

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN INTEGRATED GRAPHICAL ENVIRONMENT

FOR OPERATING IC PROCESS SIMULATORS

by

Alexander S. Wong

Memorandum No. UCB/ERL M89/67

25 May 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN INTEGRATED GRAPHICAL ENVIRONMENT

FOR OPERATING IC PROCESS SIMULATORS

by

Alexander S. Wong

Memorandum No. UCB/ERL M89/67

25 May 1989

AN INTEGRATED GRAPHICAL ENVIRONMENT

FOR OPERATING IC PROCESS SIMULATORS

by

Alexander S. Wong

Memorandum No. UCB/ERL M89/67

25 May 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

An Integrated Graphical Environment for Operating IC Process
Simulators

Alexander S. Wong

Electronics Research Laboratory
Departmentof ElectricalEngineering and ComputerSciences

University of California,Berkeley,California 94720

ABSTRACT

This report describes PROSE (PROcess Simulation Environment), an
integrated environment for operating integrated-circuit process simulators.
PROSE features a graphical user interface for displaying and editing layout and
cross-sectional structures, interactive menus and dialog boxes for invoking simu
lation tools and entering process parameters, and a Profile Interchange Format for
specifying device structure information. This environment is based on the
VEM/OCT/RPC CAD system, and uses a new process manager named SIMPL-
RPC (SIMulated Profiles from the Layout, Remote Procedure Call).

Special attention has been placed on the development of the Profile Inter
change Format (PIF). A parser has been implemented in SIMPL-RPC for read
ing and writing ASCII PIF files. SIMPL-RPC also has the ability to store and
manipulate binary PIF data in the OCT database with a new library of data access
functions and a policy which defines how PIF data is stored in OCT.

May 23,1988

Acknowledgements

I would like to thank Professor A. R. Neureuther for his expert guidance in research and

engineering, and for his much valued advice on life in general. Professor W. G. Oldham also

deserves special mention for reading this paper, for which I am greatly appreciative.

I wish to thank everyone involved in SIMPL, including the previous SIMPL-DIX crew of

Simon Koh and Joe Wu, and those currently involved with SIMPL - John Camagna, Ed

Scheckler, Ed Scheckler, Martha Tilmann, and Robert Wang. I mention Ed's name twice

because of his numerous contributions to this project. I would like to acknowledge others outside

my group who I haveconsulted withon coundess occasions, particularly Chris Williams of BPFL

fame, and those involved with VEM/OCT/RPC.

Thanks also to all the permanent residents of my cubicle - Rich Ferguson, Ed Scheckler,

and Nelson Tarn, as well as frequent visitors Gino Addiego, John Gamelin, Sherman Kwok,

Jaime Ramirez, and KennyToh. I continue to enjoy their advice and friendship. All of the little

cubicle amusements which they helped develop makes working with them a true pleasure.

There are just too many people to thank. I hope those who I've forgotten to thank will for

give me. "The essence of true friendship is to make allowance for another's litde lapses" - David

Storey.

The financial support of the Semiconductor Research Corporation is gratefully ack

nowledged.

I dedicate this report to Mom and Dad.

Table of Contents

Acknowledgements i

Table of Contents > "

Chapter 1: History and Overview 1
Background and Introduction 1
PROSE Overview , 2

A Typical Process Step 3
Outline for the Remaining Chapters 5

Chapter 2: The Process Simulation Environment 10

Introduction 10

The VEM/OCT/RPC Framework 10

The User Interface 10

Process Row Specification 11

Intertool Communications 12

Storage of Results 13

Display of Results 13

SIMPL Technology Library 15

Hardware and Software Requirements 15

Chapter 3: The Profile Interchange Format 16

Overview 16

The ASCII PIF 17

The Binary PIF 18

Chapter 4: Conclusion 21

References 22

Appendix A: SIMPL Technology Library Listing 23

Appendix B: SIMPL-RPC Generated PIF Example 32

Chapter 1

History And Overview

1.1. Background and Introduction

The concept of SIMPL (SIMulated Profiles from the Layout) is to automatically generate

integrated-circuit (IC) device cross-sections from layout and process information throughsimula

tion. Mask information is first extracted from a specified cut-line through the layout, then pro

cess flow data is used to perform a series of simulation steps to create the final profile. SIMPL-1

[1] was the first program to generate device cross-sections using this technique. In a matter of

seconds, it can take layout and process flow information and produce rectangular profiles using

one-dimensional simulation models. SIMPL-2 [2] is a second-generation two-dimensional pro

cess simulator and manager which produces arbitrary-shaped polygonal cross-sections. Its inter

nal simulator uses fast analytical models capable of describing more complicated phenomena

such as bird's beak shapes in oxidation and undercut in etching. SIMPL-2 is also a. process

manager capable of calling the SAMPLE [3] program for more rigorous simulation of deposition

processes. An X-Window based user interface for running SIMPL-2 and other simulators has

also been developed. SIMPL-DIX (Design Interface in X) [4] features graphical options for

displaying layout, cross-sections, and doping profiles, and a Designer's Toolbox, which can assist

the user in examining device cross-sections, estimating worst case misalignment, and choosing

appropriate locations for cut-line placement. SIMPL-DIX has also been linked to the RACPLE

program for extracting resistance and capacitance information from device profiles [5].

The SIMPL programs described above are excellent for rapidly generating device-cross sec

tions using both fast analytical models and a limited set of rigorous external models, but with

recent advances in computing speeds, designers now are more willing to take an "accuracy at any

cost" point of view in producing cross-sections using only rigorous (and computationally expen

sive) simulation tools. Specialized tools now exist for accurately simulating IC process steps ~

some examples are SAMPLE for etching and deposition, CREEP [6] for oxidation and reflow,

SUPREM [7] for diffusion and ion implantation. A system which integrates these tools together

would be very powerful for effectively predicting device cross-sections.

1.2. PROSE Overview

PROSE applies the SIMPLconceptof linking layout and process flow, and commonality to

implement an integrated environment for generating cross-sections using multiple processsimu

lators. The commonality refers to a common graphical user interface for input and output, com

mon description languages for layout,device structure, andprocess flow information, and a com

mon method of communication.

In PROSE, physical editing of the layout and cross-sections, and process command entry is

performed through a single editor. This common user interface gives the system a uniform look

and feel, making it easier to learn and use. Common description languages, such as the Profile

Interchange Format (PIF) [8] for describing profiles, and eventually the Berkeley Process How

Language (BPFL) [9] to specify process flow, are used to avoid theneed formultiple translators

whencommunicating between different programs. Finally, PROSE exchanges data using a com

mon communications mechanism.

The first-generation PROSE is based on the VEM/OCT/RPC CAD system [10] and the

SIMPL-RPC (Remote Procedure Call) process manager. VEM, OCT, and RPC provides general

user interface, database, and communication functions for PROSE, respectively. SIMPL-RPC is

an enhanced version of the SIMPL-2 program that runs as an RPC application under VEM. It

manages the process simulators and their interactions with the VEM/OCT/RPC system, handles

all PIFfunctions for parsing the ASCII PIFand storing profile datain the OCTdatabase, and sup

plies the VEM editor with menu and prompt information. A schematic view of the current

PROSE implementation is displayed in Figure 1.1.

SIMPL-RPC

Process Manager

A

ASCII PIF

SAMPLE

VEM User Interface

CREEP SUPREM

Figure 1.1 Schematic view of the PROSE environment.

13. A Typical PROSE Process Step

A typical sessionusing PROSE to perform a process step is summarized in Figure 1.2. The

session begins after VEM is invoked from the operating system. From VEM, the user opens a

window to display and edit the mask layout SIMPL-RPC is then invoked from a separate cross-

section window, which automatically prompts the user for the carrier type and doping concentra

tion of the starting substrate. A separate set of SIMPL-RPC menus is enabled, allowing the user

to interactively select the process steps to be performed. At this point, all initializations are com

plete.

Start VEM

5£

Create mask layout

Open profile window and

invoke SIMPL-RPC

Enter initial profile

information

Select process command

from SIMPL-RPC menu

I
SIMPL-RPC generates input file

from database and calls SAMPLE

I
SAMPLE performs simulation

and generates output file

I
SIMPL-RPC reads output file

and updates database

Figure 12 A typical PROSE process step.

I
Resulting cross-section

displayed in VEM

VEM waits for user input, which it parses and sends back to SIMPL-RPC. Fora SAMPLE

deposition step, SIMPL-RPC uses dialog boxes to prompt the user for type ofdeposition desired

and for any additional process parameters required. The device structure is then translated from

PIF into a format readable by SAMPLE, which SIMPL-RPC then invokes with the proper com

mand sequence. After SAMPLE completes the process, SIMPL-RPC translates the resulting

profile back into PIFformat and updates the VEM display. Figures 1.3 through 1.8 illustrate this

process as seen by a PROSE user. By performing a series of process steps, a complete cross-

section can generated, like the DRAM structure pictured in Figure 1.9.

1.4. Outline for the Remaining Chapters

Chapters 2 and 3 describe the components in PROSE. Chapter 2 reviews the

VEM/OCT/RPC framework and all PROSE components other than the PIF, which is the focus of

Chapter 3. Chapter 4 concludes this report.

,odka: 8> v«« &
11) 5598
,odca:9> Q

This is VEM vtfiion 6-4 (mid* 30-Nov-fl
L05 fiU i« /imp/v#m.log.005598
,em- *bjt4>hy*ic«i" : op«n-wk>d«m

tetb-f«l

. rpc-4*»-

tpr-««h«r Sj

Edit' '•"'' KipV' v' -.'+*~» •"-:*•..•

...Ry*?y,.,.;:"J^T-- £3

Figure 13 Starting up the VEM editor, creating the mask layout, and invoking SIMPL-RPC.
The layout and horizontal cut-line across is mask is entered graphically.

Figure 1.4 Entering parameters into a dialog box for the starting silicon substrate.

t. 1i|«phy»K.»l" : ofMtn-window
'blt^yolito* : opMi-window

Figure 1.5 Using the mouse to select the deposition process step from the SIMPL-RPC deck-of-
cards menu.

Figure 1.6 Entering the type of deposition process desired.

Figure 1.7 Entering the necessary deposition parameters.

Figure 1.8 The result, which has been highlighted, is immediately reflected in the VEM display.
A second window shows a zoomed in view of the cross-section displayed on a user-definable
grid.

i^u^pf^a&ME-ffi^

S*M

ISt
v. wCV-'^.-vj.jL'iJ'V..'.rt-.'" . •;

'i-.V-Aji'-'.?

Hi

f.-;:;;.i

Figure 1.9 DRAM layout and cross-section structure generated using PROSE.

Chapter 2

The Process Simulation Environment

2.1. Introduction

This chapter takes a closer look at the PROSE graphical user interface, process flow

specification, communication format, and the VEM/OCT/RPC framework they are built upon.

Storage and display of results in VEM/OCT/RPC, the SIMPL technology library, and PROSE

hardware/software requirements are also described.

22. The VEM/OCT/RPC Framework

The VEM/OCT/RPC system was adopted as thePROSE framework for severalreasons. An

important one is the freedom it gives the user to view and edit layouts and cross-sections simul

taneously, a feature not available in SIMPL-DIX. VEM/OCT/RPC also allows programs within

PROSE to access a whole family of logic synthesis and circuit simulationtools and data.

In addition to providing a general framework, the VEM/OCT/RPC system also has several

specific capabilities which are well suited for PROSE. VEM offers a user-friendly interface for

mouse and keyboard input, and the typical graphical display and editing capabilities of a mask

layout editor. Its ability to work with non-manhattan geometries makes it particularly useful for

viewing and editing device cross-sections or other polygonal structures. The generality of OCT,

in combination with its access function library, has provided a working database on which PIF is

being developed. The RPC communications package used by VEM and OCT integrates SIMPL-

RPC into this CAD system and allows PROSE to operate in a distributed computing environ

ment.

23. The User Interface

The user interface provides the main link between the user and the simulation tools. It

enables users to inputdata, invoke simulators, and edit simulator output effectively from a single

10

11

environment. The PROSE user interface is based on the VEM layout editor and RPC user inter

face package. VEM contains graphical capabilities for entering, viewing, andediting masklay

out and device cross-sections. The RPC package allows SIMPL-RPC to run as an application

program inside VEM, and provides dialog boxes and other mechanisms to obtain data from the

user.

Inputs are interactively entered through thePROSE user interface usingthe keyboard and/or

mouse. Graphical entry is well suited for entering physical mask layout, cut-line, and cross-

section information. Deck-of-cards menus are used for invoking process steps or other options

are naturally presented in menu format. Commands and parameters may also be typed directly

from the keyboard for the benefit of experienced users (or fast typists). Some inputs can be

entered using a combination of the mouse and keyboard input, such as a query for the type of

deposition and associated deposition parameters in a process step. These are treated interactively

through RPC dialog boxes. Typical examples of command and process information entry in

PROSE can be found in Figures 1.3 through 1.8.

2.4. Process Flow Specification

PROSE uses the same process flow input format as SIMPL-2, which is adequate for the pro

cess steps currently supported by SIMPL-RPC. In the interest of commonality, a more general

process flow specification, such as BPFL, is planned for future inclusion in PROSE. Although

BPFL is designed for use in the Computer Integrated Manufacturing (CIM) Environment, there is

promising evidence that it can also be adapted to work in PROSE by treating simulators like

machines, with dial and knob settings replaced by simulation parameters. Previous work which

translated BPFL into SIMPL-2 process flow format has demonstrated the feasibility of this adap

tation, as well as the limitations of the current SIMPL-2 format [11].

12

2.5. Intertool Communications

The PROSE uses both Remote Procedure Call and standard ASCII file transfer procedures

for communicating between components. SIMPL-RPC uses the classical method to communi

cate with rigorous simulation programs such as SAMPLE and CREEP. As represented in Figure

2.1, this method employs UNIX system calls to invoke the simulator, and exchanges ASCII data

through pre-determined files.

1. Create input file

SIMPL-RPC > ASCII input
file

/.

4. Read output file ;
>v 2. Invoke

n. : simulator

ASCII output /f Process Simulator<k

file 3. Simulator creates outpu t

Figure 2.1 Communications using the classical ASCII file method.

As its namesuggests, SIMPL-RPC relies heavily on the RPC package. For example, RPC

communications are used when SIMPL-RPC is invoked from inside VEM, when process and

command data (ie. menu, dialog box,orinput parameter data) is exchanged between SIMPL-RPC

and VEM, and when any calls made between SIMPL-RPC and the OCT database for PIF infor

mation. The RPC package supports an asynchronous binary communications format designed to

run on multiple machines in a distributed computing environment. Binary function calls made by

programs on different machines are handled by RPC "interpreters" residing on each machine.

The duty of each interpreter is to translate any incoming binary data into a format that its

machinecan understand, and to perform a similar translation for any outgoing data.

13

The classical ASCII method is slowly being phased out in favorof the more flexible RPC.

Since different tools havedifferent computing requirements, one clear advantage for using a dis

tributed computing environment is the ability to match tools with machines. For instance,

because of RPC, the VEM editor can run on the user's workstation, the OCT database on a cen

tral file server,and rigorous processsimulators on a mainframe, as shownin Figure2.2.

VEM

(workstation)

RPC

Simulator
(mainframe)

OCT

(central server)

Figure 22 RPC allows programs to reside on different machines.

2.6. Storage of Results

The PROSE uses the Profile Interchange Format to store simulation results. (PIF specifics

can be found in Chapter 3). All PIF data is stored in binary format in the OCT database and is

updated each time a process step is performed. For example, a process step which uses a SIMPL

analytical model obtains the current profile from OCT, performs the simulation, writes the result

ing profile into OCT using binary function calls. Programs which do not have a direct interface

to OCTemploy the ASCII communications method described above to obtain the necessary data.

In this case, SIMPL-RPC acts as the communications operator and even a translator, if necessary.

2.7. Display of Results

Cross-section geometries can be easily displayed by VEM, but there are other forms of data

which can not be directly exhibited. This is because PEF data, although it is stored in OCT, does

14

not always conform exacdy to OCT physical layout policy. In these cases, SIMPL-RPC provides

interpretation facilities for translating data between PIF policy and OCT physical policy. For

instance, substrate doping grid data stored in arrays need to be translated into VEM displayable

geometries. This problem is solved by a contour generator in SIMPL-RPC, which takes array

data, calculates a set of contours of equal potential, and writes them into the PIF facet as

geometric paths solely for VEM display purposes, as shown in Figure 2.3. SIMPL-RPC also con

tains a function to convert cut-line information, represented geometrically in OCT physical pol

icy by a line across the mask, into PIF policy, which saves both the geometric line and the coordi

nates where the mask intersects the cut-line. Future graphical display functions, such as line and

contour plotters, will require a more extensive translator between PIF and OCT physical policies.

^^^^g^^^Pg^g*^^^^^|^g^%/; :- . ;:.;..,„;,>;-/,.

§

I
II

Figure 23 A PROSE cross-section with doping contours.

15

2.8. SIMPL Technology Library

A small but important piece of PROSE is a library for storing technology information

required byVEM. Currentiy in the simpl technology library, the layer names and "looks" (colors

and stipple patterns) of all standard SIMPL mask and material names are stored forVEM display

purposes using the physical editing style. A listing of this technology can be found in Appendix

A.

2.9. Hardware and Software Requirements

PROSE is designed to run in a workstation environment. The current implementation uses

a DEC Micro-VAX GPX-II workstation running Ultrix V2.2. PROSE consumes approximately

1Mb of memory, of which 800Kb is used by VEM/OCT/RPC 2.0 and 200Kb by SIMPL-RPC.

SIMPL-RPC consists of about 10,000 lines of source code, and is written in the C language. A

BSD compatible UNIX workstation running X-Windows is required; a color display is highly

recommended.

Chapter 3

The Profile Interchange Format

3.1. Overview

Historically, each process simulator uses a different input and output format, leaving the

task of data exchange between programs up to specialized translators. In an environment which

uses many different tools, a reasonable approach to limit the number of translators that are needed

is to use a common interchange format. At worst, each new program would then need only one

pair of interpreters - one to write to the common format, and anotherto read it in. PROSE uses

this common language approach for specifying profile information.

Developing a common format for profile specification is particularly difficult due to the

varied and sometimes conflicting needsof different simulation tools. One common specification

that has been proposed is PEF, which is formalized in a paper by Duvall [8]. This PIF

specification is general enough to specify arbitrary profiles, and is designed to eventually be

incorporated into EDIF 2.0.0 [12]. With recursion, instantiation, and hierarchical description

features, it provides a very elegant way to specify profiles.

Unfortunately, these same features make it too complex to realize a full implementation of

the specification exactly as described. To help identify the general strengths and weaknesses of

PIF, a skeleton parser capable of specifying critical geometry, grid, and attributes, is used in the

currentPROSE. This implementation confirms the usefulness of PIF in describing cross-section

structures. At the same time, it also identifies several areas of concern in PIF, such as the lack of

a formal specification for representing program specific attributes, and its overall lengthiness.

Specifically, even though cut-line and mask information is technically not part of the

profile, it is used by many process simulators such as SIMPL-2 and SAMPLE, and should be

definable as a program specific attribute. Also, the length of PIF is of concern because it directly

influences the amount of time needed to read and write the file (as well as the amount of paper

16

17

used in printing it out). The PIF specification for a simple MOS transistor is about 230 lines in

length, while a more complicated CMOS structure consumes over 1300 lines. A simple way to

shorten PEF would be to compress common information, such long lists of carrier concentrations

of a constantvalue, without endangering eitherits generality or human readability.

Both the intersite and intertool modes of PIF are used in PROSE. The intersite or ASCII

PEF (APEF) uses ASCII representation for sending data between sites, while the intertool or

binary PIF (BPIF) transfers data between tools in binary format In the latter case, a new, data

base independent BPEF function library is being defined to to preservethe commonality feature in

the BPDF even when different databases are involved.

32. TheASCHPIF

PIF is an EDEF compatible ASCII specification for representing profile information. A PIF

snapshot consists of a collection of geometries, grids, and attributes. Briefly, geometries are

described in a hierarchical manner, beginning with points. Lines are built by linking points

together, faces built by linking lines, solids built by linking faces, and so on, to specify ID, 2D,

3D, (and even 4D!) structures. PIF supports rectangular, triangular, tetrahedral, and other grid

descriptions. Attributes specify the characteristics of an object, such as doping concentrations

and layer types and can be defined on both geometries and grids. A more detailed description of

PIF can be found in [RR]; a SIMPL-RPC generated example of PEF for a simple structure can be

found in Appendix B.

The PROSE PEF parser, which is built into SIMPL-RPC, translates the minimum amount of

information necessary to read and write SIMPL cross sections. The writer writes out cross-

sections in acceptable PIF and is guaranteed readable by the reader. The reader uses a keyword

search and parenthesis counting approach for parsing the input, and performs only primitive syn

tax checking. At each parenthesis level, the reader expects to find keywords valid only for that

level. If one is found, the parser continues, otherwise, it will issue an errormessage and stop. A

list of keywords recognized by the PIF parseris listed in Table 3.1.

Table 3.1 Keywords recognized by the ASCII PIF parser

Standard

New

Recognized APIF keywords
PIF, attribute, attributeName, coordinates, data, lineList, faceList, geometry,
grid, pointList, segmentList, segmentNameList, substrateDoping, snapshot
cutlinelnfo, masklnfo, windowlnfo

18

Two modifications have been made to the original PIF specification. Three additional attri

butes, masklnfo, cutlinelnfo, and windowlnfo have been added to store cut-line and mask infor

mation. Substrate doping information has also been compressed into the format (# of points, con

centration value) for grid points which remain constant in doping over several grid lines. Since

much of the silicon is at the same background doping concentration, this compression has

reduced the PIF length by about 25% for variable rectangular grids, which is the only type sup

ported at this time.

33. The Binary PIF

The binary PIF is usedfor transferring binary profile databetween programs sharing a com

mon database. Like the ASCII PIF representation, either specialized or generalized approaches

may be used. PROSE uses a general PIF method described below.

Since it is recognized that different sites will probably want to use different databases, a

database independent PIFfunction library is proposed to bebuilt on top of each database. This is

analgous to the emerging X-Window System standard for graphics displays. The X-Window

library provides a standard setof function calls for drawing graphics independently of thedisplay

hardware. Similarly, the PIF library provides a standard set of function calls to access PEF data

independent of the database.

19

Currently, a small setof PIF access functions to write between the internal SIMPL-2 format

and OCT database have been implemented. These OCT-based PIF functions contain the neces

sary functions to read, write and replace a SIMPL generated profile, and are listed inTable 3.2.

Table 3.2 List of BinaryPEF OCT functions available in SIMPL-RPC

BPIF Functions in SIMPL-RPC

Name Function

DeleteContour Delete doping contour geometries
Read Read in whole profile
ReadGrid Read in rectangular grid
ReadProp Read in all properties
ReplaceGrid Replace grid
ReplaceLayers Replace layers in current profile
Write Write out entire profile
WriteContour Write out doping contour geometries
WriteGrid Write out grid
WriteLayers Write out layers in current profile
WriteMask Write out layout mask information
WritePoly Write a polygon

A simple tri-level binary PIF policy, shown in Figure 3.1, defines how PIF data is stored

OCT. At the root of the PIF policy tree is the PIF snapshot Level two contains attributes with

grid, cut-line, mask, and layer name information. The leaves of this PIF tree are the geometries,

stored in OCTPOLYGON format. At the moment, this PIF policy is mainly for geometry

specification, and is very similar to OCT physical policy [RR]. This is because cross-sections are

displayed in the VEM physical editing style, and must therefore be compatible with OCT physi

cal format

Development of a full PIF policy parallels the current work in defining and implementing a

formal PIF library of access functions.

20

PIF facet

k^^ & v \ ^ *
(geol J (geo2) (geo3 geo4) (geo5) (geo6)

Figure 3.1 Schematic description of PIFdata stored in the OCT database.

Chapter 4

Conclusion

The "accuracy at any cost" point of view in producing cross-sections with the rigorous

simulation tools has defined a need for an integrated environment for operating process simula

tors. PROSE implements one such environment using the concept of commonality - commonal

ity in the user interface, specification languages, and communications method. PROSE is based

upon the OCT/VEM/RPC CAD system and a new version of SIMPL named SIMPL-RPC.

Several new user-friendly capabilities have been introduced, including the ability to graphically

edit both layout and cross-sectional views, the addition of menu and dialog box systems in the

user interface, and the support of new graphics additions in the VEM editor for cut-line and dop

ing contour plotting.

Advances have also been made in using a common format for profile specification. A sim

ple parser for PIF has been implemented to demonstrate the feasibility of a common specification

for device structures, and to explore ways to improve the original specification. Binary PEF infor

mation can also be stored in the OCT database and manipulated using a set of PIF access func

tions.

The implementation of a common process flow language, a complete PIF, and links to addi

tional process and device simulations are high on the priority list for future PROSE work.

21

References

[1] M.A. Grimm, K. Lee and A.R. Neureudier, "SIMPL-1 (SIMulated Profiles from the Layout
- Version 1)," IEDM Technical Digest, pp. 255-258, December 1983.

[2] K. Lee and A.R. Neureudier, "SIMPL-2 (SIMulated Profiles from the Layout - Version 2),"
1985 Symposium on VLSI Technology, Kobe, Japan, Digest of Technical Papers, pp. 64-
65, May 1985.

[3] W. G. Oldham, A. R. Neureudier, C. Sung, J. L. Reynolds, and S. N. Nandgaonkar, "A Gen
eral Simulator for VLSI Lithography and Etching Process: Part I - Application to Projection
Lithography," IEEE Trans. Electron. Devices, Vol. ED-26,No. 4, pp. Ill-Ill, April 1979.

[4] H.C. Wu, A.S. Wong, Y.L. Koh, E.W. Scheckler, andA.R. Neureuther, "SIMulated Profiles
from the Layout - Design Interface in X (SIMPL-DIX)," IEDM Technical Digest, pp. 328-
331, December 1988.

[5] E.W. Scheckler, Extraction of Topography Dependent Electrical Characteristics from Pro
cess Simulation Using SIMPL, with Application to Planarization and Dense Interconnect
Technologies, Electronics Research Laboratory, University of California, Berkeley, March
1989.

[6] P. Sutardja, Y. Shacham-Diamand and W.G. Oldham, "Two-Dimensional Simulation of
. Glass Reflow and Silicon Oxidation," 1986 Symposium on VLSI Technology Technical

Digest, pp.39-40, May 1986.

[7] C.P. Ho, J.D. Plummer, S.E. Hansen, and R.W. Dutton, "VLSI Process Modeling:
SUPREM III," IEEE Trans. Electron Devices, vol. ED-30, no. 11, pp. 1438-1453,
November 1983.

[8] S. Duvall, "An Interchange Format for Process and Device Simulation," IEEE Trans.
Computer-Aided Design, vol. CAD-7, no. 7, pp.741-754, July 1988.

[9] C.B. Williams, The Berkeley Process-Flow Language: Reference Document, Electronics
Research Laboratory, University of California, Berkeley, October 1987

[10] A.R. Newton, A. Sangiovanni-Vincentelli et al, OCT Tools Distribution 2.0. Electronics
ResearchLaboratory, University of California, Berkeley, November 1987.

[11] C.B. Williams, Personal Communication, 1988.

[12] EDIF - Electronic Design Interchange Format Version 2 0 0, EDIF Steering Commitee,
Electronic Industries Association, 1987.

22

Appendix A

SBVIPL Technology Library

23

SIMPL TECHNOLOGY LIBRARY: May 1989 ASW

Technology root directory: .
Specific technology directory: facetcontains own technology
Layer "PWEL" looks:

For a "GENERIC-COLOR" device:

Priority: -15 nColors: 2 Fill: solid Borden empty
Colors: (60901,53619,45013) (58915,46999,40380)
Fill pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Borden empty
Colors:

Fill pattern: 8x8 "l(X)00()0<)0100()0()00010()0000(M10ro
strokes: (135.0-8)

Border pattern: lxl "0"

Layer "NWEL" looks:
For a "GENERIC-COLOR" device:

Priority: -15 nColors: 2 Fill: solid Border: empty
Colors: (65535,35746,0) (58915,28464,10591)
Fill pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Border: empty
Colors:

Fill pattern: 8x8 "<XXXX)(X)l(XXXX)01(X)000010()0()001(X)00(Xn
strokes: (45.0-8)

Border pattern: lxl "0"

Layer "COM2" looks:
For a "GENERIC-COLOR" device:

Priority:50 nColors: 1 Fill: solid Borden empty
Colors: (0,0,0)
Fill pattern: lxl "1"

strokes: (0.0-1)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: solid Border: empty
Colors:

Fill pattern: lxl "1"
strokes: (0.0 -1)

Border pattern: lxl "0"

Layer "NDIF" looks:
For a "GENERIC-COLOR" device:

Priority: -10 nColors: 2 Fill: solid Borden empty
Colors: (0,65535,0) (17873,52295,22506)
Fill pattern: lxl "1"

strokes: (0.0-1)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Border:empty
Colors:
Fill pattern: 8x8 "11000000011000000011()0000()011()0000001100000110000011000001100000"

>»fill patterncan't be representedwith strokesLayer"PDIF" looks:

A.1

For a "GENERIC-COLOR" device:
Priority: -5 nColors: 2 Fill: solid Border: empty
Colors: (45675,23168,15887)(33098,27140,21845)
Fill pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Borden empty
Colors:
Fill pattern: 8x8 "100000001100000101100011001101 l(XXX)ni(M)0{X)01(XX)()(XXXX)000(XXK)000"

>»fill pattern can't be represented with strokesLayer "POLY" looks:
For a "GENERIC-COLOR" device:

Priority: 10 nColors: 2 Fill: stippled Borden empty
Colors: (65535,6619,6619) (58253,9929,13239)
Fill pattern: 4x4 "0111111111110111"

strokes: (0.0 - 2) (45.0 - 2) (90.0 - 2) (135.0 - 2)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Border: empty
Colors:

Fill pattern: 8x8 "1111111110000001100000011000000110000001100000011000000111111111"
strokes: (0.0 - 4) (26.6 - 8) (63.4 - 8) (90.0 - 4) (116.6 - 8) (153.4 - 8)

Border pattern: lxl "0"

Layer "COPS" looks:
For a "GENERIC-COLOR" device:

Priority: 50 nColors: 1 Fill: stippled Borden empty
Colors: (0,0,0)
Fill pattern: 8x8 "1111111110111101101111011111111111111111101111011011110111111111'

strokes: (0.0 - 2) (45.0 - 4) (90.0 - 2) (135.0 - 4)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Borden empty
Colors:

Fill pattern: 8x8 "1111111110111101101111011111111111111111101111011011110111111111'
strokes: (0.0 - 2) (45.0 - 4) (90.0 - 2) (135.0 - 4)

Border pattern: lxl "0"

Layer "CONS" looks:
For a "GENERIC-COLOR" device:

Priority: 50 nColors: 1 Fill: stippled Border: empty
Colors: (0,0,0)
FUlpattern: 8x8 ,,111001111100001110011C^010011110000111100100110011100001111100111•

>»fill pattern can't be represented with strokes For a *'PostScript-BW* device:
Priority: 0 nColors: 0 Fill: stippled Borden empty
Colors:

Fill pattern: 8x8 "1110011111000011100110010011110000111100100110011100001111100111'
>»fill patterncan't be represented with strokesLayer "COPO" looks:

For a "GENERIC-COLOR'' device:

Priority: 50 nColors: 1 Fill: stippled Border: empty
Colors: (0,0,0)
Fill pattern: 8x8 "1111111110011001111111111001100110011001111111111001100111111111'

strokes: (0.0 - 2) (36.9 - 8) (90.0 - 2) (143.1 - 8)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Border:empty
Colors:

FUl pattern: 8x8 "1111111110011001111111111001100110011001111111111001100111111111'
strokes: (0.0 - 2) (36.9 - 8) (90.0 - 2) (143.1 - 8)

A.2

Border pattern: lxl "0"

Layer "COND" looks:
For a''GENERIC-COLOR'' device:

Priority: 50 nColors: 1 Fill: stippled Border: empty
Colors: (0,0,0)
Fill pattern:8x8 "1111111110111101110110111110011111100111110110111011110111111111"

strokes: (0.0 - 4) (45.0 - 3) (90.0 - 4) (135.0 - 3)
Border pattern: lxl "0"

Fora "PostScript-BW' device:
Priority: 0 nColors: 0 Fill: stippled Borden empty
Colors:

Fill pattern:8x8 "1111111110111101110110111110011111100111110110111011110111111111"
strokes: (0.0-4) (45.0-3) (90.0-4) (135.0-3)

Border pattern: lxl "0"

Layer "COPD" looks:
For a "GENERIC-COLOR" device:

Priority: 50 nColors: 1 Fill: stippled Border, empty
Colors: (0,0,0)
Fill pattern: 8x8 "1001100110111101111001111111111111111111111001111011110110011001"

strokes: (0.0 - 4) (45.0 - 8) (90.0 - 4) (135.0 - 8)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Borden empty
Colors:
Fill pattern: 8x8 "1001100110111101111001111111111111111111111001111011110110011001"

strokes: (0.0 - 4) (45.0 - 8) (90.0 - 4) (135.0 - 8)
Border pattern: lxl "0"

Layer "MET1" looks:
For a "GENERIC-COLOR" device:

Priority: 20 nColors: 2 Fill: stippled Borden empty
Colors: (0,0,65535) (20521,20521,54281)
Fill pattern: 4x4 "1010101001010101"

strokes: (63.4-2) (116.6-2)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Border: empty
Colors:

FUl pattern: 8x8 "1100000111100000011100000011100000011100000011100000011110000011'
strokes: (126.9 - 8) (135.0 - 3) (143.1 - 8)

Border pattern: lxl "0"

Layer "MET2" looks:
For a "GENERIC-COLOR" device:

Priority: 30 nColors: 2 FUl: stippled Border: empty
Colors: (65535,15225,65535) (56267,0,56929)
FUl pattern: 4x4 "1100000110000011"

strokes: (26.6-4)
Border pattern: lxl "0"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill: stippled Borden empty
Colors:

FUl pattern: 8x8 "l(XXXW1100000111000011100(milO(XW11100(Wlll(^
strokes: (36.9 - 8) (45.0 - 3) (53.1 - 8)

Border pattern: lxl "0"

Layer "PLACE" looks:

A.3

For a "GENERIC-COLOR" device:
Priority: 70 nColors: 1 Fill: empty Border: stippled
Colors: (65535,65535,12577)
FUlpattern: lxl "0"

strokes:

Border pattern: 2x1 "10"

For a "PostScript-BW" device:
Priority: 0 nColors: 0 Fill:empty Borden solid
Colors:

FUlpattern: lxl "0"
strokes:

Border pattern: lxl "1"

Layer "GLAS" looks:
For a "GENERIC-COLOR'' device:

Priority: 60 nColors: 1 FUl: stippled Border:solid
Colors: (11253,28464,11915)
FUlpattern: 8x8 "OOOCJOCXXXXWOOOOOCMMWO^^

>»fill pattern can't be represented with strokes For a ' 'PostScript-BW* device:
Priority: 0 nColors: 0 Fill: empty Border: solid
Colors:

FUl pattern: lxl "0"
strokes:

Border pattern: lxl "1"

Layer "SI" looks:
For a "XDEV.QDSS" device:

Priority: 99 nColors: 1 FUl: stippled Borden empty
Colors: (19859,24492,31112)
FUl pattern:4x4 "1010000010100000"

>»fill patterncan't be representedwith strokesLayer'*METL'' looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Border: empty
Colors: (17873,13901,53619)
FUlpattern: 4x4 "1010010010100000"

>»fill patterncan't be representedwith strokesLayer"ACTV" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Borden empty
Colors: (0,48323,0)
FUl pattern:4x4 "1000001000101000"

>»fill pattern can't be represented with strokesLayer "OXID" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Borden empty
Colors: (51633,51633,52957)
FUl pattern: 4x4 "1001011001101001"

strokes: (45.0 - 4) (135.0 - 4)
Border pattern: lxl "0"

Layer "PSG" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 Fill: stippled Border: empty
Colors: (56267,56267,45013)
FUlpattern: 4x4 "1010010101001011"

strokes: (53.1 - 4) (63.4 - 4) (116.6 - 4) (126.9 - 4)
Border pattern: lxl "0"

Layer "NTRD" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 Fill: stippled Borden empty
Colors: (54281,39056,0)
FUlpattern:4x4 "0000011001100001"

>»fill pattern can't be represented with strokesLayer "RST" looks:

A.4

For a "XDEV.QDSS" device:
Priority: 1 nColors: 1 FUl: stippled Borden empty
Colors: (54281,17211,17873)
FUl pattern:4x4 "0100000110000010"

>»fill pattern can't be represented with strokesLayer "ERST" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Borden empty
Colors: (64211,31774,51633)
FUl pattern: 4x4 "0000101000001010"

»>fill pattern can't be represented with strokesLayer "IMPL" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Borden empty
Colors: (0,56929,0)
FUl pattern:4x4 "0000111100001111"

strokes: (0.0-2)
Border pattern: lxl "0"

Layer "PLY1" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Borden empty
Colors: (55605,24492,20521)
FUl pattern: 4x4 "0000111100001111"

strokes: (0.0-2)
Border pattern: lxl "0"

Layer "PLY2" looks:
For a "XDEV.QDSS" device:

Priority:0 nColors: 1 FUl: stippled Borden empty
Colors: (56267,20521,20521)
FUl pattern:4x4 "1010101010101010"

strokes: (90.0-2)
Border pattern: lxl "0"

Layer "PSG1" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Border:empty
Colors: (61563,50309,0)
FUl pattern:4x4 "0010100101001010"

>»fill patterncan't be represented with strokesLayer "PSG2" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Borden empty
Colors: (60901,48323,0)
FUl pattern: 4x4 "1010010110100101"

strokes: (45.0 - 2) (135.0 - 2)
Border pattern: lxl "0"

Layer "CUT" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 Fill: stippled Borden empty
Colors: (46337,51633,46999)
FUl pattern: 4x4 "1010010110100101"

strokes: (45.0 - 2) (135.0 - 2)
Border pattern: lxl "0"

Layer "MTL" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 Fill: stippled Border: empty
Colors: (0,0,58915)
FUl pattern: 4x4 "0101101001011010"

strokes: (45.0 - 2) (135.0 - 2)
Border pattern: lxl "0"

Layer "PSD" looks:

A.5

For a "XDEV.QDSS" device:
Priority: 0 nColors: 1 Fill: stippled Border: empty
Colors: (7943,48985,48323)
FUl pattern: 4x4 "1010111111111010"

strokes: (0.0 - 2) (36.9 - 4) (63.4 - 2) (90.0 - 2) (116.6 - 2) (143.1 - 4)
Border pattern: lxl "0"

Layer "POl" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Border: empty
Colors: (39056,27140,27140)
FUl pattern:4x4 "1111100110011111"

strokes: (0.0 - 2) (45.0 - 4) (90.0 - 2) (135.0 - 4)
Border pattern: lxl "0"

Layer "P02" looks:
For a "XDEV.QDSS" device:

Priority:0 nColors: 1 FUl: stippled Borden empty
Colors: (46999,22506,24492)
FUlpattern: 4x4 "0110100110010110"

strokes: (45.0 - 4) (135.0 - 4)
Border pattern: lxl "0"

Layer "CONT" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Borden empty
Colors: (31112,29126,28464)
FUlpattern: 4x4 "1011010110101101"

strokes: (36.9 - 4) (45.0 - 2) (53.1 - 4) (104.0 - 4) (135.0 - 2) (166.0 - 4)
Border pattern: lxl "0"

Layer "MTL1" looks:
For a "XDEV.QDSS'' device:

Priority:0 nColors: 1 FUl: stippled Borden empty
Colors: (0,0,58253)
FUl pattern:4x4 "1010010110100101"

strokes: (45.0 - 2) (135.0 - 2)
Border pattern: lxl "0"

Layer "MTL2" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Border:empty
Colors: (39056,0,56929)
FUl pattern: 4x4 "0101101001011010"

strokes: (45.0 - 2) (135.0 - 2)
Border pattern: lxl "0"

Layer "VIA" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 Fill:stippled Borden empty
Colors: (0,0,5957)
FUlpattern: 4x4 "1001010000101001"

strokes: (126.9 - 4) (135.0 - 4) (143.1 - 4)
Border pattern: lxl "0"

Layer "Ml" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Borden empty
Colors: (0,0,60239)
FUl pattern:4x4 "1010010110100101"

strokes: (45.0 - 2) (135.0 - 2)
Border pattern: lxl "0"

A.6

Layer "M2" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 Fill: stippled Border: empty
Colors: (53619,0,48323)
FUl pattern:4x4 "0101101001011010"

strokes: (45.0 - 2) (135.0 - 2)
Border pattern: lxl "0"

Layer "OXPO" looks:
For a "XDEV.QDSS" device:

Priority: 0 nColors: 1 FUl: stippled Borden empty
Colors: (34422,45675,52295)
FUlpattern: 4x4 "0110111111110110"

strokes: (0.0 - 2) (45.0 - 4) (90.0 - 2) (135.0 - 4)
Border pattern: lxl "0"

Layer "doplO" looks:
For a "XDEV.QDSS" device:

Priority: 80 nColors: 1 Fill: solid Border:empty
Colors: (0,0,0)
FUl pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

Layer "dopl 1'' looks:
For a "XDEV.QDSS" device:

Priority: 79 nColors: 1 Fill: solid Borden empty
Colors: (32436,23168,15225)
FUlpattern: lxl "1"

strokes: (0.0-1)
Border pattern: lxl "0"

Layer "dopl2" looks:
For a "XDEV.QDSS" device:

Priority: 78 nColors: 1 FUl: solid Border: empty
Colors: (45675,32436,27140)
FUl pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

Layer "dopl3" looks:
For a "XDEV.QDSS" device:

Priority: 77 nColors: 1 FUl: soUd Borden empty
Colors: (50309,35746,39718)
Fill pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

Layer "dopl4" looks:
For a "XDEV.QDSS" device:

Priority: 76 nColors: 1 FUl: solid Borden empty
Colors: (52295,44351,31112)
FUl pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

Layer "dopl5" looks:
For a "XDEV.QDSS" device:

Priority: 75 nColors: 1 FUl: solid Borden empty
Colors: (56929,43028,51633)
Fill pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

A.7

Layer "dopl6" looks:
For a "XDEV.QDSS" device:

Priority: 74 nColors: 1 FUl: solid Borden empty
Colors: (59577,58915,55605)
FUl pattern: lxl "1"

strokes: (0.0-1)
Border pattern: lxl "0"

Layer "dopl7" looks:
For a "XDEV.QDSS" device:

Priority: 73 nColors: 1 FUl: solid Borden empty
Colors: (58915,53619,0)
FUlpattern: lxl "1"

strokes: (0.0-1)
Border pattern: lxl "0"

Layer "dopl8" looks:
For a "XDEV.QDSS" device:

Priority: 72 nColors: 1 FUl: solid Border, empty
Colors: (56929,61563,0)
FUlpattern: lxl "1"

strokes: (0.0-1)
Border pattern: lxl "0"

Layer "dopl9" looks:
For a "XDEV.QDSS" device:

Priority:71 nColors: 1 FUl: soUd Borden empty
Colors: (61563,61563.4633)
FUl pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

Layer "dop20" looks:
For a "XDEV.QDSS" device:

Priority: 70 nColors: 1 Fill: solid Border: empty
Colors: (63549,64211,62887)
FUl pattern: lxl "1"

strokes: (0.0 -1)
Border pattern: lxl "0"

Layer Palette: ''"asw/simpl-rpcAib/tecrmology/simpl/layers:physical:contents:''
52 Layers

A.8

Appendix B

SIMPL-RPC Generated PIF Example

32

P9 P10

POLY
P5 P6 P7

PI

P4

SI

PIF Structure: 10 points, 3 polygons, 232 lines,
(Note: not to scale)

B.l

P8

P2

P3

SIMPL-RPC Generated PIF Output: May 1989 ASW

(PEF
(pointList

(pointListName "P")
(dimension 2)
(units "microns")
(coordinates

0.000000 5.000000

4.870000 5.000000

4.870000 0.000000

0.000000 0.000000

0.000000 6.000000

1.240000 6.000000

1.740000 6.000000

4.870000 6.000000

1.240000 7.000000

1.740000 7.000000

)
)
(lineList

GineListName "L")
(pointNameList PI P2)
(pointNameList P2 P3)
(pointNameList P3 P4)
(pointNameList P4 PI)
(pointNameList PI P5)
(pointNameList P5 P6)
(pointNameList P6 P7)
(pointNameList P7 P8)
(pointNameList P8 P2)
(pointNameList P9 P10)
(pointNameList P10 P7)
(pointNameList P6 P9)

)
(faceList

(faceListName "F")
(lineNameList LI L2 L3 L4)
(lineNameList L5 L6 L7 L8 L9 -LI)
(lineNameList L10 Lll -L7 L12)

)
(segmentList

(segmentListName "Segment")
(faceNameList Fl)
(faceNameList F2)
(faceNameList F3)

)
(geometry

(geometryName "SIMPLGeometry")
(segmentNameList

"SI"

B.2

"OXID"

"POLY"

)
)
(grid

(objectType "Segment")
(objectName "SI")
(gridName "SIMPLGrid")
(gridType "Rectangular")
(dimension 2)
(nodeList

(coordinateList
(direction x)
(coordinates

0.000000

1.240000

1.740000

4.870000

)
(direction y)
(coordinates

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

1.100000

1.200000

1.300000

1.400000

1.500000

1.600000

1.700000

1.800000

1.900000

2.000000

2.100000

2.200000

2.300000

2.400000

2.500000

2.600000

2.700000

2.800000

2.900000

3.000000

3.100000

B.3

3.200000

3.300000

3.400000

3.500000

3.600000

3.700000

3.800000

3.900000

4.000000

4.100000

4.200000

4.300000

4.400000

4.500000

4.600000

4.700000

4.800000

4.900000

5.000000

)
)

6.000000

)
)
(attribute

(attributeName "substrateDoping")
(table
(objectType "grid")
(objectName "SIMPLGrid")
(objectPart "nodes")
(data

4 1.000000e+13
4 1.000000e+13
4 1.000000e+13
4 1.000000e+13
4 1.000000e+13

4 1.000000e+13
4 1.000000e+13
4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13
4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

B.4

\

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

4 1.000000e+13

)
)
(attribute

(attributeName "masklnfo")
(objectType "stranger")
(objectName "SIMPLGeometry")
(data

(POLY
(1.240000 1.740000)

)
(MTL

(3.290000 3.790000)
)
(ACTV

(0.000000 4.870000)
)

)
)
(attribute

(attributeName "cutlinelnfo")
(objectType "point")
(objectName "SIMPLGeometry")
(coordinates

B.5

-149 5

338 5

)
)
(attribute

(attributeName "windowlnfo")
(objectType "point")
(objectName "SIMPLGeometry")
(coordinates

0.000000 0.000000

4.870000 10.000000

)
)
(snapshot

(snapshotName "SIMPLCross")
(units "Micron")
(usesGeometry "SIMPLGeometry")
(usesGrid "SIMPLGrid")
(usesAttribute "substrateDoping" "masklnfo" "cutlinelnfo" "windowlnfo")

)
)

B.6

	Copyright notice1989
	ERL-89-67

