
 

 

 

 

 

 

 

 

 

Copyright © 1989, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



SEPARABLE SEMANTIC OPTIMIZATION

by

Wei Hong and Eugene Wong

Memorandum No. UCB/ERL M89/69

31 May 1989



to estimate the benefit of keeping a redundant predicate. All unprofitable
redundant predicates are removed before the query is passed to a conven
tional query optimizer. However, this approach does not guarantee overall
benefit of theextra optimization because that depends on a correct predic
tion of what selection-join sequence will be chosen by the query optimizer
and this prediction may wellbe wrong. Another problem with this scheme
is that the idea of "redundant predicate" is not well formulated.

To overcome these difficulties, we first propose a new formulation of se
manticqueryoptimization that precisely defines optional (redundant) pred
icates in terms of closures and generators of the original query predicates.
Using this formulation, weintroduce a new query processing architecture, in
which preprocessingand postprocessingmodules are added before and after
a conventional query optimizer. Preprocessing identifies all optional predi
cates and detects unsatisfiabilities. Postprocessingremoves useless optional
predicates. This postprocessing module is essential to guaranteeing that se
mantic optimization will always result in an improvement. Our approach
has been implemented on POSTGRES[ST0N86a][R0WE87]. POSTGRES
is a next-generation database management system that extends relational
data model with abstract data types, procedure-typed attributes and at
tribute/procedure inheritance. It provides a novel way of supporting in
tegrity control. Our method has been designed to make use of all these
new features.

This paper is organized as follows. Section 2 proposes our new formu
lation to semantic query optimization. Section 3 describes the new query
processing architecture and establishes some fundamental theorems about
our approach. Section 4 gives detailed algorithms and data structures of
our implementation on POSTGRES. Section 5 concludes the paper.

2 A New Formulation of Semantic Query

Optimization

In this section, we present a new formulation of semantic query optimiza
tion. Examples from the following sample database will be used to illustrate
ideas throughout the paper.
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Abstract

This paper describes an efficient new approach to semantic query
optimization that is completely separable from conventional query
optimizers and guarantees profitability. Moreover, it obtains a pro
cessing plan with minimum cost among all the equivalent query forms
most of the time. This approach is based on our new formulation to
semantic query optimization in terms of closures and generators. It
consists of two major steps, preprocessing and postprocessing. Pre
processing explores all the optimization opportunities and detects un-
satisfiabilities, and postprocessing makes the final decisions. Only one
pass through a conventional optimizer is required. An implementation
of our approach on POSTGRES is also described.

1 Introduction

Conventional query optimization has been a well studied area in the database
field(see [JARK84a] for a survey). A conventional query optimizer, given
a fixed query, searches through "all" possible plans and finds an optimal
plan to process that query. The search space includes the following major
dimensions: usageof indices, joinmethods, join ordering, etc. Decisions are
made mainly based on syntactic knowledge and storage structures. Syn
tactic knowledge usually includes relational algebra and first-order logic
properties. Storage structures includes availability of indices and database



statistics, e.g., tuple/attribute cardinalities. Semantic query optimization
adds a new dimension to the search space, semantically equivalent queries.
It tries to exploit the semantic knowledge (integrity constraints) about the
current database and introduces more opportunities for query optimization.

Semantically equivalent queries are those that produce the same answer
for all database instances that satisfy the integrity constraints. The ba
sic idea of semantic query optimization is to transform the original query
into semantically equivalent queries, which may yield a more efficient pro
cessing plan. Semantic optimization is becoming more important as better
integrity control facilities are supported[STON87] and greater integration
of Artificial intelligence and database technology are under way[BROD86].

The ultimate objective of semantic query optimization is to choose a
semantically equivalent query that yields the best processing plan. A most
straightforward way to do this is to feed all possible semantically equivalent
queries through a conventional query optimizer and choose the plan with
minimum cost. This approach finds the best possible processing plan, but
it requires a number of passes through a conventional optimizer when a
single pass is already fairly expensive. See [SHEK88] for more analysis on
the significance of this optimization cost. To avoid calling a conventional
optimizer many times, one can also apply certain heuristics to select a
"better" semantically equivalent query than the original query before pass
ing it through the optimizer. This requires only a single pass through the
optimizer, but because the decisions are made before the actual query opti
mization, no estimates about actual cost of various parts of the evaluation
of the query are available, the heuristics can only be based on some crude
predictions or assumptions about evaluation costs. Therefore semantic op
timization may end up choosing an equivalent query that is more expensive
to process than the original query. The motivation of our research is to
overcome this fundamental difficulty. In this paper, we describe a new ap
proach to semantic query optimization that guarantees profitability while
requires only a single pass through a conventional query optimizer.

There is a substantial amount of work that has been done on semantic

query optimization. However, the results all suffer from either of the two
kinds of problems mentioned above. They either require multiple passes
through a conventional query optimizer, thus too expensive to incorporate
into existing systems, or can not promise better processing plans after the
additional optimization.



Semantic query optimization is first introduced in [KING81] and [HAMM80].
Both of them propose schemes that derive semantically equivalent queries
by applying semantic transformations to the original query and decide
which one is the best by passing all the equivalent queries through a con
ventional query optimizer. [KING81] also proposes a set of heuristics (e.g.,
index introduction, join elimination, etc) to reduced the number of promis
ing semantic transformations. Some of these heuristics are used in our
approach as described later in this paper.

[CHAK84] and [CHAK87] propose to use the resolution method in first
order predicate logic to transform the original query into all possible equiv
alent queries. They have a semantic compilation scheme based on sub-
sumption to associate the set of valid and useful integrity constraints with
each relations. The purpose of this is to transform any queries on that re
lation by using the associated constraints without searchingthe entire, rule
base. They also extend this method to handle non-Horn-clause integrity
constraints. However, they have no clear-cut way of deciding which equiv
alent query would lead to the best processing plan, Furthermore, using
resolution to derive equivalent queries.is likely to be slow.

[JARK84b] and [SHEN87] both use graph-theoretical approaches involv
ing heuristics. [JARK84b] uses graphes to integrate tableau techniques and
syntactic simplification algorithms to optimize queries containing inequality
restrictions. Referential integrity constraints like key dependencies, func
tional dependencies, and value bounds are used to arrive at different forms
of a given query. The graph is used to unify attribute values based on
referential constraints, to detect cycles that imply equal values for different
attributes, and to predict queries with null answers. The problem with
[JARK84b] is that there is no scheme available for an explicit representa
tion of arbitrary semantic constraints. The Prolog like view representation
scheme allows to express a limited type of constraints on the variables ap
pearing in view definitions. It becomes the responsibility of the user to keep
track of semantic constraints contained in view definition. Any changes in
the constraints at a later stage makes maintenance and usage of these views
difficult.

[SHEN87] uses explicit clausal representation for integrity constraints
and uses query graphes to identify redundant join predicates and redundant
restriction predicates specified in a user query and introduce more redun
dant predicates from integrity constraints. Heuristics in [KING81] are used
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department(name, floor)
project(name, mgr)
projpart(project, part, qty)
storage(dept, part, qty)
employee(name, age, sal, dept)

The querieswe shallbe dealingwith areof the following generalPOSTQUEL
[ROWE87] form:

retrieve (TargetJist)
where Predicate and Predicate and ... and Predicate

Here, predicates (simple predicates) are of the form X op Y where X, Y
can be either of the following three form: r.a (normal attribute), r.a.b.c
(POSTGRES nested dot notation) or any constant; op can be any POST
GRES operations that roughly falls into the following categories: arithmetic
(=» ^> >> ^» <> <)> set-theoretic (c, €), subclass (75), user-defined (e.g.,
.OVERLAP, between rectangles). We have restricted query predicates to
conjunctions of simple comparison predicates because those are the only
predicates existing query optimizers can handle. Query 2.1 is an example
of the queries that we consider.

Query 2.1
List the projects that are managed by someone who has salary over 30K
and work in a department on the second floor that stores the parts that
the projects need in quantities greater than 450. In POSTQUEL, this can
be expressed as:

retrieve (project.name)
where

projpart.part = storage.part
and projpart.project = project.name
and project.mgr = employee.name
and storage.dept = employee.dept
and employee.dept = department.name
and projpart.qty > 450
and emp.sal > 30K
and dept.floor = 2



The semantic rules that we use are all Horn clauses consisting of pred
icates defined above. We believe that this is not a severe restriction for

the same reason as before, viz., non-Horn clause rules with disjunctions
and existential quantifiers(as in [CHAK84, CHAK87]) are not likely to be
handled well by conventional query optimizers. We have considered three
classes of semantic rules: integrity rules, implicit rules and user-defined op
erator rules. Integrity rules are normal integrity constraints. We shall use
the following set of integrity rules as examples throughout this paper.

Rulel

The parts that a project needs have to be stored at the department where
the project manager works.

projpart.part = storage.part
A projpart.project = project.name
A project.mgr = employee.name
—• storage.dept = employee.dept

Rule2

Storage quantity must be greater than project needs for the same part,

projpart.part = storage.part
'—> proj part. qty < storage. qty

Rule3

All project managers make more than 40K.

project,mgr = employee. name
—> employee.sal > -40K

Rule4

All employees older than 35 make more than 50K.

employee.age > 35
—• employee.sal > 50K

Rule5

Only those with age > 45 works on the first and second floor,
department.name = employee.dept
A department.floor < 2
—• employee.age > 45



Rule6

Only department dl can store parts in quantity > 450.
storage.qty > 450
—> storage.dept = dl

Rule7

Employees in departments in the basement (floor =0) that store part 'dy
namite' make more than 40K.

employee.dept = department.name
A department.name = storage.dept
A department.floor = 0
A storage.part = 'dynamite*
—• employee.sal > 40K.

The implicit rules are those corresponding to well-known properties of
the operations as listed below:

transitivity of (>, >, <, <, c)
equivalent relation properties of =
For any predicate P,

equality substitution: (X = Y) AP(X) -> P(Y)
subclass substitution: (X IS Y) AP(Y) -> P(X)
nested dot attribute properties: (r.a € r') AP(r') -* P(r.a)

User-defined operator rules are rules related to properties of user-defined
operators. For example, we can have a user defined operator .COVER,
between geometric objects. It is true if the region of one object completely
covers the other. Obviously this operator also holds transitivity.

Now we introduce two fundamental concepts in our approach, closure
and generator.

Definition.

Let V be a set of predicates and 7i be a set of Horn clauses. The closure
of V under H, C is a set of predicates defined recursively as the following:

1. VCC

2. if (p! Ap2 A... Apk -> p) e H and j>i,p2, •. .,-P* € C
then pE C

3. C is the smallest set of predicates that satisfies 1 and 2.



Definition.

Let C be a set of predicates and H be a set of Horn clauses. The generator
of C under W, Q is a subset of C such that Q —• C and no proper subset of
Q has this property.
Note: When we use a set of predicates in a logic implication, we mean the con
junction of all the predicates in the set.

These two concepts are exactly analogous to the concepts of closure
and key in normalization theory[DATE83]. It is easy to see that here pred
icates correspond to attributes, Horn clauses correspond to functional de
pendencies, closure corresponds to X-closure and generator corresponds to
a candidate key. Note that closures are unique, but there may be multiple
generators.

Examples of closures and generators

The closure of Query 2.1 is

{ projpart.part = storage.part, projpart.project = project.name,
project.mgr = employee.name, employee.dept = department.name,
storage.dept = employee.dept, projpart.qty > 450,
employee.sal > 30, employee.sal > 40,
employee.sal > 50, department.floor = 2,
employee.age > 45, storage.dept = dl,
projpart.qty < storage.qty, storage.qty > 450 }

The only generator of Query 2.1 is

{ projpart.part = storage.part, projpart.project = project.name,
project.mgr = employee.name, employee.dept = department.name,
proj part, qty > 450, department. floor = 2 }

Theorem 1 Let V and V be sets of predicates and H be a set of Horn
clauses. Let C be the closure of V under H.

V <r+V iff there exists a generator QofV such that Q CV CC

Proof.
(if) V -* C -* V and V -> Q -> C -• V



(only if) V —• V implies that V contains a generator.
V -> V implies that V C C
Q.E.D.

This theorem is actually a characterization of all the semantically equiv
alent queries of a given query. They are the queries with the same Tar
get Jist but qualifications composed of predicates from subsets of the closure
of the original query predicates that contain a generator, i.e.,

Corollary 1 Query Q' = {T \ V} is semantically equivalent to query
Q = {T | V) under semantic constraints 7iiffT = T' and Q C V C C,
where Q and C are a generator and the closure of V under ft.

This corollary precisely defines the search space for semantic optimiza
tion.

For a givengenerator &, allthe predicates inC-Q are optional(redundant).
We are free to includeor excludeany of them into query predicates provided
that G is included, without changing the semantics of the query. Obviously,
if there are multiple generators of a query, then the concept optional is not
well defined. It can only be defined with respect to a particular generator.

The problem of semantic query optimization now becomes how to find
and choose a generator and select a subset of all the optional predicates
under the chosen generator that will help reducing the cost of query pro
cessing best. In general, finding all the generators is hard (as finding all
keys given functional dependencies is hard). For different generators the set
of optional predicates is different. This very likely requires multiple passes
through a query optimizer.

We believe that in practice, for most queries and integrity rules there
is only a single generator. This will become clear after we introduce the
single-generator characterization theorem in the next section. From now
on, we willemphasizeon single-generators queries. Single-generator queries
have the nice property that the set of optional predicates is well denned
and as we will show later, there is an efficient algorithm to identify the
generator and the semanticoptimization onlyrequires a single pass through
a conventionalquery optimizer to find the best plan. Formultiple-generator
queries, we may just choosea generator within the original query predicates



with which we can at least do better than processing the original query
without semantic optimization.

Now we can assume to have a single generator for any given query and
therefore we can compute the set of optional predicates. The problem of
semantic optimization becomes to choose a subset of optional predicates
to make the query processing least costly. Here are some straightforward
observations about how to choose useful optional predicates. Because of the
behavior of conventionalquery optimizers, the following optional predicates
are bound to be useless and therefore can be eliminated from consideration:

• restrictions while stronger restrictions already exist. For example, in
the closure of Query 2.1 employee.sal > 30K and employee.sal
> 40K are apparently useless because employee. sal > 50K is also
in the closure.

• non-equijoins, in general, joins with operationsthat areneither merge-
joinable nor hashjoinable[STON86b]. Forexample, proj part .qty <
storage.qty in the closure of Query 2.1.

For other optional predicates, more elaborate criteria based on whether
they can introduce more efficient access pathes and whether they can reduce
the cost of joins will be introduced in the next section. We will also show
in the next section how we can detect unsatisfiabilities in computing the
closure.

3 A New Architecture for Query Processing

In the previous section, we have shown that the problem of semantic query
optimization is reduced to the problem of choosing optional predicates to
help with query processing. Traditionally this can be done by introducing
a preprocessing phase to modify the original query by adding profitable op
tional predicates and delete unprofitable optional predicates before calling
the query optimizer. However, before callingthe query optimizer very little
is known about how the query can be processed. The best we can do at this
point is to make the decisions based on some guesses on the choice and cost
of access pathes, which may likely lead to even more expensive plans. To
overcome this problem, we decide to delay the choice of optional predicates
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until after calling the query optimizer at a postprocessing phase. This is a
major architectural modification to query processing. The new query pro
cessing architecture is shown in Figure 3.1. The motivation behind this is
that at the postprocessing phase weknow for sure what optional predicates
the query optimizer likes and made use of and what optional predicates the
query optimizer considers as extra burdens, so that we can make the best
selection of optional predicates. In order to get the optimizer's "opinion"
on each of the optional predicates, we need to let each of them be examined
by the optimizer. Wecan achieve this by modifying the original query into
an equivalent query with the original predicates replaced by their closure
and then call the optimizer.

The responsibility of the preprocessor in the architecture is to compute
the closure of query predicates and find the(a) generator thus identify the
set of optional predicates. In computing the closure, it also tries to detect
the unsatisfiability of the query predicate and returns a null result if the
query predicates are unsatisfiable, thus prevents wasting time on any fur
ther processing. H the query predicates are satisfiable, it then makes up a
query with the original target list and the closure of predicates and passes
that to the optimizer. The responsibilityof the postprocessor is to examine
the use of each optional predicates in the optimal plan the optimizerfound
for the closure query and deletes those optional predicates that does not
reduce the cost of the query processing. We now discuss the algorithms in
the two new modules.

In preprocessing we need algorithms for computing the closure, find
ing the(a) generator and detecting unsatisfiability. The algorithm to find
closure is very straight forward as follows.

Algorithm for finding closure

Input: Q = {T | V} a query, 1Z a set of integrity rules.
Output: C the closure of V under 11.
Notation: for any rule r e 11, let lhs(r) be the left hand side, i.e., the
antecedent part ofr and rhs(r) be the right hand side, i.e., the consequence
part of r.

11
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Repeat
for all r € H
if lhs{r) C C
then C = C\J {rhs(r)}

until C stops growing.

It is essentially the same as the X-closure algorithm in normalization
theory except that a few minor changes may be incorporated. For example,
we may discard obviously useless optional predicates right away and we
may "hardwire" implicit rules into the program to increase efficiency. The
major issue here is to design an efficient storage structure for the integrity
rules so that possibly relevant rules can be quickly retrieved and need only
be retrieved once. This issue will be discussed in the next section in the
context ofPOSTGRES. All the rules retrieved and actually usedin deriving
predicates in the closureare those that are relevant to the givenquery and
therefore kept separately for later use in preprocessing.

The algorithmfor finding generator is. basedon the following fundamen
tal theorem.

Theorem 2 (A necessary and sufficient condition for there to be
a single generator)

Let V be the set of predicates of a query Q and H the set of integrity
rules. Let 1Z, C H be the set of integrity rules that are relevant to Q, i.e.,
K = {(Pi AP2 A... Apk -* p) eE\ V -> pi,i = 1,2,.. .,fc}. Let Af be the
set of predicates ihat appear in It but never appear on the righthand side of
any rule, i.e., the set of predicates that can not be implied.

Query Q has a single generator iff Af —^V

Proof.
(if) Sincepredicates in Afcan neverbe impliedby other predicates, they

have to be included in every generator. Because Af —> V, Af is a generator
itself. Therefore, Af is the only generator.

(onlyif) Suppose Af does not imply V and V has onlya single generator.
Let V* and Af* be the closure of V and Af respectively. Let S = V* -Af*.
Obviously, S ^ <j>. (Otherwise, V* = Af*,i.e.,Af -+ V.) Because V* has
only a single generator, S must also have a single generator. Otherwise,
suppose /Ci, K2 are difierent generators of 5, Af U K\ and Af U K2 would

13



be different generators of V. Suppose K is the only generator of S. Let
p € JC. We know that p appears on the right hand side of some Horn
clause. Suppose the Horn clause is p\ A p% A ... A pn —• p, pt ^ P, * =
1,..., n. We have {pi,P2, ••-,pn} U(JC —{p}) —• /C. Thus there must exist a
generator in {pi, 2>2> ••., Pn} U(/C —{p}), but the generator does not contain
p, therefor is different from JC. Thus, there are more than one generators
in S. Contradiction.

Q.E.D.

The algorithm we use for finding a generator is based on the above
theorem. First we find the set of predicates Af that is included in all
possible generators. Then we test whether the query has a single generator
by the theorem. If there is only a single generator, then Af is the one,
otherwise there are multiple generators, in which case, we do not try to
find all the generators, we simply add predicates from V to Af until it
implies V, Af together with those added predicates from V consists of a
generator within V. By using a generator in V, we can guarantee that the
semantic optimization never makes things worse.

We do not really need a separate algorithm for detecting unsatisfiability.
Based on the following theorem, unsatisfiability can be detected along the
way of computing the closure.

Definition.

Let V be a set of predicates and H be a set of Horn clauses. V is satisfiable
under H if there exits certain tuples in a database state satisfying H that
satisfies V. Otherwise, V is unsatisfiable.

Theorem 3 (A necessary and sufficient condition for satisfiability)
Let V be a set of predicates, H be a set of Horn clauses and C be the

closure of V under H.
V is satisfiable under H iff each individual predicate in C is satisfiable.

Proof.
(if) H V is unsatisfiable, then V —• /, where / is an unsatisfiable pred

icate. Therefore / € C, i.e., there exists an unsatisfiable predicate in C.
(only if) If there exists an unsatisfiable predicate, / € C, i.e., V —* /,

then V is unsatisfiable.

Q.E.D.

14



Based on this theorem, we can simply modify the algorithm for finding
closures slightly to detect unsatisfiability. Each time a new predicate is
derived into the closure, we check its satisfiability. As long as there is
no unsatisfiable predicates such as r.a > r.a in the closure, the query
predicates are satisfiable.

In postprocessing we only need some criteria for deciding whether a
certain optional predicate helps to reduce the cost of query processing.
Before we introduce the criteria, we need to classify the optional predicates.
Optional predicates must be implied by some other predicates, thus they
must appear at the righthand side of some rules. They can be classified
into the following three classes according to the form of rules that derive
them:

• single-relation-derived restrictions if it can be implied by predicates
on the same relation, e.g., department.name = dl, employee.sal
> 50K in Query 2.1.

• multiple-relation-derived restrictions if it canonly be implied by predi
cates onmore than onerelations, e.g., employee. sal > 40K, employee. age
> 45 in Query 2.1.

• derived joins if it involves tworelations, e.g., storage. dept = employee.dept,
proj part, qty < storage, qty in Query 2.1

Given the behavior of the current optimizers, we observe that there are
only two possible ways an optional predicate may be used in a query pro
cessing plan. First, they may be used to introduce an efficient access path,
for example a restriction predicate, employee. sal > 40K may be useful if
there is a B-tree index on employecsal, a join predicate, employee. dept
= department.dname, may be useful if it can be evaluated by efficient
merge-join or hash-join. Second, they may just act as additional "tuple
filters"(additional restrictions on the tuples fetched). The first case cer
tainly reduces the cost of query processing. It corresponds to the index
introduction and join introduction heuristics in [KING81]. The second case
reduces the cost of query processing only when the additional restriction
reduces the size of input to some join operation. For example, if

employee.dept = department.dname
A department.floor = 1

—* employee.age > 50
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Then we can use employee. age > 50 to reduce the size of employee be
fore the join operation employee. dept = department.dname. Note that
only multiple-relation-derived restrictions are relevant in this case because
single-relation-derived restrictions can not reduce the size of a join input
relation (they automatically hold) and for multiple-relation-derived restric
tions, their antecedents do not hold until after the join operation and thus
they reduce the size of join inputs. This case corresponds to the scan re
duction heuristic in [KING81]. There is another heuristic in [KING81], join
elimination that we do not consider although it can be easily included in
our approach. The reason for this is because this heuristic requires subset
integrity constraints which is very hard to preserve and in POSTGRES
with the nested dots notation in queries, very few queries might be subject
to this optimization.

Algorithm for Choosing Optional Predicates
Let Cand Qbe the closure and generator of a query Q = {T \ V}. Let

O = C —Q, the set of optional predicates. Let PLAN be the optimal plan
that the optimizer finds for the closure query {T \ C}.

for all p € O do
if p introduces a new index in PLAN or

p is a multiple-relation-derived restriction
and is used before join

then keep p in PLAN
else delete p from PLAN

Example of choosing optional predicates.

The set of optional predicates (after eliminating obviously useless ones)
of Query 2.1 (the set difference of closure and generator, see the previous
section) is

{ Pi
P3

Ps

storage.dept = employee.dept, p^: employee.sal > 50,
employee.age > 45, p4: storage.dept = dl,
storage.qty > 450 }

Among these optional predicates, p2 and p± are single-relation-derived re
strictions, pz and p5 are multiple-relation-derived restrictions and p\ is a
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derived join. Suppose in the plan found by the query optimizer, pi is used
to perform a merge-sort join between storage and employee, p2 is used to
take advantage of the index on employee. age but p\ is just an extra tuple
filter in the plan, pz is used before the join between storage and employee
but p$ is used after the join between storage and employee because the
join uses the index on storage.dept. As a result, we keep pi,P2,P3 in the
plan, but delete p4 and ps from it.

The following Theorem guarantees the benefit of our approach.

Definition.

We define the cost of a query Q, Cost(Q) be the cost of an optimal plan of
Q and we define the cost of a processing plan is measured by the standard
formula

Ci/o+WxCcpu

where C,y0 stands for the I/O cost of the plan and equals to the number of
disk blocks read or written, C^ stands for the CPU cost of the plan and
equals to the number of tuples processed and W is a fudge factor.

Theorem 4 Let C and G be the closure and generator of a query Q =
{T | V}. Let Qf = {T \ Vf} where Vf = C- T, and T is the set of
optional predicates that are deleted after our postprocessing. For any query
Qx = {T|PX} that is semantically equivalent to Q,

Cost(Qs) < Cost(Qs)

Proof.
According to Corollary 1, Q C Vx C C. Let Qc = {T \ C}, obviously
Qc has less I/O cost than Qx because it has more opportunities for using
indices and Qc has less CPU cost than Qx because it has more restrictive
qualification therefore more tuples may be eliminated earlier. Therefore
Cost(Qc) < Cost(Qx). According to the criteria we use in postprocessing,
Cost(Qf) = Cost(Qc). Therefore, Cost(Qf) < Cost(Qx).

Q.E.D.
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From the proof of the above theorem, we can see that with the standard
cost function of query processing, it turns out that the closure query has
the minimum cost among all equivalent queries, i.e., the postprocessing
phase is not even necessary. This surprising result is due the simplism of
the standard cost function. Apparently, the more predicates the query has
to satisfy the more CPU cycles have to be consumed to process them. This
factor is not taken into account in the cost function. However, we believe
that the number of disk I/O's and the number of tuples to process are
the major cost factors while the number of predicates in a query condition
only have minor effect of the query processing cost. The optimality of our
approach is supported by the following theorem.

Theorem 5 Suppose Qx = {TI'P,} is a semantically equivalent query of
Q and Qf is the same as in Theorem 4. If Cost(Qx) = Cost(Qf), then
Vf C Vx. In other words, Qf has the least number of predicates to process
among those with minimum Cost.

Proof.
Because Cost(Qx) = Cost(Qf)1 i.e., the evaluation of Qx and Qf fetch the
same number of disk pages and process the same number of tuples. Let
Vf = GuOf where Q is the generator and Of is the set of optional predicates
chosen at the postprocessing phase. Obviously G C Vx. According to
the criteria of choosing 0/, if any predicate in Of does not belong to Vx,
query Qx either loses a more efficient access path or has to fetch more
tuples in joins, and thus Cost(Qf) < Cost(Qx). Therefore, Of C Vx and
Vf = (G U Of) C Vx.

Q.E.D.

4 Implementation on POSTGRES

We discuss the implementation of preprocessing and postprocessing sepa
rately. The current version POSTGRES are mostly written in Franz LISP
Opus 43. The preprocessing and postprocessing are also implemented in
this language.

Preprocessing
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The most important part of preprocessing is to find the closure. There
areseveral implementationdetails that needto be filled out in the algorithm
for finding closures in the previous section:

1. how to store integrity rules in the database so that the rules that are
relevant to a query can be fetched efficiently,

2. how to organize the relevant rules so that they are not repeatedly
examined,

3. how to identify the membership of a predicate to a set of predicates
quickly.

Given a set of integrity rules 11 and a set of query predicates V, the set
of relevant rules are defined as the following set:

{r e % | <p _+ lhs(r)}

The left-hand-side(lhs) of a rule and V are both sets of simple pred
icates. If we only consider arithmetic comparison operations, then sets
of predicates corresponds to convex polyhedra in a geometric space. The
problemof identifying relevant rules can be reduced to the problemof iden
tifying convex polyhedra that are contained in a given convex polyhedra.
Althoughindices like Cell Tree[GUNT87] might helpwith this search, con
sidering the highdimension(number of attributes) of oursearch space, they
would not be very useful. We have to relax our constraint and fetch a su
perset of relevant rules from the database. A straightforward candidate for
this superset is the set of rules that only involves relations in the original
query. This is based on our assumption of integrities rules that the set
of relations that appear in the right-hand-side of a rule must also appear
in the left-hand-side of the rule. This looks like a reasonable assumption.
With this assumption we can conclude that the set of relevant rules can
never involve relations that are not relations of the original query. This
is not true for attributes because rules may derive new attributes that are
not in the original query. Unfortunately, there is no indexing schemes that
can help with this set containment search either. We finally resort to an
even larger superset, the set of rules that contain at least one relation in the
original query. We have an efficient indexing scheme to support searching
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of this set. Actually, this search is analogous to the keyterm search in a
bibliographic database, in which one searches for the set of books contain
ing a certain keyword. [LYNC88] proposes a simple and efficient indexing
scheme for supporting this kind of search problems and shows that it can
be easily implemented in POSTGRES by using user-defined indices, user-
defined operators and abstract data types. We decide to use this indexing
scheme to support integrity rule searching.

After we fetch the set(superset) of relevant rules from the database, they
can be simply represented as LISP lists. The algorithm to find the closure
may require multiple passes through this list of rules. The number of passes
depends on the order of examining the rules. For example, suppose we have
two rules, ri : pi —* p2i **2 : P2 —• P3» and we want to find the closure
of {pi}. If we examine the rules in the order ri, r2i then we only need one
pass, but if we examine the rules in the order r2lri, we need two passes.
We want to examine the rules in the order that yields minimum number of
re-examination.

Definition.

We define a relationship (>>) between rules. For.two rules ri and r2,
ri »r2 i£rhs(ri) € lhs(r2).

If >> is a partial order, then obviously if we examine the rules observing
this partial order, i.e., if ri » r2i then examine r\ before r2, we only need
to examine each rule once. Otherwise, there exists a cycle, r\ » r2 »
... » ri, which we believe is very rare with database integrity rules. Even
in this case, we only need to re-examine ri and its descendends.

The way we implement this on POSTGRES is that we organize the list
of rules into a directed graph based on », and represent it as an adjacency
list. We examine the rules by traversing the graph in the topological order.
We revisit a node only if it is in a cycle. The algorithm is a straightforward
modification from the well-known topological sort algorithm.

The last detail to fill out is how to quickly decide the membership of a
predicate in a given set of predicates. This can be efficiently achieved by
building a LISP hash table or assoc list on (attribute predicates) so that
given an attribute, we can quickly find the set of predicate that involve this
attribute. Given a predicate, we first use the hash table to find the set of
predicates containing the same attributes, and then compare with each one
of them.
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Postprocessing

The detail we need to give about postprocessing is how to apply the cri
teria of choosingoptional predicates to a givenquery processing plan found
by the POSTGRES query optimizer. A POSTGRES query plan is a tree
composed of nodes like NESTLOOP, MERGESORT, HASHJOIN,
SEQSCAN, INDEXSCAN, SORT, etc[POST88]. Each node is a LISP
structure with a field called qpqual that contains the Hst of predicates that
the output tuples of this node have to satisfy. These predicates do not
contribute to the use of any efficient access paths. They only act as tuple
filters. Now the algorithm of choosing optional predicates can be written
in the POSTGRES context as the following:

Let Cand Gbe the closure and generator of a query Q = {T \ V). Let
O = C—G, the set of optional predicates. Let PLAN be the optimal plan
the optimizerfinds for the closure query {T | C}.

for all p e O do
if p is in qpqual field of a node

if p is not a multiple-relation-derived restriction
or is not in a SEQSCAN or INDEXSCAN node

then delete p from PLAN

5 Conclusions

In this paper we have proposed and described a new approach to semantic
query optimization. We emphasizeon solving the fundamental problem of
semantic query optimization, i.e., complexity v.s. benefit. Our approach
has both low complexity and warranty of benefit. Our approach also has
good modularity and can be easily incorporated into any existing systems
by adding preprocessing and postprocessing before and after the query op
timizer. We view the closure-generator formulation of semantic optimiza
tion and the introduction of postprocessing as our major contributions to
this field. The new formulation clearly characterizes the space of semantic
query optimizationand naturally leads to our preprocessing-postprocessing
architecture. Deferring decisions on selecting optional predicates to post
processing is the key to guarantee benefit of our approach.
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Most of the things that have been described in this paper have been
implemented on POSTGRES. Experiments for measuring profitabilities are
under way.
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