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Abstract

Circuit simulation is an important tool for the design and verification of analog and

microwave circuits. However, traditional transient analysis methods can result in very long

computer run times when the steady-state response is desired of a circuit with long time

constants or widely separated frequencies. A number of new approaches to finding the

periodic and quasiperiodic steady-state solution to the systems of nonlinear ordinary- and

integro-differential equations that describe analog and microwave circuits have been

developed and are described in this dissertation. One new approach, the mixed frequency-

time method, combines frequency- and time-domain concepts to attack the problem of

finding quasiperiodic solutions in the time domain. Another approach involves accelerating

harmomc balance, a frequency-domain method, by solving the resulting nonlinear equations

with a method that combines nonlinear relaxation (providing speed) and the Newton-

Raphson algorithm (providing better convergence properties) into one algorithm that is

robust and fast. New programs that incorporate these techniques have been developed and

used to simulate a variety of typical analog and microwave circuits. The results from these

simulations are provided. These techniques are shown to be much faster than transient

analysis when finding the steady-state solution of certain important classes of circuits. In

addition, the methods allow some circuits to be simulated that were virtually impossible to

simulate before.
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Prologue

There is nothing wrong with your simulator. Do not attempt to adjust the options. We are

controlling the analysis.... We will control the LTE. We will control the time-step. We

can crash the simulator, make it dump core. We can change the accuracy to a soft blur, or

sharpen it to crystal clarity. For the next simulation interval, sit quietly and we will

control all you see. We repeat There is nothing wrong with your simulator. You are

about to participate in a great adventure. You are about to experience the awe and mystery

that reaches from No DC convergence to ...

Harmonic convergence.



Chapter 1
Introduction

In general, analog and microwave circuit designers rely heavily on circuit simulation pro

grams such as SPICE [nagel75], ASTAP [weeks73], and Touchstone®1 to insure the correct

ness and the performance of their designs. With the cost of prototype GaAs integrated cir

cuits over $60,000 and the time required to build the prototype over 4 months, it is crucial

to have the circuit operate correctiy and meet specifications on the first iteration. Circuit

simulators are used to "prototype" circuits on a computer rather than in silicon or gallium

arsenide. These programs simulate a circuit by constructing a system of differential equa

tions and solving them numerically. With SPICE or ASTAP, the equations are integrated

with a time discretization method such as one of the implicit multistep methods, and so cir

cuits with linear and nonlinear components can be simulated. Touchstone uses phasors to

solve the equations and so only linear circuits can be simulated.

Often when simulating analog and microwave circuits, the steady-state behavior of

the circuit is of primary interest. It is easier to characterize and verify certain aspects of

system performance in steady state. Examples of quantities that are best measured when a

circuit is in steady state include distortion, power, frequency, noise, and transfer charac

teristics such as gain and impedance. Therefore, any circuit simulator that specializes in

^Touchstone is a registered trademark of EEsof.
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analog or microwave circuits should be able to calculate the steady-state response of a cir

cuit efficiently and accurately.

If the underlying circuit is asymptotically stable, then it is possible to use transient

analysis simulators such as SPICE or ASTAP to find the steady-state solution by choosing

an arbitrary initial condition and integrating the circuit equations until any transient decays.

However, this is often impractical because one or more circuit time constants may be con

siderably longer than the interval of interest, or signals present may be very widely

separated in frequency. In either case, the equations need to be numerically integrated over

an interval that is long compared to the time-step that is required to follow accurately the

high frequency signals present in the solution.

If the underlying circuit is linear, then phasor analysis simulators such as Touchstone

can be used to find directly and efficiently the steady-state solution. Unfortunately, this

restriction eliminates large and important classes of circuits such as mixers and oscillators

that are inherently nonlinear.

This dissertation presents several time-domain and frequency-domain methods for

computing the periodic and quasiperiodic solution of nonlinear circuit directiy. A quasi-

periodic solution is one that consists of the sum of sinusoids at the sum and difference fre

quencies of a finite set of fundamentals and their harmonics. Mixers and switched-

capacitor filters are common examples of circuits that exhibits a quasiperiodic steady-state

response.

Previously, there was no practical way to compute a quasiperiodic steady-state solu

tion directly in the time domain. The mixed frequency-time method is a new approach that

finds these solutions and that has proven to be practical in a large number of situations.
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Time domain methods, either transient or steady state, are not well suited for distri

buted circuits (or integro-differential equations). Time domain evaluation of distributed

components requires either the impulse responses as measured from the component termi

nals or a lumped equivalent model. The impulse response is usually difficult to compute

or measure and the lumped equivalent is very difficult to determine from measurement and

usually contains many internal nodes.

Harmonic balance is a frequency-domain method for computing the steady-state solu

tion of a circuit The benefit of this method is that the linear components are evaluated in

the frequency domain. Any linear components for which a frequency response is known

can be included. Thus, it is very easy to include component measurements directly. It is

also relatively easy to develop frequency-domain models for distributed devices, even those

that exhibit loss, dispersion, and coupling. Harmomc balance represents the signals present

in a circuit using sums of sinusoids. It is a natural consequence that the steady-state solu

tion is computed since a transient is not representable. Harmonic balance tends to be

efficient when the solution can be accurately approximated by the sum of just a few

sinusoids.

The computational effort required for methods that directly compute the steady-state

solution of a circuit is independent of time constants and separation in frequencies. Thus,

while for circuits with no slow time constants and no widely separated frequencies, tran

sient methods might be more efficient at calculating the steady-state solution than steady-

state methods, for any circuit there is always some value for the time constants or frequen

cies for which steady-state methods are more efficient. For practical problems, they are

often considerably more efficient.
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Determining the steady-state solution of ordinary- and integro-differential equations is

an important problem in many fields. Analog and microwave circuit simulation is the

vehicle used in this dissertation for discussing methods useful for finding steady-state solu

tions, but the methods are general in nature and useful in other disciplines. Both

frequency-domain and time-domain methods for computing the periodic and quasiperiodic

solution of systems of nonlinear differential equations are presented. These periodic and

quasiperiodic solutions represent steady-state solutions if the system of equations is asymp

totically stable about the solution.

1. Steady State

This dissertation presents a number of methods for directly computing the steady-state

response of nonlinear circuits. Before introducing these methods, we clarify what is meant

by steady state. In the most general terms, the steady-state solution of a differential equa

tion is the one that is asymptotically approached as the effect of the initial condition dies

out. Notice that it is not necessary for the steady-state solution to be unique, but for each

steady-state solution there must correspond a region of attraction. Any solution with an

initial condition that falls within the region of attraction for a steady-state solution will

eventually asymptotically approach that steady-state solution. For example, a circuit such

as a flip-flop with more than one stable state has distinct initial conditions that eventually

result in different steady-state solutions. However, each steady-state solution is reached

regardless of small changes in the initial condition. This is equivalent to saying that if the

differential equation is at a steady-state solution and is perturbed slightly and temporarily,

it will return to the same solution. Such a solution is referred to as being asymptotically

stable. Notice that this definition excludes lossless linear integrators and LC oscillators.
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There are several different kinds of steady-state behavior that are of interest. The

first is DC steady state. Here the solution is an equilibrium point of the circuit and is

independent of time. Asymptotically stable linear circuits driven by sinusoidal sources

eventually exhibit sinusoidal steady state solutions, which are characterized as being purely

sinusoidal except possibly for some DC offset. Periodic steady state is the steady-state

response of a nonlinear circuit that consists solely of a DC offset and harmomcally related

sinusoids. It results either from self oscillations or periodically varying inputs. The period

of the solution is usually equal to that of the input, though occasionally the periods of the

two will be multiples of some common period. If a nonlinear circuit is driven with several

periodic sources at unrelated frequencies, the steady-state response is called quasiperiodic.

A quasiperiodic steady-state response consist of sinusoids at the sum and difference fre

quencies of two or more fundamental frequencies and their harmonics. The frequencies of

the input signals usually equal that of the fundamentals, thought sometimes they are even

multiples. There are steady-state responses that do not fit in any of the above

classifications. These occur when either the input sources are not quasiperiodic or when

the circuit is strange. Examples include chaotic circuits and circuits with noise as the

input.

In this dissertation we discuss the computation of periodic and quasiperiodic solu

tions. There is no guarantee that these solutions represent steady-state solutions because

the methods presented are unable to distinguish between stable and unstable solutions.

Methods for determining the stability of a solution are available [parker] [hente86].
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2. Steady-State Methods

One approach to calculating the steady-state response is to integrate the differential equa

tions that describe the circuit from some chosen initial state until any transient behavior

dies out; an approach that suffers from several fundamental drawbacks.

First, transients may take a long time to decay and so require an expensive calcula

tion. Second, it can be quite difficult to determine when the transient has died out. If the

time constants involved in the transient are large, the circuit can be erroneously declared as

being in steady state when in reality is quite far from it. Finally, many analog and

microwave circuits, such as mixers, have inputs at two or more independent frequencies.

These frequencies are often such that the ratio of the highest to lowest frequency present in

the circuit is large. In a transient simulation, the size of the time-step is proportional to the

highest frequency and the length of the simulation interval proportional to the lowest. As a

result, these circuits often require a vast number of time-points.

One approach to accelerating the calculation of the periodic or quasiperiodic steady-

state response is to pose the problem as a two-point boundary-value problem. There is a

considerable amount of literature available on the numerical solution of these problems for

systems of ordinary differential equations. For example, see [chikjs79] [fox57] [hall76]

[keller68] [keller76] [press86] [stoer80]. The two-point boundary-value problem is funda

mentally different from the initial-value problem, and substantially more difficult to solve

— however, long initial transients are avoided. The crucial difference between initial-value

and two-point boundary-value problems is that in the former case one starts from a known

state and progresses forward in time with no constraints placed on the final state. Atten

tion is focused locally; when finding the solution at a particular time-point only the current
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time-point and a few previous time-points are of interest. In the latter case, the temporal

unidirectionality of the initial-value problem is lost so attention must be focused on the

entire solution interval. There is a known relationship between the initial state and the

final state, but neither are fully known. Hence, a critical aspect of this case is that it is

necessary to devise a numerical algorithm that finds a solution such that the initial and final

states satisfy the given requirements, when neither is specified fully in advance.

In general, it is possible to classify the accelerated methods for finding steady-state

solutions into three basic categories; shooting methods, finite-difference methods, and

expansion methods. Shooting methods treat the problem as an initial-value problem to be

evaluated between the boundaries. They try to find an initial state that eliminates any tran

sient behavior and results immediately in steady state. Shooting methods attempt to find

such an initial state using an iterative algorithm. The algorithm for a periodically driven

circuit begins by guessing the initial conditions and simulating the circuit for one period

using these conditions. The response is checked to see if it is periodic and if not, how far

is it from being periodic. A new initial guess is then generated that presumably results in

a response that is closer to being periodic. The method used to generate the new initial

conditions is what differentiates the shooting method variants.

Finite difference methods replace the differential equations with finite-difference

equations on a mesh of points that cover the interval of interest. Trial solutions consist of

discrete values, one for each point on the mesh, that do not necessarily satisfy the

difference equations but do satisfy the boundary conditions. The trial solution at each

point is adjusted simultaneously until it also satisfies the difference equations.
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Expansion methods start with a collection of linearly independent functions that form

a basis to an appropriate function space and then represent the solution as a linear combi

nation of those functions. The basis functions are chosen such that any linear combination

always satisfies the boundary conditions. The process of finding a solution is viewed as

one of simply finding the coefficients of the basis functions so that the result satisfies the

differential equation. Only the expansion method known as harmonic balance has gained

any popularity, a method characterized by the use of trigonometric polynomials as basis

functions.

3. Historical Perspective

There are four different general approaches to solving for the steady-state response of a cir

cuits. The first is to accelerate transient analysis by adapting it to the problem at hand.

Examples of this include the methods of Gautschi and Petzold. Gautschi [gautschi61]

attacked the problem of systems with lightly damped oscillatory solutions by using a cus

tom integration method that integrates nigonometric polynomials exactly. This method

allows time-steps to be used that are on the same order as the period of the oscillatioa

Petzold [kundert88c,petzold81] attacked the same problem by developing an integration

method that follows the envelope of the solution rather than the solution itself.

Approaches for finding the steady-state response of a circuit directly include the

shooting methods, the finite-difference method, and harmonic balance. Of these methods,

the finite difference method has not attracted much attention from the circuit simulation

community.
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3.1. Shooting Methods

Shooting methods have been used for years by numerical analysts for solving two-point

boundary-value problems [keller68,keller76,stoer80]. The first advance in shooting

methods in recent years came when first applied to find the steady-state behavior of electri

cal circuits. Aprille and Trick [aprille72a, aprille72b] used Newton-Raphson to solve the

shooting equations and they showed that the Jacobian (or the sensitivity matrix) could be

computed efficiently during the transient analysis from quantities that are normally present

This method was also used by several others and has since become the preferred approach

[colon73,director76,trick75]. A slightly different approach was taken by Skelboe, who

used extrapolation rather than Newton-Raphson to solve the shooting equations [skelboe80]

[skelboe82].

In 1981, Ushida and Chua became the first to try to apply shooting methods to

finding quasiperiodic solutions [chua81]. They proposed a very interesting and unique

algorithm that, unfortunately, turned out to be quite inefficient. The inefficiency resulted

from a severely ill-conditioned algorithm; the ill-conditioning could only be eliminated at

great computational expense. Although developed independently, some of the flavor of

Ushida and Chua's algorithm can be found in the mixed frequency-time method of Kun

dert, White and Sangiovanni-Vincentelli [kundert88d] [kundert89]. This algorithm avoided

the ill-conditioning present in the earlier algorithm and so is considerably more efficient.

3.2. Harmonic Balance

Harmomc balance has been around for many decades. It was originally considered an

approximate technique for finding analytically the near-sinusoidal solution of a differential

equation [cunningham58] (a solution where all components except for one sinusoid is
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negligible). Baily formulated harmomc balance as a numerical method in 1969 [baily69].

He described the nonlinearities using polynomials, formulated Kirchoff s laws in terms of

the Fourier coefficients, and solved the resulting nonlinear equations with nonlinear pro

gramming techniques. In the last 15 years, it has been reformulated into an accurate

method for finding numerically the solution of a differential equation driven by sinusoids

without having to approximate the nonlinearities with polynomials. The conventional

approach begins by partitioning the circuit into linear and nonlinear subcircuits. The Unear

subcircuit is evaluated in the frequency domain while the nonlinear subcircuit is evaluated

in the time-domain. The problem then becomes one of finding the voltage waveforms (or

spectra) on the nodes that appear in both subcircuits that result in Kirchoff s current law

being satisfied at those nodes. In 1974, Egami showed that it is possible to solve these

equations using Newton-Raphson [egami74]. He was quickly followed by Gwarek and

Kerr, who solved the equations using nonlinearrelaxation [gwarek74] [kerr75], and Nakhla

and Vlach who used optimization methods [nakhla76]. Variations of these three

approaches have been presented by a large collection of authors [gopal78] [filicori79]

[faber80] [mees81] [hicks82b] [hicks82a] [lipparini82] [penalosa83] [rizzoli83] [ushida84]

[rizzoli86] [hente86] [schuppert86] [penalosa87a] [penalosa87b] [curtice87] [maas88].

The relaxation methods presented before 1986 were based on simple splitting of the

linear and nonlinear portions of the Jacobian [faber80,hicks82b]. At that time, Kundert

and Sangiovanni-Vincentelli explored the convergence properties of the various harmonic

balance methods and showed that convergence properties of this method were poor

[kundert86b]. We proposed an alternative relaxation method called Gauss-Jacobi-Newton

harmonic relaxation that has superior convergence properties.
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Relaxation methods were found to be quite fast but suffered from convergence prob

lems. Newton-Raphson, on the other hand, is more robust but is slow. In 1985, Kimdert

and Sangiovanni-Vincentelli [kundert85] [kundert86b] presented a method, referred to here

as harmomc relaxation-Newton, that combines most of the advantages of both relaxation

and Newton-Raphson. The method smoothly adapts from relaxation to Newton-Raphson at

the component level as individual devices are driven harder and their nonlinear character

becomes more apparent. In one limit, a purely linear circuit, the method becomes

equivalent to Gauss-Jacobi-Newton harmomc relaxation, which converges in one inexpen

sive iteration. In the other limit, for portions of the circuit behaving very nonlinearly, the

method becomes identical to Newton-Raphson. This approach provides the speed of the

relaxation methods without the risk.

This work is unique in another way. One assumption common to all previous

approaches is that the circuit should be partitioned into two subcircuits. With such an

approach, the system of equations that describe the linear subcircuit can be factored into

triangular form once and quickly evaluated thereafter. This is desirable when the linear

subcircuit is much larger than the nonlinear subcircuit. This is invariably true for hybrid

circuits. However, treating the circuit as two separated subcircuits places constraints on the

way the nonlinear equations can be factored and so is inefficient for monolithic circuits,

where the number of nonlinear devices is large. Kundert and Sangiovanni-Vincentelli were

the first to suggest that the circuit should not be partitioned into two subcircuits. Instead,

the system of equations for the whole circuit should be carefully factored in a manner that

is efficient for both hybrid and monolithic circuits.
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A significant departure from conventional harmonic balance was suggested by Steer

and Kahn in 1983 [steer83] [rhyne88]. They propose to evaluate the nonlinear devices

directly in the frequency domain. It is only possible to do this for selected nonlinearities,

such as those described by polynomials (making the method reminiscent of that of Baily).

Thus, when analyzing circuits containing nonlinearities described by arbitrary continuous

functions, the first step is to model the functions over the anticipated operating range with

a polynomial. This approach has the advantage of eliminating any Fourier transforms in

the nonlinear device evaluations, however these transforms usually do not require much

time, and so the gain in efficiency due to this feature is neghgible. The disadvantage of

this method is that it is very difficult to approximate accurately strongly nonlinear functions

over a wide range with polynomials, thus the method should only be applied to circuits

with mild nonlinearities.

3.2.1. Harmonic Balance for Quasiperiodic Signals

Until 1984, harmomc balance was only used to analyze circuits with a periodic response.

The reason being is that with the linear devices evaluated in the frequency domain and the

nonlinear devices evaluated in the time domain, a transform is needed to convert signals

between the two domains. The Fast Fourier Transform (FFT) was used to perform this

operation, however the FFT is only applicable to periodic signals, which excludes a very

important class of circuits whose steady-state response is not periodic: mixers. The signals

present in mixers consist of sinusoids at the sum and difference frequencies of the two or

more input frequencies and their harmonics. In general, these input frequencies are not

harmomcally related, and so the signals found in mixers are not periodic, but rather quasi-

periodic.
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In 1984, Ushida and Quia showed that a transform for the quasiperiodic signals

present in mixers could be developed by starting from the matrix form of the Discrete

Fourier Transform (DFT) but that more than the normal number of time-points were needed

in the sampled time-domain waveforms [ushida84]. The excess number of samples neces

sitated the use of least-squares to perform the transformation of signals to and from the

time and frequency domains. This approach allowed harmomc balance to be applied to

mixers, but was disappointing for two reasons. First, the extra time samples represented a

computational burden, the need for which remained unexplained. Second, the normal

equation was used to formulate the least-squares problem, which is notoriously ill-

conditioned.

Also in 1984, Gilmore and Rosenbaum [gilmore84,gilmore86] presented a completely

different transform that exploited sparsity in a spectrum. In theory, it was limited to

periodic signals, but in practice, quasiperiodic signals can be approximated arbitrarily

closely by periodic signals. This fact is not usually useful when using conventional

transforms such as the DFT and the FFT because to approximate quasiperiodic signal accu

rately with a periodic signal it is usually necessary to use a very low fundamental fre

quency. Thus the ratio between the highest and lowest frequencies, and hence the number

of frequencies needed, is very large. However, the signal at almost all harmonics is zero

(i.e., the spectrum is sparse), and so Gilmore and Rosenbaum's transform still remains

competitive. The transform samples the waveform using several small sets of equally

spaced time-points. The DFT is applied to each set individually. The sets are too small to

prevent aliasing in the computed spectra. The aliasing is eliminated by taking an appropri

ate linear combination of the computed spectra. The spectra are constrained to be periodic

in this method because the DFT is used. Though this transform can be much more efficient



1. Introduction 14

than the standard DFT on sparse spectra, the total number of time-points used is normally

greater than the theoretical minimum by about 50%.

In 1987, Sorkin, Kundert, and Sangiovanni-Vincentelli [kundert88b,sorkin87] showed

that using equally spaced samples in the time domain leads to severe ill-conditioning in the

transform that could only be remedied by either using more than the theoretical minimum

number of time samples (as in the least squares approach above), or using unequally

spaced samples. We presented an algorithm for finding a minimum set of unequally

spaced time samples that yields a well-conditioned transform. Using that transform,

deemed the Almost-Periodic Fourier Transform (APFT), we developed a very simple and

theoretically useful derivation of the harmonic balance algorithm for both the periodic and

quasiperiodic cases.

If harmomc balance is applied to a circuit containing algebraic nonlinearities, then it

is possible to use the FFT rather than a transform designed for quasiperiodic signals. One

such approach based on multidimensional FFTs was proposed by Bava et al [bava82]2 and

later presented by Rizzoli [rizzoli87] and Ushida in 1987 [ushida87]. A slightly more

flexible approach was developed independently by Hente and Jansen in 1986 [hente86] and

by Kundert and Sangiovanni-Vincentelli in 1987 that uses one-dimensional FFTs. There

are two aspects of the second approach that make it very attractive, first is simply that the

quasiperiodic algorithm can be made essentially identical to the periodic algorithm. The

second reason is very subtle and involves the interaction of aliasing and convergence, but

the end result is a considerable reduction in the computation time. While this transform

appears to be the most attractive for use in harmonic balance, it seems to have been

^This claim was made by Filicori and Monaco [filicori88]. I was unable to acquire acopy of the original
reference to verify the claim.
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completely overlooked by all but its developers.

3.3. Switched-Capacitor Filter Simulation

The most common approach to simulating a switched-capacitor (SC) filter is first to break

the circmt up into functional blocks such as operational amplifiers and switches. Each

functional bock is simulated, using a traditional circuit simulator, for some short period.

The simulations of the functional blocks are used to construct extremely simple macromo-

dels, which replace the functional blocks in the circuit. The result is a much simplified cir

cuit that can be simulated easily. This simplified circuit is then simulated for the thousands

of clocks cycles necessary to construct a solution meaningful enough to verify the design.

Ad hoc simulators of this macromodeling sort have commonly been written by frus

trated analog designers, but the techniques have also been formalized in programs like

Diana [de man80] and Switcap [fang83]. Although these programs have served designers

well, a macromodeling approach is only as good as the macromodel. If a second order

effect in a functional block changes overall performance, but this effect is not included in

the macromodel, the effect will never be seen in the simulation.

The simulators traditionally intended for use with SC filters, such as Diana and

Switcap, also make the "slow-clock" approximation. After each clock transition, every

node in the circuit is assumed to reach its equilibrium point before another transition

occurs. This assumption, along with the use of algebraic macromodels, allow the filter to

be treated as a discrete-time system with one time-point per clock transition. A set of

difference equations is then used to describe the filter.

The slow-clock approach suffers from several serious drawbacks. First, SC filters are

being pushed to operate at ever higher frequencies, and the assumption that signals reach
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equilibrium between clock transitions is often violated. Also, since signals between clock

transitions are not computed, it is possible to miss events that occur in these intervals that

might interfere with proper and reliable operation (e.g., clock feed-through spikes causing

an operational amplifier to saturate). Lastly, it is not possible to capture the effects of

dynamic distortion processes, such as the important effect of the channel conductance on

charge redistribution when a transistor switch turns off.

In 1988, Kundert, White, and Sangiovanni-Vincentelli proposed the Mixed

Frequency-Time algorithm (MFT) as a method for accelerating detailed simulation when

solving for the steady-state solution of switched-capacitor filters. MFT accelerates the

detailed simulation of SC filters without resorting to macromodeling or the slow-clock

assumption. Thus, it does not suffer from the limitations detailed above. It also does not

require a large investment in macromodeling and is suitable for use with automatedcircuit

extractors. Since this approach finds the steady-state solution directly and performs a

circuit-level simulation, it is capable of accurately predicting distortion performance,

including intermodulation distortion, which is particularly useful for bandpass filters. MFT

can be applied to any set of differential or difference equations. Thus, MFT can be applied

to the equations resulting from the macromodeling approach, accelerating those methods as

well when the steady-state solution is desired.

4. Organization of the Dissertation

This dissertation presents a number of new algorithms for numerically finding the steady-

state response of nonlinear systems of differential equations. The contributions primarily

center around harmonic balance and the mixed frequency-time methods. Harmomc balance

is a frequency-domain method that has been around for many years while the mixed
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frequency-time method uses both frequency- and time-domain concepts and is new. The

dissertation presents these methods and the background needed to fully appreciate them in

a unified mathematical framework. The presentation blends theory, practice, and results.

The theory is given so that the algorithms can be fully understood and their correctness is

established. The practical details are given so that the algorithms can be implemented

efficiently and accurately. The results are presented to give a feel for what can be

expected of these algorithms. Most of the algorithms presented in this dissertation have

been implemented and tested in the Spectre and Nitswit circuit simulators.

Chapter 2 presents several typical circuits for which the steady-state response is of

interest but difficult to compute without steady-state methods. These circuits illustrate a

few of the common real-world problems to which traditional transient analysis simulators

are applied, even though they are overly expensive. This chapter provides motivation for

steady-state methods presented in later chapters. The circuits are revisited in Chapter 9 to

show the advantages steady-state methods enjoy over transient methods. Also, the various

steady-state methods are compared for each of the circuits, and the strengths and weakness

of each of the steady-state methods are given in the context of practical applications.

In Chapter 3, rigorous definitions are given for terms associated with signals and a

new discrete Fourier transform is presented that is suitable for quasiperiodic signals. The

Almost-Periodic Fourier Transform (or APFT) allows both frequency and time data to be

spaced nonuniformly. Much of this chapter focuses on presenting the errors that occur in

discrete Fourier transforms and methods for reducing the size of those errors. A practical

APFT algorithm is given and results from timing and error measurements are provided.
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Important background material on differential equations in given in Chapter 4. The

chapter begins by defining the concept of the state of a differential equation. Several fun

damental properties of differential equations in the context of initial- and boundary-value

problems are presented. It is also shown how to formulate the problem of finding a

periodic solution as a boundary-value problem. The differential equations that describe

analog and microwave circuits are formulated. Next, methods for numerically solving

initial-value problems are introduced. These methods convert the problem of solving a

nonlinear system of differential equations into one of solving a sequence of nonlinear sys

tems of algebraic equations. The chapter closes by showing how to solve nonlinear alge

braic equations using the Newton-Raphson algorithm and what to do if things go wrong.

Chapter 4 shows that the periodic steady state of a differential equation can be found

by formulating and solving a particular boundary-value problem. Similarly, Chapter 6 will

show that the same is true for the quasiperiodic steady state. Chapter 5 presents the well-

known finite-difference and shooting methods as ways of solving boundary-value problems.

Both finite-difference and shooting methods are time-domain methods. Along with finite-

difference methods, the extrapolation- and Newton-Raphson-based shooting methods are

covered.

The important and previously unsolved problem of finding quasiperiodic solutions

directly in the time-domain is attacked in Chapter 6. Three approaches are taken, the first

involves approximating the problem of finding a quasiperiodic solution with that of finding

a periodic solution. This is shown to be inefficient for most problems and in the process it

is found that there are many periodic problems that are better to approach as quasiperiodic

problems. The second approach is to constrain the solution of a differential equation to be
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quasiperiodic by using a particular N-point boundary constraint. This method is also

shown to be inefficient due to some numerical accuracy problems that can only be avoided

by integrating the differential equations over a long period of time. The mixed frequency-

time (or MFT) method is formulated to avoid the ill-conditioning of the previous method.

It combines concepts from both the frequency and time domains and the resulting algo

rithm is efficient and accurate. This algorithm is explored in some depth and is shown to

be simply a way of formulating the quasiperiodic requirement as a two-point boundary-

value problem. The implementation of MFT in Nitswit is described and results from

several different types of circuits are given.

The time-domain steady-state methods are in general a poor fit for microwave circuits

because they have trouble handling distributed devices, and microwave circuits usually

contain a large number of distributed devices. The traditional choice for microwave circuit

simulation has been phasor analysis, a frequency-domain method. Chapter 7 presents har

monic balance, the extension of phasor analysis to nonlinear systems. The harmonic bal

ance equations are formulated and explored. Then discussion focuses on ways to solve

these equations. Three different methods are presented, minimization methods based on

nonlinear programming, nonlinear relaxation methods, and the Newton-Raphson method.

The relaxation methods provide the best speed, but suffer from convergence problems.

Newton-Raphson is the most robust approach, but is slow.

Chapter 8 continues the discussion on harmonic balance with an emphasis on practi

cal matters. It is first shown that while in general, harmonic balance requires a quasi-

periodic Fourier transform to convert signals to and from the time-domain while evaluating

the nonlinear devices, certain fundamental assumptions in the harmonic balance formulation
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allow the use of a simpler periodic Fourier transform. This observation allows periodic

and quasiperiodic problems to be treated similarly, which makes implementing the algo

rithm easier, and provides certain efficiencies. Next, a method of solving the harmomc

balance equations is derived that inherents the best qualities of the nonlinear relaxation and

Newton-Raphson methods. The method is able to adapt to the circuit on a per nonlinearity

and per iteration basis. Thus, the method looks as much like the relaxation method to pro

vide the best speed, but for selected devices as determined on each iteration, the method

will behave more like Newton-Raphson to avoid convergence problems. These ideas were

implemented in Spectre, and results are provided to show their effectiveness.

Finally, Chapter 9 compares the various methods for finding steady-state solutions in

both a general setting, and with regard to their performance on typical circuits. Chapter 10

summarizes and concludes the dissertation. Appendix A lists standard nomenclature used

throughout the dissertation.



Chapter 2
Motivation

Transient analysis is, by far, the most commonly used method for simulating nonlinear cir

cuits. There are, however, large classes of analog and microwave circuits for which tran

sient analysis is either inappropriate or inefficient. As a motivation for the chapters that

follow, this section presents examples from many classes of circuits for which standard

performance criteria are difficult to measure using transient analysis. The circuits were

selected because they represent an important class of circuits and because they exhibit a

common characteristic that make the application of most traditional methods difficult but

that can be dealt with by using one or more of the techniques, or foreseeable extensions of

the techniques, presented in this dissertation. These circuits are revisited in Chapter 9 at

the end of the dissertation where it explained how the these techniques would be applied.

1. Self-Biasing Amplifiers

Self-biasing amplifiers are AC-coupled JFET or GaAsFET amplifiers that use a deceptively

simple biasing network to reduce the gain of an amplifier when very large signals are

applied. Consider the self-biasing amplifier shown in Figure 2.1. When a small input sig

nal is applied, the DC level measured at. the gate would be vbias. However, when large

signals are applied, the gate junction diode of the FET will conduct on the positive peaks

of the input signal, which results in a DC current flowing into the gate. No DC current

21
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can flow though a capacitor, and so the DC voltage on the gate must fall so that Rbias will

provide an average DC current equal to that flowing into the gate. When the DC bias level

of the gate falls, so does the gain of the amplifier.

When trying to find the steady-state response of a self-biasing amplifier, the transient

that results from the bias circuitry reacting to the large input signal applied suddenly at

start-up results in the transient analysis approach being very expensive. There are two fac

tors that aggravate the problem. First, the time constant of the bias circuitry is always

chosen to be much longer than the period of the lowest input frequency. Thus, when

simulating a wide bandwidth amplifier at its highest input frequencies, the time required for

the bias network to settle could be on the order of thousands of cycles of the input, making

a transient analysis very expensive. Second, the time required by the bias circuitry to settle

is virtually impossible to predict by the user and is often so slow that it is even very

difficult to detect when steady-state has been reached. This requires a conservative user to

simulate the circuit over a much longer time interval than is probably necessary. The only

alternative is to trust a suspect answer with no way of checking its accuracy except to

Figure 2.1 : A self-biasing amplifier.
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resimulate the circuit over a longer time interval to see if the answer changes.

2. Mixers

A mixer is a nonlinear circuit that is very commonly used in communications to translate a

signal from one frequency to another. A mixer has two inputs, one (RF) is the signal to be

translated, and the other (LO) is the translating frequency. The output predominantly con

tains two signals, the RF translated to the sum and difference frequencies of the RF and

LO signals. Usually only the signal at one frequency is desired, and so the mixer is fol

lowed by a filter. A simple double-balanced mixer is shown in Figure 2.2.

+ VtOUT
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• • • o
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• • • n
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Figure 22 : GaAs double balanced mixer.



2. Motivation 24

Mixers are very difficult to simulate for two reasons. First, the frequencies of the

signals present can be very widely separated.' Second, the settling time of the output filter

can be very much longer than the period of the lowest frequency present in the mixer.

Consider the down conversion mixer in the HP8505 network analyzer [dalichow76]. The

mixer has an input RF frequency that ranges from 500kHz to 1.3GHz and an LO fre

quency that is always offset from the RF by 100kHz. The desired output frequency is

100kHz, and the output is fed directly into a high-Q low-pass filter to assure that this is the

only signal present at the output Simulating this circmt is extremely difficult because the

ratio of the input to output frequency can be as high as 13,000 to 1, and because the output

filter has a long settling time. Transient simulation of this circuit requires a sampling rate

well over 1.3GHz and a simulation interval of at least 100ns — a minimum of 106 time-

points are needed. It is difficult to present meaningful results in the presence of such a

large amount of data, particularly with the vastly different time scales involved. Normally,

this problem is avoided by converting the solution into the frequency domain, but the many

unequally spaced time-points generated by the simulator along with the nonperiodic signals

make this a difficult task.

3. Narrow-band Amplifiers and Filters

Finding the periodic steady-state response of a narrow-band amplifier and/or filter can be

expensive using transient analysis.simply because the settling time of the amplifier is usu

ally long in comparison to the period of its center frequency. It can be extremely expen

sive, however, to find the distortion performance of such an amplifier using transient

analysis. The method used to measure the distortion of a wide-band amplifier is to apply a

pure sinusoid to the input, and determine by how much the output deviates from being a
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pure sinusoid in steady state. The distortion products in the output signal will fall at fre

quencies that are integer multiples of the input frequency. If this same technique were

applied to measure the distortion of a narrow-band amplifier, the distortion products would

be attenuated because they are outside the bandwidth of the amplifier, and the calculated

amount of distortion would be much too low.

Distortion is measured in narrow-band amplifiers by applying two pure sinusoids that

have frequencies well within the bandwidth of the amplifier (call these frequencies / \ and

/2). The harmonics of these two frequencies will be outside the bandwidth of the

amplifier, however there will be distortion products that fall at the frequencies 2f \-f2 and

f\-2f2. These frequencies should also be well within the bandwidth of the amplifier and

so can be used to measure accurately the distortion produced by the amplifier.

Performing such a measurement using transient analysis would require a simulation

time interval greater than the period of the difference frequency, f\-f2. f\ and f2 are

always chosen such that the difference frequency is well within the passband, so measuring

distortion with transient analysis is always considerably more expensive than measuring

settling time.

4. Switched-Capacitor Filters

Switched-capacitor filters are simply active RC filters where the resistors have been

replaced with a switch and a capacitor. The switch and capacitor are configured as shown

in Figure 2.3. The switch alternates between its two positions at the clock frequency, and

during each cycle transfers C(Vfl - Vb) coulombs of charge from terminals a to b. Thus,

if the clock rate is much higher than the highest frequency present in Va (t) and Vb(t), then

the average current transferred equals Cfc(Va - Vb), where fe is the frequency of the
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b a—\ — b

Figure 23 : A resistor and its switched-capacitor equivalent.

clock. For low frequency signals, the switch and capacitor act like a resistor with resis

tance # = C/C.

That the clock frequency must be considerably higher than the frequency of the sig

nals being filtered make the transient analysis of switched-capacitor filters particularly

expensive. The problem is aggravated because switched-capacitor filters are large circuits.

Designers have avoided the expense of detailed simulation of these circuits by replacing

the op amps in the active filters with algebraic macromodels and the MOSFET switches

with ideal switches. For the actual simulation, they formulate and solve the charge equa

tions once per clock transition.

This approach allows the design of a switched-capacitor filter to be verified from a

high-level point of view (i.e., the circuit topology, clocking scheme, and capacitor values

are all verified), but error mechanisms due to switch and op-amp dynamics are ignored

completely. These effects are quite important and can only be explored using detailed cir

cuit simulation. For example, consider the effect of a power dissipation specification on

filter distortion. Circuit designers usually fix the clock rate of the filter based on external

specifications and then reduce the bias current in the op-amps as much as possible. As

bias current is reduced, so is the speed of the op-amps. The designers must be careful not
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to reduce the bias current so low as to interfere with the op-amps ability to handle the

required clock frequency. When the op-amp/switch system is not able to settle during a

clock cycle, distortion increases dramatically. The macromodel/charge redistribution

approach to simulating switched-capacitor filters is useless when trying to predict the

lowest possible op-amp bias current because of the necessary assumption that all signals

reach their equilibrium values before each clock transition.

5. Traveling-Wave Amplifiers

A traveling-wave or distributed amplifier is a circuit that is very important at microwave

frequencies. An example amplifier is shown in Figure 2.4 where the small rectangles

represent microstrip transmission lines. Traveling-wave amplifiers (TWAs) are representa

tive of most microwave circuits in that they contain a large number of distributed com

ponents. These components are difficult to simulate numerically with transient analysis for

two reasons. First, formulating the model equations for nonideal distributed components

such as lossy or dispersive transmission lines in a manner compatible with numerical

integration algorithms is very difficult Second, evaluation of such models, even for ideal

out

Figure 2.4 : A four-segment GaAs traveling-wave amplifier.
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transmission lines, can prove to be extraordinarily expensive. This results from an ugly

interaction between the nature of transmission lines an the break-point algorithm found in

all transient simulators.

A break-point is a point in time when a signal could have an abrupt discontinuity in

its first derivative. Break-points occur at each corner of square and triangle waves, and at

time 0 for steps, ramps, and sine waves, which are zero for all negative time. It has been

found that transient analysis on digital circuits runs moderately faster and is much less

likely to miss small but important details in the solution if a time-point is placed at each

break-point If there are no transmission lines in a circuit, the number of break-points is

usually quite small because all break-points are assumed to result directly from input sig

nals. Signals other than inputs are ignored when looking for break-points because the

finite bandwidth of most circuits will smooth any discontinuities. However, ideal transmis

sion lines have delay and infinite bandwidth. As a result, transmission lines increase the

number of break-points. If a mismatched and resistively terminated transmission line is

excited by a signal with a discontinuity at time t = 0, then that signal will propagate down

the line and reflect off the terminations, resulting in signals at the ends of the line with

discontinuities at times x,2x,3x,4x, • • • , where x is the electrical length of the line. If x is

short compared to the simulation interval, then a considerable number of break-points are

generated. The situation becomes much worse when several transmission lines with

differing lengths are present in the circmt. Break-points generated by one line could enter

another line and generate many others. For example, with two lines of length Xj and x2,

break-points could occur at any time t = jix + kx2, where j and k are nonnegative

integers. With several short lines, the number of break-points could explode in a combina

torial fashion. When the number of break-points explodes, so does the number of time-
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points, and so the transient analysis becomes expensive. This situation occurred in the cir

cuit shown in Figure 2.4. This circuit contained transmission lines with 60ps, 186ps, and

250ps electrical length, was driven with a 100MHz sine wave, and was simulated for 2

periods. SPICE2 required over 17 hours and 16 Mbytes to simulate this circuit on a

VAX780.

6. Measured Devices

It often happens at microwave frequencies that the distributed devices are complex or

unusual enough that there are no adequate models available. In these cases, designers rely

on measured data to describe their devices to the simulator. For various reasons, network

analyzers, which operate in the frequency domain, are used to characterize linear circuits

and devices at microwave frequencies. They do so by using S-parameters. Microwave

designers routinely employ measured S-parameters in their simulations, however they have

always simulated linear circuits in the frequency domain using phasor analysis. These

linear frequency-domain simulators are not capable of simulating nonlinear circuits. Tran

sient simulators, which do handle nonlinear circuits, are inherently incompatible with the

frequency-domain S-parameter measurements and the measurements must be translated into

a form compatible with the integration method. How to do this efficiently is an open

research question.

7. Crystal and Cavity Oscillators

Crystal and cavity oscillators use very high-Q resonators to achieve very high stability and

low noise. The Q of the best resonators can be as high as 1,000,000, leading to a Q in

well designed oscillators of up to 100,000. A Q of 100,000 implies that the time constant

of the turn-on transient for an oscillator with such a Q is roughly 100,000 cycles of the
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oscillation frequency in length. Clearly, transient simulation of such circuit to steady-state

is very painful, however steady state is required in order to determine important charac

teristics, such as the output power and frequency of the oscillator. Designers tty to reduce

the time required to simulate these circuits by carefully choosing the initial state of the

resonator to eliminate any transients. However, in this example, it would be necessary to

simulate the oscillator for 1000 cycles simply to notice a 1% difference in the signal

envelope. Designers usually do not have the patience to find the initial state that results

immediately in steady-state when to do so requires the trial-and-error selection of initial

states and where each guess requires simulating the oscillator for over 1000 cycles. Thus,

designers usually settle for approximate hand calculations when determining the steady-

state characteristics of their oscillators.



Chapter 3
Background: Signals

This chapter defines important terminology and nomenclature that apply to signals and

transforms. For a complete list of nomenclature, see Appendix A. It also introduces the

Almost-Periodic Fourier Transform (APFT), a new variation on the Discrete Fourier

Transform (DFT) that is suitable for use on the nonperiodic signals found in circuits in

steady state with two or more nonharmonically related periodic input signals.

1. Signals

A signal is a function that maps either R (the reals) or Z (the integers) into IR or C (the

space of real pairs)1. The domain and range of the map are physical quantities; the domain

is typically time or frequency, and the range is typically voltage or current. A signal

whose domain is time is called a waveform', one whose domain is frequency is called a

spectrum. All waveforms are assumed IR-valued whereas all spectra are assumed C-

valued.

'Throughout this dissertation, the trigonometric Fourier series is used rather than the exponential to avoid
problems with complex numbers and nonanalytic functions when deriving the harmonic Newton algorithm.
Thus, a signal at one frequency in a spectnim is described using the coefficients of sine and cosine. The pair
of these are said to reside in C = R2 rather than C Hence, we are using C rather than € asthe scalar field to
construct the vector space for spectra. The correspondence between C. and C is established by the invertible
function \J/: C—»C that maps a + jb to [a,fc]T.

31
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A waveform x is periodic with period T if x (t) = x (t+T) for all f. P (T; £) denotes

the space of all periodic functions2 with period T on the domain E that can be uniformly

approximated by the sum of at most a countable number of T-periodic sinusoids. Thus,

P (T; JR.) consists of waveforms of the form

oo

x(t)= £ (Xc(k)cos(&kt +Xs(k)sinGikt), (3.1)
k = 0

where Xc(k), Xs(k)<z IR, co* =2nklT, and

Z[(Xc(k))2 + (Xs(k))2]<oo. (3.2)
k =0

A waveform is almostperiodic if it can be uniformly approximated by the sum of at

most a countable number of sinusoids [hale80] [corduneanu68] [besicovitch32] [bohr47]

(here there is no assumed relationship between the frequencies of the sinusoids). We use

AP(A;E) to denote the space of all almost-periodic waveforms on domain E over the set

of frequencies A. Thus, AP (A; IR) consists of waveforms of the form

x(0 = 2 (Xc (k ^oscojtt +Xs (k)sincDtt), n ~

where A = {©q, a>lf co2, *** } ^ (3.2) is satisfied. If A is finite with /IT elements, it is

denoted A^. An evenly sampled almost-periodic signal is denoted AP(A;Z(T,Q)) where

Z is the set of sample times Z(7\9) = [t : t = sT + Q,s e Z }. Thus * e AP(A;Z(r,0))

implies

*(^) = S (*C (* )cosg>* (57 +9) +Xs (k )sinG>jt (*T + 9)),
(Dt€ A

If there is a set of J frequencies [X^X,, . . . ,\d) and A is such that

A = {co I co = £,*,! + k2X2 + • • • + kdXd; kx, k2, . . . , kd e Z } (3.4)

2In function space, nobody can hear you scream [anobile79].
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then A is a module3 of dimension d and the frequencies {XltX2, . . . , Xd} are referred to

as the fundamentalfrequencies and form a basis (called the fundamental basis) for A. For

each co e A to correspond uniquely to a sequence of harmomc indices {£;}, the sequence

of fundamental frequencies {Xj} must be linearly independent over the rationals (that is

d

^kjXj =0 implies kx = k2 = • • • = kd = 0). If A is a module, then AP(A;E) is also
;=i

denoted QPiX^X,, . . . , Xd;E). Waveforms belonging to such a set are referred to as d-

fundamental quasiperiodic or simply d-quasiperiodic. Note that P(r*,IR) = QP(XX\JR.) if

Xx = 2n/T, and P(T;TR) c QP(XX, X2, . . . , Xd; IR) if for some ;, X}- = 2xlT.

The pair X(k) = [Xc(k) A*5(fc)]TeC is the Fourier coefficient of the Fourier

exponent co* and X = [X(0), X(l), X(2), • • • ]T is called the frequency-domain represen

tation, or spectrum, of x. Conversely, x is the time-domain representation, or waveform,

of X. If all the frequencies co* e A are distinct, (i.e., co,- * co;- for all 1* /) then there

exists a linear invertible operator, IF, referred to as the Fourier transform, that maps x to

X. This is a more general definition of the Fourier transform than is in common usage in

that the transform applies to almost-periodic as well as to periodic signals. The Fourier

transform is a homeomorphism, which allows us to talk of x and X as two different

representations of the same signal whenever X = Fa- .

1.1. Truncation and Discretization

In order for operations involving quasiperiodic signals to be computationally tractable, it is

necessary to truncate the frequencies to a finite set. When stimulating a circuit at d funda

mental frequencies, the circuit responds in steady state (if such a solution exists) at

3Roughly, a module is a setwith an identity that is closed under vector addition and scalar multiplication.
In this module, the vectors are real numbers, the scalars are integers and the identity is zero.
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frequencies equal to the sum and difference of the fundamental frequencies and their har

monics. There are two popular methods for truncating the set of frequencies, the box and

diamond truncations. With the box truncation, only the first H harmonics of each funda

mental are considered:

Atf = {co | ® = klXl+k2U+ ••• +kdXd; (3.5)

\kj\ =0,1, . . . , H; for 1<j £d; first nonzero kj positive}

where K=lA((2H + l)d + 1). The first nonzero kj must be positive to eliminate frequen

cies from AK that are negatives of each other. When there are two fundamentals (d = 2),

this truncation results in a square grid of frequency indices as illustrated in Figure 3.1a.

The diamond truncation limits the absolute sum of the indices kj to be less than or

equal to H:

,„ 2d~lHd

AK= {co | a> = klXl+k2X2+ ••• + kdXd; (3.6)

d

kj e Z ; £ |fc;-| £ //; first nonzero kj positive}

where £=———. For d = 2, K =H2 + H + 1. When there are two fundamentals, this
d\

truncation produces a "diamond" grid as shown in Figure 3.1b. Other truncation schemes

are certainly possible. The truncation scheme directly affects the efficiency and accuracy

of the simulation, and should be chosen to fit the particular problem being solved.

Now that only a finite set of frequencies AK is being used, the requirement that the

fundamental frequencies be linearly independent over the rationals may be relaxed as long

as each co* € AK still corresponds uniquely to a valid sequence of harmomc indices {kj}.

Once A has been truncated to some finite subset AK, it is possible to discretize the

waveforms, or represent them as sequences of finite length. Assuming that C0q = 0 € A^
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Figure 3.1 : Two different ways of truncating the set of frequencies to be finite.
The box (a) and diamond (b) truncations.
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and x e AP (AK; IR), then x is uniquely specified by almost any set of S = 2K -1 samples,

that is, a set {*(f,) | / = 1,2, . . . , S;t{ * tj). This done, the Fourier transform becomes

a finite-dimensional operator that depends both on A^ and the S time-points used to sam

ple the waveform. Once the fundamental frequencies and the truncation scheme are

specified, AK is fixed, but we are free to choose the time-points as we see fit with the one

constraint that IF be invertible.

2. Almost-Periodic Fourier Transform

This section presents a numeric Fourier transform that is an extension over the standard

Discrete Fourier Transform (DFT) in the sense that the restriction of harmomcally related

frequencies is removed. This more general transform is referred to as the Almost-Periodic

Fourier Transform (APFT).
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2.1. Matrix Formulation

To make the transform computationally tractable, it is necessary to consider only a finite

number of frequencies. Denote the finite set of frequencies as

Ak={co0, C0i, 0&2, . . . ,C0]t_i} and assume all frequencies are distinct (co;- * co* when

j * k) and that cOq = 0. By considering only a finite number of frequencies, it is possible

to sample a waveform at a finite number of time-points and calculate its Fourier

coefficients. Since the spaces involved are now finite dimensional, the first representation

theorem of linear algebra shows that the Fourier transform IF and its inverse F"1 can be

viewed as matrices acting on the vectors of samples and coefficients, respectively. That is,

2 (Xc(/:)coscoJtr +Xs(k)sma>kt) =x{t)

can be sampled at S time-points, resulting in the set of S equations and 2K - 1 unknowns

where

1^ =

'-1

X(0)

Xcik)

Xs(k)

Xc(K-\)
Xs(K-1)

1 coscO}?] sinco,r,

1 cosco,r2 sinco^

1 coscoj^ sinco,f3

*(f2)

x(h)

x(ts)

cosco^.^! sinco^.j?!

coscojr_1f2 sim%_if2

cosco^.^3 sinco^_1r3

1 cosc0if5 sinco^ • • • cosco^/5 sinco^.^

If the frequencies co* are distinct, and if S =2K-I, this system is invertible for almost all

choices of time-points, and can be compactly written as T~]X =x. Inverting r~! gives

Tx = X. r and T~] are a discrete Fourier transform pair.

(3.7 a)

(3.7 b)
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Given a finite set A^ of distinct frequencies, and a set of time-points, we say that T

and T"1 are one implementation of the almost-periodic Fourier transform for AP(AK;JR).

Once r and r-1 are known, performing either the forward (using T) or inverse (using I^1)

transform requires just a matrix multiply, or (2K-1)2 operations; this is the same number

of operations required by the DFT.

The DFT is a special case of (3.7) with co* = ifcco (k = 0,1,2, .. . ,K-\) and

ts = sT/S (s = 1,2, ... ,S), i.e. when the frequencies are all multiples of a single funda

mental and the time-points are chosen equally spaced within the period. The DFT and its

inverse, the IDFT, have the desirable property of being well conditioned, which is to say

that very little error is generated when transforming between x and X. From the matrix

viewpoint, the high accuracy of the DFT corresponds to the fact that the rows of T~l are

orthogonal. (More is said about this later.) Unfortunately, the DFT and the IDFT are

defined only for periodic signals.

For almost-periodic signals, if the time-points are not chosen carefully, P*1 can be

ill-conditioned. In particular, choosing time-points to be equally spaced often is a bad stra

tegy when signals are not periodic. Unlike the periodic case, it is in general impossible to

choose a set of time-points over which the sampled sinusoids at frequencies in A^ are

orthogonal. In fact, it is common for evenly sampled sinusoids at two or more frequencies

to be nearly linearly dependent, which causes the ill-conditioning problems encountered in

practice. This ill-conditioning can greatly magnify aliasing. Thus, it is important to

choose a set of time-points that results in well-conditioned transform matrices. This topic

is considered further in the remainder of this chapter.
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2.1.1. Previous Work

Ushida and Chua [ushida84] use equally spaced time-points, but avoid the ill-conditioning

problem by using extra time-points. In doing so, the matrix T~] becomes a tall rectangular

matrix. To make the system square again, both sides of (3.7) are multiplied by (I"1)7,

which results in

(T^^X = (Tl)Tx.

Thus (3.7) is converted into a least squares problem that is solved in the traditional manner

using the normal equation. Unfortunately, the normal equation is notoriously ill-

conditioned and so a new ill-conditioning problem may be introduced.

Gilmore [gilmore86] samples the waveform using several small sets of equally spaced

time-points. The DFT is applied to each set individually. The sets are too small to prevent

aliasing in the computed spectra. The aliasing is eliminated by taking an appropriate linear

combination of the computed spectra. Since the DFT is used, the method is constrained to

periodic signals, though it can be much more efficient than the standard DFT on sparse

spectra. The total number of time-points used is normally greater than the theoretical

minimum by about 50%. The numerical stability of this approach is unknown.

2.1.2. Condition Number and Orthonormality

It is now necessary to discuss the conditioning of a system of equations, a concept alluded

to earlier. Formally, the condition number of a matrix A is defined as

k(A) = || A || || A"11| [golub83]. The condition number of a matrix is important because it

is a measure of how much errors can be amplified during the course of solving a matrix

equation. For example, consider solving Ax = b for x when both A and b are contam

inated with error. Write the contaminated system as
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(A +&4)(x +Sx) = b +§b.

If || 6A || and || bb || are small, then || 6x || can be bounded [golub83] with

M-*m) 5A|| Hfifr

141 II*

The problem of ill-conditioning in (3.7) can be visualized by considering each equa

tion as defining a hyperplane in the Euclidean space IR2*""1. Let p^ e IR2*"1 be such that

pj is the 5th row in T"1; then the sth hyperplane is defined as the set of all points X such

that pjx =x(ts). Thus, ps is a vector orthogonal to the hyperplane. The solution to (3.7)

is the intersection of all the hyperplanes. If the system is degenerate because two or more

planes are coincident, then the intersection is not a single point and the system of equations

has an infinite number of solutions. If there are no coincident hyperplanes, but two or

more of the planes are nearly parallel, then a unique solution exists; however, high-

precision arithmetic is needed to find it accurately.

A matrix is degenerate if and only if there is a linear dependence among its row vec-

tors, and it is natural to suppose that a matrix has a small (good) condition number if its

rows are nearly orthonormal (and thus "far" from being linearly dependent). We now

prove this to be true.

Consider an invertible N xN matrix A. Suppose that the rows an of A, regarded as

vectors, are nearly orthonormal. In particular, suppose that each vector has unit Euclidean

length and that the orthogonal component of each vector an with respect to the space S„

spanned by the others is at least a £ 1 (it would be exactly 1 if the vectors were precisely

orthonormal).

When forming the product A~lA = 1, each row of A"1 can be thought of as the

coefficients of a linear combination of the rows of A. This linear combination yields a

+ higher order terms
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row in the identity matrix — a vector of length 1. Suppose that the a* element in a row

of A"1 has absolute value r > 1/a. Then the component of the resulting linear combina

tion that is in the direction orthogonal to Sn is determined solely by ra„, and will have

magnitude greater than ra> 1. Since the linear combination is a vector of unit length,

this is a contradiction. Therefore, no element of any row of A"1, and thus no element of

A"1, has absolute value greater than 1/a.

Since A e IR***, it follows that || A"11| „ (the /^ norm ofA-1) is no more than N/a.

And since, by assumption, the Euclidean norm of the rows of A equals one, ||A H^ £ N

(employing the equivalence of the l2 and /„ norms in IR*), and therefore, k(A) £ N2/a.

In short, the near-orthonormality of a matrix places an upper bound on its condition

number.

Note that multiplying a matrix by a scalar p does not affect its condition number,

since the norms of the matrix and its inverse are respectively multiplied by p and 1/p.

Thus, if all rows of a matrix have equal Euclidean length (not necessarily one) and, when

scaled to one, satisfy the orthonormality property, the matrix is still well-conditioned. If

the rows of a matrix are nearly orthonormal after they have been scaled to unit length, we

say that they are (or the original matrix is) nearly orthogonal.

2.1.3. Condition Number and Time Point Selection

Given a finite set of frequencies A^, any set of S =2K -1 time-points yields a F"1 whose

row vectors (consisting of a single 1 and a set of sine-cosine pairs) have Euclidean norms

yK . Thus, if we could find a set of time-points so that these rows were nearly orthogonal,

it would follow from the discussion above that I*"1, and therefore T would be well condi

tioned.
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However the relation between the rime-points and the orthogonality of the resultant

row vectors is clearly rather involved; finding a set of times which define nearly-orthogonal

row vectors seems to be quite difficult. One approach is to write down a priori a set of

orthogonal vectors and then look for time-points that generate vectors close to these pre-

specified ones; this is equivalent to defining the approximate phases of each sine wave and

looking for a' time where every wave is in the appropriate phase. This in turn can be

thought of as a set of approximate equalities modulo 2k, but it is far from clear under what

circumstances a solution exists or how to go about finding it.

Another approach is to choose time-points equally spaced within a time interval

larger than the period corresponding to the smallest nonzero frequency in A^. As we dis

cuss later however, experience shows that this method of time-point selection is unsatisfac

tory.

2.1.4. Condition Number and Aliasing

As mentioned previously, the condition number provides a measure of how much the error

is amplified during a calculation. Roundoff is one source of error in the transform, but

there is another that is normally much larger — the error due to truncating A to AK. This

error consists of two pieces. The Fourier coefficients of the frequencies omitted from A

are presumably small but may not be exactly zero. Neglecting these frequencies is referred

to as truncation error. While neglected in the transforms T and H"1, these frequencies still

exist in the vector of samples x. They masquerade as frequencies in A^ and result in

further error that is referred to as aliasing. Because of these errors, the computation of X

will be in error.
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Fortunately, this error can be bounded. Suppose that the overlooked sinusoids contri

bute an error Sx to the observed sample vectorx + bx. From this we calculate the Fourier

coefficients X + dX using

X +8X=T(x +5a).

By construction we know that X = Tx. Thus, 8X = Tbx, and || SX || < || r|| || 5* \\. By

definition, k = || r|| || T~l \\. It is easily shown that K £ || r*11| „ <-flK, so

HrlL^Kjtfand

||»|Ui- |̂|&|L. (3.8)
That is, kJK is the upper bound on how much the error due to coefficients of truncated

frequencies is amplified in the process of transforming a waveform to the frequency

domain. In practice, error amplification factors often approach this bound, so it is very

important to select a set of time-points such that k is small.

The condition number gives a bound on the error that results from aliasing, but it

gives little insight and can be pessimistic. Perhaps a better approach to exploring the

errors in the APFT is to view the transform as a collection of K filters, each of which is

responsible for computing one Fourier coefficient4. These filters take as input a sequence

of S samples and output one coefficient. Such filters are referred to as Finite Impulse

Response (FIR) filters [rabiner78] [rabiner75] Consider the particular filter that computes

the coefficient X(J) from \xs)^. If xs = Xc(k)cosGikts + Xs(k)sm<&kts,

s =0,1, ... ,S -1, then Xj must equal zero if j * k and must equal [Xc (k),Xs (k)] if

j = k. In other words, the filter must have zeros in its transfer response at each frequency

cot * co;- when co* e AK, and unity gain when co* = co;. These constraints are satisfied by

4Edward Ngoya of Limoges University in France was the first to suggest this interesting and useful inter
polation of the APFT.
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design. However, the question remains, what is the response of the filter when driven at a

frequency co 4 AK*> In particular, what is the response when co 4 AK but coe A? It is

maxguaranteed by (3.8) that if xs = cos(cor, + 9) then ^ pT| <
K

The frequency response of a typical Fourier coefficient filter is shown in Figure 3.2.

For this filter, C0o,c0j, . . . ,co5e A^, co6,a>7, . . . ,co9 4 AK, and coo.coi, . . . ,co9e A.

The actual error due to aliasing is proportional to the response of the filter at frequencies in

Koo ...
A but not m AK. The condition number bound — may (or may not) be a pessimistic

K.

estimation of this error. So far there has been no attempt to choose time-points to minim

ize the filter response at frequencies in A but not in AK. Choosing time-points in this

manner would minimize the actual aliasing rather than the bound on the maximum aliasing.

GJ0 U>i W2 W3 OJ4 W5 Wg (jJ7 Wg (jJq

Figure 3.2 : Response of a typical APFT coefficient filter.
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2.2. Near-Orthogonal Selection Algorithm

2.2.1. Time Point Selection

Our time-point selection algorithm, referred to as near-orthogonal selection, was conceived

using some of the ideas discussed above.

First, we thought that if selecting evenly-spaced time-points was likely to yield row

vectors particularly close to being linearly dependent, we might be better off selecting

time-points randomly from a time interval larger than the period corresponding to the smal

lest nonzero frequency in AK. (We chose an interval equal to three times this period.)

Such a choice is particularly attractive given the complexity of the relationship between the

time-points and the orthogonality of the row vectors; making any more intelligent choice of

time-points seem quite difficult.

Second, we realized that in essence the problem in recovering X from x is that the

linear system may be close to being underdetermined, in a numerical sense. So adding

additional equations should increase the accuracy of the calculation of X. In fact, if more

than S time-points are chosen, T~l becomes a tall rectangular matrix, and its pseudo-

inverse r is a wide rectangular matrix satisfying X = Tx.

Oversampling with twice as many randomly-selected time-points as theoretically

necessary proves to be successful: it yields a very well conditioned system. However,

when using the transform in the context of harmonic balance, all the nonlinear devices

must be evaluated at each time-point. This is an expensive operation because of the com

plexity of the nonlinear device models. Thus, oversampling is a costly remedy. It is clear,

however, that the rows of the tall T~] matrix span the space well (in a numerical sense).

Perhaps some carefully chosen subset of these rows might also suffice.
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The near-orthogonal selection algorithm takes just this approach; from a I^1 whose

dimension is M rows by S columns, where S = 2K -1 and M > S, it selects a set of just

S rows, thus requiring no extra time samples. In other words, from a pool of more row

candidates than necessary (we chose M = 25, which seems to give good results practice)

and their corresponding time-points, a "good" niinimal set is selected during the initializa

tion of the algorithm. When actually performing the transform, only the minimal set of

time-points is used. With harmonic balance, all nonlinear devices are evaluated at each

time-point. That only the minimum number of time-points is used, and not 1.5 to 2 times

the minimum as required by the other methods, is one of the significant advantages of the

APFT algorithm.

The near-orthogonal selection algorithm is a variation of the Gram-Schmidt orthogo-

nalization procedure [dahlquist74]. Its input is the matrix formed by randomly choosing

twice as many time-points as necessary and forming the corresponding row vectors, p,.

Initially, these vectors all have the same Euclidean length (i.e., l2 norm). One of these

vectors, say Pi, is chosen arbitrarily. Any component in the direction of pi is removed

from the remaining vectors using

T

P, <- P* - ^T-Pi *=2, . .•, M. (3.9)
PiPi

The vectors that remain are now orthogonal to pj. Since the vectors initially had the same

length, the largest remaining vector was originally most orthogonal to p^ It is chosen to

play the role of pj for the next iteration of the algorithm. This process repeats until the

required S vectors have been chosen. The time-points that correspond to these vectors are

the time-points used to form I^1. This algorithm is detailed below.
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APFT Near-Orthogonal Selection Algorithm

Given:

AK = {0, co j, CO2, . . . , co^.j}, the set of frequencies.

Task:

To find a set of S =2K-l time-points that results in a well-conditioned I^1.
Algorithm:

©min <- min( {I % I : 1 <, k < K} )

for (s <— 1, . . . , M)

{ randomO returns numbers uniformly distributed between 0 and 1.

ts < random()
©min

p5(I) <- [ 1 coscojr, sincojr, ,... cosco^.j^ sinco^.j^ ]T
}

for(r <r- 1, . . . , S)

{ argmaxO returns the index of the largest member of a set.
k = argmax({ || pjr)|| : r < s £ M})
swap(pr(,), pi1})
swap(pr(r), pir))
swap(rr, tk)
for (s <- r, . . . , M)

o(r)To(r)?rl) *- Pir) - ^^P <r)
pW

}

The set {ts : 1 < s <S} contains the desired time-points.

Once the time-points are selected, I^1 is constructed with the rows p,(1) for

s = 1, . . . , S. It is easy to verify that the time-points are well-chosen either by calculat

ing the condition number k = || T|| ||T~l ||.

2.2.2. Constructing the Transform Matrix

There is another problem that up to now we have ignored. The arguments to the sine and

cosine functions in (3.7) are potentially very large, which results in excessive roundoff

error. For example, assume Xx = 2jc109 and X^ = 2jt(109+V2). Then comin = 27W2 and so

the time-points fall between 0 and 3/^2 seconds. Thus, co/f, can be as large as 10n,
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causing two problems. First, on most computer systems, the trigonometry routines are not

designed to handle such large arguments and often return meaningless results. This prob

lem is easily avoided by subtracting from the argument as many multiples of 2k as possi

ble without making it negative. The second problem is more troublesome. The approxi

mately 1010 multiples of 2k in the argument have no effect on the result except to reduce

its accuracy by about 10 digits. Since the co/f, product must be formed (and so truncated

to a finite number of digits by the computer) before the multiples of 2k can be removed,

the digits are lost and cannot be reclaimed. While this error cannot be eliminated, it can be

controlled by assuming A^ is a truncated module (note that up to now we have placed no

restrictions on the frequencies in A^ except that they be distinct and that co0 = 0). From

(3.6), the product co/f^ can be written

d

&its = ZkjXjt,.
j = i

Let

\\fjs = fract V*
2k

l£j<d; l<s<S (3.10)

and

d

<t>& =2K^kj\\fjs. (3.11)
; = i

d

Now <J>k =(Hits - 2tcw , where m is some integer and | <j>& | £ 2k J \kj\. Since the
; = 1

kj are small integers, tyis is an appropriate argument to trigonometry routines on all com

puters. Because the product tsXj/2K is formed before the fract() operator (which removes

any integer portion and leaves only the fractional part) is applied, it is the dominant source

of roundoff error. By using (3.10) and (3.11), the roundoff error can be viewed as result-
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ing from roundoff error in the Xj and ts. Since the r, are chosen randomly, their roundoff

errors are of no concern. It will be shown in Chapter 8 that when used with harmonic bal

ance, even errors in Xj are of no concern.

2.2.3. APFT Algorithm Results

The APFT near-orthogonal selection algorithm requires on the order of M2S operations,

where M is the number of time-point candidates used, and S =2K-l, where K is the

number of Fourier coefficients. Since we have used M = 2S, the asymptotic complexity of

the algorithmis the same order as that of the matrix inversion needed to compute T.

We note that while the initialization of the APFT (that is the time-point selection, for

mation of P"1, and the inversion of T~x to find T) requires on the order of S3 operations,

the actual forward and inverse transform requires S2 operations, the same as the DFT.

Thus, the expensive part of the APFT is performed only once per set of frequencies; after

this initial overhead has been paid, the APFT is as efficient as the DFT.

To show the numerical stability of our method, we compare the condition number of

r"1 when time-points are 1) evenly spaced, 2) randomly spaced, and 3) determined by the

near-orthogonal selection algorithm. The condition number k is roughly proportional to the

errors in computing the inverse. Bear in mind that even the DFT, which is theoretically the

best conditioned algorithm for the simpler periodic case, has a condition number k = N, so

the best we can hope for is linear growth of the condition number with the number of

Fourier coefficients. Observe that, as shown by the results given in Figure 3.3, the condi

tion number from near-orthogonal selection is experimentally observed to grow linearly

with K. That of random selection appears to grow quadratically, and that of evenly spaced

grows exponentially.
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Figure 33 : Condition number of T~x versus order H for the two fundamental
APFT with truncation performed using (3.6) and time-points chosen evenly spaced,
randomly, and using the near-orthogonal selection algorithm.
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The example chosen for comparison was with two fundamentals A,! = 2k\09 and

X1 = 2rc(109 + V2). Thus, the fundamentals differ by only 1 part in 109; also, because the

fundamentals are incommensurable, the signal is not periodic. Truncation was performed

using (3.6). Comparisons of the condition numbers are shown in Figure 3.3 with the order

H varying between 1 and 10. To smooth the wide variation seen in the results for the case

of randomly selected time-points, each condition number plotted is the geometric mean of

10 trials. Similarly, because different intervals give widely varying results for evenly-

spaced points, those condition numbers are geometrically averaged over 10 intervals rang

ing from 1.5 to 4.5 times 2rc/comin. Results obtained from near-orthogonal selection are so

consistent that no averaging was needed, as evidenced by the smoothness of that curve.

Graphing the condition number clearly shows that both randomly chosen and equally

spaced samples have accuracy problems when the number of frequencies is large. Near-
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orthogonal selection from 25 randomly selected time-points always results in a reasonable

condition number. Table 3.1 gives a summary of information on the APFT with the near-

orthogonal selection algorithm. Execution times were measured using the C programming

language on a VAX 8650 running ULTRDC 2.0.

APFT Summary

H K 5 K tinit 'transform
1 3 5 6 17 ms 0

2 7 13 24 67 ms 0.3 ms

3 13 25 64 280 ms 1.7 ms

4 21 41 113 1.1 s 3.6 ms

5 31 61 143 3.3 s 8.5 ms

6 43 85 270 8.6 s 17 ms

7 57 113 420 20 s 30 ms

8 73 145 790 41 s 49 ms

9 91 181 950 79 s 77 ms

10 111 221 1200 142 s 116 ms

Table 3.1 : Error estimates and execution times for the APFT algorithm using
double precision arithmetic on a VAX 8650 with Xj = 109, X, = 109 + V2, and
truncation performed using (3.6). H is the number of harmonics of each funda
mental. K is the total number of frequencies and 5 is the number of time sam
ples, k is the condition number of T~l and e = ||I~!r - 1||. tinit is the time re
quired to choose the time-points and form and invert T"1. ttransf0rm is the time re
quired to multiply either T~l or T by a vector.

Recall that coefficients of frequencies not in AK can be amplified by up to kIK. For

order H = 10, this amplification factor equals approximately 108 for evenly spaced points,

2000 for randomly spaced points, and 10 for points chosen using near-orthogonal selection.

Thus, even if the coefficients of neglected frequencies are small, for evenly and randomly

spaced points, the error bX due to truncation may be so large as to dominate over the

desired coefficients X.



Chapter 4
Background: Systems

This chapter defines important terminology and nomenclature regarding systems of

differential equations. For a complete list of nomenclature, see Appendix A. It also intro

duces the circuit simulation problem and presents the basic algorithms and techniques used

to solve numerically the systems of nonlinear ordinary differential equations that result

from this problem.

1. Systems

A collection of devices is called a system if the devices are arranged to operate on input

signals (the stimulus) to produce output signals (the response). For a given solution of a

system's describing equations, the system is considered to be in steady state if the solution

is asymptotically stable. By this it is meant that any solution near the steady-state solution

asymptotically approaches it as time increases [hirsch70]. This dissertation considers only

systems in periodic and quasiperiodic steady state.

A system is autonomous if both it and its stimulus are time invariant, otherwise it is

forced. An oscillator is an example of an autonomous system while an amplifier, a filter,

and a mixer are all examples of forced systems. An algebraic or memoryless device or

system is one whose response is only a function of the present value of its stimulus, not

past or future values. Traditionally, a lumped device is one whose physical dimensions are

51
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much smaller than the wavelengths of the signals present in the circuit. In this dissertation,

a device is considered lumped if it is accurately modeled with an algebraic function of a

finite number of network variables (voltage, current, charge, flux). Any device that is not

lumped is distributed. A lumped system contains only lumped devices.

1.1. State

A set of data qualifies to be called the state of a system if it satisfies the following two

conditions [desoer69].

1. For any time, say tx, the state at r1 and the stimulus specified from t{ on, determine

uniquely the state at any time t > t{.

2. The combination of the state and the stimulus at any time t determine uniquely the

value at time t of any significant quantity of the system. If the system is an electrical

circuit, the significant quantities are usually considered the network variables (v, i, q,

♦)■

In general the state is not unique. There may be many collections of network variables

that qualify as the state.

For lumped systems, the state is a finite set of numbers, usually arranged as a vector.

The components of this state vector are referred to as state variables. The state of a distri

buted device is described using one or more functions rather than a finite set of numbers.

For example, consider an ideal transmission line. At some time fj, one must know the

voltage and current waveforms along the entire length of the line as well as the stimulus

from t j on in order to predict accurately, say, the future voltages at the ends of the line.



4. Background: Systems 53

A system can be described with an equation of the form

f(x,t) = 0 (4.1)

where x(t) is a vector of network variables. If it is possible to reformulate this equation

into the form

y(0 = *(y(0.0 (4.2)

where the y(t) is a vector of state variables and if there is a one-to-one correspondence

between every solution y of (4.2) and every solution x of (4.1), then (4.2) is a state equa

tion in normal form for the system described by (4.1). A solution x of (4.1) is called.a

trajectory and the corresponding y is the state trajectory.

Define <j> to be the function that maps the state y0 at r0 into the solution to 4.2. That

is,

y(O = $(y0,t0,t). (4.3)

This function is referred to as the state-transition function. It has the characteristic that if

y('i) = Wy<?o)>t<ht\) ^d ri = t0, then y(tx) = y(t0).

2. Problem Formulation

In the interest of keeping notation simple we consider only nonlinear time-invariant circuits

consisting of independent current sources and voltage controlled resistors and capacitors.

These restrictions are mostly cosmetic, they allow the use of simple nodal analysis to for

mulate the circuit equations. All the results in this chapter can be applied to circuits con

taining inductors, voltage sources, and current-controlled components if a more general

equation formulation method such as modified nodal analysis is used [sangiovanni81]. Ini

tially we also only consider nonautonomous (or forced) circuits. That is, circuits with at

least one periodic input source. Within these constraints, two test problems are defined,
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one appropriate only for lumped devices, and one that allows linear distributed devices.

2.1. Lumped Test Problem

Let N be the number of nodes in a lumped circuit (excluding the reference node, ground).

Consider two cases. For the periodic case, assume the input waveforms and the solution v

belong to PN(T;JR). For the quasiperiodic case with d fundamental frequencies X{,

X2, . . . ,Xd, assume both the input and the solution waveforms are members of

QPN(Xi,X2, . . . ,X,<*;IR). Further assume that for both cases the solution is isolated and

asymptotically stable and that all device constitutive equations are differentiable when writ

ten as a function of voltage. Now the circuit can be described by

f(v,t) = i(v(t))+q(v(t))+u(t) = Q (4.4)

where v is the vector of node voltage waveforms; u is the vector of source current

waveforms; i,q:TRN —»JR.N are differentiable functions representing respectively the sum of

the currents entering the nodes from all conductors, and the sum of the charge entering the

nodes from all capacitors; / is the function that maps the node voltage waveforms into the

sum of the currents entering each node; t e IR is time; and 0e IR^ is the zero vector.

2.2. Distributed Test Problem

Again consider two cases, the periodic case (as above) and the quasiperiodic case where

the input and solution waveforms belong to QPN(Xl,X2, . . . , Xd;TR). Assume all other

conditions for (4.4) hold except that the circuit may contain voltage controlled linear distri

buted devices. This circuit can be described by

t

/(v,r) =/(v(r)) +q(v(t)) + \y(t-x)v(T)dz +u(t) =0 (4.5)

where / is the function that maps the node voltage waveforms into the sum of the currents
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entering each node; u e QPN(Xx^, . . . , Xd;JR) is the vector of source current

waveforms; i,q:IRN —»IR^ are differentiable functions representing, respectively, the sum

of the currents entering the nodes from the nonlinear conductors, and the sum of the

charge entering the nodes from the nonlinear capacitors; y is the matrix-valued impulse

response of the circmt with all the nonlinear devices removed1, t e IR is time; and Oe IR^

is the zero vector.

Notice that in this test case, y represents all linear components and i and q represent

only nonlinear components. This differs from the lumped test case where i represents all

resistors (both linear and nonlinear) and q represents all capacitors.

3. Differential Equations

In general, differential equations have an infinite number of solutions and it is necessary to

place constraints on the solutions until only one remains. If the constraints are all placed

at the same point in time, the combination of the differential equation and the constraint

equation is called an initial-value problem because the constraints are normally placed at

the beginning of the interval of interest and the differential equation integrated with t

increasing. It is also possible to put the constraints at the end of the interval of interest.

Such a problem is referred to as a final-value problem and is treated identically to the

initial-value problem except the differential equation is integrated with t decreasing. It is

also possible to place the constraint at a point inside the interval of interest and break the

problem into two independent problems, an initial- and a final-value problem.

It is not necessary to place all N constraints at the same point in time. A differential

equation combined with an algebraic equation that constrains the solution at more than one

'To remove a nonlinear device, simply replace its constitutive equation y =fix) withy =0.
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distinct points in time is referred to as a boundary-value problem.

3.1. Initial-Value Problems

Consider the equation

*(0=/(*(0,0 (4.6)

where x(t)e JRN is the state vector, and t is time. It is enough to specify the value ofa: at

some point in time (ex., x(0) =x0) and require that / be sufficiently smooth to assure that

(4.6) has a unique solution.

Theorem 4.1: Let the function f(xj) be continuous in t over the finite interval [0,T] for

all x and Lipschitz continuous in x, uniformly in t. That is,

\\f(x,t) -f(y,t)\\ *K\\x-y\\
for all x,y e JRN and te [0,T]. K is known as the Lipschitz constant. Then the initial-

value problem

x(t)=f(x(t),t), x(0)=x0

has a unique solution x =x(tjc0) over the interval 0 £ t < T. Furthermore, the solution

is Lipschitz continuous inx0, uniformly in t and satisfies

\\x(ts0)-x(t,y0)\\ <zeKt\\x0-y0\\
for all t € [0,T] andx0,y0e IR*.

•

The proof of this theorem is given in Stoer and Bulirsch [stoer80].

It is useful to know when a solution to the initial-value problem defined by (4.4) and

an initial state v(0) =v0 exists and is unique. Theorem 4.1 cannot be used directly

because (4.4) is in the wrong form. However, it can be manipulated into the correct form

by using the chain rule.



4. Background: Systems 57

dv(t) dt

i(v(t))+C(v(t))v(t)+u(t) = Q

where C(t) = ^/ ", C being a time varying capacitance matrix. Assume C(y(t)) is
rfv(r)

nonsingular for all v(r).

v(r) = -C-I(v(f))(/(v(r))+«(r))

Thus from Theorem 4.1, the solution to the initial-value problem defined by (4.4) and the

initial state v(0) = v0 exists and is unique if i is Lipschitz continuous and if u is bounded

and C_1(v(*)) is uniformly bounded with respect to v [hale80].

3.2. Boundary-Value Problems

The problem of finding a solution to a system of ordinary differential equations is a

boundary-value problem if that solution is required to satisfy subsidiary conditions at two

or more distinct points in time. For example, finding the solution to

x(t)=f(x(t),t)

over the interval [0,T] is a two-point boundary-value problem if the solution is required to

satisfy

g(x(0),x(T)) = 0.

Boundary-value problems are interesting when solving for steady-state solutions because

the problem of finding the periodic or quasiperiodic solution to a differential equation can

be posed as a boundary-value problem.

3.2.1. Existence and Uniqueness of Solutions

From Theorem 4.1, the initial-value problem
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x(t)=f(x(t),t), x(0)=x0

is assured of having a unique solution if / is continuous in t and Lipschitz continuous in

x uniformly in t. However, from the second part of this same theorem, it is clear that

these same conditions are insufficient to assure that the two-point boundary-value problem

even has a solution. For example, let y0 be the initial state of the initial-value problem

y(0=/(y(0,0. v(0) = y0

Using the solution to this initial-value problem, and given the differential equation

x(t)=f(x(t),t) (4.7 a)

construct the boundary constraint

x(T) - (eCT + l)x(O) =y(T) - (e*7 + l)y(O) (4.7b)

where K is the Lipschitz constant for /. This boundary-value problem has no solution

because the final state

x(T) =y(J) - {en + l)(y(0) - *<0))

is unreachable from any initial state x(0), which is shown by writing (4.7 b) as

x(T) - y(D =-{e™ + l)(y (0) - x(0))

Then,

||jc<r)-y(r)|| =(gAT + l)||(y(0)-^(0))||

\\x(T)-y(T)\\ >«JT||(y(0)-*(0))||,
which violates the second part of Theorem 4.1.

The existence and uniqueness theory for boundary-value problems is considerably

more complicated and less thoroughly developed than for initial-value problems. If the

solution is linearly constrained at only two points, which is the usual case, then some rea

sonably concise and powerful statements can be made. Consider a system of N first order

differential equations
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x(t)=f(x(t),t) (4.8a)

subject to the most general linear two-point boundary conditions

Ax(0) + Bx(T) = c, (4.8 b)

where x(t)<z JRN yf :TRN+l^JRN, AJB € TRNxN, and c e JRN.

The study of the existence and uniqueness of solutions to the boundary-value problem

(4.8) reduces to the study of the roots of a system of nonlinear equations by posing (4.8 a)

as an initial-value problem. Consider

x(t)=f(x(t\t) (4.9 a)

x(0) = xo (4.9 b)

and recall that the state-transition function <j>(*o»fo»ri) is me solution to this initial-value

problem at time tx starting from the state x0 at time f0.

The solution to the boundary-value problem (4.8) is the solution to the initial-value

problem (4.9) where the x0 is chosen to satisfy the implicit nonlinear equation

Ax0 + B$(x0l0,T)-c =0. (4.10)

In other words, if x0 is a root of (4.10), then*(r) = ty(xo,0,t) solves (4.8).

Theorem 4.2 : Let the function f(x,t) be continuous in t over the interval [0,7] for all x

and Lipschitz continuous in x, uniformly in t. Then the boundary-value problem (4.8) has

as many solution as there are distinct roots x^ ofEquation (4.10). These solutions are

^')(f) =(|)(^o0'),0,r),

the solutions of the initial-value problem (4.9) with initial state x(0) = x$).

D

This theorem was developed by Keller and the proof is given in [keller68].



4. Background: Systems 60

Reducing the problem of solving the boundary-value problem (4.8) to that of finding

the roots of a system of nonlinear equations is interesting because it is the idea behind

shooting methods. Shooting methods, presented in detail in Chapter 5, are the most com

monly used methods for finding the solutions to boundary-value problems.

Theorem 4.2 is only mildly interesting when exploring the existence and uniqueness

of solution to boundary-value problems because it is generally quite difficult to prove the

existence of roots to a system of nonlinearequations. Keller used the contractionmapping

theorem (Theorem 7.1) to show the existence of roots to (4.10) under certain conditions

[keller68].

Theorem 4.3 : Letthe function f (xj) for 0 < t < T and \\x \\ bounded satisfy

(a) f(x,t) continuous;

(b) — continuous, mji = 1,2, . . . , N;
dx„

(c) HZ/Gcf)!_ £kit) where /,(*/) =^>f).

Furthermore, let the scalar function k and the matrices A and B satisfy

(d) A +B nonsingular;

T

(e) \k{t)dt £ ln(l+X/a)

for some X in 0 < A. < 1, where

a=||(A+B)-1B||00.

Then the boundary-value problem (4.8) has a unique solution for each c.

a
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This theorem gives a sufficient but not a necessary condition for existence (and by

Theorem 4.1, conditions for uniqueness) of a solution to a boundary-value problem. Thus,

solutions may exist for boundary-value problems that do not satisfy these conditions.

Keller, Stoer and Bulirsch present further theorems on the existence of solutions to

boundary-value problems [keller68] [stoer80].

3.3. Boundary-Value Problems in Circuit Simulation

One approach to finding the steady-state solution of a circuit is to restrict the solution to be

either periodic or quasiperiodic by using an appropriate boundary constraint. Thus, the

problem of finding the steady state is converted into a boundary-value problem, to which

the standard approaches, such as shooting methods and finite-difference methods, can be

applied. In the following section, boundary constraints are formulated for periodic solu

tions. Boundary conditions for quasiperiodic solutions are presented in Chapter 6.

3.3.1. Periodic Boundary Constraint

A function x is periodic with period T if x(t) = x(t + T) for all t. This is a difficult con

dition to apply in practice because it must be verified over all t. However, if x is the solu

tion of a differential equation that satisfies the smoothness conditions of Theorem 4.1, then

by uniqueness, if x(t) = x{t + T) for some r, it is true for all t.

Theorem 4.4 : Consider the initial-value problem

i (v(f)) + <?(v(0) + «it) = 0 (4.11 a)

v(0) = vo, (4.Ub)

where u(t) is T-periodic. Iffor all v0 there exists a unique solution, and if there exists a

solution v that satisfies
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v(t) = v(t +T) (4.11c)

for some t, then v is T-periodic.

This follows directly from the fact that u(t+T) = u(t) and the uniqueness assumption of

the solution to the differential equation. Thus, to find the periodic steady-state solution of

the lumped test problem, it is enough that the solution satisfy the two-point boundary con

straint v(t) = v(t + T) for some t and that (4.4) has a unique solution when formulated as

an initial-value problem.

By Theorem 4.2, finding the periodic solution of a differential equation using the

periodic boundary constraint (4.11 c) is equivalent to solving for the root of

<j>(v(0),0,r)-v(0) = 0 (4.12)

where <J> is the state-transition function of the differential equation. This equation takes the

form of (4.10) with A =-lNtB = lNy c = 0, and x = v, where lN is the N xN identity

matrix.

3.3.2. Oscillators

A circuit is said to be autonomous if all its components and inputs do not vary with time.

That is, the relationship between voltage and current for a resistor, voltage and charge for a

capacitor, and flux and current for an inductor is time invariant and independent sources

are constant valued. Oscillators are autonomous circuits that have nonconstant periodic

solutions. The problem of finding the steady-state solution of an oscillator can be posed as

a boundary-value problem with a free boundary. It is possible to adapt each of the

methods that will be presented for two-point boundary-value problems to the oscillator

problem.
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Oscillators present two problems not previously faced. The first, as pointed out

above, is that the period of the oscillation is unknown and must be determined. The

second is that the time origin is arbitrary and thus if one solution exists, then an infinite

continuum of solutions exists. In other words, if v is a solution, then so is any time

shifted version of v (there is no input signal to fix the phase). The problem is that most of

the methods presented use Newton-Raphson, which fails if the solution is not isolated. It

is necessary to modify either Newton-Raphson to handle nonisolated solutions or the prob

lem formulation to eliminate the nonisolated solutions.

There are two degenerate cases that cause any Newton-Raphson based method to fail

when applied to the oscillator problem. Surprisingly enough, linear problems are one such

case. In linear oscillators, the amplitude of the oscillation is not unique: if the circuit sup

ports an undamped oscillation then the oscillation may be of any amplitude. Thus, not

only is there a continuum of solutions parameterized on t, but also a continuum parameter

ized on the amplitude of the oscillation. A similar situation arises when a solution is a

constant waveform. For this case, the additional continuum is parameterized in the period

T>

In general, one needs to worry about quasiperiodic solution to autonomous problems.

Examples include driven oscillators where Xit . . ., Xj is determined by autonomous oscil

lations and Xj+], . . . ,Xd are determined from input sources; and coupled oscillators,

where Xx, . . ., Xd are all autonomous oscillations. The methods developed for periodic

autonomous oscillators are easily extended to handle these situations.
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3.4. Numerical Solution of Initial-Value Problems

Lumped circuits are modeled using a system of nonlinear differential equations. Before the

system can be solved it is necessary to specify the boundary conditions. Traditionally, cir

cuit simulators treat only initial-value problems, so the initial state (here, the node voltages)

are specified at t = 0 and the equations are integrated forward in time. Equation (4.4) can

be written as an initial-value problem if the steady-state constraint on v is lifted and an ini

tial state is specified.

/(v(f))+*(v(f ))+n(f) = 0 v(0) = v0 (4.13)

It is not possible to solve numerically systems of nonlinear differential equations directly.

Instead, it is common to solve a discretized approximation to the differential equation.

3.4.1. Discretization

Discretization approximates a system of differential equations with a system of difference

equations. In other words, the time interval of interest [0,7] is divided into a finite number

of possibly nonuniform subintervals with a monotonically increasing sequence of time-

points {t0,tlt . . . , ts } where r0 = 0 and ts = T. The subintervals are called time-steps

and denoted by hs = ts- f,_j. At ts the solution of the discretized system v, is an approxi

mation to v(ts), the solution of the original differential equation (4.13). At each time-

point, an algebraic system of equations must be solved, thus discretization converts a

differential equation into a sequence of algebraic equations that can be solved numerically.

To discretize a system of differential equations it is necessary to have a discrete

approximation to q. A set of approximations commonly used in circuit simulation are the

backward difference formulae [chua75] [gear71], which are defined by
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1 p
&+i = 71— 2 Ws-rQ-x =" 1 (4.14)

bhs+\ r=_!

The simplest of the backward difference formulae are the one-step methods

Explicit Eulen qs =-^—— (4.15)

Implicit Euler: qs+l = —~ — (4.16)

Of these two methods, implicit Euler has the desirable property of being stiffly stable,

which means that it is well behaved even if the differential equations being solved have

widely separated time constants. This is not true for explicit Euler [white86] [gear71].

It is natural to apply backward difference formulae to initial-value problems because,

when computing the solution at r,, it is only necessary to know the solution at previous

values of time. The integration is conveniently carried out by starting at r0 and progressing

forward in time toward ts.

4. Numerical Solution of Nonlinear Algebraic Equations

The algebraic equations generated by discretization are nonlinear and so are not solvable

explicitly. Linearization is the process of converting an implicit nonlinear equation into a

sequence of implicit linear equations. The sequence of linear equations is constructed such

that, if an accumulation point exists, its solution is the solution of the nonlinear problem.

Usually, the Newton-Raphson algorithm, or one of its variants, is used to construct the

sequence of linear problems. For example, consider the implicit nonlinear system of equa

tions

/(*) = <>

where ice JR.N and / :IRW->IRW. The Newton-Raphson algorithm needs an initial guess

xi0) of the solution x to start. It then linearizes f(x) about xi0) by using the Taylor
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expansion while neglecting the higher order terms.

/(*(I>) =/(*<0>) +*l^ixW - XV>) +OHxw - x™)2)
dx

where ^ is the Frechet derivative of / with respect to x [ortega70].' The Jacobian

Jfix) is a representation of the Frechet derivative, and if it exists it takes the form

^-'/«-dx

dfmW
dx»

m,n - 1,2, . . . , N.

w ||Q(a)l!
a-*0

bounded. Let

O(•) is a function that represents the higher order terms and is such that lim " ^ "• is
a-*0 a

fl0)ix(l)) =/(*«») +Jfix^)ixw-x^)
where fl°\x) is the linearized approximation to fix). (It is the hyperplane that is tangent

to fix) at x{0).) An improved approximation to x is now found by solving for the root of

the linearized approximation to fix). That is, finding the value of *, denoted by x(l\ that

satisfies /l(0)0O = 0.

xW =xM-Jf-\x«»)fixM)
If /L(0) is a good approximation to / near Jc, then *(1) will be closer to x than was x{0\

This procedure is repeated by replacing the initial guess x{0) with x{l). The iteration, as

shown in Figure 4.1, is repeated until some convergence criteria is satisfied.

XU+D =X(J) _ j-\x(j))f (XU)) (4>17)

The sequence generated by (4.17) converges to x if / is continuously differentiable, Jfix)

is nonsingular, and xi0) is sufficiently close to x [dahlquist74]. Furthermore, if Jfix) is

Lipschitz continuous, the asymptotic rate of convergence will be at least quadratic. More

explicitly, let e0) = ||*0)- jc|| be the error of the y* iterate. If there exist constants p

and a * 0 such that
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**x

Figure 4.1 : Newton-Raphson illustrated.

e0+D
lim——— =a,
;-*» (£0))P

then p is called the rate (or order) of convergence. For Newton-Raphson, when Jf ix) is

Lipschitz, p ^ 2. In general, there is no way to assure that the initial guess *(0) is

sufficiently close to the solution x, so convergence can be elusive.

4.1. Simplified Newton-Raphson Methods

Newton-Raphson requires that the Jacobian be constructed and factored on each iteration;

an expensive series of operations that, under certain circumstances, can be avoided.

Several simplified Newton-Raphson methods have been developed over the years that

reduce this expense. We are interested here the one in which the Jacobian is formed and

factored only.for the first iterate.



4. Background: Systems 68

x(j+i) = x(j) _ j-\x(0))f (JC0)} (418)

If the function / is near-linear then the changes in the Jacobian from iteration to iteration

are small and the first Jacobian closely approximates the true Jacobian on subsequent steps.

In this case, this new method converges to the correct solution. The Jacobian is only used

to generate new iterates, and is not used when confirming convergence, so errors resulting

from approximations in the Jacobian only affect the rate and region of convergence, not the

accuracy of the final solution. This simplified Newton-Raphson method can often be con

siderably faster than standard Newton-Raphson with large near linear systems of equations,

even though it usually requires a greater number of iterations, because each iteration is less

expensive. However, the region of convergence is often smaller than with standard

Newton-Raphson.

To increase the region of convergence over the above simplified Newton-Raphson

method, reevaluate the Jacobian every k iterations rather than use the original Jacobian

until convergence. This method, referred to as Samanskii's method, may be considered a

k step method, where each iterate is composed of one Newton-Raphson step and k - 1

simplified Newton-Raphson steps. Traub and Samanskii [ortega70] showed that sequence

consisting of every k*1 iterate converges with order k + 1. Thus, if k =2, that is, if the

Jacobian is updated on every other iterate, then cubic convergence is achieved. As

expected, this rate of convergence is inferior to that of conventional Newton-Raphson,

where the sequence of consisting of every other iterate converges quarticly.

The advantages of the simplified Newton-Raphson iterates is combined with the large

region of convergence of conventional Newton-Raphson by monitoring {||/0t(;>)||} and

using simplified Newton-Raphson iterates as long as a sufficient reduction in this norm is

achieved. If a simplified iteration results in an insufficient reduction, the iterate and the old
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Jacobian should be discarded and a full Newton-Raphson step taken.

4.2. Continuation Methods

In order to assure that Newton-Raphson converges, it is necessary to supply an initial

guess that is sufficiently close to the solution. Since, in general, the solution is not known

in advance, it is often difficult to supply such a guess. Continuation methods provide a

way for obtaining starting points that are sufficiently close to assure convergence.

Usually, the problem depends in a natural way on some parameter p, such that when

the parameter is set equal to some specific value, say 1, the particular system for which the

solution is desired results, while for p =0 the system has a known solution x0. Thus,

/(*,/>) = 0 (4.19)

where / (x ,1) = / (jc) and where / (x0,0) = 0. Assume that in (4.19), x can be written as a

function of /?, i.e., fixip),p) = 0. Then the solution xip) can be found for an increasing

sequence of values of p, 0 =p0 <P\ <Pz < ' ' ' <Ps = 1- If xip) is a continuous

function of p, then it is always possible to choose-p, close enough to ps_x so that if

x(Ps-\) ls used as a starting point, it is sufficiently close to x(ps) to assure convergence.

The fundamental idea in continuation methods is to generate a finite sequence of problems,

the solution to the first of which is known, and such that the solutions of each problem is

close enough to the solution of the next to be within the region of convergence for

Newton-Raphson on the next. The step size ps - ps„\ should be adjusted on each step to

minimize the total number of Newton iterations rather than the number of steps.

Linear extrapolation is normally used with continuation methods to reduce the

number of steps required. After the first step, a simple form of linear extrapolation can be

used based on the solution at the previous two steps.
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x{0)ips) =A-<°>(p,-i) + Ps~Ps'1 [xip^y - X(ps_2)]
Ps-l - Ps-2

A more sophisticated linear extrapolation is performed by using the derivative dx/dp.

°Ps-\

where

dxips_i) df(x(Ps-\)Ps-i)
dx(ps_{)

which can be derived by using the implicit function theorem [rudin76]. This approach is

usually preferred if the derivatives are readily available.

When computing the DC operating point of a circuit, it is very common to use as a

continuation parameter the fraction of the DC source voltages and currents applied to the

circuit. In almost all circuits simulators, all devices except sources pass no current when

all terminal potentials are zero. Thus, when all sources are turned off, circuits are

guaranteed to have a solution with zero potential at every node and zero current through

every branch. From this known solution, the source levels can be slowly increased, while

solving the circuit at each step, until the desired source levels are attained. Continuation

implemented in this manner is generally referred to as source stepping.

Continuation can fail if xip) is not a continuous function on the interval [0,1]. By

the implicit function theorem, if *^WW* exists and is continuous over aneighborhood
axip)

of (xo»Po) ^d is nonsingular at (x0,/?0), then there exists a neighborhood of (*oiPo) for

which a: is a continuous function of p and fixip),p) = 0. Thus, continuation methods

will be successful if ^ y*JyJ is continuously differentiable and is nonsingular 31 xip)

for all p e [0,1] It is not always possible to assure this in practice.

-l

d/(*(P,-i),P,-i)

tys-l
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Consider the circuit in Figure 4.2. The supply potential versus supply current is plot

ted in Figure 4.3. Supply potential is not a function of input current because there is not a

unique potential for each current. Indeed, source stepping would fail on this circuit when

the supply reached p0 = 1.6mA because the potential would have to jump discontinuously

from 11V to 28V. At this point, which is called a limit point, the Jacobian

Jfixip)) = #<*»>*> is singular.
1 ox ip)

Continuation methods fail at limit points for two reasons. First, the Jacobian

Jfixip)) is singular at limit points, which causes Newton-Raphson to fail. If this were the

only problem, limit points would not be a serious difficulty because singularities are iso

lated points and it would be possible to step beyond them. However, this is prevented by

the second reason. Monotonicalry increasing the parameter p results in a discontinuous

jump in the solution at a limit point.

Figure 4.2 : A circuit that causes trouble for simple source-stepping algorithms.
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Figure 43 : Supply potential versus supply current for the circuit in Figure 4.2.

4.2,1. Pseudo-Arc Length Continuation

One solution to the limit point problem is to use a path following or arc-length continua

tion method. These methods treat the manifold of solutions in JR^ x[0,l] of (4.19) as a

path that must be followed from (jc0,0) to (jc,1) by, at each step, solving for a pair (*,/?)

that solves (4.19) and makes some progress along the path. The independent parameter

becomes arc length or the distance traveled along the path. Rather than specifying p

apriori, it is considered a function of the arc-length parameter a. The arc length a is

specified and p is found as a function of a. In this way, p is allowed to increase or

decrease as needed to provide adequate progress along the path at each step.

The derivation of the pseudo-arc length continuation algorithm [bolstad86] begins by

defining ^elR^xtO,!] as £ = [x,pf and c = {£:/(£) =0}. Thus, c is the curve or

manifold of all solutions to (4.19). For simplicity, assume that there is only one curve,

that it is connected, and that it passes through (<s0,0) and (Jc.O). This curve is



4. Background: Systems 73

parameterized using the arc length a from some arbitrary point. Rewriting (4.19) to show

the explicit dependence of x and p on the arc-length parameter a,

/(*(a),p(a)) = 0 (4.20)

To simplify notation, the dependence of £, x, and p on a will be implied rather than

denoted explicitly.

The first step is, given the solution at the current step, predict the value of the solu

tion at the next step. Do this by extrapolating along the tangent to the path. Let £o me

current solution and u (o&o) be the unit vector tangent to c at £o = ^(ocq). Then

u = [ux,up]T is such that

U =
dfjx,p)

dx dp p
(4.21a)

and

"x||2+"p2=l,

dx ur dp

Let $ = uxlup, and find (J) by solving

dx y
dfixjf)

dp

Then, ux and up are computed from

up = ViTifilf

ux = up<

~p - *, (4.21b)

where || ux\\2 is the Euclidean norm of ux. The first equation states that u is tangent to

the curve and the second that u has unit length. The quantities ux and up can be com

puted by dividing both sides of (4.21a) by up.

df(.x,p) "x dHxJ>)

(4.22)

(4.23)

(4.24)
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Given ^ and «(oto), a prediction of the new solution %x = £>ia.x) is computed from

xp{edict =*0 +"*(ao)8a

Pp\edict =Po +"p(ao)5a
where jcf*** and pfre<to are the predicted values of xxand pxand 8a =a, - Oq.

74

(4.25a)

(4.25b)

The next step is to formulate the dependence of both x and p on the arc length. It is

not important that the distance between %& and %x along the curve be exactly 8a because %x

is only one step along the path to our true goal %s, and %x itself is of no value. Since the

distance £0 and %x need only be roughly equal 8a, a computationally simpler pseudo-arc-

length constraint is employed [bolstad86]. The pseudo-arc-length algorithm requires the

new solution to satisfy the equations

/£i) = 0 (4.26a)

g (4,a0 = <u(Oq),^ - £o> - («i - ao) = 0 (4.26b)

where < ,> represents the inner product. Equations (4.26b) forces the new solution §i to

lie on a hyperplane perpendicular to the tangent vector k(Oo). The hyperplane intersects

the tangent at a distance |8a| from £(ao) as shown in Figure 4.4.2 Applying Newton-

Raphson to find the solution of (4.26) gives

l

dfiW) df&fy
dx\ dP\

dgi^\ax)T dg&\ax)
dxx dpx

At simple limit points the Jacobian in (4.27) is nonsingular [keller77], and so Newton-

Raphson applied to the augmented system (4.26) is well-defined and quadratic convergence

is possible.

W'+1) -p\})
(4.27)

2Another choice for the pseudo-arc-length constraint is: g = ||£(ot,) -^(ao)||| - |a, - Oo| =0. This
forces the solution to lie on a sphere of radius 5a centered about ^(Oq).
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Figure 4.4 : Illustration of the pseudo-arc-length constraint.

If Gaussian elimination is used to solve (4.27), it is best to use pivoting to ensure

numeric stability, especially near limit points. However, it is sometimes difficult to exploit

the pattern of sparsity in the augmented system (this is true when the equations are gen

erated by harmonic balance because dfldx is a block matrix while dgldp is a scalar).

Without pivoting, the algorithm has trouble moving over limit points because dfldx is

singular at these points. In this situation, block Gaussian elimination without pivoting is

used along with deflation techniques to avoid numerical instability [chan82]. The equations

are now simplified further using block Gaussian elimination.
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dfiW)
dx

Let

so that

And let

so that

Then finally

and

dfi%[}))
dp\

dgi^\ax) dgitf\ax) dfiW)
dp dx] dx

-l

dfiW)
dp

*F+1>-;tF'>

Pi0+,) -PP

dgit,lj\<Xi)T\ dfiW)Yl dfiW)
8W\*0-

dxs dx

df &) , = dfjZ,x)
dxx dpx

-l

y =
dfiti)

dX]

dfi%x)

dp\

dfi%x)
dx\ *=/&)

-l

z =
dfi\x)

dx] /(Si).

o>^ =

dgiW&x)
dxxT

-jfcFW

dgitf\*i)
dp\

<fe($F\a,)
dxxT y

-l

dp

8^> = -
#6i0))

dx,

dfiW)
dp\

Sp+/£,0))
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(4.28)

(4.29)

(4.30)
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8x0) = -y8p0)-r. (4.31)

The pseudo-arc-length continuation algorithm can be implemented using equations (4.22),

(4.23), (4.24), (4.25), (4.26), (4.28), (4.29), (4.30), and (4.31). This algorithm is repeated

at each new as, s = 1,2, . . ., S.

The pseudo-arc length continuation method works if numerical pivoting is used when

convergence is prevented by simple limit points (or rank one deficiencies in the original

Jacobian) along the path. This is generally not the case when convergence problems occur

during DC analysis, but is quite common when using harmonic balance on conditionally

stable circuits.



Chapter 5
Time-Domain Methods

A very important approach to finding the steady-state response of a system of differential

equations is to formulate a boundary-value problem whose solution is the desired steady-

state response. Methods for formulating boundary-value problems for periodic solutions

was discussed in Chapter 4 and methods for quasiperiodic solutions will be covered in

Chapter 6. This chapter presents two important ways of solving these boundary-value

problems.

1. Finite-Difference Methods

Like most approaches to solving differential equations numerically, the finite-difference

methods approximate the original system with a set of difference equations. Unlike finite-

difference methods for transient analysis methods, finite-difference methods for boundary-

value problems attempt to find the solution at every time-point simultaneously. To find a

T-periodic solution using a finite-difference method, a mesh r0 < t x< t2 < • • • < ts is

chosen where t0 = 0 and ts =T. A finite sequence {vs } is computed as an approximation

to v(f) on the mesh, where vs = vits). The difference equations are formed by using a

discrete-time approximation to the time derivative and the convolution integral. For exam

ple, consider the slightly modified version of (4.5)

78
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t

/(v,r) =iiv) +qiv) +Jy(f-r)v(T)tfT +w(r) =0. (5.1)

All symbols have their previous definitions except that i is a function representing the sum

of the current entering the nodes from all conductors, q represents the sum of the charge

entering the nodes from all capacitors; and y is the matrix-valued impulse response of the

circuits with all lumped elements removed.

There are a large number of possible discrete approximations to q that can be used

[gear71]. Implicit Euler [white86], the simplest approximation that is suitable for circuit

simulation, employs linear interpolation between mesh points and is given by

os = -7~(<ls ~ <ls-\) (5.2)

where hs = ts - ts_x is the time-step. A discrete approximation to the convolution integral

would be given by

s

ws = E^-rVr (5.3)
r=0

where ws represents the current entering the nodes from distributed devices at time ts and

ys is the discrete approximation to the impulse response y. Computation of y is done by

evaluating a phasor representation of the distributed device, y(jco), over a range of fre

quencies. The data is then windowed [harris78] and inverse transformed

[djordjevic86,schutt-aine88]. Computation of ws is done by applying first an interpolation

function to the solution between the mesh points and then employing an integration method

such as Simpson's rule [stoer80].

Discretizing (5.1) using the approximations of (5.2) and (5.3) yields

1 s
i(vs) + T-ilM - qivs_x)) + £y,_rvr + us = 0 (5.4)

"s r=0
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where s = 1, . . . , S. As v is T-periodic, v0 = vs, which results in the following system

of nonlinear algebraic equations

»(Vi) + + 2>,_rVr + "1 = 0

#(v2) — tf(Vl) 5/(v2) + *v ^ *v " + Xy2_rvr + «2 =0

., , ^ g(V5)- ^(V5-l) ^ £ ^ A
/(VS) + 7 + ZyS-rVr + US = 0 .

nS r=0

The system is solved using the Newton-Raphson algorithm.

The finite-difference methods are elegant and simple. When applied to two-point

boundary-value problems with linear boundary constraints, such as the periodicity con

straint, they have the characteristic that each iterate generated by the Newton-Raphson

algorithm satisfies the boundary condition, though it may not satisfy the difference equa

tion. This contrasts with shooting methods, for which each iterate satisfies the difference

equation but not the boundary conditions.

Finite-difference methods can generate large systems of equations, especially if either

the number of unknown waveforms or the number of time-points is large. The systems are

sparse, and hence, not overly expensive to solve. The sparsity is increased further if there

are no distributed devices present in the circuit. In this case the equations take on an

interesting structure. To see this, consider implicit Euler applied to the lumped test prob

lem (4.4).

/(v,r) = qivit)) + iivit)) + «(f) = 0 (5.5)

to generate
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1
-0?(vWi) - q(vs)) + /(v,+1) + us+x =0 s = 0 , 5-1. (5.6)

h+l

As v is T -periodic, setting v0 = vs results in the following system of nonlinear algebraic

equations

<70;i) ~ qivs) + hxiivx) + hxux = 0

#0;2) - qb'i) + h2i(v2) + h2u2 = 0

qivs) - qivs-i) + hsiivs) + hsus = 0 .

As usual, the system is solved using Newton-Raphson.

-c(vi0)) c(v^)) + /22^(vV*))
(v50))

(5.7)

-c(v£J) civs^ + hsgivs^)

vp+1>-vf>"
v20+D _. V20)

V50>i)'_V50)

*(v}») - ^(v^) +/»j/(vf>) + Ajll,

<?(v20)) - qiv\U)) + h2iiv¥)) + h2u2

qivsU)) ~ q{v£!)i) + hsiivsW) + hsus

The solution waveform [vs} is found by taking this iteration to convergence.

It is possible to reduce the time required for the finite-difference methods by choosing

carefully the time-steps to achieve a desired accuracy, clustering them in troublesome spots

to reduce error while spreading them out in quiescent areas to.reduce computer resource

usage. Generally this is done by starting with a small number of time-points, and adding

more in areas exhibiting excessive error in later iterations. If the solution is expected to be

smooth, it is possible to use high-order integration methods to achieve low truncation error

using widely separated time-points. Lastly, it is possible to use the Samanskii's method
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[ortega70] to reduce execution time further. The possible efficiency gain for Samanskii's

method is considerable if a high order integration method is used (and so the bandwidth of

the Jacobian is large and therefore expensive to factor) or if the Jacobian is expensive to

construct.

Finite-difference methods are well known in the mathematics community, but have

not received much attention from the circuit simulation community. Because of the large

number of equations and unknowns, finite-difference methods require a large amount of

memory, which often constrains the size of the circuit that can be simulated. Finite-

difference methods also tend to have more Newton-Raphson convergence problems than

the other popular method for solving boundary-value problems, shooting methods

(presented next). The difference results from the shooting method ability to hide nonlinear

behavior from the Newton-Raphson algorithm in some common situations.

One feature of the finite-difference methods is not shared by the shooting methods.

Once a solution has been found by a finite-difference method, the resulting Jacobian

represents a linearization of the circuit over the simulation interval. Thus, if finite-

difference methods are used to find a periodic steady-state solution, the Jacobian is the

linearization of the circuit about its periodically time-varying operating point. Just as the

Jacobian that results from a DC analysis is a linearization of the circuit about its quiescent

operating point that is used in small signal calculations such as the AC and noise analyses,

the finite-difference method Jacobian can be used in small signal applications as well

[sugawara]. Since it is represents a time-varying linear circuit, it exhibits frequency

conversion.
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2. Shooting Methods

In general, shooting methods for solving boundary-value problems can be thought of as

iterative methods applied to solving the nonlinear algebraic system generated by replacing

the differential equation relation with the state-transition function. For example, consider

the two-point boundary-value problem with linear constraints,

v(r)=/(v(r),r) (5.8)

subject to

AviO) + BviT) = c,

By Theorem 4.2, solving this boundary-value problem is equivalent to solving the non

linear algebraic problem

Av (0) + B <|>(v (0), 0, T) - c = 0. (5.9)

for v(0), where <J) is the state-transition function for (5.8). As (5.9) is a nonlinear algebraic

problem, a variety of standard methods, like fixed-point iteration or Newton-Raphson, can

be used to compute v(0). The form of (5.9) is more general than required. For simplicity,

assume A = -Z>, B =1, and c = 0. With these assumptions

(|>(v(0),0,r)-Z>v(0) = 0 (5.10)

becomes our generic two-point boundary-value problem. Further assume that D is non-

singular. As shown in Chapter 4, the periodic solution of a differential equation can be

found by solving (4.12), or

«J>(v(0),0,r)-v(0) = 0. (5.11)

This problem is mapped into (5.10) by setting D = IN> the N xN identity matrix.

When looking for a periodic solution to the differential equation for the lumped test

problem, it is possible to cast the obvious approach of integrating (4.4) until the transient

decays to an acceptably small level, as a shooting method. A simple fixed-point iteration
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to solve (5.11) is

v(*+0(0) = <j>(v(*>(0),0,:r), (5.12)

which is equivalent to integrating the original differential equation from v(0) = v0 until all

transients decay.

There are two well known ways to accelerate the convergence of this iteration to the

desired solution, extrapolation methods and Newton methods. In extrapolation methods,

several fixed-point iterations, as in (5.12), are computed and progress towards steady state

is monitored. The sequence constructed from the fixed-point iterates is used to accelerate

the march towards steady state. Use of the extrapolation shooting methods in circuit simu

lation was championed by Skelboe [skelboe80].

The Newton methods apply the Newton-Raphson algorithm to (5.11), which involves

computing the derivative of the final state with respect to changes in the initial state. The

combination of Newton-Raphson and the shooting method was first used to find the

periodic steady-state response of circuits by Aprille and Trick [aprille72b] [aprille72a].

Both of these approaches apply as well to the generic two-point boundary-value prob

lem (5.10) as to the periodic problem.

2.1. Shooting by Extrapolation

Formulate (5.10) as a fixed-point iteration and construct a sequence {v,} by letting

v0 = v(0) and using

v,+i=D-!Kv,.0,r). (5.13)

Convergence of this sequence can be accelerated by extrapolation. Though several extra

polation techniques can be used [skelboe80], the one based on minimum polynomials is

presented here. It is normally the most efficient because it requires the fewest periods to
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perform an extrapolation.

The extrapolation is made by assuming that the sequence {v,} is generated by a

linear finite dimensional system of the form

vs+x=Avs+b (5.14)

where A e 1RNxN and b e IR^. By just observing {v, } and without explicitly calculating

A and b, the fixed-point v* of this linear model can be found. If $(-,0,7') is linear, then

(5.14) models <t>(-,0,r) exactly, v* = v, and the solution is found in one iteration. How

ever if <|)(-, 0,T) is nonlinear, then more than one iteration is usually needed. Expand

<J>(-,0,r) about its fixed-point v:

<j>(v +8v,0,T) =<Kv,0,r) +/^(v,0,r)8v +0(8v2)

=<i)(v,o,r)-/<>(v,o,r)v +/t(v,o,rxv +8v)+0(8v2).
Let*? =<|)(v,0,r)-^(v,0,r)v andA =^(0,0,7), then

<t>(v + 8v,0,T) = fc +A(v +8v) + (9(8v2)

If 8v is large, then 0(8v2) is large and the extrapolated value v* is different from v.

Presumably though, v* is closer to v than was the initial guess v0 and the extrapolation

process can be repeated until it converges to v. Convergence is achieved if v0 is close

enough to v and if J^ivt0,T) is nonsingular, and it is quadratic if <{>(•,0,T) is sufficiently

smooth [skelboe82].

Now the extrapolation algorithm is presented. Consider the sequence {8v^ } generated

by (5.14) where &vs = vs - v*. It is easy to show that &vs = ASvs. For this sequence to

converge, the spectral radius of A must be less than one, but if A has any eigenvalues with

magnitude close to one, then convergence will be slow. The eigenvalues with magnitude

close to one correspond to large time constants in the circuit. Assume that there are p
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such eigenvalues, then the dvs vectors will line up along the p eigenvectors associated

with the slow eigenvalues asymptotically as s increases. It is possible to solve for v* by

solving a p order system. In particular, if the 8v, vectors line up along p eigenvectors,

then there exists a set of p + 1 nonzero coefficients {cs) s = 0,1, . . . , p such that

p

Y,cshvs = 0. (5.15)

If the coefficients cs are found, then it is possible to compute the fixed-point v* for (5.14)

from (5.15) and the fact that hvs = v, - v*.

p

v* =^— (5.16)

In order to find the coefficients c,, define Av, = vJ+l- v, and recall that vJ+1 = Avs + b

and v* = Av* + b. Then

p pIL^Av, = 2^(Av, +b __v^

p p „,
£c, Av5 = jc,(Avx +v* - Av* - vs>

s=Q s=Q

£^Av, =£c,(A-l)(v,-v*),

£c,Av, =(A - l)£c,(v, - v*) =0.
s=0 s=4

P

£c,Av, =0. (5.17)

Thus, the same set of coefficients [cs} can be used with both [8S} and {A,} to form linear

combinations that sum to zero. This allows (5.17) to be used to determine the coefficients

and (5.16) to be used to find v*. To solve (5.17) for the coefficients {cs}, let

V =[Av0,Av!, . . . , Avp_i], c = [c0,ch . . . , cp_x]T and cp = - 1. Then (5.17) becomes
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Vc=Avp. (5.18)

If p <N, the problem is overdetermined and so cannot be solved using LU factorization.

Even if p = N, one of more time constants may be short compared to the shooting inter

val, and so the corresponding eigenvalues will be small, resulting in V being ill-

conditioned and making LU factorization risky. Thus (5.18) is treated as a least squares

problem and is solved using QR factorization [dahlquist74]. In other words, the coefficient

vector c is chosen by the QR algorithm to minimize e, where

e = || Vc - Avp || f (5.19)

Since A and its eigenvalues are unknown, there is no way to compute p explicitly.

Instead, its value is estimated by monitoring e as the number of periods in the computed

response is increased. The value of p is taken as the smaller of either N or the number of

periods used for the computation of c when e drops below some small threshold. Once p

has been determined, the extrapolation should be performed using (5.16) and.(5.18).

The calculation of v* represents one iterate of the extrapolation process. The iteration

is continued until the sequence of v*'s converges. Each iterate requires simulating the cir

cuit for at least p iterations. The value of p is roughly equal to the number of indepen

dent slowly decaying states in the circuit, so if there are few, the extrapolation version of

the shooting method should be efficient. In order to eliminate any effect of the short lived

time constants, it is a good idea to discard the first period of the circuit response waveform

in each extrapolation iterate.

2.2. Shooting with Newton-Raphson

When applying Newton-Raphson directly to (5.11), not only is it necessary to compute the

response of the circuit over one period, the sensitivity of the final state with respect to
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changes in the initial state v0 must also be computed. The sensitivity is used to determine

how to correct the imtial state once the difference between the achieved and the desired

final state is found. Perhaps conceptually the easiest way to determine the sensitivity of

the final state to the imtial state is to use finite differences. In this case, the circuit equa

tions are solved N times; each time perturbing slightly a different entry in the v0 vector.

The approach taken when using Newton method is similar except that the circuit is linear

ized about the v0 solution trajectory and the resulting linear time-varying system is solved

for its zero-input response with N different initial conditions. The N initial conditions are

normally taken to be the N unit vectors that span IR^ [aprille72b].

Applying Newton-Raphson to

<Kv0,0,:T)-£>Vo = 0 (5.20)

results in the iteration

v0°'+1) =v00) - [/t(vJ»,0,T) - Dr lWy^,0,7> v#>] (5.21)
where j is the iteration number and

[/♦<v0,0,r) - D]=-/-(Wo, 0,T) - Dv0) =-^- - D. (5.22)
dv0 dv0

There are two important pieces to the computation of the Newton iteration given in (5.21):

factoring the matrix [/^(v0,0,T) - D ], which is a full matrix in general, and evaluating the

state-transition function <t>(v0,0,r) and its Frechet derivative /$(v0f0fr). The state-

transition function is computed by integrating (4.4) numerically over the shooting interval.

The derivative of the state-transition function, referred to as the sensitivity matrix, is com

puted simultaneously because there are several quantities that are common to both compu

tations, as explained below.
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At this point it is important to realize that we are not solving the original circuit

equation (4.4), but rather a discretized approximation. This distinction is important to

achieving quadratic convergence in the Newton-Raphson iteration [skelboe82]. The nota

tion needed to perform the derivation for the general backward difference discretization is

complex enough to obscure the basic concepts behind the derivation, so for simplicity and

clarity, (4.4) is discretized using implicit Euler (4.16), though any discretization formula

could have been used instead.

i r
/(v,) = — qivs)-<l(vs-i) + iivs) + us =0 (5.23)

where s = 1,2, . . . , S, hs is the time-step, t0 = 0, ts = hs + r5_h and ts = T.

<j)(-,0,r) is found by evaluating (5.23) recursively, at each step solving the implicit

set of nonlinear equations using Newton-Raphson.

//tf-V - v,<H>] =-/(V|0'-»)

1 dqivW) +diivW)
hs dvs dv.

,U) _vU-i) =.iL(vy-l)) - qiv^)} - /(„//-») - Us
A, I

Let diiv)ldv = giv) and dqiv)ldv = civ).

c(v<>-l>)

dv$ „,
The sensitivity —— is taken to be the final value of the —— trajectory, which is found by

+ £(v,°"-1)) [v^-v,0-i>]=--l
ns L

qivV-^-qiv,^) -Hv}J-l))-us (5.24)

dvs

dv0 dv0

differentiating both sides of (5.23) with respect to v0.

1 d r

hs dv0 Iq(ys)-q<y*-\)
dvn

Applying the chain rule

(5.25)
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hr

dqivs) dvs dqivs_x) dvs_x
+ 5 s = 0.

dvs dv0 dvs_x dv0

Let di (v )ldv = g (v) and rf#(v )ldv = c (v).

C?Vj tfv(

hs

dvs cjvs_x) dv5.x _
dv0 h5 dvQ

-rr=Jf (vs)—7 r— (5.26)hs dv

— + Q(V.\
h

c(v,)
where Jfivs) = —— + givs)

's

dvs
The Jacobian /A(v0,0,r) = is computed by repeated application of (5.26) start-

dv0

dvQ
mg from the imtial condition = 1N. Note that for each time-step the derivatives

dvQ

Jfivs) and civs_x) have been previously computed in (5.24) during the application of

Newton-Raphson's method to (5.23). In fact, Jfivs) is available in LU factored form.

However, dvs_x/dv0 is a full N xN matrix that must be multiplied by both Civs_x)/hs and

Jflivs) (this last multiplication is done with N sparse forward and backward substitutions)

at every time-step. Thus, (5.26) represents a burdensome calculation that prevents

Newton-Raphson-based shooting methods from being applied to large circuits.

The size of /(|>(vo,0,r) can be reduced somewhat by eliminating entries in v from

consideration that result from algebraic constraints or from quickly decaying states. This

approach has also been found to aid convergence [kakizaki85].

Since (5.20) is being solved using Newton-Raphson, it is necessary to assure that

(J>(vo,0,r) is continuously differentiable with respect to v0. Sufficient conditions for this

to be true before time has been discretized are that /, q and u satisfy the conditions

imposed in Section 1.3 to assure that a unique solution to (4.13) exists for every initial
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state, as well as the additional conditions that / and q are continuously differentiable with

respect to v [hale80]. These conditions are also sufficient to assure that §ivo,0,T) is con

tinuously differentiable with respect to v0 when time has been discretized with a fixed

discretization mesh. However, <j>(vo,0,r) is not guaranteed to vary smoothly with changes

in the mesh. Indeed, insertion or deletion of points is inherently a discontinuous operation

that is likely to introduce convergence problems if a course mesh is used unless care is

taken. It is possible to avoid this problem by simply using the same mesh on each itera

tion, however this may result in unacceptable constraints on the time-step-selection algo

rithm and therefore either excessive truncation error1 or an excessively fine mesh. To

avoid these problems, a mesh is chosen to achieve the desired accuracy and used on suc

cessive iterations for as long as that accuracy can be maintained. Once it is no longer

maintainable, the Newton iteration is restarted with a new mesh and using the final iterate

from the previous mesh as the starting point. It may happen that when far from the solu

tion, the mesh will be changed often, perhaps on each iteration. Once near the solution,

however, the mesh should stabilize and allow the Newton iteration to.converge.

Like any Newton-Raphson-based method, the shooting method will converge if the

function (5.20) varies smoothly in the neighborhood of the solution and if the initial guess

is given sufficiently close to the solution. Thus, an important part of the shooting method

is the selection of a good initial guess for the solution. A reasonable start is to set the

time-varying input sources to their average value and use the resulting DC operating point

for v^0). An improvement on this procedure is to linearize the circuit about the DC operat

ing point, convert the input source waveforms into the frequency domain using the discrete

'Truncation error is the error generated in discretizing a differential equation [gear71]. The truncation er
ror is normally reduced by reducing the size of the time-steps.
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Fourier transform, and perform a phasor analysis [desoer69] to find the periodic steady-

state response of the linearized circuit. From this response, determine v^0) (this only

requires the inverse discrete Fourier transform to be evaluated at t = 0), and use this initial

guess to start the shooting method. The initial guess can be further improved by integrat

ing the circuit for several periods before applying the shooting method to allow any rapid

time constants to decay. When generating the initial guess the truncation error criteria can

be relaxed and larger time-steps taken to reduce the computational cost.

It is still possible for the shooting method to have convergence problems. As always

with Newton-Raphson, damping can sometimes be used to improve convergence. A damp

ing factor a is introduced into (5.21) so that

v#+1) =v#> +[a/f(vj»,0,r) - DTl[v^ - Kvl/\0tT)] (5.27)
where 0 £ a £ 1. With a = 1, (5.27) reverts to undamped Newton-Raphson; if a = 0 then

(5.27) becomes the fixed-point iteration v^+1) a^v^.OJ). The damping parameter

should be automatically controlled on each iteration with a close to zero when <j)(-,0,r) is

strongly nonlinear over the size of a step v$+l) - v^, and with a close to one when

<j>(-,0,T) is almost linear over the step. To achieve quadratic convergence, a must go to

one as the solution is approached. See [grosz82] [kakizaki85] for specific algorithms to

control a. Note that, for this damped shooting method to work, it is necessary for v^* to

be within the region of attraction for an asymptotically-stable limit cycle of period 7\ oth

erwise the fixed-point iteration that results when a = 0 will not converge.

A very important characteristic of shooting methods is that they converge quickly and

reliably if the state-transition function over the shooting interval is near linear. It is quite

often the case (usually by design) that <j>(-,0,r) is linear even when the overall circuit
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behavior is not. For example, consider a simple one-stage switched-capacitor filter.

Assume v0 = 0 and Cin is connected to the input source at t = 0+, the switches are thrown

connecting Cin in parallel with Cf. After everything settles, v0 = (V,„C,n)/(Cf„ +Cf).

Before the end of the clock cycle the switches are returned to their original positions. If

the shooting interval is taken to be one clock cycle, then

(j)(vo,0,r) = v0 + iVtnCin)liCin + Cf). The state-transition function over the shooting

interval is linear, even though the circuit might behave quite nonlinearly during certain por

tions of the clock cycle (ex. slew rate limiting). Shooting methods hide this nonlinear

behavior from the outer loop, and so few iterations at this level are required. The non

linear behavior is not a problem for the numerical integration used to evaluate <J>(-,0,r)

because numerical integration is a natural continuation method where time is the continua

tion parameter.

m

7M!r
out

Figure 5.1 : A simple one-pole switched-capacitor filter.
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2.3. Oscillators

It is possible to handle oscillators with extrapolation-based shooting methods [skelboe80],

however there is no natural way to find T. It is necessary to look for the maxima or thres

hold crossings on the solution waveforms and estimate T. Other than the methods that

need be employed to find 7*, extension of extrapolation to the oscillator problem is

straight-forward and well-behaved.

When applying Newton-Raphson-based shooting methods to autonomous oscillators,

T is added to the list of unknowns to be determined and an extra equation is added that

addresses the problem of having a continuum of solutions. The added equation is con

structed either to eliminate almost all solutions (with those that remain being isolated from

each other) or to modify Newton-Raphson so that it is capable of handling the continuum.

One way to restrict the set of solutions such that each is isolated is to force v (0) to lie on a

hyperplane that has been carefully selected so that it intersects the solution trajectory. The

resulting system of equations for a periodic oscillation is

<Kv(0),0,r)-v(0) = 0 (5.28)

£Tv(0) =a

where ^ is a constant vector that is normal to the hyperplane and a is a scalar. Unfor

tunately, ^ and a cannot be chosen arbitrarily, they must satisfy

max eT* / x
7s v(0 > ot

"f?»&) <«

As shown in Figure 5.2, the first two constraints assure that the hyperplane intersects the

solution orbit. The last constraint is necessary to prevent the Jacobian from being singular,
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which results if the hyperplane is tangent to the solution trajectory at v(0). Initially, § and

a are selected after integrating the circuit equations for a few cycles, as are the initial

Newton guess of T and v (0). It may be necessary to update a as the iteration progresses.

Newton-Raphson can be modified [mees81] to handle nonisolated solutions by con

straining the Newton-step direction to be perpendicular to the trajectory, as shown in Fig

ure 5.3. Thus if Avo+1)(0) =v0+1)(0) - v^O), then the equation v(0)TAv(0) =0 is added

to the Newton update iteration for <j)(v(0), 0,T) - v(Q) = 0 where both v(0) and T are con

sidered unknown.

/,(v0>(o),o,r0>)-i ^U)^t^)
v0)(0)T

dT

0

where

mfxfvit)

Avo+1)(0)
AT<;+1)

v</")(0)-$(v(/)(0),0,:r('))
0

ilv = a

Figure 5.2 : Orbit and hyperplane of Eqn. (5.28). Shows in two dimensions how
v (0) is selected by intersecting a hyperplane with the solution trajectory.



5. Time-Domain Methods

v(^(0)

•• v.

Figure 5.3 : Two steps of the shooting method on a two dimensional oscillator
problem with Av^+1) constrained to be perpendicular to v^(0).

^(v(0),o,r)=a*(^
3Mv(0)t0.r) _mN

em!
dT
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This approach does not require the selection of parameters such as %and a, but a standard

Newton-Raphson package cannot be used because the added equation is in terms of Av(0)

rather that v(0). Small errors in v^O) do not affect the accuracy of the solution, and so it

can be calculated using the approximation v(0) = (v(f]) - vit0))/hx. The computation of

3<J>(v(0),0,r)/3r is more difficult. As before, the derivative must be derived from the

discretized circuit equations. Equation (4.4) is discretized using implicit Euler and

3(J)(v(0),0,r)/3r = dvs/dT is computed by taking the final value of the dvs/dT trajectory.
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To compute dv,/97\ it is necessary to specify how ts, s = 0,1, . . . , S vary with T. Let

ts = asT where 0 = ocq < oti < • • • < as = 1. From (5.23)

J
ht I

q(vs)-qivs_x) + Hvs) + us =0 s =1,2, 5

where v, = viasT) and Mj = uiasT). Differentiating with respect to T leads to

-l r

hvTl
qivs)-qivs_x)

dqivs) dqivs-i)
dT dT dT dT

Applying the chain rule and recalling that u is constant gives

dqivs) dvs dqivs_x) dvs_x-1
qivs)-qivs-\)

hsTl
J_

hs dvs dT dvs_x dT

diivs) dvs

dv5 dT
= 0.

Again let g = di/dv and c = dqldv.

g(ys) +
civs) dv,

8r
= c(v,-i)

i r
tf(V,)-?(v,_i)

9r
- r-l= //_1(^)

^j-l 1 f
c(v,-i)-^~ + t^: <?(v,) - <7(v5_i)dT hsT I

This difference equation is solved starting with the initial state -^ = 0.

It is important to realize that Newton-Raphson has been applied to the set of finite-

difference equations that approximate the original set of differential equations, and not

direcdy to the differential equations. In computing the derivatives of vs needed by

Newton-Raphson, it is therefore necessary to use the finite-difference equations. It is also

important to notice that the time-points are independent variables that affect the value of

vs. If the time-points are not fixed, they must be included in the list of independent vari

ables being solved for by the Newton iteration. This has been done in a manner that is at

9v<

(5.30)
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least tractable by allowing T to be independent and insisting that ts =olsT,

s = 0,1, . . . , S. However, this approach constrains severely the time-steps and may

result in excessive truncation error. If the truncation error becomes intolerable, a new

mesh is chosen with both S and the a/s changing in such a way that the error

specification is satisfied. In doing so, the finite difference equations are changed and

Newton-Raphson should be restarted. However the last iterate from the previous mesh

may be used as an initial guess for the iteration on the new mesh. Initially, the mesh may

need to be changed often, but once near the solution the mesh should stabilize and allow

the Newton iteration to converge.

It is possible to change the way in which dvs/dT is computed, which may result in

some gain in efficiency. One way is to fix the time-steps t0,tx, . . . , ts_x, and only allow

ts = T to vary. This greatiy simplifies (5.30) but requires that the mesh be updated more

often. Another approach is to use the approximation dvs/dT = v(T). Thus, in an interest

ing twist, the original continuous time solution is used as an approximation to the discrete-

time solution. When using this approach, it is necessary to use a fine enough mess for the

approximation to be accurate.

2.4. Distributed Devices

When applying finite-difference method to circuits with distributed devices, the approach

taken was to use the impulse response to describe a distributed device and discretize the

impulse response in time. In doing so, only the signals on the terminals of the distributed

device were important, making it easy to characterize the device from measurements made

at the terminals. The tradeoff was the signals on the terminals were needed for all past

time. This tradeoff was acceptable when computing the steady-state solution with finite-
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difference methods because the solution is calculated for all time. However, with shooting

methods the solution is not known for any time preceding the shooting interval. Thus,

characterizing a distributed device with its impulse response is inappropriate and it is

necessary instead to discretize the distributed device in space rather than in time. With

shooting methods the imtial state of the distributed device along its entire discretized length

must be determined. One problem with distributed devices in shooting methods is that

measurements made from the terminals are difficult to convert into a space-discretized

model for the device..

Commonly, the distributed devices present in high frequency circuits can only be

represented accurately by lumped models with a large number of nodes, primarily because

these devices have very high delay-bandwidth products. For example, consider an ideal

transmission line. A model for the ideal line is a series inductor / shunt capacitor ladder

network. The values of inductance (L) and capacitance (C) per section would be chosen

to provide the correct characteristic impedance and to make the bandwidth of the model

(roughly equals l/2io/JLC ) larger than the frequencies expected in the circuit The number

of sections in) is chosen to give the model the correct amount of delay itd = nVLC ). For

lines with considerable delay at the highest frequency of interest, a large number of sec

tions are required. The computational complexity of both extrapolation- and Newton-

Raphson-based shooting methods increases rapidly with the number of state variables. As

a result, shooting methods are generally impractical for circuits containing more than one

or two distributed devices.
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2.5. Parallel Shooting

Shooting methods can have convergence and overflow problems when applied to circuits

with unstable modes. For each iteration, only the initial state is specified, therefore any

unstable modes may cause the trajectory to grow exponentially and leave the vicinity of the

desired solution. The likelihood of this occurring decreases if the shooting interval T is

reduced. Parallel, or multiple, shooting methods [keller68] [keller76] [stoer80] effectively

reduce the shooting interval by dividing it into several subintervals. For example, if the

shooting interval is divided into two equally sized subintervals, shooting is performed twice

per iteration, once for each subinterval. Thus, the problem is restructured into another

two-point boundary-value problem with twice as many unknowns (two sets of initial condi

tions, one set per subinterval) but with the shooting interval halved.

Consider dividing the interval [0,7*] for the lumped periodic test problem (4.4) into K

subintervals defined by the mesh {x0, iXt i^ . . . ,xK} where 1q = 0, xK = T and ik < ik+x.

Let vk = v(Tfc) and define ^(v*) = vk+l. Since v is 7-periodic, v0 = v^, and by forcing v

to be continuous at each xk

<t>o(v<>) " vi = °

<h(vi) - v2 = 0

<t>A--l(vAT-l) " V0 = 0 .

(5.31)
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This is a system of nonlinear algebraic equations that is solved using Newton-Raphson.

>*0(v<S;)) -/ "v*+l) - vj»" vP-uA")
vf0)'

•Witt>

Vl0>D_Vl0) v^-WvP)

-/ v^-v^, Vo^-^-iCv/^i)

(5.32)

By taking this iteration to convergence the value of the solution waveform is found at each

of the points of the mesh. Both tykivk) and J$k(vk) are evaluated by integrating the circuit

equations as in the previous subsection.

The computational complexity of the parallel shooting method is higher than the stan

dard shooting method because the Jacobian in (5.32) has much larger dimension than the

one in (5.21). The Jacobian is treated as a sparse block matrix and is efficiently factored

by simply avoiding operations on zero blocks and possibly by applying the Sherman,

Morrison, Woodbury formula [householder75] to convert it into a banded matrix. Besides

the disadvantage of increased computational complexity, parallel shooting methods are also

more difficult to program and require considerably more memory. These disadvantages,

however, are offset by two advantages. First, the parallel shooting methods are more suit

able for implementation on parallel processing computers; a feature that should grow in

importance in the future. A second minor advantage is that parallel shooting methods have

better convergence properties on unstable circuits. In particular, the region of convergence

is larger for the parallel shooting methods and increases in size as the number of subinter

vals increases [keller76].

In the parallel shooting method, the circuit equations must be integrated over each

subinterval individually. Thus each subinterval is further subdivided to perform the numer

ical integration of the differential equations. As the number of shooting subintervals
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increases, the number of subdivisions per interval decreases. This causes a problem if it

has been deemed desirable to use a high-order integration method. At each step a high-

order integration method needs the history of the solution over several past time-steps.

This history cannot extend beyond a shooting interval boundary. Thus it is necessary to

build up to higher order integration methods by taking several steps of a low order method

at the beginning of each interval. When an interval contains only a few time-points, high

order methods loose their advantage because of the large percentage of time-steps taken

with the low order methods.



Chapter 6
The Mixed Frequency-Time Method

In this chapter a boundary constraint is developed that restricts the set of solutions of a

differential equation to those that are quasiperiodic. A first attempt is made by using the

periodic boundary constraint (4.11 c), but it is shown to be computationally too expensive.

In the process it is discovered that there are periodic problems that are better handled with

a quasiperiodic boundary constraint. Another approach was suggested by Ushida and Quia

[chua81]. They construct an N-point quasiperiodic boundary constraint by, assuming that

the quasiperiodic signals are accurately approximated by a Fourier series with just K fre

quencies AK = {0,©!,... , <0tf_i), sampling the waveforms at M > 2K - 1 points

* = (ri»f2' • • • »*Af)' ^d insisting that the resulting sampled waveform is quasiperiodic

(i.e., it belongs to AP(A^x)). This method trades off accuracy for efficiency, but the tra

deoff is such that the method is impractical for almost all problems. A generalization of

this approach, referred to as the mixed frequency-time method (MFT), avoids both the

efficiency and accuracy problems of the previous methods and is discussed in much greater

103
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depth.

1. Previous Work

1.1. Quasiperiodicity Via the Periodic Boundary Constraint

The periodic boundary constraint (4.11c) can be used to find approximately quasiperiodic

solutions to differential equations because an almost periodic function x always has the

property that given some e > 0 there always exists a T e R such that

\\xit+T)-xit)\\ <e for all re IR. (6.1)

T is referred to as an e-almost period of x. The collection of all e-almost periods make up

the E-translation set of x [hale80].

Given e, it is very difficult to find an e-almost period, however it is possible to find

an almost period T for which "^fljt^+r) -*(0|| is small, but not necessarily smaller

than some e specified in advance. One approach to finding such an almost period for

x e QPiXx,X2, . . . , Xd;JK) is to choose a frequency v such that for each

; € {1,2, . . . , d} there exists a k} with Jtyv = Xj. The almost period is then 2n/v. For

example, consider jc(r) = cos(r) + cos(ref). This is 2-fundamental quasiperiodic with

Xx = 1 and X2 = k. A reasonably good rational approximation to n is 355/113. So choose

v = 1/113. Then 113v = A,! and 355v = X^> +8 where |8|<3xl0"7. Choosing

T = 2tcv = 22671 results in \xit +T) -xit)\ < 0.0002 for all t.

While it is always possible to find an almost period T that satisfies (6.1) with some e

sufficiently small, the resulting boundary-value problem is usually extraordinarily expensive

to solve. For the example, the boundary constraint involves 355 periods of the largest fun

damental. Since all methods that solve boundary-value problems require the differential
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equation to be integrated over the interval inclosed by the boundaries, using (6.1) as a

quasiperiodic boundary constraint is usually prohibitively expensive. This problem also

occurs when trying to find the periodic solution of a differential equation. Consider the

example again, but this time let X2 = 355/113 from the beginning. The solution is now

periodic, but the boundary constraint still involves 355 periods of fundamental X2. In this

situation, it is best to use a method specifically developed for quasiperiodic problems, such

as the mixed frequency-time method presented later in this chapter.

1.2. Quasiperiodicity Via an N-Point Boundary Constraint

Consider the lumped quasiperiodic test problem (4.4). Recall that

v e QPiXx,7^, . . ., Xd\IR) and so

oo oo f

vit) =V0+ S ' ' ' S VC(ki. • • • >̂ cosCjI^A,! + • • • + kdXd)) +

Vsikx, . .., kd)smisTikxXx + • • • + kdXd)) .

Assume that this series can be truncated to K frequencies without introducing significant

error, and that the resulting set of frequencies is AK = {0,00i, . . ., a>d}. If S = IK - 1

distinct time-points are chosen and v is sampled at these points, then the S coefficients of

the truncated Fourier series can be determined using the APFT. Once the coefficients are

known, the series can be evaluated for the solution to the differential equation for any time

t. If the assumption of only K frequencies being significant is correct, and if the signal

being sampled is quasiperiodic, then the solution as computed by integrating the differential

equation and the Fourier series should agree for all time. Thus, the quasiperiodic boundary

constraint is formed by selecting another time-point (one that differs from those chosen

previously) and insisting that the solution to the differential equation agree with the Fourier
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series.

For the lumped test problem (4.4)

Hvit)) + qivit)) + uit) = 0. (6.2)

Sample the solution at S + 1 time-points {tht2, . . . , ts+x). Using AK and all but the last

time-point, form the inverse APFT matrix T"1 (3.7) and solve for the Fourier coefficients

Evaluate the Fourier series at ts+x

'V0'
•

vf v(r,)

vf v(r2)

= v(r3)

v(%)

P('s+i)

V0

= v(fs+1)

where p(r5+i) = [1 cosi<Qxts+x) sin(©,f5+1) • • • cos(coif_1r5+1) sin^-i's+i)]. Thus the

quasiperiodic boundary constraint on (6.2) is written in short form as

Pits+iW

v(fi)

v(r2)

v(r3)

v(r5)

-v(rs+1) = 0 (6.3)

For the calculation of T from T"1 to be well conditioned, the time-points should be

distributed over at least one period of the smallest frequency in AK (see Chapter 3). This
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implies that the differential equation must be integrated for at least one period of the smal

lest frequency. As an example of how inefficient this can become, consider

v(r) = JJ icosikxXxt) + cos(fc2k>0) and truncate the number of frequencies by limiting

|*i 1,1*21 - 3. If Xi = 1 and X2 = k, as in the previous example, then

comin = jc-3 = 0.1415 and comax = 3k. The ratio of <Dmax to comin is 67, and so the

differential equation must be evaluated for at least 67 periods of the highest frequency.

This involves solving the differential equation over a much shorter interval than the that

required when using the periodic boundary constraint, as we show in the next section, it is

possible to reduce this interval further.

2. The Mixed Frequency-Time Method

Devising a boundary constraint that restricts the set of possible solutions for a differential

equation to those that are quasiperiodic involves blending together both time-domain and

frequency-domain concepts. A practical approach for doing this is the Mixed Frequency-

Time (or MFT) method [kundert88d,kundert89]. This method can be formulated as a two-

point boundary constraint, but to do so obscures the fundamental ideas behind the method.

The method is presented in the most natural manner first, and then it is shown that MFT

converts a differential equation into a boundary-value problem.

The mixed frequency-time method begins with the assumption that all waveforms

present are tf-quasiperiodic and that the frequency of each of the d fundamentals is known.

One fundamental, often the highest in frequency, is chosen to be the clock. The

waveforms are then sampled at the beginning of each clock cycle as shown in Figure 6.1

where the beginning of the cycle is chosen arbitrarily, but must be consistent on each

cycle. The resulting sampled waveforms are (d-l)-quasiperiodic, as stated in the
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following theorem.

Theorem 6.1 (Quasiperiodic Sampling Theorem): Let x € QP(XUX2, . . . , Xd\JR) and

T = 2riXd be the clockperiod. Letxs =xisT + 9) where s e Z and Oe JR be the clock

phase. Then {xs)e QPiXx,X1, . . . , Xd_x;ZiT#)) where Z is the set of sample times

Z(7\9)= {t :t =rT +9, reZ }.

Proof:

xit) =££•••£ Xikhk2 kd)eiik^ +hh+ "'' +k"kd)t
k ,=—ook•>=—OO kJ =—OO

VnW* I I /Jv„(7T)
vni3T)l AVn^0

«n(2n| hv*t(9T)

IIJ J JUfJ JJ^IL JJJJJ
1 r

1III
1 1

1

Figure 6.1 : The response of a switching filter circuit to a periodic function, with
the imtial points of each cycle denoted.
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xs =xilKslXd +9)

j(t,Xi + • • • + /r^)(2ra/^ + 8)
xs = X " ' " X X(khk2, . . ., kd)e

A'j=-oo k4=-*o

Let \y = ikxXx + k2X2_ + • • • + kd_xXd„x)Q

oo oo j2iw

«1=-OO kl——OB

+ J*^M+Jv

j2ju r*i*i *J_l/L^_i !

A"|=—oo kj=—oo

RecaU that e^' = 1 for all s and Jfc, and so eikA2ns +X"e) =e***9.

Xs = Z ' ' • X *(*1.*2» •••»*<f)*
j2iw

*1^1 fy-Ad-1

eto^e*

toMLet Yikhk2, ..., kd_x) = 2 X(Jfclf *2 *4)g

Xs= S 2 y(*lf*2. ••..**-!)«

j2iw
*iV *</-i\*-i

JV

*<*-!=>

D
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The MFT method uses the quasiperiodic sampling theorem to insure that the

waveforms are d -quasiperiodic by sampling them at the clock frequency and insisting that

the sampled waveforms be (J-l)-quasiperiodic. This is an easier condition to work with

because the quasiperiodic constraint is placed on a discrete waveform with a rather long

time between samples as opposed to a continuous waveform. To make this task tractable,

it is necessary to assume that the Fourier series of the sampled waveform has only a finite

number of nonzero terms. It is always possible to approach this ideal arbitrarily closely

because any signal present in a physical system must have finite bandwidth. However, for

the MFT method to be practical, there must be only a small number of nonzero terms in the
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Fourier series.

Based on Theorem 6.1, the sampled signals can be represented by a Fourier series

with d—\ fundamentals. Assume that only / terms in this Fourier series are nonzero, then

knowing the value of / samples allows the Fourier series of the sampled waveforms to be

computed. Once the coefficients of the Fourier series are known, the value of any sample

could be computed. In particular, given the value of / samples, it is possible to compute

what must be the value of the immediately following / samples for the assumption of a

finite Fourier series to hold. In other words, the finite Fourier series assumption yields a

relationship between any / non-adjacent points on the sampled waveforms and their

immediate successors, which is referred to as the delay operator. Another such relationship

exists through the differential equations that describe the circuit. For each of the / sam

ples, the equations are integrated over an interval of one clock cycle, each time using a

different one of the / samples as an initial state. Thus, using the differential equations, it

is also possible to start with / points on the sampled waveform and compute the immedi

ately following points, as illustrated in Figure 6.2. MFT uses these two relationships to

compute the quasiperiodic response of a circuit by finding the value of the / prespecified

non-adjacent samples for which these two relationships agree. If the two relationships

agree and if the assumption of only / nonzero terms in the Fourier series holds, then the

entire waveform is a <7-quasiperiodic solution to the differential equations.

2.1. The Delay Operator

Consider the sequence of points generated by sampling the quasiperiodic response of the

lumped test problem (4.4), and denote the sequence \visT): s e Z } where T = 2rtXd and

Xd is considered the clock. From the quasiperiodic sampling theorem the Fourier series for
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f»(0?2+l)_T)

%((vi+l)T)

r
*vnirnT)
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*»n({nz+i)T)

I

VniVjT)

Figure 6.2 : The discrete waveform that is constructed by sampling the response
of a circuit at the imtial point of each clock cycle. Also shown are the / cycles
that are calculated in detail.

this sequence is given by

00 00 r

visT) =V0 + 2 • • • X VC(k\ kj.frosisTik^ + • • • +J^-iA*.,)) +

Vsikx, ..., kd_x)smisTikxXx + • •• + kd_xXd_x))

where the clock phase 9 has been dropped to simplify the notation. Assume the sequence

can be accurately approximated by the truncated Fourier series that results from consider

ing only the first H harmonics of each fundamental (this is the box truncation of Chapter

3). The set of frequencies is given by
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AK = {© : co = kxXx + • • • + kdXd\

\kj\ =0,1, . . . , H for 1^ j <d\ first nonzero k} positive}.
There are K nonzero frequencies in this series and J =2K + 1 unknown coefficients.

Assuming all frequencies are distinct, there is a linear relation between any collection of /

initial points and any other collection of / initial points. However, as mentioned above,

we are most interested in the linear operator that maps a collection v(T|,r), . . . , viryT)

into v((ti1-i-)7'), . . . , viir[f+)T) where T is the clock period and {t||, . . . , t\j] cZ .

This linear operator is referred to as the delay matrix.

Deriving the delay matrix is a two stage process. First, the / points,

v(T|XT),..., vir\jT) are used to calculate the Fourier coefficients. Then the Fourier

series (using these coefficients) is evaluated at the / times, iT\x+l)T, . . . , it\j+l)T. The

Fourier coefficients are then eliminated to yield the desired direct relation. To compute the

Fourier coefficients, write the truncated Fourier series as a system of / linear equations in

/ unknowns using the APFT,

-iwhere Tq

r-i
1 n

Vni0)

vfo)

Vn(K)

VfiK)

R^x/ is given by

r-i -
1o -

1 coscojtijr sinco^jr

1 coscoiTfcr sincc^r

1 coscD1Tj3r sinco1T|3r

1 coscojivr sinco,T|yr

vn(J\\T)

vniT\2T)

vn<y\iT)

vn<JbT)

cosco^Tijr sinco^Ti^

cosco^t\27' sm(oKr\2T

cosco^T\3r sinco^^r

cosco^tvT sm&KT\jT

(6.4)
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where coA. e AK. The matrix Tq l maps the Fourier coefficients to a sequence and is

referred to as the inverse almost-periodic Fourier transform. Its inverse, if it exists, is the

forward almost-periodic Fourier transform and is denoted by r0. We can also write

rv-'

'v„iO)
vfd)

Vs„il)

V?iK)

ytiK)

v»((t|i+l)T)

Vn((Tl2+l)D

vniir\3+\)T)

v„((TV+l)r)

—l JxJwhere Tf e Br XJ is given by

rf1-

1 cosco^Ti^^r sincOjO^+l)!

1 cosco1(T|2+l)r sinco,(T|2+l)r

I cosa^Tk+l^ sinco,(T|3+l)r

coscojf (r\j.+1 )T sin<% (T|,+1 )T

cosco^ir\2+1)T sinco^(T|2+1 )T

cos<% (T|3-h 1)T sin<% (r|3+1 )T

1 coscoiOv+^r sinco,(TV+l)r ••• cosco^(TV+l)r sm(aKiT\j+l)T

Given a sequence, a delayed version is computed by applying T0 to the sequence to com

pute the Fourier coefficients, and then multipling the vector of coefficients by Tf*.

v„((tli+l)r)

v„(0l2+l)n

vB(cn/+i)T)

Thus, the delay matrix, DiT)e JRJ x/, is defined as

\vn(T\iTJ

v„(n/r)

~rf r0

(6.5)

(6.6)

D(r) =rf,r0. (6.7)

As the delay matrix is a function only of {co^co^ ...,©#}, {tji,t|2 ry}, and 7\ it

is computed once and used for every node.
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2.2. The Differential Equation Relation

If the node voltages are known at some time 10, it is possible to solve the equation describ

ing the lumped test problem (4.4) and compute the node voltages at some later time r,.

The relationship between v(r0) and \>itx) is expressed using the state-transition function

v(r1) = (|)(v(f0),r0>f1)

where <J> can be expanded as

<Kv(r0)>'o,'i) =

<h(v(r0),ro>fi)

<h(v('o).'o*'i)

<Mv('oWi)
tfxlxl -»1R for all circuit nodes n = 1,2, . . ., N.where §n :IR

(6.8)

(6.9)

Now reconsider the / initial points at some circuit node n, v„iT\xT), . . . , v„iT[;T).

For each j = 1,2, . . . , / and each n = 1,2, .. . , N write

vn((Tiy+l)D = 4>niviT\jT),T\jT,iT\j+l)T) (6.10)

where T is the clock period. Note that vniiT\j+l)T) is the imtial point of the cycle

immediately following the cycle beginning at r\jT. Also, the node voltages at T|;T are

related to the node voltages at (tj;+1)T by the delay matrix, D (7). That is,

DiT)

vn(T\\T)

v„iT\2T)

VnCnjT)

v„(Cni+i)r)

V„((Tl2+l)r)

vniinj+l)T)

(6.11)

It is possible to use (6.10) to eliminate the v„((TJ;-+l)r) terms from (6.11), which yields

vnCr\\T) hivi^n^TAVi+VT)

D(T)
vn(T\2T)

ynif\jT)

=

<i>2(v(n2n.n2r>cn2+i)n

_<Mv(n/n,%7\(iv+i)r

for each node n = 1,2,... ,N.

(6.12)
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Solving the N simultaneous equations (6.12) results in knowing v(T|;T) for

j = t\x,t\2, . . . , t\j . From these numbers, the Fourier coefficients V(0), V(l), . . . ,V(K)

can be computed. Once the Fourier coefficients are known, it is possible to compute v(/T)

for any integer j. The value of v(r) for any t is found by integrating (4.4) using the

nearest preceding v(/T) as a starting point.

2.3. An Example

Consider the simple switched-capacitor RC one-pole filter shown in Figure 6.3. It is easy

to show that

_ Cxvinif\jT)'+C2vi'r\jT)
X+ C2

Since the circuit is linear, it is only necessary to consider DC and the fundamental in the

<t>,(v(n;T),n,r,(ii; + iF)= r _

solution, and so only three samples are needed. Assume the fundamental is 1 Hz and the

clock is 6 Hz, and choose the samples to be taken at t = {0,1/3,2/3}. Then

Figure 63 : A simple switched-capacitor RC filter.
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and

1 cos(O) sin(O) 1 1 0

r-i -lo - 1 cos(^-) sin(^-) = >4
V3

2

1 cos(^) sin(|-) M 2

r-1r -

i 1 1

3 3 3

r0 =
2 1 1

3 3 3

0
1 _J_

V3 V3

1 cos(|) smif)
1 cos(tc) sin(jt)

1 cos(^) sin(-^)

1 j_ f
2 2

1 -1 0

i I _il
2 2

D(D =rfIr0 =|
2 2-1

-1 2 2

2 -12

Substituting into (6.12),

"2 2-1" v(0)'
-12 2 v(j)
.2 -1 2.

v(-)
K3'

C\ +c>

Cxvini0) + C2vi0)

C,vjn(}) +C2v(})
C,vin(|) +C2v(})
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By giving values for Ch C2, and vinisT) for 5 = 0,2,4, this linear equation is solved for

[v(0) v(—) v(-|)]T. The Fourier coefficients are computed with

V(0) Vci\) Vsi\) = rr

v(0)

v(})

v(f)
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2.4. MFT as a Two-Point Quasiperiodic Boundary Constraint

To show that the MFT formulation is interpretable as a two-point boundary-value problem,

the time for each of the J intervals is written as a function of a new independent variable t

that ranges over the interval [0,1]. The boundaries for the two-point boundary-value prob

lem are taken to be t = 0 and x = 1. For interval /, f;- = (T|;- + i)T and let

V(x) = [v((m + x)T)fv((ih +W)> • • • . v((n/ +T)r)]T
and so V(t)e J&NJ. Consider the set of differential equations that describe the circuit over

one cycle to be independent from the set that describe the circuit in any other cycle and

combine the / independent sets into one composite set of differential equations for which

V is the state variable. Denote O as the state-transition function for the enlarged set of

equations. The differential equation relation becomes

V(1) = «D(V(0),0,1) =

The delay equation is written

Wv(Tbr),Thr,(Tb + i):r)

<Kv(n/r),Tvr,cn/ + i)r)

VH) = DNiT)ViO).

DNiT)e jr.nj*nj is given by

DNiT) =
dxxlN - - - dXJlN

dJxlN - - • djjlN

where di} e IR is the ij* element of the delay matrix D(T) and 1# € IR^ is the identity

(6.13)

(6.14)

(6.15)

matrix. Equation (6.14) is a two-point boundary constraint on (6.13). The solution of

these two simultaneous equations is a collection of values that fall on a quasiperiodic solu

tion for the lumped test problem at the prespecified points. These two equations can be

combined into one by eliminating V(l).
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O(V(0),0,1) - DNiT)ViO) = 0 (6.16)

This equation is equivalent to (4.10) with A =-DN(T), B =1NJ, c = 0, (j) = 4>, and

jc =V.

3. Practical Issues

MFT poses the problem of finding a quasiperiodic solution to the lumped test problem (4.4)

as a boundary-value problem by using (6.13) and (6.14). These equations can be solved

by using either finite-difference methods or shooting methods (Chapter 5). In either case,

the number of unknowns, and hence the time required to compute the solution, is likely to

be large. For a circuit with N nodes, the number of unknowns is NJ, where / is the

number of samples required by MFT. Recall that MFT uses the quasiperiodic sampling

theorem to convert the problem of finding a continuous time J-quasiperiodic solution to

the problem of finding a discrete-time (</-l)-quasiperiodic solution. / is the number of

unknown terms in the Fourier series of the discrete-time (J-l)-quasiperiodic signal. To

reduce the time required to compute the solution, both the structure of the MFT must be

exploited during the computations required by the shooting method and /, the number of

terms in the Fourier series, must be minimized.

3.1. The Quasiperiodic Sampled Waveform

The number of unknowns in MFT is proportional to the number of significant terms in the

Fourier series of the id- l)-quasiperiodic sampled waveform. There are two degrees of

freedom that can be exploited to reduce the number of significant terms in this series.

First, any one of the d fundamental frequencies can be chosen as the clock. This is dis

cussed further in the next section. Second, the phase of the clock signal at which the sam

ples are taken (6 in the quasiperiodic sampling theorem) is as yet unspecified. It can be
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advantageous to choose this phase judiciously when the clock signal is causing the circuit

to switch. For example, consider the circuit shown in Figure 6.4. The voltage at the out

put and summing nodes is sampled with 8 = 0 and 8 = 0.257, The spectra of the sampled

waveforms are shown in Figure 6.5. This shows that the number of significant terms in

the Fourier series of the sampled signal is much higher when 8 = 0.257. This behavior

^n —
v_ ..c{

5

out

'm

Clock

V>n

v_ K K N
V |/ V

'out

Vout((s-W.25)T)

r^ 1~~[
T 1 t

^~r-i

Figure 6.4 : A switched capacitor integrator and its steady-state response to a
sinusoidal input.
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it i_L

e =o 9 =0.25T

Figure 6.5 : Spectra for the sampled waveforms from 6.4.

results because at 8 = 0 there is a delay of 7 seconds between when the switch last

changed state and when the waveforms are sampled. Conventional design practice dictates

that any transients should have decayed to negligible levels during this interval. At this

time, feedback in the circuit is acting to minimize distortion. Conversely, when 8 = 0.257

the samples are being taken at a time when the op amp is undergoing slew rate limiting, an

effect that results from nonlinearities in the input stage.

It is very common for analog switching circuits to respond very nonlinearly to the

clock signal but respond (by design) nearly linearly to other input signals. Choosing the

proper clock phase to sample the waveforms judiciously serves to reduce computation time

in two important ways. First, it can greatiy reduce the number of Fourier series terms

needed to represent the sampled signal accurately. Second, choosing 8 to reduce /, also

serves to make <£ in (6.13) more linear and so reduces the number of iterations required by

the shooting method (Chapter 5).
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3.2. Selecting the Clock

In the MFT the circuit equations are integrated for a total of / clock cycles. The number

of time-points required in one clock period is proportional to TXd, where Xd is the largest

of the fundamental frequencies and 7 is the clock period . Thus, the total number of

time-points required is proportional to JTXd where Xd is fixed. This forms the basis used

to choose which fundamental frequency should be the clock: the clock is chosen to be the

fundamental that minimizes the JT product. Clearly, the 7 term is minimized by selecting

the largest fundamental to be the clock. However, if the largest fundamentals are close in

frequency, it is sometimes desirable to use other fundamentals as the clock because a

smaller / can be used. For example, in a circuit that exhibits a <?-quasiperiodic solution

with Xd_x close to, but less than, Xd, it would be preferable to choose Xd_x as the clock if

either the input sources had considerably larger signal levels at frequencies Xd_x and its

harmonics than at other frequencies, or if the state-transition function of the circuit for one

period of the fundamental Xd„x is considerably more linear than for one period of the other

fundamentals. If both situations are present, then / can be smaller if Xd_x is chosen as the

clock over Xd.

4. Nitswit

Nitswit is a circuit simulator developed duing the course of this research that implements

the MFT method and solves for quasiperiodic steady-state solutions [kundert88d] [kun-

dert89]. The name results from Nitswit being a detailed (nit) level circuit simulator for

analog switching (swit) circuits. Nitswit is the first circuit simulator capable of finding

quasiperiodic steady-state solutions directly in the time domain. It uses the MFT method to

formulate the problem of finding a quasiperiodic steady-state solution as a boundary-value
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problem and Newton-Raphson-based shooting methods to solve the boundary-value prob

lem. Nitswit exploits the property of shooting methods that allows them to easily a handle

circuit with a near-linear state-transition function over the shooting interval even when the

circuit is behaving very nonlinearly during the interval. This allows Nitswit to handle ana

log switching circuits such as switching mixers and switched-capacitor filters. Even the

difficult task of computing the intermodulation distortion of narrow-band switched-

capacitor filters is performed efficiently with Nitswit. It is designed to simulate these cir

cuits without the approximations of the discrete-time methods of Fang [fang83] and Rabaey

[de man80] (such as the slow-clock and macromodeling approximations).

4.1. Equation Formulation

Nitswit applies shooting methods to solve the mixed frequency-time formulation equations

(6.13) and (6.14), rewritten slightly here as

vdl,7)

V(T]27)

v(n/7)

= DNiT)

v(THn

v(ti27)

v(%7)

<Kv(Tlin,Tli7\(Th + l)7)

4>iviT\2T),T\2TtiT\2+l)T)

<Kv(Tvn,Tur,(n/ + i):n

where F : 1R.NJ->]RNJ, and DNiT) is given by

DNiT) =
dlxlN • dXJlN

dJxlN ••• djjlN

where dtj e R is the if1 element of the delay matrix D(J) and 1N e JR.N is the identity

= 0
(6.19)

(6.20)

matrix. This equation is solved with Newton-Raphson based shooting methods as shown

in Chapter 5.
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4.2. Implementation

Both the classical direct methods and the mixed frequency-time methods have been imple

mented in the simulation program Nitswit, which is written in the computer language "C."

Nitswit takes as input a file with a SPICE-like description of the circuit, that is, a list of

elements (MOS transistors, resistors, capacitors, etc) with their node connections, and a list

of options to select among methods. If the mixed frequency-time method is used, a

switching clock period and an input frequency, along with a number of harmonics, must be

specified. The program produces as output waveforms as in Figure 6.1 for direct methods,

and waveforms as in Figure 6.2 and Fourier coefficients for the sampled waveforms with

the mixed frequency-time algorithm.

4.2.1. Application Examples

Nitswit is particularly efficient when simulating switched-capacitor filters. One reason is

that switched-capacitor filters are usually followed by a sampler, and so only the initial

point of each cycle is needed. Also, the circuits are generally designed to exhibit litde dis

tortion, so if driven by a sinusoid, only a few harmonics of the sequence of initial points

are significant and only a few full clock cycles need to be computed. Finally, the state-

transition function for a switched-capacitor filter over a clock cycle is nearly affine (linear

plus a constant), and therefore Newton-Raphson applied to (6.19) converges in just a few

iterations.

To demonstrate the effectiveness and versatility of the algorithms used in Nitswit, we

consider analyzing the distortion of a switched-capacitor circuit. Figure 6.6 shows a high

speed fully-differential switched-capacitor sample-and-hold amplifier [lewis87]. This cir

cuit precedes an analog-to-digital converter and has all three characteristics mentioned



6. The Mixed Frequency-Time Method 124

above. An important performance specification for this circuit is distortion. Its distortion

is measured by applying a sinewave to the input and a periodic clock to the sample/hold

input. The output signal is then sampled at the end of each hold interval and a Fourier

series is constructed from the sampled signal. If the sample-and-hold is ideal, there will be

energy only at the frequency of the input sinusoid. Any energy at other frequencies is con

sidered distortion. The sampling of the output at the end of the hold interval is needed to

eliminate settling effects that result at transitions of the sample/hold signal that are ignored

by the analog-to-digital converter that follows. Conventional circuit simulators limit the

input frequency to be near the sample/hold clock rate and do not sample the output signal

at the end of the hold interval before computing its Fourier series.

Figure 6.7 shows the operational amplifier used in the sample-and-hold of Figure 6.6.

The combined circuit contains 65 nodes. The distortion of this circuit was measured with

Nitswit versus the amplitude of the input signal (Figure 6.8) and versus the sample/hold

+>,'2lVrV21°0U'+ ?2 £p*h
CMBIASI Ft. BIAS

^

*\ *\ ?** ?2

Figure 6.6 : A full-differential switched-capacitor sample-and-hold amplifier
[lewis87].
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Figure 6.7 : The operational amplifier used in the sample-and-hold amplifier of
Figure 6.6 [lewis87].

clock frequency (Figure 6.9). Of particular interest to the designer is the distortion versus

clock rate. This is a quantity that cannot be determined except with a circuit-level simula

tor such as Nitswit or by measuring the actual circuit.

These simulation were performed with a SPICE level 1 MOS model with a simplified

version of the charge conserving model of Yang, Epler, and Chaterjee [yang83]. This

model was chosen simply because it was easy to implement However, it is generally con

sidered to be too inaccurate to be suitable for analog circuits. Since the mixed frequency-

time algorithm has extra overhead (primarily, the time required to construct the sensitivity
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Figure 6.8 : Distortion of the sample-and-hold amplifier as a function of input
signal amplitude. The input signal frequency is 500 kHz and the sample/hold
clock rate was 10 MHz.
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Figure 6.9 : Distortion of the sample-and-hold amplifier as a function of
sample/hold clock frequency. The amplitude of the input signal is 1.25 V
differential and its frequency is 500 kHz.

matrix) that dominates over the time required for model evaluation, it is expected that the

algorithm should do better with respect to direct methods when a more accurate (and there

fore a more complicated) model is used.

The Fourier series for the sampled signal was truncated after three harmonics. For

the case where the input was a 2 V differential 500 kHz sine wave and the sample/hold

clock rate was 10 MHz, this gave results that were identical to direct methods to within the

truncation error of the integration method.

4.2.2. Comparison to Direct Methods

The program Nitswit contains two algorithms capable of finding the steady-state response

of a circuit. The first is simply a transient analysis that continues until a steady-state is
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achieved. The second, of course, is the mixed frequency-time algorithm. Coding both

algorithms into the same simulator provides a fair evaluation of the mixed frequency-time

approach.

Figure 6.10 shows the time required to simulate the sample-and-hold of Figure 6.6 to

steady-state as a function of the input signal frequency for both direct methods and for the

mixed-frequency algorithm. The amplitude of the input signal is 1.25 V differential and its

frequency is 500 kHz. The sample/hold clock is fixed at 5 MHz and three harmonics of

the sampled signal are computed. This figure shows that the time required for the mixed

frequency-time algorithm is roughly independent of the frequency of the input signal

whereas the time required for direct method is proportional to the ratio of the clock fre

quency to the input frequency. This circuit provides the freedom of choosing the input fre

quency close to the clock frequency, allowing transient analysis to.be efficient. Many cir

cuits do not provide this freedom.

Results for four circuits are given in Table 6.1. The first, sclpf, is an RC one-pole

SC filter. The second, scop, is a one-pole active CMOS low pass filter. The circuit,

mixer, is a double-balanced switching mixer with a 1.001 MHz RF input signal and a 1

MHz LO signal. This circuit shows that Nitswit is not limited to switched-capacitor cir

cuits. The last circuit, frog, is a five pole Chebyshev active CMOS leap frog filter with 0.1

dB ripple. This circuit is driven with a 1 MHz clock, has a 20 kHz bandwidth, and is

being driven with a 1 kHz test signal to measure its distortion.
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Figure 6.10 : Time required for simulation of sample-and-hold amplifier to steady
state versus input frequency using direct methods and the mixed frequency-time
algorithm. These time were measured on an HP9000/370 with a floating point ac
celerator.

circuit direct mixed frequency-time ratio

name nodes cycles/ time harmonics Newton time direct/
period (sec) iterations (sec) MFT

sclpf 2 33 24.5 3 3 4.3 5.7

scop 13 100 522 3 6 . 90 5.8

mixer 34 1000 7132 3 4 161 44.3

frog 77 1000 12,987 3 6 1228 10.6

Table 6.1 : Nitswit results from a VAX 8650 running ULTRDC 2.0.

Examination of the results above indicate as much as an order of magnitude speed

increase over traditional methods, but this is not as much as one would expect. Much of

the CPU time for large circuits, such as frog, is spent calculating the dense sensitivity

matrix and factoring the Jacobian. It does turn out however, that almost all the entries of

the sensitivity matrix are near zero, and this suggests significant speed improvements can
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be achieved by ignoring those terms.



Chapter 7
Harmonic Balance: Theory

1. Introduction

Harmomc balance differs from traditional transient analysis in two fundamental ways.

These differences allow harmomc balance to compute periodic and almost-periodic solu

tions direcdy and in certain circumstances give the method significant advantages in terms

of accuracy and efficiency. Transient analysis, which uses standard numeric integration,

constructs a solution as a collection of time samples with an implied interpolating function.

Typically the interpolating function is a low order polynomial. However, polynomials fit

sinusoids poorly, and so many points are needed to approximate sinusoidal solutions accu

rately.

The first difference between harmomc balance and transient analysis is that harmonic

balance uses a linear combination of sinusoids to build the solution. Thus, it approximates

naturally the periodic and almost-periodic signals found in a steady-state response. If the

steady-state response consists of just a few dominant sinusoids, which is common, then

harmomc balance needs only a small data set to represent the response accurately. The

advantage of using sinusoids to approximate an almost-periodic steady-state response

becomes particularly important when the response contains dominant sinusoids at widely

separated frequencies.

131
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Harmonic balance also differs from traditional time-domain methods in that time

domain simulators represent waveforms as a collection of samples whereas harmomc bal

ance represents them using the coefficients of the sinusoids. (Just as in traditional time-

domain methods where it is presumed that a polynomial is used to interpolate between

samples, we can use samples to represent the combination of sinusoids, with the under

standing that a sum-of-sinusoids interpolation is to be done between samples.) Represent

ing signals with the coefficients is a practical matter, the solution calculated will be the

same with either representation, but using coefficients makes it easier to model and evalu

ate the linear components. Working with the coefficients and exploiting superposition

makes it possible to calculate symbolically the response from linear dynamic operations

such as time integration, differentiation, convolution, and delay. Because linear devices

respond at the same frequency as the stimulus, it is only necessary to determine the magni

tude and phase of the response. Using phasor analysis [desoer69], this is easily done for

lumped components such as resistors, capacitors and inductors; while it is not trivial for the

more esoteric distributed devices like transmission lines with dispersion, it is generally

much easier to find their response using phasor analysis than to try to determine their

response to sampled waveforms in the time domain. The use of phasors to evaluate the

linear devices is perhaps the most useful feature of harmomc balance.

The major difficulty with the harmonic balance approach is determining the response

of the nonlinear devices. There is no known way to compute the coefficients of the

response directly from the coefficients of the stimulus for an arbitrary nonlinearity, though

it is possible if the nonlinearity is described by a polynomial or a power series [steer83]

[rhyne88]. It is not necessary to consider only these special cases, nor to accept the error

of using them to approximate arbitrary nonlinearities. Instead, we convert the coefficient
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representation of the stimulus into a sampled data representation; this is a conversion from

the frequency domain to the time domain and is accomplished with the inverse Fourier

transform. With this representation the nonlinear devices are easily evaluated. The results

are converted back into coefficient form using the forward Fourier transform.

Because the coefficients of the steady-state response are an algebraic function of the

coefficients of the stimulus, the dynamic aspect of the problem is eliminated. Thus, the

nonlinear integro-differential equations that describe a circuit are converted by harmomc

balance into a system of algebraic nonlinear equations whose solution is the steady-state

response of the circuit. These equations are solved iteratively.

Harmonic balance was given its name because it was viewed as a method for balanc

ing of currents between the linear and nonlinear subcircuits. Furthermore, harmonic bal

ance is usually considered a mixed-domain method, because the nonlinear devices are

evaluated in the time domain while the linear devices are evaluated in the frequency

domain. However, evaluating the nonlinear devices in the time domain is not a fundamen

tal part of the algorithm, but rather a convenience that does not affect the essential charac

ter of the algorithm. It is the formulation of the circuit equations in the frequency domain

that give harmonic balance its essential characteristics. Thus, harmomc balance can be

summarized as just being the method where KCL is formulated in the frequency domain.

This chapter starts with a brief example, which is used to illustrate the harmonic bal

ance method and some of its error mechanisms. The harmomc balance equations are then

derived for the distributed test problem. The resulting system of nonlinear equations is

solved using nonlinear programming methods, nonlinear relaxation, and the Newton-

Raphson algorithm. Finally, the magnitude of the errors present in harmonic balance are
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estimated and techniques to extend harmonic balance to autonomous circuits are discussed.

1.1. An Example

As an example of how harmomc balance can be used to find the solution to a nonlinear

differential equation, consider Duffing's equation, which can be used to describe a non

linear LC circuit.

x + X2x + \ix3 =A jcos(co0r) (7.1)

The "amount of nonlinearity" in the equation is controlled by \i, and X is the resonant fre

quency of the circuit when (X = 0. The periodic steady-state solution to this equation has

oo

the form x = £a*cos(£<)i>0r) where ak = 0 for k = 0,2,4 To make the problem tract-
it =o

able, only ax and a3 will be assumed to be nonzero. Substitute the assumed solution

x it) = a 1cos(©<> t) + a 3cos(3co01) into (7.1).

>A\xa Icos(9co01) + 3A[xa xa 2cos(7co01) + 3A\iia fa 3+axa | )cos(5o01) + (7.2)

[JA\ii3a I + 6a fa 3+a?) + (X2-9o>l)a 3]cos(3©01) +

[y4|n(3a fa3 + 6a xa3 + 3a x) + (X2 - o2)a 1]cos(©0t)=A icos(©01)

Using the orthogonality of sinusoids at different frequencies, rewrite (7.2) as a system of

five equations, one for each harmonic generated by the assumed solution.

cos(co01): V4\ii3a fa2 + 6axai +3ax) + (X2 - (a~)a X=AX (7.3a)

cos(3co01): V4\ii3a 33 +6a fa 3+a?) + iX2-9a>;)a 3=0 (7.3b)

cos(5co01): 3A\iia fa3 + axa2) = 0 (7.3c)

cos(7co01): 3A\xa xa 32 =0 (7.3d)

cos(9©01): JA[ia %=0 (7.3e)

Since there are only two unknowns, it is not possible to satisfy all five equations exactly.

This problem results from including only a finite number of harmonics in the assumed
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solution when really an infinite number exists. Traditionally, the coefficients of the

sinusoids in the solution are computed by solving the equations at the harmonics present in

the solution. Thus ax and a3 are found by solving (7.3a) and (7.3b) simultaneously. In

effect, the exact solution is found for (7.1) with a perturbed right-hand side.

x + X2x + \joc 3=Aicos((00 r) +A5cos(5co<, t) + AtC0S(7g)o t) + A9cos(9a>01) (7.4)

where A5= -3A\iia fa 3+a xa 2)

A-j = -*Ayuaxai

A^--lA\Xja\

Notice that no mention has been made about how to solve the system of algebraic

equations generated in the last step of the method of harmomc balance. Several different

approaches have been used, the most notable being optimization [nakhla76] [gopal78]

[filicori79], nonlinear relaxation [hicks82b], and Newton-Raphson [egami74] [ushida84].

All these methods have quite different characteristics, but all have been referred to only as

harmomc balance, which has led to a certain amount of confusion. To eliminate any con

fusion, in this dissertation, the three approaches are be referred to as harmomc program

ming, harmomc relaxation, and harmomc Newton.

2. Error Mechanisms

There are three sources of error that are of interest in harmomc balance. The first two

result from truncating the harmonics considered to some finite number, and the third results

from not completely converging the iteration used to solve the nonlinear system of alge

braic equations. If Newton-Raphson is used, then the third source of error can be driven to

an arbitrarily small level in relatively few iterations because of the method's quadratic con

vergence property. So this source of error will be ignored for now.
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As shown in (7.4), harmonics that are not in the assumed solution end up perturbing

the right-hand-side of the algebraic equations. Recall that (7.3a) and (7.3b) were solved

exacdy for ax and a3 and (7.3c), (7.3d) and (7.3e) were left unsatisfied; thus (7.1) was also

unsatisfied. Let e be the amount by which (7.1) is not satisfied

Z0C,t) =X+ X2X + UA'3 - A!COS(G)or)

where

xit) = a\ cos^ t) + df3 cos(3o)01)

From (7.4) it is clear that

e(jc,t) = A5cos(5co01) + A tCOS(7g)<, t) + A9cos(9©<, t)

Note that the residual 8 is orthogonal to the form of the assumed solution

<xicos(a>0r) + cc3cos(3co0r). This is the defining characteristic of Galerkin methods and is

a property of harmomc balance when only a finite number of harmonics are considered.

This property is lost if the nonlinear devices are evaluated in the time domain and the

transform used exhibits aliasing.

An iterative method is used to solve the nonlinear algebraic system of equations gen

erated by harmonic balance. Equation (7.3) is an example of such a system; it can be

represented as

F(X) = 0

where F:IR2->R5 and X = [a\ fl"3]T. In practice, this system is evaluated at X = [ax a3]T

by computing xit) = a,cos(a)0r) + a3cos(3co0f) at several time-points tx,t2, . . . , ts\

evaluating fit) = x + X2x +\xx3 -A xcosi(a0t) at these time-points; and converting fit)

into the frequency domain using the discrete Fourier transform (DFT). In this example,

fit) is band-limited, so its Fourier coefficients can be calculated exacdy. Only the

coefficients of the first two harmonics of / are of interest, the remaining ones are
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discarded. However, since there are 9 harmomcs present, the Nyquist sampling theorem

states that / must be evaluated at more than 18 time-points to determine the coefficients

for the first two harmomcs accurately. Originally, when it was decided to compute only

two harmonics, it was assumed that the coefficients at the remaining harmomcs are small.

So for efficiency, when calculating the Fourier series of /, the remaining harmonics are

assumed to be negligible, and / is evaluated at only enough points to calculate the

coefficients of the first two harmonics. Since the remaining harmomcs are not zero, they

will alias down onto the two-, resulting in further error.

3. Derivation

Recall that the statement of Kirchoff s current law for the distributed test problem (4.5) is

/(v,f) =/(v(0) +qivit)) + Jy{t- T)v(T)tfT +ii(f) =0

When applying harmonic balance to this problem, both v and / (v) are transformed into

the frequency domain. Since v is almost periodic (by assumption), both i(v) and qiv) are

almost periodic; therefore all three waveforms can be written in terms of their Fourier

coefficients: Fv = V, Wi(v) = WiiJTlV) =1(V) and F<?(v) = ¥q(JTlV) = QiV), where

F represents the Fourier transform operator. Since v, i*(v) and qiv) are vectors of

waveforms — one waveform for each node in the circuit — V, /(V) and Q (V) are vectors

of spectra. The Fourier coefficients of the convolution integral are computed by exploiting

its linearity. Assume y satisfies

oo

jyit)Tyit)dt <«,
—oo

and y(r) = 0 for all t < 0; that is, assume y is causal and has finite energy (or

equivalendy, that the circuit with all nonlinear devices removed is causal and
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asymptotically stable); then

IFjv(f -t)v(t)</t =YV
—oo

where

Y = [Ym„] m,n =1,2, ...,N

Ym„=[Ymnik,l)] k,leZ

where m,n are the node indices; k,l are the frequency indices, and

Ymnik,l) =

Re{Ymn(JG)jt)} Im{Ymn(j©t)}

-Im{YmnacO|t)} RelY^a^)}

0

if*=/

if* *l
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where Y is the Laplace transform of y [desoer69] and j = >£T.

Now (4.5) can be rewritten in the frequency domain as

FiV) = liV) + QQ<y) + YV + U =0 (7.5)

where U = JFu contains the Fourier coefficients for the source currents over all nodes and

frequencies, and

Cl = [Qmn] m,n =1,2, ...,N

\[Clmnik,l)] ifm=n
** mn —j Q

<>,„„(*,/) =

if m * «

if Jt =/

if* *l

0 cot

-co* 0

0

That F^(v) = flg{V) follows from the differentiation rule of the Fourier series. Equation

(7.5) is simply the restatement of Kirchoffs current law in the frequency domain.

It is important to realize that the frequency-domain functions for the nonlinear dev

ices (/ and Q ) are evaluated by transforming the node voltage spectrum V into the time
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domain, calculating the response waveforms i and q, and then transforming these

waveforms back into the frequency domain. To assure that the nonlinear device response

waveforms are almost periodic, we require that the nonlinear devices be algebraic. If not

(that is, if the device has memory), then the response waveform has a transient component,

is not almost periodic, and cannot be accurately transformed into the frequency domain.

The restriction that nonlinear devices be algebraic clearly allows nonlinear resistors. For

tunately, it also allows nonlinear capacitors and inductors (actually, any lumped nonlinear

component) because their constitutive relations are algebraic when written in terms of the

proper variables; v and / for resistors, v and q for capacitors, and i and <J> for inductors

[chua80]. The conversion between / and q (i = dqldt) and v and <j> (v = dtydt) is done

in the frequency domain where it is an algebraic operation and does not disturb the

steady-state nature of the solution. Nonlinear distributed devices, however, are not alge

braic, and the trick of evaluating their response in the time domain and transforming it into

the frequency domain cannot be used. Instead, it is necessary to remain in the frequency

domain and model the nonlinear device using a Volterra series representation or develop an

approximate lumped model for the device. Conventional transient analysis is also not able

to handle nonlinear distributed devices, a mixed device / circuit simulator such as CODECS

[mayaram88] or MEDUSA [engl82] is needed. Fortunately, the transmission lines used in

high-frequency analog and microwave design are all linear, even those that are dispersive

or lossy. We will not consider nonlinear distributed devices further.

4. Harmonic Programming

It is possible to apply nonlinear programming techniques to solve (7.5). To do so use

8(V) = *AFTiV)F(Y) as the cost function where 8(V)e IR. An optimizer is used to find
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the value of V that globally minimizes e(V). If a V is found such that e(V") = 0, then V

satisfies (7.5).

Applying nonlinear programming to solve the harmonic balance equations is expen

sive because there is a very large number of unknowns to be found and because nonlinear

programming techniques are expensive for large problems. If a circuit with 20 nodes is

simulated at 8 harmonics, then 300 variables need to be optimized. If there are many

nodes in the circuit that have only linear devices attached, then it is possible to shrink the

number of variables to be optimized by considering the collection of all linear devices as a

single multiterminal subcircuit. The nodes with no nonlinear devices attached become

internal nodes to the subcircuit and so need not be considered as optimization variables.

Figure 7.1 shows a convenient way of visualizing the analysis once the linear devices have

been placed in a subcircuit. Here, the substitution theorem has been used to replace the

nonlinear devices with sources. The resulting circuit is linear, however, the voltage spectra

for the voltage sources that are used to replace the nonlinear devices are unknown. These

spectra are generated by the optimization package. Nakhla and Vlach [nakhla76] have

taken this idea one step further by considering the collection of nonlinear devices as a sub-

circuit as well. Neither of these two approaches help when MMIC's are simulated how

ever because each node in a monolithic circuit tends to have linear devices as well as non

linear resistors and capacitors tied to them.

Using an optimizer to solve the harmonic balance equations is inefficient. To do so

requires that a difficult problem, that of solving F(V) = 0 for V, is converted into an even

dFT(VW(V)
harder problem, that of solving v M v ' = 0. That information is lost in the conver-

dV

sion aggravates the situation. All information about each of the individual contributors to e
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Figure 7.1 : Circuit interpretation of harmomc programming.

is lost when FT(V)F(V") is formed to calculate e(V). It is also difficult to exploit the

structure of the harmonic balance / node admittance equations. For these reasons, the

approaches presented later are preferred over harmomc programming.

The next section presents how to solve the harmonic balance equations with optimiza

tion techniques and the reasons why this is not the preferred approach. The simation

where it is desired to do performance optimization while solving the harmonic balance

equations is also discussed.

4.1. Root Finding as a Nonlinear Least Squares Problem

To use optimization methods to solve (7.5), it is necessary to develop an appropriate cost

function that has minima at the same values of V for which F has roots. The most com-
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monly used cost function results from formulating the problem as a nonlinear least-squares

problem,

Z(V)=lAFT(y)FiV). (7.6)

This cost function has two important characteristics. First, each root of F corresponds to a

global minimum of e, and at these points, e(V) = 0. Second, at each V that is a local

minima of £ but is not a root of F, the Jacobian1 of F (that is JF iV) =dFiV)/dV) is

singular. We seek V, a global minimizer of e. A necessary condition for V to be a

minimizer of £ is that the gradient2 of £ atV be zero, i.e.,

V£(V) = 0. (7.7)

This problem can be solved by using a wealth of techniques such as steepest descent, con

jugate gradient, and Newton's method. The steepest descent algorithm has the advantage

of having a region of convergence that is usually much larger than the other methods, how

ever it has only a linear rate of convergence and often converges so slowly as to be

impractical. The conjugate gradient algorithm has a superlinear rate of convergence, but

for large problems it usually requires a large number of iterations. Each iteration is inex

pensive, and so this might be a suitable algorithm for solving the harmonic balance equa

tions. Newton's method uses Newton-Raphson3 to find the roots of (7.7). Thus with

Newton's method we are again faced with using-Newton-Raphson method to find the root

of a nonlinear equation. However, solving (7.7) with Newton-Raphson is more difficult

than solving (7.5) because the equation involves the first derivative of the original function

'A Jacobian is the first derivative of a vector-valued function with respect to its vector-valued argument.
2A gradient is the first derivative of a scalar-valued function with respect to its vector-valued argument

3There can be considerable confusion when discussing optimization methods and root-finding methods
simultaneously because both the root-finding method and the optimization method that results from applying
Newton-Raphson to find the roots of the gradient are referred to as Newton's method. Li this dissertation, the
root-finding procedure is referred to as Newton-Raphson and the optimization method as Newton's method.
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F, so applying Newton-Raphson requires knowing the second derivatives of F. In fact,

the Newton-Raphson iteration used to solve (7.7) is

V2eiV{k))[V{k+l) - V{k)] = -VziVik)), (7.8)

where V2£ is the Hessian4 of £.

From (7.6), it is easy to show that

V£(V) =//(V)F(V) (7.9)

and

dJr(F)
V £(y> = —lU-F(y) + JF<y)JF(V). (7.10)

av

Clearly, the Hessian is denser than is the Jacobian and is therefore considerably more

expensive to LU factor. Using (7.9) and (7.10), we can rewrite (7.8) as

dJFiV) T
^K^F(V)+J^iVVFiV)^ _,,.___., [V{k+l) - V{k)] =-ji?iV)FiV) ' (7.11)

av

Traditionally, computing the Hessian is avoided by using quasi-Newton methods [gill81],

which build up an approximation to the Hessian by starting with an identity matrix and

performing rank-one updates computed from changes in the gradient at each step. Quasi-

Newton methods require more iterations because they use an approximate Hessian, and so

more gradient evaluations, but avoid computing the Hessian directly. This approach is

interesting because it is possible to form the Cholesky5 factors of the approximate Hessian

and perform the rank-one updates on these factors directly. Thus each iteration is consid

erably less expensive than evaluating (7.11) directly, but a greater number of iterations are

needed. If compared against solving (7.5) direcdy with Newton-Raphson, quasi-Newton

4A Hessian is the second derivative of a scalar-valued function with respect to its vector-valued argu
ment

5It is possible to write a symmetric positive-definite matrix (such as the Hessian) as a product ora lower
triangular matrix and its transpose. These triangular matrices are the Cholesky factors of the original matrix
[strang80]
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methods are at a disadvantage because the Hessian is denser than the Jacobian and because

the Hessian can become ill-conditioned when F(V) is small, as will be explained below.

It is possible to avoid computing the second derivative terms in the Hessian by

exploiting the fact that we are solving for a root of F. When V is near the solution V,

thenFOO should be small, and so the second derivative term [dJF(V)/dV F(V)] in (7.11)

can be dropped. Thus (7.11) becomes

JpiV)JFiV)[V{k+l) - V{k)) = -J?iV)FiV), (7.12)

which is referred to as the Gauss-Newton algorithm. Note that (7.12) is now in the form

of the normal equation for a linear least-squares problem. This equation is ill-conditioned

because the condition number of JF(Y)JF(y) is the square of JF(V). Thus, finding the

roots of F(V) using (7.12) is not only computationally more expensive (because

^/0/V>(V') is denser than JF(Y)), but it is also possibly numerically unstable. .

By assuming that JFiV) is square and nonsingular, it is possible to cancel JFiV)

from both sides of (7.12), resulting in the following iteration,

JFiV)[V{k+1)-Vik)] = -F(Y). (7.13)

This iteration is identical to that which results when Newton-Raphson is applied to (7.5).

However, by assuming that JF(V) is nonsingular, any possibility of finding a minimum of

£ that is not a root of F has been eliminated. (Recall that minima occur where either F is

zero or where JF is singular.) Thus, (7.13) is not an optimization method, but rather a root

finding method. Indeed, (7.13) is identical to the Newton-Raphson iteration, and so it can

have no hidden powers not shared by Newton-Raphson. In fact, the steps that lead up to

(7.13) are just a rather round-about derivation of the harmonic Newton algorithm that is

presented later.
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The ill-conditioning demonstrated in Gauss-Newton is an inherent consequence of

forming the cost function by squaring F. Any optimization algorithm that begins with

(7.6) will suffer from greater numeric instability than results from simply finding the root

of F using Newton-Raphson. In addition, most of the sparsity and the structure of the

Jacobian is missing from the Hessian. Methods that use the Hessian must labor under this

disadvantage. Optimization methods that do not use the Hessian, such as the conjugate

gradient algorithm, require a much greater number of iterations, precisely because they do

not use the Hessian. Since these iterations are relatively inexpensive, these methods may

be useful for solving the harmomc balance equations, but this has yet to be shown.

4.2. Equation Solution with Performance Optimization

An interesting question remains; if it is necessary to both optimize circuit performance and

solve the harmonic balance equations, should these two operations be combined into one

optimization process? This idea was first suggested by Lipparini, et al [lipparini82]. They

proposed to augment the cost function to be minimized with a contribution related to cir

cuit performance, here denoted E. The list of design parameters is denoted p. The prob

lem statement becomes

min [FTiV,p)FiV,p) + E2iV,p)] (7>14)
V,p v

with the added constraint that E = 0 when all specifications are met and £ > 0 otherwise.

This approach appears attractive because simple unconstrained optimization methods are

used.

Unfortunately, a serious problem exists: (7.14) is not an appropriate statement of the

problem. The correct problem statement is
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min E2iV, p) subject to F(V, p)=0 ^7 75^

By using (7.14), we allow the optimizer trade off satisfying Kirchoffs current law to

improve circuit performance. The flaw, of course, is that if Kirchoffs current law is not

satisfied, the solution calculated is not feasible and therefore the actual circuit performance

is not being measured.

It is possible to solve (7.15) directly using a variety of methods, including the method

of Lagrange multipliers, exact penalty function methods, and Lagrangian methods [bertse-

kas82] [luenberger84]. Lipparini's approach should not be used unless something is done

to assure that Kirchoffs current law is satisfied. One possibility is to weight Kirchoffs

current law so that it is given preference over the performance goals. This weight can be

increased as necessary to assure that Kirchoffs current law is sufficiently satisfied. Such

an approach is known as a penalty function approach, which is known to be inefficient

when the penalty function (here the weighted Kirchoffs current law) is large.

Assuming something can be done to assure that Kirchoffs current law is satisfied,

then there are several other important considerations. To treat (7.14) as a nonlinear least

squares problem it is necessary to augment the list of equations with the performance cost

function to be minimized and augment the list of variables with the optimizable parameters.

Let

X =
V

Pm

The cost function to be minimized becomes

GiX) =
FiX)

EiX)
(7.16)

GT(X)G(X). (7.17)

Augmenting the lists of equations and variables presents several problems. First, the new

equations in G create new rows and columns in the Jacobian JG that do not have the same
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structure as in JF, making exploitation of the sparsity of the Jacobian more difficult.

Second, there is usually more than one design parameter in p. Thus, Jq is not square.

When applying Newton-Raphson to a system with more variables than equations, it is

necessary to solve for the new iterate either by forming the normal equation, which

effectively increases the number of equations until equal to the number of unknowns, or to

solve the iteration'equation with a method that is suitable for under-determined systems,

such as QR factorization. The normal equation approach is written as

/J(X<a'Vg (X{k))[Xik+l) - X(k)) =-jg(X{k))G (Xik)) (7.18)

As mentioned before, this equation is ill-conditioned and not nearly as sparse as when

Newton-Raphson is applied directly to (7.5). QR factorization would be applied to

/G(X(*>)[X<*+1) - X{k)] =-G(X(*>). (7.19)

However, it is not possible to exploit sparsity in any significant way using QR factoriza

tion, and so this approach is impractical for large Jq(X).

5. Harmonic Relaxation

Relaxation methods are another approach that can be used to solve the algebraic set of

equations that result from the application of harmonic balance. These methods are attrac

tive when the nonlinear behavior of the circuit is very mild. Two different ways of apply

ing relaxation methods are presented, the first uses a form of nonlinear relaxation called

splitting that is similar to the approach taken by Gwarek or Kerr [gwarek74] [kerr75]

[hicks82b] [faber80]. The second combines relaxation and Newton-Raphson; it has much

better convergence properties than the first approach [kundert86b] [ushida87].
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5.1. Splitting

Splitting is a relaxation technique that was originally developed to solve linear systems of

equations and was generalized to handle nonlinear systems [ortega70]. As an introduction,

consider the linear system

Ax = b (7.20)

and consider the splitting of A into the sum

A =B -C

where B is nonsingular and the system Bx = d is easy to solve. Then a fixed-point itera

tion that can be applied to find the solution of (7.20) is

where the superscript on x is the iteration count. This iteration will converge if all the

eigenvalues of B~lC are smaller in magnitude than one.

The splitting method can be used with harmonic balance by rewriting equation (7.5)

as

yyO+D =_/(y0->) _ qq (V0)) _ u (7#2i)

Y is assumed to be nonsingular, which implies that when all nonlinear devices are

removed, there can be no floating nodes. Since linear devices are incapable of translating

frequencies, the node admittance matrix for the linear portion of the circuit (Y) is block

diagonal (we are assuming here that the harmonic number is the major index and the node

number is the minor index). Thus once the right-hand side of (7.21) has been evaluated,

the task of finding V(j+1) can be broken into solving K decoupled linear N xN systems of

equations, one for each harmonic.
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To explore the convergence properties of the iteration defined by (7.21), the follow

ing well-known theorem [ortega70] [rudin76] [vidyasagar78] from classical analysis is

needed.

Theorem 7.1 (Contraction Mapping Theorem): Let C be a closed subset of CM. Iff is

a mapfrom C into C and if there exists y < 1 such that

\\f(x)-f(y)\\ <y||*-y||

for all x, y € C, then f is called a contraction map on C. Furthermore there exists a

unique x (called a fixed point of f) such that f(x) = x and given any je(0)e C, the

sequence [x^} defined by *^+1) = f(x^) converges to x.

•

If C =Ciav, then the theorem gives sufficient conditions for the global convergence

of (7.21), however it is difficult to apply, so a theorem giving sufficient conditions for

local convergence is presented. But first a lemma is needed.

Lemma: Suppose f maps a convex open set E contained in CM into CM, f is

differentiate in E, and there is a real number c such that Jf(x), the Jacobian of f at x,

satisfies

||//(x)|| ^ c for every x e E

Then ||/(Jc)-/(y)|| <c\\x -y|| for allx,y e E.

D

The lemma is a straight-forward extension of a theorem given by Rudin [rudin76] for TRN.

Theorem 7.2: Let E be an open subset of CM. Suppose f:E->CM is continuously

differentiate on E and can be written in the form
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f(x)=Ax~g(x)

where AeCMxM is nonsingular. If there exists xeE such that f(x) = 0 and if

\\A~lJg0c)\\ <1 then there exists some 8>0 such that for all x{0) in the closed ball

Bi(x)<zE the sequence {x^} defined by jc;'+1 =A~lg(xV*) converges to x.

Proof: Define §(x)=A~lg(x) and assume there exists some y€ [0,1) such that

|i A"^(x)|| <v. Since /, and hence g, is continuously differentiable, there exists 8>0

such that for all jc e Bb(x), \\A~lJg(x)\\ <y. Note that the derivative of ty(x) is

J$(x )=A ~lJg (x). From the lemma,

||4K*)-tty)|| *y\\x-y\\ (7.22)

for all x,y in the interior of BB(x)t and since <|> is continuous, (7.22) must hold for all of

55(x), not just the interior. By the contraction mapping theorem, <|> has a unique fixed-

point in B$(x\ which must be x because it is a fixed-point for <$>. Also, j*^} -> x if

x{0)eB8(x)

D

If the conclusion of Theorem 7.2 is applied to (7.21), then to assure local conver

gence we need

\\Y-l[Jr(V)+}ajQ<?)]\\ <1 (7.23)
where V is the solution of (7.21). There is no reason to believe this condition will be met

in practice. As an example of when it would not be met, consider a very simple circuit

with only one node and analyzed at DC only. Then Y € IR and I ,Q :IR-»IR. Let Y = 1,

I(V) = 2V, and Q(Y) = Q. Then Y~lJr =2 and so the convergence criterion is not

satisfied. Indeed, for this circuit convergence will not be achieved for any V(0) * V". This

example shows that relaxation using the splitting method given by (7.21) has poor conver

gence properties. In particular, even if the starting value of V{0) is arbitrarily close to the
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final solution, and regardless of how mild the nonlinearities are behaving, convergence is

not assured. In fact, convergence can easily be lost if the largest conductance exhibited by

any of the nonlinear devices is larger than the smallest conductance to ground present in

the circuit when the nonlinear devices are removed.

5.2. Gauss-Jacobi Newton Harmonic Relaxation

The second relaxation approach to solving the algebraic harmonic balance equation (7.5) is

to use the block Gauss-Jacobi method with a one step Newton-Raphson inner loop

[ortega70]. [newton83] known as the block Gauss-Jacobi-Newton method. To apply this

method, rewrite (7.5) as

F(YJc) = I(YJc) + ika>0Q(Y,k) + Y(k,k)V(k) + U(k) = 0 (7.24)

where k is the frequency index and k = 0,1, ..., K-l. The block Gauss-Jacobi algo

rithm, when applied to (7.24), has the following form:

Nonlinear Block Gauss-Jacobi Algorithm

repeat

{ / <- y + 1;
foralI(&€ {0,1, . . . ,K-l})

solveF(yVX0), ., . , V^Xk), VV\K-I)tk) for V^+1\k)
} until (|| v(/+1> - y</>|| <e)

The equation inside the forall loop is solved using Newton-Raphson for V^*l\k).

Note that in this equation only V(k) is a variable, V(l) I * k are constant and taken from

the previous iteration. Since Newton-Raphson (with quadratic convergence) is being per

formed inside an outer relaxation loop (with linear convergence), it is not necessary to

fully converge the Newton iteration. In fact, it is only necessary to take one step of the

"inner" Newton iteration and doing so does not affect the asymptotic rate of convergence

of the overall method [ortega70] [newton83].
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Block Gauss-Jacobi-Newton is similar to the splitting method, except that each equa

tion in (7.24) is first linearized with one step of Newton-Raphson rather than by just

removing the nonlinearities. Applying the Gauss-Jacobi-Newton method to (7.24) results

in

dF(yV\k)
dV(k)

where k = 0,1, ... , K-1 and

V^\k) - V^\k) = -FfyWjc)

dF(V,k) = dKVJc) dQ(V,k)
dV(k) dV(k) +JC°* dV(k) +r{lc'fc)

To continue the derivation, it is necessary to select a set of time-points and then use the

APFT (3.7) to develop a concrete representation T of the Fourier transform F. Only the

derivation of _;, * ' is presented, the derivation of ~^ ' ' is identical
dV(k) F dV(k)

im<y) = nm(v)

where m is the node index. Let p(£)e C x IR5 be the two rows of T that compute the

sine and cosine terms of the fc* harmonic of the Fourier series. That is

Im(V,k) = p(k)Tim(y).

Differentiating both sides of Im (k) with respect to V„ (k),

. dIm(V,k) n<Tdim(v)
dVn(k) KV dVn(k)

Employing the chain rule gives

dIm(V,k) fU,Tdim(y) dvn
= p(*)T

dVn(k) dvn dVn(k)

dim(v)
Smce i(y) is algebraic,

dv„

dim(v(tr))

dvnv(ts)

matrix. Let y(fc)e IR5 xC be the two columns of I~* that operate on the sine and cosine

terms of the fc* harmonic of the Fourier series to compute their contribution to the

rje{\,2 S

e JRSxS is a diagonal
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K-\

waveform. Then I^1^ = v„ implies yZiy(k)Vn(k) = vn. Thus,
Jt=0

dI(V,k) ,,<rdim(v) ...
dVn(k) d\>„

The block Gauss-Jacobi-Newton iteration is well-defined only if each of the equations

in (7.24) has a unique solution at each step. In addition, convergence can be assured at

least in the region local to the solution V, if certain conditions are met by the Jacobian

JF(V) at the solution. In particular, if F is continuously differentiable on an open set

fcC^ containing V, and if J>(V) = D(V) + R(V) where D is a nonsingular block

dF(VJc)
diagonal matrix with D (V\£,fc) = .. v J, then from Theorem 7.2, there exists a closed

aV(k)

ball fls(V)c£ such that for all V(0)efl5(V) the block Gauss-Jacobi iteration is well

defined and will converge to V if \\D~l(V)R(V)\\ < 1. Notice that D(V,k,k) is the Jaco

bian of the circuit at the k^ harmonic. In other words, it is the node admittance matrix of

the circuit at the £* harmonic where the circuit has been linearized about the solution. R

represents coupling between signals at different harmonics that results from nonlinearities

in the circuit. If the circuit is linear then R = 0 and convergence is assured. The more

strongly nonlinear the circuit behaves, the more coupling exists between different harmon

ics and the larger the terms in R become. Thus, convergence becomes less likely. So

block Gauss-Jacobi-Newton is guaranteed to converge if F(V) is "sufficiently linear" and

if Vi0) is sufficiently close to the solution V.

This method can be generalized by allowing the block bandwidth of D to be

increased. Doing so is the basis of the harmonic relaxation-Newton method presented in

Chapter 8.
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To illustrate how the two relaxation methods work, consider the network shown in

Figure 7.2a. In the splitting method, on each iteration the voltages on the nonlinear dev

ices are fixed at the values of the previous iteration, which fixes the current passed by

these devices. So in Equation (7.21) the nonlinear currents are moved to the right-hand

side with the constants, and in Figure 7.2 they are replaced with current sources, using the

substitution theorem. This "linearizes'* the circuit, so the node voltages can be found with

Gaussian elimination. These new node voltages are then applied to the nonlinear devices,

and their new current is calculated and applied to the linearized circuit, requiring it to be

re-evaluated on the next iteration. The linearized circuit never changes, so only forward

and backward substitution is needed for reevaluation.

With block Gauss-Jacobi-Newton the circuit is linearized by dividing the nonlinear

devices into two parts. One is the best linear approximation to the nonlinear device con

sidering the signal present on the device. The other is the nonlinear residual that when

combined with the linear part gives the original nonlinear device. This division is illus

trated in Figure 7.3.

By viewing Figures 7.2 and 73, it becomes clear why Gauss-Jacobi-Newton has

better convergence properties than the splitting method; it has a better model of the non

linear device in the linear subcircuit, so less correction is needed on each iteration. Indeed,

if the nonlinear devices behave linearly, then clearly Gauss-Jacobi-Newton converges in

one step while the splitting will require many, and may not even converge.

The Gauss-Jacobi-Newton method has the nice feature that it uses very little memory.

The circuit is analyzed at only one frequency at a time, so space is needed for only one

sparse NxN node admittance matrix and that space is reused for each frequency. (This



7. Harmonic Balance: Theory

'L -

*Q :i

Figure 7.2 : Circuit interpretation of the splitting method form of harmonic relax
ation.
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Figure 73 : Circuit interpretation of the block Gauss-Jacobi-Newton form of har
monic relaxation.
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contrasts with the harmonic Newton method presented next. It analyzes the circuit at all

frequencies simultaneously, and so it needs a great deal more memory.) The Gauss-

Jacobi-Newton method is also quite fast if the circuit is behaving linearly. However it

does have severe convergence problems when circuits behave nonlinearly. Harmonic New

ton, which can be seen as a logical extension of Gauss-Jacobi-Newton, is much more

robust, but also can require much more time on near linear circuits. For this reason, the

harmonic relaxation-Newton method, as presented later, modifies harmonic Newton on near

linear problems to become much more like Gauss-Jacobi-Newton, resulting in a composite

method that can be both fast and robust.



7. Harmonic Balance: Theory 157

6. Harmonic Newton

As shown earlier, the circuit equation

/(v,r) =i(v(0) +q(v(t)) + jy(t-x)v(t)dt +u(t) =0 (7.25)

can be written in the frequency domain as

F(V) = I(V) + QQ(V) + YV + U = 0. (7.26)

One approach to evaluating the nonlinear devices in (7.26) is to convert the node vol

tage spectrum V into the waveform v and evaluate the nonlinear devices in the time

domain. The response is then converted back into the frequency domain. Assume that the

number of frequencies has been truncated to K\ v,w e APN(AK;1R); and that a set of

time-points [t0,tit..., t^-i) has been chosen so that T^1 is nonsingular. Then

Vn =TV, /„(V) = n„(v) and Qn(V) = Tqn(v).

Applying Newton-Raphson to solve (7.26) results in the iteration

•W0))0'0+1) - VU)) = -F (VW) (7.27)

where

Or

where

r mx- aF(V-) _ 9/GO ndQ(Y)
Jf{V)- dv -^r+cl~w +Y'

JF(V) = JF,mn(V)
frmW)

dv„
m,ne {1,2, ...,N)

dFm(Y) _ dIm(V) dQm(V)
*Vn " dV„ + *mm dVn mn'

JF(Y) is referred to as the harmonic Jacobian. The matrix dFm/dVnt known as a conver

sion matrix, is the derivative of the function at node m with respect to the Fourier
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coefficients of the voltage at node n. The derivation of dIm/dVn follows with help from

the chain rule.

/mGO = nm(v)

a/mGO =r_d'«(v) av„
Wn dv„ dV„

Since i(v) is algebraic, dim/dv„ is a diagonal matrix. Using the fact that T~lV„ = v„,

The derivation of dfim/c)^,, is identical Now everything needed to evaluate (7.27) is

available. If the sequence generated by (7.27) converges, its limit point is the desired solu

tion to (7.26).

The most computationally expensive part of harmonic Newton is the factorization of

7F, a (N x2K) by (N x2K) sparse matrix. Samanskii's method [ortega70] can be

employed to reduce the computation time required by the harmonic Newton algorithm. In

this approach the factored Jacobian from the previous iteration is simply reused for several

iterations. This algorithm was presented in Chapter 4.

Harmonic Newton, as with any Newton-Raphson-based method, is only guaranteed to

converge if the initial guess is close enough to the solution. Thus, finding a good initial

guess is a key issue in determining the likelyhood of convergence. For many circuits, a

good initial guess is generated by linearizing the circuit about the DC operating point,

applying the stimulus, and performing a phasor (AC) analysis at each frequency in AK. If

the initial guess generated in this manner does not result in convergence, it is necessary to

use a variant of Newton-Raphson that is more robust Currently, the algorithm that

appears to be best suited in this situation is arc-length continuation as presented in Chapter
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7. Error Estimation

There are three dominant sources of error with harmonic balance. The first results from

incompletely converging the iteration used to solve the nonlinear harmonic balance equa

tions. Recall that harmonic balance was formulated very simply in (7.5) as

F(V) = I(V) + &Q 00 + YV + U = 0. (7.28)

Newton-Raphson uses the iteration

JF(Vik))\y{k+l) - V{ky\ = -F(Y{k)) (7.29)

to solve the harmonic balance equation. Roughly, the iteration stops when

IIFG^)!! <eF (7.30)

where eF is some small positive number. To see how this convergence criteria affects the

error in the solution, assume that the true solution is V and that ||F(V(A))|| £ eF. By

expanding F about V(k\ it is easy to show that to first order,

JF(Y{k))\y - Viky] = -F(Yik)). (7.31)

Thus the quantity AV(k) = -J£l(y{k))F (Y(k)) is a first order estimate to the error in the

solution. Notice that this quantity has been previously computed in (7.29). Thus, at very

little added cost, the following additional convergence criteria can be added to directly con

trol the error in the solution

IIAV^U <ev (7.32)

It is best to use both (7.30) and (7.32) as convergence criteria for Newton-Raphson

because if only (7.30) is used it is possible to have (7.28) nearly satisfied but still have a

large error in the solution (this would occur if JF was ill-conditioned). If only (7.32) is

used, it is possible to terminate the iteration prematurely when (7.28) is far from being
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satisfied because progress toward the solution on one step is slow (and therefore AV is

small).

The second form of error in harmonic balance results from limiting the number of

frequencies in the Fourier series that represents the solution. This error has been explored

by Huang [huang]. It is difficult to estimate, and so will not be discussed further here.

The last form of error with harmonic balance results from using a finite number of

frequencies in the Fourier series representing F(V). The error can be split conceptually

into two parts, truncation error and aliasing. Consider a circuit whose exact solution is

almost periodic over the set of frequencies A and consider finding an approximate solution

by applying harmonic balance on the truncated set of frequencies AK cA. Thus, given

any V € C^*, let F :C^* -* C** be the sum of the currents at every node and at K fre

quencies as in (7.28). For the purposes of the error analysis, several variants of F are

defined to be the sum of the currents at every node and every frequency. Let

Ffuii: CNe° -*• C^~ be the result when the circuit equations are evaluated without error at

all frequencies in A. Let F/rMWr: CN" -» C*~ be defined as

Jo if ©t eAK
Ftrunc(y,k)=\Ffuu(y,k) otherwise.

Thus, Ftrunc represents all currents generated by the circuit at frequencies other than those

in AK. These currents are not explicitly handled by discrete Fourier transforms (any

discrete Fourier transform, including the DFT and APFT) and so these currents are mistaken

for currents at frequencies in A^. These error currents, referred to as aliasing, are

represented by F^ :CNeo -* C"~ Finally, let Fapprox:CN~ -> CNo° be defined as
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\F(V,k) tf%eA^
app">x™ >k) =|q otherwise.

These four quantities are related by

''full ~ * approx ~~ ^ alias ' * trunc

To estimate the effect of truncation and aliasing errors, let Ve Cf00 be the exact

solution and Ve CNo° be the solution in trie presence of truncation and aliasing errors.

Expand

Ffun<y) = o

about the solution to compute AV, the estimated difference between these two. solutions.

FfuiiiV) + f™v AV =Fapprox(V) - Ftrunc(V) +Fa!ias(V)

0+ fdy AV =0- F^GO +F^(V)

dFfuiiiV)Jv AV =F^GO - Ftrunc(V)

This equation gives an estimate of the error in the solution, but in terms of quantities that

are unknown. Assuming AV is small, Ffn4W(V) and Fa[ias(Y) are approximated with

FtrunciV) and F^^OO, which will be estimated below. With harmonic Newton,

dFfuii&ydV could be approximated by JF(V), but since JF(V)e cNKxNK, the effect of

Ftmnc would be lost. This is not a serious problem because ||FaBar || is generally as.large

or larger than \\Ftrunc ||. Better approximations to dFfull(V)/dV can be easily constructed

by either treating the circuit as linear at frequencies not in A^, or by exploiting the

Toeplitz/Hankel structure of the conversion matrices to extend them to frequencies outside

of AK.

One simple approach to estimating the error due to truncation and aliasing is to sim

ply increase the number of frequencies used in the Fourier series representation of F(V).
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For example, using the same solution, reevaluate all of the nonlinear devices at, say, IS

rather than the normal S samples, and compute the Fourier series of the resulting

waveforms. One note of caution, when using this approach with the APFT, one must be

very careful when choosing the new larger set of sample times to assure that error due to

aliasing is actually reduced.

It is possible to effectively double the number of frequencies in the Fourier series of

the response of a nonlinear device without reevaluating the device at further time-points.

Instead, use the previously computed response waveform at the original S samples and

make some further calculations to compute the time derivative of the waveforms at these

samples. By using the slope of the waveform at each sample along with the value, twice

as much information is available, and so the Fourier series can be computed with twice as

many terms. For example, consider a nonlinear resistor with current i = J*(v(r)) and con

ductance di(v(t))/dv(t) = g(v(t)). The voltage waveform v is given at S distinct time-

points, and the response waveform is computed by simply evaluating the resistor current

equation at these points. The time derivative is computed using the chain rule

di(v(r)) = <ff(v(Q) dv(t)
dt dv(t) dt

/(v(f)) =^(v(r))v(f)
The conductance g is available because it was needed for the Newton-Raphson iteration

and v(r) is easily computed by transforming £2V into the time domain. With the current

(or charge) and its time derivative known at each of the 5 sample points, the Fourier series

is computed using the ordinate and slope discrete Fourier transform [bracewell78].

The method of estimating the error given above is an inexpensive way of determining

whether enough frequencies have been included in the harmonic balance analysis after a
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solution has been computed. Huang has developed an apriori estimate of the number of

frequencies needed to achieve a prespecified accuracy [huang].

8. Oscillators

Recall that oscillators present two.problems not found with forced circuits. The period of

the oscillation is unknown and must be determined, and the time origin is arbitrary and

thus if one solution exists, then an infinite continuum of solutions exists. In other words,

if v is a solution, then so is any time shifted version of v. The problem is that Newton-

Raphson fails if the solution is not isolated. It is necessary to modify either Newton-

Raphson to handle nonisolated solutions or the problem formulation to eliminate the non

isolated solutions.

Harmonic balance is modified to handle oscillators by adding the fundamental fre

quency co to the list of unknowns and an equation to enforce the constraint that solutions

be isolated from one another. Perhaps the easiest way to ensure isolated solutions is to

chose some signal in the circuit and insist that the imaginary part of its fundamental is

zero. This fixes the solution to within a sign change. For this approach to work it is

necessary that the fundamental of the signal chosen have nonzero magnitude.

The harmonic balance equations modified for the oscillator problem are

F(V,co) = /(V) + jQ(co)£>(V) + r(o»V + U = 0

Im{Vm(l)}=0

Newton's method is now applied to these two equations,

JpOfVKaP*)

emW

dF(yV\a>V>)
9co

0

AVC/+1)

Aa>0+,)

F(VCW})
Im{V„,(l)}

(7.33)

(7.34)



7. Harmonic Balance: Theory 164

where

dco © do

and em(l) is the unit vector that selects the imaginary part of the first harmonic of the

chosen node voltage.

The most difficult part of applying harmomc balance to the oscillator problem is

determining a good initial guess for both V and ©. A good initial guess is required not

only for the standard reason of assuring convergence, but also to avoid the valid but

undesirable solution where all but the DC terms in V are zero.



Chapter 8
Harmonic Balance: Implementation

This chapter describes practical algorithms for implementing harmomc balance. Most of

these algorithms have been implemented and tested in Spectre, a simulation program suit

able for analog and microwave circuits. There are two fundamental ideas presented in this

chapter. The first is that it is possible to use the DFT with harmonic balance, even when

the signals present are not periodic. The benefit of the DFT is the very regular manner in

which aliasing occurs, which can be exploited to accelerate the construction and factoriza

tion of the conversion matrices. The first portion of this chapter is dedicated to explaining

how the DFT can be used in quasiperiodic harmonic balance, and rederiving harmomc

Newton with the DFT.

The second idea is that ignoring terms in the Jacobian converts harmomc Newton into

a relaxation process. Indeed, the new method that results if any contribution to the har

monic Jacobian due to ntfnlinear behavior is ignored is identical to harmonic relaxation

based on splitting of (7.21). If instead, the off diagonal entries in each conversion matrix

were set to zero, the resulting method would be Gauss-Jacobi Newton harmonic relaxation.

A new method, referred to as harmomc relaxation-Newton, is developed by ignoring terms

in the Jacobian that are sufficiently small. This algorithm can be viewed as either the har

monic Newton algorithm with an approximate Jacobian or as a hybrid of the Gauss-Jacobi

Newton harmonic relaxation and harmonic Newton algorithms.

165
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1. Accelerating Harmonic Balance

Of the time spent performing harmonic Newton, most is spent constructing and factoring

dim (v) .
the Jacobian ^(V). Forming T— TTl requires 0(K*) operations because of the

matrix multiplies. There is one such product to form for each of the nonlinear conductors

and capacitors. As the number of nonlinear components is typically 0(N), forming the

Jacobian requires O(NK3) operations. The computational complexity of LU factoring the

block Jacobian matrix is 0(NaK3)y where typically 1.1 <a < 1.5.] Clearly reducing the

computation in both forming and factoring the Jacobian are important to improving the

efficiency of harmonic Newton.

The algebraic nature of the nonlinearities can be exploited to reduce the time required

to form the Jacobian. Algebraic nonlinearities allow the use of the DFT (or FFT) in lieu of

the APFT,. This gives three benefits, the actual transform itself is faster (assuming the FFT

is used), the construction of the conversionmatrices is accelerated because it becomes pos

sible to use an algorithm that requires O(K2) operations rather than O(K\ and the factori

zation of the conversion matrices can be accelerated by techniques given later that increase

its sparsity. It is worth noting that in general, only a small fraction of the time required by

the harmomc balance algorithm is spent executing the Fourier transform, even when the

DFT is used. The benefit of using the FFT is minor (over the DFT or APFT) in comparison

to the benefit of using the FFT or DFT (over the APFT) when constructing and factoring the

conversion matrices. As an interesting aside, it may be more efficient to use the DFT than

the FFT. The reason being that with the FFT the number of frequencies is constrained,

'This is an approximation. The true operation count for a sparse LU factorization, ignoring the cost of
factoring the blocks, is C3W3 + c^N2 + C\N, where c\, c-i, and C3 are functions of the sparsity pattern of the
matrix. Generally for the sizes and densities found in circuit matrices, the c2 and c3 terms are small enough so
that the N2 and JV3 terms are noticeable but do not dominate.
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usually to be a power of two and the DFT allows an arbitrary number of frequencies. In

general, the number of frequencies needed with the FFT is at least as great as with the DFT.

While the extra frequencies can be discarded, the FFT will require the nonlinear devices to

be evaluated at a greater number of time-points.

The time required to factor the conversion matrices can be considerably reduced by

reducing the density of the conversion matrices by using a hybrid of the harmonic Newton

and harmomc relaxation methods. Harmonic Newton can be converted to Gauss-Jacobi-

Newton harmonic relaxation by simply setting all off-diagonal terms in the conversion

matrices to zero. In the hybrid method, which is referred to as harmomc relaxation-

Newton, the bandwidth of selected conversion matrices is reduced. In one limit (when

operating on a linear circuit), the bandwidth of all conversion matrices is reduced until they

are diagonal, the so the method becomes equivalent to the harmonic Gauss-Jacobi-Newton

relaxation. In the other limit (when each device in the circuit is behaving very non-

linearly), the bandwidth of all conversion matrices is expanded until the whole matrix is

included, and the method becomes equivalent to harmomc Newton. The bandwidth of the

conversion matrices is chosen to be as small as possible without sacrificing convergence.

The bandwidth of each conversion matrix on each iteration can be set independently to

achieve this goal. In this way, the method adapts to the problem being solved. The

method can be modeled as either a relaxation method of a the Newton-Raphson method

with an approximate Jacobian.

1.1. Transforms for Quasiperiodic Harmonic Balance

There are currently five different methods available for transforming signals between time

and frequency domains that are suitable for use with harmonic balance. The first three of
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these methods are general in nature. Two methods, those of Ushida and Chua [ushida84]

and Gilmore and Rosenbaum [gilmore84], were outlined in Chapter 1. They are con

sidered less efficient than the remaining methods and are no longer used. The third

method, the APFT, was presented in Chapter 3. This transform has a simple operator nota

tion and so is useful for theoretical manipulation. It is less efficient than the remaining

two methods.

The last two methods exploit the fact that in harmonic balance one desires the fre

quency domain response of a nonlinear device to a frequency domain stimulus and the

time-domain waveforms generated along the way are of no interest. These methods

transform spectra into waveforms with a distorted time axis. However, they also convert

the waveforms with a distorted time axis back into the spectra, and so as long as the non-

linearities being evaluated in the time domain are algebraic, which was a basic assumption

with harmonic balance, then the resulting spectra are correct. Of these two remaining

methods, the first is based on the multidimensional DFT [bava82, ushida87] and is restricted

to the box truncation. The second is based on the one dimensional DFT. It is faster and

has fewer restrictions than the multidimensional DFT approach, and is the one presented

here.

1.2. Harmonic Balance and the Discrete Fourier Transform

There is a trick that allows the use of the DFT — and hence the FFT — with harmonic bal

ance even when the desired solution is quasiperiodic. To use the trick, two conditions

must be satisfied.

1. The signals must be quasiperiodic. This is not a limitation for two reasons. First,

circuits of practical interest are excited using a finite number of periodic input signals
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and so their response is quasiperiodic. Second, any almost-periodic signal when trun

cated to a finite number of frequencies is quasiperiodic.

2. The time-domain signal must be of no interest. This is true in harmomc balance

where going into the time domain is an expedient but not essential way to compute

the frequency-domain response of the nonlinear devices to a frequency-domain

stimulus.

The trick is best explained with an example. Consider a nonlinear resistor with the

constitutive equation

i(v) = v2.

Assume that this resistor is being driven with the voltage waveform

v(r) = cos(ar) + cos(|5f).

The resistor responds with a current waveform of

/(v(O) = ! + !/4cos(2af) + cos(ctr -pr) + cos(ar +pr) + V^cos(2(3r).

Notice that the coefficients of the cosines (i.e., the spectrum of the response signal) are

independent of the frequencies a and p. This is true, whenever the nonlinearities are alge

braic. Thus, for the purposes of evaluating the nonlinear devices, the actual fundamental

frequencies are of no importance and can be chosen freely. In particular, the fundamentals

can be chosen to be multiples of some arbitrary frequency so that the resulting signals will

be periodic. Once the fundamentals are chosen in this manner, the DFT can be used. It is

important to realize that these artificially chosen fundamental frequencies are not actually

used in the harmomc balance calculations, such as in Y or CI. Rather, they are used when

detennining in which order to place the terms in the spectra so that the DFT can be used

when evaluating the nonlinear devices.
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1.2.1. Choosing the Artificial Frequencies

For simplicity, the way in which the artificial frequencies are chosen is illustrated by exam

ples. The actual artificial frequencies, and the scale factors that convert the original funda

mental to the artificial frequencies, are of no interest except in determining the correspon

dence between the quasiperiodic and periodic harmonic indices.

Consider the following set of frequencies.

AK = {co | (0 = kiX{+ koX^ 0 £ £j £ Hh \k2\ £ H2, kY * 0 if k2 < 0}

Let a! = 1 and Oo = ^1/[X2(2//2 + 1)] be the scaling factors of the two fundamentals.

Then the resulting scaled set of frequencies is equally spaced and no two frequencies over

lap. This scaling, which is ideal for box truncations, is illustrated in Figure 8.1. The

correspondence between original frequencies and artificial frequencies is given by

Figure 8.1 : The mapping of quasiperiodic frequencies into periodic frequencies
for box truncations.
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k^Q = ^iCti^! + k2a2X2 (8.1)

where

Xo =
2H2 + l

and

k = (2H2 + \)k1 + k2

Consider another set of frequencies.

AK = {© | (0 = kfa + Jt2k>; \kx\ + \k2\ <H, k{ + k2Z0,kl*k2 if k2> 0}

Let aj = 1 and 0^ = (Kx+ H2)/[X2(2H2 + 1)] be the scaling factors of the two fundamen

tals. Then the resulting scaled set of frequencies is equally spaced and no two frequencies

overlap. This scaling, which is ideal for diamond ttuncations, is illustrated in Figure 8.2.

The correspondence between original frequencies and artificial frequencies is given by

Figure 8.2 : The mapping of quasiperiodic frequencies into periodic frequencies
for diamond truncations.
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k\Q = k^Xx + /^OoAo (8.2)

where

*o =
Xx

#o + l

and

k = (H2 + l)kl+H2k2

Both approaches can be extended to the case where more than two fundamentals are

applied. And while these two methods are ideal for their respective truncations, other trun

cations can be used, however the resulting set of frequencies may not be densely packed.

2. Harmonic Newton

The harmomc Newton algorithm is now rederived using the DFT rather than the APFT. It

is assumed that, for the purposes of evaluating the nonlinear devices, the fundamentals

have been shifted to make the signals processed by the DFT periodic.

There are two common DFT pairs that can be used in this derivation. Up to this

point, the trigonometric or single-sided DFT has been used. This pair is given by

xn(s) =Xn(0)+ i/
k=l

cos(2kIcs/S) sm(2TzksIS)

Xn(k) =
Xfrk)

xfo)
=2-b(k)^

* s=0

cos(2Kks/S)

sin(2nks/S)

Xfik)

Xsn{k)

x„{s)

(8.3)

(8.4)

where s is the time index, S =2K - I, and 8 is the Kronecker delta function, which is

defined as

ll if*=0

6<*) =[0 if**0-
The second common DFT pair is the exponential or double-sided DFT.
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K-\

*„<*) = I^W«J2M (8.5)

5-1

*»(*)=!£*„(* v^2"*'5 (8.6)
5=0

where Xn(k) = X*(k) + jX^k). The single- and double-sided coefficients are related by

c \x*(k) if it =o
Xn{k)=\2X?(k) Xk*0 Xf(k)=<

-Xfo) if ifc »0
-2XUk) if**0

where X^(0) =X^(0) =0 and the C, 5, 7?, and / superscripts are used to denote the

cosine, sine, real, and imaginary coefficients.

In order to simplify the notation used in the following derivation, the trigonometric

DFT pair is used with the exponential coefficients. The resulting DFT pair is

_ v*/

Xn(k) =

*„(*) = X*(0) + 22
*=i

X*(k)

xUk)

cos(2jrik /S) - sin(2jc& /S)
X*{k)

Xrn(k)

s-\

= tS
s=0

cos(2TtksJS)

-sm(2izks/S) xn(s)

(8.7)

(8.8)

The harmonic balance equation (7.5) still holds with v related to V by (8.7) arid /

and Q related to i and q by (8.8). Applying Newton-Raphson to solve this equation

results in the iteration

/f(V0))(V^+1) - V0'*) = -FiyW) (8.9)

where

Jf(V) = 'Fjnn (V)
dFm(y)

dV„
m,*e {1,2, . .'. ,N), (8.10)

'F,mn (V) = JF,mn(Y,kJ)
dFm(Vtk)

*Vn(l)
*,/e{0,l, #-!}, (8.11)

and
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&S<V.k) dF%<y,k)

JFjnn(V,k,l) =
dFm(V,k)

dV„(0 dF!m<y,k) dFrm(V,k)
*V*(!) dvid)

This derivative consists of the sum of terms

dFm(V,k) dlm<y,k)

dVn(!) av„(/)

where

Ymn(kJ) =

0 -co*

co* 0

YLikJ) -YL(kJ)

dIm(V*k) dQm{V,k)
O^y ^Ty /yx is derived, the derivation of —r——— is similar.

oV.*Vn(l) '«(0

Compute Im (Y, k) using (8.8),

5-1

+Ymn(k,l).

W*)=72
cos(27cfo/5)

-sin(27cfcy/S)
im(v(s))

5=0

174

(8.12)

(8.13)

(8.14)

(8.15)

The waveform v is considered to be an imphcit function of its spectrum V; and so the

chain rule is employed to compute the derivative.

&*(» " Ss%
cos(2Ttks/S)

-sin(2nks/S)

Now the derivative of v„(s) is calculated using (8.7).

3»jn(v(j)) 3vn(5)

h\>n(s) dVn(l)

vn(5) = Fn(0) + 2£
*=i

cos(2icit5/5) -sm(2izks/S)
Vr„(k)

av.(/)

d\'„(s) dv„(s)

dvfri) dvUn
= (2-6(/)) cos(2rc/s /S) - sin(2K/j /S)

This derivative is substituted into (8.16).

(8.16)

(8.17)

(8.18)
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where

dlm(V,k)

dV„(0

¥ =

2-5(/)5£
5=0

, 2kIcs x
cos(——)

. , 2nks v
-sin(——)

dim(v(s))

d\>n(s)
, 2nls x . , 2tzIs .

cos(—•—) -srn(——)

_ 2-8(/)5-1^m(v(.?))
5 * - "J=o dv„(.y)

cos(2jcfo /S )cos(2nls /S) - cos(2jcfo /S )sin(2nls /S )1
- sin(27rfo IS )cos(2tzIs IS) sin(2Kks /S )sin(27c/j IS)
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(8.19)

(8.20)

¥ = V£
cos(2n(k +l)s/S) + cos(2n(k-l)s/S) -sin(2rc(fc +l)s/S) + sin(27r(fc-l)s/S)

-sin(2rc(A:+l)s/S) - sm(2K(k -l)s/S) cos(2n(k -l)s/S) - cos(2K(k +l)s/S)

.. dim(v (s))
Define Gmn(k)e C as the £* harmonic of —£ -, i.e., let

av„(s)

Then

where

Gmn(V,k) =
G!mn<y>k)

lsj!din,(y(s))
Ss% dv„(s) L'

cos(2jcifcy/S)

-sin(27tfo/S)

tom<y*) _ 2-5(7) <&(*+')+ <?£,(*-0 GL(k+l)-GL(k-l)
GLik+D + GLik-l) GL(k-l)-GL(k+l)

Equation (8.22) shows that the portion of the conversion matrices due to the nonlinear

resistors (dIm(VydVn) and capacitors (dQm(yydVn) can be split into the sum of a Toe

plitz and a Hankel matrix2. For example

a/w(V)
= (T +H)D

(8.21)

(8.22)

2A Toeplitz matrix has the fonn given by ai} =f;_y and similarly, the fonn of a Hankel matiix is given
by atJ = /iI+/
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T =

'o '-1 t-2 '-3

'l 'o '-i t_2

h h to t-\

t2 t2 tx r0

From (8.22),

'* =

H =

«o «i h2 h$

h\ h2 h$ A4

h2 A3 A4 h$

A3 h4 h5 h6

<&<*) -<&,<*)

<&(*> <&(*)
A/-=

176

V4

D =

It is the nature of the DFT that when applied to real waveforms G^ik) = G„m*(-k) when

k < 0 and Gnm(k) = Gnm*(2K-l-k) when k > K, where * represents the complex con

jugate operation in C [brigham74]. As a result, the Toeplitz and Hankel portions are

rewritten

T =

t0 *,* t2* r3*

'1 '0 '1* '2*
t2 tx t0 tf

*3 *2 *1 f0

# =

h0 h

h* h'.

h2 A3 «3 W2

A3 h3 h2 A]

This completes the derivation of the harmomc Jacobian JF (V). It is the synthesis of equa

tions (8.10-8.22). This derivation allows the conversion matrices to be constructed with

one FFT and AK2 additions, considerably fewer operations than the 8AT3 multiplications and

additions needed for the previous derivation.

For a one node circuit at three frequencies the complete harmomc Jacobian would be

dv dv
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-^yP- is similar with Greplaced by C=JFd({(v(s)).
oV dv (s)

Y =

YR(0) 0 0 0 0 0
0 0 0 0 0 0

o o y*(i) -y^i) o o
o o r7(i) YR(i) o o

0 0 0 0 YR(2) -F'(2)
0 0 0 0 r7(2) YR(2)

n =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 -©„ 0 0

0 0 ©0 0 0 0

0 0 0 0 0 -2©,

0 0 0 0 2©, 0

178

Note that the second row and column of these conversion matrices consist completely of

zeros, an artifact that results because phasors at DC must be real. This structural singular

ity in JF can be removed either by deleting the offending row and column or making the

diagonal entry nonzero and always setting the DC imaginary term to zero in the right-

hand-side vector.

If not all frequencies computed in the transform are used in the harmonic balance cal

culations, then the resulting conversion matrix should be constructed as if all frequencies

were included, except the rows and columns that correspond to the missing frequencies are

deleted. This situation occurs if the FFT were used and required more frequencies than the

user requested or if quasiperiodic signals were being transformed and the truncation used

left some holes in the resulting translated set of frequencies.
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2.1. Harmonic Relaxation-Newton

The second way to improve the harmomc Newton algorithm is to exploit the structure of

the Jacobian to reduce the time required to factor it. Factoring the Jacobian is the most

expensive operation required in the harmonic Newton algorithm. The techniques presented

in this section are designed to reduce the expense of factoring this matrix. As a side

benefit, they also speed its construction and the process of forward and backward substitu

tion.

The Jacobian is organized as a block node admittance matrix that is sparse. Conven

tional sparse matrix techniques can be used to exploit its sparsity [kundert86a]. Each block

is a conversion matrix that is itself a block matrix, consisting of 2 x 2 blocks that result

from Fourier coefficients being members of C. Conversion matrices are full if they are

associated with a node that has a nonlinear device attached, otherwise they are diagonal.

In an integrated circuit, nonlinear devices attach to most nodes, so the conversion matrices

will in general be full. It often happens, though, that nonlinear devices are either not

active or are behaving very linearly. For example, the base-collector junction of a bipolar

transistor that is in the forward-active- region is reverse biased, and so the junction contri

butes nothing to its conversion matrices. If there are no other contributions to .those

conversion matrices, they may be ignored. If there are only contributions from linear com

ponents, they are diagonal. During the factorization, it is desirable to keep track of which

conversion matrices are full, which are diagonal, and which are zero, and avoid unneces

sary operations on known zero conversion matrix elements.

If a circuit contains many linear components, such as is common with hybrid

microwave circuits, then much of the matrix will consist of diagonal blocks that are con-
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stant from iteration to iteration. It is possible to order the Jacobian during factorization

such that the rows and columns associated with nodes that are attached only to linear dev

ices are placed in the upper left corner of the matrix using variability types [norin71]

[hachtel72]. These rows and columns are eliminated once before the Newton iteration

starts. The elimination proceeds until a full block is encountered. In this way, the har

monic Jacobian is reduced in size by this prefactorization step until the number of rows

and columns is equal to, or slightly greater than, the number of nodes with nonlinear dev

ices attached.

A common approach to harmomc balance is to separate the linear devices into their

own subcircuit and evaluate them once. A y -parameter matrix is created that describes the

linear subcircuit to the harmonic balance analysis, this matrix becomes Y in (7.5). In this

way, N is reduced from the number of nodes in the circuit to the number of nodes with

nonlinear devices attached. The linear subcircuit approach is similar to using variability

types, with one important difference. The variability types approach can be integrated into

the normal pivot selection algorithm for the sparse matrix solver. The pivot selection algo

rithm, now fortified with variability types, can intelligently choose which of the nodes to

eliminate and in which order. The order of elimination plays an important role in deter

mining how many operations required for the factorization of a sparse matrix. It is possi

ble to constrain the order in which the rows and columns are eliminated and end up with a

reduced matrix that is identical to the one that results from the linear subcircuit approach.

However, with variability types, the order is not constrained and it is likely that a better

ordering will be found. Thus, using variability types is at least as efficient as using the

linear subcircuit approach.
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2.1.1. Adaptively Pruning the Harmonic Jacobian

Applying traditional sparse matrix techniques is not enough to solve the Newton-Raphson

iteration (8.9) efficiently. It is also necessary to reduce the density of the matrix. The

Jacobian is only used to generate new iterates; it is not used when confirming convergence,

so errors in the Jacobian only affect the rate and region of convergence, not the accuracy

of the final solution. Approximations in the Jacobian reduce the asymptotic rate of conver

gence, but the gain in efficiency can more than make up for this loss. One approximation

of this sort is Samanskii's method, presented in Chapter 4, which results in a dramatic

speedup for most circuits.

Another approach to approximating the Jacobian and thus speeding the iteration,

results from exploiting the natural characteristics of conversion matrices for the nonlinear

devices. As mentioned previously, these matrices are the sum of a Toeplitz and a Hankel

matrix. Recall that

where

T =

dv„
= (J +H)D

t0 r_, r_2 r_3

t\ to f_i f_2

t2 tx to r_i

*3 f2 fl f0

H =

'* =

GRn(k) -GL(k)

GL(k) GRn(k)

ho h\ h2 h$

h\ h2 /i3 A4

h2 h$ A4 A5

^3 ^4 '*5 h6

D =

V4

hu =

GRn(k) GL(k)

Gfmn(k) -GRn{k)

where Gmn is the sum of the derivative spectra for nonlinear resistors between node m and

n, or from m to ground if m = n. This spectrum has the characteristic that the more
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linear the devices that generate it are behaving, the more the DC component dominates

over the harmonics and the faster their magnitude drops off at higher harmomcs. As a

result, elements in the conversion matrix far from the diagonal will be small compared to

those on the diagonal. To reduce the density of the harmonic Jacobian, these small terms

far from the diagonal will be ignored.

Definition: The guard harmonic for a derivative spectrum is the smallest harmonic k such

that

|G(/)|<n|G(0)| for all / Zk

where \i is a threshold parameter. (Typically p, = 10"4.)

When constructing the conversion matrices, (i.e., the blocks in the harmonic Jacobian

resulting from nonlinear devices) all harmomcs in the derivative spectrum used to form the

conversion matrix are considered negligible if they are above the guard harmomc. These

harmonics are set to zero, making the conversion matrices banded about the diagonal with

the bandwidth an increasing function of how nonlinear the devices contributing to the

matrix are behaving. Note that if the bandwidth is restricted to one, so all entries off the

main diagonal of a conversion matrix are set to zero, then harmomc Newton collapses to

block Gauss-Jacobi-Newton harmonic relaxation.

Ignoring those harmomcs of the derivative spectra that fall above the guard harmonics

greatly increases the initial sparsity of the harmonic Jacobian, however the Jacobian tends

to fill-in while factoring it into L and U. To see this, consider the 3x3 banded block

matrix in Figure 8.3. The original nonzeros are marked with crosses (x) and the fill-ins

are marked with circles (O). Notice the tendency of the bandwidth to increase in the

blocks remaining after a major row and column have been eliminated. Also notice that, of
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Figure 83 : Fill-in pattern of a banded block matrix.
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the original nonzeros, those furthest from the diagonal of a block are due to the guard har

monics. These elements are small compared to the diagonal. The fill-ins inside the blocks

always involve the guard harmomc, and so these fill-ins are assumed to be negligible. This

heuristic does not have a sound theoretical basis, but is usually true if both the blocks and

the block matrix are strongly diagonally dominant. Thus the nonlinearities should be resis

tive and behaving only mildly nonlinear, and each node in the circuit should be connected

to ground with an admittance that is large compared to the admittances connecting it to

other nodes. These conditions are very restrictive and rarely satisfied in practice, however

the heuristic works quite well if [i is small and usually results in a considerable speed up.

2.1.2. Harmonic Jacobian Data Structure

Implementing a task such as factoring the harmonic Jacobian on a computer not only

requires a good algorithm, but also good data structures. The data structure used by
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Spectre to hold the harmomc Jacobian is a variation on the standard orthogonal-linked hst

used to hold sparse matrices [kundert86a]. The matrix is written as a block node admit

tance matrix. Thus, the matrix has N rows and columns, where N is the number of nodes

in the circuit. Each element in the matrix contains a 2Kx2K block, where K is the

number of frequencies, and has a pointer to the element below and to the right of itself.

The element also carries the bandwidth of the block. The block is allocated as a full

2^x2^" matrix, but is treated numerically as a banded matrix with the given bandwidth.

This approach allows the bandwidth to be set as needed on each iteration, allowing har

momc relaxation-Newton to adapt to the problem being solved.

3. Spectre

Spectre implements harmonic relaxation-Newton for periodic and quasiperiodic nonauto-

nomous circuits [kundert]. With periodic signals, the FFT is used as the Fourier transform

and the number of frequencies used is constrained to be a power of two. With quasi-

periodic signals, the APFT is used. A version has been written that also implements the

FFT for quasiperiodic circuits and one that implements periodic autonomous circuits. Spec

tre takes as input a file with a SPICE-like description of the circuit, that is a list of com

ponents (transistors, resistors, capacitors, transmission lines, etc) with their node connec

tions, and a list of analyses to be performed. Along with harmomc balance, Spectre also

performs conventional DC, AC, and S-parameter analyses. When a harmonic balance

analysis is requested, the desired number of harmomcs in the solution must be specified.
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3.1. Comparisons to Transient Analysis

Spectre was used to simulate several circuits to exhibit some of the capabilities of the

simulator and to contrast the performance of Spectre against the performance of a represen

tative transient analysis simulator such as SPICE [nagel75]. The times for three circuits are

presented in this section. The first two circuits are well suited to frequency-domain simu

lation and poorly suited to time-domain simulation. With the third circuit, the roles are

reversed.

The first circuit is the traveling-wave amplifier (TWA) shown in Figure 8.4. It con

tains four GaAs MESFETs and ten transmission lines of noncommensurate length. While

Spectre naturally handles lossy and dispersive lines, the lines were constrained to be ideal

to be compatible with SPICE. The run times for SPICE2, SPICE3, and Spectre are Shown in

Table 8.1. The long simulation time required by SPICE2 results from the particular break

point algorithm used in this program (see Chapter 2). This algorithm is very inefficient for

circuits containing transmission lines. While the problem is not inherent to transient

analysis, the wide spread use of SPICE2 has created the misconception that transient

analysis is not suitable for microwave circuits. As a partial solution, SPICE3 [quarles89]

allows the break-point algorithm to ignore the transmission lines resulting in a shorter

simulation time at the expense of increased risk of incorrect answers.

Spectre does not yet have automatic error control algorithms, so the user is forced to

specify the number of harmomcs. This circuit was simulated with 8, 16, and 32 harmon

ics. On this particular circuit, 8 harmomcs resulted in accuracy commensurate with SPICE.

Note that doubling the number of harmonics more than doubled the time required to com

plete the simulation, but the increase is well below the factor of 8 that would be expected
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Figure 8.4 : A four-segment traveling-wave amplifier.

from straight harmonic Newton.

TWA Steady State

SPICE2 62500

SPICE3 240

Spectre 8 harmomcs
16 harmomcs

32 harmonics

7

22

56

out

Table 8.1 : Time required to simulate the traveling-wave amplifier of Figure 8.4.
The simulation interval for SPICE was two periods of the input. The period of the
input signal was 10 ris while the electrical lengths of the various transmission
lines were 86 ps, 187 ps, and 251.ps. Times were measured on a VAX785.
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Figure 8.5 shows the results computed by Spectre for the traveling-wave amplifier

when the power of the input source was swept from -20 dBm to 20 dBm in 40 steps.

Notice that at the highest input power, the amplifier exhibited 10 dB of compression. The

time required to perform this analysis is shown in Table 8.2. Swept analyses in harmonic

balance exploits the useful characteristic of the Newton-Raphson algorithm that it con

verges faster and is more likely to converge if primed with an initial guess close to the

solution. With a swept analysis, Spectre calculates an initial guess by extrapolating from
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the solution at the previous step. Thus, a sweep with 40 points is considerable faster than

40 individual analyses. This feature is an advantage harmomc balance has over transient

analysis.

TWA Power Sweep

Spectre 4 harmonics
8 harmomcs

16 harmomcs

38

130

800

Table 8.2 : Time required to simulate the traveling-wave amplifier of Figure 8.4
over the input power levels shown in Figure 8.5 in 40 steps. Times were meas
ured on an HP9000/350 with floating point accelerator.

Spectre computed the intermodulation distortion of the traveling-wave amplifier by

applying two 200 mV signals, one each at 10 GHz and 10.4 GHz. The response is shown,

dBV

Small signal extrapolated

Fundamental

dBm

Figure 8.5 : The power level of the first three harmomcs of the output of the
traveling-wave amplifier of Figure 8.4 versus input power.
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both in the time and frequency domains, in Figure 8.6. The circuit was simulated with

H = 5 using the diamond truncation given in (3.6). The computation time and memory

requirements for several values of H and for both box (3.5) and diamond (3.6) truncation

schemes are shown in Table 8.6. There are a few comments that should be made to clarify

some of the results in the table. Spectre's memory allocator expands array sizes in factors

of two, which is why memory requirements sometimes do not change even though H

changes. Each doubting of the array size quadruples the amount of memory required.

Most of the approximate factor of two differences between physical and virtual memory

requirements can be eliminated by better implementation. Any simulation that needed over

64 frequencies required more memory than the 44 megabytes available from the operating

system.

The frequencies of the two tones were chosen so that the various spectral lines in

Figure 8.6 could be resolved by eye. The circuit was resimulated with the frequency of

the tones set as close as 10 GHz and 10GHz + 1 Hz with no apparent change of accuracy

or efficiency. The 1 Hz separation in the two tones results in an intermodulation product

at 1 Hz. The combination of 10 GHz and 1 Hz signals make it prohibitively expensive to

find the steady-state response of this circuit with a transient analysis simulator such as

SPICE.
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Figure 8.6 : Response of traveling-wave amplifier of Figure 8.4 to two-tone input

TWA Intermodulation Distortion

H K time physical
memory

virtual

memory

Using AK generated by (3.5).
1 5 0.63 s 0.55 MB 0.78 MB

2 13 4.2 s 0.87 MB 1.5 MB

3 25 24 s 2.2 MB 3.9 MB

4 41 98 .s 7.5 MB 14 MB

5 61 320 s 7.6 MB 14 MB

Using AK generated by (3.6).
1 3 0.35 s 0.50 MB 0.80 MB

2 7 1.3 s 0.50 MB 0.80 MB

3 13 4.4 s 0.87 MB 1.5 MB

4 21 15.6 s 2.2 MB 3.9 MB

5 31 43 s 2.3 MB 4.0 MB

6 43 110 s 7.5 MB 14 MB

7 57 245 s 7.6 MB 14 MB

Table 83 : Execution times and memory requirements for Spectre running an in
termodulation distortion test on the traveling-wave amplifier of Figure 8.4. Times
were measured on a VAX8800.

80
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Times required to simulate the self-biasing FET tuned amplifier shown in Figure 2.1

is compared in Table 8.4. This circuit is troublesome to transient analysis because of the

slow time constant of the input DC blocking capacitor. Normally, time constants due to

bias circuits are avoided by using the DC solution as the initial condition. With this cir

cuit, the DC gate voltage is affected by the large input signals. It is very difficult to

predict the settiing time, and therefore the required simulation time, because of the non

linear effect of the gate diode on the bias circuit time constant. The simulation interval

was chosen for this circuit by simulating the circuit several times. Each time the simula

tion interval was increased and the result compared with the previous simulation until it

became clear that the circuit had fully settied. The time reported was that required by

SPICE to simulate the circuit over the shortest interval for which the circuit settied to

within 0.1% of its steady-state value. Spectre found the steady-state solution of this circuit

direcdy without forcing the user to know the circuit's settling time.

Self-Biased Amplifier

SPICE2 608

Spectre 8 harmomcs
16 harmomcs

- 32 harmomcs

1.4

5

28

Table 8.4 : Time required to simulate the self-biased amplifier of Figure 2.1.
Times were measured on a VAX785.

The last circuit, shown in Figures 8.7 and 8.8, is a simple noninverting amplifier

based onauA 741 op amp. Results for this circuit are presented in Table 8.5 with various

output signal levels and load resistances. The circuit contains no long time constants and

so transient analysis can be used to compute the steady-state response efficiently. With

large output current, the op amp behaves internally strongly nonlinear, which slows har-
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monic balance. Indeed, the output stage goes into class B operation at high output

currents. This example shows that harmonic balance is able to handle strongly nonlinear

circuits, though it may require more time than traditional transient analysis.

vcc-*w v

-VEE—15 V

Figure 8.7 : Schematic of uA 741 operational amplifier.

-h
V,out

-wv-

Rr

OUTPUT

Figure 8.8 : Op amp of Figure 8.7 shown in a noninverting amplifier
configuration with gain of 100.



8. Harmonic Balance: Implementation 192

Circuit Conditions SPICE2

Spectre
Harmonics

8 16 32

UA741 Vout = IV
Rl = °° 9 . 5 11 25

Vout = IV
RL = 10K 13 8 19 40

Vout = iov
RL = 10* 14 32 132 497

Table 8.5 : Time required to simulate the amplifier of Figure 8.8. Times were
measured on a VAX785.

3.2. Profiles

With transient analysis, the time required to evaluate the nonlinear device equations gen

erally dominates over all other tasks except on very large circuits, where the time required

to factor and solve the large system of linear equations dominates. The transition point

where the time required of both tasks is equal generally occurs between 1000 and 10,000

nodes, depending on the complexity of the models and the circuit. The situation is com

pletely different with harmonic balance, where the time required for operations involving

the system of linear equations completely dominates over all other tasks. For example,

consider the circuit shown in Figure 8.9, a seven stage traveling-wave amplifier with 14

GaAsFETs and 24 transmission lines [orr86]. Table 8.6 shows the time required to evalu

ate device models (eval), convert signals into and out of the frequency domain (Fourier),

and construct, factor, and solve the linear system of equations (eqns) for various number of

frequencies and power levels. The time required for handling the linear system of equa

tions was further resolved in Table 8.7 where the time required to construct, factor, and

solve the factored system of equations is shown.
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Figure 8.9 : A GaAsFET traveling-wave amplifier [orr86].

Spectre Profiles

H\ H2 K Pin ttotal Eval Fourier Eqns

4

4

4

0

0

0

4

4

4

-10 dBm

0 dBm

10 dBm

6.26 s

6.8 s

16.9 s

1.6%

2.1%

4.4%

3.5%

4.1%

9.6%

74.5%

73.2%

74.1%

8

8

8

0

0

0

8

8

8

-10 dBm

0 dBm

10 dBm

15J5 s

26.38 s

68.32 s

0.5%

0.7%

2.3%

3.2%

1.9%

4.8%

86.9%

91.5%

89.5%

16

16

16

0

0

0

16

16

16

-10 dBm

OdBm

10 dBm

36.34 s

155.72 s

433.88 s

0.8%

0.3%

0.6%

2.4%

0.6%

1.4%

87.5%

97.1%

96.8%

4

4

4

4

13

13

-10 dBm

OdBm

186.24 s

267.34 s

0.2%

0.1%

1.0%

1.0%

97.2%

96.6%
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Table 8.6 : Time required for various portions of the Spectre code for the circuit
of Figure 8.9 with various number of frequencies and power levels. Each run re
quired only one full Newton iteration, but the runs at the higher power levels re
quired many Samanskii iterations (where the Jacobian was reused). //,- represents
the number of harmomcs for the i* fundamental, and K is the total number of
frequencies. Times were measured on an HP9000/350 with floating point ac
celerator.
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Spectre Matrix Profiles
K Pin *total Construct Factor Solve Newton Saman

4

4

4

-10 dBm

OdBm

10 dBm

6.26 s

6.8 s

16.9 s

10.1%

11.0%

25.4%

62.8%

59.0%

31.0%

6.7%

9.4%

31.8%

1

2

21

8

8

8

-10 dBm

OdBm

10 dBm

•15.5 s

26.38 s

68.32 s

7.0%

5.4%

• 13.4%

77.0%

82.3%

55.7%

6.6%

6.4%

27.5%

1

2

22

16

16

16

-10 dBm

OdBm

10 dBm

36.34 s

155.72 s

433.88 s

6.1%

2.0%

4.1%

78.7%

92.9%

78.7%

5.9%

3.2%

16.0%

1

2

24

13

13

-10 dBm

OdBm

186.24 s

267.34 s

4.9%

4.2%

90.7%

89.6%

2.8%

3.9%

1

3

Table 8.7 : Time required for various portions of the Spectre matrix code for the
circuit in Figure 8.9 with various number of frequencies and power levels. The
time required to construct the matrix included the time to evaluate the device
model equations and convert signals to and from the time domain (Construct).
The remaining times are those required to factor and solve the linear system of
equations. The number of full (Newton) and Samanskii (Saman) iterations are
given. With Samanskii's method the Jacobian from the previous iteration is
reused. Times were measured on an HP9000/350 with floating point accelerator.

These results show that the most expensive aspect of harmonic balance is construct

ing, factoring, and solving the linear system of equations. This is true even with harmomc

relaxation-Newton and Samanskii's method being used.

3.3. Harmonic Relaxation versus Harmonic Newton

This section explores how reducing the bandwidth of the conversion matrices affects the

time required to complete a simulation. In particular, harmonic relaxation, harmonic

relaxation-Newton and harmonic Newton are compared versus computation time and

number of iterations. It is expected that harmomc relaxation be the fastest but least robust,

harmonic Newton be the most robust but slowest, and that harmomc relaxation-Newton

should be a robust method that adapts to the problem to provide the speed of harmomc
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relaxation when it does not jeopardize convergence. Table 8.8 shows computation time

and Table 8.9 shows the number of iterations for Spectre simulating the circuit of Figure

8.10 for a periodic solution containing 8 harmomcs.

-vHI—r- Vcout

Figure 8.10 : Class AB monolithic power amplifier3.

3R. G. Meyer, private communication.
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Spectre Computation Time vs. Method

Pin HR GJNHR HRN HN

0.3 0.1 0.01 0.001 0.0001

-20 dBm OO 22.12 15.9 21.05 29.62 35.68 41.62 85.07

-15 dBm OO 38.82 25.03 48.23 40.63 49.58 50.60 94.65

-10 dBm OO 154.58 OO 63.02 77.22 87.87 100.70 135.85

-5 dBm OO OO OO OO 138.42 139.88 178.68 259.02

OdBm OO OO OO OO OO 412.88 438.72 517.70

5 dBm OO OO OO OO OO 694.70 680.30 859.42

10 dBm OO OO OO OO OO 1442.82 1417.92 1713.90

Table 8.8 : Time required for Spectre to simulate the circuit in Figure 8.10 using
various harmonic balance methods. Methods include harmomc relaxation, both
splitting (HR) and Gauss-Jacobi Newton harmonic relaxation (GJNHR), harmonic
relaxation newton (HRN) for various guard harmomc thresholds, and harmomc
Newton (HN). Times were measured on an HP9000/350 with floating point ac
celerator.

Spectre Iteration Count vs. Method

Pin 1 HR GJNHR HRN HN

0.3 0.1 0.01 0.001 0.0001

-20 dBm OO 1/9 1/4 1/4 1/5 1/5 1/5 1/5
-15 dBm OO 1/18 1/7 2/9 1/8 1/8 1/8 1/8
-10 dBm OO 3/78 OO 1/21 1/21 1/21 1/21 1/21

-5 dBm OO OO OO OO 3/19 3/18 3/18 3/18
0 dBm OO OO OO OO 5/63 5/63 5/63
5 dBm OO OO OO OO oo 10/60 10/60 10/60

10 dBm OO OO OO OO oo 21/113 22/94 22/94

Table 8.9 : Iterations required for Spectre to simulate the circuit in Figure 8.10
using various harmomc balance methods. Methods include harmomc relaxation,
both splitting (HR) and Gauss-Jacobi Newton harmomc relaxation (GJNHR), har
momc relaxation newton (HRN) for various guard harmonic thresholds, and har
momc Newton (HN). The first number given is the number of full Newton itera
tions, the second is the number of Samanskii iterations. With a Samanskii itera

tion, the Jacobian from the previous iteration is reused.

These results show that harmomc relaxation-Newton as implemented in Spectre with

a fixed guard threshold of typically 0.0001 does not extract as much of the speed of

Gauss-Jacobi harmomc relaxation as is possible. Extracting that speed is more comphcated
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than just changing the guard harmonic threshold, as shown in the foUowing tables. Table

8.10 shows computation time and Table 8.11 shows the number of iterations for Spectre

simulating the circuit of Figure 8.9 for a periodic solution containing 16 harmonics.

Spectre Computation Time vs. Method

Pin HR GJNHR HRN HN |
0.3 0.1 0.01 0.001 0.0001

-10 dBm oo 2.78 2.95 6.49 11.85 14.9 13.77 118.53 |
-5 dBm oo 3.18 3.24 6.3 10.97 13.75 16.94 122.65 1
OdBm oo 3.46 86.18 33.45 23.36 36.11 38.95 119.75 |
5 dBm oo 4.76 75.85 185.75 117.76 102.46 99.68 135.70 |

10 dBm oo oo 427.79 144.02 152.84 162.01 146.82 184.62 |

Table 8.10 : Time required for Spectre to simulate the circuit in Figure 8.9 using
various harmomc balance methods with 16 harmomcs. Methods include harmomc

relaxation, both splitting (HR) and Gauss-Jacobi Newton harmomc relaxation
(GJNHR), harmomc relaxation newton (HRN) for various guard harmomc thres
holds, and harmomc Newton (HN). Times were measured on an HP9000/350
with floating point accelerator.

Spectre Iteration Count vs. Method

Pin HR GJNHR

0.3 0.1

HRN

0.01 0.001 0.0001

HN

-10 dBm oo 1/0 1/1 1/1 1/0 1/0 1/0 1/0
-5 dBm oo 1/2 1/1 1/1 1/1 1/0 1/0 1/0
OdBm oo 1/3 4/7 1/1 1/1 1/1 1/1 1/1
5 dBm oo • 1/6 -3/9 4/6 2/12 1/2 1/2 1/2

10 dBm oo oo 8/30 1/24 1/23 1/23 1/23 1/23

Table 8.11 : Iterations required for Spectre to simulate the circuit in Figure 8.9
using various harmomc balance methods. Methods include harmomc relaxation,
both splitting (HR) and Gauss-Jacobi Newton harmonic relaxation (GJNHR), har
momc relaxation newton (HRN) for various guard harmomc thresholds, and har
momc Newton (HN). The first number given is the number of full Newton itera
tions, the second is the number of Samanskii iterations. With a Samanskii itera
tion, the Jacobian from the previous iteration is reused.

With the traveling-wave amplifier, for large thresholds (but less than one), conver

gence for harmonic relaxation-Newton is worse than for harmonic relaxation. It appears as
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if truncating the conversion matrices to be diagonal gives better convergence properties

than does truncating the conversion matrices to have a small bandwidth greater than one.

This odd behavior has yet to be explained.

3.4. APFT versus FFT

In order to explore the advantage of implementing quasiperiodic harmomc balance using

the FFT rather than the APFT, a two-tone intermodulation distortion test was performed on

the traveling-wave amplifier of Figure 8.9. Two -10 dBm signals were applied to the

amplifier at 1 GHz and 1.01 GHz and 3 harmomcs of each signal were calculated along

with sum and difference frequencies to a total of 13 frequencies. The time required on an

HP9000/850 to simulate this circuit was 106 seconds for APFT-based harmomc Newton and

81 seconds for FFT-based harmonic relaxation-Newton4. The primary reason that the FFT-

based method was faster was because it allowed the use of harmonic relaxation-Newton.

When the circuit were resimulated with APFT-based harmonic relaxation-Newton, the time

required was 82 seconds. Harmonic relaxation-Newton is not normally used with the APFT

because the aliasing pattern of the APFT is incompatible with the guard harmonic heuristic.

The speed up achieved on this circuit by using harmonic relaxation-Newton and the FFT is

modest, considerably greater speedup can be achieved when much of the circuit is behav

ing near linearly or when a large number of frequencies are used.

"The FFT-based measurements were made using the HP85150B Microwave Nonlinear Simulator (MNS).
This simulator is a direct descendant of Spectre, but has been upgraded to use the FFT rather than the APFT for
its transform when performing quasiperiodic harmonic balance.



Chapter 9
Comparisons

For each of the three classes of steady-state methods presented, finite-difference, shooting,

and harmomc balance methods, there are situations where each is best. In this chapter,

each method will be summarized and its advantage's and disadvantages given. Each of the

circuits presented in Chapter 2 are also reviewed and recommendations are given on how

to find their steady-state response most efficientiy.

1. Finite-Difference Methods

Finite-difference methods solve boundary-value problems by discretizing the differential

equation for the circuit on a finite set of time-points that cover the simulation interval

This results in a large system of equations which are solved for the node voltages at each

time-point simultaneously. The important characteristics of this method are that the equa

tion and solution are formulated in the time domain, it solves boundary-value problems,

and it solves for the whole solution simultaneously.

The nonlinear finite-difference equations are usually solved using Newton-Raphson.

Since there are large number of equations and unknowns, the Jacobian is quite large. This

is a significant drawback. This method cannot be applied to large circuits because of the

large amount of memory that is required for the Jacobian. The matrix is sparse, which

helps considerably.

199
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When Newton-Raphson is applied to equations generated by the finite-difference

method, the intermediate iterates are waveforms that may not satisfy the differential equa

tions, but do satisfy the boundary constraints (assuming that these constraints are linear).

For this reason, the finite-difference methods are well suited for finding unstable periodic

or quasiperiodic solutions. This may or may not be a feature of the method, depending on

whether you wish to find or avoid unstable solutions. The finite-difference methods are

like parallel shooting methods in this regard. In fact, a parallel shooting method, when the

shooting intervals are taken to be so small that there is one time-step per interval, becomes

a finite-difference method. This is easily seen by using the one step approximation

$*(**-1) -xk + T~~-*it m equations (5.31), which becomes a finite-difference method with
nk

explicit Euler used to form the difference equations.

Finite-difference methods allow the most freedom when choosing an integration

method. The time-steps may be nonuniformly spaced and the spacing may be chosen to

increase accuracy by clustering points where waveforms are changing"rapidly and increas

ing efficiency by spreading them out where the waves are quiescent. Furthermore, finite-

difference methods allow the integration method to be noncausal. In other words, the

value of the solution at future time-points as well as past time-points are used when com

puting the discretized derivative. Noncausal discretization can be used with finite-

difference methods because the solution is calculated for all time at once. No attempt is

made to exploit temporal unidirectionality.

Finite-difference methods are able to solve boundary-value problems formulated using

the MFT formulation, and so are able to find quasiperiodic solutions with an arbitrary

discretization method. They are also able to handle circuits with distributed devices, and
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like all steady-state methods, exhibit characteristics that can be exploited on parallel or vec

tor machines.

2. Shooting Methods

Shooting methods convert boundary-value problems into a sequence of initial-value prob

lems. They begin with a guess at the solution at the beginning of the shooting interval.

The equations are integrated over the interval and the results at each of the boundaries are

substituted into the boundary constraint and the initial state is corrected in a manner to

better satisfy the boundary constraint. The guess is corrected using either an extrapolation

method or a Newton-Raphson method. Unlike finite-difference methods, the intermediate

iterates generated by shooting methods satisfy the differential equations, but not the boun

dary constraint

Shooting methods exploit the causality inherent in most dynamic systems by evaluat

ing the differential equation as an initial-value problem. They do not compute the solution

to the differential equation all at once and only need access to a small piece of it (a few

past time-points) at any point in time. As a result, they need considerably less memory.

Shooting methods have limited utility on large circuits however. With Newton-

Raphson based shooting methods, a matrix equation involving the Jacobian must be solved

at each time-point (solving this equation requires N forward/backward substitutions of the

Jacobian, where N is the size of the Jacobian). The computational complexity of this step

is at best O(N2) (for a diagonal Jacobian) and at worst O(N3) (for a full Jacobian). The

matrix equation is solved when updating the sensitivity matrix. The sensitivity matrix gen-
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erally exhibits considerably numerical sparsity1, however the sparsity pattern is not known

in advance and changes during the course of the computation. How to exploit this sparsity

is an open question that, if solved, would result in Newton-Raphson based shooting

becoming considerably more efficient on large circuits.

Extrapolation based shooting methods need to evaluate the differential equation over

p shooting intervals, where p is the number of time constants on the order of, or greater

than, the shooting interval. For large circuits, p could be quite large, but that would be

unusual. However, simulating a large circuit over many shooting intervals for each itera

tion of the shooting method can get quite expensive.

A very important characteristic of shooting methods is that they converge quickly and

reliably if the state-transition function is near linear. It is quite often the case (usually by

design) that the state-transition function is linear even when the overall circuit behavior is

not. The nonlinear behavior is not a problem for the numerical integration used to evaluate

§T because numerical integration is a natural continuation method where time is the con

tinuation parameter. This hiding of the nonlinear behavior gives shooting methods a con

siderable advantage over the finite-difference methods and harmonic balance on a wide

range of problems.

An important disadvantage for shooting methods is that they cannot handle distributed

devices. Circuits containing distributed devices could be solved with shooting methods if

the distributed devices where replaced with lumped approximations, however the lumped

approximation often contains so many internal nodes and significant time constants, that

they considerably increase the cost of using shooting methods.

'The sensitivity matrix numerically sparse in the sense that there are many entries in the matrix that are
close to zero. This is not the usual definition of sparsity, where many entries are exactly zero.
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Lastiy, shooting methods can find the quasiperiodic solution of a circuit if the

boundary-value problem is formulated using the MFT method. Shooting methods can be

accelerated using parallel and vector machines, and particularly so if parallel shooting

methods are used. However, the advantage that shooting methods enjoy by hiding non

linear behavior from the outer loop is often lost with parallel shooting methods.

3. Harmonic Balance

Harmonic balance is a frequency-domain method that is unique in two ways. First, the

equations are formulated by assuming that the voltages and currents in the circuit are

approximated by a Fourier series accurately. Since such signals are almost periodic, the

method inherenUy avoids transient behavior by being incapable of representing it. The

complexity of the method is determined by the number of terms needed in the Fourier

series to accurately represent the signals, and not by the actual frequencies. The complex

ity is low and the method efficient if the circuit is behaving near linearly and is driven by

signals representable by Fourier series with few terms. In this situation, a truncated

Fourier series is often a very good approximation to the true solution, and harmomc bal

ance is very accurate.

The second way that harmonic balance is different from time-domain methods is that

it represents signals using the coefficients of the sinusoids rather than a sampled-data

representation (i.e„ in the frequency domain using the Fourier series rather than in the time

domain). Using Fourier coefficients and superposition allows the linear components to be

evaluated with phasor analysis. Thus, the large number of distributed device models avail

able in the literature that are formulated using phasors are directiy compatible with har

monic balance. Linear component measurements are also made using phasors by network
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analyzers and are compatible with harmonic balance.

The harmomc balance equations are formulated by insisting that Kirchoff s laws are

satisfied at each frequency being considered. When evaluating nonlinear devices, it is

often necessary to transform signals into and out of the time domain, but this is not essen

tial and has no effect on the result, and so harmonic balance is considered a frequency-

domain method.

The number of equations and unknowns in a harmomc balance formulation roughly

equals two times the number of nodes times the number of frequencies considered. The

factor of two results from needing both magnitude and phase in the phasor representation

of a signal. When Newton-Raphson is used to solve these equations, the Jacobian gets

very large. Thus memory and computation time requirements of harmomc balance can be

considerable for large circuits when many frequencies are being considered. The Jacobian

is sparse, and this fact must be exploited for harmomc balance to be practical for even

moderately sized circuits. It is possible to further exploit sparsity by. using the harmomc

relaxation-Newton algorithm. Independent of which method is used to solve the nonlinear

harmonic balance equations, there is considerable parallelism to exploit.

If harmomc balance were to be converted into a time-domain method, it would be a

finite-difference method. By starting from (7.5), harmomc balance is written as a finite-

difference method by simply multiplying through by the inverse almost-periodic Fourier

transform matrix T~l. Fornode n,

r-lin(y) + r-lannQn<y) + r-lZYmnv„ +r~lun =o.

Knowing that Vn =Tvn, /„(V) = I7n(v), Qn(V) = Tq„(v) and Un =Tun allows us to

simplify this to
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N

i„ (v) +T-1^ Tqn (v) +T-1 X Ymn Tvn + un =0. (9.1)
m=l

T~lQ.m T and I-1!^,,T are constants and so can be precomputed for efficiency. Equation

(9.1) shows that harmonic balance can be formulated in the time domain as a finite-

difference method. The basic difference between the two approaches is that the

frequency-domain version represents the solution using the coefficients of the sinusoids and

the finite-difference method represents them in sampled-data form. Though both methods

give the same answer, the matrices in the finite-difference method are denser and so that

approach will be less efficient

4. Examples

Here we look back at the circuits presented in Chapter 2 as motivation. It is explained

how the techniques presented.in this dissertation would be applied to these circuits.

4.1. Self-Biasing Amplifier

Self-biasing amplifiers, such as the one shown in Figure 2.1, are difficult for transient-

based simulators because they exhibit a time constant that is very long compared to the

period of a typical input frequency and it is very difficult to predict just how long any

turn-on transient will last. Any of the periodic steady-state methods are suitable for use on

such circuits. If the circuitcontains distributed devices or behaving near-Iinearly, harmomc

balance should be used, otherwise, shooting methods are likely to be more efficient.

4.2. Mixers

The wide frequency range and the long time constants present in mixers cause problems

for transient analysis. Mixers, by their very nature, generally behave very nonlinearly.

The closer the nonlinearities are to acting tike ideal switches, the better the conversion



9. Comparisons 206

efficiency and noise performance of the mixer. While it is possible to simulate these cir

cuits with harmomc balance, it is expensive because a large number of frequencies will be

needed to accurately represent the signals. If the mixer contains distributed devices, which

is common at microwave frequencies, then harmomc balance is the only alternative to tran

sient analysis. If the mixer is purely lumped, then quasiperiodic shooting methods based

on the MFT algorithm provide an attractive alternative, especially if the circuit is small.

4.3. Narrow-band Amplifiers and Filters

These circuits are difficult for transient analysis because of their long settling times (if they

are high-Q), and because of the widely spaced frequencies present in a two-tone intermo

dulation distortion test. For lumped filters, either harmomc balance or shooting methods

provide an attractive alternative to transient analysis. For a two-tone test, harmonic bal

ance is particularly attractive because the circuit is generally behaving near linearly and so

harmonic balance is efficient. For distributed filters, harmonic balance is the only choice.

4.4. Switched-Capacitor Filters

Switched-capacitor filters have a large repetitive clock signal whose period is generally

much shorter than the duration of the interval of interest The high frequencies combined

with the long simulation interval result in an expensive transient analysis. Harmonic bal

ance is inappropriate with these filters because of the large number of harmomcs in the

clock signal, which is always a pulse train. If a sinusoidal input is applied to the filter, the

resulting signals are quasiperiodic, and so the only real alternative to transient analysis is

MFT-based shooting methods. This is particularly true if two or more sinusoids are applied

to the input of the filter, which would be the case if the intermodulation distortion of the

filter were being measured.
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4.5. Traveling-Wave Amplifiers

The difficulty with traveling-wave amplifiers is that they contain transmission lines. These

amplifiers are used up to very high frequencies and so various nonideal effects such as

dispersion and loss must be accounted for in the lines. The dispersion and loss present

problems for transient analysis and the distributed devices make shooting methods unsuit

able. The only appropriate approach is harmonic balance, which usually works well.

Traveling-wave amplifiers often exhibit conditional stability (stable for small signals and

large signals, but with a range of instability in between). Harmomc balance will have trou

ble in this situation and so pseudo-arc-length continuation is needed.

4.6. Measured Devices

Measured devices are characterized with S-parameters measured in the frequency domain.

As yet, no transient analysis simulator has been able to use such data in a simulation. The

only proven simulation technique for nonlinear circuits that contain measured devices is

harmomc balance.

4.7. Crystal and Cavity Oscillators

Crystal and cavity oscillators are designed for very high-Q, which implies that these cir

cuits have very long turn-on transients. This makes transient methods inappropriate, but as

long as the circuit is lumped, any of the steady-state methods for autonomous systems

work fine. With cavity oscillators, the resonator is generally considered to be distributed,

and so harmomc balance is the best choice.



Chapter 10
Summary

This dissertation presented several new algorithms for finding periodic and quasiperiodic

responses of analog and microwave circuits in particular and systems of nonlinear

ordinary- and integro-differential equations in general. The new algorithms were imple

mented in two new circuit simulation programs and used to simulate a variety of practical

circuits. The main results of the dissertation are summarized below.

Initially a transform suitable for almost-periodic signals that was derived from the

matrix form of the DFT was presented. Conceptually, it is easy to extend the matrix form

of the DFT for almost-periodic signals, however, a naive implementation is likely to be

inaccurate. The concepts of truncation and aliasing were introduced. Truncation is the

operation of eliminating all but a finite number of frequencies from consideration. Aliasing

refers to the amplification and conversion of those signals at the truncated frequencies into

signals at frequencies of interest by the transform. The condition number of the transform

matrix was shown to be a measure of the degree to which the aliased terms are amplified.

For the transform to be accurate, it is important for the condition number to be as small as

possible. A small condition number was shown to be achievable by choosing time-points

for the transform so that the rows of the transform matrix are nearly orthogonal. A practi

cal algorithm was given that chooses such a set of time-points. The combination of the

almost-periodic transform matrix and the time-step algorithm was referred to as the APFT.

208
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The first application of the APFT was the MFT algorithm. MFT maps the problem of

finding the quasiperiodic solution of an ordinary differential equation into a boundary-value

problem. In the development of the algorithm, one of the fundamental frequencies of the

quasiperiodic signals was chosen to be the clock. All signals were sampled at the begin

ning of each clock period. MFT's fundamental assumption was that the sampled

waveforms, which were also shown to be quasiperiodic, could be accurately represented

with a Fourier series with a small number of nonzero Fourier coefficients. Given that J

Fourier coefficients were sufficient, then knowing / points on the sampled waveforms

would be enough to allow the Fourier coefficients to be computed. From the coefficients,

all points on the sampled waveforms can be found. In particular, if / points were known,

then their adjacent successors could be computed solely from the assumption that sampled

waveforms were accurately approximated with a / coefficient Fourier series. The relation

ship of the / points to their immediate successors through the truncated Fourier series

assumption is referred to as the delay operator relation. Another relationship exist between

the / points and their immediate successors through the state-transition function of the

differential equation. These two relationships can be combined into one nonlinear system

of equations that can be solved for the values of the signals at the / points. From there,

the Fourier coefficients are computed, and then any of the points on the sampled

waveform. If the solution is needed at some other time, the state-transition function can be

evaluated starting at the closest preceding sample.

The MFT algorithm was implemented in Nitswit and was tested on a wide variety of

lumped circuits, including switched-capacitor filters and switching mixers. It was shown to

be practical on moderately sized circuits.
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Harmomc balance was presented as a method that differed from traditional transient

analysis in that it approximated the solution to a differential equation as a sum of sinusoids

(a Fourier series) rather than a piecewise polynomial. It also used the Fourier coefficients

(or phasors) to represent the signals rather than a sampled version of the waveforms. In

other words, the circuit simulation problem was formulated by writing Kirchoff s laws in

the frequency domain. Using phasors to represent the signals provides important advan

tages when formulating and evaluating linear device models, particularly when the models

are distributed. This is the main reason why harmonic balance is quickly becoming the

dominant method for simulating nonlinear circuits at microwave frequencies. In general,

nonlinear devices cannot be directiy evaluated in the frequency domain, and so signals are

converted between the frequency- and time-domains with a discrete Fourier transform. The

nonlinear devices are evaluated in the time domain, with the results transformed back into

the frequency domain. The DFT and APFT are used for transforming periodic and quasi-

periodic signals, respectively. It was also shown that it is possible to avoid the APFT alto

gether and use the DFT even on quasiperiodic circuits. Doing so results in a noticeable

improvement in speed.

Methods for solving the nonlinear system of equations formulated by harmomc bal

ance were grouped into three broad categories, nonlinear programming techniques, non

linear relaxation techniques, and the Newton-Raphson algorithm. A new method referred

to as Gauss-Jacobi harmomc relaxation was shown to be the best of the relaxation

methods, by virtue of it being fast and the most likely to converge. A new hybrid adaptive

method based on Gauss-Jacobi harmonic relaxation and harmomc Newton was proposed.

This method provides the speed of the relaxation method and the large region of conver

gence of the harmomc Newton method. The hybrid method, referred to as harmomc
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relaxation-Newton, was shown to be just as robust as harmomc Newton, but considerably

faster. Harmomc relaxation-Newton was further accelerated by employing Samanskii's

method.

The Gauss-Jacobi harmomc relaxation, harmonic Newton, and harmomc relaxation-

Newton methods were implemented in Spectre and the algorithms compared on many prac

tical circuits. The results obtained indicate that the harmomc relaxation-Newton method

provides the best tradeoff between speed and region of convergence yet achieved. How

ever, the hueristics used are immature. Considerable improvement in speed could be real

ized by carefully reworking the block matrix ordering algorithms and the algorithm that

sets the block bandwidth.

This dissertation presented several new approaches to rinding the periodic and quasi-

periodic solutions of nonlinear differential equations, and new ways of improving the

efficiency of the standard approaches. These results will eventually provide the designers

of analog and microwave circuits useful new capabilities for their circuit simulators, and

allow them to explore their designs more fully. However, there is certainly more work that

can be done to further improve the efficiency of these approaches, and perhaps a break

through or two that remains to be uncovered. Also, efficient methods for determining

whether these solutions are stable, and so represent steady-state solutions, are an important

research topic that has not been adequately explored. Furthermore, except for standard

transient analysis, no method exists today to compute a chaotic steady-state solution. This

has become a very important problem with the growing popularity of delta-sigma modula

tors.



Appendix A
Nomenclature

Z , R, C The integer, real, and complex numbers.

C = IR2 Throughout most of this dissertation, the trigonometric Fourier series is

used rather than the exponential. Thus, a Fourier coefficient is described

using the coefficients of sine and cosine. The pair of these two coefficients

are said to reside in C as opposed to C C is related to C in that

[ayb]Te C corresponds toa + }b e C

|| - II— The /_ norm. For jceR*. ||x\\„ =max|jc4 For Ae TR.NxN,

ail-Tem
;=1

The Euclidean or l2 norm. For x e IR^, || x \\ 2= 0

2>r
1=1

. For vectors in

IR^, the l2 and l^ norms are equivalent That is,

^|x||2^||x||-^||x||2faraUx€R/v.

O(-) /(x) = O(g(x)) when x->a implies that |/(x)lg{x)\ is bounded as x-»a

{a can be finite, +<», or -«>).

j Imaginary operator, j ="\Rl
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0,1 The zero vector or matrix and the identity matrix.

t, co Time, radial frequency.

X A fundamental frequency.

A, AK A countable set of frequencies, and a finite set with K elements.

P(T\E) The space of all periodic waveforms of bounded variation with period T

with domain E.

AP (A; E) The space of almost-periodic functions on domain E constructed as a linear

combination of sinusoids at frequencies in the set A.

QPfri A*;£)

The set of quasiperiodic functions on domain E with fundamental frequen

cies Xi, X2, . . . , Xd. Equals AP(A;E) where A is the module constructed

from the basis of fundamental frequencies.

F.F"1 Abstract forward and inverse Fourier operators.

r,r_1 Matrix representation of the forward and inverse Fourier operators.

x,X Arbitrary waveform arid its spectrum. X = Fx.

<—> Laplace transform relation.

/ Function that maps waveforms to waveforms. Sometime / is an arbitrary

differentiable function, other times it is used to represent the sum of.

currents entering a node or nodes.

Jf(x0) Jacobian (derivative) of / with respect to x at x0.

F Function that maps spectra to spectra. Related to / in that if y = f (x)

then7=F(X).
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H The maximum number of harmomcs considered.

K The number of frequencies present in the spectra.

N The number of nodes in a circuit

S The number of time-points present in the sampled waveforms.

kj Frequency indices. Usually, kj e {0,1, . . . , AT-1}

m,n Node indices, m,« e {1,2, . . . ,N)

r,s Time indices. r,s e {0,1, . . . , S-l]

v, V Node voltage waveforms, spectra.

u, U Input current waveforms, spectra.

/,/ Function from voltage to current for nonlinear resistors and its frequency-

domain equivalent.

q,Q Function from voltage to charge for nonlinear capacitors and its

frequency-domain equivalent

y Matrix-valued impulse response of the circuit with all nonlinear devices

removed.

Y Laplace transform of y.

Y Phasor equivalent to Y.

Q Matrix used to multiply each particular frequency component in a vector of

spectra by the correct co* to perform the frequency-domain equivalent of

time differentiation.
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Epilogue

We now return the control of your simulator to you until the next circuit at the same time-

step, when the error message will take you to ...

Time-step too small.
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