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A UNIFIED PHASE I-PHASE H METHOD OF FEASD3LE DIRECTIONS

FOR SEMI-INFINITE OPTIMIZATION*

E. Polak and L. He

ABSTRACT

In this paper we complete a cycle in the construction of methods of feasible directions for solving

semi-infinite, constrained optimization problems. Earlier phase I - phase n methods of feasible direc

tions used one search direction rule in all of IR" with two step-size rules: one for feasible points and

one for infeasible points. The algorithm presented in this paper uses both a single search direction rule

and a single step-size rule in all of IR". The new algorithm is simpler to analyze and performs some

what better than existing, first order, phase I - phase n methods. The new algorithm isglobally conver

gent, with linear rate.
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1. INTRODUCTION

Simple methods of feasible directions solve problems of the form

P: mm[f(x)\f(x)ZO,j = 1,2 m }, (1.1)

where the functions /:R" -> R are continuously differentiable. The first versions of methods of feasi

ble directions (see e.g., [Zou.l, Zuk.l, Top.l, Pol.l] ) were all phase n, i.e., they required a feasible

starting point xo. A starting point Xq was computed by a phase I procedure which consisted of applying

the phase n method to the following problem, in the augmented space R**"1,

Pi: minf^l/^-j^^O,; = 1,2 m }. (1.2)

Given any x* e R", it is clear that if we set x***1 = max,6 n/Cc*)1, then (jc*,****1) is feasible for Px

and hence the phase II method can be applied to its solution.

The main problem with this approach is that the initial point xq thus produced can turn out to be

quite bad. Because of this, in [Pol.2], we have developed a class of phase I - phase n methods for

solving P, which take the cost function into account even when the current iterate is infeasible. In

[Pol.3], we find extensions of the methods in [Pol.2] to semi-infinite optimization problems of the form

min{ V°(x)lV(x)^0}. (1.3)

where V(x) = maxyy6 Yj^(x,yj), j = 0,1 m, with the <j/(-,) continuously differentiable in x and

continuous in yJf and the sets Ys c R ' compact. The methods in [Pol.2], as well as their extensions,

use a unified search direction procedure which always involves the cost gradient, but they use two dis

tinct step size rules: one for the case where the current iterate is feasible and the other one for the case

when the current iterate is infeasible. One consequence of this is that their convergence analysis is

complicated by the fact that it requires the use of two cost functions: the actual cost function for

sequences whose tails are feasible, and the constraint violation function (\j/(x) = max,-6 „/(*)) for

sequences which remain infeasible. A second consequence is that while the sequence that these algo

rithms construct is infeasible, it moves towards an attractor point in the feasible set which need notbe a

local minimizer.

1We usethenotation in d { l,2,3,...,m }.
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In this paper, we present a new phase I - phase n method of feasible directions for solving semi-

infinite optimization problems of the form (1.3). The new method uses both a unified search direction

subprocedure and a unified step size subprocedure. The new method has two advantages over its prede

cessors. The first is that it is easier to establish its convergence, Q-linear rate of convergence of the

cost or constraint violation functions, R-linear rate of convergence of the iterates as well as the range of

the steering parameter, which ensures that a feasible point is attained in a finite number of iterations.

The second advantage is that it does not switch attractor points in the transition from the infeasible

region to the feasible region, and as a result tends to compute a better first feasible point than its prede

cessors. This met is corroborated by our computational results, which show the new method to be

somewhat more efficient

2. PRELIMINARY RESULTS

We will consider semi-infinite constrained optimization problems of the form

min{ V°(x) IVCc) ZOJem } , (2.1a)

where m k [ 1,2 m },and, with M k {0,1,2 m },

V(*) =max Mx.yj), Vje M, (2 lb)

where <|/:R" x R-> R. We will assume that the functions <J/(v) and their gradients V^(v) are

Lipschitz continuous on bounded sets. In addition, we will assume that the intervals Yy- = [apbjl c R

are compact We note that when Y} contains only one point i.e., aj =bj, the function y(r) = tf(x,aj) is

differentiable (otherwise it need not be); thus we see that the formulation (2.1a-b) allows that some of

the y(x) are ordinary differentiable functions. Let

V(x) A max Vfc). (22&)

\|/+(x) A max{ 0,y(*) }. (2.2b)

Let the steering parameter2 y>0 be given. Then, for any z e R", we define the parametrized

An examination of (23c) shows that the value of y and, in fact, the term v+(i) has noeffect atfeasible points. We shall
see later that their inclusion enables us toconstruct a phase I - phase IIalgorithm which does not require a feasible starting point,
and (see Theorem 4.1(iii)) that y can be used to control thespeed with which feasibility is achieved.
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function F,(x) by

F,(x) £ max{ \j/°(x) - \j/°(z) - w&W(x) - V+(z).;' e m}. (2.2c)

Note that (i) for any z e R", FJz) = 0, and (ii) if x* is a local minimizer for (2.1a), then, since

y(r) > 0 when x is infeasible for (2.1a), and since Vfc) £ yV) for all feasible x in a ball about x*.

x* must also be a local minimizer for the problem

,^FAX)- (2.2d)

This fact is used in [Cla.1] to obtain thefollowing optimality condition for problem (2.1a):

Proposition 2.1 [Cla.l] : If x* is a local minimizer for (2.1a), then

dFA**;h) SO, V h e R", (2.3a)

where dF^(x*;h) denotes the directional derivative of/>(•) at x* in the direction h. Equivalently,

0 e dF*(x*), (2.3b)

where dFx(x) denotes the generalized gradient ofFA) at x, and is given by

dFJx) » co {Mx) Iye J(x) } , (2.3c)

where <fy(x) is the generalized gradient of V(-) at jc, and

Kx) g -
/(*) yCr) > 0

/(*)U{°) ¥(*) = 0, (2.3d)
{0} W) < 0

with/(x) £{yiyCt) = v(jc),ye m }. •

It is easy to see that (2.3b) can be restated in multiplier form, as follows:

Corollary 2.1 : If x* is optimal for (2.1a), then there exists a multiplier vector

H*e 2^, i(|ie R^lp/SO.yeM, £,6MM.y = 1}, such that

j - o



0 = £ (l*V(x*) . (2jf)
'•l m

The following sufficient condition is fairly obvious:

Proposition 2^ : Suppose that the functions V(-), j e M, are convex, and that x* is such that

V+(r*) o 0 and there exists a multiplier vector ji* e Z^x such that (2.3e-f) hold and n*°* 0, then x*

is a global minimizer for (2.1a). •

Referring to [Pol.3], we see that for the purpose of constructing algorithms, it is useful to replace

the linear first order approximation dF£z;h) of Fx(z+h) - Fx(z) in a neighborhood of z by a convex first

order approximation, as follows.

Given z € R", we approximate each function tf(x,yj)tj e M, around z by the first order convex

approximation:

$(x,yj) £ V(z,yj) +{VMz,yj),(x - z)) + K\x - zl2 . (2.4a)

Then V(x) is approximated in aneighborhood ofzby the^m order convex approximation

$(x) £ max $(x,yj), ye M, /24W

and, in turn, Fz(x) is approximated in a neighborhood of z by the first order convex approximation

F,(x) £ max{ $>(x) - V>(z) - rvM$tlto - V+fr). 7e m }. (2.4c)

Referring to [Pol.3], we define the optimality function 8: R" -» R and the search direction map

h: R" -» R" as follow:

9(x) k min Fx{x +h), (2.5a)

h(x) £ arg min Fx(x +h). (2.5b)

The fact that h(x) is well defined can be established using either duality or the von Neumann

theorem. Specifically, we get the following result by straightforward extension of the results in [Pol.3].
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Lemma 2.1: Let G>:R" -> 2IR'M"1, fory e M, and G:R" ->2R"+1 be defined as follows:

G(*) = co{G>(*)};eM.

Then

(i) For any x e R",

8(x) = - min{ $°+ V4I|I2 I ffjff" e G(x)} .

(ii) There is a unique ?(x) £ (S°(x)4(x))r e G(x) such that

G(x) = -£°(x) + V4l$(x)l2)

= max (- %° + (tA(x)>+ >/4IA(x)l2)
?6G(x)

,6 Y„

ye m ,

and

= min (- |°(x) + <£(*).*>+ VH/tl2) ,
Ae IR"

h(x)=-$(x).

(2.6a)

(2.6b)

(2.6c)

(2.7a)

(2.7b)

(2.7c)

It can be deduced from Proposition 5.4 and Proposition 5.5 in [Pol.3] that the following result

holds:

Proposition 23 :

(i) The functions 8(0 and h(-) are both continuous.

(ii) Forany x e R", 8(x) £ 0. Furthermore, 8(x) = 0 if and only if 0 e G(x), which holds if and only

if either y(x) £ 0 and 0 e 3Fx(x) (i.e., x satisfies the first order optimality condition for problem (2.1a)),

or y(x) > 0 and 0 e dy(x), (i.e., x satisfies the first order optimality condition for the problem

(iii) For any x such that 8(x) * 0, h(x) is a descent direction for Fx(-) at x, more precisely,
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Jr*, „« a ,. Fx(x+7Ji(x))-Fx(x)dFJix-Mx)) & lim — \» «s 8(x). (2.8)
X >0+ At

3. THE ALGORITHM

For the purpose of comparison, we recall that the two-step-size-rule semi-infinite phase I-phase n

methods of feasible directions evolved from [Pir.l], in [PoL2] and [Pol.3], have the following form:

Algorithm 3.1 (Original Phase I - Phase II Method of Feasible Directions):

Parameters : y > 0, a, p e (0,1).

Data : xne R".

Step 0 : Set i = 0.

Step 1 : Compute the the optimality function value 8,- =8(Xi), and the corresponding search direction

fit = h(xd.

Step 2: lfy(xi)>0, set

Xi =max{ P*lhN, v(xf +$%) - y(xd £ P*a8,-} . (3.1a)

else set

Xi =max{ p* Ike IN, \i/°(x,- +P*/«i) - y°(xd £ p*a8,-, \j/(xf +P\) <; 0 }. (3.1b)

Step 3 : SetxM =x{ + \hit replace i by i + 1and go to Step 1. •

Remark 3.1: The infeasible points x, generated by Algorithm 3.1 are attracted to the set

{x e R" Idy(x;h(x)) £ 0 }c{ xe R" Iy+(x) - y(x) 2> - 8(x) +xA\h(x)f }, while the feasible points

xi are attracted to the set {xe R" 18(x) = 0}. The use of the attractor set

{x e R" Idy(x;h(x)) £ 0 } in the infeasible region tends to detract from the ability of the algorithm to

enter the feasible set at an advantageous point •

Next we state our new algorithm, which differs from Algorithm 3.1 only in its use of a unified

step size rule in Step 2. Unlike Algorithm 3.1, the new algorithm has the same set of attractor points

{x e R" I8(x) =0 }, both while the sequence is infeasible and when the sequence is feasible. The
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advantages of this are demonstrated in Fig. 5.6.

Algorithm 3.2 (Unified Phase I - Phase II Method of Feasible Directions):

Parameters : y> 0, a, p e (0,1).

Data : xo e R".

Step 0 : Set i = 0.

Step 1 : Compute the the optimality function value 6* = 8(x»), and the corresponding search direction

hi = h(xd.

Step 2 : Compute the step size X,-:

Xi =max{ P'lhN, FX{(Xi +p%) £ P*a8i} . (3.2)

Step 3: Set xM =xt+ Mi, replace i by i + 1 and go to Step 1. •

We note that the step size computed by Algorithm 3.2 is always smaller than or equal to the step

size computed by Algorithm 3.1, and that, on the average, Algorithm 3.2 uses slightiy more work per

iteration, because it evaluates the cost function \|/°(-) at infeasible points, while Algorithm 3.1 does not

We will see in the Sections 4 and 5 that these seeming disadvantages do not handicap Algorithm 3.2.

Lemma 3.1: If { x;}". o is a sequence constructed by Algorithm 3.2, then for i > 0,

V°(xw) <; v°(xi) +yyjxd; (3.3a)

V+(xw) £ \|f+(x;). (3.3b)

Proof: By the construction of ( xt }~. q, Fx{xm) ^Fxftd - 0. It now follows from of the definition of

F,(x), that VWi) - \|f°(xi) - Y^+(xj) 5 0 and that y{xM) - \|/+(x;) <£ 0. Thus, (3.1a) and (3.1b) must

hold. H

Theorem 3.1 If { x,- }"-o is a sequence constructed by Algorithm 32, then any accumulation point x*

of the sequence { x,-}"«, o satisfies 8(x*).

K

Proof : Suppose that xt ->x* and that 8(x*) ^ 0. Then, by Proposition 2.3(ii), 8(x*) <0. Hence it

follows from Proposition 2.3(iii) that there exist an a* e (a.l) and ako e IN such that for 0<X£ p*6,



FAx* + Xh(x*)) - FAx*) £ a*XB(x*). (3.4)

Since Fx(x) = 0 and F,(x), 8(x) and h(x) are continuous, there exists a p* >0 such that for all

xe£(x*,p*) £{xe R"llx-x*l£p* }and 0<X£ p**,

F& + Xh(x)) <. oA8(x), (3.5a)

and

8(x)< 8(x*)/2 <0 . (3.5b)

K

Since xf -» x*. there exists an io e IN such that x, e 5(x*,p*) for all i e K, i > fa Hence, (3.2) is

satisfied by Xt £ p^ for all i e K, i>i0. Therefore, making use of (3.5a-b), we obtain that for all

i e K and i > i0t

Fx.(xM) <, ap*b8(x^ <; apS(x*)J2 . (3.6)

Now, we must consider two cases.

Case (i): There exists ii e IN such that ^(x^) <0. Then, it follows from Lemma 3.1 that

\|/(Xi) £ 0 and VWi) £ y0(xi) for all i >iv In addition, it follows from (3.6) that for all i e K,

i > max{i0,ii},

VWi) - Y°fc) *F^fen) £aP*b8(x*)/2 . (3.7)

Since the sequence {\jf°(Xi) }?*= ^ is monotonic decreasing, we conclude from (3.7) that \|/°(x;) -> - <*>,

as i -» oo, which contradicts the fact that v°(x«) -> v°(x*).

Case (ii): y(xd >0 for all i. Then, it follows from Lemma 3.1 that v(x*i) <\|/(x,) for all /.

Making useof (3.6), we conclude that for all i e K,i> i0,

Y(**i) - V(xd *Ftfai) ZaP*°8(x*)/2 . (3.8)

Since the sequence [y(xd)7a o is monotonic decreasing, we conclude from (3.8) that yfed -> - «»,

which contradicts the fact that y(Xj) > 0 forall i. •
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4. RATE OF CONVERGENCE AND STEERING

Next we turn to an analysis of the rate of convergence of Algorithm 3.2, and of the effects of the

steering parameter y.

Assumption 4.1 : We will assume that the functions <|/(v), y* e M, in Problem (2.1a) satisfy follow

ing hypotheses:

(i) There exist 0<c<l<C<oo such that for all x e R", z e R", yy e Yy and for all j e M,

clzl2 <S fr^fr?/)^ C|z,2 (4 1}

(ii) The set { x I\|f(x) < 0 } is not empty. •

Lemma 4.1: Suppose that Assumption 4.1(i) holds.Then

(i) For any x,h e R", y} e Yy- and y e M,

V(x,yj) +{VMx,yj),h)+ Kclhl2 ZV(x+h,yj) Z<t/*(x.yy) +{VMx,yj),h)+ lACM2 . (4.2a)

(ii) For any x, h e R", %e <V(x), andy e M,

VCt) +(6.h)+ tecthl2 <> V(x+A). (4.2b)

(iii) For any x, h e R",

max {- 4° +<6.«+ ViclAI2 }<; V°(x +h) - y(x) - W+C*) * max {- $° +£,#+ ViClAI2 A, n^

max {- £° +£,#+ Vzclh^ }<; V(x+/») - y+(x) £ max {- $° +£,h)+ xhC\h\2 }, ye m ,4 ™

Proof : (i) The inequality (4.2a) follows direcdy from the Taylor second order expansion in integral

form and Assumption 4.1(i).

(ii) We recall that by(x) =co { VMxyj) Iyj e Y,, (j/(x,yy) =V(x) }. Hence we see that (4.2a)

implies (4.2b).

(iii) It follows from (4.2a) that for y0 e Y0,

<b°(x,y0) - \j/°(x) - w+(x) +<VMx,y0),h)+ KcM2 <, 4>°(x + h,y0) - \|f°(x) - W+(x)
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* *°(x,y0) - V°(x) - 7y+(x) +<V^0(x,yo),/»>+ lAC\h\2 . (43a)

Thus, we must have that

max {<J>°(x.yo) - Vfc) - W+(*) +C^xo^./iH fccl/il2 } <; y>(x +h) - vV) - W+(*)

*ymax {<b0(x,yo) - V>(x) - ?y+(x) +(Vx<J)0(x.yo).M+ V4CIAI2 }. (4 3b)

Making use of the definition of G°(x) and the fact that maximizing a linear function over a compact set

is equivalent to maximizing the linear function over the convex hull of the compact set, we conclude

that (4.3b) implies (4.2c). Similarly, we can obtain (4.2d). •

Lemma 42 : Suppose that Assumption 4.1 holds. Then

(i) For allx such that y(x) £ 0,0 e 3\|/(x).

(ii) Problem (2.1a) has a unique solution.

(iii) The unique solution of (2.1a) is the unique zero of 6().

Proof : (i) Since the functions <j/(v),y e M, satisfy Assumption 4.1(i), the functions <|/(\yy), with

yj e Yj, are stricUy convex and have bounded level set Hence, the functions V(-) and \|/(-) are also

stricdy convex and have bounded level sets. Therefore \|/() has only one local minimizer, x, which is

therefore the global minimizer of \|/(«). Since v(0 is stricdy, it follows that x is the only point satisfy

ing the relation 0 e dy(x). By Assumption 4.1(ii), y(x) <0.

(ii) Because the functions V(-), j =0,1,... jn, are stricdy convex and the feasible set of Problem (2.1a)

is not empty and bounded, Problem (2.1a) has a unique solution.

(iii) Suppose that x* is such that 8(x*) =0. Then, it follows from Lemma 4.2(i), Proposition 2.3(h)

and Corollary 2.1, that y(x*) £ 0 and 0 e dFAx*), which implies that there exists a multiplier vector

H* e 2^4, \i* =(}i*0,\i*l,...,\i*m) such that (2.3e-f) is satisfied. If jx*° =0, then (2.3e-f) imply that

y(x*) =0 and that 0 e dy(x*), which contradicts to Lemma 4.2(i). Therefore \i*°*Q. Hence, by Pro

position 22, x* is the solution of Problem (2.1a). Since the solution of (2.1a) is unique, we must have

that the zero of 8Q is unique. •
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Let x* denote the unique solution of (2.1a) and let L(x*) c 2^4 be the set of multiplier vectors

satisfying (2.3e-f) at the optimal solution x* of (2.1a), and, for any x e R", let U(x) be the set of dual

variables associated with the optimality function and the search direction map, i.e.,

L(x*) A{\i e Z,^ I0e £ \j/dyi(x*), £ mV(x*) =0}. (4.4a)
/-0 jml

U(x) A{ne 2^, If(x) e £ p/G>(x) ). (4.4b)
y-o

Since the generalized gradients 3V(x*), y e M, are compact and convex, the set L(x*) is compact and

convex. Let j±0 £ min{ \i° I\i e L(x*) } and let p? £ max{ \i° I|i e L(x*) }, Then, we have follow

ing result

Lemma43 : Suppose that Assumption 4.1 holds and that x* is the unique solution of (2.1a). Then

(i) o<u°<;p?<si.

(ii) U(x*) = L(x*).

(iii) For any e e (0,1), there exists a p*>0 such that for any x e fl(x*,p*) =

{ x e R" Ilx-x*l £ p* } and \i = OiV. • • • ,\i») e U(x),

lrtl-e)£|i°£lrf(l +e). (4.5a)

(iv) For all xe R",

PW) - VOO] ^ (1 - P^)V+(x) , (4.5b)

•|lx - x*l2 £uV(x) - W)] +(1 - uVfW • (4.5c)

Proof : (i) It follows direcdy from the proof of Lemma 4.2(iii) and the compacmess of L(x*) that

JA°>0.

(ii) Since 8(x*) =0, f(x*) =0. Making use of the facts that dy(x) =co {V^x.yy) I

yj e X/. V(x,yj) =V(x) } fory e M and that y+(x*) =0, we conclude that U(x*) = L(x*).

(iii) Since f(-) and G*(-),ye M are continuous, the set valued map U() must be upper semi-

continuous, and hence for any sequence x,- and u,- e U(x,) such that x,- -»x* and |if -> p.*, then
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\i* e U(x*). Therefore, (iii) follows from Lemma 4.3(i)-(ii) and the upper semi-continuity of U(-).

(iv) For any |i = GiV1.... '̂") e L(x*), there exist %e by(x*) fory e Msuch that

0= £ M%>. (4.6a)

0=£ MVW • (4.6b)
y-i

Making use of the fact that y+(x) £ \jf>(x) for all ye m, of Lemma 4.1(h) and of (4.6a-b), we obtain

that for any x e R",

\iY(x) +(1 - \l°)V+(x) ;> £ pV(x)
y = o

* £ '̂( VW +<&.(* "X*))+ ^IX - X*l2 )
y-o L

= 2 mV'(x*) +4Ix-jc*12
y-o 2

=nV(**) +fk-x*l2. (4.7)

Replacing p°by p°and u°respectively, we obtain (4.5b-c). •

Lemma 4.4 : Suppose that Assumption 4.1 holds and that {x,- Jf. o is a sequence constructed by

Algorithm 3.Z Then for i £ 0 and m= (n?,...,nD € U(x/),

co ^M),jy^-^- *p+<?- dm?)^ , (48a)

w rty-*V>*(i-^)tv°w-*V)] +tt-SW+pMw,.. (4. 8b)

m ¥(W^lVV)-Vfa>I*[l-aPC(iy3Mft]V<W>. (4.8c)
Proof : (i) First we obtain a bound on the decrease in FX{(-) at the i-th iteration. Making use of

Lemma 4.1(iii), Lemma 2.1(h) and the fact that £° >: 0 for all ? e G(x), we find that for all

Xe [0.1/C],

F4* + M(x;)) = max{ ^(x,- + Xh(xd) - y°(xd - w+(x,), y'(x,- + Xh(xj) - y+fc); ye m }
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£ max{ -4° +($,Xh(xd)+ KCXKhW2 I£ e G(xd }

£ Xmax{ -4° +<S,Aft»+ V&IACOI2 I£ e G(x^ }

= X8(xj) . (4.9a)

Therefore (3.2) is satisfied with A,- > JVC, and thus

FxfxM) <; aXfl(xd Z ap8(x^/C . (4.9b)

Next we relate 8(xi), to V(x*) - \^(xd and to y+(xi). For any & e U(xd, there exist

5 = (&?.W e G*(xd,j e M, such that

5W>=£m!8. (4.10a)
y-o

Making useof Lemma 2.1(h), (4.10a) and Lemma 4.1(iii), we obtain that

8(Xi) = min { -4°(xf) +<£(xd.h)+ Vi\h\2 }
AeR*

o min { £ nj (- Z*> +#,«+ V4IAII2) }
Ae R" y . o

<; cmin { £ p/{- §£» +<^>c>+ VfclA/cl2)}
A6 R* j „ o

£cmin {nfojrffo +hie) - ^(x.) - W+(*,)) +£ lAVfc +*fc) - V«]fc» }. (4.i0b)
As R jmj

Replacing Aby c(x* - x/) in (4.10b) and making use of the fact that \|/(x*) <0, we obtain that

8(x,) £c{m,V(x*) - yfod - mCO) +£ MM**) ~V*W))}
/-i

* c (P,VV) - vVi)] -[1 +(Y - DrflvA)) . (4.10c)

Combining (4.9b) and (4.10c) together, we obtain (4.8a).

Finally, (ii) and (iii) follow from (4.8a) and the fact that both VWi) - y°(xd

- n+(xd £ FxfxM) and y(xM) - V+(*i) <FxfxM). u

Lemma 4.5 : Suppose that Assumption 4.1 holds and that x* is the unique solution of (2.1a). Then

for any e e (0,1), there exists a p >0 such that for any sequence { x, jr. o constructed by Algorithm
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32, if Xi e B(x*.p) = { x e R" I lx-x*l «S p }, then

(i) v+(xw) <S 5i(e) y+(xi); (4.1 la)

(ii) max{ O.VWi) - y°(x*) }<; ^(fiXmaxf 0,y°(xd - y°(x*) }+yy+(xd ] ; (4.11b)

where

5i(e) =max(0,l - tr^ct^c/C) e [0,1). (4.1 lc)

82(E) = 1- eu°a0c/C e (0.1). (4.Hd)

Proof: (i) For any fixed e e (0,1), we can pick ei >0, small enough, so that

1- Ei - £i/(Tm°) 2: E. (4.12a)

By Lemma 4.3(iii), there exists a p >0 such that for any Xf e fl(x*,p) and ji,- e V(xd,

Uftl - £i) <; p? <; p°(l +£l) . (4.12b)

Making use of (4.8c), (4.5b) and (4.12a-b), we find that for x,- e B(x*,p),

w(r ^ aMd'Vf) qpc(l +(Y-l)n?),
CD? C ]V+(Xi)

aBc=[l+-^(-l +H?/tf-7U?)]V+(x«)

*[1+-=^(-1 +P°d +eO/p^ - m°(l - £0) tyM)

„[1_ay^g£( i-ei -ei/Cm0)) ]V+(x,)

^ (1 - eu°o#dQy+(xd . (4.13a)

Therefore (4.11a) must hold.

(ii) Making use of (4.8b) and the fact that 1+(y- l)tf £ yvS, we obtain that for x,- e £(x*,p),

V'(^)-V'(^^(i-^)[V»w-V»^)] +[Y-aPc(1+gr-1^]v,w

^(1 " -=^L)mtx(0y(xi) - V°(x*)) +tfl - -^-^Mfc)
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*(1 - -^•)[max(0,V,(xi) - W)) +yy+<xd]. (4.13b)

Since 1 - zl £ e and n? £ u°(l-ei), M? ^ U°£- Thus, (4.11b) must hold. •

We are now ready to establish the linear convergence of the Algorithm 3.2.

Theorem 4.1: Suppose that Assumption4.1 holds and that x* is the unique solution of (2.1a).

(i) Any sequence {xt }"„0 constructed by Algorithm 3.2 converges to x*.

(ii) Let 8x(e), 62(E) be defined as in (4.11c), (4.lid), respectively. Then for any e e (0,1), there

existsa p > 0 such that for any sequence {x,-}"- 0constructed by Algorithm 32,

(a) If y(Xi) > 0 and x,- e B(x*,p), then

y(xM) <; ^(e) y(xd • (4.14a)

(b) If v(Xj) £ 0 and xt e B(x* ,p), then

VWi) - v°(x*) * o^EHyVi) - WO ] • (4.14b)

(iii) If y> C/(tt°apc), then there exists a p >0 such that for any sequence {x,-}-°. 0constructed by

Algorithm 3.2, if x, e B(x*,p), then \|/(xw) £ 0.

Proof : (i) Since the functions V(v),y = 0,l,...,m, satisfy Assumption 4.1(i), \jf() has bounded level

sets. Making use of Lemma 4.1, we conclude thaty+(xi) £ y+(xo). Hence, {x, )P= 0 is bounded. Since

x* is the unique zero of 8(-), it follows from Theorem 3.1 that {x,-}J*. 0 has only one accumulation

point x*. Therefore { *,-} •"« 0 converges to x*.

(ii) This part follows direcdy from Lemma 4.5 and the fact that (a) \y+(x) = y(x) when \j/(x) > 0 and

(b) y+(x) = 0 and y°(x) - y°(x*) > 0 when \j/(x) £ 0.

(iii) Since 1- yu?a®c/C <0, we can pick an e e (0,1) such that S^e) = 0. Then, the desired result

follows from Lemma 4.5 for this particulare. •

Corollary 4.1 : Suppose thatAssumption 4.1 holds and that x* is the unique solution of (2.1a). Then

for any sequence {x,- }"= 0constructed by Algorithm 3.2,
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(i) If y(xd > 0 for all i £ 0, then

«m ™ ^Xm) * i TU°a3c
^l^T*1" c" • <4'14c>

(ii) If there exists an i0 e N such that \j/(x<0) £ 0, then

..•..__ vW-yV) _ u°a3c

The following theorem establishes the R-linear convergence of the iterates constructed by Algo

rithm 32.

Theorem 42 : Suppose that Assumption 4.1 holds and that x* is the unique solution of (2.1a). Then

for any e e (0,1), there exist Pi 2: p0 >0 such that for any sequence {^ Jr.o constructed by Algo

rithm 3.2, if /0 is such that x^ e B(x*,po), then

lx, - x*l <; pilots)*]'*"\ i =;0,/0 +1,/0 +2 (4.15a)

where

63(E) £ max (o^s)^)} =1-min{l,Y}£U°aPc/C, (4.15b)

with 8!(£), 62(E) defined by (4.11c), (4.11d), respectively.

Proof : For any fixed e e (0.1), we pick a Ei e (e,1). Then there exists p! >0 such that Lemma 4.5

holds for e = £j and p = pl# Since 63^!) < 53(e), we claim that there exists a^>0 such that for all

i £ 0,

53(£i)

83(E)

Since \j/°(-) and \j/() are continuous, we can find a p0 e (O.p^ such that

xe1SSp0)[ tt°max(0,\|/°(x) -VV)) +(lA* +1- u°)V+(x) ]<£ |(Pl)2 . (4.16b)

We shall prove by induction that (4.15a) holds for any sequence {xt }?a 0 constructed by Algo

rithm 32. Let x^ bethe first element of this sequence in the ball 5(x*,p0).

<K (4.16a)
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Since p0 £ pi, (4.15a) holds for i = in. Suppose that (4.15a) holds for i - i0, • • • ,k+io. Then

Xi e B(x*,pi) for i = i0, • • • ,k+i0. Thus, due to the selection of pi, for i = /0. • • • »£+*o» ** satisfies

inequalities (4.11a-b), where e is replaced by Z\, i.e.,

y+(xM) £ 8i(E!) v+(Xf) , (4.17a)

maxfl.VWi) - W)) <J 82(E1)[max(0,V)(x£) - WO) +yy+(xd ] . (4.17b)

Therefore, we can recursivelyobtain that for i = i0, • • • ,fc+*0,

y+(xw) <S [oVCeO] V^ » (4-18a)

max^y0^) - W)) <; fo^,)]*1_i°[ max<PY^ - W)) +Ttf+l-AOv+Ot,,) ]. (4.18b)

Making use of (43c), (4.18a-b) and the fact that 63(E) > 83(81), we obtain that

•§1**4 - **l2 *uVWi^ - W)] +(1 - uVftw^

* ^(Ei)]*"1 [U° max (O.V^ - VV)) +(U° Y(*+l) +1- U° )V+0^

* [63(E)]*-1 [u° max {OyCitf - v°(x*)}

+(U° Y(*+l) (63(Ei)/63(£))*fl +1- nV+0%)] • (4.19a)

Since x^ e 5(x*,p0), we obtain from (4.16a-b) and (4.19a) that

•fkfcn* - x*\2 <, [63(E)]*-1 Qx0 max {0Yfo^ - VV)J +0t° Y*+1- U° )\|/+(xlo)]

S-ffo^W. (4.19b)

Consequendy, (4.15a) holds for 1=£+l+/0. Therefore the induction proof of (4.15a) is completed. •

Corollary 42 : Suppose that Assumption 4.1 holds and that x* is the unique solution of (2.1a). Let

63(e) bedefined as in (4.15b). Then for any sequence { x,- }"„ 0constructed by Algorithm 3.2,

limaip (lx4- - x*l)(1/i) * [63(1)]* . (420)
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5. NUMERICAL RESULTS

Since the exact calculation of the global maxima of a function is not a numerically implement-

able operation, numerical methods for solving Problem (2.1a) must discretize the intervals Yy-. The

discretization may be either fixed, or variable, see, e.g., [He.l, Kle.l, Pol.1]. Assuming that the cost

function was originally differentiable, i.e., that Y0 contains only one point, the discretized problem is of

the form of Problem (2.1a), but contains as many constraint functions V(-) as the number of discretiza

tion points used, with the associated sets Yj containing only one point When the cost is a max func

tion, an additional variable has to be introduced on discretization in order to reduce the discretized

problem to the form (2.1a).

In view of the above, we have implemented the Algorithms 3.1 and 3.2 for the case when all the

functions V(-),y =0,l,2,.,m, in Problem (2.1a), are differentiable, i.e., for the case when the sets Yy,
j = 0,l,2,.,m, contain only one point

Both Algorithm 3.1 and Algorithm 3.2 were coded in C and were executed on a SUN 3/140

Workstation. The search direction hi and the optimality function value 8,-, in the Step 1 of the algo

rithms, were computed by solving the quadratic program (2.7a) by means of the method based on sup

port functions in [Hig.l]. The stopping criterion was 8,- £ -e, where e is a given positive number. In

the experiments below, the algorithm parameters were set at a = 0.9.p = 0.9,y = 1.0.E = 0.000001,

unless stated otherwise.

Algorithm 3.2 ( Our unified phase I-phase II method ) was compared with Algorithm 3.1 ( phase

I-phase II method proposed in [Pir.l], [Pol.l] and [Pol.2]) on several well-known problems. For each

problem, two tests were carried out The first test used a feasible initial point while the second test

used an infeasible initial point Table 5.1 summarizes the performance of the two algorithms on these

problems. We evaluate their performance by comparing the number of iterations, the number of func

tion evaluations ( one gradient evaluation was counted as n function evaluations), and the CPU time (

seconds ) which they required to achieve the given degree of accuracy , i.e, 8,- £ -e. In Figure 5.1-

5.5, the data generated by Algorithm 3.1 are plotted with dotted lines, while the data generated by

Algorithm 3.2 are plotted with solid lines. The test problems and the detailed results are as follows:
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Rosen-Suzuki's Problem [Con.l]:

min X2 + x\ + 2x\ + 4 - 5xi - 5x2 - 21x3 - 7x4

S.t 2Xi+x| + X3 + 2Xi-X2-X4-5£0,

X? + xi + x| + xJ+ Xi-X2 + X3-X4-8 SO,

x? + 2xl + x| + 2xJ-J:i-*4-10 SO.

In this problem, all of the functions are strongly convex. The feasible initial point (0,0,0,0) and the

infeasible point (2,4,8.1) were used. Both algorithms converged to the minimum value of -44 at

(0,1,2,-1). In the first trial, Algorithm 3.2 performed about the same as Algorithm 3.1, see Figure 5.1.

In the second trial, the optimality function in Algorithm 32 decreased faster, approximately by a factor

of 10, than that in Algorithm 3.1, seeFigure 52. Figure 5.3 and5.4 plot the cost function values \if°(x»)

and constraint function values y(xj) as functions of iteration number i, for the first 20 iterations. It was

observed that the cost was increased a lot in the first iteration of Algorithm 3.1 though the feasible

region was almost reached.

Wong's Problem [Asa.1]:

min (Xi-10)2+5(x2-12)2 +x^ + 3(x4-ll)2+10xf+74 +4-4x6X7-10x6-8x7

s.t 2x2 + 3xJ + x3 + 44 + 5x5- 127S0,

7xi + 3x2 + 104 + *4 - x5 - 282 SO,

23xi +4 + 64- 8x7 - 196 S 0,

44 +4 - 3xix2 + 2x|+ 5x6 - llx7 S 0 .

In this problem, all the constraint functions are strongly convex, while the cost function has a single

nonconvex term. The minimum value for the problem is 680.63 at (2.33,1.95,-0.48,4.37.

-0.62,1.04,1.59). The feasible mitial point (1,2.0.4,0,1,1) and the infeasible initial point

(3,3,0,5,1,3,0) were used. It was observed that both algorithms generated the same iterate points in

the first trial. Figure 5.5 shows that Algorithm 32 performed better in the second trial. Note that

optimality function does not monotonous decrease, but it almost decrease linearly in the sense that

log(-8(Xi)) as a function of 1 is almost linear.
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Quadratic Problem:

min 3(xi-1.4)2 + (x2-l)2

s.t (xi-0.7)2 + 4-1S0

2(xi + 0.7)2 + 0^4-1S0.

In this problem all the functions are strongly convex. The minimum value for the problem is 6.4235

which occurs at x = (-0.0202,0.3896). The feasible initial point (-0.3.0.0) and the infeasible initial

point (2.2,1.6) were used. Figure 5.6 displays the first three iterates constructed by the algorithms from

the infeasible initial point xo = (2.2,1.6), where {xXtx\ } and {xi,x2 } are generated by Algorithm 3.1

and Algorithm 32, respectively, x is the optimum point and the intersection area of the two ellipsoids

is the feasible region. It is observed that xt is closer to the optimum point than xi, although xx is litde

bit further away from the feasible region than x\. The reason is that Algorithm 3.2 does not sacrifice as

much of an increase in the cost in order to approach the feasible region. That is why Algorithm 3.2

performs better than Algorithm 3.1 on the Rosen-Suzuki's Problem, on Wong's Problem and the Qua

dratic Problem when an infeasible initial point is used.

Algorithm 3.1 Algorithm 3.2
Problem iterations function evaluations time iterations function evaluations time
Rosen-Suzuki.1
Rosen-Suzuki^

76

68
2417

2138
2.88

2.36

77

55
2473

1689

3.04

1.86
Wong.l
Wong.2

157

171

23,286
24,697

21.48

22.48
157

151

23,286
22,241

21.54

20.88
Quadraticl
Quadratic^

48

50
586

620

0.76

0.72

49

43

601

550

0.76

0.68

Table 5.1: Summary of Numerical Results

6. CONCLUSION

This paper completes a cycle in which methods of feasible directions were taken from the situa

tion where separate problem formulations had to be used for phase I and for phase n, to combined

phase I-phase n methods, such as Algoridim 3.1, which used a unified search direction rule in all of

-21-



IR", but different step size rules, depending on whether the current iterate was feasible or not to the

unified phase I-phase n method of feasible directions (Algorithm 3.2) proposed in this paper, which

uses the same search direction rule and step size rule in all of IR". The new algorithm is simpler

theoretically and is somewhat more efficient numerically because it sacrifices less in cost increases in

order to achieve feasibility.

Acknowledgement The C code of Algorithm 3.1 was provided by Joseph Higgins.
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Figure 5.1. RosenSuzuki's Problem with feasible initial point

optimality function 9()

103

0 !0 20 30 40 50 60
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Figure S3. RosenSuzuki's Problem with infeasible initial point
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