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Abstract

In its general algebraic framework, factorization theory has proven to be ex

tremely useful in solving interesting control problems related to linear time-invariant

systems that have transfer function representations. This work studies the extension

of factorizations to nonlinear multiinput-multioutput maps.

The nonlinear maps considered are assumed to be causal (i.e., non-anticipatory)

and are defined over input and output extended spaces; hence the setting is quite

general and is suitable for analyzing unstable nonlinear maps. Due to the flexibility

of choosing norms in input and output spaces, this input-output approach is suitable

for generalized forms of bounded-input bounded-output stability analysis.

Factorization tools are applied to stability and robustness analysis of nonlinear
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additive feedback systems. These tools axealsoused to propose stabilizing feedback

schemes.

Proper stable factorizations of linear time-invariant finite-dimensional systems

and related key facts are reviewed for motivation; they lead to a compact self-

contained formulation of stability and robustness properties.

Stabilizing feedback systems and existence of factorizations are studied based

on a discussion of factorization tools for general linear maps. Using factorization

tools, necessary and sufficient conditions are given for robust stability of the nominal

linearunity-feedback system under nonlinear (possiblyunstable) additive, feedback,

pre-multiplicative and post-multiplicative plant perturbations.

Following a discussion for right-factorization tools for nonlinear causal maps,

a stabilizing additive feedback configuration is proposed. Right-factorization and

right-coprime factorization examples for some classes of nonlinear plants are explic

itly worked out. After stating conditions on linear (not necessarily time-invariant)

plants for parametrizing the set of all nonlinear stabilizing compensators in non

linear unity-feedback systems, the parametrizationof all stabilizing nonlinear com

pensators is obtained. Stability and robustness of nonlinear unity-feedback system

and conditions for simultaneous stabilization are studied using factorization tools.
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Chapter 1

Introduction

In the design of Unear time-invariant multunput-multioutput feedback systems, the

parametrization of all stabiUzing Unear time-invariant compensators and the char

acterization of achievable performance (Uke achievable input-output maps, distur

bance rejection, tracking, ...) by stabiUzing compensators have been of great inter

est. For the lumped Unear time-invariant, continuous-time and discrete-time cases,

stabiUzing compensators wereobtained in [You.l,Per.l,Kuc.l]. Using a general alge

braic formulation, [Des.4] generaUzes these results to include the distributed cases,

among others. Using an algebraic approach [Zam.2] considers stable plants, char

acterizes all stabiUzing compensators and estabUshes the trade-off between input-

output performance and robustness. For related work, see also [Ros.l,Doy.l,Des.5,

Sae.l,Des.8] and the references therein. An excellent review of research in this area

and related work can be found in [Vid.3] .

In its general algebraic framework, Unear factorization theory has proven to

be extremely useful in solving important control problems related to Unear time-

invariant systems that have transfer function representations. The multiinput-



multioutput transfer functions that are considered can represent plants which are

continuous-time or discrete-time, finite-dimensional or distributed, one-dimensional

or multi-dimensional. Most plant models encountered in practice can be treated

in this setting of a commutative algebra of Unear maps. Using Unear factorization

theory for these systems, an abundance of results were obtained in the Uterature,

where many control problems (Uke stabiUzation, parametrization of all stabiUzing

compensators, achievable input-output maps, robust stabiUzation, disturbance re

jection, tracking, decoupling, decentraUzed control, ...) were solved.

There has been great interest in extending theexisting Unear factorization theory

to Unear time-varying and possibly to nonUnear maps. In [Fei.l] factorizations

of Unear input-output maps over Hilbert spaces are discussed. [Man.l] expUcitly

derives factorizations for a class of finite-dimensional Unear time-varying plants

which provide an extension to [Net.l,Kha.l] .

Along the sameinput-output approach, [Vid.l] introduces coprimefactorizations

(over Banach spaces) for nonUnear maps as a direct extension of the weU-known

Bezout-identity (see also [Des.6]) . [Ham.l,Ham.2,Ham.3,Ham.4,Ham.5] pose the

stabiUzation problem of a time-invariant nonUnear discrete-time plant; using a set-

theoretic approach, key points of Unear factorization theory that are suitable for

generalizations to this setting are emphasized. Finite-dimensional nonUnear systems

with recursive descriptions are studied in detail. The structured extension of the

Bezout-identity is used in feedback stabiUzation of such discrete-time nonUnear

plants.

The purpose of this work is to study the extension of factorizations to nonUn

ear multiinput-multioutput maps. These factorizations wiU be used for analyzing

nonUnear feedback interconnections and for proposing new stabiUzing feedback con

figurations for nonUnear plants. The only assumption on the nonlinear maps that



are considered is that they are causal and defined over input and output extended

spaces. This standard input-output approach is quite general and is suitable for

generaUzed forms of bounded-input bounded-output stabiUty analysis.

The thesis is organized as follows:

Each chapter is a stepping stone to the next. Chapter 2 consists of an extensive

review of proper stable factorizations (for finite-dimensional Unear time-invariant

systems); it also includes a different way of looking at the unity-feedback system

and the observer-controUer configuration (see Figures 2.3 and 2.6) and robustness

results associated with the Unear time-invariant unity-feedback system (Sections 2.5

- 2.7) . Key facts useful for our study axe also stated (for a complete description

see Section 2.1) .

Chapter 3 focuses on Unear input-output maps; factorization tools for these

maps are used in the analysis and the synthesis of Unear feedback systems (for a

complete description see Section 3.1) .

Chapter 4 studies the most general setting for factorizations of causal nonUnear

input-output maps. Linearity and structure constraints axe dropped. We study the

tools of nonUnear factorization and apply them to stabiUty and robustness analysis

of nonUnear feedback systems; using these tools, stabiUzing feedback configurations

axe proposed (see Section 4.1) .

The contribution of this work is its unified factorization approach to the analysis

and synthesis of Unear and nonlinear feedback systems. Examples are expUcitly

worked out to iUustrate the conceptual tools.



Chapter 2

Proper Stable Factorizations

2.1 Introduction

In this chapter, all plants and compensators axe multi-input multi-output Unear

time-invariant one-dimensional subsystems which axe represented by continuous-

time or discrete-time matrix transfer functions with proper rational entries; that

is, all plants and compensators are realizable (with integrators or delay blocks) in

a minimal state-space description (A, B, C, D) . We discuss the stabiUty and

robust stabiUty of two feedback interconnections of such subsystems:

i) the standard unity-feedback configuration S(P, C) (see Figure 2.3) ,

ii) the observer-controUer configuration S(P, C) (see Figure 2.6) , a special

case of two-input one-output compensation.

The discussion is based on factorization theory [Vid.3] ; for this reason, we give an

extensive review of proper stable factorizations (a special case of the more general

algebraic setting of factorization theory) and include the key facts that relate to

our study.

4



The chapter is organized as foUows:

Section 2.2 introduces the preUminary definitions and facts on proper stable

factorizations. A proper, rational transfer function is called Ru-stable if its poles

axe not in the undesired region U (see Definition 2.2.1) . For the robustness

analysis later on, the boundary dU of the undesired region U satisfies the

matching condition in Definition 2.2.4 . Definition 2.2.6 introduces a norm on

Ru-stable maps. This norm definition wiU be used also in robustness analysis.

Definitions 2.2.7 - 2.2.10 introduce right and left factorizations for proper rational

transfer functions. The properties of right and left factorizations axe also stated.

Section 2.3 iUustrates that two-input one-output compensation is the most gen

eral Unear feedback compensation of a Unear plant if all of the plant inputs and

outputs axe to be used. The set of aU Ru-stabiUzing two-input one-output com

pensators axe given in Fact 2.3.3. A simple proof of this weU-known fact points out

the specific structure constraint on the compensator: all instabiUties of the compen

sator must be due to one denominator map. All Ru-stabilizing compensators in the

standard unity-feedback configuration foUows from this fact (see CoroUary 2.34) .

Any proper plant (with a minimal state-space description) can be stabiUzed

by a two-input one-output compensator (e.g. a fuU-order observer-controUer); this

specific configuration is referred to as the observer-controUer configuration E(P, C)

(see Figure 2.6) . The interesting point is that from an Ru-stable E(P,C) , one

can derive an Ru-stabilizing compensator in the unity-feedback configuration; in

the process, one Bezout-identity (see (2.11)) is sufficient. Using this observation

together with aU Ru-stabilizing compensators in S(P, C) we give

i) a parametrization of all strictly proper compensators ,
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ii) a simple proof of the fact that the parameter set is dense (see (2.15) and Fact

2.4.6) .

Section 2.5 considers robustness of the Ru-stabiUzing compensator in S(P, C)

under plant uncertainties. A standard way of characterizing unstructured plant un

certainties is to use a baU description: at each s € dU , the norm of the pertur

bation transfer function A (possibly unstable) is within a specified radius. Using

this perturbation A , four cases of plant perturbation models are discussed in

subsections 2.5.1 - 2.5.4 : pre-multipUcative, post-multipUcative, feedback and ad

ditive plant perturbations. In each subsection we state the necessary and sufficient

condition for the nominal stabiUzing compensator to stabiUze the perturbed plant.

Using the necessary and sufficient condition, we show that in a ball description, the

uncertainty A can not be unstable. We show that given any radius map, there is

always a destabiUzing unstable A in the specified ball; hence the perturbations

A in a baU must be Ru-stable to get a uniform robustness condition.

Section 2.6 studies the special case that the perturbation A is Ru-stable

(which is proven to be necessary in Section 2.5) . Using this ball description of

Ru-stable perturbations, we state the necessary and sufficient conditions for robust

stabiUzation for each of the four subcases in Section 2.5 .



2.2 Preliminaries

Definition 2.2.1 (undesired region U)

A nonempty closed set U C C is called an undesired region iff

i) s eU & s~€U and

ii) ±oo £ U and

iii) 3a G [0, co) such that [a,oo] CU .

D

An undesired region U denotes the undesired closed-loop pole locations. The

concept of undesired region U appUes to transfer functions of both continuous-time

and discrete-time systems. Consider the foUowing examples of undesired regions:

i) For a < 0 ,

R,:={«GC I fte(s) > a } . (2.1)

ii) For <re(0,l] ,

D<, := { s e C | \s\ > a } . (2.2)

iii) For a > 0 ,

Ka := { 3 e <C | SReOO > -a|3m(«)| } . (2.3)

iv) For a > 0 and a < 0 , U = Ka n R^ .

Definition 2.2.2 (the ring Ru)

For a given undesired region U , the ring Ru C IRp(<s) is defined as

Ru := { « € IRp(<s) | u is analytic in U } .
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Definition 2.2.3 (Ru-stable )

A map H <=IRp(s)noXn'" is caUed Rv-stable iff H : Ru"' -• Run° (denoted by

H 6 RunoXn* C M(Ru) ).

Definition 2.2.4 (matching condition)

An undesired region U is said to satisfythe matching condition ifffor all x0 € <C ,

80 € dU , there exists an h £ Ru such that

i) h(so) = xo and

ii) \k(s)\ < \x0\ Vs e dU .

D

Most undesired regions used in practice satisfy the matching condition; the

foUowing fact shows that the sets R^. and D^ do so.

Fact 2.2.5 (all-pass fit on dRa and 0Dff )

i) For a given x0 € € and s0 6 dR, (see (2.1)), there exists a parameter

a € (0,oo) such that the map h„ : U —• <D given by

\5 — a + olJ

satisfies the matching condition in Definition 2.2.4.

ii) For a given x0 € € and 30 € dD* (see (2.2)), there exists an n > 1

and parameters a,; e (<C \ Dff) , i = 1, ..., n , such that the map

htr : U —> <C given by

M*) =-i*oin^^<r ," 3-a,

satisfies the matching condition in Definition 2.2.4.
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Definition 2.2.6 (|| • ||u)

For any undesired region U , the norm || • ||u : M(Ru) —>-IR+ is defined by

llJSTHu := sup ||J7|| . (2.4)
3<=dU

D

By definition, a map H G M(Ru) has entries which axe analytic in U .

For an analytic function h , \h\p is subharmonic for p G (0, oo) [Rud.l].

Hence,

||J7(«o)|| < mpll^WH = ll^llu V506U. (2.5)
a€dV

When U = R0 = <C+ , we have

IliTH^ = sup \\H(s)\\ = sup ||lT0w)|| = ll-H-IU •

Similarly when U = Di , we have

II-H-IIdi = sup \\H(s)\\ = sup ||H(e*»)|j = \\H\U .
*63Di 0€[O,2ir]

Definition 2.2.7 (right factorization)

(NP,DP) is said to be a right factorization (r.f.) of P GIRp(s)noXni iff

i) Np , Dp G M(Ru) and

ii) Dp G Run,xn'' has an inverse and

iii) NpD;1 = P .

Definition 2.2.8 (left factorization)

(Bp,Np) is said to be a left factorization (if.) of P GlRp(s)n°xn' iff

i) Np , Dp G M(Ru) and

ii) Dp G Run°Xn° has an inverse and
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iii) fl-iJV. = P .

In a right (left) factorization, the denominator map D ( D ) is invertible,

however the inverse D~x ( D'1 ) need not be proper.

Definition 2.2.9 (right-coprime factorization)

(Np,Dp) is said to be a right-coprime factorization (r.c.f.) of P GIRp(s)noXn'" iff

i) (iVp, Dp) is an r.f. of P and

ii) there exist U , V G M(Ru) such that

[ tf V Np
DK

= I

Definition 2.2.10 (left-coprime factorization)

(DpiNp) is said to be a left-coprime factorization (l.c.f.) of P GIRp(s)n<,Xn«" iff

i) (Dp,Np) isanl.f. of P and

ii) there exist U , V G M(Ru) such that

K j>p]
V

= I

An important property of the members of M(IRp(.s)) is that they have both

an r.c.f. and an l.c.f. description [Vid.3] . This greatly simpUfies the analysis

of arbitrary feedback interconnections of subsystems which have proper rational

transfer function descriptions [Vid.3,Cal.2].

In a coprime factorization of a proper map, the denominator map always has a

proper inverse. The foUowing fact is proved for an l.c.f. of a proper map; the r.c.f.

version follows similarly.
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Fact 2.2.11

Let (Dp,Np) ( (Np,Dp) ) be an l.c.f. (r.c.f.) of P GJRp{s)n°*ni , as in

Definition 2.2.10 (2.2.9) ; then Dpx G M(IRp(s)) ( D;1 e M(JRp(s)) ) .

Proof

Let U and V be Ru-stable maps satisfying condition n) of Definition 2.2.10.

Since D"1 exists, we have

D;1 = d;xnpu + v = pu + v ,

which is proper.

•

The foUowing fact estabUshes a simple one point check at oo to determine the

existence of a proper inverse.

Fact 2.2.12 (n&s condition for a proper inverse)

Let i?GlRp(a)nXn ; then D~x exists and D~x GIRp(a)nxn if and only if

det£>(oo) ^ 0 .

Proof

« if "

Let det£(oo) ^ 0 . Since detP(-) ^ 0 , D~x GIR(s)nXn and is given

by D~x — Ad^D/detD . Since AdjD and 1/detD are proper, D~* is

proper.

" only if "

Let D and jD"1 be proper; then det.D(oo) and detZ}-1(oo) axe finite.

Since det Z)(oo)det £>_1(oo) = 1 , we have detjD(oo) ^ 0 .

D

A plant P G M( IRp(s)) does not have a unique r.c.f. (l.c.f.); however, all

r.c.f.s (l.c.f.s) of P can be obtained from a given r.c.f. (l.c.f.) of P .



Definition 2.2.13 (Ru-unimodular )

M G Runxn is said to be Ru-unimodular iff M'1 G RunXn

12

The foUowing fact [Vid.3] shows that an r.c.f. (l.c.f.) of a given plant is unique

up to unimodular factors.

Fact 2.2.14 (all r.c.f.s (I.c.f.s) are related by Ru-unimodular maps)

Let (Np,Dp) ( (DP1NP) ) be an r.cf (l.c.f) of ? GEp(5)"^"- ; then

(JVi,A) ( (Di,Ni) ) isanr.cf. (l.c.f.) of P e M{JRp(s)) if and only if

there exists an Ru-unimodular map M G Run,*Xn' ( Me Run°xn° ) such

that

D1
Np
D„

M ([D1 Ni] =M[DP Np\)
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2.3 Feedback Interconnections

Consider an n,- input n0 output plant P 6 ]Rp(a)n°Xn' . Since transfer function

approach is an input-output approach, we assume that the plant description has

no hidden modes in U ; that is, if the plant is input-output stabiUzed, aU of the

internal variables axe guaranteed to be stabiUzed as weU. Suppose that all of the

plant inputs and outputs axeto be used in a closed-loop compensation scheme. Since

the measured output ym and the control input v axe the only signals that are

available for computing the control signal yc (see Figure 2.1), the most general

feedback interconnection is the one that uses a two-input one-output nonUnear

compensator C as in Figure 2.1. The signals di and d0 denote the input and

output disturbances, respectively.

di

y*c +
+

+

do

,+ Vr

Figure 2.1:
Two-input one-output general compensation scheme

Definition 2.3.1 (Ru-stable feedback system)

A feedback system is said to be Ru -stable iffaU of the closed-loop maps (mapping

the closed-loop system inputs to the internal signals (i.e., input and output signals

of each subsystem)) axe Ru-stable .

For example, the feedback system in Figure 2.1 is Ru-stable if and only if the

closed-loop map (v , di, d0) h-> (ye , ym) is Ru-stable .
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If the compensator C in Figure 2.1 is required to be proper, the linearity of

the compensator impUes

C(«» Vm) = -Ciym + C2v

for some proper maps C\ and C2 ; hence we obtain the additive feedback scheme

shown in Figure 2.2 :

V

c2

+c1+
a0

+J.+
cx -< PJ sE0 *o

c

Figure 2.2:
Figure 2.1 with C proper

When C2 in Figure 2.2 is set to zero, after re-labeUng the inputs, we obtain

the standard unity-feedback system S(Pi C) shown in Figure 2.3.

«i

u2

id—
m+„ +

O

Figure 2.3:
The unity-feedback system S(P, C)

V2

Definition 2.3.2 (Ru-stabilizing compensator)

A map C G M( IRp(«s)) in a feedback system (say Figure 2.3) is said to be an
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Ru -stabilizing compensator iff the resulting feedback system is Ru-stable

It is weU-known that if C in Figure 2.2 is required to be a Ru-stabiUzing

compensator, C must satisfy an additional structure constraint; namely, C

must have an l.c.f. of the form

( Dc , [Nc R] )

where (DC,NC) is an l.c.f. of Cx and i? 6 M(Ru) [Vid.3,Des.l0,Net.2].

In other words, the instabiUties in C2 must be a subset of the instabiUties of

C\ . To see the necessity of this structure constraint, consider the foUowing siso

example: let U = <C+ , p = 1 , c\ = ~ and C2 = -^ ; the closed-loop map

(0, di, d0) i-+ yc (see Figure 2.2) is Ru-stable ; however the map (v, 0, 0) i-> yc

is not.

Fact 2.3.3 (all Ru-stabilizing two-input one-output compensators)

Let (Np,Dp) ( (DP1NP) ) be an r.cf. (l.c.f.) of the plant P GEtp(3)n°Xn' .

Choose the Ru-stable maps U , V , U , V such that

U V

Dp -Np
Np V
Dp -U

= 1 (2.6)

Under these assumptions, the set of all two-input one-output Ru-stabiUzing com

pensators is given by

{(V -QNp)-l[(U + QDP) R] | S,QeM(Ru)

and

det(V - QNp)(oo) + 0}. (2.7)
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Note that equation (2.6) is of the form

A-1A = I ,

where A and A 1 axe Ru-stable square matrices. Since

A"1A = AA-1 = I ,

equation (2.6) holds if and only if

Np V
Dp -U

U V

Dp -Np
= 1 (2.8)

u

R

+\

«2

To
[+

j<
l+ j (,

Nc St1 d;1 Np
—i i

»i_,..

Pc

Figure 2.4:
A stable feedback system with two-input one-output compensator

( Dc= V - QNP , Nc = U + QDp for some Q satisfying (2.7))

Since (NP,DP) is an r.c.f. of P , the feedback system in Figure 2.4 is

Ru-stable if and only if the closed-loop pseudo-state map

(v , «i, u2) *-> fp

is Ru-stable ( fp denotes the pseudo-state of the r.c.f. description (Np, Dp) )
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Proof of Fact 2.3.3

From Figure 2.2 and (2.6), direct calculation shows that any compensator in

(2.7) is an Ru-stabiUzing compensator.

Conversely, if the feedback system in Figure 2.2 is Ru-stable , (setting v = 0)

Cx has an l.c.f. (2>c, Nc) .such that DCDP 4- NCNP = I • Since the closed-loop

map vh(p is Ru-stable ,

DCC2 G M(Ru) ,

hence the compensator C is of the form specified in (2.7).

•

For the special case where the map R in Figure 2.4 is set to zero, we obtain

the Ru-stable unity-feedback system S(P, C) shown in Figure 2.5.

u2

+;
.+ e,ul 1

2tx d;1 Np
y

9K.
— i k

•"•* Nc •O

c Pi

Figure 2.5:
A stable unity-feedback system S(P,C)

( Dc = V - QNp , JVC = U + QDp for some Q satisfying (2.9))

Setting R to zero in Fact 2.3.3 , we obtain the foUowing coroUary.

Corollary 2.3.4 (all Ru-stabilizing compensators in S(P, C))

Let (Np,Dp) bean r.c.f. and (DP,NP) bean l.c.f. of the plant P GIRp($)n°Xn< ,

satisfying equation (2.6). Then the set of all Ru-stabiUzing compensators in
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S(PyC) is given by

.{(V- QNp)-1^ + QDP) | QGM(Ru), det(F - QNp)(oo) ^0} ;
(2.9)

equivalently

{(U +DPQ)(V - NpQ)-1 | QGM(R0) , det(V - NpQ){oo) ^0}. (2.10)

•
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2.4 Proper stabilizing compensators in S(P,C)

Consider the foUowing classical problem:

Problem 2.4.1

For a given proper plant P GIRp(5)n°xn' with an r.c.f. (NP,DP) satisfying

TfNp+VDp = I (2.11)

for some U , V G M(Ru) , find a proper compensator C that stabiUzes

P in S(P,C) .

•

Note that we have only the (l,l)-entry of equation (2.6) at hand. There is no

assumption that V is invertible or has a proper inverse. The standard way of

answering Problem 2.4.1 is in two parts:

i) If P is strictly proper (i.e., P has a blocking zero at oo ; equivalently,

iVp(oo) = 0 ), from (2.11), we have det V (oo) ^ 0 ; hence, by Fact 2.2.12 ,

we conclude that V U is a proper stabiUzing compensator.

ii) If P is proper but not strictly proper (i.e., P(oo) ^ 0 ), we also need an

l.c.f. (Dp,Np) of P to pick a Q so that the determinant condition in

(2.9) is satisfied.

In other words, if P is not strictly proper, then we need to bring in all the tools

necessary to find the set of all proper stabiUzing compensators (CoroUary 2.3.4) in

S(P, C) to pick only one.

Consider the Ru-stable observer-controUer configuration S(P, C) shown in Fig

ure 2.6 ( M is Ru-unimodular ).
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Figure 2.6:
Observer-controUer configuration S(P, C)

Standard calculation shows that the feedback system 2(P,C) in Figure 2.6

is Ru-stable for all Ru-unimodular maps M and for all U , V G M(Ru)

satisfying the identity (2.11). In terms of stabiUzation, (2.11) is the crucial identity

for both S(P, C) and S(P,C) ; however, the compensator in S(P, C) is less

restrictive in the sense that the map V G M(Ru) need not be invertible or have

a proper inverse.

The feedback system S(P, C) in Figure 2.6 is a special case of the general

two-input one-output feedback system in Figure 2.4. To see this, redraw Figure 2.6

as Figure 2.7 in order to obtain the specific structure in Figure 2.4.

-H>^[M-1-Dp)U [I+iM^-DjV]-1

Figure 2.7:
Figure 2.6 redrawn as Figure 2.4
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Set v — 0 in Figure 2.7 . Note that

([l +(M-l-D,)V] , (M-1 -DP)U)

is an l.c.f. of a proper C if and only if the map

[I +IM^-DJV]

has a proper inverse. An obvious way of satisfying this is by choosing

M"1 = Dp(oo) .

Hence the observer-controUer configuration £(P, C) allows us to answer Prob

lem 2.4.1 in one step, using only the identity in (2.11).

Proposition 2.4.2 (deriving a proper C from (2.11) for S(P,C))

Let P GIRp($)noXni be given by an r.c.f. (NP,DP) , satisfying equation (2.11) ;

then the pair

(DC,NC) := ([I +(0,(oo) -DP)V], (iyoo) - D,)V ) (2.X2)

is an l.c.f. of a proper compensator C G IRp(s)n,'Xn° which stabiUzes P in

S(P,C).

Proof

Let 5c and JV^ be as in (2.12) . Note that De , Nc G M(Ru) and

5c(oo) = I . By Fact 2.2.12 , D;1 GJRp(s)niXni . Since Dp(oo) G M(IR) is

IR-unimodular and

NcNp + DcDp = Dp(oo) ,

we conclude that C = D~XNC is an Ru-stabiUzing compensator.

D



oo

In the rest of this section, without loss of generaUty, we assume that the denom

inator maps Dp and Dp of r.cf.s and l.c.f.s of P are normalized so that they

satisfy

Dp(oo) = I , 5p(oo) = I .

If this is not the case, since .Dp(oo) and .Dp(oo) axe Ru-unimodulax , modify

the identity in (2.6) as foUows:

{[
Dp(oo) _ 0

0 Dp(oo)"1
U V

Dp -Np }{
Np V
Dp -U

Dpioo)-1 _0
0 Dp(oo)

= 1

From a design point of view, it may cause concern that the compensator pro

posed in (2.12) may have more zeros than those of U . There axe many ways of

constructing stabiUzing compensators in S(P, C) from Figure 2.7. It is possible

to make the zeros of the compensator identical to those of U , as the foUowing

proposition points out.

Proposition 2.4.3

Let V , Dp G Run,Xn' and -Dp(oo) = I; then there exists an Ru-unimodular

map M G Run<XB* such that

i) (M_1 —Dp) is Ru-unimodular and

ii) I I -f- (M_1 —Dp) V I has a proper inverse.

Proof

Choose m0 > 0 such that

Dp\\v < l + m0 ;

Let

M :=
1 + m

1 , m > tuq (2.13)
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For any M in (2.13) , (I - MDP) has an inverse and ||(I - MDp)_1||u is

bounded. Moreover

det(I - M0p)(oo) = (zr^-T ± 0 ;

hence (I —MDP) is Ru-unimodular . For the second condition, by Fact 2.2.12,

it suffices to have

det(I +(M-1-Dp)y)(oo) = det(I +mF(oo)) = ^(l+mA^^O ,
i=i

where Aj G <r(V'(oo)) . Choosing m > mo such that m ^ l/|Aj| for

Aj G (—oo,0) estabUshes the claim.

•

Note that the proposed compensator in Proposition 2.4.2 is a strictly proper

compensator. Using the particular solution in Proposition 2.4.2, we can generate

all solutions to (2.11); hence we get an equivalent characterization of the set of all

. proper stabiUzing compensators in (2.9).

Corollary 2.4.4 (all proper stabilizing compensators in S(P, C))

Let (Np,Dp) be an r.c.f. of P GIRp(s)"°xn' with Dp(oo) = I , satisfying

equation (2.11) for some U , V G M(Ru) • Let (SpiNp) be an l.cf. of

P , where Dp(oo) = I . Under these assumptions, the set of all Ru-stabiUzing

compensators in S(P, C) is given by

{ [I +(I-DP)V - QNp]~l[(I-Dp)U + QDp] | QG M(Ru),
det(l- QP)(oo) +0} .(2.14)

•

Note that the determinant condition in (2.14) can be expressed in terms of the

plant P because,

[I+(I-DP)V -QNp](oo) = (l-QP)(oo) .
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From (2.14) we also see that the set SA of admissible parameters Q 's (i.e., those

that yield a proper compensator) is given by

Sa := { QSp+Qoo I Qsp e M(Ru) n JRv(*rx- , QTO GlRn<xn°

and det(I - QcoP(oo)) ^ 0} .(2.15)

The characterization in (2.14) is due to a translation in the parameter Q in

(2.9). To see this, let Dp(oo) = 1, 5p(oo) = I and let equation (2.8) hold. From

equation (2.6), we obtain

1-DpV = UNP ,

DpU = UDP ;

substituting these in (2.14), we obtain

{ [V-(Q-U^pY^U+(Q-U)DP] | QGM(Ru),
det(I-QP)(oo) ^ 0}.(2.16)

Comparing (2.16) with (2.9), the translation U in the parameter Q is evident.

The description of the set of all proper stabiUzing compensators in (2.14), allows

us to obtain the parametrization of aU strictly proper stabiUzing compensators.

Corollary 2.4.5 (parametrization of all strictly proper compensators)

Let (Np,Dp) be an r.c.f. of P G IRp(3)n<>Xn« with Dp(oo) = I , satisfying

(2.11), for some U , V G M(Ru) . Let (DP,NP) be an l.c.f. of P , where

J9p(oo) = I. Under these assumptions, the set ofall strictly proper Ru-stabiUzing

compensators in S(P, C) is given by
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{[l +(I-Dp)V-QNp]-l[a-Dp)U +QDp] \
QGM(Ru) nTRap(s)niXn° } .(2.17)

D

The sets (2.17) and (2.15) imply that, if we insist on a proper but not strictly

proper compensator, we need to determine a real matrix Q ^ yielding a weU-

posed feedback interconnection with the DC-gain matrix of the plant ( P(co) ).

An obvious way of satisfying this constraint is by choosing the maximum singular

value ow of Q„ such that a^ < l/||P(oo) || .

From the characterization of SA in (2.15), we conclude that SA is an open

dense subset of RuniXn° due to the foUowing fact:

Fact 2.4.6

The set { <?«> GlRn'Xn° | det(I - QeoP(oo)) ^ 0} is open and dense in IRn'Xn<>.

Proof

If P(oo) = 0 , then there is no restriction on Qoo . Assume that P(oo) ^ 0 .

Let the map / : IRn,Xn° ->IR be defined by

/(Qoo) :=det(I-QooP(oo)).

The map / is continuous hence /_1[IR \ {0}] is open in IRn,Xn° . Let Q* be

such that /(<?*) = 0 . Then 1 G a(QmP(oo)) , where a denotes the spectrum.

Let

^ . f 1- max{<r(Q*P(oo)) n(0,1)} if <r(Q*P(oo)) n(0,1)^0
| 2 otherwise .

It suffices to show that given any e > 0 , there exists a Q^ such that

\\Qoo-Qm\\<€ and /(Qoo)^O . Fix e > 0 . Choose e > 0 such that

•J* € 1€ < min< o_ , > .

I * IIQ-IIJ
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Let Qoo := (1 + e)Q* ; then ||Qoo - Q1I < e . We claim that

1 i o-(Q00P(oo)) = <r((l + e')Q*P(oo)) = (1 + e>(Q*P(oo)) .

Since 0 < e < Sm , we have (1 + e')(l —8*) < 1 ; hence we conclude that

1 <t <r(QooP(oo)) , equivalently /(<?«>) ^ 0 .

•
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2.5 Robustness

Suppose that the nominal plant P G M(IRp(s)) is stabiUzed by a compensator

C G M(IRp(s)) in the unity-feedback configuration S(P,C) . From an input-

output approach, one can model the uncertainties in the model of the plant in a

number of ways by defining certain sets of admissible plant perturbations; for the

specific uncertainty model in hand, one might determine, if possible, the neces

sary and sufficient conditions on the nominal compensator to guarantee that C

stabilizes all possible plant models in the set of admissible plant perturbations.

If the set of admissible plant perturbations has finitely many plants, Unear factor

ization theory gives the precise necessary and sufficient conditions for simultaneous

stabiUzation of all of these plants [Vid.3]. If the set of admissible plant perturba

tions has infinitely many plants, certain baU descriptions may be used to define the

plant perturbations.

In this section, we focus on a special class of plant perturbations. For a given

undesired region U and a radius map r GRu >let the set B(r) be defined as

B(r):={ AGM(]Rp(s)) | ||A(j)|| < |r(j)| V* Gd\J } . (2.18)

Note that a perturbation A G B(r) is not required to be Ru-stable ; all that is

required is to have proper maps whose norms on dTJ (typically, the frequency

response norms when U = C+ or the complement of the open unit disk) axe within

the specified radius map r . Using the baU description in (2.18), we consider four

cases of "unstructured" plant perturbations: pre- and post-multiplicative, feedback

and additive perturbations. For each of the cases, we state the necessary and

sufficient conditions for stability of the unity-feedback system with the perturbed

plant; we show that the perturbation description in (2.18) must be further restricted

to Ru-stable maps for robustness results.
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2.5.1 Pre-Multiplicative Perturbations

For a given undesired region U , let the set of plant perturbations be given by

{P(I+A) | AGB(r)}, (2.19)

where B(r) is defined in (2.18) .

Lemma 2.5.1 (n&s condition for the stability of S(P(I + A),C))

Let the maps P and C G M(IRp(s)) be suchthat the feedback system S(P,C)

is Ru-stable . Choose the r.c.f.s (Np, Dp) of P and (iV*c, Dc) of C such that

Nc Dc

Dp -Np
Np Dc
Dp -Nc = I ,

for some I.c.f.s (SP,NP) , (DC,NC) of P and C , respectively. Let

(•Na , ^a) be an r.c.f. of A G M(IRp(s)) . Consider the unity-feedback system

5(P(I + A),C) shown in Figure 2.8; note that only the input and the output of

P(I + A) axe observed.

Under these assumptions, the feedback system S(P(I + A), C) is Ru-stable

(i.e., the closed-loop map (iij,u2) \-> (eue2) is Ru-stable ) if and only if the map

NPNA(D± + NjfpN^D,

is Ru-stable .

Proof

Let (NA,D&) be an r.c.f. of A G M(IRp(,s)). By assumption, only the input

and the output of P(I + A) are observed. Hence, the unity feedback system

5(P(I+ A), C) is Ru-stable ifand only if the map («i, u2) *-* fc (see Figure 2.8)

is Ru-stable . Writing the summing node equations in Figure 2.8, we obtain



Figure 2.8:
Pre-multipUcative uncertainty model

-Nc
c Np 0

0 D>
(a

0 -Dp NA + DA J |_ fa J

Pre-multiplying both sides by the Ru-unimodular matrices

u2

0

Dp
Nc

-Np 0"
Dc 0 and

0 0 ij

loo
0 I 0
0 Dp I

I 0 NPNA
0 I -DCNA
0 0 DA + NcNpNA

successively, we obtain

UaJ

Dpui —Npu2
Ncu\ + Dcu2

Dp[Ncux + Dcu2]

Hence the map (u\,u2) *-* £c is given by

&=DpUl - Npu2 - NPNA(DA +NcNpN^Dp [Wc Dc]

Since the map IJV*C Dc\ has aproper Ru-stable right-inverse, we conclude that the

map («!,u2) h-* fc is Ru-stable ifandonly if the map NPNA(DA +NCNPNA)-1DP

is Ru-stable .

•

We now prove that the baU description in (2.18) must be further restricted to

guarantee that a compensator C stabiUzes the class in (2.19) in the unity-feedback

system.

Proposition 2.5.2 (admissible pre-multiplicative perturbations)

Let the plant P G M(IRp(s)) be stabiUzed by the compensator C G M(IRp(s))

u2

29

(2.20)

loo
0 I -I
0 0 I

(2.21)

(2.22)
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in the unity-feedback configuration S(P, C); then given any undesired region U

and any radius map r G Ru, there exists a A G B(r) \ M(Ru) such that the

unity-feedback configuration 5(P(I + A), C) is not Ru-stable .

Proof

Let the radius map r G Ru be given. We prove the claim by constructing

a perturbation A G B(r) \ M(Ru) such that the unity-feedback configuration

5(P(14- A),C) is no* Ru-stable . Using the notation of Lemma 2.5.1 ,

5(P(I + A),C) is Ru-stable if and only if the map

NPNA(DA + NcNpN^Dp

is Ru-stable . Hence, it is necessary that

NcNpNA(DA-rNcNpNA)-1Dp = [I- DA(DA + NcNpN^-^Dp

is Ru-stable . Then 5(P(I + A),C) is Ru-stable only if the map

DA(DA + NcNpN^Dp

is Ru-stable . We now construct an r.c.f. (NA,DA) such that NAD^ G B(r)

and DA(DA + NcNpNA)-1Dp is not Ru-stable . Choose $0GlRnU such that

so >max{ (IR nU)-blocking zeros of NCNP , (IR nU)-zeros of r and det Dp},

and

' X ' <1 V* GdU .
S —So

Note that for aU a > sq ,

1 "<1 V* GdU
s — a
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By the choice of s0 , NeNp -^ 0 ;hence there exist unitary matrices A,B G M(IR)

and (7i > 0 such that

r o-i

iVciVp(5o) = A
a2

B .

m j

Let 5 := sgn(r(so)) , 7 GIR \ U and a > s0; define iVA and DA as

JVA(,) := «lilL I ,
5 + 7

£>aW := ^^-AB .
v ' 5 + 7

Note that N^^1 G B(r) by construction. We now determine a suitable a > s0 .

We have

s0 —ct + 6<Tir(s0)
(DA + NcNpNA)(so) =

«o + 7
3o —a + 6an.r(so)

B .

Let

a := s0 + &7iK5o)

Clearly, a > s0 and det(2?A + NcNpNA)(s0) = 0 . By construction,

det Dp(s0) ^ 0 and det£>A(so)^0 ;

hence the map DA(DA+NcNpNA)-1Dp hasat least one pole at s0 G U and we

conclude that the unity-feedback configuration 5(P(I+ A), C) is not Ru-stable .

D
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2.5.2 Post-Multiplicative Perturbations

For a given undesired region U , let the set of plant perturbations be given by

{(I+A)P) | A€B(r)}, (2.23)

where B(r) is defined in (2.18) .

Lemma 2.5.3 (n&s condition for the stability of 5((I + A)P, C))

Let the maps P and C e M(JRp(s)) be such that the feedback system S(P,C)

is Ru-stable . Choose the r.c.f.s (NP,DP) of P and (NC,DC) of C such that

Nc Dc
Dp -Np

Np Dc
Dp -Nc = I ,

for some l.cf.s (DP,NP) , (DC1NC) of P and C , respectively. Let

(NA , DA) be an r.c.f. of A G M(IRp(s)) . Consider the unity-feedback system

5((I + A)P, C) shown in Figure 2.9; note that only the input and the output of

(14- A)P axe observed.

Under these assumptions, the feedback system 5((I + A)P, C) is Ru-stable

(i.e., the closed-loop map (ti1? u2) •-• (ei,e2) is Ru-stable ) if and only if the map

DpN^ + NpNcN^Np

is Ru-stable .

Proof

Let (NA,DA) be an r.c.f. of A G M(IRp(s)). By assumption, only the input

and the output of (I + A)P are observed. Hence, the imity feedback system

S((I + A)P, C) is Ru-stable ifand only if the map (?«!, u2) •-»• fc (see Figure 2.9)

is Ru-stable . Writing the summing node equations in Figure 2.9, we obtain
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Figure 2.9:
Post-multiplicative uncertainty model

Dc 0 NA + DA
-Nc Dp 0

0 -Np DA

I 0 -I
0 I 0
0 0 I
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>a] rfc i ' Ui '

fp = u2 .

. LfcJ m0

»

'Dp
Nc

-Np 0
Dc 0 and

0 0 I

(2.24)

Operating on the left by

successively, we obtain

I 0 DpNA
0 I NCNA _
0 0 DA-rNpNcNA

Hence the map (1*1,1*2) *-> fc is given by

fp

DpUi - Npu2
Ncui + Dcu2

NP[Neui+ Deu2]

(c =Dpm - Npu2 - DPNA(DA +NpNcN^Npfrc Dc]

Since the map

u2

loo
0 I 0
0 Np I

(2.25)

(2.26)

Nc Dc\ has aproper Ru-stable right-inverse, we conclude that the

map («!, u2) •-+ fc is Ru-stable ifandonly if the map DPNA(DA +NPNCNA)-1NP

is Ru-stable .

D

We now prove that the ball description in (2.18) must be further restricted to

guarantee that a compensator C stabiHzes the class in (2.23) in the unity-feedback

system.

Proposition 2.5.4 (admissible post-multiplicative perturbations)

Let the plant P G M(IRp(s)) be stabilized by the compensator C G M(IRp(s))
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in the unity-feedback configuration S(P,C); then given any undesired region U

and any radius map r G Ru, there exists a A G B(r) \ M(Ru) such that the

unity-feedback configuration 5((I + A)P, C) is not Ru-stable .

Proof

Let the radius map r G Ru be given. We prove the claim by constructing

a perturbation A G B(r) \ M(Ru) such that the unity-feedback configuration

5((I+A)P, C) is not Ru-stable . Using thenotation ofLemma 2.5.3 , we choose a

A G M(IRp(s)) which has an r.cf (NA,DA) suchthat NADA = DANA . When

the numerator and denominator of A commute, the conclusion in Lemma 2.5.3

can be restated as : S((I + A)P, C) is Ru-stable if and only if the map

DP(DA + N^NpN^N^Np

is Ru-stable . Hence, necessarily

DP(DA + N^NpN^N^NpNc = DP[I - (DA + N^N^D^

is Ru-stable . Then S((I + A)P, C) is Ru-stable only if the map

DP{DA + JVAJVpiVe)-1^

is Ru-stable . We now construct an r.c.f. (NAiDA) such that NA and DA

commute and NAD^ GB(r) and DP{DA+ NANpNc)-lDA is notf Ru-stable .

Choose so GlR n U such that

s0 >max{ (IR nU)-blocking zeros of NPNC , (IR nU)-zeros of r and det Dp },

and

|—i—| <1 V5 G5U .
s — s0
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Note that for all a > s0 ,

s — a
<1 VsedV

By the choiceof s0 , NPNC ^ 0 ;hence there exist unitary matrices A,B G M(IR)

and a\ > 0 such that

NpNc(s0) = A
<*2

£ .

no

Let 6 := sgn(r(s0)) , 7GlR\U and a > s0 ; define NA and £a as

WA(.) := «lill J ,
5 + 7

DA(,) := i^AP .
5 + 7

Note that NADA = DANA and NAD^ G B(r) by construction. Now we

determine a suitable a > So . We have

s0 - a + 5<T1r(s0)

(£A+JVAiVpJVc)(*o) =
*o+7 so - a + &rnoK5o) .

P.

Let

ct := so + for^so) .

Clearly, a > s0 and det(.DA + NANpNc)(so) = 0 . By construction,

detDp(so)^0 and det£>A(s0)^0 ;

hence the map DP(DA + NANpNc)~lDA has at least one pole at s0 G U and we

conclude that the unity-feedback configuration 5((/+A)P, C) is not Ru-stable .

D
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2.5.3 Feedback Perturbations

For a given undesired region U , let the set of plant perturbations be given by

{P(I +AP)"1 | AGB(r) }. (2.27)

where B(r) is defined in (2.18) .

Lemma 2.5.5 (n&s condition for the stability of 5(P(I + AP)"1,C))

Let the maps P and C GM(IRp(s)) be suchthat the feedback system S(P, C)

is Ru-stable . Choose the r.c.f.s (JVp, Dp) of P and (7VC, Dc) of C such that

Nc Dc
Dp -Np

Np Dc
Dp -Nc = I ,

for some l.cf.s (SP1NP) , (D„NC) of P and C , respectively. Let (NA,DA)

be an r.c.f. of A G M( IRp(s)) . Consider the unity-feedback system 5(P(I +

AP)~X,C) shown in Figure 2.10; note that only the input and the output of

P(I + AP)"-1 are observed.

Under these assumptions, the feedback system 5(P(I+ AP)-1,C) is Ru-

stable (i.e., the closed-loop map (uuu2) »-• (ei,e2) is Ru-stable ) if and only if

the map

NPNA(DA + NpDcN^Np

is Ru-stable .

Proof

Let (NA,DA) be an r.c.f. of A G M( IRp(s)) . By assumption, only the

input and the output of P(I + AP)"1 are observed. Hence, the unity feedback

system 5(P(I+ AP)"1, C) is Ru-stable ifand only if the map (uuu2) i-> fc (see

Figure 2.10) is Ru-stable . Writing the summing node equations in Figure 2.10, we

obtain



ui + ex
O

u2

^H
«e

iVc
+±+

e2

:+
•KJ 1.o

Wa *- Da1!-!

Dz1 -* JV,

j?fl±.4ai^

Figure 2.10:
The feedback system 5(P(I + AP)"1, C)

Dc Np 0
-JVe Dp NA

0 -JVP Da
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(2.28)

Operating on the left by

r& i " Ui *

& = u2
.

L&J 0

-i

" I 0 0 1

and 0 I 0
0 JVP I

Dp -Np 0
Nc Dc 0 successively, we

obtain

0

I 0 -NPNA
0 I DCNA _
0 0 DA-rNpDcNA

Hence the map (u\, u2) i-* fc is given by

0 I

tp
u

DpU\ - Npu2
Ncu\ + Dcu2

Np[NcU! + Dcu2]
(2.29)

& = Z>P«i - Npu2 + NPNA(DA + NpDcN^Np N* Dc
ux

u2
(2.30)

Since the map N* D, has a proper Ru-stable right-inverse, we conclude that the

map {uuu2) •-+ £c is Ru-stable if and only if the map NPNA(DA + NpDcN^^Np

is Ru-stable .

•

We now prove that the ball description in (2.18) must be further restricted to

guarantee that a compensator C stabiHzesthe class in (2.27) in the unity-feedback

system.

Proposition 2.5.6 (admissible feedback perturbations)

Let the plant P GM(IRp(s)) be stabiUzed by the compensator C GM(IRp(s))
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in the unity-feedback configuration S(P, C) ; then given any undesired region U

and any radius map r G Ru , there exists a A G B(r) \ M(Ru) such that the

unity-feedback configuration 5(P(I + AP)_1,C) is not Ru-stable.

Proof

Let the radius map r G Ru be given. We prove the claim by constructing

a perturbation A G B(r) \ M(Ru) such that the unity-feedback configuration

5(P(I + AP)_1,C) is not Ru-stable . Using the notation of Lemma 2.5.5 ,

5(P(I + AP)"1, C) is Ru-stable if and only if the map

NPNA(DA + DcNpN^Np

is Ru-stable . Hence, necessarily

DcNpNA(DA-rDcNpNA)-1Np = [I- DA(DA + DcNpN^jNp

is Ru-stable . Then 5(P(I + AP)"1, C) is Ru-stable only if the map

DA(DA+NpDcNA)-1Np

is Ru-stable . Hence, necessarily

DA(DA-rNpDcNA)-1NpDcNA = DA[l-(DA + NpDcN^D^

is Ru-stable . Then 5(P(I + AP)"1, C) is Ru-stable only if the map

DA{DA + NPDCNA)-1DA

is Ru-stable . We now construct an r.c.f. (NAjDA) such that NAD^X GB(r)

and DA(DA + NPDCNA)-1DA is not Ru-stable . Choose s0 G IR fl U such

that

so > max{ (IR nU)-blocking zeros of NPDC , and (IR nU)-zeros of r },



and

| |<i Vsedv
s-s0
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Note that for all a > sq ,

S — Ct

<i Vsedv

By the choice of s0 , NPDC ^ 0 ; hence there exist unitary matrices A, B G M(1R)

and <7i > 0 such that

0\

NpDc(so) = A
02

0 ... 0

0 ... 0

<rno : 0 ... 0

For the above singular-value decomposition, we assumed that the plant P has

less outputs than inputs. The other cases follow similarly.

Let 8 := sgn(r(s0)) , 7 G IR \ U and a > s0 ; define NA and DA as

In,
-1NA{s) := B

3 + 70

Z>A(«) := i^^A .
3 + 7

Note that NAD^ G B(r) by construction. Now we determine a suitable a > so .

We have

So - oc + 8crir(s0)
(DA + NpDcNA)(so) = A

so+7 so - a + 8<Tnor(s0)

Let

a := s0 + o"0ir(*o)

Clearly,' a > so and det(Z>A + NpDcNa)(sq) = 0 . By construction,

detDA(so)^0 ;
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hence the map DA(DA + NPDCNA)~1DA has at least one pole at s0 G U

and we conclude that the unity-feedback configuration 5(P(I + AP)"1, C) is not

Ru-stable .

D
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2.5.4 Additive Perturbations

For a given undesired region U , let the set of plant perturbations be given by

{P + A | AGB(r) } . (2.31)

If one is interested in determining necessary and sufficient conditions on a fixed

compensator C G M( IRp(s)) to stabilize P in the unity-feedback system

S(P, C) for all P in (2.31), the description in (2.31) must be necessarily modified.

The following lemma estabHshes that the convexityof B(r) in (2.18) implies that

the additive perturbation class in (2.31) must be further restricted as follows:

{P + A | A G M(Ru) n B(r) } , (2.32)

i.e. A must also be Ru-stable ( A G M(Ru) ).

Lemma 2.5.7 (admissible additive perturbations)

Let U be an undesired region, P G M( IRp(s)) denote the plant and C G

M( IRp(s)) denote the compensator. For a given radius map r G Ru let

A GB(r) . Under these assumptions, if the unity-feedback system S(P + AA, C)

is Ru-stable for all A G [0, 1] , then A G B(r) fl M(Ru) .

Proof

By assumption (A = 0 ) , the unity-feedback system S(P, C) is Ru-stable .

Hence, for any l.c.f. (DP,NP) of P , there is an r.c.f. (NC,DC) of C such

that

DpDc-rNPNc = I .

For the same r.c.f. (iVc, Dc) of C , for any A G B(r) , there exists an l.cf.

(Dp+A,NP+A) of (P + A) such that

Dp+ADc + Np+ANc = I .



42

For any A G B(r) , we have

[I+(p+a)c) = DpUd:1 .

Since the radius map r is analytic on d\J by assumption, any A G B(r) has

no dU-poles; hence for all AG B(r) , the dU-poles of P and (P + A) are

identical. Let kp and kc denote the number of (U \ £U)-poles of P and C ,

respectively (i.e. kp and kc are the number of zeros of det Dp and det Dc

in (U \ dU) , counting multiplicities) .

Let T be a closed oriented path such that

dV C T C U ,

(the orientation of V is such that U stays on the right) with indentations

into U at the dU-poles of P and C . Since S(P, C) is Ru-stable and

PC is analytic on T , the closed curve det(I + PC)(r) encircles the origin

counter-clockwise kp+ kc times.

Fix A G B(r) . For a contradiction, suppose that there exists a Ao € [0,1]

for which the number of (U \ #U)-zeros of det DP+\oA is kp ± k , where k ^ 0 .

Then by the stability of S(P + A0A,C) , the closed curve

det(I + PC + A0AC)(r)

encircles the origin counter-clockwise kp-\-kc±k times. Now consider the homotopy

det(I + PC + fiX0AC)(T) , Aie[0,l],

which continuously (in fi ) deforms the closed curve at // = 0 to the closed

curve at fjt = 1 . Since k ^ 0 , there exist //0 G (0,1) and a point 70 G T C U

such that

det(I + PC + /<0A0AC)(7o) = 0 .
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Since fi0X0 G [0,1] and since both det Z}p+/i0A0A and det£>c are analytic on

r , this contradicts the assumption that

det DP+fJO\oA det(I + PC + //0A0AC) det Dc = 1 .

Hence we conclude that the unity-feedback system S(P + AA, C) is Ru-stable for

all A G [0, 1] only if k = 0 for all A G [0, 1] .

We complete the proof by showing that k = 0 for all A G [0, 1] if and only

if A G M(Ru) . If A is Ru-stable , for all A G [0, 1] , the U-poles of P

and (P + AA) axe identical with the same multiplicities. Now for a contradiction,

suppose that k = 0 for all AA , A 6 [0,1]; suppose also that A £ M(Ru) •

Since k = 0 , A cancels at least one (U \ 5U)-pole of P and introduces

another. Consequently, for any A E (0,1), P + AA has at least one more

(U \ d\J)-po\e than P . This contradicts the fact that k = 0 .

•

We now prove Lemma 2.5.7 in a way similar to the previous sections. The

following lemma (see also [Hua.2]) establishes the necessary and sufficient condition

for the perturbed system to be stable.

Lemma 2.5.8 (n&s condition for the stability of S(P + A,C))

Let the maps P and C e M(JRp(s)) be such that the feedbacksystem S(P,C)

is Ru-stable . Choose the r.c.f.s (NpyDp) of P and (NCiDc) of C such that

Nc Dc

Dp -Np
Np Dc
DP -Nc = I ,

for some l.cf.s (DP,NP) , (DC,NC) of P and C , respectively. Let (NA,DA)

be an r.c.f. of A G M( IRP(s)) . Consider the feedback system S(P + A, C)

shown in Figure 2.11 ; note that only the input and the output of (P + A) are

observed.
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Under these assumptions, the feedback system S(P + A, C) is Ru-stable (i.e.

the closed-loop map (ui,u2) »-»• (ei, e2) is Ru-stable ) if and only if the map

is Ru-stable .

DPNA(DA + DpNcN^D

Figure 2.11:
The feedback system S(P + A, C)

Proof

Let (NA,DA) be an r.c.f. of A G M( IRP($)) . By assumption, only the

input and the output of (P + A) axe observed. Hence, the unity feedback system

S(P + A,C) is Ru-stable if and only if the map (tti,1*2) *-* (c (see Figure 2.11)

is Ru-stable . Writing the summing node equations in Figure 2.11 , we obtain

tp

Dc Np NA
-Nc Dp 0

0 -Dp DA

«i

u2

0

(2.33)

Operating on the left by

obtain

Dp -Np 0
N, Dc 0

0 I

loo
and 0 I 0

0 Dn I
successively, we

I 0

0 I

0 0 DA-rDpNcNA

0

DPNA
NCNA tp

LfcJ

DpUi - Npu2
Ncui + Dcu2

Dp[Ncui + Dcu2]
Hence the map (1*1,^2) "-*• £c is given by

&=Dpux - Npu2 - DPNA(DA +DpNcN^Dp^c Dc «i

«2

(2.34)

(2.35)
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Since the map |iVc Dc has a proper Ru-stable right-inverse, we conclude that the

map (mi, u2) »-* fc isRu-stable if andonly if the map DpNA(DA+DpNcNA)-1Dp

is Ru-stable .

•

Proposition 2.5.9 (admissible additive perturbations)

Let the plant P G M( IRp(s)) be Ru-stabilized by the compensator C G

M(IRp(s)) in the unity-feedback configuration S(P, C) ; then given any undesired

region U and any radius map r G Ru >there exists a A G B(r) \ M(Ru) such

that the unity-feedback configuration S(P + A, C) is not Ru-stable .

Proof

The proof is similar to the proof of Proposition 2.5.6 . The perturbation A

can be constructed so that the map

is not Ru-stable.

D

da(da +ncdpna) xd
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2.6 Robustness under Stable Uncertainties

In the previous section, four classes of plant perturbations were considered (pre-

and post-multiplicative, feedback, additive); for each of these cases, robust stabi

lization by a fixed compensator in the unity-feedback system necessarily required

the uncertainty A to be Ru-stable .

In this section, we briefly go over the simplifications due to the change of un

certainty description to one that is Ru-stable .

Definition 2.6.1 (ball of uncertainty B\j(r))

For an undesired region U and a radius map r GRu (hence no poles on dU ),

the ball of uncertainty B\j(r) is defined as

Bu(r) := { A GM(Ru) | ||A(*)|| < \r(s)\ Vs G0U } . (2.36)

D

Note that unless \r(s)\ —k for all s Gd\J ,

Bu(r) =£{ A G M(Ru) | ||A||u < ||r||u } •

For a given P G M(IRP($)) and A G M(Ru) , the four perturbation classes

Ppre(A) } Ppoal(A) , P/eerf(A) and Padd(A) and axe shown in Figures 2.12 ,

2.13 , 2.14 and 2.15, respectively.

«3

I + A
+i+

&ite)J

Figure 2.12:
The perturbation class Ppre(A)



«3

+ ' L+
I + A-

Figure 2.13:
The perturbation class Pp^A)

U3

+. , + i
A

+;
<

P•—+\j—~

PfeediJ-a!
Figure 2.14:

The perturbation class P/ecd(A)

"3

+i+

« +A+p Ko-

.ft«C4)

Figure 2.15:
The perturbation class Paj</(A)

47
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Lemma 2.6.2 (n&s condition for stability with stable A)

Let the maps P and C GM(IRp(s)) be such that the feedback system S(P,C)

is Ru-stable . Choose the r.c.f.s (NP,DP) of P and (NC,DC) of C such

that

Nc Dc

Dp -Np
Np Dc
Dp -Nc = I ,

for some l.cf.s (DP,NP) , (DC,NC) of P and C, respectively. Let A G M(Ru)

be given; under these assumptions,

i) The feedback system 5(Ppre(A), C) is Ru-stable if and only if

(I + JVjVpA) (2.37)

is Ru-unimodular .

ii) The feedback system 5(Ppewt(A), C) is Ru-stable if and only if

(I + NpNcA) (2.38)

is Ru-unimodular .

iii) The feedback system S(Pfeed(A), C) is Ru-stable if and only if

(I + NpDcA) (2.39)

is Ru-unimodular.

iv) The feedback system S(Padd(A), C) is Ru-stable if and only if

(I + iVc2JpA) (2.40)

is Ru-unimodular .

Lemma 2.6.3 (small gain)

Fora given H GRunXn with ||tf||u < 1 , the map (I+#) is Ru-unimodular .
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Comment 2.6.4

The lemma follows by the contraction mapping theorem; H is the transfer function

description of the lineax map H with the Lipschitz constant 11 JET |]xj • The

following proof makes use of the transfer function description of the lineax map

H.

Proof of Lemma 2.6.3

Let H G Runxn ; then (I + H) G RunXn . The map (I + H) is

Ru-unimodular if and only if rank(I + 2f(,s)) = n for all s G U . Let ||#||u < 1

and for the sake of contradiction suppose that there exists an so G U such

that rank(I + H(so)) < n . Then there exists a nonzero x G <Cn such that

(I + H(s0))x = 0 . Hence

1*1 = \s(so)x\ < ||jsr(*)lll*l < ||jr||uW<W ,

whichcontradicts the fact that \x\ ^ 0 . Hence weconclude that the map (I + H)

is Ru-unimodular .

D

Proposition 2.6.5 (robust stability under a ball of uncertainty)

Let U be an undesired region satisfying the matching condition in Definition 2.2.4

and let the map H G M(Ru) . Let r G Ru be a radius map.

Under these assumptions the map (1 + AH) is Ru-unimodular VA GB\j(r)

if and only if

|rO0|||.ff(*)|| < 1 VsGdU .
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Proof

" if "

Let the perturbation A G B\j(r) . Since A and H G M(Ru) by assumption,

AiTGM(Ru) and

\\AH(s)\\ < ||A(s) \\\\ H(s) || < \r(s)\WH(s)\\ < 1 , V s G0U .

Hence ||A#||u < 1 for all A GBu(r) . By Lemma 2.6.3 , the map (I + AiT)

is Ru-unimodular for all AG Bu(r) .

" only if "

To prove the contrapositive, suppose that there exists an s0 G dU such that

lr(5o)| || H(s0) || > 1 . We showthat there exists a A0 GB\j(r) such that the map

(I + AoH) is not Ru-unimodular .

Without loss of generality, we consider the case where the map H G RunXn for

some n > 1 (if the map H is not square, then the singular-value decomposition

obtained below will be augmented by a band of zero rows or zero columns and the

rest of the proof will still hold after taking care of dimensions).

Let A and B G M(<E) be the unitary matrices defined by the singular-value

decomposition of H(s0) , where

IW*o)ll

H(s0) =: A

Let Ko G M(<C) be defined as
- -l

r(50)

Ko := P"1

Let xQ , yo G <Cn be such that

<72

r(,0)||//(*o)

Ao =: x0rjo

(2.41)

n J

-1 (2.42)
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Since U satisfies the matching condition by assumption, there exist x , y G Ru"

such that

i) x(sq) = x0 , y(s0) = y0 and

ii) \x(s)\ < \x0\ , \y(s)\ < \y0\ for all s G OTT .

Let A" := xj/3, GM(Ru) • Note that by construction K(s0) = K0 and

ll*WII = IkWifWII = W*)l llfWI < N llbl = Mil = HXoll , v* 6 av.

Let the perturbation A0 be defined by

A0(s) := r(s)K(s) Vs G <C .

Clearly, A0 G M(Ru) ; moreover A0 G Bu(r) since

l|Ao(«)|| = |r«|||*W||

< kWIH^oll

\r(s)\
- |r(,0)|||irN)||

< \r(s)\ , V s G d\J .

By calculation from (2.41) and (2.42) , we have

det(I + A0(s0)#(so)) = ° J

hence the map (I + A0P") is not Ru-unimodular .

•

From Lemma 2.6.2 and Proposition 2.6.5 , we obtain the following corollary.

Corollary 2.6.6 (n&s conditions for robust stability when A GBu(r))

Let U be an undesired regionsatisfying the matching condition in Definition2.2.4



52

Let the maps P and C GM(IRp(s)) besuch that the feedback system S(P,C)

is Ru-stable . Choose the r.c.f.s (NP,DP) of P and (NC,DC) of C such that

Dp -Np
Np Dc
D0 -Nr. = I,

for somel.cf.s (DpiNp) , (DC,NC) of P and C , respectively. Let r GRu

be a radius map.

Under these assumptions, the feedback system

i) 5(Ppre(A), C) is Ru-stable for all AG Bv(r) if and only if

\r(s)\WNcNp(s)\\ < 1 , VaG0U . (2.43)

ii) 5(Ppoat(A), C) is Ru-stable for all AG Bv(r) if and only if

\r(s)\WNpNc(s)\\ < 1 , VsGdlJ . (2.44)

iii) 5(P/eed(A),C) is Ru-stable for all A GBu(r) if and only if

Hs)\WNpDc(s)\\ < 1 , VaG0U . (2.45)

iv) 5(Padd(A),C) is Ru-stable for all A GBu(r) if and only if

\r(*)\WNcDp(s)\\ < 1 , V.65U (2.46)



Chapter 3

Factorizations of Linear Maps

3.1 Introduction

In this chapter, all plants and compensators axe represented by linear maps ( not

necessarily time-invariant nor finite-dimensional ) . Clearly this general setting

includes the contents of Chapter 2 as a special case of factorizations of lineax maps.

However this should not give the impression that the results of Chapter 2 will

be simply repeated as generalizations. Chapter 3 will still have an input-output

approach; however a transfer function description will no longer be available for

general lineax maps (although transfer-function-like representations of certain time-

varying finite-dimensional state-spacerepresentations are available in the literature,

the manipulations in this noncommutative algebra definitely requires caution and

even so, it does not provide the insight that its time-invariant counterpart does) .

For this reason, Chapter 3 studies the key points of factorizations of transfer func

tions (which is studied only for the proper finite-dimensional case in Chapter 2 due

to its simpUcity) and extracts those which will be the basis of Chapter 4 . In other

words, Chapter 3 is a stepping stone to Chapter 4 .

53
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In Chapter 3 , each subsystem is considered as a black-box whose input-output

pairs are uniquely determined by a causal Hnear map. Clearly the set of causal

linear maps (with the composition and addition operations) have certain properties

that axe useful in derivations: i) linear maps over product spaces have a structured

form; i.e. A : Aie x A2e *-*• A>Ze x &4e can beexpressed as A = a11 a12
I ^21 ^22

for some causal lineax maps An , ... , A22 over appropriate input and output

spaces, ii) the set of linear maps is left- and right-distributive (composition over

addition) . These specific tools axe used in the manipulations in Chapter 3 . For

this reason, a justificationof "left-factorizations" can still be made for general lineax

maps. When the algebra of input-output maps is restricted to be left-distributive

only (Chapter 4) , certain constraintson the manipulationswill be readilyapparent.

This chapter is organized as follows:

Section 3.2 introduces the preh'minaxy definitions on causal nonlinear input-

output maps; this section serves as the tool-box for the rest of the thesis. In

order to cut down on repetitions, the standard definitions on causal input-output

maps over extended spaces axe introduced once and for all in the general nonlinear

context (see Definition 3.2.1). As pointed out in the List of Symbols, sans serifstyle

(A, ..., Z ) is used for causal linear maps; calligraphic style ( ,A, ..., Z ) is

used for causal nonlinear maps. Hence the set of results for each style, say ftp ,

ftp and 12-p, can be ordered as follows:

ftp C ftp C ft-p .

Note that Chapter 3 deals with the first inclusion. Standard bounded-input

bounded-output stabiUty definitions are introduced in Definitions 3.2.3 - 3.2.6 .

Section 3.3 starts with right and left factorizations for linear maps (see Defini

tions 3.3.1 - 3.3.4) . The properties of these factorizations are stated and estab-
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lished.

In Section 3.4 , we study the general unity-feedback system 5(P, C) (see Fig

ure 3.1) using the tools in the previous section. Lemma 3.4.6 shows that in a stable

5(P, C) , the plant and the compensator both have right and left factorizations.

Furthermore, the properties of the pseudo-state maps (mapping the closed-loop

system inputs to the pseudo-state of the right factorizations) in S(P,C) are

investigated. We show the necessary and sufficient conditions on stabilizing lin

eax compensators provided that the plant has coprime factorizations (Propositions

3.4.9 - 3.4.10) . If the plant has both right and left coprime factorizations, all causal

stabiUzing linear compensators are parametrized in Fact 3.4.12 .

Although the class of Unear maps in Chapter 2 has both right and left coprime

factorizations, this is not the case for general Unear maps. Note that in general, the

composition of Unear single-input single-output maps is not commutative. Recall

that in Section 3.4, the existence of coprime factorizations is crucial for the results

stated. For this reason, Section 3.5 studies the conditions under which coprime

factorizations exist for Unear maps. First we show that in a stable 5(P, C) , the

plant and the compensator have right-coprime factorizations if and only if they

both have left-coprime factorizations (Proposition 3.5.1) . This parallel existence

properties of right an left coprime factorizations is exclusively due to linearity .

Propositions 3.5.3 - 3.5.4 show that in a stable 5(P,C) , the plant has right

(left) coprime factorization if and only if the compensator has left (right) coprime

factorization. These properties simplify the search for coprime factorizations of

Unear maps. The crux of this section is Theorem 3.5.6 ; it states the necessary and

sufficient conditions to obtain coprime factorizations of the subsystemsin a diagonal

Unear map with coprime factorizations. In a stable S(P, C) , the diagonal map
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has coprime factorizations (Fact 3.5.5) .

Section 3.6 briefly introduces the nonlinear unity-feedback system S^P ,C)

and the related definitions.

Section 3.7 consists of a general robustness analysis of the linear compensator

in a stable S(P, C) under nonlinear plant perturbations. Using coprime fac

torizations of Unear maps and the results in the previous sections, we study four

cases in subsections 3.7.1 - 3.7.4 : additive, feedback, pre-multipUcative and post-

multipUcative nonlinear plant perturbations. In each of these cases, the perturbed

plant model has four subcases resulting from the number of inputs and outputs

considered. Foreach subcase we state the necessary and sufficient condition for the

nominal compensator to simultaneously stabiUze the perturbed plant. Comment

3.7.2 gives an intuitive explanation on the form of the necessary and sufficient con

ditions in Theorem 3.7.1 (the additive case) . The rest of the subsections state the.

results in detail; however the proofs are omitted since they are in essence identical

to the proof of Theorem 3.7.1 . The coroUaries at the end of each subsection char

acterize the set of all nonlinear perturbations for which the associated perturbed

system remains stable.

This section is important for design purposes: the results aUow the designer to

check whether the expected perturbations wiU destabiUze the design; furthermore

the conditions for robust stabiUzation axe necessary and sufficient.



3.2 Preliminaries

The foUowing definitions are introduced to build the framework of the input-output

approach used in the rest of the thesis. Note that aU sans serif letters A , . . . , Z

denote linear maps; all calligraphic letters J\., .. . , Z denote nonlinear maps.

Definition 3.2.1 (II? and extended space Ae)

Let T C IR and let V be a normed vector space. Let

C := {u | u : T-+ V}

be the vector space of V-valued functions on T .

(For example: £ := {u \ u :7L+ ->IRn} )

For T G T , the projection map II j : £ —> £ is defined by

Ht-W := {If* '*T.«6T^ <>T,*€T ,

where 0£ is the zero element in £ .

Let A C ( be a normed vector space which is closed under the family of

projection maps {ilTjrp 7- . For agiven u£ k. , let the norm

||n(.)«||:T->IR+

be a nondecreasing function.

(For example: A:= [u :IR+->IRn | supteIR+ ||ti(t) || < 00 } )
The extended space Ae is defined by

Ae := {ueC I VTeT, nTu€A}.

D

Note that the causal extension Ae of A is introduced to take "unbounded"

signals into account. The norm || • || is defined for the members of A only.



58

If Ae was not introduced, then the input-output approach could represent only

"stable" maps.

Definition 3.2.2 (causal map)

A nonUnear map 7" : Ae —> Ae is said to be causal iff

nT-F = IIt^IIt VT e T .

D

TypicaUy all realizable models are causal. At any time instant T we have

access to the input signals up to T , hence the map should not require "future"

values of the input to determine the output at the time instant T . Forexample,

the inverse of the delay operator

y\ r/(0) = 0

is not causal. A convolution system H , where

Hu(t) = f hit, T)u{r)dT

is causal.

We define two function spaces closely related to Ae (the superscripts i and

o refer to "input" and "output", respectively) : Let AJ, and A£ be extended

function spaces analogous to Ae except that their members take values in the

normed vector spaces V and J/° , respectively; the associated projections IIt

axe redefined accordingly.

Definition 3.2.3 (A-stable )

A causal nonlinear map *H :Alc -> A° is said to be A-stable (see also [Des.9]) iff

there exists a continuous nondecreasing function <$>% :IR+ —>IR+ such that
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ll«tt|| < <MNI) v^g A1.

D

For the sake of brevity, the composition 1~L\ o 1~C2 of two causal maps wiU be

denoted by l~L\ht2 . For an input u the output 1~C(u) wiU be denoted by l~iu.

In the linear case, the output bounding function can be taken as Unear.

Definition 3.2.4 (finite-gain-stable)

A causal linear map H :A\ -+ A£ is said to be finite-gain-stable [Des.l] iff there

exists k > 0 such that

||Hu|| < *||tt|| We A1.

D

Note that the "gain" of a finite-gain-stable Unear map H can be defined as

l|H«|| ,
sup — =: k .

Definition 3.2.5 (A-unimodular )

A causal nonUnear map Ad : Ae -• Ae is called A-unimodular iff

i) A4 is A-stable, bijective and

ii) MT : Ae -»- Ae is A-stable.

D

For the Unear case, we define finite-gain-unimodular maps.

Definition 3.2.6 (finite-gain-unimodular)

A causal linear map M : Ae -> Ae is caUed finite-gain-unimodular iff

i) M is finite-gain-stable, bijective and
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ii) M : Ae —> Ae is finite-gain-stable.

D

Note that the sum and composition of A-stable (finite-gain-stable) maps axe

A-stable (finite-gain-stable) ; the composition of A-unimodular(finite-gain- unimo

dular) maps are A-unimodular(finite-gain-unimodular) .

In this chapter, we consider factorizations of linear maps only. Since the pre

vious chapter was specificaUy focused on factorizations in Ru , due care must be

taken in the generalization of coprimeness definitions.

The foUowing definitions axe introduced using the same names as in the previous

chapter because they axe direct generaUzations. However, the existence of such

factorizations axe not as straightforward as in Ru .
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3.3 Factorizations of linear maps

Definition 3.3.1 (right-factorization)

(N, D) is said tobea right-factorization (r.f.) ofa causal Unear map P : A^ —*• A£

iff

i) the Unear map N : Ale —» A£ is finite-gain-stable and

ii) the Uneax map D : A^ —> Ag is finite-gain-stable, bijective and has a causal

inverse and

iii) ND'^P .

Definition 3.3.2 (left-factorization)

(D, N) is said to be a left-factorization (If.) ofa causal Unear map P : A^ —*• A°

iff

i) the Unear map N : Ale —• A£ is finite-gain-stable and

ii) the Uneax map D : A£ —> A° is finite-gain-stable, bijective and has a causal

inverse and

iii) D_1N =P .

Definition 3.3.3 (right-coprime factorization)

(N, D) is said to be a right-coprime factorization (r.c.f.) of the causal Uneax map

P:A^->A° iff

i) (N,D) is an r.f. of P and

ii) there exist Uneax finite-gain-stable maps U : A° —• A!, , V : A* —> A*

such that

"Ifgl-1' (-)



62

where I denotes the identity map on A'

Note that the identity in (3.1) resembles the Bezout-identity [Vid.3] in Defini

tion 2.2.9 ii) . The finite-gain-stable maps (3.1) may not have transfer function rep

resentations. The matrix notation in (3.1) should be interpreted as: U composed

with N plus V composed with D equals the identity map. For this reason,

identities as in (3.1) wiU be often referred to as "Bezout-Uke" identities.

Definition 3.3.4 (left-coprime factorization)

(D, N) is said to be a right-coprime factorization (l.c.f.) of the causal Uneax map

P:A'-A°iff

i) (D,N) isanl.f. of P and

ii) there exist Uneax finite-gain-stable maps U : A? —> A* , V : A?

that

N D

where I denotes the identity map on A

u
v

A£ such

= i,

Fact 3.3.5 (all r.c.f.s are related by finite-gain-unimodular maps)

Let (N, D) beanr.c.f. ofthe lineax map P : Ale -> A° ; then (NXl Di) is an r.c.f.

of P if and only if thereexists a Unear finite-gain-unimodular map M : A* —> A*

such that

Proof

" if "

Since (N,D) is an r.c.f. of P and the Uneax map M is finite-gain-

unimodular, (N^D^ is also an r.f. of P . By assumption there exist causal

D,
N
D

M
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Uneax finite-gain-stable maps U and V such that (3.1) holds. Substituting

N= NjM"1 and D = DiM"1 , we obtain

UNa+VDi 1-1M"* = I.

Composing on the left by M and on the right by M and using the Unearity

of M" , we obtain

(m-1u)n1 +(m-1v)d1 =i;

hence (Nx,Di) is an r.c.f. of P .

" only if "

By assumption there exist Hnear finite-gain-stable maps U , V , U i and

V i such that

UN+VD = I , (3.2)

U^Nj +ViDi = I . (3.3)

Let M := D~ Di . Composing both sides of (3.2) by D~ Di and using

ND"1 = NiD^1 , we obtain

M = UN1+VD1 ; (3.4)

hence the Uneax map M is finite-gain-stable. By the definition of M , the map

M is bijective and has a causal inverse.

Composing both sides of (3.3) by M"1 = D^D and using ND"1 = MiD'1 ,

we obtain

M"1 =U,N +VxD ; (3.5)

hence M~ is finite-gain-stable. From (3.4) and (3.5) , we conclude that the

finite-gain-stable map M is in fact finite-gain-unimodular . Furthermore



Di = DM and Nx = NM

Fact 3.3.6 (all l.c.f.s are related by finite-gain-unimodular maps)

Let (D,N) be an l.c.f. of the causal Uneax map P : Axe

(Di, Ni) is anl.c.f. of P if and only if there exists a Uneax finite-gain-unimodular

64

A° ; then

map M : A£ -> A£ such that

Dx Nx = M D N

D



65

3.4 Linear unity-feedback system

Definition 3.4.1 (linear unity-feedback system 5(P,C))

Let P : Ag —• A£ and C : A£ —• Ale be causal linear maps (not necessarily

time-invariant). The unity-feedback system 5(P, C) is shown in Figure 3.1.

Ui
+

ex

u2

2/1+,,+ e2
TVS tc PlKJ *

2/2

Figure 3.1:
Linear unity-feedback system 5(P, C)

In Figure 3.1 , u\ and u2 denote the exogenous inputs; the outputs of C and

P axe denoted by yx and y2 , respectively. Fromthe summing node equations

in Figure 3.1 , the pair (ex, e2) is determined by

ex

e2

ttx

u2
+

0 -I
1 0

2/1

2/2
(3.6)

Definition 3.4.2 (well-posed 5(P,C))

The unity-feedback system 5(P, C) (see Figure 3.1) , where P and C axe Uneax,

is said to be well-posed iff there exists a causal map {u\, u2) »-* (ex, e2) .

Fact 3.4.3

For the Unear unity-feedback system 5(P, C) in Figure 3.1 , the foUowing state

ments axe equivalent:

i) The Uneax unity-feedback system 5(P,C) is weU-posed.

ii) There exists a causal map («i, 1*2) •—> (yi, y2) .

iii) The linear map (I + PC) has a causal inverse.



iv) The Uneax map (I + CP) has a causal inverse

Proof

i) * ii)

FoUows by (3.6).

i) & iii) <* iv)

Writing the summing node equations in Figure 3.1 in terms of u \

and e2 , we obtain

I p
-CI

ex

. e2 .
=

.U2.

hence the closed-loop map (ui, u2) t-> (ex, e2) is given by

i p
-c I

i-i
Ui

u2

ei

e2

By calculation and using Unearity, (3.7) is equivalent to

-p(i+cp)_1
(i+cp)-1

-(I+PC)"XP
(I +CP)"1

I P
-C I

-1-1 (i+pc)-
C(I +PC)
(i+pc)-1
(I +CP)_1C
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Uj ex

(3.7)

(3.8)

Definition 3.4.4 (finite-gain-stable 5(P,C))

A weU-posed Uneax unity-feedback system 5(P, C) is said to be finite-gain-stable

iff the causal Uneax closed-loop map (u\, u2) i-* (ex, e2) is finite-gain-stable.

Fact 3.4.5

For the well-posed Unear unity-feedback system 5(P,C) in Figure 3.1 , the fol

lowing statements are equivalent:

i) The unity-feedback system 5(P,C) is finite-gain-stable.
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ii) The causal Unear map («x, u2) »-» (yx, y2) is finite-gain-stable .

iii) The causal Uneax map

i p1-1
-C I

in (3.7) is finite-gain-stable.

Proof

FoUows by (3.6) and (3.7).

•

Lemma 3.4.6 (a necessary condition on P and C in stable S(P,C))

Let the causal Uneax maps P : A\ —> A£ and C : A£ —• Ale be such that the

unity-feedback system 5(P,C) is finite-gain-stable; then the Uneax maps P and

C have right- and left-factorizations.

Proof

We prove the result for C only; the case for P foUows similarly.

By assumption the unity-feedback system 5(P, C) is finite-gain-stable; hence

the Uneax maps

-l

AJxA^A°x A^

Dc := (I +CP)

Nc := (I +CP)_1C ,

Nc := C(I +PC)_1 ,

Dc := (UPC)-1

are finite-gain-stable (see (3.8)). Since Dc and Dc are causal and

NcDc"1 =C=D^Nc ,

-l

we conclude that (Nc,Dc) is an r.f. of C and (Dc,Nc) is an l.f. of C

D
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Lemma 3.4.7 (n&s condition for finite-gain-stable 5(P,C))

Let the Unear map P : AJ, -> A£ be given by an r.c.f. (Np,Dp) (hence there

exist Uneax finite-gain-stable maps U , V such that

UNp+VDP = I ); (3.9)

then the Unear unity-feedback system S(P, C) is finite-gain-stable if and only if

the map

(l£1,ti2)'->Cp

from closed-loop inputs into the plant pseudo-state (see Figure 3.2) is finite-gain-

stable.

Proof

By Definition 3.4.4 , the unity-feedback system 5(P,C) is finite-gain-stable

if and only if the closed-loop map (u\, u2) h-> (ex, e2) is finite-gain-stable. By

assumption, (Np, Dp). is an r.c.f. of P ; hence from the summing node equations

in Figure 3.2 and (3.9) , we obtain

(P = U (ti! - ex) + V e2 . (3.10)

Since the Unear map U is finite-gain-stable, from (3.10) we conclude that the map

(«x, u2) >-* (ex, e2) is finite-gain-stable if and only if the map («x,«2) •-> £p is

finite-gain-stable.

D

Corollary 3.4.8 (the pseudo-state map (uuu2) i-> (£c>fp))

Let the Unear maps P : A|, -• A° and C : A£ -> AJ, have r.c.f.s (Np, Dp) and

(Nc>Dc) , respectively; then the unity-feedback system 5(P,C) is finite-gain-

stable if and only if the causal linear map M , defined by

M :=
Dc NP

-Nc Dp :A^xA[-»A°xA[ , (3.11)
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is finite-gain-unimodular.

Proof

Writing the summingnode equations in Figure 3.2 in terms of the pseudo-states

fp and f c >we obtain

u2
= M

where the map M is as in (3.11). The proof foUows by Lemma 3.4.7 .

a

Figure 3.2:
Linear unity-feedback system 5(P, C) with individual r.c.f.s

Proposition 3.4.9 (n&s condition on a stabilizing compensator)

Let the Uneax map P : A\ -• A° have anl.c.f. (Dp, Np) ; then the unity-feedback

system 5(P,C) is finite-gain-stable if and only if C has an r.c.f. (Nc,Dc)

such that (3.12) below holds:

NpNc + DpDc = I (3.12)

Proof

" if "

By assumption (NC,DC) is an r.c.f of C and (Dp, Np) is an l.c.f. of P .

Writing the summing node equations from Figiure 3.2 in terms of the pseudo-state

f C •> we obtain

(npNc +DPDc)fc =Dp -N, Ml

«2
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substituting (3.12) we see that the map («x,w2) h-» fc 1S finite-gain-stable. By

Lemma 3.4.7 , weconclude that the feedback system 5(P, C) is finite-gain-stable.

" only if "

By assumption, (Dp, Np) is an l.c.f. of P and 5(P,C) is finite-gain-stable.

By Lemma 3.4.6 , C has an r.f. ; caU it (N1? Dx) . Writing the summing node

equations from Figure3.2 using the r.f. (Nx, Di) of C , we obtain

(NpNi +DpDiW = Dp -NP Ml

U2
(3.13)

By assumption, there exist finite-gain-stable maps U and V such that NpU +

DPV = 1 .Set
Ui

u2

V
-U

The closed-loop map

*?>-(ei,yi) = (Di£c,Ni£c)

is finite-gain-stable. From (3.13) , the finite-gain-stable maps N c : V»-• y\ and

Dc : 17 »—• ei axe given by

Nc =N^NpNj +DpD!)"1 ,
Dc = Di^NpNi +DpDx)

-1 .Moreover Dc is causal. Hence (Nc,Dc) is an r.c.f. of C and

NpNc + DpDc=I .

A result similar to Proposition 3.4.9 can be obtained by requiring only that the

plant P has an rx.f.

Proposition 3.4.10 (n&s condition on a stabilizing compensator)

Let the linear map P : A\ -» A£ have an r.c.f. (Np, Dp) ; then the unity-feedback
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system 5(P,C) is finite-gain-stable if and only if C has an Lc.f. (DC,NC)

such that (3.14) below holds:

NcNp + DcDp = I (3.14)

Lemma 3.4.11 (all solutions (NC,DC) of (3.12))

Let the Uneax map P : Ale -> A£ have an r.c.f. (NP,DP) and an l.c.f.

(Dp, Np) . Choose the Uneax finite-gain-stable maps U , U , V and V

such that

UNp + VDp = I

NpU + DpV = I

(3.15)

(3.16)

Under these assumptions, the set of aU Unear finite-gain-stable solutions Nc ,

Dc ofequation (3.12) , namely

is given by

{
Nc
Dc

Proof

U + DpQ
V-NpQ

NpNc + DpDc = I ,

Q-K Ag is Uneax and finite-gain-stable > .

(3.17)

Any pair Nc , Dc in (3.17) is a solution of (3.12) : using the Unearity of

Np , Dp and (3.16) , we obtain

NpNc +DpDc = Np(U +DpQ)+Dp(V-NPQ)

= I+(NpDp-DPNp)Q
= I .



Conversely, let Nc and Dc be a solution of (3.12); then

NPU + DpV=NpNc + DpDc = I .

<z

^ -1 .. _ _x cr -l^r
Composing on the left by Dp , and substituting NpDp = Dp Np ,we

obtain

V-Dc =NPDp-1(Nc-U) . (3.18)

Let

Q^Dp-^Nc-U) . (3.19)

From (3.15) , (3.18) and (3.19) , we obtain

Q = (UNp +VDp)Q
= U(V-DC)+V(NC-U) ,

hence the Uneax map Q in (3.19) is finite-gain-stable. From (3.19) we also have

Nc = U+ DPQ . From (3.18) we have Dc = V - NPQ .

D

Fact 3.4.12 (parametrization of all stabilizing compensators C)

Let the Uneax map P : Aj, —> A£ have an r.c.f. (Np,Dp) and an l.c.f.

(Dp, Np) . Choose the Unear finite-gain-stable maps U , U , V and V

such that

UNp +VDp = I (3.20)

NpU + DpV = I . (3.21)

Under these assumptions, the set of all Unear compensators C : A° —> A^ such

that the Unear unity-feedback system 5(P, C) is finite-gain-stable is given by
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{C=(U +DPQ) (V - NPQ) * | Q:A? -> Ai is Unear finite-gain-stable
and

(V - NpQ)"1 is causal j . (3.22)

Moreover, the map Q i-* C defined in (3.22) is a bijection onto finite-gain-stabiUzing

compensators.

Proof

By Lemma 3.4.11 , the Q h+ C mapin (3.22) gives aU compensators C such

that 5(P,C) is finite-gain-stable; hence it is surjective. Let a member C in

(3.22) be described by two parameters Qx and Q2 . We show that

C = (U +DpQ^V-NpQ,)"1 (3.23)
= (U +DpQ2)(V-NpQ2)-1 (3.24)

impUes that

Q, = Q2 •

From (3.21) , (3.23) and DpNp = NpDp , weobtain

NPC = Np^ +DpQ^V-NpQ,)""1
= (i-DpV +DpNpQ^V-NpQ,)"1
= [i-DpfV-NpQ^JfV-NpQ,)"1
= (V-NpQ,)-1 - Dp. (3.25)

Similarly, from (3.21) and (3.24) , we obtain

NPC =(V-NpQj)-1 - Dp . (3.26)

From (3.25) and (3.26) , we obtain

(V-NPQ,)"l =(V-NPQ2)-X ;
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substituting in (3.23-3.24) , we have

U + DpQx = U + DPQ2 .

Since Dp"" exists, we conclude that Qx = Q2 . Thus the map Q i—• C is

injective.

D
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3.5 Existence of r.c.f.s and l.c.f.s

In this section we study the conditions under which coprime factorizations exist for

Uneax maps.

Proposition 3.5.1 (r.c.f. <4=* l.c.f.)

Let the Uneax unity-feedback system 5(P, C) be finite-gain-stable; then the Unear

maps P and C have r.c.f.s if and only if the Uneax maps P and C have

l.c.f.s .

Proof

We prove the "only if" since the other direction foUows similarly.

By assumption, the Uneax maps P and C have r.c.f.s; caU them (Np,Dp)

and (Nc, Dc) , respectively . Since the Unear feedback system 5(P,C) is

finite-gain-stable, the Uneax map M defined in (3.11) is finite-gain-unimodular by

CoroUary 3.4.8 . Partition the finite-gain-stable inverse map M ~ as

Dp -NP

Nc Dc
(3.27)

We claim that (DP,NP) and (Dc, Nc) defined in (3.27) are l.c.f.s for P and

C , respectively. From (3.11) ,

M =
I P

-C I
Dc o
o Dp

taking the inverse and using (3.8) ,

i-iM~L = Dc"1
o

Or'1

0

Dp

o

-i

I P
-C I

-i

(I+ PC)
DP-1J[C(I +PC)

-1

-1

-P(I +CP)
(I +CP)

Dc-^I +PC)-1 -Dc-'P^ +CP)
Dp-'qi +PC)"1 Dp^fl +CP)

-i

-i

-1

-1

(3.28)
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Setting (3.27) equal to (3.28) , we see that the maps Dp and Dc have causal

inverses; moreover

Dp_1NP = (I +P^DcDc^Pp+CP)"^?
Dc'Nc = (l +CP)DPDp-1C(l +PC)"1 =C .

Hence (Dp,Np) and (Dc, Nc) axe r.f.s of P and C , respectively. Using the

(1,1)- and (2,2)-entries of the identity M^M = I , we conclude that (DP,NP)

is an l.c.f. of P and (Dc,Nc) is an l.c.f. of C .

•

Comment 3.5.2

The proof of Proposition 3.5.1 is by construction; hence (3.28) shows how to obtain

the l.c.f.s of P and C from their r.c.f.s , provided that the Uneax unity-feedback

system 5(P, C) is finite-gain-stable.

D

The foUowing proposition is similar to Proposition 3.4.9 ; however the emphasis

is on the existence of coprime factorizations. In a finite-gain-stable 5(P, C) , the

existence of an r.cf. (l.cf.) of one of the blocks impUes the existence of an l.c.f.

(r.c.f.) of the other.

Proposition 3.5.3 (P has an Lc.f «$=> C has an i\c.f.)

Let the Unear maps P : AJ. -• A° and C : A£ -*• Ale be such that the Unear

unity-feedback system S(P,C) is finite-gain-stable. Under this assumption, the

map P has an l.c.f. if and only if C has an r.c.f.
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Proof

" only if "

Identical to the proof of the "only if" part in Proposition 3.4.9.

" if "

By assumption, the linear feedback system 5(P,C) is finite-gain-stable. By

Lemma. 3.4.6 , the plant P has an l.f. ; call it (Di, Ni) . By assumption C

has an r.c.f.; call it (N^, D^) . Writing the summing node equations in Figure

3.2 using the r.c.f. (Nc, D^) of C , we obtain

(N^c +DaDc^JD! -Nx
u2

Since 5(P, C) is finite-gain-stable, by Lemma 3.4.7 the closed-loop map

(uuu2)*-+£c

is finite-gain-stable. Hence the linear maps Dp and Np defined as

Dp := (NiNc* DxDc) Di
NP := (NiNc +DxDc)"1^

(3.29)

(3.30)

-1

are finite-gain-stable; moreover Dp is causal. From (3.29) and (3.30) ,

NpNc + DpDc = I ;

hence (Dp,Np) is an l.c.f. of P .

D

The following proposition is stated without proof; the proof is similar to that of

Proposition 3.5.3 .

Proposition 3.5.4 (P has an r^c.f «=>• C has an Lc.f.)

Let the linear maps P : Ale -> A£ and C : A° -> Ale be such that the linear
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unity-feedback system S(P,C) is finite-gain-stable. Under this assumption, the

linear map P has an r.c.f. if and only if the linear map C has an l.c.f.

Consider the linear (not necessarily time-invariant) feedback system S(P, C)

shown in Figure 3.1 . If 5(P, C) is finite-gain-stable, then the linear map

P 0 '
o C

:
e2

i—•
2/2

has both an r.c.f. (N,.D) and an l.cf. (D, N) . This result was proven in

[Vid.2] for the case where P has elements in the quotient field of an entire ring.

However, the conditions for existence of individual r.c.f. and l.c.f. of P and C

was left as an open question.

To show that the stability of the closed-loop does not. imply that P and C

individually havecoprime factorizations, a special non-unique factorization domain

was constructed in [Ana.2] ; scalar p and c in the quotient field of this particular

ring have no stable coprime factorizations although

We consider this problem from a general input-output approach, where the

multiinput-multioutput subsystems P and C are represented by linear (not

necessarily time-invariant) maps defined over extended spaces. We obtain r.c.f.s
T P 0 1andl.c.f.sof Q q when the feedback system 5(P,C) is finite-gain-stable .

The main result is Theorem 3.5.6 , which states that: given coprime factorizations
T P 0 1

°f q q >individual coprime factorizations for P and C exist if and only

if an r.c.f. of P has a lower block-triangular "denominator" D . Note that

Theorem 3.5.6 answers the question posed in [Vid.2] ; the example constructed in

[Ana.2] is only one case where the conditions of Theorem 3.5.6 fail. In the linear

time-invariant finite-dimensional case where P and C have descriptions with ra

tional function entries, the necessary and sufficient conditions in Theorem 3.5.6 are

P 0
0 c

has an r.c.f.
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automatically satisfied due to the existence of triangular (Hermite) forms [Vid.3] .

Fact 3.5.5 (5(P,C) stable P 0

o C
has r.c.f. and l.c.f.)

Let the linear maps P : AJ> —• A£ and C : A£ —• Ag be such that the linear

unity-feedback system S(P,C) is finite-gain-stable; then the map

P 0

o C
tAixAJJ-AJxAi

has both an r.c.f. and an l.c.f.

Proof

Let the maps J and T be defined as follows :

Note that

J:A^xA°^•A°xA> , J :=
0

-I
r
0

T : A^ x A° - A° x A*. , T := P

0

0 '
C

I+TJ)-1 = ' I PI
-C I

-1

«2
1—>

. e2

Since J J = I , J is finite-gain-unimodular. By assumption, the linear unity-

feedback system 5(P, C) is finite-gain-stable; hence the linear maps

N := T(lH-JT)"1 , (3.31)

D := (I +JT)-1 (3.32)

are finite-gain-stable. From (3.31) and (3.32) , T=ND_1 and JN + D= I ;

hence (N, D) is an r.c.f. of T . Let

N := N

D := J"XDJ

(3.33)

(3.34)

From (3.33) and (3.34) , D~ N = T and NJ + D = I ;hence we conclude that

(D,N) is an l.c.f. of T .

D
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Theorem 3.5.6 (coprime factorizations of P and C from P 0
o C )

Let
P 0
0 C : A^ x A° —» A° x Ag , where P and C are linear maps.

i) Let (N,D) beanr.cf. of P 0
0 C

; then P and C have r.c.f.s

(Np, Dp) and (Nc,Dc) , respectively, if and only if there exists a finite-

gain-unimodular map R such that

DR =
Dp o
Xi Dc

for some linear finite-gain-stable map Xi : A* —> A° and where

NR=:
NP X2
X, Nc

(3.35)

(3.36)

ii) Let (D, N) be an Lei. of P 0
0 C

; then P and C have l.c.f.s

(Dp, Np) and (Dc, Nc) , respectively if and only if there exists a finite-

gain-unimodular map L such that

LD =

for some finite-gain-stable map Xi : Aj> —• A° and where

LN =:

Comments 3.5.7

Dp ^
o Dc

NP X2

X3 Nc

i) Equation (3.35) is a structure test on the "denominator" map :

(3.37)

(3.38)

P 0
o C

must have an r.c.f. (N,D) , where D is of the specific lower block-

triangular form. In order to find the individual r.c.f.s of the subsystems from
P 0the given r.ci. (N,D) of
0 C

, we only need to determine Dp

and Dc ; calculating Xi is not needed. Similar comments apply for the

upper block-triangular form in (3.37) .



Figure 3.3:

A representation of linear
P 0
o C
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ii) Suppose that the block-diagonal matrix of Theorem 3.5.6 would involve n

subsystems where the map

p,

p„

has an r.c.f. or an l.c.f. ; then the theorem still holds.

iii) If condition i) of Theorem 3.5.6 holds, then the map

structure in Figure 3.3 . As we shall see below with (3.42) ,

P 0

o C

P 0
o C

has the

is in

fact decoupled into two subsystems P and C . In other words, the blocks
P 0Xi and X3 in Figure3.3can be removed for a simplerr.c.f. of
0 c

iv) By Fact 3.5.5 , the linear map
p 0
0 c

in a finite-gain-stable unity-feedback

system 5(P,C) has an r.c.f. (l.c.f.) ; the individual subsystems also have

r.c.f.s (l.c.f.s) if and only if the condition stated in Theorem 3.5.6 is satisfied.

Proof of Theorem 3.5.6

We only prove part (i) ; the proof of (ii) follows similarly.



" if "

By assumption, (N,D) is an r.c.f. of

gain-unimodular. By Fact 3.3.5 , (NR, DR) is an r.c.f. of

(3.35) , (DRj is given by

P 0
o C
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and R in (3.35) is finite-

. From

(DR)-l = Dp"1 o
-Dc'^Dp-1 Dc"1

P 0
o C

(3.39)

-lNote that Dp" and Dc" are causal. Substituting (3.36) and (3.39) in

P 0

0 C
=(NR)(DR)

-lwe obtain X2Dc =0 ; hence

Therefore

X2 = o .

P = NpDp"1 ,

C = NcDc"1 ,

X3 = NcDc-'X,

-i

(3.40)

(3.41)

(3.42)

At this point, (3.40) and (3.41) imply that (Np,Dp) and (NC,DC) are r.f's of

P and C , respectively.

Since (NR, DR) is an r.c.f. of

maps

u„ u12
U21 U22

such that

u„ u12
U21 U22

Np 0
X3 Nc +

P 0
0 C

, there exist linear finite-gain-stable

and
v„ v„
V2i V22

V„ V12
V21 V22

Dp 0
X, Dc

= 1 (3.43)
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From (3.43) , we obtain

U2aNc + V22Dc = I; (3.44)

furthermore, by (3.43)

U12Nc + V12Dc = 0 ,

UnNp + VuDp + UwXa + VnXx = I (3.45)

From (3.42) , equation (3.45) becomes

U11Np + V11DP = I . (3.46)

From (3.44) and (3.46) we conclude that (Np, Dp) and (Nc, Dc) are in fact

r.c.f.'s of P and C , respectively.

" only if "

Let (Np,Dp) and (Nc,Dc) be r.c.f.s of P and C , respectively. Let

Nx:=

and

D,:=

NP o
o Dp

Dp o
o Dc

Clearly (Ni,Di) is an r.c.f. of

P 0
0 C

map R such that

r.c.f. of

P 0

o C
. By assumption, (N, D) is also an

. By Fact 3.3.5 , there exists a linear finite-gain-unimodular

DR =
Dp o
o Dc

and NR = Nx . Therefore the r.c.f. (N, D) of

(Np,Dp) of P and (NC,DC) of C sothat conditions (3.35) and (3.36) hold .

D

P o
o C

is related to r.c.f.s
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3,6 Nonlinear unity-feedback system

The results in this section are derived in parallel to the ones in Section 3.4 . A

direct comparison of what can be done in the nonlinear case with what has been

done in the linear case proves useful.

Definition 3.6.1 (nonlinear unity-feedback system S(P,C))

Let *P : Ale —• A° and C : A£ —• A^ be causal nonlinear maps. The unity-

feedback system SCP,C) is shown in Figure 3.4.

«i
+

u2

To »c V.J * *KJ •

2/2

Figure 3.4:
Nonlinear unity-feedback system S(P,C)

Definition 3.6.2 (well-posed S(V,C))

The unity-feedback system S{*P,C) where P and C are not necessarily linear,

is said to be well-posed iff there exists a causal map

(«i, u2) •-> (d , e2) .

Fact 3.6.3

For the unity-feedback system S(P,C) in Figure 3.4 , the following three state

ments are equivalent:

i) The unity-feedback system S(7*,C) is well-posed,

ii) There exists a causal map (ui, w2) •-»• (yx, y2) .



iii) The map

has a causal inverse.

I V
-C I

: A°xA^A°xA;

Proof

Follows by (3.6) and the summing node equations in Figure 3.4

r i v]
-C I

ei

e2
=

Ui

u2
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(3.47)

(3.48)

Definition 3.6.4 (A-stable S{V,C))

A well-posed unity-feedback system SCP,C) is said to be A-stable iif the causal

closed-loop map {u\, u2) i-> (d , e2) is A-stable.

Fact 3.6.5

For the well-posed unity-feedback system S(^P^C) in Figure 3.4 , the following

three statements are equivalent:

i) The unity-feedback system S(V,C) is A-stable.

ii) The causal map («x, u2) j-» (t/i , y2) is A-stable

r T UT1
iii) The causal map I V

-C I

Proof

FoUows by (3.6) and (3.48).

A° x A^-> A° x A^ is A-stable
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3.7 Stable linear unity-feedback system and
necessary and sufficient conditions for

stability under nonlinear plant perturbations

Robust stability of feedback systems under unstructured perturbations of the plant

model has been studied extensively. In the nonlinear case, the small gain theorem

[Zam.l,Des.l] gives a sufficient condition for robust stability of a stable system

under nonlinear stable additive perturbations. Sufficient robust stability condi

tions were also obtained in [Ast.l,Cru.l,Des.3,Fra.l,Owe.l,Pos.l,San.l] . In the

linear time-invariant case, necessary and sufficient conditions for robust stability

for a certain class of possibly unstable plant perturbations have been obtained in

[Doy.l, and references therein] [Chenl] ; for a general class of possibly unstable

perturbations, the factorization approach yields necessary and sufficient conditions

for robust stability of the feedback system under fractional perturbations of the

subsystems [Chen2] . Furthermore, necessary and sufficient conditions for the exis

tence of a controller for plants with additive or multiplicative uncertainty are given

in [Vid.4] .

For linear time-invariant stable unity-feedback systems with nonlinear additive

plant perturbations, necessary and sufficient conditions have been obtained in two

cases:

i) The additive perturbation has an independent input; hence unmodelled dy

namics, which is not coupled to the nominal plant inputs, can be taken into

account [Bha.l] .

ii) The perturbed plant is considered as a one-input one-output plant [Hua.l]

(see also [Hua.2] for the linear time-invariant additive perturbation case) .

In this section we consider a linear (not necessarily time-invariant) finite-gain-
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stable unity-feedback system 5(P, C) , where the plant and the compensator have

r.c.f.s ; we study four cases of nonlinear plant perturbations (additive , feedback ,

pre- and post-multiplicative). The plant perturbation A?P is not required to be

A-stable . Using the factorization approach we obtain necessary and sufficient

conditions for all cases in terms of two pairs of nonlinear pseudo-state maps. Simple

physical considerations explain the form of these necessary and sufficient conditions.
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3.7.1 Additive Perturbation Case

Let AflP : Ag —> A° be a causal nonlinear map . For i,j =1,2 , the

nonlinear perturbed model of the linear plant P is denoted by (P, ^P)?.

The one-input one-output plant

P:: e2 h-» y2

addis perturbed to an i-input j-output (P, AT*).. , where (see Figure 3.5)

i) (P,AV)*" :(e2,0)~zi ,

ii) (P,AV)^d :(e2,0)~(z2,y,) ,

iii) (P,AV)*d :(e2,uz)~z, ,

iv) (P,AV)^d :(e2,u3) ~ (z2,y3) •

«3 +c5—* .a-p+(.
-+
S

e2

p
V*+\

•O

(p.-
dd

2.-

2/3

*2

Figure 3.5:

fPj^l'Pj : 2-input 2-ouput additive perturbation of P

addFor i, j=1,2 , the nonlinear unity-feedback system S( (P, AP)* ,C) is
shown in Figure 3.6 : the input-output pair

(e2,z2)



Ui

A

«3

e2 (p.^C

2/3

u2

c
2:

J . *
i

*<w)
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Figure 3.6:

Nonlinear unity-feedback system S( (P,-^Pj ,C)

is used in feedback compensation; that is, u$ is an exogenous input and y$ is

an observed output which is not used in feedback (see Figure 3.6) .

Note that for i , j = 1,2 , the (i-j-1)-input feedback system

5((p,^P);dd,o

is A-stable iff the (j-fl) outputs (i.e. j outputs of (P,^P).. and the output

2/i ) are determined by A-stable maps of the (i-f-l)-inputs.

Theorem 3.7.1 (n&s condition for robust stability)

Let the linear unity-feedback system 5(P,C) be finite-gain-stable , where P :

Ae —• AJJ and C : A£ —*• Ag are causal linear maps with r.c.f.s (Np, Dp) and

(Nc,Dc) Respectively. (Hence by Proposition 3.5.1 , P and C have l.c.f.s

(Dp, Np) and (Dc,Nc) , respectively , defined as

Dp -NP
Nc Dc

Dc NP
-Nc Dp

Under these assumptions, for any causal nonlinear map

add

-i

)

i) the well-posed «S( (P, AP)U ,C) is A-stable if and only if the map

DpidT^I +NcDpAP^Dp (3.49)
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is A-stable;

ii) the well-posed S((P, AP) ,C) is A-stable if and only if the map

^(i+NcDp.d'P^Dp (3.50)
is A-stable;

iii) the well-posed S((P, AlP\ ,C) is A-stable if and only if the map

Dp^T^I+NcDp^p)"1 (3.51)
is A-stable;

iv) the well-posed S((P, AV)„ ,C) is A-stable if and only if the map
\ / 22

^•p(l +NcDpAp)_1 (3.52)
is A-stable.

Comments 3.7.2

We offer the following explanation on the forms of the necessary and sufficient

conditions for S( (P, AT>)*. ,C) to be A-stable, for i , j =1,2 .

i) The effect of not observing 2/3 :

Since 2/3 is not observed, we consider the stability of the map

(w!,«2,«3) *-* (2/1,22) •

By assumption, the Hnear unity-feedback system 5( P, C) is finite-gain-stable

and the linear maps P and C have r.c.f.s ; hence by Proposition 3.5.1 ,

the map P has an l.c.f. (Dp,Np) . Using this l.c.f. of P , we redraw

the feedback system 5((P, AV)2l ,C) as in Figure 3.7 ;note that we use
the linearity of Dp .



«i

«3+ e3
V-2

A> -l
Dr"1-

*C

N, i—»

12/1
O

e2

Cj

Figure 3.7:

DpZiP

N,

D P2/3

Xa
+ u -i

p
6 *D.

— -1— \miu

Dp Np,APJ ,NCDC" )
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Now view Figure 3.7 as a feedback system consisting of the nonlinear, possibly

unstable, subsystem Dp-^P closed in a feedback-loop by the finite-gain-

stable subsytem whose input is at a and output at b ; note that

b = u2 +G«i-Dp (a+NpbJJ
= -(i+cp)"1CDP"1a+(i+cp)"1a1 +(i+cp)"1«2
= -Nca + DPNc«i + DpDcu2 •

The resulting closed-loop system is A-stable if and only if

(dp^p)(i+nc(dp^-p))"1

is A-stable [Des.2] . t

In conclusion, whenever we fail to observe 2/3 >the necessary and sufficient

condition for A-stabilityhas Dp as an additional left factor.

ii) The effect of setting «3 = 0 :

By linearity and finite-gain-stability of 5(P, C) , the map

2/3 >-• e2
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(see Figure 3.8) is given by

e2 =-NcDp2/3 +Dp^NcUj +Dcu2) .

Now consider the system in Figure 3.8 as a feedback system consisting of the

subsystem AkP in a closed-loop with the finite-gain-stable subsystem whose

input is 2/3 and output is e2 . Whenever u3 = 0 , the input e2 is in the

range of Dp , hence the necessary andsufficient condition for A-stabilityhas

Dp as a right factor.

Ui
-k

Dr^H N,

«3

«2

:+i
+

, o-
12/1 62

Cj

+ „ e3
AV

Dp"1- N,
:+i+

•*—»

!lfe

PJ

<E^)£j

Figure 3.8:

The feedback system 5( (NpDp-1, AT)***, NcDc'1)
\ / 22

2/3

z2

Proof of Theorem 3.7.1

By assumption, the maps P and C have r.c.f.s (Np,Dp) and (N^,Dc) ,

respectively; moreover the feedback system 5(P,C) is finite-gain-stable . By

Corollary 3.4.8 , the finite-gain-unimodular map M defined in (3.11) ,

M :=
Dc Np
Nc Dp

-1has a finite-gain-stable inverse M as defined in (3.27)

M-i.= Dp -NP
Nc Dc
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Writing the summing node equations in Figure 3.8 in terms of £c » £p an<^

e$ , we obtain

M
>.

=
«1

tt2
—

MP
0

e3 = u2 + uz + Ncfc

e3 (3.53)

(3.54)

-lComposing both sides of (3.53) by the linear map M in (3.27) , we obtain

~p AV
>.

= M"1
«2

—

Dp'
.Nc.

S3

Substituting fc determined by (3.55) in (3.54) and using the identity

i-iMM"1 = 1 ,

we obtain

e*=(l+NcDpAVyl[DP]tlc Dc] I «i

u2

«3

Substituting (3.56) in (3.55) , the closed-loop pseudo-state map

is given by

= M
-i

Dp

Nc

(tti,ti2,ti3) »-•(&> fr)

u2

AV(l+NcDPAV) '[DpJNc Dc] I
ux

u2 (3.57)
«3

(3.55)

(3.56)

We now state the necessary and sufficient conditions for the four cases in terms of

the pseudo-state maps given by (3.57) .
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i) The well-posed 5((P, AV)*d,C) is A-stable if and only if

(Ul,U2,0) H-> fc

is A-stable (recall Lemma 3.4.7) . Since the finite-gain-stable map

Nc Dc

has a finite-gain-stable right-inverse (follows by the identity M_1 M = I ) ,

condition (3.49) follows from (3.57) .

ii) The well-posed S((P,AV)12 ,C) is A-stable if and only if

(t«i,«2,0)i-^(€cifr)

is A-stable (the sufficiency follows from Figure 3.8 and the finite-gain-stability

of the maps Np , Dp , Nc and Dc . The necessity follows by the

fact that (Nc,Dc) and (Np,Dp) are r.c.f.s of C and P , respectively.

Using similar reasoning as in case i) and noting that the finite-gain-stable
"Dpi,

map ~ has a finite-gain-stable left-inverse (follows by the identity

MM"1 = I ) , we obtain condition (3.50) from (3.57) .

Using similar reasoning, we obtain the proofs of the following: since now

«3^ 0 , the identity map in the last term of (3.57) plays a crucial role.

iii) The well-posed S^P.AV^X) is A-stable if and only if

(1*1,112,1*3) •-• fc

is A-stable if and only if the map in (3.51) is A-stable.

iv) The well-posed «S((P,^VP)* ,C) is A-stable if and only if
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(1*1,1*2,1*3) *-• (Sofp)

is A-stable if and only if the map in (3.52) is A-stable.

D

The necessary and sufficient conditions in Theorem 3.7.1 can be also stated in

terms of "admissible" perturbations AP ; i.e. those nonlinear(possibly unstable)

perturbations AP such that the perturbed plant is still stabilized by the nominal

compensator.

Corollary 3.7.3 (parametrization of admissible perturbations)

Let the assumptions of Theorem 3.7.1 hold. Under these assumptions,

add

XX

if

i) the well-posed feedback system 5( (P, AP) ,C) is A-stable if and only

AT =Dp ^(Dp-NcS) X (3.58)

•e "*e

add

if

_ \ -i

for some causal A-stable map Q : Ale —> A° ;

ii) the well-posed feedback system 5( (P, ASP) ,C) is A-stable if andonly
A /12

AV =c(l-NcC)" Dp"1 (3.59)
for some causal A-stable map Q : A\ —• A° ;

iii) the well-posed feedback system 5((P,^i'P) ,C) is A-stable ifand only

e *~e

add

'21

if

^i'P =Dp"1S(l-NcQ)"1 (3.60)
for some causal A-stable map Q : Ale —> A° ;



add

if

— \ -l
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iv) the well-posed feedback system S( (P, AT) ,C) is A-stable if and only

AT =e(l-NcDpS) (3.61)
for some causal A-stable map Q : Ale —» A£ .

Proof

The proof follows by establishing that conditions i) —iv) in Theorem 3.7.1 are

equivalent to the conditions i) —iv) in Corollary 3.7.3 , respectively.

We first show the equivalence in (3.62) :

Q=AT(l +NCDPAV)'1 * AT =s(l - NcDpQ)"1 . (3.62)
Composing both sides of the left equation in (3.62) by NcDp , we obtain

NcDpQ =NcDp^p(l+NcDp.d'P)~1
= (l +NcDp^P-l)(l+NcDp '̂P)"1
=I- (i +NcfVl-p)"1. (3.63)

From (3.63), we obtain

(i +NcDpAP)"1 = (l-NcDpS) . (3.64)
Substituting (3.64) in the left equation of (3.62), the right equalityin (3.62) follows.

The proof of the converse direction of (3.62) is identical.

From (3.62) , we conclude that condition iv) in Corollary 3.7.3 is equivalent to

condition iv) in Theorem 3.7.1 .

Substituting Dp Q for Q in (3.62) , we obtain

Dp-'S =AP^+NcDp.d'P)"1 *> AT =Dp^Q^-NcQ)"1 ;
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hence conditions iii) in Theorem 3.7.1 and Corollary 3.7.3 are equivalent.

Substituting QDp~ for Q in (3.62) , we obtain

aDp"1 =AP(l+NcDPAPyl

AT =QDp-^I-NcDpQDp-1)"1
=a^-NcS^Dp"1

(recall that NcDp = DPNC by (3.11) and (3.27) ) ; hence conditions ii) in

Theorem 3.7.1 and Corollary 3.7.3 are equivalent.

Substituting Dp QDp~ for Q in (3.62) , we obtain

Dp^QDp-1 =APfo +NcOpAvY1

AT = Dp^QDp-^I-NcaDp-1)"1
= Bp"IC(Dp-NcC)"1;

hence conditions i) in Theorem 3.7.1 and Corollary 3.7.3 are equivalent.

D
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3.7.2 Feedback Perturbation Case

Let AT : A° —• Ag be a causal nonlinear map . For i, j =1,2 the nonlinear

perturbed model of the linear plant P is denoted by (P,^P).. . The

one-input one-output plant P : e2 t-* y2 is perturbed to an i-input j-output

(P, AT}.. , where (see Figure 3.9)

i) (P,AP)^d:(e2,0)^y2 ,

ii) (P,^P)^d:(e2,0)^(y2,y3) ,

iii) (P,^)^ :(*,«,).-.» ,
feediv) (P,AV)~ : (*,«,) ~ (»,») .

2/3

^•p
e3 «3

+;L
+S

e2

p
2/2

•k.

(^*p)\
feed

Figure 3.9:

P,AT) : 2-input 2-ouput feedback perturbation of P

P,AT).. ,C) is

shown in Figure 3.10 : the input-output pair

(C2,!fe)

is used in feedback compensation; that is, u$ is an exogenous input and 7/3 is

an observed output which is not used in feedback (see Figure 3.10) .



Figure 3.10:
(y fpPQ

P, AT) , C)
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Similar to the additive perturbation case, for i , j = 1,2 , the (i-fl)-input
(v feed

P,^P).. ,C) is A-stable iff the (j-j-1) outputs (i.e. j

P,AT).. and the output y\ ) are determined by A-stable maps

of the (i+1) inputs.

We state the following theorem without proof since the proof is identical to that

of Theorem 3.7.1 .

Theorem 3.7.4 (n&s condition for robust stability)

Let the linear unity-feedback system 5(P, C) be finite-gain-stable , where P :

Ae —* A® and C : A® —»• Ae are causal linear maps with r.c.f.s (Np, Dp) and

(Nc, Dc) , respectively. (Hence by Proposition 3.5.1 , P and C have l.c.f.s

(Dp, Np) and (Dc, Nc) , respectively , defined as

Dp -NP

NC Dc

Dc Np
-Nc Dp

-i

Under these assumptions, for any causal nonlinear map

)

av-.k^K ,

i) the well-posed S( (P, AV)** ,C) is A-stable if and only if the map

NpAP^ +NpDcAPVV (3.65)
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is A-stable;

P, AT) , C) is A-stable if and only if the map

il'P^I+NpDc '̂P)" NP (3.66)

is A-stable;

iii) the well-posed S( (P, A?P) ,C) is A-stable if and only if the map
\ / 21

. NP.d'P(l +NpDCATY (3.67)

is A-stable;

(\ feed

P, A?P) ,C) is A-stable if and only if the map
/ 22

AT(l+ NpDo '̂PV (3.68)

is ATstable.

D

The necessary and sufficient conditions ii) —iv) in Theorem 3.7.4 can be also

stated in terms of "admissible" perturbations AT ; i.e. thosenonhnear(possibly

unstable) perturbations AT such that the perturbed plant is still stabilized by

the nominal compensator.

Corollary 3.7.5 (representation of admissible perturbations)

Let the assumptions of Theorem 3.7.4 hold. Under these assumptions,

feed

12

if

^VPNp =S(l-DcS)~ (3.69)
for some causal A-stable map Q : Ae —> A£ ;

i) the well-posed feedback system 5( (P, AT) ,C) is A-stable ifand only
\ / 1^



feed

21

if

-1
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(\ 166 CI

P,^P) ,C) is A-stable if and only
* 21

NPAT = S(I-DcQ) (3.70)

for some causal A-stable map Q : Ae —+ A° ;

(^_^\ feed
P,AT) ,C) is A-stable if and only

/ 22

AT =Q(l-NpDcQ) (3.71)
for some causal A-stable map Q : Ae —> A° .

Proof

The proof follows by estabUshing that conditions ii) —iv) in Theorem 3.7.4 are

equivalent to conditions i) —iii) in Corollary 3.7.5 , respectively.

Substituting NpDc for NCDP in (3.62) (see the proof of Corollary 3.7.3) ,

we obtain

Q=AT(l +NpDcAP)"1 * AT =s(l - NpDcQ)"1 . (3.72)
From (3.72) , we conclude that condition iii) in Corollary 3.7.5 is equivalent to

condition iv) in Theorem 3.7.4 .

Since NPDC = DCNP by (3.11) and (3.27) , we can write (3.67) as

N P.*p(l+NpDcAP)~ =(Np4-p)(l +Dc(NpAP))" . (3.73)

Substituting NpAT for AT and Dc for NcDp in (3.62) and using

(3.73) , we obtain

Q=NpAP (l +NpDc AT)'1 * MpAV =Q^-DcQ)'1 ;
hence conditions iii) in Theorem 3.7.4 and ii) in Corollary 3.7.5 are equivalent.
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Since the map Np is linear, (3.66) can be written as

AT(l+NpDcAPy^p =APNp^+DcAPNp)"1 .

By a similar reasoning as the one above, the equivalence of conditions ii) in Theo

rem 3.7.4 and i) in Corollary 3.7.5 follows since

Q=̂ (i+NpDc^^Np * APNp =Q(l-DcS)"1 .
D
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3.7.3 Pre-Multiplicative Perturbation Case

Let AT : Ag —• Ag be a causal nonlinear map . For i,j =1,2 the nonlinear

P, AT).. . The one-input

one-output plant P : e2 »-»• y2 is perturbed to an i-input j-output fP,AT).. ,

where (see Figure 3.11)

i) {P,AVyu :(e3,0)~y2 ,

ii) (P,AP)^e:(e3,0)~(y2)j,3) ,

iii) (P,AV)*e :(e3,u3)~y2 ,

iv) (P,^"P)£e:(e3,U3)-(tft,Sfe) .

2/3

e3 ;
l+AV p

2/2

ft

«3 !

0=>,A?
,NPre

7 ??

IP^AT) : 2-input 2-ouput pre-multiplicative perturbation of P
pre

Figure 3.11:

For i,j = l,2 , the nonhnear unity-feedback system S((P,AT).. ,C) is

shown in Figure 3.12 : the input-output pair

(63,2/2)

is used in feedback compensation; that is, U3 is an exogenous input and 2/3 is

an observed output which is not. used in feedback (see Figure 3.12) .
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«i + ei

Figure 3.12:
Nonhnear unity-feedback system S((P, AT) ,C)

Similar to the additive perturbation case, for i , j = 1,2 , the (i+l)-input

feedback system S((P,AT)**e,C) is A-stable iff the (j+1) outputs (i.e. j
outputs of [P,AT}.. and the output yi ) are determined by A-stable maps

of the (i+1) inputs.

We state the following theorem without proof since its proof is similar to that

of Theorem 3.7.1 .

Theorem 3.7.6 (n&s condition for robust stability)

Let the linear unity-feedback system 5(P, C) be finite-gain-stable , where P :

Ag —• A° and C : A£ —> A^ are causal linear maps with r.c.f.s (Np, Dp) and

(NoDc) , respectively. (Hence by Proposition 3.5.1 , P and C have l.c.f.s

(Dp, Np) and (Dc, Nc) , respectively , defined as

Dp -NP

Nc Dc

Under this assumption, for any causal nonlinear map

Dc NP
-Nc DP

1-1

)

AP:Ai->Ai ,

i) the well-posed S((P, AP) ,C) is A-stable if and only if the map

NPAP(l +HSpAV)'1 Dp (3.74)
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is A-stable;

ii) the well-posed S( (P, AT) ,C) is A-stable if and only if the map
\ / 12

^(i+NcNp-AT^Dp (3.75)

is A-stable;

P, AT) ,C) is A-stable if and only if the map
' 21

NpAP^ +NcNpAP)"1 (3.76)
is A-stable;

iv) the well-posed £((P, AT) ,C) is A-stable if and only if the map
\ / 22

AV^I+NjipAPy1 (3.77)
is A-stable.

D

The necessary and sufficient conditions i) - iv) in Theorem 3.7.6 can be also

stated in terms of "admissible" perturbations AT ; i.e. those nonhnear (possibly

unstable) perturbations AT such that the perturbed plant is still stabiUzed by

the nominal compensator.

Corollary 3.7.7 (representation of admissible perturbations)

Let the assumptions of Theorem 3.7.6 hold. Under these assumptions,

pre

11

if

HpAT = fi(DP - NCQ)_1 (3.78)

for some causal A-stable map Q : A* —»• A£ ;

i) the well-posed feedback system 5( (P, AT) ,C) is A-stable if and only



pre

12

if

—. \ -1
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ii) the well-posed feedback system 5((P, AT)*™,C) is A-stable if and only

AT =q(dp - NcNpq) (3.79)
for some causal A-stable map Q : Ae —* A£ ;

iii) the well-posed feedback system 5( (P, AT)*™, C) is A-stable if and only
\ / 21

pre

if

HpAv = e(i-Nce) (3.so)

for some causal A-stable map Q : A\-* A° ;

iv) the well-posed feedback system S((P,AT)VT*,C) is A-stable if and only
\ / 22

if

AT =Q(l-NcNpS)"1 (3.81)
for some causal A-stable map Q : A\ —• A£ .

Proof

The proof follows from the following equivalences (see the proofs of Corollaries

3.7.3 and 3.7.5 for similar manipulations) :

Q =NP^-p(l+NcNp^p)"1DP « NPAP =S(DP-NCQ)_1

Q=^-p(l+NcNP^P)"1Dp * AT =s(Dp-NcNpQ)_1

Q=NP47>(l+NcNp47>)~1 * NpAP =Q(l-I\lca)_1

Q=^-p(l+NcNP '̂P)"1 * AT =S(I-NCNPS)"1
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3.7.4 Post-Multiplicative Perturbation Case

Let AT : Ag —y A° be a causal nonlinear map . For i, j =1,2, the nonlinear

perturbed model of the linear plant P is denoted by (P,AT).. . The

one-input one-output plant P : e2 *-* y2 is perturbed to an i-input j-output

(P,AT)*°St ,where (see Figure 3.13)

i) {P.AT)^: (^,0)^2,3 ,

ii) (P,AP)^°St :(e2,0)~(j,2,y3) ,

iii) {P,AT)l^ :(e2,«3)~2/2 ,

iv) (P,AP)22°St :(e2,u3)»(y2iy3) .

1

1

1

1

1

1

e2 ;
P

+ e3
l+AT

;

i

i +)j w

«3 !
• (P,AT\post

'.2.2..

2/2

V3

Figure 3.13:
post

\P,AT) : 2-input 2-ouput post-multipHcative perturbation of P

postFor i, j = 1,2 , the nonhnear unity-feedback system S( (P, AT).. ,C) is

shown in Figure 3.14 : the input-output pair

(e2,2fe)

is used in feedback compensation; that is, M3 is an exogenous input and y2 is

an observed output which is not used in feedback (see Figure 3.14) .



Figure 3.14:

Nonhnear unity-feedback system S((P, AT)P°* ,C)
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Similar to the additive perturbation case, for i , j = 1,2 , the (i-j-l)-input

feedback system <S((P, AP)?.°S ,C) is A-stable iff the (j+1) outputs (i.e. j
outputs of (P, AT).. and the output yx ) are determined by A-stable maps
of the (H-l) inputs.

We state the following theorem without proof since its proof is simialr to the

proof of Theorem 3.7.1 .

Theorem 3.7.8 (n&s condition for robust stability)

Let the linear unity-feedback system 5(P, C) be finite-gain-stable , where P :

Ae —* Ae and C : Ag —* Ae are causal hnear maps with r.c.f.s (Np, Dp) and

(Nc,Dc) , respectively. (Hence by Proposition 3.5.1 , P and C have l.c.f.s

(Dp, Np) and (Dc, Nc) , respectively , defined as

Dp -NP

Nc Dc
Dc Np

-Nc Dp

i-i

)

Under this assumption, for any causal nonlinear map

AT:A°^A°e,

i) the well-posed S( (P, AT)*°* ,C) is A-stable if and only if the map

Dpid^I+NpNcAP^Np (3.82)
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is A-stable;

ii) the well-posed S( (P, AT) ,C) is A-stable if and only if the map
\ / 12

ATil+tipficATy^p (3.83)
is A-stable;

iii) the well-posed S((P, AT) ,C) is A-stable if and only if the map

DpAT(l +NPNCAP)" (3.84)

is A-stable;

iv) the well-posed &([P, AlP) ,C) is A-stable if and only if the map
\ / 22

AT/l+NPNc AT)'1 (3.85)

is A-stable.

•

The necessary and sufficient conditions i) —iv) in Theorem 3.7.8 can be also

stated in termsof "admissible" perturbations AT ; i.e. thosenonhnear (possibly

unstable) perturbations AT such that the perturbed plant is still stabilized by

the nominal compensator.

Corollary 3.7.9 (representation of admissible perturbations)

Let the assumptions of Theorem 3.7.8 hold. Under these assumptions,

post

11

if

ATNp =Dp^Q^-NcDp^s)"1 (3.86)
for some causal A-stable map Q : A' —> A£ ;

i) the well-posed feedback system S((P,AT) ,C) is A-stable if and only
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ii) the well-posed feedback system 5((P, AT) ,C) is A-stable ifand only
\ / 12

if

ATNp =q(I-NcS)_1 (3.87)
for some causal A-stable map Q : Ae —* Ag ;

iii) the well-posed feedback system 5((P, AT) ,C) is A-stable if and only
\ / 21

if

AT =Dp_1Q(l - NpNcDp"1©) (3.88)
for some causal A-stable map Q : Ae —• Ag ;

iv) the well-posed feedback system S( (P, AT) ,C) is A-stable if and only
\ / 22

if

AT =Q(i - NPNcS) _1 (3.89)
for some causal A-stable map Q : Ae —• Ag .

Proof

The proof follows from the following equivalences (see the proofs of Corollaries

3.7.3 and 3.7.5 for similar manipulations) :

Q=Dp^Wl+NpNc^P)"1^

ATNp =Dp^Q^-NcDp^s)"1

Q=^-p(l+NPNc '̂P)"1Np '
«

— \ -1.a-PNp =q(i-NcQ)

Q=DpAV(l +NPNc^P)

AP =Dp^S^-NpNcDp^Q)"1

-l 'i



Ill

Q=AP(l+NpNcAP) -i ^

$
—. \-iAT =Q(l-NpNcS)

n



Chapter 4

Factorizations of Nonlinear Maps

4.1 Introduction

In this chapter, we study coprime factorizations for causal nonlinear maps; we

use these in stability and robustness analysis of nonhnear feedback systems and in

synthesis of stabilizing feedback configurations.

All causal nonhnear maps (denoted by calligraphic style letters) are defined over

input and output extended spaces (see Section 3.2) . For a causal nonhnear map

P, where T : Ae -> A° , T : e h-» y , the output y.:= Te £ A^ is

uniquely determined for all inputs e € Ae . In the case that the nonhnear causal

map T has a state-space description, we assume that the initial conditions axe

fixed once and for all.

The chapter is organized as follows:

Section 4.2 emphasizes a fact about causal nonhnear plants: unlike the special

case of finite-dimensional hnear time-invariant maps, not all nonliner plants are

stabihzable (in any configuration) (see Fact 4.2.3) . Right factorizations of causal

nonhnear maps are defined in Definition 4.2.4 ; Fact 4.2.5 justifies this definition

112
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by establishing that stabilizability implies the existence of right factorizations. In

other words, causal nonhnear maps that are stabihzable by feedback through a

summing node, have a right factorization. Although left factorization definitions

for nonhnear maps are available in the literature, a similar result (see Fact 4.2.5)

is not available to justify the existence of left factorizations. It is shown that in a

right factorization, the "denominator" map includes the instabilities of the plant.

Section 4.3 is a self-contained example; we explicitly derive a right-factorization

for a class of time-varying nonhnear causal plants. Proposition 4.3.2 gives a con

structive proof.

In Section 4.4 , we define right-coprime factorizations for nonhnear causal maps

(Definition 4.4.1) . (Note that coprime factorizations may not exist even for cer

tain linear maps.) The existence of an unstructured two-input one-output causal

stable "pseudo-state" observer is the key point. If a plant has a right-coprime fac

torization, the pseudo-state can be reconstructed from (noiseless) input and output

measurements. Fact 4.4.2 shows that the denominator map in a right-coprime fac

torization completely characterizes the instabilities of the plant. Fact 4.4.3 proves

that all right-coprime factorizations of a plant are related by unimodular maps;

hence once we find one, we have found them all. The section ends with a more

restricted stabihty definition (incremental A-stability, Definition 4.4.4), which is

extremely useful in manipulations of summing nodes in analyzing nonhnear feed

back interconnections.

In Section 4.5, for the class of nonhnear causal plants which have right-coprime

factorizations, we study the stabilizing two-input one-output feedback configura

tion Jj(T , Q) (see Figure 4.6) . Proposition 4.5.1 shows that the existence

of a right-coprime factorization of the nonhnear plant is a necessary condition for

stabilizability in 2J(T , Q) . Proposition 4.5.3 establishes the converse: if T
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has an incrementally A-stableright-coprime factorization, it can be stabilized in

S{T, Q) .

Section 4.6 is another self-contained example; for a class of nonhnear causal

plants, we exphcitly derive a right-coprime factorization (Proposition 4.6.2) . We

show that the specific right-coprime factorization is in fact incrementally A-stable;

hence using the result in the previous section, we propose a stabilizing feedback

configuration with a free parameter (Corollary 4.6.4) .

Section 4.7 studies the nonlinear unity-feedback system, where one of the sub

systems is linear. In the case that the plant is hnear, we parametrize the set of all

nonhnear causal stabilizing compensators (Theorem 4.7.4) .

In Section 4.8 we study stability and robustness of the nonhnear unity-feedback

system &(T, C) from a factorization point of view. Theorem 4.8.1 states the nec

essary and sufficient condition for stability of the nonhnear unity-feedback system

when one of the subsystems has a right-coprime factorization. Theorem 4.8.4 shows

that if the nonhnear plant is incrementally stable, all stabihzing compensators have

a specific right-coprime factorization. Theorem 4.8.7 is a robustness result: for a

family of incrementally stable plants, a necessary and sufficient condition on the

compensator to simultaneously stabilize this family is stated. Theorem 4.8.9 con

siders robust stability of a nominal nonhnear unity-feedback system under nonhnear

(possibly unstable) plant perturbations.
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4.2 Right-factorizations for nonlinear maps

Consider a nonhnear causal plant

T : Aj - A° , T :e ~ y .

If we model the disturbances at the plant input (di) and the plant output (d0)

additively , then the most general feedback system will be as shown in Figure 4.1 :

the control input is denoted by v and the causal map C denotes the compensator.

di

•*<J-

d0

? + .,+

Figure 4.1:
The general feedback system

Definition 4.2.1 (well-posed feedback system)

A feedback system is said to be well-posed iff there exists a causal closed-loop map

mapping the closed-loop system inputs to the internal signals.

If a feedback system is well-posed, for a given closed-loop system input the

internal signals exist and are uniquely determined by maps (i.e., they are not set-

valued).

Definition 4.2.2 (A-stable feedback system)

A well-posed feedback system is said to be A-stable iff all of the closed-loop maps
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(mapping the closed-loop system inputs to the internal signals) are A-stable.

•

Note that the feedback system in Figure4.1 is A-stableif and only if the closed-

loop map

(v,d;,d0)H-»(e,y)

is A-stable.

In any A-stablefeedback system, the plant T is constrained to operate on a

subset of its input-output pairs: those special bounded inputs e for which the

output y is also bounded. This imphes an obvious requirement on the classes of

maps that can be stabihzed in a feedback system.

Fact 4.2.3 (not all causal plants are stabihzable)

A causal plant T : Ae —> Ag can be stabihzed in a feedback system only if there

exists at least one e 6 A1 such that Te € A° .

D

Consider the following state-space description:

( x(k-rl) = 2x(k) + x(k)[e(k)]2 k e2L+
T :e>-> y I x(0) = 1 (4.1)

k y(k) = x(k) .

The causal plant T described in (4.1) can not be stabihzed in any feedback

configuration since there does not exist a bounded sequence e such that the

sequence Te is bounded.

Definition 4.2.4 (right-factorization of a nonlinear map)

(Af-p, *D?) is said to be a right-factorization (r.f) ofa causal map T :Ae —» Ag

iff

i) A/V : A' -• A° is A-stable and



ii) *D-p : Ae —• Ag is A-stable, bijective and has a causal inverse and

iii) Mv'D<p-1 = T .

Sp
e |

Vp-1 A/V
y

T

Figure 4.2:
*P with an r.f. (Afv,Vv)
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At a first glance, Definition 4.2.4 looks hke just another definition extending

Definition 3.3.1 to nonhnear maps. The crucial point is that the existence of r.f.'s

is a necessary condition for stabihzabihty of systems with an additive exogenous

input di at the input of T (see Figure 4.1) .

Fact 4.2.5 (stabilizability => r.f.)

Let the plant T :Ae —• Ag be such that there exists acausal map C :Ae x Ag —>

Ae , where the well-posed general feedback system shown in Figure 4.1 is A-stable.

Under these assumptions T has an r.f.

Comment 4.2.6

Note that Lemma 3.4.6 is a special case of Fact 4.2.5 for the case

c = [o c] ,

for some hnear map C .
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Proof of Fact 4.2.5

By assumption, the feedback system in Figure 4.1 is A-stable; hence the closed-

loop map (v,di,d0) h-+ (e,y) is A-stable(see Figure 4.1). Choose the specific

inputs v and d0 as

v := vm € A and

d0 := dT0 e A° .

Then by well-posedness, there is a causal closed-loop map *D ?

2>*:Ae->Ag , Vv:di~e . (4.2)

Since the feedback system is A-stable, the causal map T>? in (4.2) is A-stable.

Since

di = e-C(vmiVe+-dro) ,

*Dy is bijective and has a causal inverse.

Since the feedback system is A-stable, the causal map A/ -p defined as

Af-piA^^A* , Afridi^y , (4.3)

is also A-stable. Moreover

TVT=Afv ;

hence we conclude that (Af-p^v) defined in (4.2-4.3) is an r.f. of T .

D

For a causal map T :Ae -+ Ag , define the subset ofits inputs T<p by

XT:={e€Ai | -PeeA°\A°} ,

i.e., Xp is the set of all bounded inputs of T that produce unbounded outputs .

The set 2<p characterizes the "instabilites" of the map T .
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For a A-stable T , the set X*p is the empty set; there is no bounded input

that one must avoid.

Note that if X<p = A1 , then it is hopeless; T can not be stabilized (recall

Fact 4.2.3) .

Vt^w-*Fact 4.2.7

Let (MV,VT) beanr.f. of T : Ae -• A° ; then

TVcTVt-1 *
Proof

By definition,

e € Xp & (e, Te) = (e, A/VZVM GA1 x (A£ \ A°) .

Since the causal map AAp is A-stable (see Figure 4.2) , the last inclusion imphes

(e,VT-1e)e Aix(Ae\Ai) .

•

When T has an r.f. , by Fact 4.2.7 , all of the "instabiUties" of T are

contained in the "instabilities" of *Dt>~ . Hence one might think that pre-

compensation by A-stable 'Dp achieves input-output stabihzation (see Figure 4.3).

y

V,

Figure 4.3:
Undesired pre-compensation scheme

Clearly, the input-output map in Figure 4.3

vt-*(e,?/) = (DvViAfvv)
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is A-stable. However, this "exact cancellation" is undesirable for at least two

reasons:

i) the denominator map *Dt> may not be known exactly ,

ii) even if *D-p is known exactly, the plant input may be subject to an input

disturbance di . If e* GXp , for a fixed input v* € A1 , adisturbance

of the form

d? := e* - T>pV

will result in an unbounded output y (see Figure 4.4).

V

V,
+ ::+*

O

Figure 4.4:
Destabihzing input disturbance

y

Clearly, these problems arise due to the cascade structure: the compensator has

no access to the internal signals in the later stages. The standard way of avoiding

this problem is feeding backthe internal signals as in the general "feedback" scheme

in Figure 4.1.

Note that even if the plant is A-stable, (i.e., X<p =0) open-loop compensation

may not be desirable since any disturbance at the plant output and/or any plant

perturbation will not be attenuated: the purpose of feedback is to use the loop

dynamics to compensate for exogenous output disturbances or perturbations in the

plant.
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4.3 Right-factorization of a Class of
Time-varying Nonlinear Plants

Notation

We choose the oo-norm for vectors in Htn and the corresponding induced-norm

for matrices; we denote them by |-| and || • || , respectively.. For vector-valued

functions

x :JR+ ->lRn ,

we write

|M| := sup |x(*)| •
t€(0,oo)

We set

A := L^ = I x :IR+ -+IRn | ||z|| =sup|x(*)| < oo 1

and

Ae := L1^ = \ x :IR+->IRn | VTeIR+ , sup \x(t)\ < oo 1 .
I «€[0,T] J

For n = n; and n = na , we write A1 , Ae and A° , Ag , respectively.

Description of the Class of Nonlinear Plants

Consider a causal nonhnear time-varying plant whose input-output map

7>:A>^A°

is specified by the following state-space description:

T : u \-¥ y <

where x(t) eIRn , u(t) eJRni and y(t) eJRn° , V* eJR+ .

x = A(t)x+f(t,x)+B(t)u
y = h(t,x,u) (4.4)

I *(0) = 0 ,
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On the functions A( •) , B(>) , /(•,•) and h( •, •) we impose the

following assumptions:

Assumptions 4.3.1

I. For the specified initial condition and for all inputs u £ A e , the differential

equation in (4.4) has a unique solution. (Consequently, T : u »-> y is a

map.)

II. The nonhnearity / is bounded on IR + xIRn ; that is, there exists m > 0

such that

sup | f(t,x) | < m . .
*€[0,oo),x€Etn

III. For any A-stable map

1~LX : Ae —y Ae , l~tx : «hi ,

the causal map l~Cy defined by

Tiy :u^y { y(t) = h(t, (Wxu)(t), u(t))

is A-stable, where

/i : IR+xIRn x!Rn'-»IRno .

That is, if the state-map is stabihzed the input-output map is also stabihzed.

IV. The pair (A( •),£(•)) is uniformly completely controllable; equivalently

there exist S > 0 , «;,„„ > «;„„„ > 0 , such that for all t GIR+ ,

Wr »I < W(t,t + 6) < wm&xl , (4.5)

where W(t,t + 6) is the controllabihty Gramian [Bro.l]

rt-t-o

W(t, t+6) := j $(<, T)B(r)BT(T)$T(t, r)dr (4.6)
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and $(•,•) is the state-transition map for the hnear differential equation

x = A(t)x .

V. The map B( •) is bounded on IR+ ; that is there exits b > 0 such that

sup ||£(*)|| < b .
«€[0,oo)

•

We now construct a right-factorization of T .

Proposition 4.3.2 (an r.f. of T defined in (4.4))

Let the plant T be described by (4.4) and satisfy Assumptions 4.3.1 I- V ; then

T has an r.f.

Proof

The proof is in two steps:

i) Using Assumption 4.3.11, we obtain a causal bijective map ^ p :A>-*Ai

, which has a causal inverse Vt'1 and a causal map A/V: Ai-» K

such that T = Afp'Di "piyp

ii) Using Assumptions 4.3.1 II - V , we show that both J\ p and *Dp are

A-stable maps.

Step 1

Define the causal map *Dp : Ae —• Ae as

2>t> : d ^ ui <

for some piecewise continuous

K :IR+ -*IR"'Xn

xi = (A + BK)(t)xx +/(*,Xl)+ 5(06
ux = K(t)Xl+Si (4.7)

I ^i(O) = 0 ,
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Now the map Dp in (4.7) has a causal inverse Dp~ : Ae —* Ae ; indeed

Dp" is given by

x2 = A(t)x2 + f(t,x2) + B(t)u2
'Dp" : u2 i-> 6 s 6 = -A"(<)x2 + «2

k «2(0) = 0 .

We show that Dy is bijective by verifying

VpVp'1 = Dp~xVp = I .

(4.8)

Consider the map DptDp : u2 i-* «i ; note that the interconnection constraint

is

6=6 = -A'(<)a?2 + u2 ,

moreover, from (4.7) and (4.8), we obtain

Iii = (A-rBK)(t)x1+f(t,x1) + B(t)u2-(BK)(t)x2
x2 = A(i)x2 + f(t,x2) + B(t)u2
ui = K(t)(xi - x2) + u2

*!(0) = s2(0)=0 .
(4.9)

For any input u2 , using Assumption 4.3.1 I it is easy to check that

x\(t) = x2(t)
x2(t)

is the solution of the system of differential equations in (4.9) under the specified

initial conditions. Hence from (4.9), we obtain u\ = u2 and we conclude that

VvT>p-1=l on Ae .

Similarly, consider the map Dp~ Dp : 6 l-> 6 5*ne interconnection con

straint is

«i = u2 = A'(<)xi + 6 •

From (4.7) and (4.8), we obtain

' X! = (A+ B/V )(<)*!+/(*,*i)+£(*)6

V^(,hJ *> = ^ +/('•*>)+ (^)W*i+^WCi (410)
6 = A(0(a?i - «2) + 6

I *i(0) = x2(0)=0 .
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For any input 6 »

x2(t) =Xi(t)

is the solution of the system of differential equations in (4.10) under the specified

initial condition. Hence, from (4.10), weobtain 6 = 6 5so *Dv~ Dp = I on

Ae . We conclude that Dp is bijective and the map Dp~ defined in (4.8) is

the causal inverse of 'Dp .

Now for the same K( •) in (4.7), define

Mp :Ae - Ag>

as follows:

Afv ' («-> y

From (4.8) and (4.11), we obtain

AfpDp" : u y\

x3 = (A + BK)(t)z3 + f(t,x3) + B(t)t
y = h(t, x3 , K(t)x3 + 0

*s(0) = 0 .
(4.11)

x2 = A(t)x2 + f(t,x2) + B(t)u
x3 = (A + BK)(t)x3 + f(t,x3) + B(t)u-(BK)(t)x2
y = h(t, x3, K(t)(x3 - x2) + u)

( x2(0) = x3(0) = 0 .
(4.12)

For any input u , by Assumption 4.3.1 I ,

(x2(t), x3(t) = x2(t))

is the solution of the system of differential equations in (4.12) under the specified

initial conditions. Hence (4.12) is an equivalent description of T as Afp'Dp' .

Step 2

We use a technique due to [Che.l] to show that there exists a

K : IR+ -*IRn'xn

such that the causal map

«,:A4-A|
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defined by

-H -£»x { i = (A +BK)(t)x + f(t,x)+B(t)ti uiq,
7X1 ' * X \ x(0) = 0 , ^4-13)

is A-stable: Let

/t+s ,

e<<-'>$(<, r)£(T)£r(T)$T(*,r)dr . (4.14)

Using (4.5) , (4.6) and (4.14) , for all t e!R+ ,

e-ViuJ < W^t + S) < wmaxI ;

hence, for all t €lR+ ,

«>mLl< Wr\t,t + 6) <e6w^nl . (4.15)

Note that

£w1(t,i +6) = e-s$(t,t +6)B(t-r6)BT(t +6)$T(tJ +6)
- B(t)BT(t)-rWl(tyt + S)

+ A(t)W1(t,t + 6) + W1(t,t + 6)AT(t) . (4.16)

For all JGIR+ ,let A'(-) be defined as

K(t):=-BT(t)W-1(t,t-{-S) . (4.17)

So the map K : IR+ ->IRn,Xn is bounded on 1R+ . Let

V :IR+ xIRn -»IR+

be a Lyapunov function candidate, where

V(t, x) := xT(t)Wl-1(t, t + S)x(t) . (4.18)

Differentiating (4.18) along the solution of (4.13) , we obtain
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for all (t,x(t)) e IR+ x IRn ,

£>>(*, *(*)) = 2xT(t)Wf1(t,t + 6)x(t)
(4.13)

- xT(t)W1-1(t,t + S)ft{W1}(t1t +W^M +*)*(*) (4.19)

Substituting (4.17) and (4.16) in (4.19) , we obtain

%V(t,x(t))
(4.13)

5V<*'*W)

= 2x1(t)AI(t)Wf1(t,t + 6)x(t)

- 2xT(t)W{'1(t,i + S)B(t)BT(t)W{-1(t,t-r S)x(t)

+ 2fT(t,x(t))W1-1(t,t + 6)x(t)

+ 2ZT(t)BT(t)Wi1(t,t + 6)x(t)

- e-sxT(t)W^1(t1t-r6)$(t,t+6)B(t+6)

•BT(t + 6)$T(t, t + S)Wil(t, t + $)*(*)

+ xT(t)W{-1(t,t-r S)B(t)BT(t)W{-1(t,t-r S)x(t)

- xT(t)W{-1(tJt + S)x(t)

- 2xT(t)AT(t)W{-1(t,t + 6)x(t) . (4.20)

Performing the appropriate cancellationsand neglecting some of the nonpositive

terms in (4.20) , we obtain

(4.13)
< -xT(t)Wl-1(t,t + S)x(t)

+ 2fT(t,x(t))Wi1(t,t+S)x(t)

+ 2ST(t)BT(t)W1-l(t,t + 6)x(t) . (4.21)

By Assumptions 4.3.1 II , IV , V and (4.15) , (4.21) , we obtain

Jp>(«,*(«))
(4.13)

<-»i,l*(«)b(W0b - 2Aw»;£>/n(m +6||{||)) .
(4.22)
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Let the map <j>^j :IR+ —>IR+ be defined as

*«,(ll*ll) -2e^max^nv^(m +6||f||) .

Note that the map <t>n-/ is continuous and nondecreasing. From the inequality

in (4.22) we conclude that

v<em+ , W*)b <*7t(lieil) • (4.23)

Since all norms are equivalent in JRn , from (4.23) , we conclude that the map

*HX in (4.13) is A-stable.

For the choice of K in (4.17) , by Assumption 4.3.1 V and (4.15) , there exists

a > 0 such that

sup ||A(*)|| < a . (4.24)
*€[0,oo)

Hence, by Assumption 4.3.1 III , (4.24) and the A-stabihtyof 1~LX , the causal

map JSip in (4.11) is A-stable. By (4.24) and the A-stabihtyof l~ix , the causal

map *Dp in (4.7) is also A-stable. Hence (Afp,Dp) is an r.f. of T .

•
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4.4 Right-coprime factorizations

For a given causal plant T with an r.f. (ftfp, Dp) , Fact 4.2.7 states that the

instabihties of T are contained in the instabihties of *Dp~ . The converse is not

true in general. However, for a special class of right-factorizations the instabihties

of *Dp are identical to those of the plant.

Definition 4.4.1 (right-coprime factorization)

(A/p> *Dp>) is said to be a right-coprime factorization (r.c.f.) of the causal map

T : Ae - A? iff

i) (A/V, Dp) is an r.f. of T (see Definition 4.2.4) and

Jsf,ii) Tp :=

i.e.,

v

Dp : A' -> A? x AI has a causal A-stable left-inverse ^PL

Jsfp
Dp

where I is the identity map on A? .

= i,

Figure 4.5:
Pseudo-state observer map ZFp

(4.25)

Definition 4.4.1 generalizes the right-coprime factorization definition in [Vid.l,

Des.l3,Des.l5] by relaxing the constraint on the A-stable inverse of the map T'p



to be of the form [VI V , ( [ti V is described by

[u v] = Uy + Ve ,

a slight abuse of matrix notation). Note that the map !Fp =

since the "denominator" map Dp is bijective; hence the map tFp always has

a causal left-inverse, for example I 0 Dp~ 1 : the point is that the map ZFp

has a causal left-inverse that is A-stable.

A A-stable left-inverse ZFT defines a pseudo-state observer:

= 6

A/V
Vp
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is injective

it allows the pseudo-state fp to be reconstructed from the (noiseless) input-ouput

measurements e and y (see Figure 4.5) .

&T = V-°Fact 4.4.2

Let (A/V, Dp) be an r^ci of T : Ae -+ A% ; then

XV =^P*"1
Proof

"P e -^^ -l follows by Fact 4.2.7 . We show the reverse inclusion byC 2T

contradiction. Suppose that for some e € A1 ,

e GT _i and e £ Xr> (4.26)

Then we have

-liv := Vp-'e eAi\A» . (4.27)

By assumption, the identity in (4.25) holds. Since by (4.26) , (e, Te) 6 A' x A° ,

we have

Te
(p = ? € A1



which is a contradiction to (4.27)

•
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Fact 4.4.3 (all r.c.f.s are related by A-unimodular maps)

Let (A/V, Dp) be an r.c.f. of T : Ae -+ A° ;then (ATp Dp) is an r.c.f. of

T if and only if there exists a A-unimodular map AA, : Ae —• Ae such that

a/}
Dp

Afp
Dp

Ad (4.28)

Proof

« if "

By assumption, (A/ ?, Dp) is an r.c.f. of T and AA, is a A-unimodular

map such that Sip = AlpAA, and Dp = l^pA't . Then (Alp Dp) is an

r.f. of T . Let

"STpFp:=
D,

and

-i^ := A*-1^ , (4.29)

where the map ZFp is as in (4.25) . The map ZFp in (4.29) is causal and

A-stable. Since !Fp = FpAA, , we have

ZFt>3~p = AAT J'vJ'vAA, = I

Hence Fv is a causal A-stable left-inverse of ^p and by Definition 4.4.1 ,

(A/p Dp) is an r.c.f. of T .

" only if "

By assumption (Alp,Dp) and (Np Dp) are two r.c.f.'s of T . Let F\

and ^^> be the corresponding causal A-stable left-inverses. Let

M := Dp~XDp .
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Since AfpDp" = ATpDp , using the map AA above, (4.28) holds by

calculation. Moreover

AA = ^FpJ'p and AA" = FpFp

are A-stable.

D

We conclude this sectionby defining a special class of A-stable maps. They are

a generalization of A-stable linear maps.

Definition 4.4.4 (incrementally A-stable maps)

A causal map H, : Ae —* A° is said to be incrementally A-stable [Des.9] iff

i) the map 1~C is A-stable (see Definition 3.2.3) and

ii) there exists a continuous nondecreasing function <f>n : IR+ —>IR+ such that,

V«G Ae ,

\\7i(u + Au) - Hu\\ < ^(||Au||) VAueA1.

•

In other words, a A-stable map is incrementally A-stable if "bounded" devia

tions in the input result in "bounded" deviations at the output; the bound on the

output deviation is independent of the nominal input signal u .

In particular, any hnear A-stable map is also incrementally A-stable.



4.5 The feedback system E(7>, Q)

Consider the well-posed feedback system Jj\P , Q) shown in Figure 4.6 :

di do

+^ +; -+
tv

+c s

V

vT-'i — A/V
i

J

e

*0
y

T

Q
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Figure 4.6: •
The feedback system £(T , Q)

The causal map T : Ae —> A° denotes the plant and the causal map Q

denotes a nonlinear A-stable two-input one-output compensator.

By Definition 4.2.2 , the feedback system 2J(T , Q) is A-stable iff the

closed-loop map

(v, di, d0) •-» (e, y)

is A-stable.

We now show that any plant T stabihzed in E(T , Q) necessarily has an

r.c.f.

Proposition 4.5.1 (2j(T , Q) A-stable => T has an r.c.f)

Let T : Ae -v Ag be a causal plant and Q : Ag x Ae -> Ae be A-stable

such that the feedback system S(T , Q) is A-stable; then T has an r.c.f.

Comment 4.5.2

By Fact 4.2.5 , the causal map T has an r.f. since the well-posed feedback system
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£(T , Q) is A-stable. The fact that there is an r.c.f. follows by the fact that

the causal compensator in £(T , Q) is A-stable.

Proof of Proposition 4.5.1

Set the input and output disturbances d,- and dQ equal to zero. By assumption

the well-posed feedback system S(T , Q) is A-stable; hence the causal map

Hev : Ae —* Ae , 7~Cev ' v »-• e

is A-stable. By Fact 4.2.5 , (T'Hev,'Hev) is an r.f. of T . Writing the

summing node equation at v , we obtain

{[o i] + e} TU
n

ev

ev

= I ;

hence (T7~tev >7~Lev) is in fact an r.cJf. of T .

•

We now try to answer the converse: can any causal map T with an r.c.f. be

stabihzed in the feedback system U(T , Q) ?

Proposition 4.5.3 (incrementally A-stable r.c.f => stabilization)

Let the map T : Ae —• Ag have an r.c.f. (Alp, Dp) , where the maps

Alp , Dy and the chosen left-inverse J~T are incrementally A-stable . For

a given incrementally A-stable A-unimodular map AA : Ae —• Ae let the

A-stable map Q be defined as

Q := (A4 - XV):F£ , (4.30)

where the feedback system S(T , Q) is assumed to be well-posed. Under these

assumptions the feedback system U(T , Q) is A-stable.

Proof
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Writing the summing node equations in Figure 4.6 in terms of the plant pseudo-

state £p , we obtain

Dpfy - di = v - {AA - Dp)F%

It suffices to show that the causal map

(v , di, d0) *-* £p

determined by (4.31) , is A-stable. Let

t:=T\ "Dv§p —di

Afp£p + d0
Dpfr —di

- 6

(4.31)

(4.32)

Since FT is incrementally A-stable, using the identity in (4.25) , we obtain

IICII<***(II*|| +II4.H) ;
«/ p

(4.33)

hence the causal map (v, di, da) «-»• C is A-stable. After substituting (4.32) in

(4.31) , adding AA^p to both sides of (4.31) and rearranging (4.31) , we obtain

AAip = v + di + {Dv(fr +<) - VpZp) +{Mb - M(Zp +0} .

Since the maps AA and Dp are incrementally A-stable, we obtain

\\Mb\\ <||«H +||<i,|l +^(IICII) +^(IKII) ;

together with (4.33) , we have shown that the map

(v , di, d0) >-»• AA^p

is A-stable. Since the map AA is A-unimodular, we conclude that

(v , di, d0) *-* £p

is A-stable and consequently, £(T , Q) is A-stable.

D
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4.6 A Class of Nonlinear Plants with Incremen

tally A-stable r.c.f.

In this section, let the input and output spaces Ae and A° be defined as

•kooe[0> oo) and Lj^e[0, oo) , respectively (see Section 4.3).

We assume that for all of the differential equation representations below, for any

input, the state and the output are uniquely determined on [0, oo) .

Description of the Class

Consider a nonhnear plant whose input-output map T : Ae —> Ag is specified by

the following state-space description:

x = Ax + f(t, x) + Be
y = Cx + h(t,x)+Ee (4.34)

{ x(0) = 0 .
T : e\-+ y <

D

We impose the following assumptions: on the plant description in (4.34) :

Assumptions 4.6.1

I. A £jRnXn , B <=IRnXn' , C eJRn°Xn , E emnoXni and (A,B,C,E)

is minimal .

II. The maps / : IR+ xIRn ->IRn and h : ]R+ xffi." ->IRn° are piecewise

continuous in t and globally uniformly Lipschitz continuous in x ; moreover

there exist m/ and m^ > 0 such that

sup | f(t, x) | =: m/ ,
«€R+,x€Rn

sup | h(t, x) | =: rrih .
<€R+.TgiR"
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Proposition 4.6.2 (an r.c.f. of T defined in (4.34))

Let the causal plant T : Ae —> A° be described by (4.34) and satisfy As

sumptions 4.6.1 I, II . Let the real matrices K and L be chosen such that

<t(A + BK) U<t(A + LC) C €1 . Let the maps Afp , Dp and JF^ be given

by (4.35 - 4.37) , below:

Dp : f »-+ e <

Tp : (e, 2/)h->| <

Under these assumptions,

xN = (A + BK)xN + f(t,xN) + B£
Afp:t>-+y { y = (C + EK)xN + h(t,xN) + E£

xN(Q) = 0 ,
(4.35)

Xd

e

{ xD(0)

(A + BK)xD + /(*, xd) + B£
KxD + f (4.36)

= 0

xx = (A + .LC)*i+ /(*, *i ) + £&(*,xi)
-Xj^ + (B + ££)e

| = -Xxi + e
I *i(0) = 0 .

(4.37)

i) the maps Alp , Dp and Fv are incrementally A-stable, and

ii) (Afp, Dp) is an r.f. of T in (4.34) , and

Afp
Dp

= 1 (4.25)

Comment 4.6.3

Proposition 4.6.2 shows the existence of an r.c.f. of T by calculating the three

maps in (4.35 - 4.37). There are two cases which do not require any calculation :

i) If j(A) C r , then the map T is A-stable; (T, I) is an r.c.f. of T

and the corresponding Fp is 10 11 .

ii) If the triple (A, B, C) is such that there exists a real matrix K such

that <r(A + BKC) C <C1 , then T has an r.c.f. (set Q = -A'[I 0]
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in Proposition 4.5.1); note that not all minimal triples (A, B, C) can be

stabihzed by stable dynamic output-feedback [You.l] .

Proof of Proposition 4.6.2

By Assumption 4.6.1 I , (A, B) is a controllable pair; hence there exists a

K GlRn,Xn such that <r(A +BK) C €1 . Let the numerator map Afp : Ae -+

Ag and the denominator map Dp : Ae —> Ae be given by (4.35) and (4.36) ,

respectively. The map Dp in (4.36) is bijective and has a causal inverse (recall

Proof of Proposition 4.3.2) . Cascading Dp~ and Afp , we obtain (note that

f = e - KxD by (4.36))

AfpDp : e h-» y <

xN = (A + BK)xN + f(t,xN) + Be-BKxD
xD = AxD + f(t,xD) + Be

y = (C + EK)xN + h(i,xi*) + Ee-EKxD { }
k ajjv(O) = a?D = 0 .

Let xn —xq =: z ; then the system of differential equations in (4.38) is equivalent

to

z = (A + £!<:)* + /(*, sD + z) - f(t, xD)
xD = AxD + f(t,xD) + Be (4.39)

2(0) = xD = 0 .

By assumption, the system of differential equations in (4.39) has a unique solution

on [0, oo) for all inputs in Ae ; it is easy to see that z(t) = 0 for all t > 0

is the unique solution of (4.39) . Hence (4.35) and (4.39) describe the same map

T . Since a(A + BK) C €1 and /(•,•) is bounded, the maps Afp and Dp

are A-stable; in fact, they are incrementally A-stable. To see this, let A{ 6 A1

and let (xn , y) and (xn , y) be the solution pairs of (4.36) corresponding to

the inputs f and (£ + A£) , respectively. Then we obtain

xN(i) = fe^^-^r^^D +^r))^, (4.40)
xN(t) = re(j4+B/v')(/-r)(/(r,^(r)) +^(r) +BA((r))dT . (4.41)

JQ
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Since <r(A + BK) C €1 , there exist a > 1 and A > 0 such that

V< > 0 , He^+^'ll < ae-xt ;

from (4.40) and (4.41) , [xpj(t) —XN(t)] satisfies

\xN(t) - £N(t)\ < (2m/ +||B||||Af||)a/'e-A('-')<fr
JO

a

< l2m, + \\B\\\\M\\)j • (4.42)

From (4.42), we conclude that there exists a function <t>\f such that

\\y-y\\<4>jssv(\\m) •

A similar argument shows that the map Dp is also incrementally A-stable.

By assumption, the pair (C, A) is observable; hence there exists an L such

that a(A + LC) C Ci . Let the pseudo-state observer map candidate Fp be

given by (4.38); clearly, the map ^Fv is causal A-stable; in fact, it is incrementally
Afp
Dp

A-stable. Cascading J-p with , we obtain

j-p
Afp
Dv

xi = (A + LC)xi + f(t,xi) + Lh(i,xi)
-Lh(t, xN) - L(C + EK)xN

-LE£ + (B + LE)(KxD + 0
(~i { xN = (A + BK)xN+f(t,xN) + B(

xD = (A + BK)xD + f(t,xD) + Bt
( = -Kxx + KxD + f

, *i(0) = ^(0) = xD(0) = 0 .
(4.43)

By assumption, the system of differential equations in (4.43) has a unique solution;

hence

V* > 0 , Xl(t) = xN(t) ,

and the identity (4.25) is satisfied.

D
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Corollary 4.6.4 (a stabilizing feedback system for T in (4.34))

Let the map T satisfy the assumptions in Proposition 4.6.2 . Let AA be

an incrementally A-stable A-unimodular map . Let Q := fAA —Dp)^F^, ,

where the maps Dp and Fv are given by (4.36) and (4.37), respectively. Assume

that the feedback system S\P , Q) is well-posed. Under these assumptions, the

feedback system £(T , Q) is A-stable (see Figure 4.6).

Proof

Follows by Proposition 4.6.2 and Proposition 4.5.3 .

a
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4.7 Nonlinear stable unity-feedback systems with

one linear subsystem

The problem of characterizing all hnear time-invariant compensators which stabi

lize a hnear time-invariant plant in the unity-feedback configuration has been solved

using tools of algebraic control theory; the characterization is obtained by finding

solutions of certain Bezout identities [You.l,Cal.l,Des.4,Vid.2,Vid.3] . A general

ization of this approach to hnear input-output maps can be found in [Fei.l] ; see

[Man.l] for the time-varying continuous-time case. In [Kha.2] , the set of all stabiliz

ing discrete-time possibly nonhnear time-varying compensators for a discrete-time

hnear time-invariant plant is obtained using periodic compensators and two-step

compensation schemes. In [Des.6,Des.9] , the set of all stabihzing compensators for

an incrementally stable nonhnear plant (e.g. stable linear plant) is obtained. Using

left and right factorizations of a class of causal nonhnear discrete-time plants, a

complete parametrization of the set of all stable solutions U , V of the equation

UAf + VD = AA is given in [Ham.5] .

In this section, we consider the nonhnear unity-feedback configuration where

one of the two subsystems (either the plant or the compensator) is specified by a

linear (not necessarily time-invariant) map. Since the plant and the compensator

appear symmetrically in the stabihty analysis of the unity-feedback system, we

choose to derive the results for a fixed hnear plant. Assuming that the hnear plant

has a "generalized" left-coprime factorization, we show that all nonhnear stabihzing

compensators have right-coprime factorizations which satisfy a Bezout-like identity.

In the case where the hnear plant also has a right-coprime factorization, we obtain

the set of all solutions satisfying the identity; in fact, we obtain a parametrization of

the set of all nonlinear stabihzing compensators. Interchanging the roles of the plant
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and the compensator, this result gives the set of all nonhnear plant perturbations

which maintain feedback-system stabihty for a given hnear compensator.

Results

Consider the nonhnear unity-feedback system S(P,C) shown in Figure 4.7: the

hnear plant is given by a causal linear (not necessarily time-invariant) map P :

Ae —• Ag and the possibly nonhnear compensator is given by a causal map

C:A° Ae . We assume that the thehnear map P satisfies Assumption 4.7.1 :

Assumption 4.7.1

The causal linear map P : Ae -» Ag has the following properties :

i) The map P has an ht : that is, there exist causal hnear finite-gain-stable

maps Np : Ae -^ Ag and Dp : Ag -> Ag , where Dp is bijective, has

a causal inverse and Dp Np = P .

ii) There exist causal A-stable (not necessarily hnear) maps VI : A° —• Ae

and V : A^ -> A° such that

H?U + DPV = I

Figure 4.7:
Nonhnear unity-feedback system S(P,C)

(4.44)
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Theorem 4.7.2 (A-stable 5(P,C))

Consider the nonhnear unity-feedback system S(P,C) in Figure 4.7 , where the

causal linear map P : Ae —• Ag satisfies Assumption 4.7.1 and C : Ag —• Ae .

Under these assumptions, the nonhnear unity-feedback system S(P,C) is well-

posed and A-stableif and only if the map C has an r.c.f. (Af c , Dc ) such

that

HpAfc + DpDc = I . (4.45)

Proof

" if "

Let (Afc , Dc ) be an r.c.f. of C : Ag -> Ae , satisfying (4.45). From the

summing node equations in Figure 4.7 , we obtain

ex = Dcic - «i - 2/2 (4.46)

Dpy2 = NP(«2 + Vl) = Np(t*2 + Afrfc) , (4.47)

where fc denotes the pseudo-state of the compensator C . Using the linearity

of Np and Dp in (4.46-4.47) and using assumption (4.45) ,

& = Dp -N,
u2

By (4.48) , the map

(ui, u2) i-+ &

is A-stable. Since the maps Afc and Dc are A-stable, the map

(ux, u2) t-*(ei,yi) = (Dc£c , Afcb)

(4.48)

is A-stable; hence the feedback system S(P,C) is well-posed and A-stable
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" only if "

By well-posedness and A-stabihtyof S(P,C) , the map C has an r.f.

(Afc , Dc ) ; namely

Afc = C(I +PC)

Dc = (I +PC)"1 .

Using this r.f. of C in the summing node equations (4.46-4.47) of the feedback

system S(P,C) and using the linearity of Np and Dp ,

-l

(NpAfc +DpD^jtc = Dp -N, Ui

u2
(4.49)

By well-posedness of S(P, C) and the existence of the causal inverse Dc~ ,

there exists a causal map (ux, u2) •->• & , which need not be A-stable even if the

feedback system S(P,C) is. Choose the inputs as

Ui

u2

v
-U

V (4.50)

where v € A° . Substituting (4.50) in (4.49) ,

{\\pAfc + DpDc)ic = v . (4.51)

Equation (4.51) determines a causal map

(MpAfc +DPDcy :A^-Ag* , (NpA/'c +DpX^c)"1 :*/~fc .
Hence the causal A-stablemaps v \—> e\ and v •—*• t/j are given by

^(NpA/'c +DP2>c) : i/H-*ei , (4.52)
Afc(jipAfc +DpDc) : v^ Vl . (4.53)

From (4.52-4.53) and

2/i = Cej ,
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we conclude that

AfJfipAfe +DP£>c) , Dc{UpAfc +DPDC) -1

is an r.f. of C ; furthermore, since

Np\Afc(jipAfc +DpPc)"1] +Dp\Dc(NpAfc +DpX^)"1] =I ,
it is an r.c.f. of C .

D

We now prove an algebraic lemma which characterizes the set of all solutions of

(4.45) .

Lemma 4.7.3 (all solutions of (4.45))

Let the causal linear map P : Ae —> Ag satisfy Assumption 4.7.1 . Suppose also

that (Afp, Dp) is an r.c.f. of P (note that the maps Afp and Dp need not

be linear), where the conditions in Definition 4.4.1 hold. Under these assumptions

the set of all causal A-stable solutions of (4.45) is given by

{[ Me
: A0 a;xa;

Proof

Me-
Ve V-MVQ

Q : A° -» Aj, is A-stable

(4.54)

}'

We first show that any pair of A-stable maps specified by (4.54) is a solution of

equation (4.45) . Substituting Afc and Dc given by (4.54) in (4.45) and using

the linearity of Np and Dp , weobtain

N pAfc + DpZ>c = NpU + DPV + (DpAfp - NpxOq . (4.55)
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Substituting

DpA/V = NpX>^ (4.56)

in (4.55) and using (4.44) , we see that (4.45) is satisfied.

Now consider any pair ofcausal A-stable maps Afc , Dc satisfying equation

(4.45) . Then from (4.44) ,

NpAfc + DPDC = I = WpU + DPV .

=r -1-
Using the linearity of Np and Dp , and substituting Dp Np

in (4.57) ,

AfpDp-X(Afc -U) = V -Dc .

Let the parameter Q be defined by

Q:=DT"1{Afc-U) .

(4.57)

AfpDp"

(4.58)

(4.59)

Clearly, the map in (4.59) is causal. By assumption, (Af?, Dp) is an r.c.f. of

P : hence there exists a causal A-stable map !FV such that the identity (4.25)

holds. From (4.25) , (4.58) and (4.59) ,

Q — */ p
' Mt'

Q

= af p
:M?£I]

I

= T\ V -Dc
Afc-U (4.60)

From (4.60) , we conclude that the map Q is A-stable. From (4.58) and (4.59) ,

(4.54) follows.

D

Theorem 4.7.4 (parametrization of all stabilizing compensators)

Let the causal linear map P : Ae -> A° satisfy all of the assumptions in
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Lemma 4.7.3 . Under these assumptions, the set of all compensators C : A° —> Ae

which A-stabilize the nonhnear unity-feedback system S(P,C) is given by

{C=(U +V-pQ) (V - MvQ)'1 I Q: K -» K *A-stable
and

(V - A/VS) *is causal j .(4.61)

Moreover, the map Q »->• C in (4.61) is bijective.

Proof

From Theorem 4.7.2 and Lemma 4.7.3 , we conclude that the map in (4.61)

is onto the set of all causal compensators which A-stabihze the nonhnear unity-

feedback system S(P,C) . By inspection, the.map Q t-> C in (4.61) is

surjective.

We need to show that the map Q k-> C in (4.61) is injective: it suffices to

show that

(U +2>*Q,)(V - M-pQi)'1 = (U +VVQ2)(V - MtQ2)'X (4.62)

imphes that

Si = 0.1 .

First note that by the linearity of Np and Dp , (4.44) and (4.56) imply that

NP(U +DpQx) + DP(V - AfTQi) = I , (4.63)

NP(U +DpQ2) + DP(V - AfpQ2) = I . (4.64)

Composing (4.63) on the right with the nonhnear map

(v - a/Vq.)-1
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and using (4.62) ,

UP(U +DpQ2)(V - AfvQ.y1 + Dp = (V - AfpQr)'1 . (4.65)

Composing equation (4.65) on the right with the nonhnear map

iy -MTQ2)

and using (4.64) , we obtain

(V - A/VSi)~X(V -MVQ2) =1 . (4.66)

Substituting (4.66) in (4.62) , we obtain

VvQr = VVQ2 ;

since Dp is bijective, the claim follows.

•
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4.8 Nonlinear unity-feedback system

The following theorem gives a necessary and sufficient condition for the stabihty of

a well-posed nonhnear unity-feedback system S(T,C) , provided that either T

or C haver.cf.'s. Since the roles of T and C can be interchanged, we state

only the case where C has an r.c.f.

Theorem 4.8.1 (n&s condition for A-stable S(T,C))

Let (Afc , Dc ) be an r.c.f. of the causal nonhnear map C : Ag —• Ae .

Let T : Ag —> A° be a causal nonhnear plant. Under these assumptions, the

nonhnear unity-feedback system S(T,C) is A-stable if and only if the causal

pseudo-state map

(ui, u2) i-> fc

is A-stable (see Figure 4.8).

Proof

" if "

i*i

u2

*>
ei

P,
-l Afc

: +
+

o
\y\ e2

C\

Figure 4.8:
Nonhnear unity-feedback system S(T, C)

2/2

By assumption, the causal map (ui, u2) •-• fc is A-stable . Since Afc and

Dc are A-stable maps, the closed-loop map (u\, u2) k-> (a , e2) is given by

ei = Ddc
e2 = u2 + A/*c£c , (4.67)
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and is also A-stable . Hence the nonhnear unity-feedback system ~S(T,C) is

A-stable .

" only if "

By assumption, (Afc , Dc ) is an r.c.f. of C ; hence there exists a causal

A-stable map ^Fc such that

F\
Afc
Dc

= I . (4.68)

Moreover, by assumption, the closed-loop map (u\, u2) t-* (ei, e2) is A-stable.

Then by (4.67) and (4.68) ,

& = T\ ei

e2 — u2
(4.69)

By definition of r.c.f., the causal map 7"c is A-stable; hence from (4.69), we

conclude that the map (u\, u2) t-> & is A-stable.

•

Comment 4.8.2

The idea in Theorem 4.8.1 can be generahzed to well-posed feedback systems other

than S(T,C) :

In any well-posed A-stable feedback system, if a subsystem (say C ) has

an r.c.f., then the closed-loop pseudo-state map (mapping the closed-loop system

inputs to the pseudo-state {c ) is A-stable.

If a subsystem (say C ) has an r.c.f., the A-stabihtyof the closed-loop pseudo-

state map may or may not guarantee A-stabilityof the overall feedback system; it

holds for S(T, C) but it may also hold for other well-posed systems (for example

the feedback system U(T , Q) in Figure 4.6).

Lemma 4.8.3

Let the nonhnear maps T : A' -+ A° and C : A° -• Ai be A-stable . If the
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nonlinear unity-feedback system S(T,C) is A-stable, then the maps (I -f TC)

and fl + CT) are A-unimodular.

Proof

We only show that the map (I + TC) is A-unimodular. Proof of the other

is similar.

Writing the summing node equations in Figure 4.8 and setting u 2 = 0 ,

(I +TC)ex = «x .

By assumption, the closed-loop map u\ »-• e\ is causal A-stable. Hence the claim

follows.

•

Theorem 4.8.4 (parametrization of all compensators)

Let the nonhnear map T : Ae —• AJJ be incrementally A-stable . Then the

well-posed nonhnear unity-feedback system S(T,C) is A-stable if and only if

the map C : Ag —* Ae has an r.c.f.

(Q,l-TQ)

for some causal A-stable map Q : Ag —> Ae .

Comment 4.8.5

Theorem 4.8.4 gives a parametrization of ajl stabihzing nonhnear compensators

C , provided that the nonhnear plant T is incrementally A-stable. This theo

rem [Des.9] extends the hnear Q-parametrization result [Zam.2] . Note that Theo

rem 4.8.4 motivates an r.c.f. approach.
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Proof of Theorem 4.8.4

" only if "

By assumption, the nonhnear unity-feedback system S(T,C) is well-posed

and A-stable. Hence, with u2 = 0 , the closed-loop map U\ i—» y\ , namely

Q:=C(I +'PC)"1 : AJ-AJ

is causal and A-stable. By calculation,

is an r.f. of C . Furthermore,

T I

(c.i-'pq)

s
l-TQ

= I

Since the map T is A-stable, we conclude that (Q,I-TQ) is r.cf. of C
" if "

By assumption (Q, I-TQ) is an r.cf. of C for some causal A-stable
map Q . It suffices to show that the closed-loop map («i, u2) i-> £c is A-stable.

Writing the summing node equations in Figure 4.8 for C = Q (X - T Q) " ,

(I-'PQ)^ = ux - T(u2+Qtc) . (4.70)

By assumption, the feedback system S(T , Q(l - T Q)"1) is well-posed; hence

(4.70) determines a causal pseudo-state map. From (4.70) , using the incremental

A-stabihtyof T , we obtain

V(«i, u2) e A° x A1 , VT <E T

IIHT&H < ||m|| + \\VQ(c-V(Q(c +u2)\\

< ll«i|| + ^(ll«2||) •
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Hence the pseudo-state map in (4.70) is A-stable.

D

Using the incremental A-stability argument, we show that the unimodularity

condition in Lemma 4.8.3 is also a sufficient condition.

Theorem 4.8.6

Let the nonhnear map T : Ae —> Ag be incrementally A-stable and let the

nonhnear map C : A° —• Ae be A-stable . Then the well-posed nonhnear

unity-feedback system S(T,C) is A-stable if and only if the map (I + TC)

is A-unimodular.

Proof

" only if "

Follows by Lemma 4.8.3 .

" if "

By assumption, the map fI + TC) is A-unimodular. Since the map C

is A-stable, (C, I) is an r.c.f. of C ; hence e\ := £c (see Figure 4.8). By

Theorem 4.8.1 , it suffices to show that the causal map (ui, u2) »-> e\ is A-stable.

Writing the summing node equations in Figure 4.8 , we obtain

d —ux - T(Cei-\-u2) ,

adding TCe\ to both sides,

(l+TC)ei = u{ + TCex - T(Cei-ru2) .

By the A-unimodularity of (l+TC) , ex e A° if and only if (l+TC)el 6
A° . Using the incremental A-stabilityof T ,
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v (ttl, u2) e A° x A1 , v T e T

||nT(l+PC)ei|| < ||ttl|| + \\TCel-T(Ce1+u2)\\

< llmll + M\\u2\\) .

Hence we conclude that the closed-loop map («x, u2) •-»• (I+TC) ex is A-stable.
D

Theorem 4.8.7

Let the nonhnear map

P:AexAe^A° , T:(v,ex)~ 2/i

be causal and incrementally A-stable. For some fixed causal nonhnear map C :

A° —• Ae , let the nonhnear unity-feedback system S(T(v, •)> C) be well-

posed for all v e A . Under these assumptions, S( T(v0, •), C) is A-stable

for some i/0 G A if and only if S( T(v, •), C) is A-stable for all v G A .

Comments 4.8.8

From Theorem 4.8.7 , we have the following interpretations:

i) If we have a family of incrementally A-stable plants

and if one member of this family is stabilized by some C , then the whole

family is stabihzed by that C .

ii) The one-input one-output plant T( v, •) can be considered as an input-

output description for a fixed parameter v or for a fixed bounded auxiliary

input v . In any case, the map T(v, •) is assumed to be a complete

description of the plant for any v 6 A [Bha.2] .
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Proof of Theorem 4.8.7

We only prove the necessity; the sufficiency proof is obvious.

By assumption, there exists a vq £ A such that the nonhnear unity-feedback

system S(T(vo, •), C) is A-stable. By Theorem 4.8.4 , there exists a causal

A-stable map Q : Ag —• Ae such that

(Q,l-T(u0,Q(-)))

is an r.c.f. of C . For any v £ A , consider the unity-feedback system

S(T(v,Q(.)), Q(l-T(v0,Q(-)))~1) inFigure4.9.

«i
"6T0T

1*2

+
+.

-" ei!QrH (I-?>(«*. fi(-)))"1 - Q
+

o•* J—">

2/i e2

Figure 4.9:

5(T»(i/,fi(.)), e(i-•?(•*, e<-)))_1)

?V,S(-))

-l

By Theorem 4.8.1 , it suffices to show that the causal pseudo-state map

(«i, u2) i-* &(i/)

2/2

-lassociated with S(T(u, Q(•) )•, Q(I - T(uQ, fi( •)) ) ) is A-stable for
all v £ A . The summing node equations in Figure 4.9 give

ic(v) = ui + Ttyb, Q(c(u)) - T(v, Qic(v) + u2) . (4.71)

Since the map T( •, •) is incrementally A-stable, (4.71) gives

V (m , ic2) £ A0 x Ax , Vv £ A , VT £ T ,



156

IIHtCbWH < ||m|| + Mlk-"o|| + IK||) •

Hence the closed-loop pseudo-state map («i, u2) .(-»• £c(v) is A-stable for all

v £ A .

D

Consider the case

TV,.) := nn • («i,f)t-> y2 ,
U2 =1/

where the map W^ is the restricted input-output map of an incrementally

A-stable S(T,C) for some causal maps T and C ; then the two-step

stabihzation results in [Ana.l] and [Des.7] become special cases of Theorem 4.8.7 .

The following theorem [Des.9] establishes a necessary and sufficient condition for

simultaneous stabihzation of two plants which need not be members of the family

of incrementally A-stable maps in Theorem 4.8.7 . Our use of the factorization

approach greatly simplifies the proof.

Theorem 4.8.9

Let the nonhnear map T : Ae -+ A° be causal and incrementally A-stable. Let

the nonhnear unity-feedback system S(T,C) be well-posed and A-stable (hence

by Theorem 4.8.4 , C has an r.c.f (Q, 1-TQ) for some causal A-stable
map Q : Ag -• Ae ). Let the perturbation AT : Ae -• A° be a causal

nonhnear map such that the nonhnear unity-feedback systems S(T + AT,C)

and S(AT,Q) are well-posed. Under these assumptions, S(T + AT,C) is

A-stable if and only if S(AT, Q) is A-stable.

Comment 4.8.10

The nonhnear perturbed plant T + AT need not be A-stable. The perturbation
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AT is only subject to the condition that S(AT, Q) is A-stable in order to

have S(T + AT,C) A-stable.

Proof of Theorem 4.8.9

Consider Figures 4.10 and 4.11 : Let the pseudo-state maps 'hi^ and 7^7

ux
+
o-

be defined as

u2

+

(I--PS)"1- Q +
6•h j—*

L .CI

Figure 4.10:
S(T + AT,C)

T + AT

«i . €
To tl

u2

[+
Q ^7^

—i i

•u

Figure 4.11:
S(AT,Q)

*Ht : («i, «2) *-• ?

7i? : (ux, m^) t-> £ .

By Theorem 4.8.1 , it suffices to show that the map 1~C^ is A-stable if and only

if *H,? is A-stable.
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" if "

By assumption, the map l~Lr is A-stable. Writing the summing node equations

from Figure 4.11 , l~it is given by

I = ul - AT(Q£+u2) . (4.72)

By assumption, 7i$ is a causal map. Writing the summing node equations from

Figure 4.10 , l~i^ is determined by

i = T.(u,,u2) - AT(Qt + u2) , (4.73)

where the causal map TL is defined by

H(ux, u2) := ux + TQ,Ut(ux, u2) - T(Q7ii(u1, u2) +u2) . (4.74)

Note that the map 7£ in (4.74) is A-stable since by incremental A-stabihtyof

v,

v (Ul, u2) e A° x A1 , v T e T ,

||nT^(Ux,«2)|| < IK|| + &(IM|) .

Since (4.72) and (4.73) have the same form, we conclude that

Ht(ui, u2) := 7i^(lZ(ui, u2), u2) ;

hence, 1~L^ is A-stable since both H-A •, •) and TL( •>•) are A-stable.

" only if "

By assumption, the map H^ is A-stable. Writingthe summing nodeequations

from Figure 4.10 , 7"^ is found by solving the solution of

(I - TQ)i = ux - (T + AT)(Qt + u2) (4.75)
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for £ . By assumption, 7i~ is a causal map. Writing the summing node

equations from Figure 4.11 , 1~L? is determined by

(I - TQ)i = £(si, ss) - CP + APXfif + fii) , (4.76)

where the causal map 7Z is defined by

K(u[,u2) := ui +^(C^fii,^) +1*2) - VQfhLp\,u2) . (4.77)

Note that the map 72. in (4.77) is A-stable since by incremental A-stabihtyof

v,

V(«i, «,) € A° x A' , VT 6 r,

linTfc(«i,fii)ii < \\«i\\ + &(ii«;ii) •

Comparing (4.75) and (4.76) , we conclude that

H^ui, «$) := *HA 1Z(uI , «5), uU ;

hence 7i? is A-stable (because both 7i^(«,«) and 7£(-,«) are A-stable).

D



Chapter 5

Conclusion

The main focus of this work is on three items:

i) stable additive feedback systems,

ii) right factorizations,

iii) right-coprime factorizations.

Items i) —iii) are studied for three classes of causal input-output maps:

1. hnear time-invariant finite-dimensional maps (Chapter 2) ,

2. hnear maps (Chapter 3) ,

3. nonhnear maps (Chapter 4) .

The three classes are definitely nested in one another; however the point is that we

investigated each one of them using all of the properties available for that class.

This approach led to some interesting observations. The imphcations

m) => i) => n)

160
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always hold. The imphcation

n) =*• m)

requires attention: In the setting of Chapter 2 , we have

ii) * iii)

due to the ring properties of proper rational transfer functions in one complex

variable. In the setting of Chapter 3 , the imphcation

ii) => ui)

no longer exists. There are hnear systems with right-factorizations that do not

admit right-coprime factorizations [Fei.2] . Hence for general nonlinear maps, the

conditions under which the imphcation

ll) => 111)

holds will be extremely useful. The answer is expected to be through case studies:

such an attempt has already been made in Sections 3.5 , 4.3 and 4.6 .

The definitions of left-factorizations can be introduced for linear maps with no

extra work. As proved in Section 3.4 , in a stable hnear unity-feedback system

the plant and the compensator have both right- and left-factorizations. In other

words, hnearityallows a left factorization tool to be developed in parallel with right

factorization tools.

The imphcation

i) =• H)

(see also [Ham.2]) is a very important one justifying right factorization tools. A

similar justification for left factorizations of nonlinear causal maps is not yet known.
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Factorization tools bring a better understanding of robustness analysis of stable

unity-feedback systems (Sections 2.5 , 2.6 , 3.7 , 4.8 ) .

In Section 4.6 we worked out right-coprime factorizations for a class of nonhnear

plants and found a stabihzing feedback configuration, which has a free parameter

that can be assigned; in other words, a class of stabihzing compensators was pro

posed. The exphcit calculations are readily implementable.

Finding right-coprime factorizations for a given plant is an answer to stabihza

tion; investigating special cases will be extremely useful.
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