the first to initiate a trajec
tory, it claims exclusive rights to its entire desired trajectory. (See Figure 5.5.) This
space then appears as an impassable obstacle to the other robot, who must wait
outside this space until the first one has passed. As the first robot passes through
its trajectory it shrinks its trajectory obstacle to free up reserved space it no longer
needs. This then aUows the second robot to continue on its way. This entire process
is iUustrated in Figure 5.5. Once the first robot has reached its desired trajectory
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endpoint, the second robot is free to claim the semaphore and become the priority
robot.

This strategy is easily extended to more than two robot modules. Robots

claim priorities as they start to move, and only see trajectory obstacles of robots

with higher priorities. This could be done by assigning computer time stamps as

priorities, where earlier time stamps are higher priorities. A semaphore can stiU be

used to ensure that the same time stamp is not assigned to two robots initiating

moves at the same time.

One possible revision that could be allowed to this scheme for inter-module

coUision avoidance is to not force a robot to wait outside the trajectory obstacle-of

another robot, but to give it the option of circumventing it in a similar fashion as

it would a regular stationary obstacle.

5.4 Dichotomy Planning

The umbihcal cables on Robotworld modules provide power, control, and

air to the modules. They are essential, and yet are also the source of a lot of trouble

which one would Uke the planning system to resolve. A module that bumps into

another module's umbihcal cable when it is traveling at too high a velocity wiU get

knocked off its correct position, similar to crashing into a stationary object. The

planning system should also be able to detect and avoid two modules becoming

hopelessly tangled.

For the purposes of this section, we wiU consider a Robotworld system

with two robotic modules, as in Figure 5.6A. The module connected through its

umbihcal cable to the upper side of the workspace in the figure is refered to the

upper one. The other is the lower one.

Now it is obvious that as long as the upper module remains above the

lower one, there will be no need to restrict the velocity of either. To formalize this

we dichotomize the workspace with a hne which passes through the point midway

between the two robots. The upper robot lies above the Une the lower robot Ues

below the Une. We wiU refer to this Une as the Dichotomy Line, or D-hne for short.
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If the D-Une is horizontal then the upper module lies above the lower one. Therefore

as long as we can construct such a horizontal D-hne, the robot velocities need not

be restricted.

Horizontal D-hnes for robots in other configurations are shown in Fig

ures 5.6B and C. As the D-line always passes through the point midway between

the two robots, we know exactly where it is.

Now let us not restrict the D-hne to remaining horizontal, but let us allow

it to rotate about the midway point between the two modules. We wiU, however,

keep the D-Une as close to horizontal as the location of the two modules permits.

If the upper robot in Figure 5.6C moves down so that it is below the lower one,

as shown in Figure 5.6D, then the D-Une rotates by +0 radians. We furthermore

add the restriction that the D-hne angle must vary continuously with time. We

know that the two modules cannot bump into each other's umbihcal cables if the

upper module is above the D-Une (which means the lower one must be below) and
the cables are stiU extending directly to their respective sides. In other words, the
foUowing equation must be satisfied:

- tt/2 < $D.Une < +tt/2 (5.1)

It should be noted that when we claim that equation 5.1 defines the valid

system states in which unrestricted module velocities can be allowed we are making
use of the unstated assumption that the umbihcal cables wiU extend to their sides

so as to make a perpendicular intersection with the top or bottom side. This is

indeed quite reasonable as in the actual physical system, this position for the cable
is the one which minimizes its gravitational potential, and is thus the one it tends
to adopt.

Although 9 is the angle the D-line makes with the horizontal, we must
emphasize that it is not strictly a function of the current positions of the two

robots, but also a function of previous value of 0, as the D-hne angle must vary
continuously. Therefore the two modules could be in identical positions in two

different cases, but if one has a 6D_line satisfying equation 5.1 and the other has



A: Two robot modules
and umbihcal cables.

D: D-line aUowing
unrestricted motion.

G: High D-line angle
corresponds to tangled

cables.

B: Horizontal D-line.

E: D-line allowing
unrestricted motion.

H: Reduced speed
D-line configuration.

Figure 5.6: Dichotomy Planning

46

C: Horizontal D-line.

F: D-line aUowing
unrestricted motion.

I: Reduced speed
D-line configuration.



^D-line Restrictions on motions

<tt/2 No restrictions

7T/2 < $ < IT Velocities must be less than 5% of maximum possible
>7T Motion in this space not allowed

Table 5.1: Motion Restrictions imposed by D-Une Angle
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a very high D-line angle value, then the latter case has tangled cables, while the

former does not. (The robots of Figures 5.6F and G have the same positions, but
different D-Une angles.)

It has been experimentaUy observed that slow moving modules can safely
push umbihcal cables out of the way for limited amounts of entanglement. The
maximum speed for this seems to be about 5% of maximum velocity. If the robot

modules move much faster than this, they stand a good chance of getting knocked
off their correct positions. We wiU thus impose a restriction on the velocity of
5% maximum value, when the magnitude of 0D-iine is between 7r/2 and tt. Sample
reduced speed D-hne configurations are iUustrated inFigures 5.6H and I. Any values
of the D-Une angle greater than ir are considered to correspond to umbihcal cable
situations which are too tangled, and thus are not allowed.

The restrictions on the D-hne angle are summarized in table 5.1.

The beauty of the above formalization of the umbihcal cable planning
problem is that the entire complexity of cable situation is encoded in in D-hne

whichis parameterized by the single, easily calculated value of 6.

A motion planner using this representation can easily be extendedto aUow

for more than two moving modules, by keeping track of the D-hne angles between
each of the modules. If there are n modules, then the number of angles that will
need to be tracked is equal to m = £"=/* • mis then a number which is less
than ^n2, and thus quite small for the number of modules that can reasonably be
expected on one system.
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Chapter 6

Conclusions and Extensions

The design of robots, and more specificaUy the design of robotic hands, can

be a compUcated and laborious process. This process can be significantly stream-

Uned through the adoption of a task oriented design approach. An interesting

extension of this work would investigate the automation of this process, perhaps

using an expert system.

When designing robotic hands, comphant surfaces can prove very useful.

CompUance can be used both to generate more robust contact areas, and also to

mimic certain force apphcation tasks in the absence of force feedback. The level

of compUance in a surface governs many of its contact properties. Efficient robotic

hands can be constructed with multiple contact surfaces of varying comphance.

Modeling a robot as a physically non-rigid, comphant device is both accurate, and

can be expected to lead to more sophisticated control methods.

Gravity is an often overlooked force in the robotic work ceU that can

frequently be exploited to simplify assembly tasks. Peg in hole assembly tasks are

best performed vertically.

A nut and bolt assembly task has been experimentally demonstrated on

the Robotworld system using variable comphance hands.

Motion planning for the Robotworld system has many pitfalls. Most plan

ning can be compressed into a planar problem. Inter-module colhsions can be

avoided by continual assignment of priorities to moving robots. The umbihcal ca-
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ble planning problem can be efficiently characterized and solved using a workspace

dichotomy formalism. An experimental implementation of the developed planning

system would also make an interesting extension of this work.
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Appendix A

Detailed Plans of Hands
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FUNCTION SCOOP

Calls Functions: screwon
Called by Functions: NONE

This is the main routine which causes the two hands to pick upthe nut,
transfer thenutto thebolt, putthenutonthe bolt, tighten the nutand
then loosen it again.

function scoop
begin
»

; define the various constants
ex = 19.7
cy =2.3
cbx = 41.9
cby = 13.3
h2 =0.6
h3 =0.5
pi =4.5
p2 = 3.05
p3 =3.35
p4 =3.15
al = 90
a2 =180
a3 = 30

>

; move hands to the nut locations
moves(l,[cbx,cby-pl])
moves(2,[cbx,cby+pl])

»

; rotate them to expose the low friction side
rotates(l,[0,0,0,al])
rotates(2,[0,0,0,-al])

»

; use the hands to align the nut
approachs(l,[0,0,h2])
approachs(2,[0,0,h2])
speed(l,2)
speed(2,2)

moves(l ,[cbx,cby-p2])
moves(2,[cbx,cby+p2])
moves(l,[cbx,cby-p1])
moves(2,[cbx,cby+p1])
departs(l,[0])
departs(2,[0])
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place nut lifter side beside nut, and use other hand
to push nut onto lifting fixture

rotates(2,[0,0,0,0])
approachs(l,[0,0,h3])
approachs(2,[0,0,h3])
moves(2,[cbx,cby+4.3])
approachs(2,[0,0,h3-0.2])

>

; use a fast speedfor handone to avoidnut sticking
speed(l,10)
moves(l,[cbx,cby-1.8])

•

; dummy time loop to allow nut to settle
fori=lto20000do
begin
dummy =1.1666*3.12345

end

»

; remove hand one
speed(l,l)
moves(l ,[cbx,cby-2.5])
departs(l,[0])

>

; use the high comphance side to hold nut in lifter
rotates(l,[0,0,0,-al])
approachs(l,[0,0,h3-0.2])
moves(l ,[cbx,cby-1.7])

; lift the nut
lift_init({l,2})
lift_speed({.l,.l})
lift_accel({.l,.l})
lift_init({l,2})
lift({[0,0,2], [0,0,2]})

departs(2,[0])
departs(l,[0])

move the nut to the boltat a relatively fast speed
speed(l,10)
speed(2,10)
moves_locked(2,[cx-0.13,cy+3.13],l,[cx-0.13,cy+3.13-6.0])

place nut on bolt
lift({[0,0,1.3], [0,0,1.3]})
moves(l,[cx-0.13,cy+3.13-6.75])
approachs(2,[0,0,0.7])
move(l,[cx-5,cy+3.13-6.75])

reorient the hands
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speed(l,50)
speed(2,50)
moves(2,[cx-0.13,cy+20.13])
moves(l ,[cx-8,cby-6])
rotates(l,[0,0,0,a2])
moves_locked(2,[cx+6,cy+p3],l,[cx-6,cy-p3])

callthe tightening/loosening sequence routine
screwon

end

58



FUNCTION CAL

Calls Functions: NONE
Called by Functions: NONE

This routineis used to calibrate the expectedlocation of the nut
As the scoop routine uses a hardcodednut location, this routine can
be used to ensure thatthe nut is in thecorrect position beforedie
scooproutineis called. The variable comphance hand shouldbe
remove from module one beforerunningthis routine. The module
will point to the expected location.

function cal
begin

cbx = 41.9
cby=13.3
approachs(l,[0,0,0])
moves(l ,[cbx,cby])

end
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FUNCTION SCREWON

Calls Functions: spinclose, spinopen, allhome
Called by Functions: scoop

This routine is causes the two hands to tighten the nut on the
bolt,andthenuntighten it ata somewhat increased speed.
It is expected that the nut is sittingon topof the bolt beforethis
routine is called.

function screwon
begin

speed(l,30)
speed(2,30)

; define the constants
ex =19.7
cy = 2.3
hi = 1.3
htl = 1.3
ht2=1.25
ht3 = 1.0
dl = 2.95
d2 = 3.4
d3 = 1.5

; set up the hands in their correct locations
rotates(2,[0,0,0,0])
moves(l,[cx-d2,cy-d3])
moves(2,[cx+d2,cy+d3])

»

; move down to the nut location
.approachs(l,[0,0,htl])
approachs(2,[0,0,htl])

»

; set slow speed for initial tightening
speed(l,l)
speed(2,l)

The following backdrive sequence was not included in the final
demo, because it was found that it often caused the nut to jam
on the bolt and it was not required. (Note it is commented out)

—Start ofbackdrive sequence
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move(l ,[cx-dl,cy+d3])
move(2,[cx+dl ,cy-d3])
interrupt(l)
interrupt(2)

approachs(l,[0,0,ht2])
approachs(2,[0,0,ht2])

move(1,[cx-dl,cy-d3])
move(2,[cx+dl,cy+d3])
interrupt^1)
interrupt(2)

move(l ,[cx-dl,cy+d3])
move(2,[cx+dl ,cy-d3])
interrupt(l)
interrupt(2)

move(l,[cx-d2,cy+d3])
move(2,[cx+d2,cy-d3])
interrupt(l)
interrupt(2)

move(l ,[cx-d2,cy+d3])
move(2,[cx+d2,cy-d3])
interrupt(l)
interrupt(2)

-Endof backdrive sequence-

do two tighten passes
spinclose
spinclose

adjust height
approachs(l,[0,0,ht3])
approachs(2,[0,0,ht3])

three more tightening passes
spinclose
spinclose
spinclose

set up to do the untightening
move(l ,[cx-d2,cy+d3])
move(2,[cx+d2,cy-d3])
interrupt(l)
interrupt(2)
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do the untightening at a faster speed
speed(l,15)
speed(2,15)

four untightening sequences
spinopen
spinopen
spinopen
spinopen

move the module to their home locations
allhome

end
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FUNCTION SPINCLOSE

Calls Functions: NONE
Called by Functions: screwon

This function is used by screwoneach time it wants the hands to make a
tightening passduring the nut tightening sequence.

Startof tighten sequence

function spinclose
begin
»

; define the constants
ex =19.7
cy = 2.3
hi = 1.3
htl=1.3
ht2=1.25
ht3 = 1.0
dl = 2.95
d2 = 3.4
d3 = 1.5

9

move(l,[cx-dl,cy-d3])
move(2,[cx+dl,cy+d3])
interrupt(l)
interrupt(2)

»

move(l,[cx-dl,cy+d3])
move(2,[cx+dl,cy-d3])
interrupt(l)
interrupt(2)

»

move(l ,[cx-d2,cy+d3])
move(2,[cx+d2,cy-d3])
interrupt(l)
interrupt(2)

»

; use an increased speed to reset the hands
speed(l,15)
speed(2,15)
move(l ,[cx-d2,cy-d3])
move(2,[cx+d2,cy+d3])
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interrupt(l)
interrupt(2)

»

; reset the speed to it's original slow value
speed(l,l)
speed(2,l)

end

; End of tighten sequence-
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FUNCTION SPINOPEN

Calls Functions: NONE
Called by Functions: screwon

This function is used by screwon each time it wants the hands to make a
loosening pass during the nut tightening sequence.

Start of loosen sequence

function spinopen
begin
»

; define the constants
ex = 19.7
cy = 2.3
hi = 1.3
htl = 1.3
ht2 = 1.25
ht3 = 1.0
dl=2.95
d2 = 3.4
d3 = 1.5

note that no speed changes arerequired becausethe
loosening sequence is done ata fast speed.

move(l ,[cx-dl,cy+d3])
move(2,[cx+dl,cy-d3])
interrupt(l)
interrupt(2)

move(l ,[cx-dl,cy-d3])
move(2,[cx+dl ,cy+d3])
interrupt(l)
interrupt(2)

move(l,[cx-d2,cy-d3])
move(2,[cx+d2,cy+d3])
interrupt(l)
interrupt(2)

move(l,[cx-d2,cy+d3])
move(2,[cx+d2,cy-d3])

65



interrupt(l)
interrupt(2)

end

; End of loosen sequence
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FUNCTION ALLHOME

Calls Functions: NONE
CaUed by Functions: screwon

This routine is used to return the two modules to theirhome locations
intheir respective comers. Itiscalled automaticaUy at the end of the
Nut &Bolt assembly demo, and should also be caUed manuaUy before
function scoop is run, if the hands arenot in their home locations.

function aUhome
begin
»

; set a fast speed for both modules
speed(l,50)
speed(2,50)

»

; lift up both module z axis to avoid low obstacles such as the bolt
departs(l,[0])
departs(2,[0])

' moves(2,[25,25])
homes(l)
homes(2)

»

; orient hands with the highcomphance sideoutward
rotates(l,[0,0,0,0])
rotates(2,[0,0,0,0])

end
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