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Abstract

In this report an empirical study ofthree hardware schemes for managing caches and main
memory in large shared memory multiprocessors is presented. The first scheme is a simple
one in which shared writeable data is not cached at all. The second scheme is a version of

Censier and Feautrier's directory method in which cache blocks are sectored into sub-blocks

to reduce tag overhead. The third scheme is a modification of the second in which main

memory is distributed among the processors to act as a second level cache; the motivation
of this scheme is to increase the effective cache size to reduce average memory access time
and network traffic. The larger effective cache size of the third scheme is provided at the
expense ofconsiderable added complexity in the coherence protocol. The three schemes are

compared onthe basis ofsimulation results obtained from complete architectural simulations

of three different multiprocessors executing four benchmark programs. In all simulations
a multiprocessor with 64 processors was used. Cache sizes of 100 kilobytes for schemes
one and two, and 1 megabyte for scheme three were assumed. Simulation results indicate

that for the benchmarks considered the second coherence scheme reduces both average
memory access time and network traffic byover a factor of two, relative to the first scheme.

Although for three of the benchmarks the third coherence scheme performs almost as well
as the second, it performs very poorly for the fourth benchmark because of a contention

problem in which a large number ofblocks accumulate in a single memory bank. Results
for different block sizes and constant sub-block size show that increasing the block size
increases the number of misses for the second and third schemes. The increase in miss ratio,
however, does not significantly degrade average memory access time or network traffic. This
is because the fraction ofnetwork traffic caused by references to synchronization variables
(which always bypass the cache) is comparable to the fraction caused by cache misses. The
average number of invalidations issued per shared write was found to be very high for the
sectored schemes, approaching half the number of processors. For sectoring schemes to be
more effective it appears that caches may have to prematurely displace blocks that draw
excessive invalidation traffic. In addition to providing comparative empirical data for these
coherence techniques, the results also demonstrate the viability of complete architectural
simulation as a means for evaluating multiprocessor designs.



Acknowledgements

I would like to acknowledge my research advisor, Professor Richard Newton, for

providing the idea that started this research, for giving me the opportunity to pursue it,

and for being a source of encouragement on many occasions.

I would alsolike to thank Professor Alan Smith for the many useful criticisms that

came out of his thorough review of this report. Gregg Whitcomb and Abhijit Ghosh served

as proofreaders, for which I am grateful.

I thankfully acknowledge the funding provided for this project by the following

organizations: the Natural Sciences and Engineering Research Council of Canada, Digital

Equipment Corporation, Hewlett Packard, and the Defense Advanced Research Projects
Agency (under contract N00039-C-87-0182).

My wife, Audrey, shared my experiences during times of frustration as well as

times of achievement, and for her longsuffering support I am deeply grateful.



Contents

Table of Contents 3

List of Figures 5

List of Tables 7

1 INTRODUCTION 8

2 Three Approaches to Hardware-based Cache Consistency 12
2.1 No Caching ofShared Writeable Data 12
2.2 Modified Censier and Feautrier Protocol 13

2.2.1 Basic Censier and Feautrier Scheme 13
2.2.2 Modified Censier and Feautrier Scheme 24

2.3 Another Extension to Censier and Feautrier's Scheme 27
2.4 Tag Overhead 35

3 Evaluation Methodology S9
3.1 The Simulator and Simulation Models 42

3.1.1 Message Passing Core 43
3.1.2 68020/68881 CPU 46
3.1.3 NOCACHE Memory Controller with Cache 47
3.1.4 NOCACHE Main Memory 47
3.1.5 CANDF Memory Controller with Cache 47
3.1.6 CANDF Main Memory 48
3.1.7 PROP Memory Controller with Memory 48
3.1.8 PROP Backup Memory 48
3.1.9 PROP Memory Debugger 49
3.1.10 Statistics Module 49
3.1.11 Simulator Shell 40

3.2 Operating System Support 50
3.3 Benchmarks co

00

3.4 Simulated Architectures 55

4 Simulation Results 57



5 Conclusions 69

Bibliography 71



List of Figures

2.1 Multiprocessor Architecture for NOCACHE and CANDF Schemes 14
2.2 Tags for Basic Censier and Feautrier Protocol 14
2.3 Cache Read 17
2.4 Memory Read 1©
2.5 Cache Read from Memory ig
2.6 Cache Write 20
2.7 Memory Invalidate 21
2.8 Memory Invalidate-and-Fetch 22
2.9 Cache Invalidate and Invalidate-and-Fetch 23
2.10 Cache and Memory Synchronization Operations 23
2.11 Memory Displace 24
2.12 Tag Scheme for Modified Censier and Feautrier Protocol 25
2.13 Multiprocessor Architecture with Distributed Main Memory 28
2.14 New Tag Set 29
2.15 Ownership Check 30
2.16 Modified Search Procedure 31
2.17 Modified Displacement Search 33
2.18 Modified Displacement Procedure 34
2.19 Tag Overhead for Variation 1 with 512 Processors 37
2.20 Tag Overhead for Variation 2 with 512 Processors 38

3.1 Components ofan Address 41
3.2 Simulator Components 42
3.3 Simulator Model 44
3.4 Linked List Time Queue 45
3.5 Simple Implementation ofa Lock 51
3.6 Better Implementation ofa Lock 52
3.7 Implementation ofa Barrier 54

4.1 Access Time Improvement with Default Parameters 58
4.2 Relative Network Traffic with Default Parameters .' .' 59
4.3 Absolute Access Time with Default Parameters 60
4.4 Absolute Network Traffic with Default Parameters .' ' ' qq



4.5 Access Time Improvement, Neglecting PROP Queuing Effects 61
4.6 Access Time Improvement with 2kB Block Size (Markers denote results for

512B block) 62
4.7 Access Time Improvement with 128B Block Size (Marks denote results for

512B block) 62
4.8 Access Time Improvement with 100:1 Uniform Network 63
4.9 Absolute Access Time with 100:1 Uniform Network 64
4.10 Access Time Improvement with Cube Network 64
4.11 Absolute Access Time with Cube Network 65
4.12 Average Number of Copies of a Shared Block 65
4.13 Percentage of Valid Sub-Blocks within a Block 66
4.14 Average Number of Invalidations Issued per Shared Write 67
4.15 Speedup from 32 to 64 Processors 67



List of Tables

2.1 CPU Requests 13
2.2 Network Transactions 16

3.1 Standard Library Functions 51
3.2 Multiprocessing Library Functions 52
3.3 Benchmark Characteristics 55
3.4 Default Parameters of Simulated Architectures 56

4.1 Simulation Statistics 58



Chapter 1

INTRODUCTION

Shared-bus, shared-memory multiprocessors are gaining commercial acceptance
by offering high performance at reduced cost for applications with exploitable parallelism.
By efficiently supporting the shared memory programming paradigm, these machines are
usually much easier to program than those supporting message passing because the program
mer does not have to worry about distributing data across multiple memories; the shared
memory paradigm is thus especially attractive for applications with memory reference char
acteristics that are not easily predicted. The shared memory programming paradigm should
be distinguished from the hardware on which the paradigm is implemented, which may or
may not support shared memory directly. For an implementation of the shared memory
programming paradigm to be effective the average memory access time should be similar
to the speed ofthe uniprocessors used to construct the multiprocessor. Any hardware that
is intended to provide effective support of the shared memory programming paradigm must
therefore provide low latency memory accesses in addition to high bandwidth. To achieve
this, many shared memory multiprocessor designs have used hardware specifically designed
for the shared memory programming paradigm [P*85,G*83b,Seq84,Ros85,G*83a,SS86].

Many commercial shared memory offerings, including those by Sequent [Seq84] and
Encore [Ros85], use efficient caching techniques known as snooping cache protocols [AB86]
to provide effective shared memory systems at the hardware level. Unfortunately, these
techniques rely on the use ofashared bus as the processor interconnection network, so the
number of processors is restricted to the maximum number that can be supported by a
single bus, probably 50 or less [A*88]. While much research has been reported investigating
various snooping cache protocols [TS87,PP84,Y*85,EK88] , comparatively little has been



done to develop alternative methods to support shared memory in much larger machines
with 50 - 1000 processors.

Since implementations of shared memory in hardware areusuallyconstructed from

adistributed collection ofsingle ported memories, memory controllers and network elements,
they can only approximate the ideal, which can be described as:

1. offering simultaneous access byall processors for any combination ofreads and writes;

2. having negligible access delay (not including any queuing delay attributed to the
failure to meet 1);

The ideal shared memory should also not require a programmer to manually distribute
data to exploit characteristics of the underlying implementation, such as the presence of
fast buffers among slow bulk memories; the mapping ofvirtual addresses to their physical
locations within possibly many constituent physical memories should be transparent to the
user. Clearly, any implementation attempting to satisfy these requirements directly (with,
for example, a large, fast multi-ported ECL memory) would be prohibitively expensive.

The degree to which the first requirement can bemet is determined by the choice
of interconnection network and the number of memory modules. Multiple, simultaneous
memory accesses are typically restricted in two ways. First, networks usually only support
a subset ofthe total set ofaccess permutations. Second, the memory modules usually limit
the number ofsimultaneous accesses. The net effect ofboth restrictions is increased delay.
The latter limitation may be reduced by the use ofacombining network [G*83b] in which
simultaneous accesses to the same address can be "combined" in the network before reaching
the memory module. Although astudy [PN85] suggests that combining networks are very
effective, it also points out that they are very expensive. Both limitations may be relieved
in some cases by using a memory hierarchy in which cache memories are provided at each
processor [Smi82]. Since caches permit memory references to be satisfied without using the
network, the first restriction can be overcome. If multiple copies ofdata are permitted to
exist in a number of caches simultaneously, the second restriction can be overcome.

The effective delay ofashared memory implementation, neglecting queuing effects,
can also be reduced using a memory hierarchy. With fast caches associated with each

processor and well-behaved memory reference activity, most references can be satisfied
locally and avoid network and main memory delay.
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Cache memories thus appear to be a cost effective way to implement a shared
memory that approximates the ideal. When caches are used in a multiprocessor, however,
some method must be used to ensure that the result of a write is reflected in all of the
caches holding copies ofthe affected data. This is known as the cache consistency problem
[Smi82]. Cache consistency methods proposed to date may be divided into four classes:
those in which shared writeable data is uncached, snooping protocols, directory schemes
and software assisted techniques [AB84].

The first class requires the least amount ofhardware support but offers the poorest
performance for applications in which a large fraction of memory references are to shared
data.

The class ofsnooping protocols includes thewell established assortment of shared-
bus coherence schemes [K*85,TS87,Goo83,RS84,McC84,SS86] and several extended schemes
which support more processors using collections of busses connected hierarchically [Wil87]
or in a cube [GW88]. The key distinction of this class of consistency schemes is that any
processor action which may affect other cached copies of data must be broadcast to all
caches. For example, ifaprocessor writes to shared writeable data, all other cached copies
must be either invalidated or updated. The various schemes differ in the amount of state
maintained for each cache block and in whether copies of data are invalidated or updated
on a write. The amount ofstate, in turn, affects the efficiency ofthe protocol.

The class ofdirectory schemes is unique in that adirectory containing block state
is associated with the main memory [AB84,Smi82]. All processor references which may
affect other caches must go through the main memory, using the directory to determine
which caches, ifany, are affected. Since directory methods use broadcasting less frequently,
they are potentially useful in much larger multiprocessors. There is also no fundamental
dependence on aparticular type ofinterconnection network as there is in snooping protocols.

Most software solutions to the cache coherence problem depend upon sophisticated
compilers to insert cache invalidation instructions [CV88]. The IBM RP3 [P*85], Univer
sity of Illinois Cedar [G*83a], and New York University Ultracomputer [G*83b] projects
all use software solutions to the cache coherence problem. A typical software coherence
strategy involves the tagging of shared writeable data and the insertion of cache invalida
tion instructions at the end of parallel computation units, such as parallel DO-loops. At
the end of such aunit each cache invalidates all copies of the shared data affected by the
unit, writing back all dirty blocks to main memory. The schemes vary in the way in which
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computation units are specified and in the hardware support used for bulk invalidations of

shared data. A considerably different software-assisted scheme has been suggested by Smith
[Smi85] in which special translation lookaside buffer entries are augmented with "one-time
identifiers". Although software methods have no run-time communication overhead, they
offer non-optimal performance because of an increased number of cache misses due to un

necessary invalidations, and added processor delay while the bulk invalidations take place.
Relatively little performance data has been published concerning software methods, so their
effectiveness remains unclear.

In this report the effectiveness of three hardware coherency schemes is evaluated:

1. A scheme in which shared writeable data is not cached.

2. A variation of the Censier and Feautrier directory scheme [CF78].

3. A novel extension ofthe Censier and Feautrier scheme which permits dynamic assign
ment of blocks among a distributed main memory.

These schemes are evaluated using simulation results based on aset ofbenchmark programs
which were designed from the outset for implementation on shared memory multiprocessors.
Two ofthe four benchmarks are design aids for integrated circuits, chosen because they rep
resent a class of applications, which are generally difficult to program without the shared
memory paradigm, are computationally intensive, are of widespread interest, and have con
siderable exploitable concurrency. The other two benchmarks are a simple multiprocessor
simulator and a very simple test program.

The report is organized as follows. Chapter 2 presents the specifications of the
three hardware-based consistency schemes, which are evaluated using the methodology de
scribed in Chapter 3. Chapter 4 summarizes the simulation results, from which conclusions
are drawn in Chapter 5.



Chapter 2

Three Approaches to

Hardware-based Cache

Consistency

In this chapter three hardware-based approaches to enforcing cache consistency
in large shared memory multiprocessors are presented. For each of the schemes it is as
sumed that the requests and responses of Table 2.1 are issued and accepted by aprocessor
("CPU"). ASYNCOP refers to any operation that operates on synchronization variables,
where asynchronization variable is any variable used to control the interaction of multiple
processes. Examples of SYNCOP's include test-and-set [AS83] and fetch-and-add [G*83b].
These primitive operations can be used to construct higher level synchronization faculties
such as spin-locks, semaphores or communicating processes [AS83]. It is further assumed
that all interprocess synchronization is performed using explicitly-declared synchronization
variables, operated upon using only SYNCOP operations. This is necessary so that syn
chronization variables are not cached.

2.1 No Caching of Shared Writeable Data

For this scheme it is assumed the multiprocessor architecture of Figure 2.1, in
which CPU requests are sent to memory controllers that access acache or main memory,
via an interconnection network, as appropriate. In this first coherence technique, shared

12



Transaction

READ(addr)
WRITE(addr, data)
SYNCOP(addr, data)
DATA(data)
ACKQ

Description
Read data at addr

Write data to addr

Operate on the synchronization variable at addr using data
Data returned from a READ or SYNCOP
Acknowledgement that a WRITE has completed

13

Table 2.1: CPU Requests

writeable data is tagged uncacheable. The memory controllers must bypass their caches
and access main memory for all references to non-cacheable data. In this simple scheme the
main memory must be able to handle cache requests for block contents and cache requests
to displace blocks. Table 2.2 shows the network transactions that can take place between a
memory controller and a main memory; some of the transactions are used only in the other

coherence protocols and are explained in the appropriate sections. Only the DISPLACE
and MREAD transactions are required for this scheme. Since up to 40 % of all references
can be to shared writeable data, this method offers the poorest performance of the three
schemes, but provides a useful reference point for evaluating the others.

2.2 Modified Censier and Feautrier Protocol

This version of the Censier and Feautrier directory method [CF78] incorporates
a modification to reduce the large amount of extra memory needed tostore the large tags
required by the original protocol. Censier and Feautrier's scheme as originally presented in
[CF78] is presented first, followed by a discussion about the modification. In both descrip
tions the multiprocessor architecture of Figure 2.1 is assumed.

2.2.1 Basic Censier and Feautrier Scheme

In this scheme physical memory is divided into blocks of fixed size. Each block

ofmain memory is associated with a directory entry (or tag) containing 1 bit per cache, a
single bit indicating whether or not the block is modified, and a lock bit (Figure 2.2). A
block is always in one of these three states:

1. ABSENT: no cache holds a copy (all cache bits in the directory entry are 0, and the
modified bit is 0; lock bit is 0);



Controller

Figure 2.1: Multiprocessor Architecture for NOCACHE and CANDF Schemes

CACHE: Block Tag:

valid bit

modified bit

MAIN MEMORY: Block Tag

lock bit

modified bit

M

M 1 2 3 . • • N

Cache Bits

Figure 2.2: Tags for Basic Censier and Feautrier Protocol
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2. PRESENT: one or more caches hold copies, and the block is unmodified (one or more
cache bits in the directory entry are 1, and the modified bit is 0; lock bit is 0);

3. PRESENTM: exactly one cache has a copy and it is modified (exactly one cache bit
is 1 and modified bit is 1; lock bit is 0);

4. LOCKED: an operation on this block is currently in progress (lock bit is 1);

In like manner, each cache block is associated with a cache directory entry con
sisting ofa valid bit and a modified bit (Figure 2.2). Cache blocks may be in one of these
states:

1. INVALID: the contents of the cache block are invalid (valid bit is 0);

2. VALID: the contents of the cache block are valid and unmodified (valid bit is 1 and
modified bit is 0);

3. VALIDM: the contents of the cache block are valid and modified (valid bit is 1 and
modified bit is 1). This state implies that this cache has the only valid copy of the
block in the entire multiprocessor.

A cache consistency protocol is defined by the set ofactions taken by the memory
controllers and the main memory for each different combination ofprocessor request, cache
block state, and main memory state. Figures 2.3 to 2.11 presents thedetails of the Censier
and Feautrier protocol in flowchart form.

If a processor issues a read and the local cache block of the data is valid, no main
memory access is needed and the data is simply read from the cache. If a block for the

referenced data does not exist ("miss" state in Figure 2.3) ablock must be assigned and its
old data displaced to main memory. The missed reference is then handled as if the block
was invalid: a read transaction is issued to the main memory. If the main memory block is
inan unmodified state, the block contents are returned tothe requesting memory controller.
If the main memory block is modified, the block contents are read from the single "owning"
cache, written to main memory, and forwarded to the requestor. In all of these cases the
cache and main memory entries have their states updated as shown in Figures 2.3 and 2.4.

When a processor issues a write, it can only be satisfied locally if the local cache
block isVALIDM. If thelocal cache state is VALID, an invalidate transaction is sent to the



Transaction

MREAD(addr)

CREAD(addr)

MINVAL(addr)

MINVAL-FETCH(addr)

CINVAL(addr)

CINVAL-FETCH(addr)

MDATA(data)

CDATA(addr, data)

CACK(addr)

MACK()

MSYNCOP(addr, data)

MSYNCDATA(data)

DISPLACE(addr)

FAIL(addr)

16

Description

Read a block from main memory

Read a block from a cache

Invalidate a sub-block at the main memory

Invalidate a sub-block at the main memory and fetch its con
tents

Invalidate a sub-block at a cache

Invalidate a sub-block at a cache and fetch its contents

Sub^block data returned from main memory

Sub-block data returned from a cache

Acknowledgement returned by a cache in response to CIN-
VAL

Acknowledgement returned by main memory to MINVAL

Operate on a synchronization variable at the main memory

Data returned from main memory, in response to MSYNCOP

Displace a block to main memory

Indicates that a transaction is already in progress for the
referenced block: the requestor must try a^ain ^^

Table 2.2: Network Transactions
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Figure 2.3: Cache Read
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LOCKED

suspend
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Figure 2.4: Memory Read
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Figure 2.5: Cache Read from Memory

main memory which, if other caches have copies (ie: main memory state is PRESENT or
PRESENTM), issues invalidations to them. If, however, the local cache misses or the block
isinvalid, the controller issues an invalidate-fetch transaction to the main memory. A fetch
is required here so that the portion of the block untouched by the write is made valid. The
main memory sends invalidations tocaches with copies and if the block is modified, fetches
the current data, updates itself, and forwards the data to the requestor. As before, the
states of cache and main memory blocks are updated as shown in Figures 2.6, 2.7 and 2.8.

It was assumed that references to synchronization variables bypass the cache com
pletely and are always handled at the main memory.

Block displacements are always sent to the main memory which updates its di
rectory as appropriate. If a cache displaces a VALIDM block, the block contents must be
written back.

The Censier and Feautrier scheme is well-suited to large multiprocessors because
it does not depend on the use of broadcasts, and hence is not designed for a particular
network, and permits the main memory and its directory to be interleaved. Although
the communication overhead could be excessive ifmany blocks reside in many caches, the
scheme's greatest drawback is the severe memory overhead introduced by the large number
ofcache bits in the main memory tags. As an example, asystem with 100 processors requires
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Figure 2.6: Cache Write
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Figure 2.8: Memory Invalidate-and-Fetch
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Figure 2.9: Cache Invalidate and Invalidate-and-Fetch
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Figure 2.10: Cache and Memory Synchronization Operations
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Figure 2.11: Memory Displace
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a 101 bit tag; this dictates a block size much larger than 16 bytes if the tag is to be much
smaller than the data it is associated with. Systems built using this consistency scheme
are not easily expanded because the tag length is dependent on the number ofprocessors.
Several variations of the basic protocol have been suggested for reducing the tag size. In one
variation [AB84], the array ofcache bits is eliminated and an extra bit is used to indicate
if one or more caches have copies. The protocol in Figures 2.3 to 2.11 is modified so that
whenever a block must be invalidated from the main memory a broadcast is used. The
communication requirements of this variation can be reduced at the expense of a slightly
larger tag by adding a small number, say t, ofmultiprocessor identifiers which would hold
the addresses of caches holding copies of the associated block [A*88]. If the number of
copies ever exceeds t, broadcasting is used. This scheme would work well if the average
number ofcopies ofa block are low. The results in Chapter 4, however, indicate that the
average number of copies is quite high for the benchmarks examined. Aslight variation of
this limits the maximum number of copies of a block to i. In the following section, propose
an alternative way to reduce tag overhead by sectoring a block into sub-blocks is proposed.

2.2.2 Modified Censier and Feautrier Scheme

Another way to reduce tagoverhead is toincrease theblock size but maintain finer
granularity for invalidations by dividing blocks into sub-blocks. Finer granularity is needed
to reduce the number of cache misses caused by the invalidation of a large block because of
a write to a small portion of it. It also allows a block to be referenced without transferring
its entire contents. This idea is similar to sectored cache schemes for uniprocessor memory •
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systems [HS84].

With sectored blocks, the Censier and Feautrier protocol is modified as follows. In

the main memory directory, each sub-block is given a tag large enough to hold a processor
number, plus a modified bit. The array of cache bits is associated with an entire block.

A cache bit set to one now indicates that the associated cache holds one or more valid

sub-blocks. In the cache directories, the valid and modified bits are now distributed among
the sub-blocks. Figure 2.12 illustrates the new tag scheme.

CACHE: Block: |sub-block t|sub-block 21

3 HK1

sub-blxk n|

ZE
valid bit

modified bit
Tags

MAIN

MEMORY:
Block: sub-block 1 sub-block 2 • • • sub-blxk n

owner M owner M - owner M

modified bit — •1 T3gs

L 1 2 3 • • • N.

lock bit —i Cache Bits

Figure 2.12: Tag Scheme for Modified Censier and Feautrier Protocol

As before, different protocol actions are taken depending on sub-block state in
the caches and at the main memory. In the caches, sub-blocks can be VALID, VALIDM
or INVALID, depending on their respective valid and modified bits in the same way that
cache block state is determined in the original scheme. At the main memory, the state ofa
sub-block is determined as follows:

1. ABSENT: no caches hold any portion ofthe block containing the sub-block (all cache
bits for the containing block are zero; lock bit is 0);

2. PRESENT: one or more caches hold portions of the block containing the sub-block
(one or more cache bits for the containing block are 1, and the modified bit for the
sub-block is 0; lock bit is 0);
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3. PRESENTM: exactly one cache holds a valid copy ofthesub-block, and it is modified
(one or more cache bits for the containing block are 1, the modified bit for the sub-
block is 1, and its "owner" tag holds the address of the cache holding the modified
copy; lock bit is 0);

4. LOCKED: an operation on this block is currently in progress (lock bit is 1);

Protocol actions as a function of cache and main memory state are the same as
those for the original protocol (Figures 2.3 to 2.11), with only a minor modification to the
way main memory state is updated with a displacement: in the new scheme all sub-blocks
must be checked so that those which are PRESENTM and "owned" by the displacing cache
are correctly updated.

[HS84] investigated the use of sectored blocks in the context of small, micropro
cessor on-chip caches and found that sectoring substantially increased the number ofcache
misses. In the study reported here, however, the cache sizes are much larger and it was felt
that misses resulting from accesses to synchronization variables would dominate any extra
misses due to sectoring. The results in Section 4support this reasoning.

The original Censier and Feautrier protocol is clearly a subset of this scheme in
which each block has only one sub-block. The original Censier and Feautrier scheme requires
Nbits per tag per sub-block, where Nis the number of processors. In the sectored scheme,
(JV + 1)1n+log JV +1 bits per tag per sub-block are needed, where n is the number of
sub-blocks in a block. For N = 512 and n = 32, the original scheme requires 512 bits
per tag while the sectored scheme only requires 26. Tag size can be further reduced by a
factor of 2 to 10 if processors are clustered onto busses so that only cluster addresses are
needed. While the modified scheme requires less memory for tags, itrequires slightly higher
communication overhead because invalidations are sent to all caches holding portions of the
affected block, some ofwhich may not hold valid copies ofthe affected sub-block. It was
assumed that this additional overhead would be negligible, and simulation results confirmed
it. Although the tags in the new scheme are still dependent on the number of processors in
the system, the reduced tag overhead should make it possible to build amachine with tag
sizes allocated for the worst case (maximum) number ofprocessors.
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2.3 Another Extension to Censier and Feautrier's Scheme

The main memory of a large multiprocessor is typically interleaved to provide
adequate bandwidth [P*85,G*83a,G*83b]. If the number of main memory banks is made
equal to the number of processors and each bank located next to a processor to be used as a

second levelcache, performance could potentially be improved since the size of such a bank

would be 2 to 10 times the size of the first level cache. Some multiprocessors, such as the
BBN Butterfly [BC86] and the IBM RP3 [P*85], distribute the main memory among the
processors, but none provide hardware support to use thelocal portions ofmain memory as
second level caches. This section presents a way to further extend Censier and Feautrier's

protocol so that it uses distributed main memory banks as second level caches. In the

following discussion a multiprocessor organization with distributed main memory (Figure
2.13) is assumed, with a third level added to the memory hierarchy: the backup memory.
The backup memory is used to hold blocks that do not fit in the second level. Since the

backup memory performs a function similar to that ofa paging device in a virtual memory
system [Den70], we expect this level ofthe hierarchy to be accessed relatively infrequently.
For the remainder of this section a reference to a cache means the second level cache of

Figure 2.13; the first level cache isneglected, assuming that it is managed using extensions
of uniprocessor cache techniques, and that its net effect is to reduce the access time to the
second level cache.

If main memory is broken upinto a set ofcaches, data can no longer bestatically
assigned to main memory banks as was assumed in the consistency schemes of Sections
2.1 and 2.2.2. These schemes, and virtually all other proposed cache consistency methods,
assume that all cache blocks have statically determined home locations in themain memory
so that the caches always know where to fetch from or displace to. The differences then,
between the extended Censier and Feautrier protocol and the original are:

1. Caches now must act as the main memory would in the original scheme for those
blocks for which they are "owner."

2. Caches must be capable of finding a block's owner dynamically, since it can vary
throughout program execution.

In the extended protocol each cache block is given a set of tags which is the union
ofthose provided for cache blocks and main memory blocks in Section 2.2.2 (Figure 2.14).
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Figure 2.13: Multiprocessor Architecture with Distributed Main Memory
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In addition, an "owner" bit and owner tag areassociated with each block: the bit indicates

if the cache is the owner of the block; the tag holds the address of the "likely" owner of the
block if the owner bit is 0. There is only one owner of a block in the entire system. The
tags which were provided for a main memory block in Section 2.2.2 are used by a cache only
if it is not the owner of the associated block. When used, each respective set of tags have
the same meaning as in Section 2.2.2: if a cache owns the containing block (owner bit is

Block: sub-block 1 sub-blxk 2 • • • sub-block n

owner V M ownerl y 1 M owner V M

valid

modified

bit—1
hit

Tags

owner 0 L 1 2 3 • • • N

owner

lock

bit

bit

_J Cache Bits

Figure 2.14: New Tag Set

set), a sub-block can be LOCKED, ABSENT, PRESENT or PRESENTM, with meanings
exactly as before; similarly, if a cache does not own the containing block, a sub-block can
be INVALID, VALID or VALIDM.

The network transactions used by the new protocol include those used in Section

2.2.2, with one addition and one modification. The additional transaction is:

REFUSEDQ: indicates that the cache to which a transaction was issued cannot

satisfy it because it is not the owner.

The modification is the addition of an extra parameter to the DISPLACE trans
action as follows:

DISPLACE(addr, data, ownerflag): where ownerflag is 1 if the displacing cache
owns the block, and 0 otherwise.

The actions performed by the cache controller are the same as those in Figures 2.3
to 2.11 with the following four changes:

1. The "main memory" actions (MRead, etc.) are now performed by the caches. The
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flowcharts in Figure 2.3 to 2.11 must have the test shown in Figure 2.15 appended
to the top. This test simply determines whether the cache receiving the transaction
holds the referenced block, and if so, if it is the owner. The cache can only handle the
transaction if it is the owner, otherwise it returns a REFUSEDQ message.

OWNER

f

NOT OWNER, miss

send REFUSED to

source cache

Figure 2.15: Ownership Check

2. Transactions directed to main memory (MREAD, MINVAL, MINVAL-FETCH or
MSYNCOP) must be altered to search for the cache serving as "main memory" for
the affected block. Figure 2.16 shows the procedure that replaces the appropriate
parts of Figures 2.3 to 2.4. These more complex procedures do the following. If
the cache issuing the main memory transaction owns the affected block, a network
access is avoided and the transaction is handled locally. Otherwise, the cache begins
its search by sending the transaction to the likely owner of the block, as indicated
in the block owner tag. If the likely owner responds with failure, the transaction is
retried. If the likely owner accepts the transaction, the procedure continues with the
appropriate steps in Figures 2.3 to 2.11. If the transaction is refused, the issuing
cache broadcasts the transactions and collects all of the responses. Since only one
cache can be an owner, at most one response contains data or an acknowledgement,
and it is buffered if it arrives. If any cache fail to receive the transaction because
ofa locked block, the transaction is re-issued to that cache. If all caches refuse to
accept the transaction, the backup memory is checked. li it also refuses to accept the
transaction, the broadcast is repeated again. An owning cache can be missed during
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a broadcast if the network delays are such that an unsearched cache can displace the
ownership of the affected page toan already searched cache. * The search loop should
eventually succeed unless the caches displace pages at an extraordinarily high rate. 2

3. Caches displacing blocks must search for a cache that can accept the displacement.
Figure 2.17 shows the new displacement procedure which replaces those steps ofFig
ures 2.3 to2.11 labelled "DISPLACE x tomain mem." Asin2, thesearch isdependent
on the block status in the displacing cache. Ifthe cache owns the block and it is shared,
displacement transactions are sent one at a time to other caches holding copies; if a
particular cache refuses the displacement, the next cache with a copy is tried. A
cache with a copy will only refuse a displacement if it displaces its copy just before
it receives the displacement transaction. If none ofthe caches with copies accept the
displacement, the block must now beowned and unshared, so the entire setof caches
must be tried serially. Ifnone ofthese accepts the displacement, the backup memory,
which always accepts displacements, is used. Ifa cache displaces an unowned block,
it first tries todisplace to the likely owner, as indicated by the block owner tag. Ifthe
likely owner refuses, it reverts to a serial search of all caches as above. If the serial

search fails in the unshared case, however, the displacing cache mustcheck to see if it
has recently assumed ownership because of the owner performing a displacement in
the middle ofthe search. 3 If the displacing cache is not the owner, it must repeat
the serial search because some cache in the system still has ownership of the block
(because acache cannot displace to the backup memory unless it has the sole copy of
the affected block).

4. The procedure for DISPLACE in Figure 2.11 is replaced by that ofFigure 2.18. In
the new protocol a cache can accept a displaced block only if:

(a) the accepting cache has a free block and the displaced block is being displaced
by its owner;

(b) the accepting cache has a copy of the block, and either the accepting cache or
1While this might seem like arare situation that might never occur in practice, the simulations proved

otherwise.

'It is assumed that the caches use aleast recently used (LRU) replacement scheme, and that when a
cache accepts a displaced block it updates its LRU status.

*It is possible for the owner to be missed during aserial search ifthe owner makes adisplacement, before
it is searched, to a cache which hasalready been searched.
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the displacing cache is an owner.

These restrictions ensure that the owning cache is always involved in a displacement
so that the owner's set of tags remains consistent. For example, if a cache with an
unowned copy of a block could displace to another cache with an unowned copy the
cache bits held bythe owner would not be updated to show that the displacing cache
no longer has a copy.

Clearly, this new protocol is considerably more complex than the protocol of Sec
tion 2.2.2, and in the worst case most transactions take much longer to perform. It was
assumed, however, that in practice the worst case would occur infrequently and that most
transactions could be handled in about the same time as in the basic protocol; most of
the time the controllers should take actions identical to those of the sectored Censier and

Feautrier scheme. The simulation results inChapter 4support this. If the complex portions
of Figures 2.15 to 2.18 are sufficiently rare, they can be implemented in software.

2.4 Tag Overhead

In this section it is shown that both modified versions of Censier and Feautrier's

directory method consume an amount ofmemory for tags that is areasonably small fraction
of that used to hold data. Examination ofFigures 2.12 and 2.14 shows that the two modified
schemes require the following amount of memory for tags:

Modification 1 (Figure 2.12)

Main Memory:

• N cache bits per block, where N is the number of processors in the entire multiprocessor;
• 6owner tags ofsize log2 N bits each, where 6is the number ofsub-blocks per block;
• b modified bits per block;

• 1 lock bit per block;

Cache:

• 1 modified bit per sub-block;

• 1 valid bit per sub-block;

Modification 2 (Figure 2.14)

Main Memory/Cache:
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• N cache bits per block;

• b owner tags of size log2 N bits each;

• b modified bits per block;

• 6 valid bits per block;

• 1 lock bit per block;

• 1 owner bit per block;

• 1 likely owner tag, of size log2 N bits each, per block;

Tag sizes T\ and T2 for variations 1 and 2 are thus:

T1 = N-rb(\og2N-rl)+l

T2 = iV-r6(log2i\r + 2) + 3

Figures 2.19 and 2.20 show plots of ^Jfezz and Eisife versils Wo<* size with
sub-block size as a parameter and N = 512. The plots show that tag overhead is similar
for both modifications for block sizes of 16 or greater, and is less than 15% for a sub-block
size of 16 bytes, page size of 1024 bytes, and 512 or fewer processors.
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Chapter 3

Evaluation Methodology

The three consistency methods of Chapter 2 were evaluated using simulations of
a set of benchmark programs. In this chapter the methods, assumptions, and goals of the
evaluation are described. Evaluation results are presented in Chapter 4. This study uses
two figures ofmerit: average communication requirements and average memory access time.
Average communication requirements are presented as the average number of normalized
network transactions issued by a single processor per memory reference. A normalized net

work transaction is simply a transaction involving one word (4 bytes) of data, from which
it is assumed more complicated transactions can beexpressed as multiples. It is assumed
that transactions that require no transfer of data have the same network overhead as those

transferring one word. Normalized network transactions reflect the effects of cache miss

ratios and volume oftransmitted data. In like manner, average memory access time is pre
sented as the average number ofnormalized time units required tosatisfy asingle memory
reference, to data or instructions, by one processor. Here a normalized time unit is the

time required to reference data in a local cache. The simulation study was made with the
unrealistic assumption that network delay is independent of network load. This assump
tion simplifies the analysis considerably, and when two consistency schemes have similar
communications requirements it should not prevent avalid comparison ofaverage memory
access times. If, however, average access time is reduced at the expense of substantially
increased network load, the cost of a higher performance network must be considered.

For the rest of this report the names of the cache consistency schemes are abbre
viated as follows:

39
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1. NOCACHE: shared writeable data is not cached;

2. CANDF: Censier and Feautrier scheme with sub-blocks;

3. PROP: proposed scheme in which main memory is used as a second level cache;

Most simulation studies of computer memory systems use address traces collected

from real machines running a set of benchmark programs [Smi82,Sto87]. Of these studies,
most ofthose considering multiprocessors have dealt with relatively few processors, typically
under 10 [A*88,A*84,EK88]. For large numbers ofprocessors, trace driven methods become
cumbersome because of the large amount of storage required to hold the traces. As an
example, traces for 64 processors with one million 32 bit references per processor require
256 megabytes of storage in uncompressed form. The motivation for trace driven simulation
is also reduced because multiprocessor memory systems require more complex simulation
models, thus relatively little extra simulation time is required to simulate the processors
executing the code. For these reasons, a simulator was developed to perform simulations
of complete multiprocessors in sufficient detail to evaluate the performance of different
memory systems. Although considerable effort was required to develop the simulator, and
simulations take somewhat longer than when traces are used, it requires much less storage
and does not depend on using an existing machine to collect traces.

The simulation study involved simulations of four benchmark programs on three
multiprocessor architectures supporting the cache coherency techniques of the preceding
chapter. As well as providing average access times and network traffic directly, the simulator
also gathered other statistics, including the average number ofcopies ofshared blocks and
the average number of invalidations required per shared write. Each simulation required
the following steps:

1. Compile the shared memory benchmark program into 68020/68881 assembler using a
commercial C compiler. The HPUX cc compiler available on Hewlett Packard series
350 workstations was used.

2. Convert the assembly code into the pre-decoded format required by the simulator. A
special assembler was written to do this, and several assumptions about the virtual
address space were made. A global addressing space with a 32 bit address of form
shown in Figure 3.1 was used. In aglobal address space, to each piece oflogical piece of
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data there corresponds exactly one virtual address; if two or more processes reference
the same data they must use identical virtual addresses. This type of address space

MSB LSB

Process ID Segment Block Sub-Block Byte

8 bits 3 bits 17 bits 4 bits

Segment Types: - Local Data
- Shared Data

-Code

- Stack

- Global Data

Figure 3.1: Components of an Address

was chosen to avoid the problems associated with "synonyms"—two or more distinct
virtual addresses corresponding to the same data [Smi82].

As Figure 3.1 shows, the address space is segmented with each segment uniquely
identified by a segment identifier and segment type. The segment type field is used
by the memory controllers to determine the shared writeable status of each CPU

reference, as well as in checking for access violations.

3. Prepare a netlist of the architecture to besimulated, providing specifications for and
interconnections among a set of CPU's, memory controllers and main memories.

4. Prepare initialization files for each simulation model, providing initial memory and
register contents, delay information and address mapping data. These files were gen
erated by a program using the output of Step 2 and a list of processors with the
programs they were to run.

5. Run the simulation.

6. Post-process the results.

In this chapter the simulator, the simulation models and the benchmark programs
are described in detail. The operating system support required for the simulations is also
described, along with details of the three multiprocessor architectures whose simulation
results are presented in Chapter 4.
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3.1 The Simulator and Simulation Models

The multiprocessor simulator was constructed in a modular fasliion (Figure 3.2),
with a core providing message passing facilities for a simulator shell and collection of ar

chitectural models. The models include a68020/68881 CPU, three different memory con
trollers, two main memories and a statistics gathering module. The following subsections
describe each of the simulator components in greater detail.
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NOCACHE

Memory
Controller

CANDF

Memory
Controller

PROP

Memory
Controller
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Module

NOCACHE
Main

Memory

CANDF
Main

Memory

PROP

Backup
Device

Message
Passing

Primitives

User

interface

Simulation

Models

Simulator

Core

Figure 3.2: Simulator Components

No network model is shown in Figure 3.2 because a simple network model
incorporated into the controller and main memory modules. In the simple network model
it is assumed that:

was

• Each processor is assigned aunique identifier between 0and N- 1, inclusive, where
N is the number of processors.

• N is a power of 2.

• For the NOCACHE and CANDF schemes, memory is interleaved N ways and dis
tributed among the processors so that bank t is associated with processor i.

• For the NOCACHE and CANDF schemes, interleaving is done on the lower order
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log2 JV* address bits ofthe block address field (Figure 3.1). (ie. if the lower order bits
ofa block address are j, main memory bank j contains the referenced data).

• Inter-network delays depend only on the processor identifiers of the sourceand desti
nation of a network transaction.

With these assumptions, the controller and memory modules account for network

delay by simply looking up a delay value ina two dimensional table indexed by source and
destination identifiers. Since the delay table was made a simulation parameter, different
networks can be modelled to first order accuracy by using different delay tables. In the
simulations the following two network models were used:

Uniform: The delay between any two distinct processors is constant (local references are
modelled by a separatedelay parameter).

Cube: The delay between any two processors is the Hamming distance between the source
and destination identifiers, multiplied by a common scalefactor.

3.1.1 Message Passing Core

The message passing core provides a set offunctions that operate on messages,
which are characterized by a message type and the data which they contain. The data passed
in a message can be anything expressible as a structure in the C programming language,
the language in which the simulator is written. Messages are created and sent between
instances ofsimulator models, which are comprised of (Figure 3.3):

1. Input ports, from which messages are received from other model instances.

2. Output ports, from which messages are sent to other model instances.

3. Sets of message types, one set per port, identifying messages which may be re
ceived/sent by the respective input/output port. The sets ofmessages flowing through
a port cannot change during a simulation. These sets are common to all instances of
the same model.

4. Message handlers, at least one for each message type in 3 associated with an input
port. The message handlers specify the actions to perform for each type ofmessage
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Figure 3.3: Simulator Model

that is received. When ahandler is invoked, itis given the contents ofits corresponding
message, the current simulation time and a pointer to the state structure (see 5) of
the model instance to which the message has been sent. The message passing core
provides the following two primitives which may be used in writing message handlers:

• SEND(.t, destination, type, data): send amessage of type type containing data
to destination at time t.

• SET.HANDLER(type, function): change the handler for messages of type type
to be function.

A collection of message handlers is common to all instances of the same model.

5. A state data structure, unique toeach model instance, to preserve information between
the receipt of messages.

6. Aninitialization routine, invoked at the beginning ofa simulation. The initialization
routine may be passed a list of parameters which may be used to initialize the state
structure, set delay values and perform other preliminary activities.

With this modelling paradigm asimulation consists of the sending, receiving and
processing of messages among acollection of model instances. The message passing core
provides the faculties for maintaining simulated time, buffering messages until their sending
time is equal to the current simulated time, and invoking the message handlers. The core
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also provides support for creating instances of models, checking that the sets of messages
sent and received by two interconnected ports are the same, and invoking the initialization
routines.

The implementation ofthe message passing core used an event driven algorithm
[Ulr78] based on a linked Ust time queue. In the time queue outstanding messages are
stored in a time sorted list of lists (Figure 3.4) where each message list t contains those
messages which are to be sent at time r,-. When all of the handlers have been invoked
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»
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Figure 3.4: Linked List Time Queue

for the recipients of all messages at the current time tc, tc is advanced to *,+1, the time
associated with the next message list. Asimulation terminates when the time queue becomes
empty. Although a timing wheel approach may provide better performance [Ulr78], the
linked list implementation proved to be satisfactory, permitting approximately two thousand
68020 instructions to be simulated per second ofreal time on a HP 350 workstation. The
simulations were thus about 2000 times slower than the hardware implementation ofasingle
processor.



46

3.1.2 68020/68881 CPU

The model of the 68020/68881 CPU supports a large subset of the Motorola
68020/68881 instruction set in sufficient detail to permit the assembler output from a C
compiler to be simulated correctly with reasonable efficiency. The 68020 architecture was
chosen because it is a popular, current design for which commercial compiler support is
readily available. The model has the following characteristics:

1. It models the non-pipelined execution of a large subset of the 68020/68881 instruction
set. 130 instructions are supported for 9 of the possible addressing modes. For
efficiency, data and instructions are treated separately within the simulator so that
instructions can be stored in a more easily interpreted format than that defined by
Motorola. For additional efficiency, floating point numbers (64 bit only) are stored in
aformat native to the machine on which the simulator runs. For simplicity, pipelining
is not modelled. It is assumed that the effects of pipelining can be modelled, to first
order, by reducing the average time to execute an instruction.

2. It has one input port and one output port to communicate with one of the three
memory controllers described below.

3. Processing delays are modelled using a the same parameterized delay between each
memory reference, regardless ofwhether anaddress is being calculated or the instruc
tion is being executed.

4. The processor stalls on writes. Although most high performance processors would
not do this, it greatly simplifies the model since complicated buffering and interlocks
would be required otherwise. It was assumed that this simplification would have little
affect on the relative performance ofthe three coherence schemes.

5. An assembly level debugger supporting breakpoints, status reporting and tracing is
provided.

6. There is full modelling of byte, word, long word and 64 bit floating point operands,
including support for 1, 2, 3 and 4 byte alignments.
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3.1.3 NOCACHE Memory Controller with Cache

This model simulates the NOCACHE coherence protocol ofSection 2.1, and con
tains a fully associative LRU cache with variable block size. An instance of this model has

two pairs of input and output ports: one pair to communicate with a CPU and one pair
to communicate with a multiprocessor interconnection network. A single delay is used to
model the time between receiving a message from the CPU or network and issuing another
one. This delay corresponds to the time to process a cachehit. In this model it was assumed

that displacements are buffered so that the controller never has to wait for a displacement
to complete.

3.1.4 NOCACHE Main Memory

This model simulates a large interleaved main memory supporting theNOCACHE
coherence protocol. Since virtual addresses are sent from thememory controllers it performs
virtual to real address translation. A single delay is used to model main memory access
time. Interleaving is approximated by neglecting queuing effects (ie. no main memory
access is ever delayed waiting for other main memory accesses to complete, with multiple
references to the same address excepted). Although this is an optimistic assumption, it
was assumed to have little affect on the relative results. If necessary, queuing effects may
be modelled to first order by factoring an estimated queuing delay into the main memory
access delay. Interactive debugging commands, accessible from the simulator shell described

below, support the setting of breakpoints, dumping of data and instructions, and searching
instructions for references to a given assembler symbol.

3.1.5 CANDF Memory Controller with Cache

Thismodel is similar to the NOCACHE controller, except it simulates the CANDF
protocol ofSection 2.2.2. The timing model used is similar to that in the NOCACHE model.

It was assumed that inmost cases simultaneous CPU and network messages can behandled
simultaneously (using, for example, a dual directory technique [BD86]). It was also assumed
that the queuing effects of network accesses are negligible. As in the NOCACHE controller,
it was assumed that displacements are buffered so that the controller never waits for a
displacement to complete.
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3.1.6 CANDF Main Memory

The CANDF main memory module models a large interleaved main memory sup
porting the CANDF coherence protocol. As for the NOCACHE case, virtual to real address

translation is performed, a single delay parameter isused, and interleaving is approximated
by neglecting queuing effects. In addition, the model permits main memory accesses to
be handled even while invalidations or sub-block fetches due to past references are still in
progress; as before, this is only permitted for references to distinct addresses. Debugging
facilities similar to those in the NOCACHE model are also provided.

3.1.7 PROP Memory Controller with Memory

This model simulates the PROP coherence protocol ofSection 2.3, using a block of
main memory as a second level cache. As in the NOCACHE and CANDF controllers, two
pairs ofports are provided for communication with a CPU and network. The delay model
is similar to that used in the NOCACHE and CANDF controllers. This controller model

does account for queuing effects on messages from the network, unlike theother controller
models. In the NOCACHE and CANDF schemes, main memory is statically interleaved
on the lower bits of the block address. It was assumed that this would result in minimal

queuing delay at the memory banks, and asimpler simulation model that neglected queuing
effects altogether was used. For the PROP scheme, however, it is possible at the beginning
of program execution for all data to be clustered in the single memory bank of a parent
process. In such a case the queuing effects could be considerable, so they were modelled in
the PROP case.

Also unlike the other two controllers, adisplacement is completed before satisfying
the processor request which caused the displacement. This was done because considerable
extra complexity would berequired tomodel buffered displacements for the complex PROP
scheme. To reduce theeffect ofthis modelling discrepancy, theresults from the NOCACHE
and CANDF simulations were post-processed to reflect the additional delay incurred by not
buffering displacements.

3.1.8 PROP Backup Memory

This module acts as a single memory bank on which all program blocks reside at
startup and on which all dynamically allocated memory is initially assigned. It is also a
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location where blocks are displaced in the rare event that there is no free space at the second
level. It roughly models a third level in the memory hierarchy that could be implemented
using disk storage units. For this study, however, the latency of the backup device was
the same as that of the main memory. The modelling ofdisk latencies for the PROP case
would have skewed its performance unfairly since disk latencies are not modelled in the

NOCACHE and CANDF cases: here it is assumed that at startup all program blocks reside
in the main memory. These assumptions are reasonable considering that most results of
Section 4 concern program behavior following the forking of all child processes. At this
pointmost program blocks have been copied into main memory and little access is made to
the backup device.

The backup memory performs the operations described in Section 2.3, and uses a
single delay parameter to model the time required to handle each incoming message. For
the same reasons as for the NOCACHE and CANDF main memory models, queuing effects
for incoming messages are not modelled.

3.1.9 PROP Memory Debugger

This meta-model provides debugging facilities similar to those in the NOCACHE

and CANDF main memory models. This module permits the distributed main memory in
the PROP architecture to be examined from a central location.

3.1.10 Statistics Module

Asingle instance of the statistics meta-module supports the orderly gathering of
statistics from all ofthe other model instances at regular intervals throughout a simulation.
Its primary function is tosort data and write it tostatistics files. This model was provided
so that separate statistics files would not be needed for each instance of a CPU or memory
controller.

3.1.11 Simulator Shell

The simulator shell performs the following tasks to coordinate and provide a uni
form user interface to the other modules:

• Read a multiprocessor description, creating instances ofCPU's, memory controllers
and main memory models, and connecting them.
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• Initialize the model instances.

• Furnish an interactive shell for accessing the interactive debugging commands available
from particular model instances.

3.2 Operating System Support

As part of the simulation process it was necessary to provide partial operating
system support inthe form ofakernel and aset ofutility functions toperform such things as
input, output and interprocess synchronization. The stub of aUNIX-like operating system
was written to minimize the difficulty ofsimulating existing parallel programs written for
the DYNDC operating system on the Sequent multiprocessor. The stub operating system is
composed of three parts:

• a simple kernel;

• a set of standard library functions;

• a set multiprocessing library functions;

Support was limited to applications written in the Cprogramming language.
A simple kernel was required to start up on free processors the child processes

spawned by a parent. At the beginning of asimulation of an N processor system, asin
gle processor begins executing the benchmark program (the parent) while the JV - 1 free
processors execute the kernel. The kernel begins by examining a globally shared queue of
processes ready to be started. If this queue is empty, the kernel indicates that its respective
processor is available for work on another shared queue holding a list of free processors.
Whenever aprocess is forked by the parent process, it is assigned to a free processor ifone
is available, or an entry is made in the ready queue. Processors are suspended while the
wait for processes to become available on the ready queue.

The standard library consists of commonly used functions such as printf, scon/and
strcpy. Each function was implemented in one oftwo ways: as compiled simulator code or
as Ccode which is assembled and linked with the benchmark assembly code in Step 2of the
simulation sequence at the beginning of this chapter. Table 3.1 lists the provided functions
and how they were implemented. Although the functions implemented as simulator code



Function Implementation
printf, sprintf, fprintf compiled
scanf, sscanf, fscanf, fgets compiled
fopen, fclose, fflush compiled
strcpy, strcat, strcmp, strlen assembled
malloc, calloc assembled
atof, atoi compiled
sqrt, log, exp, abs compiled
random compiled
times compiled
getrusage compiled
abort compiled
exit compiled |
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Table 3.1: Standard Library Functions

do not accurately model operating system references, they were used relatively infrequently
in the computationally intensive portions of the benchmarks.

The multiprocessing library provides a set of functions used to invoke child pro
cesses, allocate shared memory and manipulate synchronization variables. Subsets of the
routines provided by the DYNIXmultitasking and multiprogramming libraries [Seq86] (Ta
ble 3.2) were implemented, with all of the functions implemented as C code to beassembled
and linked with benchmark programs, sjock and sjunlock were implemented as a simple
spin lock built upon test-and-set and clear SYNCOP's (Figure 3.5). Amore efficient imple-

sJLockClock 1) {

while(test-and-set(1));

}

8.unlock(lock 1) {

clear(l);

}

Figure 3.5: Simple Implementation of a Lock

mentation of sjock and sjunlock in a multiprocessors with caches would provide a shadow
variable for each lock so that a"spinning" processor performs most ofits spinning on acopy
of the shadow in its cache, thus reducing network traffic (Figure 3.6). In this implementa-



Function Implementation
fork assembled

shmalloc assembled
shsbrk assembled
s_init_barrier assembled

s_wait.barrier assembled
sjnitjock assembled

sjock assembled
s.unlock assembled

m.get_myid assembled

mjset_procs assembled

mJbrk assembled
m_sync assembled
mjiext assembled |

Table 3.2: Multiprocessing Library Functions

sJ.ock(lock 1) {

while (TRUE) {

if (1.shadow == 0) {

if (test-and-set(1.lock) »« 0) {
1.shadow = 1;

return;

}

}

}

s.unlock(lock 1) {

clear(1.lock);

1.shadow = 0;

}

Figure 3.6: Better Implementation of a Lock
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tion each lock is a structure with twocomponents: lock, the synchronization variable which

is uncacheable, and shadow, the shadow-variable which is cacheable and on which most of

the spinning takes place. Although this implementation provides better performance when
there is a great deal of contention for a lock, it greatly increases simulation time because
much more spinning takes place on a shadow because of the ten-fold reduction in access

time for cached data. For this reason, and also because the contention for locks in the

benchmarks was not excessive, the simpler implementation of a lock was used.

The way ofimplementing sjwaitjxirrier was similarly chosen toimprove simulation
efficiency. Instead of building the barrier functions using the lock mechanism described
above, the implementation ofFigure 3.7 was used. Here abarrier structure is composed of:

• lock alock to prevent more than one process from modifying the structure at a time;

• cnt a counter to indicate the number of processors that have reached the barrier;

• tk the number of processors which will check in at the barrier;

• idjist a list of the identifiers of the processors checked in at the barrier;

The implementations of"suspend" and "restart" simply stop and restart the affected pro
cessor without performing any context switch; for the purposes ofsimulation the possibility
ofinterrupts or multiple parallel programs sharing a processor is neglected.

3.3 Benchmarks

The benchmarks are:

1. simpl2, a trivial parallel program in which aspecified number ofchildren are forked,
each ofwhich iteratively prints asimple message and waits atabarrier before repeat
ing.

2. ssim, a parallel simulation of a simple stochastic model of a multiprocessor. The
program executes the statically defined schedule of a synchronous data flow [LM87]
representation of a simple multiprocessor.

3. genie, a parallel topological array compactor useful in the layout ofVLSI circuits. It

uses an algorithm based on simulated annealling-a probabilistic optimization tech
nique [DN87].



s_init_barrier(barrier b, int n) {

s_init_lock(b.lock);

b.n * n;

b.cnt » 0;

}

s.waitJbarrier(barrier b) {

sJ.ock(b.lock);

b.cnt « b.cnt + 1;

if (b.cnt != b.n) {

./* myid is the identifier of the calling processor */
b. idJ.ist[b.cnt] = myid;

s_unlock(b.lock);

suspend;

}
else {

b.cnt » 0;

for (i • 0; i < b.n - 1; i++) {

restart(b. idj.ist[i] );

}

}

s.unlock(b.lock);

\

Figure 3.7: Implementation of a Barrier
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Benchmark Lines

code

Memory
local shared

No. of Refe.

parent child
simpl 180 9k 68 1040 170k 52.4k
ssim 470 15k 200k 750 280k 90k
genie 2300 46k 12k 1.5M 9M 523k
verf 2600 47k 68k 460k 2M 760k

55

Table 3.3: Benchmark Characteristics

4. verf, a parallel verifier ofcombinational Boolean logic [M*87].

Some characteristics of the benchmarks, including program size, memory usage
and reference behavour are shown in Table 3.3. These benchmarks were all originally
written and debugged on the Sequent shared memory multiprocessor. Benchmarks 2 to 4
are computationally intensive and require little operating system intervention throughout
their execution.

3.4 Simulated Architectures

Table 3.4 shows the default parameters chosen for the three multiprocessor archi
tectures for which simulations were performed. Unless specified otherwise, these parameters
were used for all of the simulation results in thenext chapter. It was assumed that the time
to cross the network was 10 times the delay to service a cache hit at a memory controller.
Furthermore, the time to fetch a single word from main memory was assumed to be the
same as the time to fetch an entire 4 word sub-block; such an assumption applies to a
network with high latency and high bandwidth. The value assigned to the PROP controller
delay was made under the assumption that a smaller, faster cache exists between the main
memory cache and the CPU. The size of the PROP controller cache was assumed to be

10 times the size of the CANDF and NOCACHE caches. This assumed that the PROP
two-level hierarchy composed ofa lOOkByte first level cache followed by a 1MByte block
ofdistributed memory is equivalent to a 1MByte first level cache. As justification, if the
top level cache as ahit ratio of0.97, and the second level latency is 10 times the first, the
latency of the two levels is 0.97(1) +0.03(10) = 1.27, which is only 27% longer than the
minimum.



MODEL0 PARAMETER VALUE
CPU Delay 100

NOCACHE Controller Delay 100

Cache Size lOOkB

Block Size 16B
NOCACHE Main Memory Delay 100

Size 1MB
CANDF Controller Delay 100

Cache Size lOOkB

Block Size 512B

Sub-Block Size 16B
CANDF Main Memory Delay 100

Size 1MB
PROP Controller Delay 100

Cache Size 1MB
Block Size 512B

Sub-Block Size 16B
PROP Backup Memory Delay 100

-

Size 10MB

"All models assume a network delay of 1000.

Table 3.4: Default Parameters of Simulated Architectures
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Chapter 4

Simulation Results

Table 4.1 shows the cpu reference characteristics and cache hit ratios for simula

tions using the default parameters of Section 3. Since different coherence schemes result in

different dynamic referencing behavior at synchronization points, the breakdown of refer

ences for a given benchmark varies slightly. In general, the use of smaller blocks results in

improved hit ratios, which corresponds with thesector cache studyof [HS84]. As expected,
the PROP scheme with its larger effective cache size results in fewer misses in the larger
benchmarks, genie and verf.

Figures 4.1 and 4.2 show the average access time, fa, and average network traffic,
/„, of the CANDF and PROP schemes normalized with respect to the NOCACHE scheme.

fa = 0.5 means that the average access time of a particular scheme is half that of the NO-

CACHE scheme; similarly, /„ = 0.5 means that the average network traffic of a particular
scheme is half that ofthe NOCACHE scheme. The per-process access time for each caching
scheme was calculated by dividing the run-time of the process by the total number of cpu
reads, writes and SYNCOPs to shared and unshared data. Time spent sleeping at a barrier
was subtracted from the total run-time. Per process average network traffic was calculated

as the totalnumber ofnormalized network transactions divided by the total number ofcpu
reads, writesand SYNCOPs. As mentioned previously, onenormalized network transaction

corresponds to the transfer of 4 bytes orless across the network (one way only). The num
bers reported here are averages of the per-process average access time and network traffic

for all child processes. The results of Figures 4.1 and 4.2, and all other results presented
in this section, were derived from the portions ofthe simulations immediately following the
forking of all child processes.
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Benchmark and f.a f bJns f c f dJ»w 128B Block 512B Block 2kB Block
Coherence Scheme hac *»' h. K h9 K

n 0.27 0.64 0.09 0.34 - 0.997 - 0.997 _ 0.997
simpl2 c 0.24 0.59 0.17 0.34 0.992 0.997 0.992 0.997 0.992 0.997

P 0.26 0.64 0.10 0.34 0.991 0.997 0.991 0.997 0.991 0.997
n 0.30 0.68 0.02 0.28 - 0.995 - 0.995 . 0.995

ssim c 0.29 0.66 0.05 0.28 0.998 0.996 0.998 0.996 0.998 0.996

P 0.30 0.68 0.02 0.28 0.998 0.995 0.998 0.995 0.998 0.995
n 0.39 0.59 0.02 0.18 - 0.999 - 0.999 . 0.999

genie c 0.38 0.57 0.05 0.19 0.972 0.999 0.964 0.998 0.943 0.990

P 0.39 0.59 0.02 0.18 0.973 0.999 0.974 0.999 0.974 0.999
n 0.37 0.62 0.01 0.23 - 0.999 - 0.999 _ 0.999

verf c 0.37 0.61 0.02 0.22 0.937 0.996 0.916 0.992 0.898 0.988
P 0.37 0.62 0.01 0.22 0.951 0.998 | 0.953 | 0.998 0.956 0.999

*/. is the fraction of references to shared writeable data.
fn» is the fraction of references to non-shared writeable data.

cf,v is the fraction of references to synchronization variables.
f,w is the fraction of references to shared writeable data which are writes.
h, is the hit ratio for references to shared writeable data.

7kn is the hit ratio for references to non-shared writeable data.

Table 4.1: Simulation Statistics
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Figure 4.1: Normalized Access Time with Default Parameters
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fn

stmp!2

Figure 4.2: Normalized Network Traffic with Default Parameters

For all benchmarks the CANDF scheme provides substantial speedup over NO-
CACHE, and for all but verf provides a substantial reduction in network traffic. The

PROP scheme provides substantial improvements in fa and /„ over NOCACHE, with val
ues of fa and /„ slightly larger than those for CANDF. For the verf benchmark, PROP
performs worse than NOCACHE in terms of fa and fn. This is in spite of the fact that
Table 4.1 indicates that the PROP scheme exhibits fewer misses for the verf benchmark.
This suggests that queuing effects are the cause of the poor performance.

Figures 4.3 and 4.4 show the absolute values of average access time and network
traffic for the benchmark set. Neglecting the verf benchmark, the average access time of
the candf and prop schemes varies from about 3 to 8 times the minimum cache processing
time of 100.

To investigate the cause of CANDF's superior values of fa relative to PROP,
simulations were performed in which the queuing effects at the network inputs to PROP
memory controllers were ignored. The results (Figure 4.5) show that these queuing effects
account for the reduced, performance ofthe PROP scheme, and also the particularly poor
performance ofPROP on the verfbenchmark. The severe impact ofthe queuing effects can
be explained by considering that when the parent process forks off the child processes all
of the shared data on which they operate resides in the memories ofonly two processors.
The queuing effects are therefore extreme because the majority of the network transactions
ofthe many child processes are directed toonly a few processors; this phenomena does not
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Figure 4.3: Absolute Access Time with Default Parameters

Figure 4.4: Absolute Network Traffic with Default Parameters
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Figure 4.5: Normalized Access Time, Neglecting PROP Queuing Effects

arise in the NOCACHE and CANDF schemes because ofrelatively uniform interleaving at
their main memories. The results of Figure 4.5 indicate that for the PROP scheme to be

viable some technique must be applied to spread shared memory across the processors in
a uniform way. One suitable technique may be to have the controllers displace blocks that
receive many more accesses from the network than from the local CPU. Another viable

solution may be to limit the number of copies of a block to some value much less than the
total number of caches in the system.

Figures 4.6 to 4.7 present the results of additional simulation results which inves
tigate:

• The effect of block size on fa (Figures 4.6 and 4.7).

• The effect of the network model on fa (Figures 4.8 to 4.11).

• The average number of copies of a shared block (Figure 4.12).

• The average number ofvalid sub-blocks with a block (Figure 4.13).

• The average number ofinvalidations required per shared write (Figure 4.14).

• The amount of parallelism in each benchmark (Figure 4.15).

As Figures 4.6 and 4.7show, fa improved for both the CANDF and PROP schemes

slightly as block size is decreased, except for the verfbenchmark, inwhich the improvement
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is about 65% for the PROP case. For each simulation the sub-block size was kept at 16
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Figure 4.6: Normalized Access Time with 2kB Block Size (Markers denote results for 512B
block)
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Figure 4.7: Normalized Access Time with 128B Block Size (Markers denote results for 512B
block)

bytes, and queuing effects were taken into account in the PROP controUer model. Smaller
block sizes result in better performance because fewer sub-blocks need to be written back
on a displacement, and there is less false sharing. False sharing occurs when the block
containing a piece ofdata has copies in one or more caches in which the particular data
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will never be accessed. This arises when different pieces of data within the same block
are referenced in different caches—although each datum is unshared, the fact that the
containing block is in two caches makes it appear that they are shared. Consequently,
redundant invalidations are occasionally sent, resulting in poorer performance. The results
of these simulations show, however, that in spite of the preceding effects the CANDF and
PROP schemes do not require small block sizes to obtain reasonable performance.

Theeffects ofdifferent network characteristics are presented in Figures 4.8 to 4.11.
Figure 4.8 shows the values of fa obtained with a uniform network 10 times slower than

n c p

ssim

Figure 4.8: Normalized Access Time with 100:1 Uniform Network

the default network: here the time to cross the network is assumed to be 100 times the
delay to service a cache hit. Although the average value of fa improves by about a factor
of3, absolute performance is still seriously affected by the much slower network (Figure
4.9). Figure 4.10 shows the values of fa obtained with acube network in which the delay
between adjacent processor isthesame as the uniform delay inthedefault uniform network.
Compared to the results for the fast, uniform network, the average value offa is improved by
about a factor of2, and absolute performance of the CANDF and PROP schemes degrades
by about 40 % (Figure 4.11).

Figure 4.12 presents the average number of copies of a shared block observed in

simulations of the CANDF and PROP schemes. As expected, the much larger effective
cache size ofthe PROP scheme results inalarger average number ofcopies—this is because
copies are much less likely to be displaced in a much larger cache. Figure 4.12 reveals that



Figure 4.9: Absolute Access Time with 100:1 Uniform Network
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most shared blocks reside in a large fraction of the 64 caches, suggesting that more than a
few cache identifiers are required in the Censier and Feautrier scheme.

The average fraction of a block that is occupied by valid data (Figure 4.13) shows
that only a minor portion of a block is in use at any particular time. This suggests that

Figure 4.13: Percentage of Valid Sub-Blocks within a Block

smaller block sizes result in a larger fraction of memory holding valid data, and corre
spondingly higher hit ratios. Table 4.1 verifies that the hit ratio improves as block size is
decreased. In spite of the higher hit ratios obtainable with small block sizes, the results
in Figures 4.6 and 4.7 suggest that the delay from references to synchronization variables
(which always bypass the cache) and waiting at barriers dominates the delay from cache
misses. The benefit of small block sizes is thus minimal.

Figure 4.14 shows that, on average, sub-block invalidations are issued to over half
of the available processors for each write to shared memory. This may be due to false sharing
caused by large cache sizes (lOOkB and greater) and the large block size. As expected, the
larger cache size in the PROP scheme results in more invalidations per shared write than
in the CANDF scheme. It is somewhat surprising that in spite of the large number of
invalidations per shared write, the CANDF and PROP schemes provide better performance
and reduced network traffic than the NOCACHE scheme. Since many of these invalidations
may be due to old blocks which have not been displaced and will not be referenced for a
long time to come, it may be beneficial to modify the controllers so that blocks which
are referenced substantially more frequently by the network than by the local CPU get
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Figure 4.14: Average Number of Invalidations Issued per Shared Write

displaced. Alternatively,, limiting the number of copies of a block may also be an effective
solution. These same modifications were also suggested as ways to alleviate the adverse
queuing effects in the PROP controller.

Thefinal setofsimulation results indicate the amount ofparallelism inbenchmarks
2to 4by comparing the execution times obtained for 32 and 64 simulated processors. Figure
4.15 shows the speedups from 32 to 64 processors, defined as the ratioof the execution times
for the two cases. Substantial speedups of about 50% are obtained for the NOCACHE
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Figure 4.15: Speedup from 32 to 64 Processors
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architecture, and more modest gains of 18% or less for CANDF and PROP. Since the

programs executed 2 or more times slower with the NOCACHE scheme, the granularity of
parallel tasks is effectively reduced, providing one reason why NOCACHE exhibits greater
speedups from 32 to 64 processors. In other words, the time taken to perform computation
between synchronization points is reduced in the CANDF and PROP schemes, but the time
spent serializing at synchronization points isnot reduced because accesses to synchronization
variables bypass the cache. When the fraction ofcomputation time spent in purely serial
activity increases, the maximum speedup attainable using multiple processors decreases (by
Amdahl's "law" [Qui87]). For the PROP architecture, the verfbenchmark executes faster
on 32 processors than on 64. This anomaly is probably caused by the queuing effects at
the PROP controller discussed earlier: since the memory of the parent processor owns the
majority ofshared data blocks, the contention ofthe other processors trying to get copies
from the parent memory increases with the number of processors.



Chapter 5

Conclusions

This section summarizes the major results of this work. Three hardware coherence

schemes for large shared memory multiprocessors were compared using instruction-level
simulations of four benchmark programs. The first coherence scheme was the simplest
possible, in which no shared writeable data is cached. The second was a sectored version

of Censier and Feautrier's directory method that reduces the main memory tag size to an
acceptable value. The third was a modified version of the second in which main memory is
distributed among processors and used as a second level cache.

As expected, caching shared writeable data is effective at substantially reducing
average memory access timeand average network traffic for real multiprocessor applications
in a shared memory multiprocessor. The simulations showed that for four benchmark

programs both access time and network traffic could be consistently reduced by a factor of
2-3 using the sectored version ofCensier and Feautrier's directory method. In addition, it
was shown that sectoring Censier and Feautrier's scheme reduces tag overhead to less than
15 % for a sub-block size of 16 bytes, page size of 1024 bytes or larger, and 512 or fewer
processors.

A simulation study of the second variation of Censier and Feautrier's coherence

scheme showed that although areduction in misses was made possible by using main memory
as a second level cache, performance did not improve beyond that of the sectored scheme.

In fact, it was worse because the average access time ofthe third scheme is severely affected
by adverse queuing effects at the memory controllers. With the queuing effects eliminated,
performance was comparable to that obtained with the sectored Censier and Feautrier
scheme. For the benchmarks considered, the performance of the third coherence scheme
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does not justify its considerable added complexity.

Results for the sectored version of Censier andFeautrier's scheme showed that for a

given sub-block size, increasing the block size increased the number of misses. The increase
in miss ratio, however, did not appreciably hurt performance for large block sizes. Delays
due to misses appeared to be dominated by delays due to references to synchronization
variables; such references always bypass the cache, and their frequency ofoccurrence is only
weakly affected by block size.

The sectored Censier and Feautrier scheme exhibited an average number ofinval
idations per shared write approaching half the number of processors. Since other studies
have suggested that data is typically only shared by a small number of processors at a
time [A*88], it appears that sectoring greatly intensifies false sharing. A way to reduce the
number ofinvalidations may be to displace cache blocks that receive many references from
the network and few references from the local processor. This issue deserves further study.

There remain many ways in which this study can be expanded. First, more bench
marks, especially those with greater parallelism, should be investigated. Simulations using
more processors should also be.performed to see if the conclusions of this study scale.
Simulation accuracy should be verified using more accurate network models that take into
account some of the queuing effects that were ignored. A comparison of the coherence
schemes considered here and several of the software methods is needed to determine if
complex hardware support is really necessary. Analytic models should be developed and
compared with these simulation results to refine current, and guide future, shared memory
multiprocessor designs. Lastly, and ultimately, some multiprocessor hardware must be im
plemented to reveal the subtle and not-so-subtle effects that are frequently not revealed by
simulation.
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