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Abstract

In its general a.lgébra.ic framework, factorization theory has proven to be ex-
tremely useful in solving interesting control problems related to linear time-invariant
systems that have transfer function representations. This work studies the extension
of factorizations to nonlinear multiinput-multioutput maps.

The nonlinear maps considered are assumed to be causal (i.e., non-anticipatory)
and are defined over input and output extended spaces; hence the setting is quite
general and is suitable for analyzing unstable nonlinear maps. Due to the flexibility
of choosing norms in input and output spaces, this input-output approach is suitable
for generalized forms of bounded-input bounded-output stability analysis.

Factorization tools are applied to stability and robustness analysis of nonlinear
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additive feedback systems. These tools are also used to propose stabilizing feedback
schemes.

Proper stable factorizations of linear time-invariant finite-dimensional systems
and related key facts are reviewed for motivation; they lead to a compact self-
contained formulation of stability and robustness properties.

Stabilizing feedback systems and existence of factorizations are studied based
on a discussion of factorization tools for general linear maps. Using factorization
tools, necessary and sufficient conditions are given for robust stability of the nominal
linear unity-feedback system under nonlinear (possibly unstable) additive, feedback,
pre-multiplicative and post-multiplica.tive plant perturbations.

Following a discussion for right-factorization tools for nonlinear causal maps,
a stabilizing additive feedback configuration is proposed. Right-factorization and
right-coprime factorization examples for some classes of nonlinear plants are explic-
itly worked out. After sfa.ting conditions on linear (not necessarily time-invariant)
plants for parametrizing the set of all nonlinear stabilizing compensators in non-
linear unity-feedback systems, the parametrization of all stabilizing nonlinear com-
pensators is obtained. Stability and robustness of nonlinear unity-feedback system

and conditions for simultaneous stabilization are studied using factorization tools.
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Chapter 1

Introduction

In the design of linear time-invariant multiinput-multioutput feedback systems, the
parametrization of all stabilizing linear time-invariant compensators and the char-
acterization of achievable performance (like achievable input-output maps, distur-
bance rejection, tracking, ...) by stabilizing compensators have been of great inter-
~ est. For the lumped linear time-invariant, continuous-time and discrete-time cases,
stabilizing compensators were obtained in [You.1,Per.1,Kuc.1]. Using a general alge-
braic formulation, [Des.4] generalizes these results to include the distributed cases,
among others. Using an algebraic approach [Zam.2] considers stable plants, char-
acterizes all stabilizing compensators and establishes the trade-off between input-
output performance and robustness. For related work, see also [Ros.1,Doy.1,Des.5,
Sae.1,Des.8] and the references therein. An excellent review of research in this area
and related work can be found in [Vid.3] .
In its general algebraic framework, linear factorization theory has proven to
be extremely useful in solving important control problems related to linear time-

invariant systems that have transfer function representations. The multiinput-
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multioutput transfer functions that are coﬁsidered can represent plants which are
continuous-time or discrete-time, finite-dimensional or distributed, one-dimensional
or multi-dimensional. Most plant models encountered in practice can be treated
in this setting of a commutative algebra of linear maps. Using linear factorization
theory for these systems, an abundance of results were obtained in the literature,
where many control problems (like stabilization, parametrization of all stabilizing
compensators, achievable input-output maps, robust stabilization, disturbance re-
Jection, tracking, decoupling, decentralized control, ... ) were solved.

There has been great interest in extending the existing linear factorization theory
to linear time-varying and possibly to nonlinear maps. In [Fei.l] factorizations
of linear input-output maps over Hilbert spaces are discussed. [Man.1] explicitly
derives factorizations for a class of finite-dimensional linear time-varying plants
which provide an extension to [Net.1,Kha.1] .

Along the same input-output approach, [Vid.1] introduces coprime factorizations
(over Banach spaces) for nonlinear maps as a direct extension of the well-known
Bezout-identity (see also [Des.6]) . [Ham.l,Ham.2,Ham.3,Ham.4,Ham.5] pose the
stabilization problem of a time-invariant nonlinear discrete-time plant; using a set-
theoretic approach, key points of linear factorization theory that are suitable for
generalizations to this setting are emphasized. Finite-dimensional nonlinear systems
with recursive descriptions are studied in detail. The structured extension of the
Bezout-identity is used in feedback stabilization of such discrete-time nonlinear
plants.

The purpose of this work is to study the extension of factorizations to nonlin-
ear multiinput-multioutput maps. These factorizations will be used for analyzing
nonlinear feedback interconnections and for proposing new stabilizing feedback con-

figurations for nonlinear plants. The only assumption on the nonlinear maps that
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are considered is that they are causal and defined over input and output extended
spaces. This standard input-output approach is quite general and is suitable for
generalized forms of bounded-input bounded-output stability analysis.

The thesis is organized as follows:

Each chapter is a stepping stone to the next. Chapter 2 consists of an extensive
review of proper stable factorizations (for finite-dimensional linear time-invariant
systems); it also includes a different way of looking at the unity-feedback system
and the observer-controller configuration (see Figures 2.3 and 2.6) and robustness
results associated with the linear time-invariant unity-feedback system (Sections 2.5
- 2.7) . Key facts useful for our study are also stated (for a complete description
see Section 2.1) .

Chapter 3 focuses on linear input-output maps; factorization tools for these
maps are used in the analysis and the synthesis of linear feedback systems (for a
complete description see Section 3.1) .

Chapter 4 studies the most general setting for factorizations of causal nonlinear
input-output maps. Linearity and structure constraints are dropped. We study the
tools of nonlinear factorization and apply them to stability and robustness analysis
of nonlinear feedback systems; using these tools, stabilizing feedback configurations
are proposed (see Section 4.1) .

The contribution of this work is its unified factorization approach to the analysis
and synthesis of linear and nonlinear feedback systems. Efcamples are explicitly

worked out to illustrate the conceptual tools.



Chapter 2

Proper Stable Factorizations

2f1 Introduction

In this chapter, all plants and compensators are multi-input multi-output linear
time-invariant one-dimensional subsystems which are represented by continuous-
time or discrete-time matrix transfer functions with proper rational entries; that
is, all plants and compensators are realizable (with integrators or delay blocks) in
a minimal state-space description (A, B, C, D). We discuss the stability and

robust stability of two feedback interconnections of such subsystems:
i) the standard unity-feedback configuration S(P,C) (see Figure 2.3),

ii) the observer-controller configuration X(P,C) (see Figure 2.6) , a special

case of two-input one-output compensation.

The discussion is based on factorization theory [Vid.3] ; for this reason, we give an
extensive review of proper stable factorizations (a special case of the more general
algebraic setting of factorization theory) and include the key facts that relate to

our study.



The chapter is organized as follows:

Section 2.2 introduces the preliminary definitions and facts on proper stable
factorizations. A proper, rational transfer function is called R y-stable if its poles
are not in the undesired region U (see Definition 2.2.1) . For the robustness
analysis later on, the boundary OU of the undesired region U satisfies the
matching condition in Definition 2.2.4 . Definition 2.2.6 introduces a norm on
Ry-stable maps. This norm definition will be used also in robustness analysis.
Definitions 2.2.7 — 2.2.10 introduce right and left factorizations for proper rational
transfer functions. The properties of right and left factorizations are also stated.

Section 2.3 illustrates that two-input one-output compensai-;ion is the most gen-
eral linear feedback compensation of a linear plant if all of the plant inputs and
outputs are to be used. The set of all Ry-stabilizing two-input one-output com-
pensators are given in Fact 2.3.3. A simple proof of this well-known fact points out
the kspeciﬁc structure constraint on the compensaigof: all instabilities of the conipen-
~ sator must be due to one denominator map. All Ry-stabilizing compensatorsin the
standard unity-feedback configuration follows from this fact (see Corollary 2.34) .

Any proper plant (with a minimal state-space description) can be stabilized
by a two-input one-output compensator (e.g. a full-order observer-controller); this
specific configuration is referred to as the observer-controller configuration (P, C)
(see Figure 2.6) . The interesting point is that from an Ry-stable I(P,C), one
can derive an Ry-stabilizing compensator in the unity-feedback configuration; in
the process, one Bezout-identity (see (2.11)) is sufficient. Using this observation

together with all Ry-stabilizing compensatorsin S(P,C) we give

i) a parametrization of all strictly proper compensators ,
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ii) a simple proof of the fact that the parameter set is dense (see ( 2..15) and Fact

2.4.6) .

Section 2.5 considers robustness of the Ry-stabilizing compensatorin S(P,C)
under plant uncertainties. A standard way of characterizing unstructufed plant un-
certainties is to use a ball description: at each s € 8U , the norm of the pertur-
bation transfer function A (possibly unstable) is within a specified radius. Using
this perturbation A |, four cases of plant perturbation models are discussed in
subsections 2.5.1 — 2.5.4 : pre-multiplicative, post-multiplicative, feedback and ad-
ditive plant perturbations. In each subsection we state the necessary and sufficient
condition for the nominal stabilizing compensator to stabilize the perturbed plant.
Using the necessary and sufficient condition, we show that in a ball description, the
uncertainty A can not be unstable. We show that given any radius map, there is
always a destabilizing unstable A in the specified ball; hence the perturbations
A in 5. ball must be Ry-stable to get a uniform robustness condition.

Section 2.6 studies the special case that the perturbation A is Ry-stable
(which is proven to be necessary in Section 2.5) . Using this ball description of
Ry-stable perturbations, we state the necessary and sufficient conditions for robust

stabilization for each of the four subcases in Section 2.5 .
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2.2 Preliminaries

Definition 2.2.1 (undesired region U)

A nonempty closed set U C € is called an undesired region iff
i) seU&5€U and
ii) o€ U and
ili) Ja € [0, ) suchthat [a,00] C U .

o

An undesired region U denotes the undesired closed-loop pole locations. The
concept of undesired region U applies to transfer functions of both continuous-time

~ and discrete-time systems. Consider the following examples of undesired regions:

i) For ¢ <0 , 4
R, :={seC | Re(s) > 0}. (2.1)
if) For o € (0,1] ,
D,:={seC | |s|]>20c}. (2.2)
iii) For a > 0 ,
Koy := {3 € C | Re(s) > —a|Sm(s)] } . (2.3)

iv) For a >0 and ¢ <0 , U=K,NR,

Definition 2.2.2 (the ring Ry)

For a given undesired region U , the ring Ry CIR,(s) is defined as

Ry := {u €IR,(s) | uisanalyticinU }.



Definition 2.2.3 (Ry-stable )
A map H €IR,(s)**" iscalled Ry-stable if H : Ry™ — Ry™ (denoted by
H € Ry™*™ Cc M(Ry) ).

Definition 2.2.4 (matching condition)
An undesired region U is said to satisfy the matching condition iff forall zq € € |

s € U , thereexistsan h € Ry such that

i) h(so) = 2o an;d

ii) |h(s)| < |vo] Vs € OU.

Most undesired regions used in practice satisfy the matching condition; the

following fact shows that the sets R, and D, do so.
Fact 2.2.5 (all-pass fit on 8R, and 8D, )

i) Foragiven zo € € and s; € OR, (see (2.1)), there exists a parameter

‘@ € (0,00) such that themap h, : U— € given by

hols) = faol (22222’

-0+«
satisfies the matching condition in Definition 2.2.4.
ii) For a given zo € € and so € D, (see (2.2)), there exists an n > 1

and parameters o; € (C\D,) , i = 1,...,n , such that the map

hy, : U— € given by

1 n &8 — o2
h,(s) = ;|z0| H——

.‘=1 S — a‘

satisfies the matching condition in Definition 2.2.4.



Definition 2.2.6 (|| - ||u)

For any undesired region U , thenorm ||-||y : M(Ry) =R 4 is defined by

[H|lv := sup ||H]| . (2.4)
s€9U

By definition, a map H € M(Ry) has entries which are analyticin U . °
For an analytic function h , |h|P is subharmonic for p € (0, o0) [Rud.1].

.Hence,

[[H(so)ll < SG%%IIH(S)II = ||[H|ly VseU. (2.5)

When U = Ry = €, , we have

1Hlle, = sup [[H(s)ll = sup |HGW)| = ||H ]l -
€90, w€eER

Similarly when U= D; , we have

iHllp, = sup [[H(s)l| = sup |IH() = [|H|lw -
8€9D, 9€[0,2x]

Definition 2.2.7 (right factorization)

(Np, Dp) is said to be a right factorization (r.f) of P € R,(s)%*™ iff

i) N, , D, € M(Ru) and

it) D, € Ry™*™ has an inverse and
iii) N,D;t =P .

Definition 2.2.8 (left factorization)

(Dp, N,) is said to be a left factorization (Lf) of P € Rp(s)"*™ iff

i) Np ) Ep € M(Ry) and

it) D, € Ry™*™ has an inverse and
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iii) D;1N, = P

(m]

In a right (left) factorization, the denominator map D ( D ) is invertible,

however the inverse D-! ( D-1 ) need not be proper.

Definition 2.2.9 (right-coprime factorization)

Ny, Dp) is said to be a right-coprime factorization (r.c.f) of P € IRy(s)%*™ iff
prp P

i) (Np,D,) isanrf of P and
ii) thereexist U , V € M(Ry) such that
[T V] [N,,] =1I.
P

Definition 2.2.10 (left-coprime factorization)

(Dp, N,) is said to be a left-coprime factorization (Le.f) of P € Rp(s)"e*™ iff

i) (Dp,N,) isanlf of P and

ii) thereexist U , V € M(Ry) such that

[N, D,] [g] =1.

An important property of the members of M(IR,(s)) is that they have both
an r.cf and an lLcf. description [Vid.3] . This greatly simplifies the analysis
of arbitrary feedback interconnections of subss'stems which have proper rational
transfer function descriptions [Vid.3,Cal.2].

In a coprime factorization of a proper map, the denominator map always has a
proper inverse. The following fact is proved for an l.c.f. of a proper map; the r.c.f.

version follows similarly.
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Fact 2.2.11
Let (D,,N,) ( (N;,D,) ) beanlcf (rcf) of P € Ry(s)™*% ,asin
Definition 2.2.10 (2.2.9) ;then D;! € M(IR,(s)) ( D;' € M(IR,(s)) ) .
Proof |
Let U and V be Ry-stable maps satisfying condition ii) of Definition 2.2.10.

Since D! exists, we have

—~—

D;'!=D;'NU+V=PU+V ,

P
which is proper.
a
The following fact establishes a simple one point check at oo to determine the

existence of a proper inverse.

Fact 2.2.12 (n&s condition for a proper inverse)
Let D € IR, (s)**" ;then D-! existsand D-! € IR,(s)"*" if and only if
det D(c0) # 0 .

Proof
TR

Let det D(co) # 0 . Since detD(-) # 0 , D! € R(s)"*" and is given
by D-! = AdjD/detD . Since AdjD and 1/detD are proper, D-! is
proper.
“ only if »

Let D and D-! be proper; then detD(c0) and det D-1(co) are finite.
Since det D(co)det D-1(oc0) = 1 , we have det D(co) # 0
@]

A plant P € M(IR,(s)) does not have a unique r.cf. (l.c.f.); however, all

r.cfs (l.cfs) of P can be obtained from a given r.c.f. (L.cf.) of P



Definition 2.2.13 (Ry-unimodular )

M € Ry™" issaid to be Ry-unimodular iff M-1 € Ry™*"

a

The following fact [Vid.3] shows that an r.c.f. (L.c.f.) of a given plant is unique

up to unimodular factors.

Fact 2.2.14 (all r.c.f.s (l.c.f.s) are related by Ry-unimodular maps)

Let (N,,D,) ( (D,,N,) ) be an r.cf (lL.ef) of P € IR,(s)"*™ ; then
(Ni,D1) ( (D1,M;) ) isanrct (Lef) of P € M(IRy(s)) if and only if
there exists an Ry-unimodular map M € Ry™*™ ( M € Ry™ ™ ) such

that

—

D=2 (B ®m-#5 ®).
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2.3 Feedback Interconnections

Consideran n; input n, output plant P € IR ,(s)"*" . Since transfer function
approach is an input-output approach, we assume that the plant description has
no hidden modes in U ; that is, if the plant is input-output stabilized, all of the
internal variables are guaranteed to be stabilized as well. Suppose that all of the
plant inputs and outputs are to be used in a closed-loop compensation scheme. Since
the measured output y, and the control input v are the only signals that are
available for computing the control signal y. (see Figure 2.1), the most general
feedback interconnection is the one that uses a two-input one-output nonlinear
compensator C asin Figure 2.1. The signals d; and d, denote the input and

output disturbances, respectively.

d; d,
v Ye + +  Ym
Figure 2.1:

Two-input one-output general compensation scheme

Definition 2.3.1 (Ry-stable feedback system)
A feedback system is said to be Ry-stable iff all of the closed-loop maps (mapping
the closed-loop system inputs to the internal signals (i.e., input and output signals

of each subsystem)) are Ry-stable .

(]

For example, the feedback system in Figure 2.1 is R y-stable if and only if the

closed-loop map (v, d;, d,) — (¥, ym) is Ry-stable .
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If the compensator C in Figure 2.1 is required to be proper, the linearity of

the compensator implies
C(v, ym) = —Ci1¥ym + Cov

for some proper maps C, and C, ; hence we obtain the additive feedback scheme

shown in Figure 2.2 :

Figure 2.2:
Figure 2.1 with C proper

When C; in Figure 2.2 is set to zero, after re-labeling the inputs, we obtain

the standard unity-feedback system S(P,C) shown in Figure 2.3.

U2

U + yl+ + Y2
—0O— C —"l P
—a
Figure 2.3:

The unity-feedback system S(P,C)

Definition 2.3.2 (Ry-stabilizing compensator)

A map C € M(IR,(s)) in a feedback system (say Figure 2.3) is said to be an
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Ruy-stabilizing compensator iff the resulting feedback system is Ry-stable .

o
It is well-known that if C in Figure 2.2 is required to be a R y-stabilizing
compensator, C must satisfy an additional structure constraint; namely, C

must have an l.c.f. of the form

(D.. [N R])

where (D., N.) isanlcf of C;, and R € M(Ry) [Vid.3,Des.10,Net.2].
In other words, the instabilities in C; must be a subset of the instabilities of
C: . To see the necessity of this structure constraint, consider the following siso
example: let U=C, , p=1, ¢, =1 and ¢; = L5 ; the closed-loop map

(0, di, d;) — y. (see Figure 2.2) is Ry-stable ; however the map (v, 0,0) — y,.

is not.

Fact 2.3.3 (all Ry-stabilizing two-input one-output compensators)
Let (Np,Dp) ( (Dp,N,) ) be an r.cf. (Lcf) of the plant P € IR (s)rex
Choose the Ry-stablemaps U ,V , U , V suchthat

T VI[N Vv
5 w5 vl =9

Under these assumptions, the set of all two-input one-output R y-stabilizing com-

pensators is given by

{((V-QN)'[(T+QD,) E] | R,Q € M(Ru)
and

det(V — QN,)(o0) # 0 }. (2.7)
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Note that equation (2.6) is of the form
AlA=1 |
where A and A-! are Ry-stable square matrices. Since

A4 = AAT =T |,

equation (2.6) holds if and only if

BNt

D, -U

Figure 2.4: _
A stable feedback system with two-input one-output compensator
( D.=V - 'Q'N;, , N.=T + QD, forsome Q satisfying (2.7) )
, the feedback system in Figure 2.4 is

Since (Np,D,) is an r.cf. of P

Ruy-stable if and only if the closed-loop pseudo-state map

(vvul’u2)H£P

is Ry-stable ( {, denotes the pseudo-state of the r.c.f. description (N,,D,) ).
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Proof of Fact 2.3.3
From Figure 2.2 and (2.6), direct calculation shows that any compensator in
(2.7) is an Ry-stabilizing compensator.
Conversely, if the feedback system in Figure 2.2 is Ry-stable , (setting v = 0)
C: has an l.cf. (Ii,f\l) .such that BCDP + JVCN,, = I. Since the closed-loop

map v — §, is Ry-stable,
D.C; € M(Ry)

hence the compensator C is of the form specified in (2.7).
a
For the special case where the map R in Figure 2.4 is set to zero, we obtain

the Ry-stable unity-feedback system S(P,C) shown in Figure 2.5.

Figure 2.5:
A stable unity-feedback system S(P,C)

o~ — —~

( D.=V -QN, , N.= U+ @D, forsome Q satisfying (2.9))

Setting R to zero in Fact 2.3.3 , we obtain the following corollary.

Corollary 2.3.4 (all Ry-stabilizing compensators in S(P,C))
Let (Np,D,) beanr.ct. and (D, N,) beanlcf. of theplant P € IR, (s)"*™ |

satisfying equation (2.6). Then the set of all Ry-stabilizing compensators in
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S(P,C) is given by

{(V-QN) (T +QD,) | TeM®Ru), det(V - Q,)(c0) £0 } ;
(2.9)

equivalently

{U+D,0)(V-N,Q)! | QeM(Ru), det(V — N,Q)(0) #£0 }.  (2.10)
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2.4 Proper stabilizing compensators in S(P,C)

Consider the following classical problem:

Problem 2.4.1

For a given proper plant P €IR,(s)"*% with anr.cf. (Np,D,) satisfying
UN,+VD, =1 (2.11)

forsome U , V € M(Ruy) , find a proper compensator C that stabilizes
P in S(P,C) .

O
Note that we have only the (1,1)-entry of equation (2.6) at hand. There is no
assumption that V is invertible or has a proper inverse. The standard way of

answering Problem 2.4.1 is in two parts:

i) If P is strictly proper (i.e., P has a blocking zero at oo ; equivalently,
Np(o0) =0 ), from (2.11), we have det V (c0) # 0 ; hence, by Fact 2.2.12 ,

S-l= . e e
we conclude that V' U is a proper stabilizing compensator.

iil) If P is proper but not strictly proper (i.e., P(c0) # 0 ), we also need an
Lef. (5,,, Np) of P topicka @ so that the determinant condition in

(2.9) is satisfied.

In other words, if P is not strictly proper, then we need to bring in all the tools
necessary to find the set of all proper stabilizing compensators (Corollary 2.3.4) in
S(P,C) to pick only one.

Consider the Ry-stable observer-controller configuration (P, C) shown in Fig-

ure 2.6 ( M is Ry-unimodular ).
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Figure 2.6:
Observer-controller configuration X(P,C)

Standard calculation shows that the feedback system X(P,C) in Figure 2.6
is Ry-stable for all Ry-unimodular maps M andforell U,V € M(Ry)
satisfying the identity (2.11). In terms of stabilization, (2.11) is the crucial identity
for both S(P,C) and Z(P,C) ;however, the compensatorin (P, C) isless
restrictive in the sense that themap V' € M(Ry) need not be invertible or have
a proper inverse. |

The feedback system X(P,C) in Figure 2.6 is a special case of the general
two-input one-output feedback system in Figure 2.4. To see this, redraw Figure 2.6

as Figure 2.7 in order to obtain the specific structure in Figure 2.4.

precntecnccadecaay

Figure 2.7:
Figure 2.6 redrawn as Figure 2.4



Set v = 0 in Figure 2.7 . Note that
([I+M1-D)V |, (M - D,)T )
is an L.c.f. of a proper C if and only if the map
[I+(M' - D,)V |
has a proper inverse. An obvious way of satisfying this is by choosing
M~ = Dy(co)

Hence the observer-controller configuration X(P,C) allows us to answer Prob-

lem 2.4.1 in one step, using only the identity in (2.11).

Proposition 2.4.2 (deriving a proper C from (2.11) for S(P,C))
Let P €IR,(s)"*™ be given by an r.cf. (N,,D,) , satisfying equation (2.11) ;

then the pair
(D, ) = ([T+(Dp(o0) =D,)V |, (Dp(e0) - D,)T ) (2.12)

is an Lcf. of a proper compensator C € IR,(s)%*" which stabilizes P in

S(P,C) .

Proof

Let D. and N, be asin (2.12). Note that D, , N. € M(Ry) and
De(co) = I. By Fact 2.2.12, D;! € R,(s)"*" . Since D,(co) € M(IR) is
IR -unimodular and

N;:Np + Bch = Dp(c0)

we conclude that C = 5;11-\7; is an Ry-stabilizing compensator.

o
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In the rest of this section, without loss of generality, we assume that the denom-
inator maps D, and D, ofr.cfsandlcfsof P are normalized so that they
satisfy
Dy(0) =1 |, Dyloo) =1
If this is not the case, since D,(c0) and Dp(co) are Ry-unimodular , modify

the identity in (2.6) as follows:
(™ sen ][5 RIHE 21> 5]} -5

From a design point of view, it may cause concern that the compensator pro-
posed in (2.12) may have more zeros than those of U . There are many ways of
constructing stabilizing compensators in S(P,C) from Figure 2.7. It is possible
to make the zeros of the compensator identical to those of U , as the following.

proposition points out.
~ Proposition 2.4.3
Let V , D, € Ry™*™ and D,(cc) = I; then there exists an Ry-unimodular
map M € Ry™*™ such that

i) (M-! — D,) is Ry-unimodular and

ii) [ I+(M-1-D,)V ] has a proper inverse.
| Proof
Choose mg > 0 such that

| Dplly < 14+mo ;

Let

Mi=——I ,m>m. (2.13)
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For any M in (2.13), (I-MD,) has an inverse and ||(I - MD,) ||y is

bounded. Moreover
det(I — MD,)(0) = (——)" £ 0 ;
P 1 +m !

hence (I-MD,) is Ry-unimodular . For the second condition, by Fact 2.2.12,

it suffices to have

det(I+ (Mt - D,)V )(c0) = det(I+mV (o)) = ﬁ(l +mA;) #0

=1
where ); € a_(V(oo)) . Choosing m > mgo such that m # 1/|A;| for

Aj € (—00,0) establishes the claim.
a

Note that the proposed compensator in Proposition 2.4.2 is a sirictly proper
compensator. Using the particular solution in Proposition 2.4.2, we can generate
all solutions to (2.11); hence we get an equivalent characterization of the set of all

. proper stabilizing compensators in (2.9).

Corollary 2.4.4 (all proper stabilizing compensators in S(P,C))

Let (N,,D,) beanr.cf of P € Ry(s)*™% with Dy(oo) = I, satisfying
equation (2.11) forsome U , V € M(Ry) . Let (D,,N,) be anlcf. of
P, where D,(c0) = I. Under these assumptions, the set of all R y-stabilizing

compensators in S(P,C) is given by

{ [1+-0)7 - N, [A-D)T + @D,] | T € MRv),

det(I— Q P)(c0) # 0 } .(2.14)

Note that the determinant condition in (2.14) can be expressed in terms of the

plant P because,

[I1+I-D,)V - QN, |(x0) = (I- QP )(c0)
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From (2.14) we also see that the set S, of admissible parameters Qs (i.e., those

that yield a proper compensator) is given by

SA = { aap+ Zéoo I asp € M(RU) n ]B'SP(S)mxno ? 600 EIR.niXYlo

and det(I- @, P(c0)) #0 } .(2.15)

The characterization in (2.14) is due to a translation in the parameter @ in
(2.9). To see this,let Dy(c0) =I, D,(00) =1 and let equation (2.8) hold. From

equation (2.6), we obtain

—

I-D,V = UN,,
DP

— P

<
|
=

S

substituting these in (2.14), we obtain

{[7-@-vF ] T+@-0D,] | T e M®Rv),

det(I— T P)(c0) # 0 } (2.16)

Comparing (2.16) with (2.9), the translation U in the parameter @ is evident.
The description of the set of all proper stabilizing compensators in (2.14), allows

us to obtain the parametrization of all strictly proper stabilizing compensators.

Corollary 2.4.5 (parametrization of all strictly proper compensators)

Let (N,,Dp) be anr.cf of P € Ry(s)"*™% with D,(c0) = I, satisfying
(2.11),forsome U , V € M(Ry). Let (D,,N,) beanlcf. of P, whére
5,(00) = I. Under these assumptions, the set of all strictly proper R y-stabilizing

compensators in S(P,C) is given by



{ [1+1-D)¥ - TF,|™[(1-D,)T + T, ] |

@ € M(Ry) N Ryy(s)™m } . (2.17)

The sets (2.17) and (2.15) imply that, if we insist on a proper but not stricily
proper compensator, we need to determine a real matrix Q_ yielding a well-
posed feedback interconnection with the DC-gain matrix of the plant ( P(0) ).
An obvious way of satisfying this constraint is by choosing the maximum singular
value Omax Of Q. suchthat om.y < 1/|| P(c0)]|.

From the characterization of S,- in (2.15), we conclude that S, is an open

dense subset of Ry™*™ due to the following fact:

Fact 2.4.6

The set { Qu ER™X" | det(I - QuP(c0)) #0 } is open and dense in IR ™*"e

Proof

If P(oco) = 0, then there is no restriction on Qo . Assume that P(co) £0.

Let the map f :IR™*" —IR be defined by

f(Qe) := det(I— Qe P(c0)) .

The map f is continuous hence f-1[IR\ {0}] isopenin IR™*"  Let Q" be
such that f(Q*)=0. Then 1 € o(Q*P(c0)), where o denotes the spectrum.

Let

P { 1 —max{o(Q*P(c0))N(0,1)} if o(Q"P(c0))N(0,1) # 0
* 2 ' otherwise .

It suffices to show that given any € > 0, there exists a Q. such that

Qo — Q]| <€ and f(Qw)#0. Fix €>0. Choose ¢ >0 such that

€< m’“{ el



Let Quw:=(1+¢€)Q";then [|Qw — Q|| <e. We claim that
1 ¢ 0(QuP(o0)) = o((1+¢)Q"P(00)) = (1 + £)o(@ P(o0)) .

Since 0 < € < 6, , we have (1 + €)1 —8.) < 1 ; hence we conclude thai

1 ¢ 0(QooP(0)) , equivalently f(Qw)#0.
a
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2.5 Robustness

Suppose that the nominal plant P € M(IR,(s)) is stabilized by a compensator
C € M(IR,(s)) in the unity-feedback configuration S(P,C) . From an input-
output approach, one can model the uncertainties in the model of the plant in a
number of ways by defining certain sets of admissible plant perturbations; for the
specific uncertainty model in hand, one might determine, if possible, the neces-
sary and sufficient conditions on the nominal compensator to guarantee that C
stabilizes all possible plant models in the set of admissible plant perturbations.

If the set of admissible plant perturbations has finitely many plants, linear factor-
ization theory gives the precise necessary and sufficient conditions for simultaneous
stabilization of all of these plants [Vid.3]. If the set of admissible plant perturba-
tions has infinitely many plants, certain ball descriptions may be used to define the
plant perturbations.

In this section, we focus on a special class of plant perturbations. For a given

undesired region U and a radiusmap r € Ry, let the set B(r) be defined as
B(r) :={ A€ M(Ry(s)) | lA(s)lI<r(s)] Vs€dU}. (2.18)

Note that a perturbation A € B(r) is not required to be Ry-stable ; all that is
required is to have proper maps whose norms on 8U (typically, the frequency
response norms when U = €, or the complement of the open unit disk) are within
the specified radius map r . Using the ball description in (2.18), we consider four
cases of “unstructured” plant perturbations: pre- and post-multiplicative, feedback
and additive perturbations. For each of the cases, we state the necessary and
sufficient conditions for stability of the unity-feedback system with the perturbed
plant; we show that the perturbation description in (2.18) must be further restricted

to Ry-stable maps for robustness results.



2.5.1 Pre-Multiplicative Perturbations

For a given undesired region U , let the set of plant perturbations be given by
{Pd+a) | aeB(r)}, (2.19)
where B(r) is defined in (2.18) .

Lemma 2.5.1 (n&s condition for the stability of S(P(I+ A),C))
Let themaps P and C € M(IR p(8)) be such that the feedback system S(P,C)
is Ry-stable . Choose the r.cf.s (Np,D,) of P and (N.D.) of C such that

5 2l 2]
D, -N, || Dp —N. ’
for some lcfs (D, ].V'p) , (De;N,) of P and C , respectively. Let
(Na, Da) beanr.cf of A € M(IRy(s)). Consider the unity-feedback system
S(P(I+ A),C) shown in Figure 2.8; note that only the input and the output of
P(I+ A) are observed.

Under these assumptions, the feedBack system S(P(I+ A),C) is Ry-stable

(i-e., the closed-loop map (u;,u;) — (e1,e;) is Ry-stable ) if and only if the map
N,Na(Da + N.N,NA»)1D,
is Ry-stable .

Proof |

Let (Na,Da) beanr.cf of A € M(IRy(s)). By assumption, only the input
and the output of P(I + A) are observed. Hence, the unity feedback system
S(P(I+ A),C)is Ry-stable if and only if the map (u1,u2) — € (see Figure 2.8)

is Ry-stable . Writing the summing node equations in Figure 2.8, we obtain



29

----------------------------------------

£r E
—{ N, : —
I .................. e meaa P(lta)
Figure 2.8:
Pre-multiplicative uncertainty model
Dc Np 0 {c Uy
-—Nc 0 DA fp = U . (2.20)
0 —Dp Na+ Dy éa 0

Io o
Pre-multiplying both sides by the R y-unimodular matrices [0 I —I] ,
00 I
D, -N, 0 I 0 0] |
N. D.o| and |0 I 0| successively, we obtain
0 0 I 0 D, I] ‘
I 0 .ﬁpNA §c Epul—ypug
0 I —-D.Na & | = | News + Doug : (2.21)
0 0 Do+ NN,Na [Léa D[N u1 + D.u,)

Hence the map (uy,u;) — & is given by

¢ = Dpws = By = FNa(Da + RN D[N, D[ 12] . (222)
Since the map []‘V; D'c] has a proper Ry-stable right-inverse, we conclude that the
map (uq,u2) — & is Ry-stable if and only if the map ]V,,NA(DA +N¢]'-\7,,NA)"1Dp
is Ry-stable .

a
We now prove that the ball description in (2.18) must be further restricted to

guarantee that a compensator C stabilizes the class in (2.19) in the unity-feedback

system.

Proposition 2.5.2 (admissible pre-multiplicative perturbations)

Let the plant P € M(IR,(s)) be stabilized by the compensator C € M(IR ,(s))
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in the unity-feedback configuration S(P,C); then given any undesired region U
and any radius map r € Ry, there existsa A € B(r) \ M(Ry) such that the
unity-feedback configuration S(P(I+ A),C) is not Ry-stable .

Proof

Let the radius map r € Ry be given. We prove the claim by constructing
a perturbation A € B(r) \ M(Ry) such that the unity-feedback configuration
S(P(I+A),C) is not Ry-stable . Using the notation of Lemma 2.5.1,
S(P(I+ A),C) is Ry-stable if and only if the map

N,Ns(Da + N.N;Na)™' D,
is Ry-stable . Hence, it is necessary that
N.N,Na(Da + N.N,NaY*D, = [I- Da(Da + N.N,Na)Y|D,
is Ry-stable . Then S(P(I+ A),C) is Ry-stable only if the map
Da(Da + N.N,Na)"1D,

is Ry-stable . We now construct an r.c.f. (Na,Da) such that NaD3! € B(r)

and Da(Da + NCNPNA)‘ID,, is not Ry-stable . Choose s € IR NU such that

80 > ma.x{ (IR N U)-blocking zeros of NN, , (R NU)-zeros of r and det Dp},

and

1
S — 8¢

|<1 Vs € 8U.
Note that for all a > 3¢,

1

S—«

|—|<1 Vs edUu.
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By the choice of sq, ch\l",, # 0 ; hence there exist unitary matrices A,B € M(IR)
and o; > 0 such that
0N
_~ g2
Nch(So) = A . .B .
On;

Let 6:=sgn(r(s)) , Yy €IR\U and a > sp; define No and Dp as

Na(s) = 6:3_8)71 ,
Da(s) := ::AB .

Note that NaDj! € B(r) by construction. We now determine a suitable a > sq.

We have
) 8o — a+ ba17(so)
(Da + NeNpNa)(s0) = - — 4 B.
o+7 S —a+ 60‘,...1‘(30)
Let

a =89+ d017(3g) -

Clearly, a >3 and det(Da + N.N,Na)(so) =0 . By construction,
det Dy(s0) # 0 and detDa(so) #0 ;

hence the map DA.(DA +NCJV;,NA)‘1D,, has at least one pole at so € U and we

conclude that the unity-feedback configuration S(P(I+ A),C) is not Ry-stable .

(]



2.5.2 DPost-Multiplicative Perturbations

For a given undesired region U , let the set of plant perturbations be given by
{T+a)P) | aeBM}, (2.23)
where B(r) is defined in (2.18) .

Lemma 2.5.3 (n&s condition for the stability of S((I1+ A)P,C))
Let themaps P and C € M(IR,(s)) be such that the feedback system S(P,C)
is Ry-stable . Choose the r.cfs (Np,D,) of P and (N,D.) of C such that

5 B &)
D, =N, [{ Dp —N. ’
for some l.cf.s (5,,, ]‘\7;) , (D'C,J—\ﬂ) of P and C , respectively. Let
(Na, Da) beanrtcf. of A € M(IR,(s)). Consider the unity-feedback system
S((I+ A)P,C) shown in Figure 2.9; note that only the input and the output of
(I+ A)P are observed.

Under these assumptions, the feedback system S((I+ A)P,C) is Ry-stable

(i-e., the closed-loop map (uy,u2) — (e1,ez) is Ry-stable ) if and only if the map
D-pNA(DA + NPENA)-INP
is Ry-stable .

Proof

Let (Na,Da) beanr.cf of A € M(IR,(s)). By assumption, only the input
and the output of (I+ A)P are observed. Hence, the unity feedback system
S((I+ A)P,C) is Ry-stable if and only if the map (w1, us) — £, (see Figure 2.9)

is Ry-stable . Writing the summing node equations in Figure 2.9, we obtain
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Figure 2.9:
Post-multiplicative uncertainty model

Dc 0 NA + DA Ec Uy
—Nc Dp 0 fp = U2 . (2.24)
0 —N, Da éa 0
I o -I D, —-N, 0 I o o
Operatingontheleftby [0 I 0| , | N, D. o|and |0 I 0O
00 I 0 (U | 0o N, I
successively, we obtain
I 0 EpNA {c Epul - EPU2
0 I N.N, o | = | News+ Deug - (2.25)
0 0 Da+N,N.Na [L&a] N[N uy + D.us) '
Hence the map (u,,u;) — & is given by
& = Dyus — Nyuz — DyNa(Da + N,N.Na) N, [N, D] [ u ] L (226)

Since the map []Vc Bc] has a proper Ry-stable right-inverse, we conclude that the
map (u1,u) — & is Ry-stable if and only if the map D,Na(Da+N,N.Na)-1N,
is Ry-stable .
a

We now prove that the ball description in (2.18) must be further restricted to
guarantee that a compensator C stabilizes the class in (2.23) in the unity-feedback

system.

Proposition 2.5.4 (admissible post-multiplicative perturbations)

Let the plant P € M(IR,(s)) be stabilized by the compensator C € M(IR ,(s))
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in the unity-feedback configuration S(P,C); then given any undesired region U
and any radius map r € Ry, there existsa A € B(r) \ M(Ry) such that the
unity-feedback configuration S((I+ A)P,C) is not Ry-stable .

Proof

Let the radius map » € Ry be given. We prove the claim by constructing
a perturbation A € B(r) \ M(Ry) such that the unity-feedback configuration
S((I+A)P,C) is not Ry-stable . Using the notation of Lemma 2.5.3 , we choose a
A € M(IR,(s)) whichhasanr.cf (Na,Da) suchthat NaDa = DoNa . When
the numerator and denominator of A commute, the conclusion in Lemma 2.5.3

can be restated as : S((I + A)P,C) is Ry-stable if and only if the map
Dy(Da + NaN,N,)"'NaN,
is Ry-stable . Hence, necessarily
Dy(Da + NaAN,N,)"\NaN,N, = B,[I — (Da + NaN,N.)"' D]
is Ry-stable . Then S((I + A)P,C) is Ry-stable only if the map
D,(Da + NaN,N,)™'D,

is Ry-stable . We now construct an r.cf. (Na,Da) such that Nn and D,
commute and NaD3' € B(r) and D,(Da + NaN,N,)"'Da is not Ry-stable .

Choose so €IR NU such that

8o > ma.x{ (IR N U)-blocking zeros of N,,J‘\Tc , (IR N U)-zeros of r and det 5,, },

and
1

S — 8o

<1 Vsedu.
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Note that for all a > s,

1
s—a

|<1 VsedU.

By the choice of s , N,,]Vc # 0 ; hence there exist unitary matrices 4,B € M(IR)
and ¢, > 0 such that

(51
— 5]
N,N,(s0) = A N B.

One

Let §:=sgn(r(s0)) , Y€IR\U and o> so;define No and D, as

Na(s) = 6-31‘:_—8); I,
$—a

D = AB .
a(s) Py

Note that NaDa = DaNan and NaD3' € B(r) by construction. Now we
determine a suitable a > 3o . We have

. 8o — a + do17(30)
(Da+NaN,N.)(s0) = - A B.
07 8o —a+60,,7(s)

Let

a:=3g+ 8o1m(s0) .

Clearly, a > sy and det(Da + NaN,N,)(s0) =0 . By construction,
det Dp(s0) #0 and det Da(so) #0 ;

hence the map EP(DA + NANPIV;)“DA has at least one pole at sy € U and we

conclude that the unity-feedback configuration S((I+A)P,C) is not Ry-stable -

o
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2.5.3 Feedback Perturbations

For a given undesired region U , let the set of plant perturbations be given by
{PA+aP)? | AcB(r)}. (2.27)
where B(r) is defined in (2.18) .

Lemma 2.5.5 (n&s condition for the stability of S(P(I+ AP)-1,C))
Let the maps P and C € M(IR,(s)) be such that the feedback system S(P,C)
is Ry-stable . Choose the r.cf.s (Np,D,) of P and (N.,D.) of C such that

5 &l %] -
D, -N, || Dp —N. ’
for some l.c.f.s (5,,17,) , (5,,,]7,,) of P and C, respectively. Let (Na,Dj)
be an r.cf. of A € M(IRy(s)) . Consider the unity-feedback system S(P(I +
AP)-1,C) shown in Figure 2.10; note that only the input and the output of
P(I+ AP)-! are observed.
‘ Under these assumptions, the feedback system S(P(I+ AP)-1,C) is Ry-
stable (i.e., the closed-loop map (u1,u2) — (e1,e2) is Ry-stable ) if and only if
the map |

N,Na(Da + N,D.Na)"IN,

is Ry-stable .

Proof

Let (Na,Da) be anr.cf of A € M(IR,(s)). By assumption, only the
input and the output of P(I+ AP)-! are observed. Hence, the unity feedback
system S(P(I+ AP)-1,C)is Ry-stable if and only if the map (u1,u2) — & (see
Figure 2.10) is Ry-stable . Writing the summing node equations in Figure 2.10, we

obtain
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Figure 2.10:

D, Np 0 €c uy
—N. D, Na & ] =| up ] . (2.28)
0 —N, Da || & 0
D, -N, 0] I o o
Operating on the left by | N, D, 0| and [0 I 0| successively, we
0 0 I] 0 N, I ’
obtain _ — -
Io —N,,NA & Dpyuy — Nyu,
0 I D.Na & ] = | Nouy+Deuz | . (2.29)
0 0 Do+ N,D.Na | &a N,[N.u; + Du,

Hence the map (uy,uz) — & 1is given by

é: = Dpuy — Nyug + NyNa(Da + N,D.Np)™'N, [fv’ Ec] [ Z; ] . (2.30)
Since the map []‘\TC 5,:] has a proper Ry-stable right-inverse, we conclude that the
map (ug,us) — & is Ry-stable if and only if the map NPNA(DA + NpﬁcNA)‘le
is Ry-stable .

a
We now prove that the ball description in (2.18) must be further restricted to

guarantee that a compensator C stabilizes the class in (2.27) in the unity-feedback

system.

Proposition 2.5.6 (admissible feedback perturbations)
Let the plant P € M(IR(s)) be stabilized by the compensator C € M(IR ,(s))
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in the unity-feedback configuration S(P,C) ; then given any undesired region U
and any radius map r € Ry , there exists a A € B(r) \ M(Ry) such that the

unity-feedback configuration S(P(I+ AP)-1,C) is not Ry-stable .

Proof

Let the radius map r € Ry be given. We prove the claim by constructing
a perturbation A € B(r) \ M(Ry) such that the unity-feedback configuration
S(P(I+ AP)-1,C) is not Ry-stable. Using the notation of Lemma 2.5.5 ,
S(P(I+ AP)-1,C) is Ry-stable if and only if the map

N,Na(Da + D.N,Na)~'N,
is Ry-stable . Hence, necessarily
D.N,Na(Da + D.N,Na)™*N, = [I— Da(Da + D.N,Na)"1|N,
is Ry-stable . Then S(P(I+ AP)-1,C) is Ry-stable 6nly if the map
Da(Da 4 N,D.Na)1N,
is Ry-stable . Hence, necessarily
Da(Da + NyD.Na) N, D.Na = Da[l —(Da + N,D.Na)"1Da)
is Ry-stable . Then S(P(I+ AP)-1,C) is Ry-stable only if the map
Da(Da + NyD.Na)™1D,

is Ry-stable . We now construct an r.c.f. (Na,Da) such that NaD3' € B(r)

and Da(Da + N,,ECNA)"IDA is not Ry-stable. Choose s € R N U such

that

S0 > max{ (IR N U)-blocking zeros of N,D,, and (IR N U)-zeros of r } ,
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and

1
S—Sg

|<1 VsedU.

Note that forall a > 3¢,

1
s—a

<1 VsedU.

By the choice of sg, Npﬁc # 0 ; hence there exist unitary matrices A, B € M(IR)
and o; > 0 such that

o

. N,D.(s0) = A 7

On, : 0 ... 0

For the above singular-value decomposition, we assumed that the plant P has
less outputs than inputs. The other cases follow similarly.

Let 6:=3gn(r(s)), vy €EIR\U and o« > sp;define No and D, as

L 1] ws)
NA(s) = B e 68+’7 ’
0
Da(s) := Z;:A.

Note that NaDz' € B(r) by construction. Now we determine a suitable a > sq .
We have

1 80 — a + do17(30)

So + 7

(Da + N,D.Na)(s0) =

80 — a + 60,,7(30)

Let

a = 89+ 6017(s0) -

Clearly,” a > 3o and det(Da + N,,ECNA }(s0) = 0 . By construction,

det Da(s0) 0 ;
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hence the map DA(DA + NpﬁcNA)‘lDA has at least one pole at 3o € U

and we conclude that the unity-feedback configuration S(P(I+AP)-1,C) is not
Ry-stable .

a
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2.5.4 Additive Perturbations

For a given undesired region U , let the set of plant perturbations be given by
{P+A | AeB(r)}. (2.31)

If one is interested in determining necessary and sufficient conditions on a fixed
compensator C € M(IRp(s)) to stabilize P in the unity-feedback system
S(P,C) forall P in(2.31), the descriptionin (2.31) must be necessarily modified.
The following lemma establishes that the convezity of B(r) in (2.18) implies that

the additive perturbation class in (2.31) must be further restricted as follows:
{P+A | Ae M(Ry)nB(r) }, (2.32)
i.e. A must also be Ry-stable ( A € M(Ry) ).

Lemma 2.5.7 (admissible additive perturbations)

Let U be a.niundesired region, P € M( IR ,(s)) denote the ﬂant and C e
M(IR,(s)) denote the compensator. For a given radius map r € Ry let
A € B(r) . Under these assumptions, if the unity-feedback system S(P + A\A,C)
is Ry-stable for all A € [0, 1], then A € B(r)n M(Ry) .

Proof
By assumption (A = 0 ), the unity-feedback system S(P,C) is Ry-stable.
Hence, for any l.c.f. (E,,,N,,) of P ,thereisanr.cf (N.,D.) of C such

that

D,D.+N,N.=1 .

For the same r.cf. (N,D.) of C ,for any A € B(r), there exists an l.c.f.
(Dpya,Npya) of (P+A) such that

5P-{-A-Dc + N—P+ANC =I.



For any A € B(r) , we have
I+ (P +A)C)= Dl Dt .

Since the radius map r is analyticon OU by assumption, any A € B(r) has
no O9U-poles; hence for all A € B(r) , the 9U-polesof P and (P + A) are
tdentical . Let k, and k. denote the numberof (U)\O8U)-polesof P and C,
respectively (i.e. k, and k. are the number of zeros of det D, and detD,
in (U\8U), counting multiplicities) . '

Let T' be a closed oriented path such that
oucrcu,

(the orientation of T is such that U stays on the right) with indentations
into U at the OU-polesof P and C . Since S(P,C) is Ry-stable and
PC is analytic on T, the closed curve det(I + PC)T) encircles the origin
counter-clockwise k, + k. times.

Fix A € B(r) . For a contradiction, suppose that there exists a Aq € [0, 1]
for which the number of (U \ 8U)-zeros of det 51:.,. ra 1 kptk , where k#0.
Then by the stability of S(P + AoA,C) , the closed curve

det(I+ PC + XAC)(T)
encircles the origin counter-clockwise k,+k.tk times. Now consider the homotopy
det(I+ PC + proAC)T) , p€f0,1],

which continuously (in g ) deforms the closed curve at px = 0 to the closed
curveat p=1. Since k #0, there exist po € (0,1) and a point v, €' C U
such that

det(I + PC + [toz\oAC)(‘)’o) =0 .
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Since oo € [0, 1] and since both det Dpyyx,a and det D, are analytic on

I' , this contradicts the assumption that
det Dpyporoa det(I+ PC + poroAC)det D, = 1 .

Hence we conclude that the unity-feedback system S(P+AA,C) is Ry-stable for
all A e[0,1] onlyif k=0 forall A € [0,1].

We complete the proof by showing that k=0 forall A € [0, 1] if and only
if Ae M(Ry). If A is Ry-stable, fqr all A € [0,1], the U-poles of P
and (P + AA) are identical with the same multiplicities. Now for a contradiction,
suppose that k=0 forall AA , X € [0, 1] ; suppose also that A ¢ M(Ry) .
Since k=0, A -cancels at least one (U \ 8U)-pole of P and introduces
another. Consequently, for any A € (0,1), P+ AA has at least one more
(U \ 8U)-pole than P . This contradicts the fact that £ =0.
a

We now prove Lemma 2.5.7 in a way similar to the previous sections. The
following lemma (see also [Hua.2]) establishes the necessary and sufficient condition

for the perturbed system to be stable.

Lemma 2.5.8 (n&s condition for the stability of S(P + A, C))
Let themaps P and C € M(IR,(s)) be such that the feedback system S(P,C)
is Ry-stable . Choose the.r.cfs (Np,D,) of P and (N.,D.) of C such that

N. D.|[N D] _q

D,, —Np Dp “Nc - ’
for some l.cf.s (5p,ﬁp) , (D.,N,) of P and C, respectively. Let (Na,Dya)
be an r.cf. of A € M(IR,(s)) . Consider the feedback system S(P + A,C)

shown in Figure 2.11 ; note that only the input and the output of (P + A) are

observed.
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Under these assumptions, the feedback system S(P+A,C) is Ry-stable (i.e.

the closed-loop map (uj,u2) — (e1,e;) is Ry-stable ) if and only if the map
D,Na(Da + D,N.N5)™'D,

1s Ry-stable .

Figure 2.11:
The feedback system S(P + A,C)

Proof

Let (Na,Da) be an r.cf of A € M(IR,(s)) . By assumption, only the
input and the output of (P + A) are observed. Hence, the unity feedback system
S(P+A,C)is RU-st.a.ble if and only if the map (ui1,u2) — & (see Figure 2.11)

is Ry-stable . Writing the summing node equations in Figure 2.11 , we obtain

D, Np Na [ €c U
-N. D, 0 & ] = [uz ] . (2.33)
0 —D, Da || &a 0
: D, -N, 0] I o o
Operating on the left by N. D. 0| and o I o successively, we
0 oI, 0 D, I
obtain
Io D,Na €. Dou; — Npug
0 I KchA fp :I = ]'\7;1!1 +D_C'RL2 . (234)
0 0 Djp+ Dp]chNA éa Dp[mul + Ecug]

Hence the map (u;,u;) — & is given by

& = Dyuy - Nyta = D,Na(Da + D,N.Na) D, W, D] [ u ] L (2.35)
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Since the map [J‘\Tc 5c] has a proper Ry-stable right-inverse, we conclude that the
map (uj,u2) — £ is Ry-stable if and only if the map BPNA(DA +D,,JVCNA)‘1D,,
is Ry-stable .

O

Proposition 2.5.9 (admissible additive perturbations)

Let the plant P € M(IR,(s)) be Ry-stabilized by the compensator C €
M(IR(s)) in the unity-feedback configuration S(P,C) ; then given any undesired
region U and any radius map r € Ry , there exists a A € B(r) \ M(Ry) such

that the unity-feedback configuration S(P + A, C) is not Ry-stable .

Proof
The proof is similar to the proof of Proposition 2.5.6 . The perturbation A

can be constructed so that the map
— -1
Da(Da + N.D,Na)™ D,

is not Ry-stable.

O
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2.6 Robustness under Stable Uncertainties

In the previous section, four classes of plant perturbations were considered (pre-
and post-multiplicative, feedback, additive); for each of these cases, robust stabi-
lization by a fixed compensator in the unity-feedback system necessarily required
the uncertainty A to be Ry-stable .

In this section, we briefly go over the simplifications due to the change of un-

certainty description to one that is Ry-stable .

Definition 2.6.1 (ball of uncertainty By(r))
For an undesired region U and a radiusmap r € Ry (hence no poleson 8U ),

the ball of uncertainty By(r) is defined as

By(r) := { A€ M(Ruy) | lla(s)ll < [r(s)] Vs€dU }. (2.36)

Note that unless [r(s)] =k forall s € dU |,

By(r) # { A€ M(Ruy) | [lAlly < lirllu } -

Fora given P € M(IR,(s)) and A€ M(Ry), the four perturbation classes
Pore(A) 5 Ppost(A) , Ppeea(A) and Poyq(A) and are shown in Figures 2.12 ,

2.13 , 2.14 and 2.15, respectively.

----------------------

Figure 2.12:
The perturbation class Pp,.(A)
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Figure 2.13:
The perturbation class Ppo.e(A)

Figure 2.14:
The perturbation class Pjgeeq(A)

Figure 2.15:
The perturbation class P,gq(A)
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Lemma 2.6.2 (n&s condition for stability with stable A)

Let the maps P and C &€ M(IR,(s)) be such that the feedback system S(P,C)

is Ry-stable . Choose the r.cfs (Np,D,) of P and (N.,D.) of C such
that |
AIEEIEL

EfEa
for somel.c.f.s (Bp,ﬁp) , (D, N,) of P and C,respectively. Let A € M(Ry)

S

be given; under these assumptions,
i) The feedback system S(P,e(A),C) is Ry-stable if and only if
(I+N.N,A) (2.37)

is Ry-unimodular .

ii) The feedback system S(Ppos(A),C) is Ry-stable if and only if
(I+N,NA) | (2.38)

is Ry-unimodular .

iii) The feedback system S(Pjeed(A),C) is Ry-stable if and only if
(I+N,D.A) (2.39)

is Ry-unimodular .

iv) The feedback system S(P,44(A),C) is Ry-stable if and only if
(I1+N.D,A) (2.40)
is Ry-unimodular .

Lemma 2.6.3 (small gain)

Foragiven H GORU""" with |[H|ly < 1 ,themap (I+H) is Ry-unimodular .
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Comment 2.6.4
The lemma follows by the contraction mapping theorem; H is the transfer function
description of the linear map H with the Lipschitz constant ||H ||y . The

following proof makes use of the transfer function description of the linear map

H.

Proof of Lemma 2.6.3

Let H € Ry™" ; then (I+ H) € Ry™" . The map (I+ H) is
Ry-unimodular if and only if rank(I+H(s)) =n forall s€ U. Let ||H||lu <1
and for the sake of contradiction suppose that there exists an sy € U such
that rank(I + H(so)) < n . Then there éx:ists a nonzero r € € such that

(I+ H(s0))z =0 . Hence
lz| = |H(so)z| < |[H(s0)lllz| < |[H|lwlzl < [z| ,

which contradicts the fact that |z| # 0 . Hence we conclude that the map (I+ H)
~ is Ry-unimodular .

(W]

Proposition 2.6.5 (robust stability under a ball of uncertainty)
Let U be an undesired region satisfying the matching condition in Definition 2.2.4
and let the map H € M(Ry). Let r € Ry be a radius map.

Under these assumptions the map (I+AH) is Ry-unimodular V A € By(r)
if and only if

lr(s)| | H(3)|| <1 Vse€dU
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Proof
(13 if b2}
Let the perturbation A € By(r). Since A and H € M(Ry) by assumption,

AH € M(Ry) and
HAH(s) || < [lAS) I H()| < Ir(s)lIlH(s)]l <1 ,Vse€dU.

Hence ||AH||ly < 1 forall A€ By(r). By Lemma 2.6.3 , the map (I+ AH)
is Ry-unimodular for all A € By(r) .
“ only if »

To prove the contrapositive, suppose that there exists an so € 8U such that
[r(30)| || H(30) || = 1. We show that'there exists a Ag € By(r) such that the map
(I+ AoH) is not Ry-unimodular .

Without loss of generality, we consider the case where the map H € Ry™" for
some n > 1 (if the map H is notsquare, then the singular-value decomposition
obtained below will be augmented by a band of zero rows or zero columns and the
rest of the proof will still hold after taking care of dimensions).

Let A and B € M(C) be the unitary matrices defined by the singular-value

decomposition of H(sg) , where

|| H(s0)Il
02
H(s) =: A . B . (2.41)
On
Let Ko € M(C) be defined as
-1
r(s0)l1H (s0)ll 0
Ko := B! _ A7 (2.42)
0

Let zo , yo € €* be such that

- . T
Ko =: 2oy, -
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Since U satisfies the matching condition by assumption, thereexist z , y € Ry”

such that
i) z(s0) =20 , Y(s0) =10 and
ii) |z(s)] <lzo|l , [¥(s)| < lyo| forall s €U .
Let K :=zyT € M(Ry) . Note that by construction K(sq) = Ko and
K ()l = llz()y" (s)]] = |2(8)l ly(s)] < ol lyol = llzong || = || Koll , Vs € ou .
Let the perturbation A, be defined by
Do(s) :=r(s)K(s) VseC.

Clearly, Ao € M(Ry) ; moreover Ag € By(r) since

1Al = (o)l K (s)]
< (o)l 1Kol
Ir(s)l
= T H @
< Irs)l VsedU.

By calculation from (2.41) and (2.42) , we have
det(I+ Ao(se)H(s0)) =0 ;

hence the map (I+ A¢H) is not Ry-unimodular .

a

From Lemma 2.6.2 and Proposition 2.6.5 , we obtain the following corollary.

Corollary 2.6.6 (n&s conditions for robust stability when A € By(r))

Let U be an undesired region satisfying the matching condition in Definition 2.2.4 .
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Let the maps P and C € M(IR,(s)) be such that the feedback system S(P,C)
is Ry-stable . Choose the r.c.f.s (N,,D,) of P and (N.,D.) of C such that

]T/:c Ec Np Dc — I
Dp —Np Dp “Nc - ’
for some l.c.f.s (5,,, N;,) , (ﬁc,m) of P and C, respectively. Let r € Ry

be a radius map.

Under these assumptions, the feedback system
i) S(Ppwe(A),C) is Ry-stable for all A € By(r) if and only if
[r(s)| [IN.Ny(s)]| <1, VsedU . - (2.43)
il) S(Ppoat(A),C) is Ry-stable for all A € By(r) if and only if
Ir(s)| ||IN,No(s)]| <1, VsedU . (2.44)
iii) S(Preca(A), cj is Ry-stable for all A € By(r) if and only if
|r(s)|||N;D'c(s)|| <1, VYsedU . (2.45)
iv) S(Pa.4da(A),C) is Ry-stable for all A € By(r) if and only if

M) INDy(s)ll <1, VsedU . (2.46)



Chapter 3

Factorizations of Linear Maps

3.1 Introduction

In this chapter, all plants and compensators are represented by linear maps ( not
necessarily time-invariant nor ﬁ;&ite-dimensional ) . Clearly this general setting
includes the contents of Chapter 2 as a special case of factorizations of linear maps.
i However this should not give the impression that the results of Chapter 2 will
be simply repeated as generalizations. Chapter 3 will still have an input-outpﬁt
approach; however a transfer function description will no longer be available for
general linear maps (although transfer-function-like representations of certain time-
varying finite-dimensional state-space representations are available in the literature,
the manipulations in this noncommutative algebra definitely requires caution and
even so, it does not provide the insight that its time-invariant counterpart does) .
For this reason, Chapter 3 studies the key points of factorizations of transfer func-
tions (which is studied only for the proper finite-dimensional case in Chapter 2 due
to its simplicity) and extracts those which will be the basis of Chapter 4 . In other

words, Chapter 3 is a stepping stone to Chapter 4 .

53
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In Chapter 3 , each subsystem is considered as a black-box whose input-output
pairs are uniquely determined by a causal linear map. Clearly the set of causal
linear maps (with the composition and addition operations) have certain properties

that are useful in derivations: 1) linear maps over product spaces have a structured

i A
form;ie. A : Aje X Age — Age X Age can be expressedas A = [ ﬁ" Am
21 A
for some causal linear maps A;; , ..., Ay over appropriate input and output

spaces, ii) the set of linear maps is left- and right-distributive (composition over
addition) . These specific tools are used in the manipulations in Chapter 3 . For
this reason, a justification of “left-factoﬁzations” can still be made for general linear
maps. When the algebra of input-outi)ut maps 1s restricted to be left-distributive
only (Chapter 4) , certain constraints on the manipulations will be readily apparent.

This chapter is organized as follows:

Section 3.2 introduce; the preliminary definitions on causal nonlinear input-
output maps; this secti(;oli serves as the tool-box for the rest of the thesis. In
order to cut down on repetitions, the standard definitions on causal input-output
maps over extended spaces are introduced once and for all in the general nonlinear
context (see Definition 3.2.1) . As pointed out in the List of Symbols, sans serif style
(A,...,Z) isused for causal linear maps; calligraphic style (A,....,2) is
used for causal nonlinear maps. Hence the set of results for each style, say Qp

’

2p and Qp, can be ordered as follows:
Qp CQp C Qp .

Note that Chapter 3 deals with the first inclusion. Standard bounded-input
bounded-output stability definitions are introduced in Definitions 3.2.3 - 3.2.6 .
Section 3.3 starts with right and left factorizations for linear maps (see Defini-

tions 3.3.1 - 3.3.4) . The properties of these factorizations are stated and estab-



lished.

In Section 3.4 , we study the general unity-feedback system S(P,C) (see Fig-
ure 3.1) using the tools in the previous section. Lemma 3.4.6 shows that in a stable
S(P,C) , the plant and the compensator both have right and left factorizations.
Furthermore, the properties of the pseudo-state maps (mapping the closed-loop
system inputs to the pseudo-state of the right factorizations) in S(P,C) are
investigated. We show the necessary and sufficient conditions on stabilizing lin-
ear compensators provided that the plant has coprime factorizations (Propositions
3.4.9 - 3.4.10) . If the plant has both right and left coprime factorizations, all causal
stabilizing linear compensators are parametrized in Fact 3.4.12 . |

Although the class of linear maps in Chapter 2 has both right and left coprime
factorizations, this is not the case for general linear maps. Note that in general, the
composition of linear single-input single-output maps is not commutative. Recall
that in Section 3.4, the existence of coprime fa.cforizations is crucial for the results
stated. For this reason, Section 3.5 studies the conditions under which coprime
factorizations exist for linear maps. First we show that in a stable S(P,C) , the
plant and the compensator have right-coprime factorizations if and only if they
both have left-coprime factorizations (Proposition 3.5.1) . This parallel existence
properties of right an left coprime factorizations is exclusively due to linearity .
Propositions 3.5.3 — 3.5.4 show that in a stable S(P,C) , the plant has right
(left) coprime factorization if and only if the compensator has left (right) coprime
factorization. These properties simplify the search for coprime factorizations of
linear maps. The crux of this section is Theorem 3.5.6 ; it states the necessary and
sufficient conditions to obtain coprime factorizations of the subsystems in a diagonal

linear map with coprime factorizations. In a stable S(P,C) , the diagonal map
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[ E 2 ] has coprime factorizations (Fact 3.5.5) .

Section 3.6 briefly introduces the nonlinear unity-feedback system S(P,C)
and the related definitions.

Section 3.7 consists of a general robustness analysis of the linear compensator
in a stable S(P,C) under nonlinear plant perturbations. Using coprime fac-
torizations of linear maps and the results in the previous sections, we study four
cases in subsections 3.7.1 - 3.7.4 : additive, feedback, pre-multiplicative and post-
multiplicative nonlinear plant perturba.ﬂions. In each of these cases, the perturbed
plant model has four subcases resulting from the number of inputs and outputs
considered. For each subcase we state the necessary and sufficient condition for the
nominal comp.ensa,tor to simultaneously stabilize the perturbed plant. Comment
3.7.2 gives an intuitive explanation on the form of the necessary and sufficient con-
ditions in Theorem 3.7.1 (the additive case) . The rest of the subsections state the.
results in detail; however the proofs are omitted since they are in essence identical
to the proof of Theorem 3.7.1 . The corollaries at the end of each subsection char-
acterize the set of all nonlinear perturbations for which the associated perturbed
system remains stable.

This section is important for design purposes: the results allow the designer to
check whether the expected perturbations will destabilize the design; furthermore

the conditions for robust stabilization are necessary and sufficient.
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3.2 Preliminaries

The following definitions are introduced to build the framework of the input-output
approach used in the rest of the thesis. Note that all sans serif letters A,...,Z

denote linear maps; all calligraphic letters A, ..., Z denote nonlinear maps.

Definition 3.2.1 (IIT and extended space A.)

Let T CIR andlet 1/ be a normed vector space. Let
Ci={u|u:T-V}

be the vector space of L/-valued functions on T
(Forexample: ( := {u | v:Z,—TR"})

For T € T , the projection map Ilt : { — { is defined by

_Ju@® t<T,teT
HT“(““{GC t>T,teT ,

where ¢ is the zero elementin ( .
Let A C ( be a normed vector space which is closed under the family of

projection maps {HT}TeT .Foragiven u€ A |, let the norm
Ndyull: T >Ry

be a nondecreasing function.
(For example: A := {u :IRy =IR"™ | sup,ep, ||u(t)|] < oo} )
The exztended space A. is defined by

A = {uEC | VTE’T,HTueA}.

Note that the causal extension A, of A is introduced to take “unbounded”

signals into account. The norm || - || is defined for the members of A only.
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If A. was not introduced, then the input-output approach could represent only

“stable” maps.

Definition 3.2.2 (causal map)

A nonlinear map F : A, —» A, is said to be causal iff

It F = It FIlt ‘v"TGT.'

Typically all realizable models are causal. At any time instant T we have
access to the input signals up to T , hence the map should not require “future”
values of the input to determine the output at the time instant T . For example,

the inverse of the delay operator

k)=elk-1) keZ
D avey{ MO =ch=D k<2,

is not causal. A convolution system H , where

Hu(t) = /_' (¢, Tyu(rdr

is causal.

We define two function spaces closely related to A, (the superscripts i and
o refer to “input” and “output”, respectively) : Let AL and A? be extended
function spaces analogous to A, except that their members take values in the
normed vector spaces L/ : and V ® | respectively; the associated projections IIt

are redefined accordingly.

Definition 3.2.3 (A-stable)
A causal nonlinear map H : AE: — A? is said to be A-stable (see also [Des.9]) iff

there exists a continuous nondecreasing function ¢ : IR, —IR, such that
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Hull < ¢n(llull) VueAl.

For the sake of brevity, the composition H,; 0 H, of two causal maps will be
denoted by H,H, . For aninput u the output H(u) will be denoted by Hu.

In the linear case, the output bounding function can be taken as linear.

Definition 3.2.4 (finite-gain-stable)

A causal linear map H: Ai — A? is said to be finite-gain-stable [Des.1]} iff there

exists k£ > 0 such that

IHu|| < Kllul| VueAl.

Note that the “gain” of a finite-gain-stable linear map H can be defined as

Hall
Tl

sup
ueAl ,u0

Definition 3.2.5 (A-unimodular)

A causal nonlinear map M : A, — A, is called A-unimodular iff

i) M is A-stable, bijective and

i) M1 A, o Ae is A-stable.

For the linear case, we define finite-gain-unimodular maps.

Definition 3.2.6 (finite-gain-unimodular)

A causal linear map M : A, — A, is called finite-gain-unimodular iff

i) M is finite-gain-stable, bijective and
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i) M A, — A is finite-gain-stable.

a

Note that the sum and composition of A-stable (finite-gain-stable) maps are
A-stable (finite-gain-stable) ; the composition of A-unimodular(finite-gain- unimo-
dular) maps are A-unimodular (finite-gain-unimodular) .

In this chapter, we consider factorizations of linear maps only. Since the pre-
vious chapter was specifically focused on factorizations in Ry , due care must be
taken in the generalization of coprimeness definitions.

The following definitions are introduced using the same names as in the previous
chapter because they are direct generalizations. However, the existence of such

factorizations are not as straightforward asin Ry
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3.3 Factorizations of linear maps

Definition 3.3.1 (right-factorization)
(N,D) is said to be a right-factorization (.f.) of a causal linear map P : Al — A2
iff
i) the linear map N : Al — AY is finite-gain-stable and
ii) the linear map D : AL — Ai is finite-gain-stable, bijective and has a causal
inverse and

iii) ND'=P .

Definition 3.3.2 (left-factorization)

(b—,ﬁ) is said to be a lefi-factorization (1f) of a causal linear map P : AL — A2
iff

" i) the linear map N : Al — A2 is finite-gain-stable and

ii) the linear map D : A2 — A? is finite-gain-stable, bijective and has a causal

inverse and

Definition 3.3.3 (right-coprime factorization)
(N,D) is said to be a right-coprime factorization (r.c.f.) of the causal linear map
P AL — A iff

i) (N,D) isanr.f of P and

ii) there exist linear finite-gain-stable maps U: AS — AL, V. Al o Al

such that L
99] (]t



where I denotes the identity map on AL

a

Note that the identity in (3.1) resembles the Bezout-identity [Vid.3] in Defini-
tion 2.2.9 ii) . The finite-gain-stable maps (3.1) may not have transfer function rep-
resentations. The matrix notation in (3.1) should be interpreted as: U composed

with N plus vV composed with D equals the identity map. For this reason,

identities as in (3.1) will be often referred to as “Bezout-like” identities.

Definition 3.3.4 (left-coprime factorization)

(5, N) is said to be a right-coprime factorization (l.c.f.) of the causal linear map
P Ale — AQ iff '

i) (D,N) isanlf of P and

ii) there exist linear finite-gain-stable maps U: A% — AL | V: A2 = A? such

[N D] Wl:I,

where I denotes the identity map on A2.

that

Fact 3.3.5 (all r.c.f.s are related by finite-gain-unimodular maps)
Let (N,D) beanr.ct. of thelinearmap P: AL — A2 ;then (N;,D,;) isanr.cf.

of P if and only if there exists a linear finite-gain-unimodular map M : AL — Ai

o ]=[p]m-

such that

Proof
(49 if ”
Since (N,D) is an r.cf of P and the linear map M is finite-gain-

unimodular, (N,,D,) isalso an r.f. of P . By assumption there exist causal
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linear finite-gain-stable maps U and V such that (3.1) holds. Substituting
N = NIM_1 and D= DIM"1 , we obtain

[UN1+\7'D,]M-1=I.

Composing on the left by M™' and on the right by M and using the linearity

of M™! , we obtain
(M“U)Nl + (M-IV)Dl =I;

hence (N;,D;) isanr.cf. of P
“ only if »

By assumption there exist linear finite-gain-stablemaps U , V | Ul and

—

V.1 such that

UN+VD =1, (3.2)
UN,+V.D, = 1. (3.3)

Le¢ M :=D7'D, . Composing both sides of (3.2) by DD, and using
ND~! = N,D;! , we obtain

hence the linear map M is finite-gain-stable. By the definition of M , the map
M is bijective and has a causal inverse.

Composing both sides of (3.3) by M~ =D;'D and using ND~* = N,D;? |
we obtain

M-l = U]N + le H (35)

hence M™! is finite-gain-stable. From (3.4) and (3.5) , we conclude that the

finite-gain-stable map M is in fact finite-gain-unimodular . Furthermore
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D1 = DM a.nd N1=NM

]

Fact 3.3.6 (all l.c.f.s are related by finite-gain-unimodular maps)

Let (E,N) be an lcf. of the causal linear map P : Ai — A2 ; then
(Bl,ﬁl) isanl.cf. of P if and only if there exists a linear finite-gain-unimodular
map M : A2 — A2 such that

[5. %] -M[5 N].
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3.4 Linear unity-feedback system

Definition 3.4.1 (linear unity-feedback system S(P,C))

Let P : Ai — A% and C: A2 - Ai be causal linear maps (not necessarily

time-invariant). The unity-feedback system S(P,C) is shown in Figure 3.1.

U2
U1 4 e iy + e Y2
—;cf—— C P -
Figure 3.1:

Linear unity-feedback system S(P, C)

In Figure 3.1, u; and uzh denote the exogenous inputs; the outputs of C and
P are denoted by y;, and vy, , respectively. From the summing node equations

in Figure 3.1 , the pair (e;, e;) is determined by

R E T I
Definition 3.4.2 (well-posed S(P, C))

The unity-feedback system S(P, C) (see Figure 3.1) , where P and C are linear,

is said to be well-posed iff there exists a causal map (uy, u2) — (e1, €;) .

Fact 3.4.3
For the linear unity-feedback system S(P,C) in Figure 3.1, the following state-
ments are equivalent:

i) The linear unity-feedback system S(P,C) is well-posed.

ii) There exists a causal map (uy, u2) — (y1, ¥2) .

iii) The linear map (I 4+ PC) has a causal inverse.
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iv) The linear map (I+ CP) has a causal inverse .

Proof
i) & ii)
Follows by (3.6).
i) & iii) & iv)

Writing the summing node equations in Figure 3.1 in termsof u, , us , €

EXIHEHE

hence the closed-loop map (u;, uz) — (€1, €2) 1is given by

ERIHENE .

By calculation and using linearity, (3.7) is equivalent to

[ 5]

and e; , we obtain

(I+'PC)'1 -P(I+CP)"W
C(I+PC)'1 (I+CP)™ |
[ (1+PC)” —(I+PQ)7'P ]
| (I+CP)T'C (1+CP)T

(3.8)

a

Definition 3.4.4 (finite-gain-stable S(P,C))
A well-posed linear unity-feedback system S(P,C) is said to be finite-gain-stable

iff the causal linear closed-loop map (uy, uz) — (e1, €3) 1is finite-gain-stable.

Fact 3.4.5

For the well-posed linear unity-feedback system S(P,C) in Figure 3.1 , the fol-

lowing statements are equivalent:

i) The unity-feedback system S(P,C) is finite-gain-stable.
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ii) The causal linear map (u;, u2) — (1, y2) is finite-gain-stable .
iii) The causal linear map

-1
[_IC PI] : A9 x Al = A9 x Al

in (3.7) is finite-gain-stable.
Proof

Follows by (3.6) and (3.7).

O

Lemma 3.4.6 (a necessary condition on P and C in stable S(P,())
Let the causal linear maps P : AL — A% and C: A2 - AL be such that the
* unity-feedback system S(P,C) is finite-gain-stable; then the linear maps P and

C have right- and left-factorizations.

Proof
We prove the result for C <;n1y; the case for P follows similarly.
By assumption the unity-feedback system S(P,C) is finite-gain-stable; hence
the linear maps
Dc == (I+CP)™",
Ne == (I+CP)'C,
C(I+PC)™"
D¢ = (I+PC)™

=2
a
Il

—~-1
are finite-gain-stable (see (3.8)). Since D¢ and Dc-l are causal and
-1 =-1~
NcDe ' = C =D N, |

we conclude that (N¢,D¢) isanrf of C and (Dc,N¢) isanlf of C .

O
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Lemma 3.4.7 (n&s condition for finite-gain-stable S(P,C))"
Let the linear map P : AL — A2 be given by an r.cf. (Np,Dp) (hence there

o~

exist linear finite-gain-stable maps U , V' such that
| UNp+VDp=1 ) (3.9)
then the linear unity-feedback system S(P,C) is finite-gain-stable if and only if
the map
(u1,u2) — &p

from closed-loop inputs into the plant pseudo-state (see Figure 3.2) is finite-gain-

stable.

Proof

By Definition 3.4.4 , the unity-feedback system S(P,C) is finite-gain-stable
if and only if the closed-loop map (u;, uz) — (e, €z) is finite-gain-stable. By
assumption, (Np,Dp) .isanr.cf. of P ;hence from thé summing node equations

in Figure 3.2 and (3.9) , we obtain
tp=U(w —e) + Ve . (3.10)

Since the linear map U is finite-gain-stable, from (3.10) we conclude that the map
(w1, u2) — (e1, ez) is finite-gain-stable if and only if the map (u;,u3) — €p is
finite-gain-stable.

a

Corollary 3.4.8 (the pseudo-state map (uq,u2) — (&c,&p))

Let the linear maps P : Al — A2 and C: A% — Al haver.cfs (Np,Dp) and
(N¢,Dc) , respectively; then the unity-feedback system S(P,C) is finite-gain-

stable if and only if the causal linear map M , defined by

M:={_[N)E gg];Angg_,Angg, (3.11)
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is finite-gain-unimodular.

Proof

Writing the summing node equations in Figure 3.2 in terms of the pseudo-states

HELE

where the map M is as in (3.11). The proof follows by Lemma 3.4.7 .

ép and {c , we obtain

Y2

Figure 3.2:
Linear unity-feedback system S(P,C) with individual r.c.f.s

Proposition 3.4.9 (n&s condition on a stabilizing compensator)

Let the linearmap P : Al — A haveanlcf. (Dp,Np) ; then the unity-feedback
system S(P,C) is finite-gain-stable if and only if C hasanr.cf (N¢,D¢)
such that (3.12) below holds:

NPNC + EPDC =1 (3.12)

Proof
(13 if ki

By assumption (N¢,D¢) isanr.cfof C and (Ep,ﬁp) isanlcf of P .
Writing the summing node equations from Figure 3.2 in terms of the pseudo-state

&c , we obtain

(NPNC +5PDC)€C = [ﬁp - NP] [ :1 ] ;

2
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substituting (3.12) we see that the map (uj,uz) — £c is ﬁnite-gain-;table. ‘By
Lemma 3.4.7 , we conclude that the feedback system S(P,C) is finite-gain-stable.
“ only if ”

By assumption, (Dp,Np) isanlcf. of P and S(P,C) is finite-gain-stable.
By Lemma 3.4.6, C hasanrf. ;callit (N;,D;) . Writing the summing node

equations from Figure 3.2 using the r.f. (N;,D;) of C , we obtain
(Nle + Ele)ﬁc = [Bp - Np] [ Z: ] . (3.13)

By assumption, there exist finite-gain-stable maps U and V such that NPU +

5pV=I . Set
Uy _ V
U9 - —U -

e (e, 1) = (Diéc, Nugc)

The cloéed-loop map

is finite-gain-stable. From (3.13) , the ﬁnité-ga.in—stable maps N E n+—vy and

Dc : n> e; are given by

Ne = Ny(FeN, +’5,,D1)'1 ,

Dc = Di(WeN, +5PD1)-1 .
Moreover D¢ ™! is causal. Hence (N¢,D¢) isanr.cf of C and

NPNC + BPDC =1.

A result similar to Proposition 3.4.9 can be obtained by requiring only that the

plant P has an r.c.f.

Proposition 3.4.10 (n&s condition on a stabilizing compensator)

Let the linear map P : Ai — A2 haveanr.cf (Np,Dp); then the unity-feedback
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system S(P,C) is finite-gain-stable if and only if C has an Lef. (BC,NC)
such that (3.14) below holds:

Nch + Bch =1 ’ (3.14)

Lemma 3.4.11 (all solutions (N¢,D¢) of (3.12))
Let the linear map P : Al - A2 have an r.cf  (Np,Dp) and an lcf
(Bp,ﬁp) . Choose the linear finite-gain-stable maps U | 1] , V and V

such that

UNp+VDp = I (3.15)
NpU-I-ﬁpV =1. (3.16)

Under these assumptions, the set of all linear finite-gain-stable solutions Nc¢ ,

D¢ of equation (3.12) , namely
NPNC + BPDC =1,
is given by

{ [ gg ] = [ \l;-l_ 3::8 } | Q: A% — Aie is linear and ﬁnjte-ga.in-stable} .

(3.17)

Proof

Any pair N¢ , D¢ in (3.17) is a solution of (3.12) : using the linearity of

Np , 5p and (3.16) , we obtain
N-ch + BPDC = NP(U + DpQ) + Bp(v - NPQ)

- 1+(NPDP_'5PNP)Q
= 1.
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[8V]

Conversely, let N¢ and D¢ be a solution of (3.12); then
Npu + pr = NPNC + 5PDC =I.

. ~ -1 : — ol
Composing on the left by Dp , and substituting Npr-1 =Dp Np ,we
obtain |
V-Dc= Nprm1 (Nc - U) . (3.18)
Let
Q:=Dp'(Nc-U) . (3.19)

From (3.15) , (3.18) and (3.19) , we obtain

Q = (u Np+\7Dp)Q

]
Cc
—
<
|
O
N
+
<
—~~
=
(]
I
c
~

hence the linear map Q in (3.19) is finite-gain-stable. From (3.19) we also have
Ne =U+DpQ . From (3.18) we have Dc =V - NpQ .

a

Fact 3.4.12 (parametrization of all stabilizing compensators C)
Let the linear map P : Ai — A2 have an r.cf. (Np,Dp) and an lecf.
(Bp,ﬁp) . Choose the linear finite-gain-stable maps U U , V and V

such that

UNp+VDp = I | (3.20)
NpU+DpV = 1. (3.21)

Under these assumptions, the set of all linear compensators C : Al — Ai such

that the linear unity-feedback system S(P,C) is finite-gain-stable is given by
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{ C= (U + DpQ) (V - NpQ)-1 | Q:A%— Ai, is linear finite-gain-stable

and
-1
(V - NpQ) is causal } . (3.22)
Moreover, the map Q +— C defined in (3.22) is a bijection onto finite-gain-stabilizing
compensators.
Proof

By Lemma 3.4.11 , the Q — C map in (3.22) gives all compensators C such
that S(P,C) is finite-gain-stable; hence it is surjective. Let a member C in

(3.22) be described by two parameters Q, and Q, . We show that

C = (U+DpQ,)(V- Nle)'1 (3.23)
= (U+DpQ,)(V-NpQ,)~ (3.24)
implies that
Ql = Qz .

From (3.21) , (3.23) and Bpr = Npr , we obtain

NpC = No(U+DpQ,)(V-NeQ))™
- (I— 5pV+5PNPQ1) (V - NPQI)_I
= [1-Bo(V-NeQ,)] (V- NpQ,)™
= (V-NpQ)™ - Bp. (3.25)

Similarly, from (3.21) and (3.24) , we obtain

— -1 —_—

NpC = (V— NPQg) — Dp . (3.26)
From (3.25) and (3.26) , we obtain

(V=NpQ)™ = (V-NpQ;)™



substituting in (3.23-3.24) , we have
U+DpQ, =U+DpQ, .

Since Dp-l exists, we conclude that | Q,=Q, . Thusthemap Q— C is
injective.

a
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3.5 Existence of r.c.f.s and l.c.f.s

In this section we study the conditions under which coprime factorizations exist for

linear maps.

Proposition 3.5.1 (r.c.f. <= l.c.f.)
Let the linear unity-feedback system S(P,C) be finite-gain-stable; then the linear

maps P and C have r.cfs if and only if the linear maps P and C have
lefs.

Proof

We prove the “only if” since the other direction follows similarly.

By assumption, the linear maps P and C haver.c.fs; call them (Np,Dp)
and (N¢,D¢) , respectively . Since the linear feedback system S(P,C) is
finite-gain-stable, the linear map M defined in (3.11) is finite-gain-unimodular by

Corollary 3.4.8 . Partition the finite-gain-stable inverse map M 1 oas

M= [.ﬁ.z ‘ng : (3.27)

We claim that (Dp,Np) and (Dc,N¢) defined in (3.27) are Lefsfor P and

C , respectively. From (3.11) ,

I P|[De 0
m=[ e 1 ][5 o]

taking the inverse and using (3.8) ,

i} (Dt o [ 1P
M = E Dpt [[-C I I
_[Det o ][ @+POT -P(T+cCP)™
Lo D]l Cc(I+PO)TT (1+CP)”

(3.28)

[ Dc'(I+PC)™  -Dc'P(1+CP)™
| Dp'C(I+PC)™ Dp'(I+CP)T
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Setting (3.27) equal to (3.28) , we see that the maps Bp and 5C have causal

inverses; moreover

Dp Np = (I+PC)DD*P(I+CP) ™" =P
D¢ NC = (I+CP)DPDP-IC(I+PC)_1=C .

Hence (BP;NP) and (Bc,ﬁc) arerfsof P and C , respectively. Using the
(1,1)- and (2,2)-entries of the identity M~IM =1 , we conclude that (5p, Np)
isanlef of P and (Dc,N¢) isanlef of C

o

Comment 3.5.2
The proof of Proposition 3.5.1 is by construction; hence (3.28) shows how to obtain
the L.cfs of P and C from their r.c.f.s , provided that the linear unity-feedback

system S(P,C) is finite-gain-stable.
g
The following proposition is similar to Proposition 3.4.9 ; however the emphasis
is on the existence of coprime factorizations. In a finite-gain-stable S(P,C) |, the

existence of an r.cf. (l.c.f.) of one of the blocks implies the existence of an l.c.f.

(r.cf.) of the other.

Proposition 3.5.3 (P has an L.c.f <= C has an r.c.f.)
Let the linear maps P : Al — A% and C: A2 — AL be such that the linear
unity-feedback system S(P,C) is finite-gain-stable. Under this assumption, the

map P hasanlcf if and onlyif C hasan r.cf.



Proof
“ only if »

Identical to the proof of the “only if* part in Proposition 3.4.9.
13 if k2]

By assumption, the linear feedback system S(P,C) is finite-gain-stable. By
Lemma 3.4.6 , the plant P has an 1.f. ; call it (51,Nx) . By assumption C
has an r.c.f; call it (Nc,D¢) . Writing the summing node equations in Figure

3.2 using the r.c.f. (N¢,Dc) of C , we obtain

(NINC +51DC)EC = [51 —Nl] [ Zl ]

2

Since S(P,C) is finite-gain-stable, by Lemma 3.4.7 the closed-loop map
(w1, u2) = €c
is finite-gain-stable. Hence the linear maps Bp and Np defined as
—_ o~ —_ -1_
Dp := (NlNc + Dch) D, (3.29)
— — —_ -1
Np := (NINC + DIDC) N, (3.30)
—_~ =1 .
are finite-gain-stable; moreover Dp  is causal. From (3.29) and (3.30) ,
NPNC + EPDC =1 ;

hence (Dp,Np) isanlcf of P

a
The following proposition is stated without proof; the proof is similar to that of

Proposition 3.5.3 .

Proposition 3.5.4 (P has an r.c.f <= C has an Lc.f.)

Let the linear maps P : Ai — A2 and C: A% - AL be such that the linear
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unity-feedback system S(P,C) is finite-gain-stable. Under this assumption, the

linear map P has an r.c.f. if and only if the linear map C has an lLc.f.

(]

Consider the linear (not necessarily time-invariant) feedback system S (P,0)

shown in Figure 3.1 . If S(P,C) is finite-gain-stable, then the linear map

RIRHEH
has both an r.cf. (N,D) and anlcf (5, N) . This result was proven in
[Vid.2] for the case where P has elements in the quotient field of an entire rng.
However, the conditions for existence of individual r.c.f. and l.c.f. of P and C
was left as an open question.

To show that the stability of the closed-loop does not imply that P and C
individually have coprime fa.ctoriza.tioﬁs, a special non-unique factorization domain
was constructed in [Ana.2] ; scalar p and c in the quotient field of this particular
ring have no stable coprime factorizations although [ 8 2 ] has an r.c.f.

We consider this problem from a general input-output approach, where the
multiinput-multioutput subsystems P and C are represented by linear (not
necessarily time-invariant) maps cieﬁned over extended spaces. We obtain r.c.f.s
and l.c.f.s of [ I; g ] when the feedback system S(P,C) is finite-gain-stable .
The main result is Theorem 3.5.6 , which states that: given coprime factorizations
of [ I; g ] , individual coprime factorizations for P and C exist if and only
if an r.cf. of P has a lower block-triangular “denominator” D . Note that
Theorem 3.5.6 answers the question posed in [Vid.2] ; the example constructed in
[Ana.2] is only one case where the conditions of Theorem 3.5.6 fail. In the linear
time-invariant finite-dimensional case where P and C have descriptions with ra-

tional function entries, the necessary and sufficient conditions in Theorem 3.5.6 are
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automatically satisfied due to the existence of triangular (Hermite) forms [Vid.3] .
Fact 3.5.5 (S(P,C) stable = [ I; g ] has r.c.f. and l.c.f.)
Let the linear maps P : AL — A% and C: A — Al be such that the linear
unity-feedback system S(P,C) is finite-gain-stable; then the map
['; g] L Al x A% - AS x AL
has both an r.c.f. and an l.cf.
Proof
Let themaps J and T be defined as follows :

J:ALx A2 AOx AL J:=[_2

I
0
i o o i — P o
ToAlxAz-AxAL L T=[F 2
Note that
-1 I P -1 u e
(I+TJ) - [.-—C I] : [u;]H[ez]

Since JTJ =1 , J is finite-gain-unimodular. By assumption, the linear unity-

feedback system S(P,C) is finite-gain-stable; hence the linear maps
N = T(I+JT), (3.31)
D := (I+JT)7 (3.32)
are _ﬁnite-gain-stable.. From (3.31) and (3.32), T = ND™! and IN+D=1 ;

hence (N,D) isanr.cf of T . Let

N := N (3.33)

w)

.= JIpJ. (3.34)

—_—l— _~ _~
From (3.33) and (3.34), D N =T and NJ+D =1 ; hence we conclude that
(D,N) isanlcf of T .

o
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Theorem 3.5.6 (coprime factorizations of P and C from [ '; g ])

Let I; g ] : Ai x A2 — A2 x Ai , where P and C are linear maps.

i) Let (N,D) Bea.nr.c.f. of ['; (C):] ; then P and C haver.cfs

Np,Dp) and (N¢,Dc) , respectively, if'and only if there exists a finite-
P G YC

gain-unimodular map R such that

Dp o
DR = [X1 Dc] , (3.35)
for some linear finite-gain-stable map X; : AL — Ag and where
.| Np X
NR =: X; Ne ] . (3.36)

ii) Let (B,N) be an l.cf. of [l; 2] ; then P and C havel.cfs

(5P,Np) and (BC,NC) , respectively if and only if there exists a finite-

gain-unimodular map L such that

LD = [ %” .)[5(; ] , (3.37)
for some finite-gain-stable map X; : Al — A2 and where
LN = [ ';J(: %(Z ] . (3.38)
Comments 3.5.7
i) Equation (3.35) is a structure test on the “denominator” map : [ I; 8

must have an r.cf. (N,D) , where D is of the specific lower block-
triangular form. In order to find the individual r.c.f.s of the subsystems from
the given r.cf. (N,D) of [ 5 g ] , we only need to determine Dp
and D¢ ; calculating X; is not needed. Similar comments apply for the

upper block-trianguler form in (3.37) .
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€1 E _ n
—Dp ' Np FT——
S S ¢
X1 b X3
1 E +w+ Y2
DC- o NC s :':
.................. C:
Figure 3.3:

A representation of linear [ I; g

il) Suppose that the block-diagonal matrix of Theorem 3.5.6 would involve n

subsystems where the map

P,

P.

has an r.cf. or an l.c.f. ; then the theorem still holds.

iii) If condition i) of Theorem 3.5.6 holds, then the map l(:: ((): has the
structure in Figure 3.3 . As we shall see below with (3.42) , [ E g ] is in
fact decoupled into two subsystems P and C . In other words, the blocks

X, and X; in Figure 3.3 can be removed for a simpler r.c.f. of [ I; ?: .

iv) By Fact 3.5.5, the linear map [ 'g g ] in a finite-gain-stable unity-feedback
system S(P,C) has an r.c.f. (l.c.f.) ; the individual subsystems also have

r.c.f.s (l.c.f.s) if and only if the condition stated in Theorem 3.5.6 is satisfied.

Proof of Theorem 3.5.6

We only prove part (i) ; the proof of (ii) follows similarly.



[13 if ”
) ) P o . o
By assumption, (N, D) is an r.c.f. of 0o C and R in (3.35) is finite-

gain-unimodular. By Fact 3.3.5, (NR,DR) isan r.cf. of [E g] . From

(3.35) , (DR)—1 isl given by

-1 _ Dp~" 0 .
(DR) = [—DC_IXIDP—I Dc-l] . (3-39)

Note that Dp-l and Dc_l are causal. Substituting (3.36) and (3.39) in

5 ¢|=(NR)(OR)™

‘we obtain XQDC-I =0 ; hence

X2 =0
Therefore
P = N|::o[)|:o_1 , (3.40)
C = Nch-l , (3.41)
X3 = NCDc_lxl . (3.42)

At this point, (3.40) and (3.41) imply that (Np,Dp) and (Nc,D¢) arerf’sof
P and C |, respectively.
Since (NR,DR) isanr.cf. of [ '; g ] , there exist linear finite-gain-stable
maps
Uu Ulz vll Vl2
[ 2| Vo Vi

such that

Uis U |[Ne o0 Vi Vi |[[Dp 0 ]_ '
TR CRIR
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From (3.43) , we obtain

U22NC + V22DC =1 s (3.44)

furthermore, by (3.43)
Ui2Ne +VieDe =0,

UuNp + VaiDp + UppXe + Vi Xq = I . (3.45)

From (3.42) , equation (3.45) becomes
UuNp +VuDp=1. (3.46)

From (3.44) and (3.46) we conclude that (Np,Dp) and (N¢c,Dc) are in fact
recf’sof P and C |, respectively.
“only if ” -

Let (Np,Dp) and (N¢,D¢) bercfsof P and C | respectively. Let

. Np 0
N"=[o Dp]

and

D, = [ D D ] .
Clearly (N;,D,) is anr.cf. of l; 8 . By assumption, (N,D) is also an
r.cf. of [ I; ?_‘_ . By Fact 3.3.5 , there exists a linear finite-gain-unimodular
map R such that |

DR = [ D [;’C]

and NR =N, . Therefore the r.c.f. (N,D) of [ 5 g 1 is related to r.c.f.s
(Np,Dp) of P and (N¢,D¢) of C sothat conditions (3.35) and (3.36) hold .

a
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3.6 Nonlinear unity-feedback system

The results in this section are derived in parallel to the ones in Section 3.4 . A
direct comparison of what can be done in the nonlinear case with what has been

done in the linear case proves useful.

Definition 3.6.1 (nonlinear unity-feedback system S(P,C))
Let P : AL — A2 and C: AQ - Ai be causal nonlinear maps. The unity-

feedback system S(P,C) is shown in Figure 3.4.

U2

1 4 & Yy + e Y2

Figure 3.4:
Nonlinear unity-feedback system S(P,C)

Definition 3.6.2 (well-posed S(P,C))
The unity-feedback system S(P,C) where P and C are not necessarily linear,

is said to be well-posed iff there exists a causal map
(u1, uz) = (1, €2)

Fact 3.6.3
For the unity-feedback system &(P,C) in Figure 3.4 , the following three state-

ments are equivalent:

i) The unity-feedback system S(P,C) is well-posed.

ii) There exists a causal map (u1, uz) = (¥1, ¥2) -



85
iii) The map

[ L 113] : A9 x AL - A% x AL (3.47)

has a causal inverse.

Proof

Follows by (3.6) and the summing node ec-lua.tions in Figure 3.4 :

[-IC 1;}[2]:[2] ' (3.48)
O

Definition 3.6.4 (A-stable S(P,C))
A well-posed unity-feedback system S(P,C) is said to be A-stable iff the causal

closed-loop map (ul , uz) — (e1, e3) is A-stable.

Fact 3.6.5
For the well-posed unity-feedback system S(P,C) in Figure 3.4 , the following

three statements are equivalent:

i) The unity-feedback system S(P,C) is A-stable.

ii) The causal map (u;, u2)— (v1, ;) is A-stable.

-1
iii) The causal map [ _Ic ”I) : ASx Al - A2 x AL is A-stable.

Proof
Follows by (3.6) and (3.48).
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3.7 Stable linear unity-feedback system and
necessary and sufficient conditions for
stability under nonlinear plant perturbations

Robust stability of féedback systems under unstructured perturbations of the plant
;nodel has been studied extensively. In the nonlinear case, the small gain theorem
[Zam.1,Des.1] gives a sufficient condition for robust stability of a stable system
under nonlinear stable additive perturbations. Sufficient robust stability condi-
tions were also obtained in [Ast.1,Cru.1,Des.3,Fra.1,0we.1,Pos.1,San.1] . In the
linear time-invariant case, necessary and sufficient conditions for robust stability

for a certain class of possibly unstable plant perturbations have been obtained in

[Doy.1, -and references therein] [Chenl] ; for a general class of possibly unstable
perturbations; the factorization approach yields necessary and sufficient conditions
for robust stability of the feedback system under fractional perturbations of the
| ‘subsystems [Chen2] . Furthermore, necessary and sufficient conditions for the ezis-
tence of a controller for plants with additive or multiplicative uncertainty are given
in [Vid.4] .
For linear time-invariant stable unity-feedback systems with nonlinear additive
plant perturbations, necessary and sufficient conditions have been obtained in two

cases:

i) The additive perturbation has an independent input; hence unmodelled dy-
namics, which is not coupled to the nominal plant inputs, can be taken into

account [Bha.1] .

ii) The perturbed plant is considered as a one-input one-output plant [Hua.1]

(see also [Hua.2] for the linear time-invariant additive perturbation case) .

In this section we consider a linear (not necessarily time-invariant) finite-gain-
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_stable unity-feedback system S(P,C) , where the plant and the compensator have
r.c.f.s ; we study four cases of nonlinear plant perturbations (additive , feedback ,
pre- and post-multiplicative). The plant perturbation AP is not required to be
A-stable . Using the factorization approach we obtain necessary and sufficient
conditions for all cases in terms of two pairs of nonlinear pseudo-state maps. Simple

physical considerations explain the form of these necessary and sufficient conditions.
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3.7.1 Additive Perturbation Case

Let AP : AL — AQ be a causal ponlinear map . For i,j = 1,2 , the

d
nonlinear perturbed model of the linear plant P is denoted by (P, A’P): 4
The one-input one-output plant
P e Yy
. .. . add N
is perturbed to an i-input j-output (P, A'P)ij , where (see Figure 3.5)
dd
i) (P,A’P):l : (€2,0) — 2o,
.e dd ’
i) (P,AP) " : (e,0) = (22,35)
dd
iii) (P,AP). " : (enu)z
. add
iv) (P, AP)zz : (e2,u3) — (22,43)
4 Figure 3.5:
d
(P , A'P) :2 : 2-input 2-ouput additive perturbation of P
dd
For i,j=1,2 , the nonlinear unity-feedback system &( (P, AP): ,Q) is

shown in Figure 3.6 : the input-output pair

(62, 22)
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us Y3
Us — —
add
v 4 @ Y14 + e (P,A’P)22 2,
—0—{ C -

Figure 3.6:

dd
Nonlinear unity-feedback system S( (P, A'P)a

22 ’C)
is used in feedback compensation; that is, u3 is an ezogenous input and y; is
an observed output which is not used in feedback (see Figure 3.6) .

Note that for i,j=1,2 , the (i+1)-input feedback system

add
ij b

S((P,AP): ", C)

add

is A-stable iff the (j+1) outputs (i.e. j outputs of (P’Ap)ﬁ

and the output

1 ) are determined by A-stable maps of the (i+1)-inputs.

Theorem 3.7.1 (n&s condition for robust stabilii':y)
Let the linear unity-feedback system S(P,C) be finite-gain-stable , where P :
Al o A% and C : A2 — AL are causal linear maps with r.c.fs (Np,Dp) and
(N¢,D¢) , respectively. (Hence by Proposition 3.5.1, P and C have l.c.fs
(5P,Np) and (BC,NC) , respectively , defined as
D -Np Dc Np 1™
[Nc Bc‘ - [-Nc DP] )

Under these assumptions, for eny causal nonlinear map

A’P:AL—»A;’ ,

add
11

i) the well-posed &( (P , A’P) ,C) is A-stable if and only if the map

D AP (1+NDpaP) "D (3.49)
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is A-stable;
i) the well-posed S((P,AP)%°,C) is A-stable if and only if the map
ap(1+ NC'D'pA’P)-IDp (3.50)
is A-stable;
ifi) the well-posed S((P, AP)",C) is A-stable if and only if the map
BeAP(14+NDpaP) ™ (3.51)
is A-stable;
iv) the well-posed S((P, AP) :‘2"’ C) is A-stable if and only if the map
AP (I + NcﬁpA’P) - (3.52)

is A-stable.

Comments 3.7.2

We offer the following explanation on the forms of the necessary and sufficient

conditions for S (P, A'P) add

" ,C) to be A-stable,for i,j=1,2.

i) The effect of not observing y; :

Since y; is not observed, we consider the stability of the map

(ul, U2, us) — (yl,zz)

By assumption, the linear unity-feedback system S(P, C) is finite-gain-stable
and the linear maps P and C haver.c.f.s ; hence by Proposition 3.5.1 ,
the map P has an l.cf. (Ep,Np) . Using this l.cf. of P , we redraw

the feedback system &( (P, A’P) aad

21 C) asin Figure 3.7 ; note that we use

the linearity of 5p
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Figure 3.7:

- =1~ add
The unity-feedback system S( (Dp Np, A'P) 2 NcDe™h

Now view Figure 3.7as a feedback system consisting of the nonlinear, possibly
unstable, subsystem Bp AP closed in a feedback-loop by the finite-gain-

stable subsytem whose input is at a and output at b ; note that

b = u+ C(u1 - Bp—l (a-l-r\ipb))
= —(1+CP)™CDp"a+ (1+CP) ™" Cuy + (1+ CP) u

= —Nca + DPNC'UI + Dpﬁcuz .
The resulting closed-loop system is A-stable if and only if
— — -1
(DeaP) (1+Nc(DpAP))

is A-stable[Des.2] . .

In conclusion, whenever we fail to observe y; , the necessary and sufficient

condition for A-stability has Bp as an additional left factor.

The effect of setting u3 = 0 :

By linearity and finite-gain-stability of S(P,C) , the map

Yz — €



(see Figure 3.8) is given by
€y = —Ncb_py;; + Dp (Ncul +6CU2) .

Now consider the system in Figure 3.8 as a feedback system consisting of the
subsystem AP in a closed-loop with the finite-gain-stable subsystem whose
input is y3 and outputis e; . Whenever u3 = 0 , the input e; isin the
range of Dp , hence the necessary and sufficient condition for A-stability has

Dp as a right factor.

22

Figure 3.8:
The feedback system &( (Npr-l, A'P)

22 ’

Proof of Theorem 3.7.1
By assumption, the maps P and C haver.cfs (Np,Dp) and (N¢,D¢) ,
respectively; moreover the feedback system S(P,C) is finite-gain-stable . By

Corollary 3.4.8 , the ﬁnite-gain-un.imodtﬂa.r map M defined in (3.11) ,

| Dc Np
M = [—Nc Dp]

has a finite-gain-stable inverse M™' as defined in (3.27)

M .= EP _@P
[Nc DC]
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Writing the summing node equations in Figure 3.8 in terms of £¢ , €ép and

es , we obtain

M[gg] = [Z;]-[A(;P]ep, (3.53)
es = uz + ﬁs + Ncéc . (3.54)

Composing both sides of (3.53) by the linear map M~ in (3.27) , we obtain

§c| _ m-1| v | _ EP .
[Ep]_M [u,] [NC}A’Ps. (3.55)

Substituting {¢c determined by (3.55) in (3.54) and using the identity
MMt =1,
we obtain |
s = (1+NBpaP) " [Dp[Nc B 1] [ " } -

U2
Uz

(3.56)

Substituting (3.56) in (3.55) , the closed-loop pseudo-state map

(u1,u2,u3) = (€c,ép)

is given by

£] -
p U2 :
_ [ gz ] AP (I + NCBPAP) -1 [ Dp [N'c 5C] I] E Zi }3.57)

We now state the necessary and sufficient conditions for the four cases in terms of

the pseudo-state maps given by (3.57) .
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add
11’

i) The well-posed S((P,AP); ",C) is A-stable if and only if

(ula U2, 0) = EC

is A-stable(recall Lemma 3.4.7) . Since the finite-gain-stable map

has a finite-gain-stable right-inverse (follows by the identity M™*M =1 ),

condition (3.49) follows from (3.57) .

add
12

ii) The well-posed S( (P, A’P) ,C) is A-stable if and only if

(ulq U2, O) — (€Ca §P)

is A-stable (the sufficiency follows from Figure 3.8 and the finite-gain-stability
of themaps Np , Dp , N¢ and D¢ . The necessity follows by the
~ fact that (N¢,D¢) and (Np,Dp) arer.cfsof C and P |, respecfively.

Using similar reasoning as in case i) and noting that the finite-gain-stable
map De

Nc
MM =1 ) , we obtain condition (3.50) from (3.57) .

] has a finite-gain-stable left-inverse (follows by the identity

Using similar reasoning, we obtain the proofs of the following: since now
u3 &= 0 , the identity map in the last term of (3.57) plays a crucial role.

add
21

iii) The well-posed S( (P, A'P) ,C) is A-stable if and only if

(ulv u2, u3) = éc

is A-stable if and only if the map in (3.51) is A-stable.

add
22

iv) The well-posed S( (P, A'P) ,C) is A-stable if and only if
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(w1, u2,u3) = (€c, €p)

is A-stable if and only if the map in (3.52) is A-stable.
O

The necessary and sufficient conditions in Theorerﬁ 3.7.1 can be also stated in
terms of “admissible” perturbations AP ;i.e. those nonlinear (possibly unstable)
perturbations AP such that the perturbed plant is still stabilized by the nominal

compensator.

Corollary 3.7.3 (parametrization of admissible perturbations)

Let the assumptions of Theorem 3.7.1 hold. Under these assumptions,

i) the well-posed feedback system S( (P , A’P) :clld, C) is A-stable if and only
if
. == -1 -1 )
AP =Dp Q(Dp - Ncg) (3.58)
for some causal A-stable map Q : AL - A2
ii) the well-posed feedback system S (P, A'P)::d, C) is A-stable if and only
if
— -1
AP = Q(I _ NCQ) Dp~? (3.59)
for some causal A-stable map Q : Al - A2 ;
add

iii) the well-posed feedback system S( (P, A’P)
if

4y °C) s A-stable if and only

AP = 5P°IQ(I ~N¢ Q)'1 (3.60)

for some causal A-stable map Q : Al - A% ;
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add

iv) the well-posed feedback system S( (P, AP) 22

if

,C) is A-stable if and only

— -1
AP = Q(I_NCDPQ) (3.61)
for some causal A-stable map Q : Al - A9 .

Proof
The proof follows by establishing that conditions i) — iv) in Theorem 3.7.1 are
equivalent to the conditions i) — iv) in Corollary 3.7.3 , respectively.

We first show the equivalence in (3.62) :

-1

~ -1 ~
Q= A’P(I + NCDPA’P) s AP = Q(I - NCDPQ) . (3.62)
Composing both sides of the left equation in (3.62) by NCBP , We obtain

NDpQ = I\ICBPA'P(uNC_ES,,AP)'1
= (1+NBpaP - 1) (1+NcBpaP) ™
- 1o (1+NC‘5PA7>)'1 . (3.63)

From (3.63), we obtain
(1+ Ncﬁpmv)'1 = (1-NBpQ) (3.64)

Substituting (3.64) in the left equation of (3.62), the right equality in (3.62) follows.
The proof of the converse direction of (3.62) is identical.
From (3.62) , we conclude that condition iv) in Corollary 3.7.3 is equivalent to

condition iv) in Theorem 3.7.1.

= -1
Substituting Dp Q for Q in (3.62), we obtain

D, '0 = Ap(nNCBPAP)"I & AP =Dp QI-NcQ)™" ;
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hence conditions iii) in Theorem 3.7.1 and Corollary 3.7.3 are equivalent.

Substituting @Dp™" for Q in (3.62) , we obtain

1 —~ -1
QDp! = A‘P(I+ NchA’P)
3
-1 = -1\7!
AP = QD' (I-NcDp@Dp™)
— -1
= Q(I-NcQ) Dy
(recall that NCBP = DPNC by (3.11) and (3.27) ) ; hence conditions ii) in
Theorem 3.7.1 and Corollary 3.7.3 are equivalent.
Substituting EP-IQDP-I for @ in (3.62), we obtain
— =1 -1 —_ -1
Dp” QDp™! = A’P<I+NCDPA’P)
¢
AP = Dp  @Dp(I-NcQDp™)™
—_— =1 -
= D Q(Dp-NcQ)7’;

hence conditions i) in Theorem 3.7.1 and Corollary 3.7.3 are equivalent.

O
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3.7.2 Feedback Perturbation Case

Let AP : Ag — Ai be a causal nonlinear map . For i,j = 1,2 the nonlinear

perturbed model of the linear plant P is denoted by (P, A’P)::ed . The

one-input one-output plant P : e; — y, is perturbed to an i-input j-output

(P , A’P) feed

i , where (see Figure 3.9)

: (ez,us) =Y |,

)

P, Ap)feed : (6270) = (y21 y3) )
)
)

92 ° (e2,u3) — (v2,¥3)

Figure 3.9:

feed
22

(P , A'P) : 2-input 2-ouput feedback perturbation of P

feed

For i,j=1,2 , the nonlinear unity-feedback system S (P, Ap)ij

,Q) s

shown in Figure 3.10 : the input-output pair

(eZay'A’)

is used in feedback compensation; that is, u3; is an ezogenous input and y3 is

an observed output which is not used in feedback (see Figure 3.10) .
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Y3 u3
u2 e re—
feed
B oy e Nyt e (P’ AP) 22 Yo
L '
Figure 3.10:
. . feed
Nonlinear unity-feedback system S (P, A’P) »g *C)

Similar to the additive perturbation case, for- i, j = 1,2, the (i+1)-input
feed
feedback system S (P, A’P) ijee
feed
outputs of (P, A'P) -

i
of the (i+1) inputs.

,C) is A-stable iff the (j+1) outputs (i.e. j

and the output y, ) are determined by A-stable maps

We state the following theorem without proof since the proof is identical to that

of Theorem 3.7.1 .

Theorem 3.;7.4 (n&s condition for robust stability)
Let the linear unity-feedback system S(P,C) be finite-gain-stable , where P :
Al - A2 and C : A2 - Al are causal linear maps with r.c£s (Np,Dp) and
(N¢,Dc) , respectively. (Hence by Proposition 3.51, P and C havelcfs
(Bp,ﬁp) and (EC,NC) , respectively , defined as

O W] _[ et

Nc D¢ —N¢ Dp

Under these assumptions, for any causal nonlinear map

A’P:Ag—»AL ,

feed

u ,C) is A-stable if and only if the map

i) the well-posed S( (P, A’P)

NeAP(1+ NpﬁcAP)-le (3.65)
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is A-stable;

feed
12

ii) the well-posed S( (P, A’P) ,C) is A-stable if and only if the map
— -1
AP (1 + NpDcA'P) Np (3.66)

is A-stable;

iii) the well-posed S( (P, A'P)i::d, C) is A-stable if and only if the map
— — -1
NpA’P(I+ NPDCA'P) (3.67)
is A-stable; |
feed

0z C) is A-stable if and only if the map

iv) the well-posed S( (P,A’P)
' — 1 \-1
AP (I + NPDCA’P) (3.68)

. is A-stable.

The necessary and sufficient conditions ii) — iv) in Theorem 3.7.4 can be also
stated in terms of “admissible” perturbations AP ;i.e. those nonlinear (possibly
unstable) perturbations AP such that the perturbed plant is still stabilized by

the nominal compensator.

Corollary 3.7.5 (representation of admissible perturbations)
Let the assumptions of Theorem 3.7.4 hold. Under these assumptions,

feed

i) the well-posed feedback system S( (P, AP) 12

,C) is A-stable if and only
if
~ -1
APNp = Q(I_ ch) (3.69)

for some causal A-stable map Q : .Aie - A2
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feed

ii) the well-posed feedback system S( (P, A’P) 21

,C) is A-stable if and only
if

NpAP = Q(I- DCQ)'1 (3.70)
for some causal A-stable map Q : AL — Ag ;

feed

iii) the well-posed feedback system S( (P, A’P) 22

,C) is A-stable if and only
if
~ -1
AP = Q(I-NPDCQ) (3.71)

for some causal A-stable map Q : Al — A2

Proof

The proof follows by establishing that conditions ii) — iv) in Theorem 3.7.4 are
equivalent to conditions i) — iii) in Corollary 3.7.5 , respectively.

Substituting NPBC for NCBP in (3.62) (see the proof of Corollary 3.7.3) ,
we obtain |

Q = AP(1+ NpDcAP)

-1

_ -1
s AP = Q(I_ NPDCQ) . (3.72)

From (3.72) , we conclude that condition iii) in Corollary 3.7.5 is equivalent to

condition iv) in Theorem 3.7.4 .

Since NpDc = DcNp by (3.11) and (3.27) , we can write (3.67) as
NoaP(1+ NPBCAP)" = (NoaP)(1+ D(;(“N'va))'1 . (3.73)

Substituting NPA'P for AP and D¢ for Nc5p in (3.62) and using

(3.73) , we obtain
Q = NpAP(1+NeBcAP)” & NpaP = Q(1-DcQ)™ |

hence conditions iii) in Theorem 3.7.4 and ii) in Corollary 3.7.5 are equivalent.



Since the map Np is linear, (3.66) can be written as
~ -1 — -1
AP (I+ NPDCA’P) Np = A’PNP(I + DCA’PNP) .

By a similar rea.son.iﬁg as the one above, the equivalence of conditions ii) in Theo-

rem 3.7.4 and i) in Corollary 3.7.5 follows since

— -1 : _ -1
Q=A’P(I+NPDCA’P) Np & APNp = Q(I-DCQ) .
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3.7.3 ~Pre-Multiplicative Perturbation Case

Let AP : AL — Ai be a causal nonlinear map . For i,j = 1,2 the nonlinear

perturbed model of the linear plant P is denoted by (P, A’P) ;re . The one-input

pre

one-output plant P :e; — y; is perturbed to an i-input j-output (P, A’P)‘J

where (see Figure 3.11)
i) (P,A’P):e : (e3,0) =y
P,AP)T" : (e3,0) = (y2,33)

i) ( )1z
(P A'P) pre., (es,ua) — v
iv) ( )

21
P, AP :;e : (e3,u3) = (32, 43)

T ; Y3

€3 E + €2 E Y2

———1+AP P f——
: * :

U3 E preE
. ( B’.éf.)zz.f

Figure 3.11:

(P, A’P):;e : 2-input 2-ouput pre-multiplicative perturbation of P

For i,j=1,2 , the nonlinear unity-feedback system &( (P, A’P) ;re, O is

shown in Figure 3.12 : the input-output pair

(ea,yz)

is used in feedback compensation; that is, u3; is an ezogenous input and y; is

an observed output which is not used in feedback (see Figure 3.12) .
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Uz
U + €1 y1+ + €3 Y3
—o—{ ¢ —
P, AP)™¢
ug (P.4P),, Y2
—lpet
Figure 3.12:

Nonlinear unity-feedback system S( (P, A'P) 2p;e, O

Similar to the additive perturbation case, for i, j = 1,2, the (i+1)-input
feedback system &( (P, A’P) gre

outputs of (P, A'P):;re and the output y; ) are determined by A-stable maps

,C) is A-stable iff the (j+1) outputs (i.e. j

of the (i+1) inputs.
We state the following theorem without proof since its proof is similar to that

of Theorem 3.7.1 .

Theorem 3.7.6 (n&s condition for robust stability)
Let the linear unity-feedback system S(P,C) be finite-gain-stable , where P :

Ai — A2 and C : A2 > Ai are causal linear maps with r.c.f:s (Np,Dp) and

(N¢,D¢) , respectively. (Hence by Proposition 3.51, P and C have lLcfs

(Ep,ﬁp) and (BC,NC) , Tespectively , defined as

EP —-EP = Dc Np ]-1 )
Nc Dc _NC DP
Under this assumption, for eny causal nonlinear map

AP Ai AL

i) the well-posed &( ( P, A’P) ‘:;e, C) is A-stable if and only if the map

Ne AP (1+NCNp AP) Dy (3.74)
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is A-stable;

pre

12 C) is A-stable if and only if the map

ii) the well-posed &( (P, A'P)
— -1
AP (I + NchA'P) Dp (3.75)
is A-stable;
iii) the well-posed S( (P, A’P) :ze, C) is A-stable if and only if the map
— - -1
| NpA’P(I + NchA'P) . (3.76)

is A-stable;

pre

22 ° C) is A-stable if and only if the map

iv) the well-posed S((P, A'P)
— -1
AP (I + NchA’P) (3.77)

is A-stable.

The necessary and sufficient conditions i) — iv) in Theorem 3.7.6 can be also
stated in terms of “admissible” perturbations AP ;i.e. those nonlinear (possibly
unstable) perturbations AP such that the perturbed plant is still stabilized by

the nominal compensator.

Corollary 3.7.7 (representation of admissible perturbations)
Let the assumptions of Theorem 3.7.6 hold. Under these assumptions,

pre

i) the well-posed feedback system S( (P, A’P) 11

C) is A-stable if and only
if
NpAP = Q(Dp-NcQ)™ (3.78)

for some causal A-stable map Q : Al - A9 ;
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ii) the well-posed feedback system S( (P , A’P) f;e, C) is A-stable if and only
if
— -1
AP = Q(Dp - NCNPQ) (3.79)

for some causal A-stable map Q : Al — A? ;

e
iii) the well-posed feedback system S( (P, A’P) ::e, C) is A-stable if and only
if
Np AP = Q(I —N¢ Q)"l (3.80)

for some causal A-stable map Q : Ai —A° ;

e ?

pre

iv) the well-posed feedback system S( (P, A’P) 49 +C) is A-stable if and only

if ~ .
AP = Q(I-NCNPQ) (3.81)

for some causal A-stable map Q : AL — A2 .

Proof
The proof follows from the following equivalences (see the proofs of Corollaries

3.7.3 and 3.7.5 for similar manipulations) :

Q =NPAP(I+NcNPAP)_IDP & NPAP =Q(DP—NC.Q)-1
—_~ -1 —_—
Q =A’P(I+NCNPA’P) Dp o AP =Q(DP—NCNPQ)
- ) B ) )
Q =NPA’P(I+NCNPA’P) ¢ NpeAP = Q(I-NcQ)

Q = AP(I+NcNpaP)” & AP =Q(I-NNxQ)

(]
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3.7.4 Post-Multiplicative Perturbation Case

Let AP : A — A2 be a causal nonlinear map . For i,j = 1,2, the nonlinear

post
.. The
1

perturbed model of the linear plant P is denoted by (P, A’P)
one-input one-output plant P : e; — y, is perturbed to an i-input j-output

(P, A’P):;St , where (see Figure 3.13)

P, AP post | (e2,0) — ys

P (e,0) o (s)
P (eus) —y

22 : (62)u3) and (y21y3)

§oTTTTTTTTT e eI ; Y2
€2 § + €3 § Y3
— P I+AP——
: * :
s i ' post §
= (P, AP i

. Figure 3.13:
(P, A'P) ::s : 2-input 2-ouput post-multip]icati\.re perturbation of P

For i,j=1,2 , the nonlinear unity-feedback system &( (P, A’P):io“, Q) is

shown in Figure 3.14 : the input-output pair

(e2,y3)

is used in feedback compensation; that is, u3 is an ezogenous input and y, is

an observed output which is not used in feedback (see Figure 3.14) .
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Ug
Uy e1 N l+ e
+ + Y2
—0— C | N
post
u3 (P’ Ap) 22 Y3
Figure 3.14:
t
Nonlinear unity-feedback system &S( (P, A'P) :203 ,O

Similar to the additive perturbation case, for i, j = 1,2, the (i+1)-input
feedback system & (P,A’P)ZO“,C) is A-stable iff the (j+1) outputs (i.e. j
outputs of (P , A’P) :;OSt and the output y; ) are determined by A-stable maps
of the (i+1) inputs. |

We state the following theorem without proof since its proof is simialr to the

. proof of Theorem 3.7.1 .

Theorem 3.7.8 (n&s condition for robust stability)

Let the linear unity-feedback system S(P,C) be finite-gain-stable , where P :

Ai — A2 and C : A > AL are causal linear maps with r.c.fs (Np,Dp) and
(N¢,D¢) , respectively. (Hence by Proposition 3.51, P and C have Lcfs
(Bp,Np) and (BC,NC) , respectively , defined as

EP -—Ep = [ Dc Np ]-1 )
Nc DC _NC DP
Under this assumption, for any causal nonlinear map
AP A2 - A2,
i) the well-posed &( (P , A'P) post C) is A-stable if and only if the map

1’

EPAP(I + NpﬁcA'P) -le (3.82)



109

is A-stable;
ii) the well-posed S( (P, A'P) l:;m, C) is A-stable if and only if the map
— -1
A’P(I + NPNCA’P) Np (3.83)
is A-stable;
iii) the well-posed S (P, A'P) ::St, C) is A-stable if and only if the map
~ — -1
DpA’P(I +N chA'P) (3.34)
is A-stable;
iv) the well-posed 8((P, A’P) ::St, C) is A-stable if and only if the map
— -1
AP (I+ NPNCA’P) (3.85)

is A-stable.

The necessary and sufficient conditions i) — iv) in Theorem 3.7.8 can be also
stated in terms of “admissible” perturbations AP ;i.e. those nonlinear (possibly
unstable) perturbations AP such that the perturbed plant is still stabilized by

the nominal compensator.

Corollary 3.7.9 (representation of admissible perturbations)
Let the assumptions of Theorem 3.7.8 hold. Under these assumptions, .

post

i) the well-posed feedback system S( (P, A’P) 11

if

,C) is A-stable if and only

_ =1 —_ o~ -1 -1
APN, = Dp Q(I—NCDP Q) (3.86)

for some causal A-stable map Q : AL — A2

’
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ii) the well-posed feedback system S( (P,A’P)‘l’:“,C) is A-stable if and only
if |

—_ -1
APN, = Q(I— NCQ) (3.87)

for some causal A-stable map Q : Al - A9 ;

post

4 'C) s A-stable if and only

iii) the well-posed feedback system S( (P, A’P)
if
_ -1 _~ o~ -1 -1
AP =Dp Q(I-NPNCDP Q) (3.88)
for some causal A-stable map Q : AL — A9 ;

post

iv) the well-posed feedback system S( (P, A'P) 2z

C) is A-stable if and only
if

ap - 9(I- N,,‘N’Cg)'1 (3.89)
for some causal A-stable map Q : Al - A2 .

Proof
The proof follows from the following equivalences (see the proofs of Corollaries

3.7.3 and 3.7.5 for similar manipulations) :

Q - BraP(1+ N.,’l\l'cA1>)'lNP
APN, = By Q(1-NBp @)™

— -1
Q = A’P(I+ NPNCA'P) Np
ﬂ: -1
APNp = Q(I_‘N'cg)

Q = BpaP(I+NpNcaP)™
¢
AP = By Q(1-NeNeDp Q)™
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l Q - A’P(I+NPT\I'CA’P)—1 ]
3

apP = Q(1-NeNc@) ™



Chapter 4

Factorizations of Nonlinear Maps

4.1 Introduction

In this chapter, we study coprime factorizations for causal nonlinear maps; we
use these in stability and robustness analysis of nonlinear feedback systems and in’
synthesis of stabilizing feedback configurations.
‘ All causal nonlinear maps (denoted by calligraphic style letters) are defined over
input and output extended spaces (see Section 3.2) . For a causal nonlinear map - -
P,where P : Al - A , P:e—y ,theoutput y:= Pec€ A s
uniquely determined for all inputs e € Ai . In the case that the nonlinear causal
map P has a state-space description, we assume that the initial conditions are
fixed once and for all.
The chapter is organized as follows:
Section 4.2 emphasizes a fact about causal nonlinear plants: unlike the special
case of finite-dimensional linear time-invariant ma.ps,. not all nonliner plants are
stabilizable (in any configuration) (see Fact 4.2.3) . Right factorizations of causal

nonlinear maps are defined in Definition 4.2.4 ; Fact 4.2.5 justifies this definition

112



113

by establishing that stabilizability implies the existence of right factorizations. In
other words, causal nonlinear maps that are stabilizable by feedback through a
summing node, have a right factorization. Although left factorization definitions
for nonlinear maps are available in the literature, a similar result (see Fact 4.2.5)
is not available to justify the existence of left factorizations. It is shown that in a
right factorization, the “denominator” map includes the instabilities of the plant.

Section 4.3 is a self-contained example; we explicitly derive a right-factorization
for a class of time-varying nonlinear causal plants. Proposition 4.3.2 gives a con-
structive proof.

In Section 4.4 , we define right-coprime factorizations for nonlinear causal maps
(Definition 4.4.1) . (Note that coprime factorizations may not exist even for cer-
tain linear maps.) The existence of an unstructured two-input one-output causal
stable “pseudo-state” observer is the key point. If a plant has a right-coprime fac-
tbrization, the péeudo-state can be reconstructed from (noiseless) input and 6utput
measurements. Fact 4.4.2 shows that the denominator map in a right-coprime fac-
torization completely characterizes the instabilities of the plant. Fact 4.4.3 proves
that all right-coprime factorizations of a plant are related by unimodular maps;
hence once we find one, we have found them all. The section ends with a more
restricted stability definition (incremental A-stability, Definition 4.4.4), which is
extremely useful in manipulations of summing nodes in analyzing nonlinear feed-
back interconnections.

In Section 4.5, for the class of nonlinear causal plants which have right-coprime
factorizations, we study the stabilizing two-input one-output feedback configura-
tion X ('P y Q) (see Figure 4.6) . Proposition 4.5.1 shows that the existence
of a right-coprime factorization of the nonlinear plant is a necessary condition for

stabilizability in X(P , Q) . Proposition 4.5.3 establishes the converse: if P
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has an incrementally A-stableright-coprime factorization, it can be stabilized in
P, Q).

Section 4.6 is another self-contained example; for a class of nonlinear causal
plants, we explicitly derive a right-coprime factorization (Proposition 4.6.2) . We
show that the specific right-coprime factorization is in fact incrementall).' A-stable;
hence using the result in the previous section, we propose a stabilizing feedback
configuration with a free parameter (Corollary 4.6.4) .

Section 4.7 studies the nonlinear unity-feedback system, where one of the sub-
systems is linear. In the case that the plant is linear, we parametrize the set of all
nonlinear causal stabilizing compensators (Theorem 4.7.4) .

In Section 4.8 we study stability and robustness of the nonlinear unity-feedback
system S(P,C) from a factorization point of view. Theorem 4.8.1 states the nec-
essary and sufficient condition for stability of the nonlinear unity-feedback system
~ when one §f the subsystems has a right-coprime factorization. Theorem 4.8.4 shows |
_ that if the nonlinear plant is incrementally stable, all stabilizing compensators have
a specific right-coprime factorization. Theorem 4.8.7 is a robustness result: for a
family of incrementally stable plants, a necessary and sufficient condition on the
compensator to simultaneously stabilize this family is stated. Theorem 4.8.9 con-
siders robust stability of a nominal nonlinear unity-feedback system under nonlinear

(possibly unstable) plant perturbations.



4.2 Right-factorizations for nonlinear maps
Consider a nonlinear causal plant
P:ALSAS , Piemy .

If we model the disturbances at the plant input (d;) and the plant output (d,)
additively , then the most general feedback system will be as shown in Figure 4.1 :

the control input is denoted by v and the causalmap C denotes the compensator.

d.s' do
v e
+y+ Y49+
{c L— P —~J>———
Figure 4.1:

The general feedback system

Definition 4.2.1 (well-posed feedback system)
A feedback system is said to be well-posed iff there exists a causal closed-loop map

mapping the closed-loop system inputs to the internal signals.

a
If a feedback system is well-posed, for a given closed-loop system input the

internal signals exist and are uniquely determined by maps (i.e., they are not set-

valued).

Definition 4.2.2 (A-stable feedback system)

A well-posed feedback system is said to be A-stable iff all of the closed-loop maps
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(mapping the closed-loop system inputs to the internal signals) are A-stable.

a
Note that the feedback system in Figure 4.1 is A-stableif and only if the closed-
loop map .
(v’dt"do) = (e’ y)
is A-stable.

In any A-stablefeedback system, the plant 7P is constrained to operate on a
subset of its input-output pairs: those special bounded inputs e for which the
output y 1is also bounded. This implies an obvious requirement on the classes of

maps that can be stabilized in a feedback system.

Fact 4.2.3 (not all causal plants are stabilizable)
A causal plant P : AL — A2 can be stabilized in a feedback system only if there

exists at least one e € Al such that Pee A°

a

Consider the following state-space description:

z(k+1) = 2z(k)+z(k)e(R)? keZ,
P:e—y { z(0) =1 (4.1)
y(k) = z(k)

The causal plant 7P described in (4.1) can not be stabilized in any feedback
configuration since there does not exist a bounded sequence e such that the

sequence Pe is bounded.

Definition 4.2.4 (right-factorization of a nonlinear map)
(N 7, Dp) is said to be a right-factorization (r.f.) of a causal map P : Ai — AS
iff

i) Np: AL — A? is A-stableand
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ii) Dp:Al - Al is A-stable, bijective and has a causal inverse and

iii) NDr '=P .

O

Figure 4.2:
P withanrf (N5, Dp)

At a first glance, Definition 4.2.4 looks like just another definition extending
Definition 3.3.1 to nonlinear maps. The crucial point is that the existence of r.f.’s
is a necessary condition for stabilizability of systems with an additive exogenous

input d; at the input of 7P (see Figure 4.1) .

Fact 4.2.5 (stabilizability = r.f.)
Let the plant P : AL — A2 be such that there exists a causal map C : A¢x A —
Ai , where the well-posed general feedback system shown in Figure 4.1 is A-stable.

Under these assumptions P has an r.f.

Comment 4.2.6

Note that Lemma 3.4.6 is a special case of Fact 4.2.5 for the case
C = [ 0o C ] s

for some linear map C .



118
Proof of Fact 4.2.5

By assumption, the feedback system in Figure 4.1 is A-stable; hence the closed-
loop map (v,d;,d,) — (e,y) is A-stable(see Figure 4.1). Choose the specific
inputs v and d, as

v = v € A and

d, := d; e A°
Then by well-posedness, there is a causal closed-loop map D »
D'p:Ai—bAi , Dp:di—e . (4.2)

Since.the feedback system is A-stable, the causal map Dp in (4.2) is A-stable.

Since
d, =e — C(v','Pe +'d;) y

Dy is bijective and has a causal inverse.

Since the feedback system is A-stable, the causal map N'p defined as
N»p:Ai—)Ag , Npidimy |, (4.3)

is also A-stable. Moreover

PDp:N“p )

hence we conclude that (AN 'p,Dp) defined in (4.2-4.3) is an r.f. of P

O

For a causal map P : Al — AS | define the subset of its inputs Z p by
Ip:={eeA | PeecA\A°} ,

ie, T 9 is the set of all bounded inputs of P that produce unbounded outputs .

The set Z. P characterizes the “instabilites” of the map P .
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For a A-stable P , theset T P is the empty set; there is no bounded input
that one must avoid.
Note that if Ip = Al , then it is hopeless; 7P can not be stabilized (recall

Fact 4.2.3) .

Fact 4.2.7 (Ip cT D?_l) |
Let (NM7,Dp) beantf of P:Al - A? ;then

pr CI,D -1

P .
Proof

By definition,
e€Ip & (e, Pe) = (e, N5>Drle) € Al x (Ag\A°) :
Since the causal map N p is A-stable (see Figure 4.2) , the last inclusion implies

(e, Dp7le) € Alx (AL\A) .

When P has an r.f. , by Fact 4.2.7, all of the “instabilities” of P are
contained in the “instabilities” of Dp ' . Hence one might think that pre-

compensation by A-stable Dp achieves input-output stabilization (see Figure 4.3).

Dy P —

Figure 4.3:
Undesired pre-compensation scheme

Clearly, the input-output map in Figure 4.3

v (e,9) = (Dpv,Npv)
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is A-stable. However, this “exact cancellation” is undesirable for at least two

reasons:
i) the denominator map Dy may not be known exactly ,

ii) even if Dy is known exactly, the plant input may be subject to an input
disturbance d; . K e* € Irp , for a fized input v* € Al | a disturbance
of the form

d; := e — Dypv*

will result in an unbounded output y (see Figure 4.4).

d: .
v* e’ Yy
3
> D.’, > ‘P  ——

Figure 4.4:
Destabilizing input disturbance

Clearly, these problems arise due to the cas;:ade structure: the compensator has
1o access to the internal signals in the later stages. The standard way of avoiding
this problem is feeding back the internal signals as in the general “feedback” scheme
in Figure 4.1.

Note that even if the plant is A-stable, (i.e., Z. p = @) open-loop compensation
may not be desirable since any disturbance at the plant output and/or any plant
perturbation will not be attenuated: the purpose of feedback is to use the loop
dynamics to compensate for exogenous output disturbances or perturbations in the

plant.



121

4.3 Right-factorization of a Class of
Time-varying Nonlinear Plants

Notation

We choose the oo-norm for vectors in IR™ and the corresponding induced-norm

for matrices; we denote them by |-| and || - || , respectively.. For vector-valued
functions
z :R;, —-IR" |
we write
llz]l := sup |z()|
t €(0,00
We set

A:=1L" = {z :IR4. —IR" | ||z|]| =sup|z(t)] < oo}
20
and
Ao =L7, = {x :IRy —-IR" | VTeR;, sup |z(t)] < oo}
te(o,T]
For n=n; and n=n, ,wewrite Al | Ai and A® , AJ , respectively.

Description of the Class of Nonlinear Plants

Consider a causal nonlinear time-varying plant whose input-output map
P:AL A2

is specified by the following state-space description:

t = A(t)z + f(t,z) + B(t)u
P:umy { y = h(t,z,u) (4.4)
“lz(0) =0 ,

where z(t) eR"™ , u(t) €R™ and y(t) eR™ , VielR,
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On the functions A(-) , B(:) , f(:,) and h(-,-) we impose the

following assumptions:

Assumptions 4.3.1

I.

II.

III.

For the specified initial condition and for all inputs u € Ai , the differential
equation in (4.4) has a unique solution. (Consequently, P :u+— y isa

map.)

The nonlinearity f is bounded on IR | xIR" ; that is, there exists m > 0

such that

sup | f(t,z)| < m
te[0,00),s€R™

For any A-stable map
H.:AloA, Hoiuoz
the causa.l.map H, defined bf
M, :umy { () = ht, (Hau) (@), u(t)

is A-stable, where

h IR, xR xIR™ —IR"™ .

That is, if the state-map is stabilized the input-output map is also stabilized.

. The pair (A(-), B(:)) is uniformly completely controllable; equivalently

thereexist 6 > 0 , Wmax = Wmin > 0 , such that forall telR, ,
Wminl € W(tt+6) < wmaxl , (4.5)

where W(t,t 4 §) is the controllability Gramian [Bro.1]

[Z%)
W(t,t +8) := /¢ &(t,7)B(r) BT (r)&7 (¢, 7)dr (4.6)
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and ®(-,-) is the state-transition map for the linear differential equation
&= A(t)z
V. The map B(-) is boundedon IR, ; thatis there exits b > 0 such that

Sup IB@OI < b .

0,00)

We now construct a right-factorization of P .

Proposition 4.3.2 (an r.f. of P defined in (4.4))
Let the plant PP be described by (4.4) and satisfy Assumptions 4.3.1 I-V ; then
P has anr.f.

Proof

The proof is in two steps:

i) Using A.ssumption 4.3.1 1, we obtain a causal bijective map D : AL - Ai :
, which has a causal inverse D'p-l and a causal map N p: Aie — Ag

such that P = Ner-l

i) Using Assumptions 4.3.1 IT - V , we show that both N p and Dyp are

A-stable maps.

Step 1

Define the causal map Doy : Ai — AL as

.’i?l = (A + BI{)(t)l‘] + f(t, 2}1) + B(t)El
D'p . 61 — U uy = K(t)xl + fl (47)
‘ z1(0) = 0

for some piecewise continuous

K :IR, -IR™*" |
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Now the map Dy in (4.7) has a causal inverse Dyt AL N Ai ; indeed

D5~ ! is given by

1 :i?g = A(t).’cz + f(t, 1,'2) -+ B(t)‘u,g
Dr™" i us— & & = —K(t)z: + u, (4.8)

We show that D3y is bijective by verifying
D'pD'p-l = ‘D'p-.lpp =1I.

Consider the map Dpr_l : ug — u; ; note that the interconnection constraint
1s
&L =6 =-K(t)zs +up ,

moreover, from (4.7) and (4.8), we obtain

:i'l = SA% -)I- BK}((t)zl ;— fg,(z)l) + B(t)uz - (BK)(t):tg
-1 532 = 4 T2 + t, T2)+ )us
D?D? P2t uy = K(t)(l‘l - .'82) + U2
z1(0) = z2(0)=0

(4.9)

For é.ny input u, , using Assumption 4.3.1 I it is easy to check that

[ z1(t) = za(2) ]

z2(1)
is the solution of the system of differential equations in (4.9) under the specified
initial conditions. Hence from (4.9), we obtain u; = u, and we conclude that
DpDr =1 on Ai
Similarly, consider the map 'Dp-l'Dp : § — & ; the interconnection con-
straint is
U =u; =K(t)z + &

From (4.7) and (4.8), we obtain

i1 = (A+ BEK)(@#)z; + f(t,z1) + B(t)&
Dy 'Dp:b1 & 2 : Ahhz + it 22) + (BE) Bz + BE) (4.10)

K(t)(z1 — z2) + &

1)1(0) 8}2(0) =0



For any input ¢, ,
z1(t)
zalt) = 1 (1)
is the solution of the system of differential equations in (4.10) under the specified
initial condition. Hence, from (4.10), we obtain &2 = §; ;so Dr*Dr=1 on
Ai . We conclude that Do is bijective and the map Dp~ ' defined in (4.8) is
the causal inverse of Dy .

Now for the same K(-) in (4.7), define

N‘p : AL — Ag
as follows: _
23 = (A+BEK)(t)zs + f(t,z3) + B(t)¢
Np:Emy { y = h(t, z3, K(t)zs +§) (4.11)
1)3(0) = 0 .
From (4.8) and (4.11), we obtain
o AL BR bty + Bty — (B
-1 5’:3 = A+BI{ tfﬂ3+ t,xa +Btu— K tﬁbg
NoD5 ™ iusy y = h(t, z3, K(t)(z3 — z2) +u)
2:2(0) = 933(0) =0 .

(4.12)
For any input u , by Assumption 4.3.11,

(22(2) , z3(2) = z2(2))

is the solution of the system of differential equations in (4.12) under the specified
initial conditions. Hence (4.12) is an equivalent description of P as N pDp ! .
Step 2

We use a technique due to [Che.1] to show that there exists a
K :R, —-IR™*"

such that the causal map

H,:Ai—-rAg



defined by

z
7'[,:5»—»:1:{3(0) 0,

is A-stable: Let

§
Wilt,t+9) = [ *° =N (¢, 7)B(r) BT (r)87 (¢, r)dr

Using (4.5) , (4.6) and (4.14) ,forall teR, ,

e~ wminl < Wi(t,t +68) < Wmaxl ;
hence, for all telR, ,

worl < Wt +6) < fw}

~ Note that

d

— B(t)BT(t) + Wi(t,t +6)

+ AQ@QWi(t,t+6) + Wi(t,t + 6)AT(2) .

Forall telR; ,let K(-) be defined as
K(t) := =BT()W[1(t,t + 6) .
So themap K :IR, —IR™*" isboundedon IR, . Let
YV : R, xR" >R,
be a Lyapunov function candidate, where
V(t, z) := T ()W;(¢, t + 6)2(t)

Differentiating (4.18) along the solution of (4.13) , we obtain

(A + BEK)(t)z + f(t,z) + B(t)¢

FVitt+6) = e~ ®(t,t + §)B(t + §)BT(t + 6)®7T(¢,t + 6)

126

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)



forall (¢,z(t)) € Ry x R"

FV, 200 = 2TOW bt +)a(t)
(4.13)

— T@OW (Lt + 8 L{Wi(t,t + 5)Wi (2,1 + 6)z(t) (4.19)
Substituting (4.17) and (4.16) in (4.19) , we obtain

-;—tV(t , :v(t))'(4.13) = 2xT(t)AT(f)W;1(t,t + 8)z(t)
— 22T()WL(t,t + 8)B(t)BT ()Wt (¢, t + 6)z(2)
+ 2f7(t, z(£))Wi (L, t + 8)z(2)
+ 26T()BT ()W (L, t + 8)z(t)
— e T@)WL(¢,t + 8)®(t,t + 6)B(t + 6)

oBT(t + 6)8T(t,t + §)WL(t,t + 8)z(t)

+ T @)W, ¢ + 8§)B(t)BT ()W (¢, t + 6)z(t)
— T @OWL(t,t + §)z(t)

— 2T ATRWSL(t,t + 6)z(t) . (4.20)

Performing the appropriate cancellations and neglecting some of the nonpositive

terms in (4.20) , we obtain

SV, 2@)| < —T@Wi (Gt +8)a()
dt (4.13)
+2f7(t, ()WL (8, t + 8)=(t)

+26T()BT ()W (8, t + §)=(t) . (4.21)
By Assumptions 4.3.1II , IV , V and (4.15) , (4.21) , we obtain

SV ) S~k () - 26 wmmghyA(m + HEID)
(4.13)
(4.22)
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Let the map ¢7‘(: :IRy —IR, be defined as

¢Ha:(” 3 “) = 236wmaxw;u'ln\/7_l(m + b” § ”) .

Note that the map ¢7_£z is continuous and nondecreasing. From the inequality

_ in (4.22) we conclude that

VEER, , [s(Bk < dgq. (€1 - (4.23)

Since all norms are equivalent in IR" | from (4.23) , we conclude that the map
H. in (4.13) is A-stable.

For the choice of K in (4.17), by Assumption 4.3.1 V and (4.15) , there exists
a > 0 such that

sup [|[K@)|| L« . (4.24)
t €[0,00)

Hence, by Assumption 4.3.1 III , (4.24) and the A-stabilityof 7. , the causal
map Np in (4.11)is A—sta.ble. By'(4.24) and the A-stabilityof 7. , the causal
map Dy in (4.7) is also A-stable. Hence (N 'p, Dp) isantf of P .

(]
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4.4 Right-coprime factorizations

For a given causal plant P with an r.f. (J\/ », Dp) , Fact 4.2.7 states that the
instabilities of 7P are contained in the instabilities of D'p-l . The converse is not
true in general. However, for a special class of right-factorizations the instabilities

of D'p-l are identical to those of the plant.

Definition 4.4.1 (right-coprime factorization)

(JV », Dp) is said to be a right-coprime factorization (r.c.f) of the causal map
P: A; — Al iff
i) (NMp, Dp) isanrtf. of P (see Definition 4.2.4) and

ii) Fp := ['%‘: ] : AL — A9 x AL has a causal A-stable left-inverse .'Ff,

, l.e.,
fi[',’\pf:] =1, (4.25)
where I is the idéntity mapon AS .
a
Vot 3
e | & Ly
[} 1
il b o
et P
T
fp -
l’€1>
Figure 4.5:

Pseudo-state observer map F f,

Definition 4.4.1 generalizes the right-coprime factorization definition in [Vid.1,

Des.13,Des.15] by relaxing the constraint on the A-stable inverse of the map Fp
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tobeof theform [U V| ,( [U V] is described by

(u v]lg] =Uy + Ve ,

a slight abuse of matrix notation). Note that themap Fp = [ %{: ] is injective
since the “denominator” map Dy is bijective; hence the map Fp always has
a causal left-inverse, for example [ 0 D'p-l ] " : the point is that the map Fo
has a causal left-inverse that is A-stable.

A A-stable left-inverse F. f, defines a pseudo-state observer:
7] =6

it allows the pseudo-state £p to be reconstructed from the (noiséless) input-ouput

measurements e and y (see Figure 4.5) .

Fact 4.4.2 Tp = | z 'D,,") | |
Let (N, Dp) beanrcf of P : AL — A2 ; then

Irp =ID -1

P

Proof

va cZT D, follows by Fact 4.2.7 . We show the reverse inclusion by
P

contradiction. Suppose that for some e € Al ,

e€E I’Dop_l and e ¢IP . (4.26)

Then we have
&p := Dp e € AL\ AT . (4.27)

By assumption, the identity in (4.25) holds. Since by (4.26) , (e, Pe) € Aix A° ,

we have

5,,:.7-'3,[72‘3] € Al
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which is a contradiction to (4.27) .

O

Fact 4.4.3 (all r.c.f.s are related by A-unimodular maps)
Let (N"p, Dy) beanr.cf of P : Aie — A2 ; then (va ﬁp) is an r.c.f. of

P if and only if there exists a A-unimodular map M : Ai - AL such that

N> N ,,
["D}} = D:]M : (4.28)

Proof
149 if 2

By assumption, (N 'p, Dp) is anr.cf of P and M is a A-unimodular
map such that Np=N»M and Dp =DpM . Then (.Vp ﬁ) is an

rf. of P . Let
= JV'?
7, = [ v
and

FL = MFL (4.29)

where the map Fo is as in (4.25) . The map F» in (4.29) is causal and
A-stable. Since Fp = FpM , we have

FiFr = M FLFpM =1

—

Hence FL isa causal A-stable left-inverse of F» and by Definition 44.1,
(JV,» ﬁp) isanr.cf of P .
“ only if »

By assumption (J\/ », Dp) and (va ﬁp) are twor.c.f.’sof P . Let .7'-;

and .Ff, be the corresponding causal A-stable left-inverses. Let

M = D'p-lﬁ\’p .
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— —1 ’
Since N»Dp ! = JVpDr , using the map M above, (4.28) holds by

calculation. Moreover
M = FLFp and M = FLFp

are A-stable.

(m]

We conclude this section by defining a special class of A-stable maps. They are

a generalization of A-stable linear maps.

Definition 4.4.4 (incrementally A-stable maps)

A causal map H : AL — A? is said to be incrementally A-stable [Des.9] iff

.i) the map H is A-stable (see Definition 3.2.3) and

ii) there exists a continuous nondecreasing function ¢4 : IR, —IR, such that,

VuGAie ,

| Hu + Au) — Hu|| < dn(l|Au]) VAue Al.

In other words, a A-stable map is incrementally A-stable if “bounded” devia-
tions in the input result in “bounded” deviations at the output; the bound on the
output deviation is independent of the nominal input signal u

In particular, any linear A-stable map is also incrementally A-stable.
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4.5 The feedback system X(P, Q)

Consider the well-posed feedback system X/ ('P ’ Q) shown in Figure 4.6 :

di rememr e m————————— - do
S e o A B
+ + +
'f> Y : 'Dp_l > N'p ‘ : —>
—a e, . y
eeeemeeemand P:
> Q >
Figure 4.6: -

The feedback system 3/ ('P ) Q)

The causal map P : AL — A2 denotes the plant and the causal map Q
denotes a nonlinear A-stable two-input one-output compensator.
By Definition 4.2.2 , the feedback system X ('P ’ Q) is A-stable iff the

closed-loop map
(‘U, d;, do) = (ea y)
is A-stable.
We now show that any plant P stabilized in X ('P ) Q) necessarily has an
r.c.f. A

Proposition 4.5.1 (¥(P, Q) A-stable = P has an r.c.f)
Let P : AL — A? be a causal plant and Q : AQ x Ai — AL be A-stable
such that the feedback system X ('P ’ Q) is A-stable; then 7P has an r.c.f.

Comment 4.5.2

By Fact 4.2.5 , the causal map 7P has an r.f. since the well-posed feedback system
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(P, Q) is A-stable. The fact that there is an r.c.f. follows by the fact that
the causal compensatorin X/ ('P ’ Q) is A-stable.

Proof of Proposition 4.5.1
Set the input and output disturbances d; and d, equal to zero. By assumption

the well-posed feedback system X ('P y Q) is A-stable; hence the causal map
H.., : Ai—)Ai , Hew :v—e

is A-stable. By Fact 4.2.5, (PHe, Heo) isanrtf of P . Writing the

summing node equation at v , we obtain

{[o I]+Q}[77_9£He.,] _1,

ev

hence (PH.,, H.,) isinfact anr.cf of P .

O

We now try to answer the converse: can any causal map 7P with an r.c.f. be

stabilized in the feedback system X(7P , Q) ?

Proposition 4.5.3 (incrementally A-stable r.c.f = stabilization)
Let themap P : Al 5 A% havean rcf (N'p, Dp) , where the maps

N» , Dp and the chosen left-inverse .'Ff, are incrementally A-stable . For

a given incrementally A-stable A-unimodular map M : Ai — Ai let the
A-stable map Q be defined as

Q= (M -Dyp)F; , (4.30)

where the feedback system X(7P, Q) is assumed to be well-posed. Under these
assumptions the feedback system X/ ('P ’ Q) is A-stable.

Proof
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Writing the summing node equations in Figure 4.6 in terms of the plant pseudo-

state €p , we obtain

Drtp — di = v — (M - Dp)F5 u’,})/:g +d ] L (s

It suffices to show that the causal map
(vadth)HE?

determined by (4.31) , is A-stable. Let

¢ = F2 J'\D{:gtj] — & . (4.32)

Since F5 is incrementally A-stable, using the identity in (4.25) , we obtain

< & d; ) ; 4.33
IICII_¢}-£(II |+ 1l doll) (4.33)

hence the causal map (v,d;, d,) — ( is A-stable. After substituting (4.32) in

(4.31) , adding Mf‘p to both sides of (4. 31) and rearranging (4.31) , we obtain
Mép = v+ di + {Dr(ér + ¢) - Db} + {Mér — M(&r + ()}

Since the maps M and Dy are incrementally A-stable, we obtain

Ml < el + 1dill + dp, (ICI) + SA40ICID 5
together with (4.33) , we have shown that the map

(v,di, d,) —» Mép
is A-stable. Since the map M is A-unimodular, we conclude that
(v,di, do) — &p

is A-stable and consequently, X(P, Q) is A-stable.

a
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4.6 A Class of Nonlinear Plants with Incremen-
tally A-stable r.c.f.

In this section, let the input and output spaces AL and A? be defined as
L%.[0,00) and LZ,[0, o) , respectively (see Section 4.3).
We assume that for all of the differential equation representations below, for any

input, the state and the output are uniquely determined on [0, c0) .

Description of the Class

Consider a nonlinear plant whose input-output map P : A i — A is specified by

the following state-space description:

& = Az+ f(t,z) + Be
P:e—y { y = Cz+h(t,z)+ Ee (4.34)
z(0) = 0 .

We impose the following assumptions: on the plant description in (4.34) :

Assumptions 4.6.1

I. A€eR™™ , BeR™™ , C eR™*" , E €¢IR™*™ and (4,B,C,E)
is minimal .

II. The maps f :IR,. xIR®" -IR" and h :IR, XIR" —IR"™ are piecewise
continuousin ¢ and globally uniformly Lipschitz continuousin z ; moreover

there exist my and mj, > 0 such that

sup | f(t, z)| =: my
teR4 ,z€R™

sup |h(t,z)| = my .
teR;,z€R" :
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Proposition 4.6.2 (an r.c.f. of P defined in (4.34))
Let the causal plant P : AL — A2 be described by (4.34) and satisfy As-
sumptions 4.6.1 I,II . Let the real matrices K and L be chosen such that
o(A+BK) U o(A+LC) C € . Let themaps Np , Dp and F7, be given
by (4.35 - 4.37) , below:

¢ = (A+BK)an + f(t,zn) + B
Np:tmy y = (C+EK)zn +h(t,zn) + EE (4.35)
Q:N(O) =0 ,
tp = (A+BK):cD+f(t,zD)+B§
Dp :€—e { e = Kzp+¢§ (4.36)
zp(0) = 0 ,
-’i:l = (A+LC):B1+f(t,l‘1)+Lh(t,:L'1)
A -L B+ LE
FoiCombl ol gag. UTETEDS
.‘01(0) =0

Under these aésumptions,
i) themaps Np , Dp and F>5 are incrementally A-stable, and
ii) (Np, Dp) isanrf of P in(4.34),and
1[N

Comment 4.6.3
Proposition 4.6.2 shows the existence of an r.c.f. of P by calculating the three

maps in (4.35 - 4.37). There are two cases which do not require any calculation :

i) If o(A) C € ,then themap P is A-stable; (P,I) isanr.cf of P
and the corresponding F 5 is [0 I] .

ii) If the triple (A, B, C) is such that there exists a real matrix K such

that o(A+ BKC) C € ,then P hasanrct (set Q = —K[I 0]
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in Proposition 4.5.1); note that not all minimal triples (A, B, C) can be

stabilized by stable dynamic output-feedback [You.1] .

Proof of Proposition 4.6.2

By Assumption 4.6.1I , (A, B) is a controllable pair; hence there exists a
K € R™*" suchthat o(A+BK) C € . Let the numeratormap N p : Aie -
A? and the denominator map Dy : Ai — Ai be given by (4.35) and (4.36) ,
respectively. The map Dy in (4.36) is bijective and has a causal inverse (recall
Proof of Proposition 4.3.2) . Cascading Dr! and Np , we obtain (note that
§ = e - Kzp by (4.36))

&ty = (A+BK)zny+ f(t,2zn)+ Be — BKzp
-1 zp = Azp+ f(t,zp)+ Be

N>Dp™' i ey y = (C+EK)en +h(t,on) + Ee — EKzp (+38)

zn(0) = zp=0
~ Let zy —zp =: z ; then the system of differential equations in (4.38) is equivalent

o |
2 = (A+BK)z+ f(t,zp + 2) — f(t,zp)
tp = Azp+ f(t,zp) + Be (4.39)
2(0) = zp=0

By assumption, the system of differential equations ‘in (4.39) has a unique solution
on [0, c0) for all inputs in AL ; it is easy to see that z(t) = 0 forall ¢t > 0
is the unique solution of (4.39) . Hence (4.35) and (4.39) describe the same map
P . Since o(A+BK) C € and f(-,-) isbounded, the maps N p and Dp
are A-stable; in fact, they are incrementally A-stable. To see this, let A¢ € Al
and let (zy,y) and (&nv,§) Dbe the solution pairs of (4.36) corresponding to

the inputs £ and (§ + Af) , respectively. Then we obtain

an(®) = [P (r, () + B (440

in(t) = [ eWHBRI-I(f(r, on(r)) + BE(r) + BAET)dr . (441)
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Since (A + BK) C €2 , thereexist « > 1 and A > 0 such that
Vi 2 0 , Ile(A+BK)tII S ae—z\t :
from (4.40) and (4.41) , [zn(t) — £n(2)] satisfies

¢t
|2n(t) = &n()] < (2my + BN AEIDe [ e~ 7dr

< (2my + IBIIIAEINT - (4.42)

From (4.42), we conclude that there exists a function é N» such that

ly = 911 < Sar, (NAEN) -

A similar argument shows that the map Dy is also incrementally A-stable.

By assumption, the pair (C, A) is observable; hence there exists an L such
that o(A + LC) C €2 . Let the pseudo-state observer map candidate JF f,, be
given by (4.38) ; clearly, the map .7:5, is causal A-stable; in fact, it is incrementally

A-stable. Cascading F» with [%{: l , we obtain

( :i!l = (A + LC):B] + f(t, :L‘l) + Lh(t, 181)
—Lh(t,zn) — L(C + EK)zyn
N , —LE{+ (B+ LE)Kzp +¢)
ffv['D?] : €& { #nv = (A+BK)zy + f(t,zn) + BE
? ¢p = (A+BK)zp+ f(t,zp) + B¢
€ = —Kz1+Kzp+¢
| 21(0) = zn(0) =2p(0) =0

(4.43)
By assumption, the system of differential equations in (4.43) has a unique solution;
hence

Vi>0, z.(t) = zn(t) ,

and the identity (4.25) is satisfied.

o
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Corollary 4.6.4 (a stabilizing feedback system for P in (4.34))
Let the map 7P satisfy the assumptions in Proposition 4.6.2 . Let A be
an incrementally A-stable A-unimodular map . Let Q := (M - 'Dp).’l-'f,, ,
where the maps Dp and F f, are given by (4.36) and (4.37) , respectively. Assume
that the feedback system (P, Q) is well-posed. Under these assumptions, the
feedback system X(P, Q) is A-stable(see Figure 4.6).

Proof

Follows by Proposition 4.6.2 and Proposition 4.5.3 .
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4.7 Nonlinear stable unity-feedback systems with
one linear subsystem

The problem of characterizing all linear time-invariant compensators which stabi-
lize a linear time-invariant plant in the unity-feedback configuration has been solved
using tools of algebraic control theory; the characterization is obtained by finding
solutions of certain Bezout identities [You.1,Cal.1,Des.4,Vid.2,Vid.3] . A general-
ization of this approach to linear input-output maps can be found in [Fei.1] ; see
[Man.1] for the time-varying continuous-time case. In [Kha.2], the set of all stabiliz-
ing discrete-time possibly nonlinear time-varying compensators for a discrete-time
linear time-invariant plant is obtained using periodic compensators and two-step
compensation schemes. In [Des.6,Des.9] , the set of all stabilizing compensators for
an incrementally stable nonlinear plant (e.g. stable linear plant) is obtained. Using
left and right factorizations of a class of causal nonlinear disc,ret.e-time plants, a
complete parametrization of the set of all stable solutions U , V of the equdtion
" UN + VD =M isgivenin [Ham.5] .

In this section, we consider the nonlinear unity-feedback configuration where
one of the two subsystems (either the plant or the compensator) is specified by a
linear (not necessarily time-invariant) map. Since the plant and the compensator

appear symmetrically in the stability analysis of the unity-feedback system, we
choose to derive the results for a fixed linear plant. Assuming that the linear plant
has a “generalized” left-coprime factorization, we show that all nonlinear stabilizing
compensators have right-coprime factorizations which satisfy a Bezout-like identity.
In the case where the linear plant also has a right-coprime factorization, we obtain
the set of all solutions satisfying the identity; in fact, we obtain a parametrization of

the set of all nonlinear stabilizing compensators. Interchanging the roles of the plant
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and the compensator, this result gives the set of all nonlinear plant perturbations

which maintain feedback-system stability for a given linear compensator.

Results

Consider the nonlinear unity-feedback system S(P,C) shown in Figure 4.7: the

linear plant is given by a causal linear (not necessarily time-invariant) map P :

Ai — Al and the possibly nonlinear compensator is given by a causal map

C:A— A;‘a . We assume that the the linear map P satisfies Assumption 4.7.1 :

Assumption 4.7.1

The causal linear map P : AL — Ag has the following properties :

i) The map P has an Lf. : ‘that is, there exist causal linear finite-gain-stable
maps Np : Ai — A2 and Bp : A — AJ , where Bp is bijective, has
a causal inverse and BP-INP =P

ii) There exist causal A-stable(not necessarily linear) -maps U: A2 - Al
and V : A2 = A2 such that

Neld +DpV =1 . (4.44)

Figure 4.7:
Nonlinear unity-feedback system S(P,C)
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Theorem 4.7.2 (A-stable S(P,C))

Consider the nonlinear unity-feedback system &(P,C) in Figure 4.7 , where the
causal linear map P : Al - A? satisfies Assumption 4.7.1 and C : A% — Al .
Under these assumptions, the nonlinear unity-feedback system & (P,C) is well-
posed and A-stableif and only if the map C has an r.c.f. (N ¢ » D¢ ) such

that

Np)\/c + Bppc =1 . (4.45)

Proof
13 if ”
Let (Ne,De) beanrted of C: A — Ai , satisfying (4.45). From the

summing node equations in Figure 4.7 , we obtain
e = Dcfc = U1 — Y2 (446)

Dpyr = Np(uz + 31) = Np (uz + Nete) (4.47)

where £¢ denotes the pseudo-state of the compensator C . Using the linearity

of Np and 5p in (4.46-4.47) and using assumption (4.45) ,
b = [5" “NP] l“‘] . (4.48)
U2

By (4.48) , the map
(u1, uz) = &

is A-stable. Since the maps J\/ ¢ and D¢ are A-stable, the map

(u1, u2) = (1, 1) = (Debe, Neke)

is A-stable; hence the feedback system S(P,C) is well-posed and A-stable.
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“ only if »
By well-posedness and A-stabilityof S(P,C) , the.map C has an r.f.
(Ne¢,De) ;namely

N
D,

c(l+pPc)™" |
(I+Pc)™

Using this rf. of C in the summing node equations (4.46-4.47) of the feedback

system S(P,C) and using the linearity of Np and Bp ,

(NeAc + DpDc)éc = [Dp —Np] [] .

- (4.49)

By well-posedness of S(P,C) and the existence of the causal inverse D¢~

?

there exists a causal map (u;, uz) — & , which need not be A-stableeven if the

feedback system S(P,C) is. Choose the inputs as

[“‘] :=[ v]u , (4.50)
U2 -
where v € A° . Substituting (4.50) in (4.49) ,
(NPNC + Bppc)fc = v . (4.51)
Equation (4.51) determines a causal map
- —_ -1 — —_ -1
(Nch + DpDc) : Ag —)Ag , (Nch -+ DpDc) t v e .
Hence the causal A-stablemaps v++e;, and v+ y; are given by
. — —_ -1
D, (Nch + DpDc) T vee (4.52)

o~ _ -1
N (Nch + DpDc) vy . (4.53)

From (4.52-4.53) and

N = Cey )



145

we conclude that
(m (NoNe + BepDe) ™, De(Nele + BpDe) ™ )
isan rf. of C ; furthermore, since
N [J\/c (NeMe + Bpu,.)"] + Dp [pc (NeAe + ‘5p7>c)’*] -1,

itisanr.cf of C .
0
We now prove an algebraic lemma which characterizes the set of all solutions of

(4.45) .

Lemma 4.7.3 (all solutions of (4.45))

Let the causal linear map P : Ai — A2 satisfy Assumption 4.7.1 . Suppose also
that (J\f », Dp) isanr.cf of P (note that the maps N » and Dy need not
be linear), where the conditions in Definition 4.4.'1 hold. Under these assumptic.)ns
the set of all causal A-stablesolutions of (4.45) is given by

([Be] emiens 1 3] = [$2028]

(4.54)
Q: Ad— AL is A-stable } .

Proof
We first show that any pair of A-stable maps specified by (4.54) is a solution of
equation (4.45) . Substituting N¢ and De given by (4.54) in (4.45) and using

the linearity of ﬁp and Bp , we obtain

Nch + BpDc = Npu + pr + (Bpr - Npr) Q. (4.55)
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Substituting
DpN» = NpD5» (4.56)

in (4.55) and using (4.44) , we see that (4.45) is satisfied.

Now consider any pair of causal A-stablemaps N ¢ , D¢ satisfying equation
(4.45) . Then from (4.44) ,

NeNec + DpDe = I = Npld + DpV . (4.57)

— — _~ -1
Using the linearity of Np and Dp , and substituting Dp Np = N>Dp™t
in (4.57) ,
N'pD'p_l (Nc - Ll) =YV -D. . (4.58)

Let the parameter ©Q be defined by .
Q=D (N -U) . (4.59)

Clearly, the map in (4.59) is causal. By aésumption, (J\/ », Dp) is an r.ci. of
P : hence there exists a causal A-stablemap F :.,z, such that the identity (4.25)

holds. From (4.25) , (4.58) and (4.59) ,

o - 7[Fr]e
=58 ]
FI;V—DCI

P ' N.-U (4.60)

From (4.60) , we conclude that the map Q is A-stable. From (4.58) and (4.59) ,
(4.54) follows.

0

Theorem 4.7.4 (parametrization of all stabilizing compensators)

Let the causal linear map P : AL — A9 satisfy all of the assumptions in
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Lemma 4.7.3 . Under these assumptions, the set of all compensators C : Ag — AL

which A-stabilize the nonlinear unity-feedback system S(P,C) is given by

{€=U+DQ)(V-N>Q)7" | Q: Al— AL is Astable
and

(v - N>p Q) ! is causal } .(4.61)

Moreover, the map Q ~— C in (4.61) is bijective.
Proof | | |

From Theorem 4.7.2 and Lemma 4.7.3 , we conclude that the map in (4.61)
is onto the set of all causal compensators which A-stabilize the nonlinear unity- |
feedback system &S(P,C) . By inspectiox;, the map Q — C in (4.61) is
surjective.

We need to show that the map. Q — C -in (4.61) is injective: it suffices to-

show that

U+ DrQ)(V -N>Q)7" = (U+DrQ)(V-N»Q,)" (462)

implies that
Q= Q,

First note that by the linearity of Np and Bp , (4.44) and (4.56) imply that

Np(u + DPQI) + BP(V - N’PQI)
Np(u >+ D'pgz) + BP(V - N’PQ2)

I, (4.63)

I. (4.64)

Composing (4.63) on the right with the nonlinear map

(V-N>Q)"



and using (4.62) ,

Np(U + Dr Q) (V - N»2Q,) 7 +Dp = (V-N5Q,)7 .

Composing equation (4.65) on the right with the nonlinear map
(V - N>2))
and using (4.64) , we obtain
(V-NrQ) ' (V-N5Q,) = 1.
Substituting (4.66) in (4.62) , we obtain
DrQy = P? Q: ;

since Dy is bijective, the claim follows.

D .
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(4.65)

(4.66)
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4.8 Nonlinear unity-feedback system

The following theorem gives a necessary and sufficient condition for the stability of
a well-posed nonlinear unity-feedback system S(7P,C) , provided that either P
or C haver.cf’s. Since the rolesof PP and C can be interchanged, we state

only the case where C has an r.c.f.

Theorem 4.8.1 (n&s condition for A-stable S(P,C))

Let (AMe¢, D¢ ) be an r.cf. of the causal nonlinear map C : A2 — Al
Let P : Al - AS be a causal nonlinear plant. Under these assumptions, the
nonlinear unity-feedback system S(P,C) is A-stable if and only i.f the causal

pseudo-state map
(u1, u2) > e
is A-stable (see Figure 4.8).

------------------

oy e it i

S
‘l-'
2
A
4

Figure 4.8:
Nonlinear unity-feedback system S(7P,C)

Proof
(13 if ?
By assumption, the causal map (u;, up) — & is A-stable . Since A ¢ and

Dc are A-stable maps, the closed-loop map (u, u2) — (e, €2) is given by

e = 'Dcfc

ez us + Nete (4.67)
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and is also A-stable . Hence the nonlinear unity-feedback system - S(P,C) is
A-stable .

“ only if »
By assumption, (J\/ ¢, D¢ ) isanrct of C ;hence there exists a causal

A-stable map F~ such that

fg[%f;:] =1. (4.68)

Moreover, by assumption, the closed-loop map (u1, uz) — (e, €2) is A-stable.

Then by (4.67) and (4.68) ,

& = -7’5[ o ] : | (4.69)

€2 — U2
By definition of r.c.f., the causal map .’Fﬁ is A-stable; hence from (4.69), we

conclude that the map (u;, uz) — & is A-stable.

]

Comment 4.8.2
The idea in Theorem 4.8.1 can be generalized to well-posed.feedback systems other
than S(P,C) : .

In any well-posed A-stable feedback system, if a subsystem (say C ) has
an r.c.f., then the closed-loop pseudo-state map (mapping the closed-loop system
inputs to the pseudo-state &¢ )is A-stable.

If a subsystem (say C ) has an r.c.f., the A-stability of the closed-loop pseudo-
state map may or may not guarantee A-stabilityof the overall feedback system,; it
holds for S(P,C) but it may also hold for other well-posed systems (for example
the feedback system (P, Q) in Figure 4.6).

Lemma 4.8.3

Let the nonlinear maps P : AL — A% and C: A2 - Ai be A-stable . If the
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nonlinear unity-feedback system S(P,C) is A-stable, then the maps (I + ?C)
and (I + C'P) are A-unimodular.

Proof
We only show that the map (I + ’PC) is A-unimodular. Proof of the other
is similar.

Writing the summing node equations in Figure 4.8 and setting u, = 0 ,
(I + 'PC)el = u; .

By assumption, the closed-loop map u; — e; is causal A-stable. Hence the claim

follows.

O

Theorem 4.8.4 (parametrization of all compensators)
Let the nonlinear map P : Ai — A2 be incrementally A-stable . Then the
well-posed nonlinear unity-feedback system S(7P,C) is A-stable if and only if

themap C : Al — A, hasanrci

(2,1-PQ)
for some causal A-stable map Q : A — AL

Comment 4.8.5

Theorem 4.8.4 gives a parametrization of all stabilizing nonlinear compensators
C , provided that the nonlinear plant 7P is incrementally A-stable. This theo-
rem [Des.9] extends the linear Q-parametrization result [Zam.2] . Note that Theo-

rem 4.8.4 motivates an r.c.f. approach.



~ Proof of Theorem 4.8.4
« only if
By assumption, the nonlinear unity-feedback system &S(7P,C) is well-posed

and A-stable. Hence, with u; =0 , the closed-loop map u;+— ¥ ,namely
-1 .
Q = C(I+'PC) : A3 — Al
is causal and A-stable. By calculation,

(2,1-PQ)

isan r.f. of C . Furthermore,

PR pe] =t

Since the map P is A-stable, we conclude that (Q N - 'PQ) ist.cf of C .

. 66 if ” .
By assumption (Q , I— 'PQ) is an r.cf. of C for some causal A-stable
map Q . It suffices to show that the closed-loop map (u1, ug) — & is A-stable.

Writing the summing node equations in Figure 4.8 for C = Q (I - 'PQ)-I ,
(I - 'PQ)&: = u — 'P(ug + ch) . (4.70)

By assumption, the feedback system S(P, Q(I-P Q)-1) is well-posed; hence
(4.70) determines a causal pseudo-state map. From (4.70) , using the incremental

A-stabilityof P , we obtain

V(u,u) € A°xAl |, VT e T

IMzéc]l < llwll + 1PQ& ~ P(Qé +ua) |

< Al + éa(lluzll) -
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Hence the pseudo-state map in (4.70) is A-stable.
(m]
Using the incremental A-stability argument, we show that the unimodularity

condition in Lemma 4.8.3 is also a sufficient condition.

Theorem 4.8.6

Let the nonlinear map P : Ai — A2 be incrementally A-stable and let the

nonlinear map C : A2 — Al be A-stable . Then the well-posed nonlinear
unity-feedback system S(P,C) is A-stable if and only if the'map (I + PC)

is A-unimodular.

Proof
“ only if »

Follows by Lemma 4.8.3 .
“ §f »

By assumption, the map (I + 'PC) is' A-unimodular. Since the map C
is A-stable, (C,I) isanr.cf of C ; hence e, := & (see Figure 4.8). By
Theorem 4.8.1 , it suffices to show that the causal map (u;, u;) +— e; is A-stable.

Writing the summing node equations in Figure 4.8 , we obtain
e1 = uy — 'P(Ce1+uz) )
adding PCe; to both sides,
(I+'PC)e1 = u, + PCe; — 'P(Ce1 +u2)

By the A-unimodularity of (I+'PC) , e € A° if and only if (I+7>C)el €

A° . Using the incremental A-stabilityof P |,
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V(uy,u) € A°xAl | VT e T

ITr(I+PCesll < llwll + IPCer — P(Cer+us) ||
| < lull + ép(llusll) -

‘Hence we conclude that the closed-loop map (u;, u;) — (I + 'PC) e; is A-stable.

a

Theorem 4.8.7

t.et the nonlinear ina.p
'P:AexAL—»Ag , P:(v,e)—uy

be causal and incrementally A-stable. For some fixed causal nonlinear map C :
A2 — Al | let the nonlinear unity-feedback system S(P(v,-),C) be well-
posed for all v € A . Under these assumptions, S(P(vo,-), C) is A-stable
for some » € A if and only if S(P(v,-),C) is A-stable forall v € A .

Comments 4.8.8

From Theorem 4.8.7 , we have the following interpretations:

i) If we have a family of incrementally A-stable plants

{P(,)}

vEA

and if one member of this family is stabilized by some C , then the whole

family is stabilized by that C .

ii) The one-input one-output plant P(v,-) can be considered as an input-
output description for a fixed parameter v or for a fixed bounded auxiliary

input v . In any case, the map P(v,.) is assumed to be a complete

description of the plant for any v € A [Bha.2].
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Proof of Theorem 4.8.7

We only prove the necessity; the sufficiency proof is obvious.

By assumption, there exists a o € A such that the nonlinear unity-feedback
system S(P(ro,-), C) is A-stable. By Theorem 4.8.4 , there exists a causal
A-stable map Q : A — Ai such that

(2,1-P(n,Q))

isan rcf of C . Forany v € A , consider the unity-feedback system

S(P(v, (), Q(I — P(w, (4)) )-1) in Figure 4.9 .

T Zom |
-1 y + Y2
(I-P(%, () H <] aSon P(v, Q(+))

--------------------------------------

Figure 4.9:
S(P(v, Q) , Q1 - P(w, Q(-)))™)

By Theorem 4.8.1 , it suffices to show that the causal pseudo-state map

(w1, uz) = €e(v)

associated with S(P(v, Q(-))-, Q(I - P(w, Q(-)) )-l) is A-stable for

all » € A . The summing node equations in Figure 4.9 give

be(v) = ur + Plw, Qbc(v)) — Plv, Qée(v) + up) . (4.71)
Since the map 7P(-,-) is incrementally A-stable, (4.71) gives

V(ur,u) € A°xAl |, VveA, VT e T,
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IIréc(@) |l < llull + dp(llv —woll + [[u2]]) -

Hence the closed-loop pseudo-state map (u;, uz) — &e(v) is A-stable for all
veA

]

Consider the case

P("a') = ;F‘yz : (ulau)'-)y2 )

u=v
where the map 'ﬁw is the restricted input-output map of an incrementally
A-stable 3(73, é) for some causal maps P and € ; then the two-step
stabilization results in [Ana.1] and [Des.7] become special cases of Theorem 4.8.7 .
The following theorem [Des.9] establishes a necessary and sufficient condition for
simultaneous stabilization of two plants which need not be members of the family
of incrementally A-stable maps in Theorem 4.8.7 . Our use of the factorization

approach greatly simplifies the proof.

l- Theorem 4.8.9

Let the nonlinear map P : AL — A2 | be causal and incrementally A-stable. Let
the nonlinear unity-feedback system &S(7P,C) be well-posed and A-stable (hence
by Theorem 4.8.4, C has an r.c.f (Q , I_—PQ) for some causal A-stable
map Q : A2 — Al ). Eet the perturbation AP : Al o A2 be a causal
nonlinear map such that the nonlinear unity-feedback systems S(P + AP,C)
and S(AP,Q) are well-posed. Under these assumptions, S(P + AP,C) is
A-stable if and only if S(AP, Q) is A-stable.

Comment 4.8.10

The nonlinear perturbed plant P+ AP need not be A-stable. The perturbation



157
AP is only subject to the condition that S(AP, Q) is A-stable in order to
have S(P + AP,C) A-stable.

Proof of Theorem 4.8.9

Consider Figures 4.10 and 4.11 : Let the pseudo-state maps M, and 7"23

_1£ §+ +
(1-PQ)" Q—(L—, P+ AP

----------------------------

Figure 4.10:
S(P+ AP,C)

Figure 4.11:
S(AP, Q)

be defined as

He o (w1, u2) = ¢
He : @ m)—E .

By Theorem 4.8.1 , it suffices to show that the map 7, is A-stable if and only
if H; is A-stable.
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[13 if b2}
By assumption, the map 'R? is A-stable. Writing the summing node equations

from Figure 4.11 , 77@ is given by

=5 - AP(QE+ %) . (4.72)

By assumption, 7 is a causal map. Writing the summing node equations from

Figure 4.10 , . is determined by
£ = R(ua, u) — AP(QE + wp) (4.73)
where the causal map R is defined by
R(u1, uz) = w1 + PQHe(ur, u2) — P(QHe(ur, ua) + ua) . (4.74)

Note that the map R in (4.74) is A-stable since by incremental A-stability of
P,

V(ul,uz) € AOXAi , VT € T,‘

It R(ur, w) |l < llwall + dp(lluzll) -

Since (4.72) and (4.73) have the same form, we conclude that
He(ul , Ug) = ﬁg(n(ul ) Uz), uz) )

hence, H, is A-stable since both ﬁé{’ .) and R(-,-) are A-stable.
“ only if ”
By assumption, the map H, is A-stable. Writing the summing node equations

from Figure 410, H is found by solving the solution of

I-POY = u, — (P+AP)Q¢ + u,p) (4.75)
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for ¢ . By assumption, 7"25 is a causal map. Writing the summing node

equations from Figure 4.11 , H

z is determined by

I-PQ)E = R@.@m) - (P+APYQE+@m) ,  (476)
where the causal map R is defined by
R, @) =& + P(QR@, @) + &) - PQH(@, @) - (40)

Note that the map R in (4.77) is A-stable since by incremental A-stability of
P,

V(ul,U2)€A°XAi , VT e T,

It R@, @) < @l + ée(ll@wll) -
Comparing (4.75) and (4.76) , we conclude that
@, @) = He(R@, @), @)

hence 77? is A-stable (because both H(-,-) and R(-,-) are A-stable).

a



Chapter 5

Conclusion

The main focus of this work is on three items:

i) stable additive feedback systems,
ii) right factorizations,
| iii) right-coprime factorizations.

~ Items i) — iii) are studied for three classes of causal input-output maps:

1. linear time-invariant finite-dimensional maps (Chapter 2) ,
2. linear maps (Chapter 3) ,

3. nonlinear maps (Chapter 4) .

The three classes are definitely nested in one another; however the point is that we
investigated each one of them using all of the properties available for that class.

This approach led to some interesting observations. The implications

iii) = i) = ii)

160
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always hold. The implication
il) = 1iii)
requires attention: In the setting of Chapter 2 , we have
il) & iii)

due to the ring properties of proper rational transfer functions in one complex

variable. In the setting of Chapter 3 , the implication
il) = iii)

no longer exists. There are linear systems with right-factorizations that do not
admit right-coprime factorizations [Fei.2] . Hence for general nonlinear maps, the

conditions under which the implication
il) = iii)

holds will be extremely useful. The answer is expected to be through case stud.ies:v
such an attempt has already been made in Sections 3.5 , 4.3 and 4.6 .

The definitions of left-factorizations can be introduced for linear maps with no
extra work. As proved in Section 3.4 , in a stable linear unity-feedback system
the plant and the compensator have both right- and left-factorizations. In other
words, linearity allows a left factorization tool to be developed in parallel with right
factorization tools.

The implication

i) = ii)
(see also [Ham.2]) is a very important one justifying right factorization tools. A

similar justification for left factorizations of nonlinear causal maps is not yet known.
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Factorization tools bring a better undérstanding of robustness analysis of stable
unity-feedback systems (Sections 2.5 ,2.6 ,3.7,4.8) .

In Section 4.6 we worked out right-coprime factorizations for a class of nonlinear
plants and found a stabilizing feedback configuration, which has a free parameter
that can be assigned; in other words, a class of stabilizing compensators was pro-
posed. The explicit calculations are readily implementable.

Finding right-coprime factorizations for a given plant is an answer to stabiliza-

tion; investigating special cases will be extremely useful.
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