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Abstract

A promising new massively parallel technique for rigorous simulation of to
pography scattering issues in optical lithography has been developed and tested.
Themethod isequivalent to the time-domain finite-difference method (TDFDM)
used in electromagnetic scattering, but exploits the parallel nature ofwave prop
agation and the power of recent massively parallel architectures such as the
Connection Machine. Efficient new absorbing and periodic boundary conditions
are formulated along with rapid techniques for obtaining frequency-domain in
formation. The resulting code has been implemented on a Connection Machine
CM-2 and can be applied to analyze general electromagnetic interactions over
arbitrarily nonplanar and inhomogeneous topography, both isolated and pe
riodic. Steady-state calculations for a 8.0 wavelength square domain require
less than 40 seconds on the IK processor system at UC Berkeley correspond
ing to less than 5 seconds on a fully configured 16K (or larger) machine. The
accuracy of the method is verified by rigorous integral equation methods for
diffraction gratings and SAMPLE for layered dielectric thin films. Several key
two-dimensional effects are explored including dynamic exposure over reflective
steps and diffraction from latent images in photoresist and contrast enhance
ment materials. Finally, future extensions to include effects of partial coherence
and linking with other simulation programs within a system environment are
discussed.
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Chapter 1

Introduction

Over the past few years, three-dimensional (3D) integration of microelectronic devices has

forged a new frontier for the semiconductor industry. The unabated push for greater den

sity and higher performance coupled with the Umitations of siUcon real estate has already

stepped beyond the Umits of the traditional planar fabrication process. It is clear that fu

ture advances wiU require stacking of device and metallization layers and/or etched features

such as trenches. While paving the way for exciting new possibiUties for integrated circuit

(IC) design, these trends also present tough challenges to both process technologists and

computer-aided design (CAD) tools.

In the context of optical Uthography, for example, the patterning and aUgnment of

small features over steps and along sidewalls involves complex optical interactions between

the exposure (probe) signal, underlying topography, and resonances in the photoresist. Fig

ures 3,22, and 29 iUustrate some of the diverse materials and profiles commonly encountered

in present aUgnment and exposure situations. Current Uthography simulation programs

such as SAMPLE [1] and PROLITH [2] employ simple quasi-two-dimensional models for

exposure based upon the Fresnel equations. These approaches, although computationally

efficient, arelimited to strictly planar substrates and resist overcoatings. Non-planar topog

raphy introduces two-dimensional reflections which require afundamentally new formulation

ofthe analysis. Furthermore, these models, which assume strict vertical propagation ofthe

image, do not account for diffraction effects produced within the resist itself during the

bleaching process. As iUustrated in Figure 1, inherent diffraction wiU play an important

role in the formation oflatent profiles within the resist, even forflat substrates, as minimum

feature sizes are reduced.



This report describes a promising new massively parallel approach to the analysis of

electromagnetic scatteringfrom topography in optical Uthography. The formulation involves

solution of a time-domain discretization of MaxweU's equations similar to a scheme proposed

by Yee [3] on a staggered grid of electric and magnetic field nodes. The method has been

appUed to examine such diverse issues as metrology, aUgnment, and projection printing

over arbitrarily complex topography. The algorithm exploits the inherent parallel nature

of wave propagation, making it a perfect match for massively parallel architectures such

as the Connection Machine [4]. The combination of the accuracy and flexibility of a finite

difference/finite element formulation with thespeed ofa paraUel approach give the technique

unique advantages for rigorous simulation unmatched by any other method to date.

Chapter 2 provides some background for the technique by reviewing previous efforts to

analyze topography scattering within the context ofUthography. An overview ofthe organi

zation of the Connection Machine, on which the method was implemented, is presented for

readers unfamiUar with its advanced architecture. After outUning appropriate simpUfica-

tions for analysis of typical wafer topographies, Chapter 3 discusses the algorithm in detail.

New absorbing boundary conditions, formulated to take advantage of the paralleUsm of the

Connection Machine, are described along with modifications ofexisting conditions (used in

equivalent time domain approaches) to account for propagation in lossy dielectrics. Because

periodic structures play an important role in optical Uthography, efficient periodic bound

ary conditions capable of being evaluated in parallel were introduced. These are presented

along with new techniques for extracting frequency domain information such as diffraction

efficiencies and far-field images.

Chapter 5 treats issues of special concern for topography scattering in Uthography such

as guiding of waves near boundaries, effects of anomalous dispersion upon stabiUty, and

modeUng of dynamic bleaching using the Dill [5] relations. The accuracy and remarkable

efficiency of the formulation is then verified by comparison with diffraction grating results



from rigorous integral equation methods and dielectric materials using the Fresnel equations

and SAMPLE. To demonstrate some of the extensive capabiUties of the method. Chapter 6

presents simulations of two-dimensional effects including reflective notching, diffraction in

contrast enhancement materials (CEM), and scattering from latent images formed in pho

toresist during exposure. Finally, important directions for future work to include partial

coherence effects and Unking with other programs within an integrated simulation frame

work are examined.



Chapter 2

Background for Current Work

2.1 Relation to Previous Efforts

Optical interactions ofinterest to Uthography can be separated into two classes ofproblems

by the characteristic structure of the topography. The first class deals with periodic struc

tures, typically within the context of metrology and aUgnment or exposure of repetitive

patterns as in memory chips. The second class is concerned with scattering from isolated

features on the wafer and the effects upon adjacent devices. For both cases, the steady-

state and/or dynamic behavior with iUumination may be desired. To handle all of these

situations, a simulation toolmust be general enough to provide accurate results for domains

which may be arbitrarily nonUnear, inhomogeneous, and time-varying with periodic or ab

sorbing boundary conditions. This isan impossible task for any single simulation algorithm,

ofcourse, and previous approaches have focused on either periodic or isolated scattering.

Bobroff and Rosenbluth [6] and Gallatin et al. [7] studied diffraction from resist-coated

aUgnment marks (periodic) using plane wave expansions and scattering matrices. Their

method, although rapid and efficient, was approximate and Umited to long, shaUow fea

tures with homogeneous layers. Kirk [8], Nyyssonen [9], and Yuan et al. [10] developed

an improved technique suitable for thick, inhomogeneous periodic structures based upon

numerical solution of HiU's equation [11,12]. The algorithm has been used to examine

polarization effects in aUgnment, but instabilities have been observed at short periods.

Matsuzawa et al. [13] appUed a hybrid finite element/boundary element method to ana

lyze exposure in the vicinity of isolated reflective steps. The method revealed interesting

two-dimensional diffraction effects, but required very long computational times and was



restricted to perfectly conducting surfaces.

Wojcik et al. [14] investigated a promising alternative to these traditional frequency

domain approaches. The algorithm involves the solution of the coupled, first order Maxwell

equations on a uniform rectangular grid superimposed on wafer topography of interest.

Wave propagation is achieved by time stepping a finite difference discretization scheme pro

posed by Yee [3] and absorbing outgoing scattered fields produced by interaction with the

features. Good agreement with both theoretical and experimental results was observed for

scattering from small (0.3-2/im diameter) latex spheres on a siUcon substrate [14]. Demon

stration of the general feasibiUty of the method was hampered, however, because effective

absorbing boundary conditions for the outgoing waves were not found. As a result, grids

with over 2.2 milUon nodes were required, possible only on the CRAY 2 with run times for

steady-state calculations of roughly 20 minutes.

Thecurrent work develops andextends the time domain finite difference method (TDFDM;

introduced by Wojcik et al. The algorithm has been adapted to exploit the inherent paraUel

nature of wave propagation and execute rapidly and efficiently on new massively paraUel

computer architectures. Robust absorbing boundary conditions for both free space and

dielectric materials have been devised along with new periodic boundary conditions for

simulation of periodic structures. Techniques for extracting steady-state information such

as diffraction efficiencies and surface currents have also been formulated. The resulting

algorithm is now quite general and can be applied to both periodic and isolated structures

under pulsed (for frequency response data) or steady-state2 excitation.

2Some restrictions upon the numerical aperature of the incident optical signal may be necessary for
stability in this case as will be discussed in Section 3.5.



2.2 Organization of the Connection Machine

Before discussing the details of the algorithm, it will be helpful to summarize the archi

tecture and operation of the Connection Machine. This wiU clarify specific aspects of the

implementation and provide a foundation for understanding the suitabiUty of the computer

for massively paraUel computation.

The Connection Machine is an integrated system consisting of a front end computer

and a parallel processing unit containing up to 64K processors with a high-performance

data parallel input/output system. Figure 2 depicts the organization of the Connection

Machine CM-2. Thefront endcontrols the operation of the system by managing the flow of

data and instructions to the individual processors while providing a software development

environment. Global computations such as data input/output and evaluation of constant

expressions are typically executed on the front end while local calculations are sequenced

to the processors. Each physical processor supports a simple floating point unit (single or

double precision) and 64 Kbit data stack. The system software allows the processors to

be configured into sets of n-dimensional grids which can be manipulated individually to

carry on different tasks. Communication between sets is possible by means of the Nexus

of Figure 2 which is a general router based upon a hypercube architecture. The Nexus

allows every processor to send a message to any other processor, with aU messages sent and

deUvered at the same time [15].

For many appUcations such as finite element methods and neural network models, local

communication between nearest neighbors is sufficient. For these purposes, the Connection

Machine supports a more structured and faster method caUed the NEWS grid inwhich pro

cessors can pass data along a fixed rectangular pattern. For example, in a two-dimensional

grid each processor could send and receive data from neighbors nunits to the north, south.

east, west or any combination thereof. The data is automatically wrapped around to the

other side if the coordinates extend beyond the current boundaries.



When more computational units are required than the physical configuration, virtual

processors are created which share the arithmetic-logic units (ALU) and memory of the

available processors. The CM-2 requires aUocation of at least 1 Kbit stack for each vir

tual processor allowing up to 4096K nodes for calculations. In practice, however, memory

considerations for each computational node (algorithm dependent) may Umit the virtual-to-

physical processor (VP) ratio to 32 or less. To get afeel for the potential performance of the

system, a fuUy configured CM-2 with 64K processors and VP ratio of 32. each performing a

single-precision floating point multiplication, operates at about 4000 MFlops including aU

instruction issuing and overhead [15]. The prototype CM-2 installed at Berkeley and used

for simulations in this work has IK physical processors and can be operated at VP ratios

of up to 64 (periodic) and 32 (isolated) with the indicated versions of the algorithm.



Chapter 3

Outline of the Time Domain Algorithm

3.1 Statement of the Problem

Figure 3 iUustrates a typical simulation domain for optical Uthography as might be encoun

tered in aUgnment. The problem to be solved is the classical MaxweU's equations which

can be stated as foUows:

VxH = -TT- + J U)
at

Vxf=-f (2,
supplemented with the relations:

5 = eE (3)

B = fiH (4)

J = aE (5)

where e and \i are the dielectric constant and the permeabiUty of the material. Using

Stokes's theorem, equations (1) and (2) can be written in integral form as:

if-^' =/,{f+/}-ftd5 ,6;
<£E'idl=-J^'hdS (7)

For the cases considered in this work, a two-dimensional domain with a Unearly polarized

incident transverse electric (TE) plane wave has been assumed to simpUfy the analysis.

Under these conditions the relevant field components are the foUowing:

E = {0. 0, Es] (8)



H = {#*, #y, 0} (9)

Extension of the results to incident transverse magnetic (TM) modes and three dimensions

is straightforward and can be formulated in analogy with similar treatments elsewhere [3.16].

Since the electric field is always paraUel to the discontinuities of the dielectric constants

and since the magnetic permeabiUty is constant all over the domain, each field component

is continuous everywhere. For TM modes this is not true and proper averaging of the

local dielectric constants is necessary. Referring to Figure 3, the boundary conditions can

be stated as foUows: given a rectangular domain bounded by points A, B, C, and D, the

boundary conditions along A-B and C-D are of the absorbing type while those along A-D

and B-C can be either periodic or absorbing. We further assume that the incident field

reaches the structure along the Une C-D at an arbitrary angle.

3.2 Spatial and Temporal Discretization3

In the TDFDM developed by Yee, the electric and magnetic fields are calculated using a

staggered grid in which each field component occupies a distinct node. Electric field com

ponents are mapped to lattice points with integral coordinates (i,j,k) while magnetic field

values reside at half-integral coordinates {e.g. (i±l/2,j,k)}. In analogy, Figure 4 depicts a

uniform grid appropriate for two-dimensional domains. It can beshown that this discretiza

tion foUows directly from an expansion of the fields onto a piecewise-constant orthogonal

basis. Acorresponding finite element method has been devised in which polynomial interpo

lation functions are used for a more accurate and conformal representation of the fields [17].

Further discussions of this technique can be found in [18].

Applying this discretization scheme to equations (3) through (7), foUowing Figure 5 we

'The author is indebted to Dr. Roberto Guerrieri of the Universita' di Bologna. Italy for deriving and
phrasing many of the results of this section in a collaborative research effort while on sabbatical at U. C.
Berkeley in 1988.
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obtain:

(Hx(i.j - 1/2) - Hx{iJ +1/2) + Hy(i -r 1/2,;) - Hy(i - 1/2,;)) h= (10)

where Eg,Hx,Hy are continuous functions oftime r and /i is the discretization step. The

accuracy of this scheme increases proportional to h2 when the domain is smooth.

To obtain a suitable discretization of the time dependency of equations (10. 11. 12). it

is possible to integrate again (10, 11, 12) in the time domain:

hJtn+l (Hx(i,j - 1/2) - Hx(i,j +1/2) +Hy(i +1/2,;) - Hy(i - 1/2,;))-dt = (13)
h2j^^^m +,EAiJ))dt

which gives:'

5-« (£?+1(m) - £?(i-.j)) +y (£?+1(U) +£J(«'.i)) = (")
B;+l'2(i,j - 1/2) - B2+I'2(i,j +1/2) +ffv"+1/2(« +1/2,J) - ffv"+1/2(i - 1/2, j)

which can be rewritten as:

E?+1(i,j) = aE:(iJ)(lo]

+/3 (frr1/2(M " 1/2) - #?+1/2(M +1/2) +Hny^\i +1/2,;) - H^2(i - 1/2,;))

where n, n + 1/2 and n + 1 refer to an integration interval of length At, a is defined as

he/At - h<r/2
a =

he/At + W2

1
0 ~ /if/At + fc<7/2
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and the magnetic field has been evaluated at a midpoint of the integration interval. Again it

is easy to see that the local truncation error is ofthe order of h2. The remaining equations

are:

H?+l/2(iJ +1/2) =HZ'1/2(i,j +1/2) +|£ (E2(iJ) - £?(*,j +1)) (16)
E^2(i +1/2,;) = H^2(i +1/2,;) + ~ (E?(i +1,;) - £?(*,;)) (17)

which provide a complete discretization of the problem at internal points. The above

discretization is equivalent to the finite difference scheme proposed byYee which was derived

following a different procedure.

For algorithmic stability, the time and spatial steps At and h must be related by the

Courant condition [19]:

VmaxAt < -^= (IS)

where vmax is the maximum phase velocity within the domain {c/n where n is the largest

index of refraction). To be precise, the Courant condition is actually a conservative limit

to guarantee convergence. Time steps up to \fl larger than the limit have been shown to

yield stable results for simple scatterers such as layered dielectrics. Typically, h is chosen

so that there are at least 10 nodes/A in the largest index material within the domain with

15-20 nodes/A being the most common usage.

3.3 First Order Absorbing Boundary Conditions

Although many absorbing boundary conditions have been proposed in the literature, most

are not well suited for parallel computation. In order to reduce the time spent updating

boundary nodes, it is desirable to formulate conditions which resemble operations performed

within the domain as closely as possible. A physically intuitive way of deriving one such

condition proceeds as follows. Suppose we want to evaluate the electric field Ex{0,j) of

Figure 6. Because the mesh has been terminated, however, Hy{-l/2,j) is not known. If



12

the outgoing scattered field were a plane wave propagating at an angle 9 with respect to

the boundary normal, Hy would be related to the local Es by

Ez = {tj cos 6)Hy (19)

where 77 is the medium impedance defined as y/jije. This suggests a means for calculating

£z(0,;) using only interior fields. Approximating £z(0,;') by £2(0.25,;) and integrating

(6) along the rectangular path shown within the domain and using (19) for Hy we obtain

an equation valid for a node on the boundary:

1L* (f?+1(o,;) - £?(0,;)) +̂ (£r+1(0,;) +£J(0. j)) = (20)
I (jJ£+1/2(0,; - 1/2) - #;+1/2(0,j +1/2)) +hH^2(l/2J) -

-J—(E?+\0J) +E»(0jj)
2r)cos9 v '

This can be rewritten in the more convenient form:

£»+i(0,;) = d£?(0,;) (21)

+0 (#;+1/2(0,; - 1/2) - tfxn+1/2(0,; +1/2) +2JIyn+1/2(l/2.;))

where

. h2e/2At - h2a/4 - h/{2Tjcos9)
a " h2e/2At + h2cr/4 + h/{2ricos9)

0= hJl
p h2€/2At + /iV/4 + h/(2r) cos 9)

Asimilar equation can bewritten for the south boundary with the substitutions Hy (1/2.;'

-Hy*ll2(Nx - 1/2,;) and i = 0 -• i = iVx where Arx represents the number of nodes in

the 1 dimension. Note that this equation closely resembles (15) except for the forms of

the constants and the coefficients of the Hy contributions. Similar relations can be derived

using other integration paths, but (21) has proven to be simple and efficient.

For lossy dielectric materials, tj is complex and (19) cannot be applied correctly in the '

time domain since the imaginary component of tj introduces a phase shift o between the



two fields:

ta*(40 = ITT

13

where er is the real part of the dielectric constant. Nevertheless, fairly good results have

been obtained for normal incidence as will be discussed later.

3.4 Second Order Boundary Conditions

The absorbing boundary condition outlined in the previous section allows maximum paral

lelism, but only absorbs incident plane waves from asingle angle of incidence. This typically

produces unacceptable errors when analyzing structures with high aspect ratio which can

scatter into several plane wave modes with nearly equal efficiency. Second order bound

ary conditions, which absorb plane waves from two angles of incidence simultaneously have

been found through extensive studies on diffraction gratings to yield much better results.

This is particularly true when the angles of incidence for absorption are unknown prior to

computation or when the waves graze the boundary (0,„c « 90°).

Mur [20] has developed second order conditions which provide stable, broad angle ab

sorption with excellent efficiency and low memory requirements. Complete discussions of

these and equivalent conditions are given in references [21,22,23]. Modifying the treatment

by Mur to account for (potentially lossy) dielectrics, factorization of the wave equation

yields a boundary operator for an outgoing scattered wave propagating in the -x direction:

(dx - iu^/JJTc) Ez |I=0= (dx - i^) Ez |x=0^ 0 (22)

where ec and nc = n - ik are the complex dielectric constant and index of refraction,

respectively, and Co is the speed of light in vacuum. Assuming a solution of the following

form: a

Ez =£0(y)eMt+nx/co) e^/co)* (23)
Ei(x,y,t)
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leads to an equivalent operator valid in the time domain involving only real quantities:

(0x-i0,)£,(x,y,r)l*=o*O (24)

In effect, the transformation (23) accounts for attenuation of the wave as it approaches

the boundary. For pulsed excitation, dispersion must be directly incorporated into the

boundary operator.

Proceeding using the central differencing of Mur, two-dimensional equations for the

north (C-D), south (A-B), east (B-C), and west (A-D) boundaries, respectively, can be

written:

£?+1(0,;) = e-^fEfUJ +ci [e-o/l£zn+1(l,;)-£?(0,j)] (25)
- c2 [HZ+1'2(0, j -r 1/2) - H2+1/2(0J - 1/2)

+e-oh (jr;+1/2(l,j +1/2) - JC+1/2(1, j - 1/2))]

E^\NXJ) = e-0*f£(*».-l»i) +ci [e-°h£;+l(iV,-l,j)-i;(.Vx,i)

- c2 [H2+l'2(NxJ +1/2) - HZ+1'2(NXJ - 1/2)

+e-Qh (H^2(NX - 1,; +1/2) - H^2(NX - 1,; - 1/2))]

£?+1(i,0) = e~ahE?(i,l) +Ci [e'QhE^+l(Ul)-E:(U0)\ (27)
- c2 [#yn+1/2(i - 1/2,0) - H2+l'2(i +1/2,0)

+e'Qh (#J+1/2(i - 1/2,1) - Hfll\i +1/2,1))]

£?+1(^y) = e-°hE?(i,Ny-l) +Cl [e-hEZ+l(i,Nv-l)-E?{i,Ny)] (28;
- c2 [j;+1/2(i - 1/2, Ny) - H2+1'2(i +1/2, Ny)

+e-ah (iTyn+1/2(i - 1/2, Ny - 1) - JTyn+1/2(i +1/2, Ny - 1))]

where all fields correspond to the scattered values and

cAt — nh

Cl = cAt + nh

26
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_ fipch
°2 " 2{cAt + nh)

At the interfaces between two materials, the choice of a proper n is unclear because an

outgoing wave is actually a guided mode not well represented by a sum of plane waves.

Several possibilities which have been implemented are the average index

7ii + n2
»e// = —2~

the root-mean-square (RMS) index,

ne// =
'nf + n\

and the index corresponding to the RMS velocity,

1
ne// =

\I% +i77
2

In many cases, it is desirable to keep track of the total fields to avoid unnecessary

modifications ofthe computations for inner nodes. Substituting Elcat = Eiotal - Elnc and

theanalogous relations for the magnetic fields in equation (28), for example, we can update

the boundary nodes using the total and incident fields by

£?+1 = [28]9Ca^0(a/ +(l-c1)f^tic(f)-£^.nc(i)

+2c2
rn+l/2,. , - /0x rrn+1/2

^.^(' +i/2)-^7i/(«-1/2) 29:

for the special case of a normally incident plane wave (such that fields with the same x

coordinate are equal) and a = 0. The incident fields can be computed analytically or

numerically in parallel. Specific details are discussed in Section 4.2.

3.5 Periodic Boundary Conditions

In periodic structures, the fields at points spaced one period d apart differ only by a phase

shift 0 = fcjnc di where ki and cf, represent thepropagation constant andperiod, respectively.
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of the incident field in the dimension ofperiodicity i (Floquet condition). This relation, due

to time delays for the incident field to reach each period "cell" and coupling between cells,

requires a special treatment of the side (east/west) boundaries. Consider an incident plane

wave at the north-western corner of the domain as illustrated in Figure 7. For a normally

incident plane wave 0,nc = 0°,

0=^sin(^inc))(f, =O<

so that each node point on the east boundary is in synchronization with the corresponding

node on the west face. In this case, the boundary nodes can be treated as an interior node

with the missing field component supplied from the node on the opposite side of the domain

for a considerable savings in execution time. At the same time, errors due to the absorbing

conditions are eliminated.

For arbitrary angles of incidence, the periodic conditions cannot be implemented cor

rectly using a numerical method as can be seen from Figure 7. Fields on the eastern

boundary require delayed values of the field on the western boundary. In the time domain,

the phase shift (for a sinusoidal excitation) can be approximated by an equivalent time

delay

Ndte~£**L (30)
u

Conversely, nodes on the western boundary require time advanced values of the fields on the

eastern face which are not known due to the causality inherent in the time domain method.

Apossible method to sidestep this problem, which has not been fully tested, follows from

the fact that insteady-state the fields for a sinusoidal source must also be sinusoidal. Thus

a time advance of

.r A4 kxdx
Nd At ~

u;

is equivalent to a time delay of

NaAt = (N -Nd) At (3D



where

_ kjnc h _ 2~h

is the number of time increments in a single cycle of the incident field. The delayed, fields

should not be passed to the boundary nodes until Nd time steps after the field reaches the

corresponding node on the opposite boundary. Since this approximation is valid only in

steady-state, it may cause instabilities during the transient and limit the maximum angle

of incidence.

For many situations of interest to lithography, the need to directly simulate scattering

using off-axis signals can be relaxed if the incident aerial image is near focus. In that case,

the composite image locally behaves like normally incident signal and the 0,nc = 0° periodic

conditions are appropriate. These points are examined further in Section 6.5.

3.6 The Incident Field

The absorbing boundary conditions discussed in the previous sections with the exception

ofequation (29) must be applied directly to the scattered field. Greater accuracy can be

achieved, however, if the total fields are computed, especially in very lossy materials where

the scattered and incident fields almost cancel [19]. In order to avoid costly conversions

at each time step, the field components at the outermost nodes (e.g. E, and Hx on the

north) are represented in terms ofthe scattered values throughout the computation. When

updating the fields on the boundary, the incident fields for the adjacent nodes are subtracted

from the total values. Conversely, the incident field for the boundary nodes is added to

the scattered values to compute the fields in the adjacent layer. This distinction of roles

increases the efficiency of the boundary conditions while providing an immediate knowledge

of the scattered fields for far-field calculations.

The proper incident field for steady-state calculations is typically a sinusoidal plane

wave (possibly modulated by an image from a mask). Care must be observed in applying
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the fields because the scattered field near the source is sensitive to synchronization errors

between the numerical propagation on the grid and the analytic incident field. This can

contribute noticeable discrepancies for domains with low diffraction efficiencies. To reduce

errors produced by introducing the source abruptly at t=0, a gaussian tail can be applied

before starting the sinusoidal exitation. The three parameters A, t0, and T associated with

the gaussian

are used to match the (1) field and (2) its time derivative at t = N0At and (3) set the initial

value (e.g. Ez < 10-10 = 0). For a sin(urt) source, the parameters are related by

a(NQAt)2 +b(N0At) (30)
°" 2a(N0At) + b

T- tnAt-to (33;

A = 0 exp

where

a

ft)'

a = cot(u;Ai)
9

6 = In
sin(u;Ar)

0

and No is the number of time steps thegaussian is applied before introducing the sinusoid.

3.7 Steady-State Formulation

One advantage ofa time domain approach to the solution ofscattering problems is that the

effect of multiple frequencies can be determined by studying the response of the system to

a single pulse. At the same time, however, single frequency (monochromatic) information

can be found by using a continuous sinusoidal source and stepping the response until the

fields become periodic with thesource frequency. Several methods for testing this condition

are possible including use ofthe Discrete Fourier Transform (DFT). The simplest technique

(34]
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involves waiting until the first reflections from the structure arrive at the north boundary,

then computing the mean-square error (MSE) along a cut-line (x = constant) between the

current fields {t = nAt] and those from the previous period {t = {n- N)At). Steady-state

is achieved when the error falls below a specified tolerance for three consecutive cycles. If

convergence is not reached the algorithm is stepped through another period (NAt) and

tested again.

As outlined in Appendix A, once the fields have reached steady-state the appropriate

diffraction efficiencies for outgoing modes in periodic structures can be calculated. Expand

ing the scattered field in outgoing harmonics,

fs(r,t) =Y, '{A" C0SM - *n •r) +Bn sin(u;r - kn •f)} [35)

and defining two times tx and t2 such that cos(u;<i) = 0 and sin(urt2) = 0, the coefficients

can be determined from the following:

«A±m = ^[722±7ll] '36

B±m =2 I712 ^ 7211 (37)

where using the convention ofFigure 3 with ddenoting the periodicity and /, the scattered

field at the top boundary,

70 = / f.irJi) <
JC-D

sin(/:m-r) ; = 1

cos(fcm • r) ;' = 2

The far-field can thus be reconstructed from simple integrals of the scattered field along

boundary C-D at two time instants using (35). The diffraction efficiencies follow immedi

ately:

Dm=(A2rn-rB2m) cos*
Bml

LDm = arctan

* dy (3S)

(39]

(40;



where 9m is the angle with the normal for the mth mode

9m = arccos
*mx

,m = arccos —
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The accuracy of the diffraction efficiency calculations depends upon the proximity of C-D

to the top layer of the scatterer and the discretization (which determines the accuracy of

the integrations and the resolution of t\ and *2).

In optical lithography one is often interested in through-the-lens alignment schemes in

which the wafer topography is illuminated by a projected pattern and the scattered light

collected by a detector. For these situations, the image as received by a detector is more

useful. The intensity at the image plane, assuming perfect imaging (neglecting lens effects),

is simply given by the normal component of the Poynting vector 5 = E x H which using

(.35) and averaging over time is

Inorm(y) = S •(-x)

= iy; cos(0„) {(AiAn +BiBn)cos \(kn - *J) •f\

+ (AnBt - AtBn) sin [(kn - kt). r]} (41)

Notice that numerical evaluation of this expression requires specification of an image plane

height, but the result is independent of the convention so x=0 can be assumed. Alterna

tively, the image can be calculated directly by integrating the field values for the nodes on

the top boundary (scattered field) over a period of the incident field {Nt points}:

1{y) =±"f:E?(0,j) [H^2(1/2J) +H^2(1/2J)} (42)
2iVt j=0

This method introduces some error since Hy is not known at x = 0, but can be carried

out very rapidly on the Connection Machine. The largest numbered harmonics Nh (both

positive and negative) which need tobe calculated is determined by the numerical aperature

of the imaging (NAi) and collection (NA*) lenses by the following:

NAi =.V.4C+:V^ (43)
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which follows from Floquet's theorem.
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Chapter 4

Implementation on the Connection Machine

4.1 Discretization of the Spatial Domain

Inspection of the above algorithm shows that the staggering of the electric and magnetic

field components in both time and space allows each component ofthe magnetic field to be

evaluated in parallel. Once these values are known, the electric field can be updated in a

similar fashion. This consideration suggests the allocation ofthree variables EZ,HX. and Hy

to each processor. This is illustrated by the dashed box in Figure 4. In this way a processor

is kept active computing the new values of the unknowns at each time step. To reduce

memory requirements in the implementation, the three unknowns were assumed to share

common dielectric properties. Fortunately, no error is introduced by this simplification for

the TE case since e and a only enter the equation for Ez.

In keeping with the uniform grid of the finite difference scheme, the input framework

was purposely kept simple. The boundaries are specified in piecewise-linear fashion {(x.y)

coordinates with linear interpolation in between} and scanned from AD to BC. The pro

cessors corresponding to nodes below each layer boundary are loaded in parallel with the

appropriate constants a and 0 or {d,/3}, {ci,c2}. This method is flexible enough to handle

buried structures such as polysilicon or aluminum lines.

4.2 The Boundary Conditions

Special care is required when dealing with the nodes associated with the boundary con

ditions. Note that the absorbing methods described earlier were obtained for boundary

electric fields. Field components outside the domain (e.g. Hy on the south and Hx on the
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west-see Figure 4) should be ignored during the simulation unless new relations are derived.

We treat each boundary condition in turn.

First Order Conditions

Examination ofequations (21) and (15) indicates that formal substitution of-Hy (1/2,;)

for Sy+1/2(-l/2J) in the latter results in equivalent equations. This reordering of vari

ables can be achieved efficiently by allocating an additional row (or column) adjacent to

theboundary rows (columns). This "dummy layer" can be used as scratch memory to store

and replace the appropriate values. For example, before updating Ez the dummy proces

sors on the north [south] could retrieve Hy+l/2(l/2J) [Hy+l/2(Nx - 1/2,;)] computed at

the previous half time step and store the sign-reversed value in its own Hy variable. Then

Ez could be computed using equation (15) for the entire domain. The cost involved in

this boundary condition is thus a single-local communication which makes it extremely

efficient. In addition to simplifying the organization of the calculation, the allocation of

dummy processors avoids the need to allocate extramemory into the "internal" processors.

For a single-instruction multiple-data (SIMD) parallel architecture such as the Connection

Machine, thememory would have to beallocated to all processors regardless ofwhether the

variables are used or not.

Second Order Conditions

The second order conditions are 30-40% more costly to implement than the first order

conditions due to the increased communication with nearby processors and lack of similarity

with the algorithm for internal nodes. Another consideration is the computation of the

incident fields for the outermost two nodes at each boundary. Consider equation (28). For

a normally incident plane wave Ez, Hy, 0 , the incident field at each time step must be

computed for both the electric and magnetic fields to update the boundary node. This can
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be accomplished by allocating a set of dummy layers to compute and store the appropriate

fields. If the incident wave is not normally incident, however, seven distinct quantities

must be tracked: 3 Ez's and 4 Ey's. To avoid allocation of new variables, several dummy

layers can be added, but not without with a severe communications penalty. To put this

into perspective, recent tests with version 5.0 of the Connection Machine *Lisp software

indicate that nearest-neighbor communications may be equivalent to almost 3 floating point

operations (FLOPs). Assuming communications across a few nodes with the router scale

almostlinearly with distance, a single fetch for an incident field alongthe boundary may cost

nearly 10 FLOPs. Further, most of the processors are inactive during this time, lowering

efficiency.

For normally incident fields, however, the scheme is quite efficient as can be observed

from equation (29). Since Ex = 0 the incident fields can be computed in a single vertical

dummy layer using the same operations as interior nodes. A note of caution: For the east

and west boundaries, the incident field grazes the surface (0tnc = 0°) and can induce an

Ex component because the conditions are designed to absorb waves propagating normal

to the side. This effect can be reduced significantly by considering the incident field to be

the one-dimensional scattered field due to the topography at the boundaries. Any normal

component Ex which arises will then be due to scattering from topography within the

domain. We are free to separate the incident/scattered components as we choose as long

as the computations are kept consistent. In practice as small Ex is induced even with the

above correction due to the finite roundoff error associated with single-precision operations.

Periodic Boundary Conditions

With periodic boundary conditions and normal incidence, the fields can be "wrapped"

around the domain using the NEWS grid function discussed earlier. For non-normal inci

dence, however, the problem of time delayed and time advanced fields must be treated. A
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simple and efficient means for accomplishing this is as follows:

• propagate the incident field from the northwest or northeast corners of the domain

as appropriate. Dummy layers on the north and west (east) are used to "feed*' the

boundary nodes as the field reaches each corresponding node. Before the field arrives

at each point, the appropriate dummy nodes are masked.

• allocate an extra variable in each processor to serve as a delay line for the bound

ary nodes. At each time step, the delayed fields are shifted toward the appropriate

boundary using local communications. See Figure 7.

• when the first edges of the incident wavefronts reach the scatterer. the excitation

along the sides is shut off and the normal side boundary conditions activated (with

the delays).

• normal propagation is continued until steady-state achieved.

Preliminary tests have shown this method to be stable for simple topography, but with

incorrect results. The fields appear to reflect or superimpose along the non-excited side of

the boundary and add a large (80%) ripple along the wavefronts. A simple sign error may

account for the problems.

4.3 The Incident Field

The incident electric field can be represented as

Ez(x,y\t) = AsinM-fc-f) = A9(e'^^) (44)
r - .

which can be evaluated rapidly by calculating and storing the spatial phase factor e' r in

each processor within the dummy layers. At each time step the field is updated by multi

plication with e,u,A* (stored on the host computer). This requires four multiplications and
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two additions and avoids the computation of trigonometric functions which are expensive

to evaluate at run time.

Because the fields within the domain to which the incident field must be added are cal

culated numerically, there is some dispersions of the propagation constant from the analytic

expression k= 2tt/A0 . The exact result depends upon the discretization algorithm, but for

equations (15) - (17) the appropriate value in agreement with [24] is given by

k = — arcsin
h

nohsin \luAt)
cAt

(45)



Chapter 5

Special Issues for

Topography Scattering in Lithography-

Simulation oftopography scattering for lithography involves special considerations not en

countered in usual time domain scattering studies such as dielectrics at absorbing bound

aries, dynamic changes in material properties, and media with anomalous dispersion.

5.1 Boundary Conditions

The presence of dielectrics at absorbing boundaries complicates the usual application of

outgoing wave conditions. For example, as discussed in Section 4.2, reflections of the inci

dent field from the layers along the side boundaries introduces a scattered field component

parallel to sides A-D and B-C. The absorbing conditions, however, are optimized for normal

incidence and can produce errors if the incident and scattered fields are not reinterpreted

to remove this contribution. Another point, considered in Section 3.4, is the inadequacy of

representing scattered fields along the dielectric side boundaries as asum of outward travel

ing plane waves with a unique velocity. The waves at these boundaries are actually guided

when dielectrics are present with propagation constants which are feature-dependent. All

scattering studies to date which use absorbing boundary conditions have assumed free-space

along the boundaries. This situation clearly does not apply to structures on semiconduc

tor substrates. Research with some bearing on this problem has been conducted for the

analysis of propagation characteristics of planar microstrips using a time-domain method

[25]. In these studies, however, the researchers noted that proper absorbing conditions were

unavailable leading to errors on the order of 5-10%.
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5.2 Photoresist Bleaching

Optical properties of nonlinear materials such as photoresist are typically specified in terms

of complex indexes of refraction instead of the dielectric constant and conductivity of

Maxwell's equations. The complex index of refraction h is defined by

n = n — ik

where n is the real index ofrefraction (used in calculations ofthe wave velocity c/n) and k

is the extinction coefficient. For single-frequency calculations, h is related to the dielectric

constant (eiwt dependence assumed) by

n2 = e-i- (46)

Conversely,

€ = n2-k2 (47)

a = 2nku (48)

As an example of the use ofthese relations, consider the dynamic bleaching ofphotoresist.

According to the Dill model [5],

.X(A-M-rB) (49)
7i = n - i - \ *y /

47T

where .4 is the bleachable absorption coefficient, B is the non-bleachable absorption, and

M is the normalized photoactive compound (PAC) concentration. The dynamic behavior

of the PAC is determined by

*^M =-CJ(F,t)M(F,t) (50)
ot

Here C is a constant and I(r,t) is the local time-averaged intensity

1 /- - \ E2(r,t)
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with r?o = 1207T, the free space impedance.

Figure 8presents a flowchart of a simple algorithm for simulating the dynamic exposure

process. In this procedure the total absorbed energy for the system (dose) is divided into Nd

increments. The exposure for each step is simulated toasteady-state condition assuming the

dielectric parameters remained fixed. The calculated intensities are then considered to be

constant throughout the subdose and the parameters updated for the next increment. These

simplifications to the analysis, similar to the assumptions used in SAMPLE calculations,

need to be verified for accuracy. They are based upon the fact that the time scale for

bleaching is several orders of magnitude larger than the time discretization of the simulation

algorithm.

Assuming this piecewise-constant representation of the intensity, the PAC concentration

can be calculated using

M(f,«) = Af(r,0)e-C7/^)< = M(ft0)e'C£^ (51)

where € is the absorbed dose (EnJn •tn). The number of time steps necessary for good

accuracy is clearly dependent upon the .4, 5, and C parameters of the resist. Contrast

enhancement (CEM) resists, for example, with a large .4 coefficient may require over 100

dose steps while a more conventional resist only 15-20 increments.

5.3 Highly Conductive Materials

In the visible and deep-ultraviolet frequencies of interest to photolithography, the complex

index ofrefraction ofhighly conductive materials can vary quite rapidly due to polarization

resonances. In particular, common metals such as aluminum experience regions of anoma

lous dispersion within the g-line (436 nm) and deep-TJV regimes which result in strong

absorption with correspondingly large extinction coefficients k. As can be seen from (47).

this yields a negative value for the real part of the dielectric permittivity e. Although
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this situation has a physical basis in the interchange between displacement and conductive

current, it causes the simulation algorithm to be numerically unstable.

It is not known if this instability is inherent to the mathematics of the algorithm or

if it can be attributed to the choice of discretization parameters. The stability criterion

ofequation (18) was derived assuming lossless dielectrics, but has been empirically shown

to extend to conductive gratings outside regions of anomalous dispersion. In the latter

regimes, the phase velocity is well known to exceed the speed of light [26] and this may

contribute to the observed error. Reducing the time discretization to handle Vmax > c,

however, makes the computation less efficient and has not resolved theinstability problem.

The real cause of the problem may be due to strictly algorithmic considerations which have

not been explored theoretically. These issues have not been addressed because previous

studies using time-domain methods have assumed perfect (or weak) conductors.

One method to avoid the stability problem while retaining sufficient accuracy is to

replace the anomalous situation with a nearly equivalent condition with n « k. In the

former situation the absorption is extremely large resulting in almost perfect reflection.

With n « k almost unity reflection is also observed, but with a different phase shift. This

method has been shown to produce excellent results for bare gratings, but the validity

may break down with resonant structures (e.g. two-layer dielectric stack on an aluminum

substrate).
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Chapter 6

Tests and Applications

In this chapter, several test examples and applications are presented to demonstrate the

accuracy and flexibility of the algorithm for a wide range ofsituations ofinterest tooptical

lithography. Wherever possible, rigorous simulation programs such as SAMPLE and integral

equation methods are used for comparison. Several of the more complex examples involving

alignment and exposure over permeable topography await experimental verification. Unless

otherwise noted, all simulations assume normal incidence and TE polarization.

6.1 Layered Dielectric Media

To assess the intrinsic limits of the algorithm and the relative merits of different boundary

conditions, each version of the implemented code was used to determine reflectivities from

layered dielectric stacks. Table I summarizes the results for a normally incident plane wave

(A = 0.4358 Mm for the four cases illustrated in Figure 9. Both the first and second-order

absorbing boundary conditions discussed earlier are compared.

Table I: Comparison of diffraction efficiencies for the examples of Figure 9

Case First-Order Second-Order Theoretical

Perfect Conductor 0.9993 (0.07%) 0.9996 (0.04%) 1.0000

Resist 0.06266 (2.76%) 0.06412 (0.50%) 0.06444

Silicon 0.4446 (3.167o) 0.4372 (1.44%) 0.4310

Resist /Silicon 0.1510 (5.52%) 0.1422 (0.63%) 0.1431

A 256 x 128 (Ny x Nx) grid was chosen to coincide with the maximum domain size

permissible with all versions of the program with the prototype system currently available
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at Berkeley. The period of the structure was set to 2.0 |im. corresponding to 33.2 nodes/A

in the resist and 11.6 nodes/A in the silicon. To emulate the perfectly conducting condition

a conductivity of 1037a_1 was used. Absorbing boundary conditions were applied 0.2 iim

(0.46 Ainto the lowest material layer to simulate unimpeded propagation (equivalent to

an infinite thickness). The first order conditions agree to within * 5% with theoretical

calculations based upon the Fresnel relations [27], while the second-order conditions reduce

the error to below 1.5%. Direct comparison of the fields indicate corresponding amplitude

(as opposed to power) errors approximately one half the quoted values. As expected, the

simpler conditions produce less accurate results as the conductivity ofthe medium increases

due to the phase shift between the electric and magnetic fields. The perfectly conducting

case is an exception because the fields do not penetrate to the lower boundary.

6.2 Diffraction Gratings

Symmetric

Diffraction gratings made from highly conductive materials provide an excellent test for the

robustness ofthe absorbing boundary conditions because they are capable ofscattering into

many angles simultaneously and have been extensively studied using rigorous electromag

netic methods [28,29]. Table II compares results from simulations of a symmetric perfectly

conducting echelle (triangular profile) grating with data obtained using well-established

integral equation approaches investigated by Petit and Kalhor [30]. Figure 10 presents a

schematic of the structure.

Because the first order conditions are sensitive to the specified angle of absorption,

results are presented for 9abo = 0° and the angle of best results. For all simulations,

symmetry inthe calculated efficiencies was preserved tobetter than 0.001%. To keep the top

of the grating away from the top boundary while maintaining consistency between versions,

the grid size was limited to 128 x 128. The data clearly highlights the inadequacy of the first
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Table II: Comparison of diffraction efficiencies for the gratings of Figure 10.

Do Dx = D-x D2 = £-2 Total Energy

Slope of 0.15 Kalhor 0.699 0.147 0.004 1.000

Petit 0.697 0.147 0.004 0.999

First Order (9 = 0°) 0.688 0.132 0.003 0.959

First Order (9 = 10°) 0.701 0.134 0.003 0.975

Second Order 0.704 0.150 0.004 1.013

Slope of 0.30 Kalhor 0.182 0.357 0.051 0.999

Petit 0.179 0.357 0.052 0.999

First Order (9 = 0°) 0.228 0.277 0.029 0.839

First Order (9 = 35°) 0.219 0.350 0.037 0.993

Second Order 0.175 0.377 0.059 1.048

Slope of 1.0 Kalhor 0.472 0.099 0.163 0.995

Petit 0.457 0.103 0.167 1.034

First Order (9 = 0°) 0.368 0.151 0.072 0.811

First Order (9 = 50°) 0.591 0.141 0.066 1.004

Second Order 0.494 0.099 0.169 1.028

order conditions for the higher order modes (at angles of 25.9 and 60.88° off the normal),

particularly at the larger slopes. On the other hand, the second order relations produced

reasonable agreement at all slopes with conservation of energy to within 5%. Further

improvements on these results may be possible by reducing grid step size /i, increasing the

number ofiterations, and optimizing the matching ofthe analytic and numerically computed

incident fields.

Typical execution times for the above examples (« 1000 time steps, VP Ratio = 16)

were 20 seconds for the first order conditions and 30seconds for the second order conditions.

For a fully configured system with at least 16K processors, these values would be reduced

to roughly 2 and 3 seconds, respectively.

Asymmetric

The two echelle gratings illustrated in Figure 11 were used to investigate the sensitivity of

the absorbing conditions to asymmetries in topography. Table III presents results of the
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simulations for a 256 x 128 grid along with results from the integral equation program of

Kalhor for comparison.

Table III: Comparison of diffraction efficiencies for the asymmetric gratings of Figure 11.

Do Dx D-x D2 D_2 Total Energy

Slope
= 5°

Kalhor 0.7611 0.0857 0.1392 0.0131 0.0056 1.0048

First Order

(9 = 0°)
0.7933 0.0743 0.1043 0.0013 0.0006 0.9738

First Order

(9 = 10°)
0.7972 0.0754 0.1064 0.0014 0.0006 0.9811

Second Order 0.7555 0.0906 0.1488 0.0103 0.0043 1.0090

Slope
= 13.8°

Kalhor 0.0511 0.1440 0.7357 0.0585 0.0011 0.9904

First Order

(9 = 0°)
0.0482 0.1581 0.6568 0.0069 0.0004 0.8704

First Order

(9 = 28°)
0.0515 0.1725 0.7983 0.0085 0.0001 1.0310

Second Order 0.0507 0.1481 0.7911 0.0484 0.0005 1.0388

For these structures, the first and second orders correspond to waves striking the top

surface at angles of 28.4°, and 72.2°, respectively, with respect to the normal. As before,

the second order conditions provide far superior absorption of the higher order modes.

Grid Size Effects

To separate the effects of the discretization from the errors introduced by the absorbing

boundary conditions, each ofthe above gratings was tested with awide range ofmesh sizes.

The results for the second order relations are summarized in Table IV. Only the deepest

gratings are represented to illustrate the trends. Execution times include all overhead for

time stepping and testing for steady-state behavior on the IK machine at Berkeley.
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Table IV: Comparison of Dm for various grid sizes

Grid Size Do Dx D-x D2 D-2 #
Iter.

Time

(sec)

Symmetric,

slope of

0.3

64 x 64 0.1844 0.3716 0.3716 0.0566 0.0566 822 16.3

64 x 128 0.1732 0.3751 0.3751 0.0580 0.0580 822 16.0

128x 128 0.1728 0.3817 0.3817 0.0571 0.0571 942 27.7

256X 256 0.1754 0.3792 0.3792 0.0551 0.0551 1342 140.8

Integral 0.1820 0.3571 0.3571 0.0511 0.0511 — —

Symmetric,

slope of

1.0

32 x 32 0.4987 0.1040 0.1040 0.1548 0.1548 822 —

64 X 64 0.4967 0.0960 0.0960 0.1714 0.1714 822 16.3

64 X 128 0.4901 0.1024 0.1024 0.1488 0.1488 822 15.9

128x 128 0.4937 0.0959 0.0959 0.1681 0.1681 942 27.7

256x 256 0.5042 0.0994 0.0994 0.1873 0.1873 1342 141.1

Integral 0.4720 0.0990 0.0990 0.1625 0.1625 — —

Asymmetric,

slope of

13.8°

64 X 64 0.0425 0.1374 0.7972 0.0567 0.0024 834 16.1

64 X 128 0.0369 0.1331 0.8276 0.0321 0.0012 834 16.1

128X 64 0.0500 0.1505 0.7892 0.0491 0.0006 942 18.2

128X 128 0.0490 0.1532 0.7842 0.0419 0.0010 966 28.3

256x 128 0.0507 0.1481 0.7911 0.0484 0.0005 1054 57.0

128X 256 0.0434 0.1617 0.7904 0.0644 0.0003 1054 57.1

256x256 0.0532 0.1555 0.7800 0.0315 0.0007 1182 124.2

Integral 0.0511 0.1440 0.7357 0.0583 0.0011 — -—
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The number ofgrid points in the horizontal direction (.Vy) determines the density of the

mesh (h = Ny/d) while the number in the vertical dimension (Xx) specifies the height of

the top boundary and hence the proximity of the grating surface to the absorbing boundary

conditions. One would expect that the higher profile grids (Nx > Ny) would yield better

results for a fixed Ny for two reasons: the absorbing boundaries are further removed from

edges and the fields along line CD better represent the far field behavior. No clear pattern

can be observed from the data, however, suggesting that other factors are more prominent.

The density of the grid is one such parameter. As the spatial step size h is reduced,

the accuracy of the results improves. This is due partly to the accompanying reduction

of the time discretization dt, equation (18), and partly to the finer representation of the

grating surface. The improvement for these cases is modest because even the coarsest

grid (32 x 32 with 14 pts/A0) is finer than the nominal 10 pts/A rule of thumb. These

considerations indicate that the primary errors can be attributed to inherent characteristics

of the algorithm and imperfect modeling of the absorbing conditions. The results for the

perfectly conducting plane in the previous subsection (0.04% power discrepancy) favor the

latter explanation.

6.3 Dynamic Exposure on Flat Substrates

As a final test, the dynamic capabilities ofthe algorithm were testedbysimulating exposures

on flat substrates which could be accurately verified using SAMPLE. Figure 12 shows the

structure used for these examples. Due to standing waves in the photoresist, the reflectivity

of the unexposed stack is a maximum (minimum) when the resist thickness is an even

(odd) multiple of (Area,,t/4). At these extremes the power coupling into the resist is a

weak function of thickness variations. In between, at half-integral quarter wavelengths, the

coupling is strongly dependent upon film thickness.

Figures 13 and 14 illustrate results obtained for resist thicknesses of 5.5 and 6.0 A/4.
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respectively. The grid dimensions were 128 x 128. In both cases the reflectivities match

the SAMPLE simulations extremely well. These results are somewhat atypical in that the

discretization of the resist required an integer number of grid points. When the thickness

was chosen to fall in between twogrid points, the observed error in the reflectivities was up

to 5% larger although the general shape of the bleaching curve was preserved. Reductions

in the grid size could improve the accuracy at the expense of greater memory and longer

run times. The problem is rooted in the uniform grid assumption of the method, however,

and conversion to a finite element approach is the best solution.

For exposure, the main quantity of interest (and the best measure of the success of the

simulation) is the spatial distribution of the inhibitor concentration. Figure 15 presents

results for a 0.405 jzm resist thickness following 50 mJ/cm2 with a normally incident plane

wave. The resist ABC parameters were A = 0.54 /^m, B = 0.06 /^m, and C = 0.014

cm2/mJ. The two curves overlap very well throughout the entire thickness, verifying the

accuracy of the time domain solution. The small discrepancies near the extremes are due

to different placements of the 50 node points within the resist by SAMPLE.

6.4 Asymmetry Effects in Alignment

It is well known that asymmetry in underlying topography and resist coatings from typical

process variations can amplify uncertainities in alignment [6]. The aim of this section is to

illustrate the flexibility of the time domain method to investigate the physical mechanisms.

Figure 16 depicts an alignment structure consisting ofa recessed mark in silicon coated

with photoresist, similar to the targets examined in reference [6]. To distinguish scattering

from the resist surface and substrate, the first-order efficiencies for diffraction from each

profile (treated independently as homogeneous surfaces) are plotted in Figures 18 and 19 as

a function of the angle of asymmetry. The models for the two cases are shown in Figure 17.

The first orders were chosen because of their importance in dark field alignment systems.
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As expected, the greater reflectivity of silicon increases the sensitivity to the asymmetry.

As the slope ofthe right edge is reduced, the -1 mode contribution increases at the expense

of the +1 order causing a shift in the apparent location of the edge.

To examine the relative effects of asymmetry in each feature in the combined structure,

simulations on an identical mark with a 1.0 ^m lossless resist (ii = 1.68) were performed.

Figure 20 illustrates the changes in the far-field image calculated using (41) for substrate

asymmetries of -5°, 10°, and 20°. A normally incident plane wave with A = 0.488^m

illuminated the mark. Note that the scales for mark are distorted such that the groove

appears, much shallower than it really is. For this choice of parameters, decreasing the

steepness of the silicon edge caused the central peak to rise and shift to the side of the

asymmetry. The apparent location of the other edge was not strongly affected.

Figure 21 depicts the results when the slope ofthe resist profile on one side is varied by

-4° and 4°. As before, the edge with the asymmetry was most sensitive to the asymmetry.

The magnitude ofthe changes are larger than in the substrate case above, presumably be

cause theslope asymmetry in the resist extends over a greater fraction ofthe period. These

conclusions need to be examined more thoroughly in a controlled studyofthe effects ofboth

parameters and tested experimentally. Nevertheless, the results illustrate the importance

ofresist coating uniformity in alignment and the usefulness of the method for isolating the

various factors.

When the thickness of the resist coating is reduced, the upper surface in the groove may

drop below the edges of the mark as illustrated in Figure 22. This interpenetration cannot

besimulated using theapproximate Rayleigh expansion method outlined in [6,7]. Figure 23

depicts the corresponding.image. The effects of the resist for this fairly conformal coating

appear to be weaker and the image more representative ofthe underlying profile.
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6.5 Diffraction from Latent Images

Diffraction from latent images formed during exposure has been suggested as a technique

for in-situ focus and/or exposure monitoring [31]. A complete quantitative analysis of the

potential sensitivity of the method requires consideration of off-axis incident rays. Neverthe

less, insight into the viability of the process can be obtained with a simple normal incidence

model. Figure 25 shows the simulated first order (with respect to 0,nc = 0°) diffraction

efficiencies for a 0.75 /im periodic equal line-space pattern in AZ-type photoresist as a func

tion of exposure dose. Bleaching of the resist was calculated using the Dill formulation

discussed in Section 5.2 with n = 1.68. The efficiencies are normalized with respect to clear

field (uniform unity-amplitude illumination). The incident image and topography profiles

are illustrated in Figure 24. Table V lists the parameters used by SAMPLE to calculate the

aerial exposure image. For simplicity, the measurement wavelength is assumed to coincide

with exposure signal. As the resist bleaches, the latent image scatters more power into the

higher order harmonics resulting in a monotonic increase with exposure (possibly focus de

pendent). For this particular situation, the efficiencies are quite small but follow a smooth

linear pattern.

Several considerations need to be kept in mind when interpreting these results:

• To convert the SAMPLE images to incident fields for the top boundary, Ez is set to

\/277/(j/)sin(u;t). In effect, this assumes that the field is at focus along C-D because

the distribution corresponds to an amplitude-modulated plane wave. The actual field.

however, is given by a plane wave expansion such as (35) from diffraction off the mask

where the time dependence is tied to the spatial dependences and quadrature terms

are present. A more exact representation of the field would require knowledge of the

NA of the imaging lens and pattern period d (to determine the maximum number of

harmonics) and would involve solution of a nonlinear set of equations to match the



Table V: Simulation parameters for latent image exposure.

Wavelength 0.4358/*m
Numerical aperature of exposure optics* 0.28
Coherence factor of illumination* 0.7
Defocus* 1.39 nm
Exposure intensity 100 mW/cm2
Mask pattern* 0.75/0.75 /mi linespace
ABC coefficients of photoresist A = 0.551 //wn

B = 0.058 //im
C = 0.01 cm2/mJ

Real part of photoresist refractive index 1.68
Refractive index of substrate 4.73 - i 0.136
Resist thickness 0.4358 /zm
Exposure dose 50 mJ/cm2
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* parameters used only by SAMPLE for calculation of the aerial image

time-averaged local field to the SAMPLE image using orthogonality. Even then the

result is approximate because partial coherence effects have been neglected.

• Since the incident signal is a sum of plane waves, each component wave requires a

distinct periodic phase shift <j>. This poses a problem because the fields are treated

as a composite signal and the various components are unknown. If the numerical

aperature of the mask illumination lens is small (almost spatially coherent), however,

then Floquet's theorem indicates that, to a good approximation, the fields incident

at the wafer are instantaneously equal at increments of the period d. In this case, the

9inc = 0° boundary conditions may produce good results.

• Once the incident (assumed in focus) profile is specified, the algorithm updates and

propagates the magnetic fields self-consistently using (16) and (17). As a result.

the fields begin to diffract before they reach the surface of the topography. Lower

numerical aperature imaging lenses have a larger depth of focus (X/2NA2) and thus

introduce smaller errors in the focus approximation.
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For the case considered above, the A',4 of the illumination and imaging lenses are both

small, 0.2 and 0.28 respectively, so the periodicity and focus simplifications should be valid.

Experimental corroboration will be necessary to test the accuracy of these approximations.

6.6 Exposure in Contrast Enhancement Materials

The needfor improvedcontrast in lithographyhas paced the development of advancedresist

technologies such as contrast enhanced materials (CEM). In the CEM process a layer with

high but bleachable absorption is deposited over a standard resist. The exposed regions

become highly transparent while the low intensity areas remain highly absorbing, produc

ing a well-defined exposure window for the underlying resist which can improve pattern

resolution. At the same time, however, the CEM layer can act like a second mask and cause

interesting diffraction effects withinthe resist. Mack et al. [32] investigated this phenomenon

using a Kirchhoff diffraction approach for near fields and concluded that normal, inverted.

and hourglass line patterns can be formed depending upon the numerical aperature of the

imaging lens and the CEM resist parameters and development characteristics.

To examine these issues, the algorithm was applied to simulate exposure in a typical

CEM process which is illustrated in Figure 26. The dimensions of the printed feature (0.4S

X/NA) are representative of the current resolution limit for CEM materials [33]. Table VI

presents the conditions used by SAMPLE for the aerial calculation. The considerations

outlined in the previous section also apply here. Figure 27 plots contours of the inhibitor

concentration following a 350 mJ/cm2 exposure. For the given set of parameters, we see

some two-dimensional spreading of the intensity near the edges of the CEM aperature as

witnessed by the extension of the outer contours further into the masked regions. The

slight inward bow near the substrate and in the center of the window where diffraction

effects should be less prominent are probably due to attenuation as the signal propagates

through the resist.
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Figure 28 depicts the simulated profile after an 80 second development using the SAM

PLE development module with resist parameters of Ex = 5.63, E2 = 7.43, and £3 = -12.6.

The corresponding image from the SAMPLE CEM exposure facility is shown for compari

son. Although the scales are slightly different, the two profiles bear a striking resemblance,

especially with regard to the undercut of the standing waves at the bottom of the resist.

Slight differences can be observed in the standing wave ratios throughout the resist where

the two-dimensional simulation indicates more pronounced variations deeper in the resist.

The uniformity suggested bySAMPLE could be due tothe neglect oftwo-dimensional effects

or to discretization errors arising from SAMPLE'S use of only 50 horizontal layers versus

256 for the time domain situation. From these results, then, the extent of two-dimensional

diffraction is difficult to ascertain, but appears not to be very strong.

Table VI: Simulation parameters for contrast enhancement material (CEM) exposure.

Wavelength 0.4358/zm
Numerical aperature of exposure optics* 0.28
Coherence factor of illumination* 0.7
Defocus* 1.39 /xm

Exposure intensity 100 mW/cm2
Mask pattern* 0.75/0.75 ^m line/space
ABC coefficients of CEM A = 12.0 //xm

B = 0.0001 /nm
C = 0.064 cm2/mJ

ABC coefficients of photoresist A = 0.551 ///m
B = 0.058 ///m
C = 0.01 cm2/mJ

Refractive index of CEM and photoresist 1.68

Refractive index of oxide 1.47
Refractive index of substrate 4.73 - i 0.136
CEM thickness 0.4000 nm
Resist thickness 0.7133 n™
Thickness of underlying oxide 0.0741 /zm
Exposure dose 50 mJ/cm2

parameters used only by SAMPLE for calculation of the aerial image
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6.7 Reflective Notching

An important example of the role of two-dimensional topography effects in lithographic

processes is reflection from steps or notches in the substrate. Exposure in the vicinity of

highly conductive materials such as aluminum lines can produce unexpected variations in

the linewidth of adjacent features due to propagation of the reflected signal through the

resist. Matsuzawa et al. [13] simulated these effects for a stepped reflective substrate using

a hybrid finite element/boundary element method. Their model, however, only applies for

perfectly conducting substrates and is computationally intensive. For example, simulations

ofexposure to a dose of 50 mJ/cm2 consumed over 24 minutes of CPU time on an HITAC

S-810 vector processing supercomputer operating at 630 MFLOPs.

Figure 29 depicts the structure used by Matsuzawa et al. To facilitate comparison of

the accuracy and efficiency of the time-domain approach with the finite element technique,

identical simulation parameters were used (Table VII). Because the exact resist profile was

not specified, the surface was modeled with a slope of -2° out to 2.0 //m tapering to -1°

out to 4.0 /im. In the above report, the simulation boundary was stopped at 2.5 ixm to

reduce the required memory and computation time. Because one of the important goals of

this study is to examine asymmetries caused by the topography, however, the domain was

extended out beyond the mask edge for the calculations.

Figures 30 and 31 show the photosensitizer contours and developed profiles, respectively,

obtained using both methods. Our analysis used a 256 x 256 grid and separated the

"exposure into 15 dose steps. The SAMPLE development routines were modified to account

for the steps in the topography. The two profiles predict similar qualitative behavior. The

interaction of the incident signal with the step produces a characteristic cusp is near the

step-substrate corner and a larger sidewall slope due to deflection off the notch. As a result,

the edges ofthe feature on the side with the step are sharper than expected for an isolated

line.



Table VII: Simulation parameters for reflective notching.

Wavelength 0.365Mm
Numerical aperature of exposure optics* 0.42
Coherence factor of illumination* 0.5
Defocus* l-35 Mm
Exposure intensity 100 mW/cm2
Mask pattern* Isolated 2.0 /im line
ABC coefficients of photoresist A = 0.74 /pm

B = 0.20 /pm
C = 0.012 cm2/mJ

Refractive index of photoresist 1.68
Resist thickness 0.8 pm (nominal)
Exposure dose 50 mJ/cm2
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* parameters used only by SAMPLE for calculation of the aerial image

To match the two profiles, our simulations required a development time of80 seconds

compared to the 40 seconds cited in [13]. The discrepancy may be due toerrors inmodeling

the resist thickness or errors in the quoted development parameters. It is well known that

variations of A/4 = 0.054/mi can produce up to 50% changes in the local exposure (for

flat substrates). Nevertheless, comparison with the actual photoresist image illustrated

in the Figure 32 shows good qualitative resemblance, supporting the validity of the two-

dimensional approach. Improvements in the accuracy of the results might be achieved

by reducing the simulation domain to 2.0 jnn. Unless the resist thickness is known more

accurately, however, the degree of quantitative correspondence and the limitations of the

simulation remain unclear.

The time-domain approach offers an order of magnitude (or better) speed advantage

over the method of Matsuzawa et al., primarily due to the efficiency and parallelism of

the formulation. Simple calculations indicate a reduction of the CPU time by a factor of

~ 4 from 15.4 GFlop-min to 3.9 GFlop-min for the case examined above (63 minutes on

the Berkeley system with 256 x 128 grid). Several factors, chosen conservatively for the

simulation, could improve on this value by at least a factor of two. First, experience with
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the SAMPLE program and the above results suggests that the number of dose steps could

probably be reduced from 15 to approximately 10. Second, an extra savings of up to 40-50%

might be achieved by using the fields at the end of the previous dose simulation as a starting

point for calculations at the next interval. This simplification assumes that the extent of

bleaching between time steps is small enough that the previous solution is approximately

correct with the updated parameters. Third, this example pushed the limits of the pro

totype system at Berkeley and appeared to suffer from both memory and communication

bottlenecks. A commercial Connection Machine system (available in 16K or larger con

figurations) would alleviate some of these problems, particularly the memory limitations.

This would allow the code to be optimized by removing restrictions upon the allocation of

variables which compromised the efficiency of the implementation of the costly boundary

conditions. It should be kept in mind that periodic version of the algorithm (used in the

CEM and latent image exposures) executes about 20-30% more efficiently than the version

for isolated structures because of the simpler boundary conditions on the sides.
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Chapter 7

Extensions and Future Work

The implementation of the algorithm examined in Chapter 6 is suitable for simulation of

arbitrary periodic or isolated structures with normally incident TE-polarized illumination.

In order to investigate focus and latent image diffraction issues more thoroughly, the peri

odic boundary conditions for arbitrary incident angles (Section 4.2) need to be debugged.

Extensive experience with testing the algorithm suggests that the conditions should be sta

ble for incident angles up to 5 or 10° and possibly for the full range (90°). The limits for

stability and accuracy will play an important role in the application of the algorithm. For

isolated structures, of course, phase conditions are not necessary and arbitrary angles of

incidence pose no problem provided the values of the incident field are carefully accounted

for. In this case, the corresponding equation to (29) becomes very complex and memory

intensive while the interpretation of the incident and scattered fields more subtle. To pre

vent mistakes in programming, the incident field for this situation would follow the more

common electromagnetic definition: the wave which would propagate in the absence ofthe

scattered that is, the substrate and topography. This is the convention used for the top

boundary in contrast to the modified interpretation applied on the side boundaries which

is discussed at the end of Section 4.2. The scattered field is the remaining field which takes

attenuation and diffraction into consideration.

Improvement of the accuracy of the algorithm for general topography can be achieved

by development in two key areas. First, schemes for reducing reflections from absorbing

boundary conditions should be explored. Methods such as the Superabsorption technique

introduced by Mei et al. [24], which relies upon cancellation ofleading order errors through

multiple application of the boundary operators, may enhance the robustness of the condi-



tions for fields at grazing incidence. Second, conversion to a finite element formulation in

the time domain would reduce discretization errors due to material boundaries which fall

between nodes. This effect becomes especially critical for situations in which resonances

can be excited. The finite difference method can be adapted to a nonuniformgrid by locally

modifying the spatial increment (/i), but sloped features still present a problem which is

properly addressed by the finite element approach. One potential disadvantage of the finite

element formulation, which needs to be examined more closely, is the difficulty to map the

domain to a regular grid format to exploit the parallelism of the Connection Machine. Note

that if a nonuniform grid isestablished for only one (or two for a three-dimensional domain)

dimension, only minor modifications are necessary for the finite difference approach.

Longer term issues for the algorithm primarily concern interfacing the program to fill

a critically missing link in an integrated optical lithography CAD system. Simulation pro

grams such'as SAMPLE and SPLAT [34] are available tomodel propagation and scattering

ofoptical signals through elements such as masks, optics, and aperature stops. The Fourier

diffraction approach used by these simulation tools, however, does not apply to scattering

from "thick" features such as wafer topography. The role of the rigorous time domain pro

gram would thus be to propagate the aerial image calculated by these simulators to the wafer

and back to a plane for further analysis through the collection optics. The various stages

in this process can be clearly identified in the unfolded representation ofthe optical system

illustrated in Figure 33. By combining existing simulation tools in this manner, alignment,

exposure, and overlay over complex nonplanar topography could be modeled. When further

linked with rigorous development and etching routines, a complete environment suitable for

simulation of three-dimensional integration processes might be envisioned.

Before this gap can be filled, the issue of partial coherence in the illumination system

needs to be addressed. In commercial lithography systems, the numerical aperature of the

illumination lenses is usually restricted such that a degree ofspatial coherence between fields
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originating from different points in the source is achieved on the mask. As aresult, mutual

interactions between these fields affect their propagation through the optics and ultimately

their diffraction from the topography. The Hopkins theory ofdiffraction adopted in SPLAT

and SAMPLE accounts for these interactions in a neat, analytic framework which has been

experimentally verified. Much work remains to be done, however, to determine an accurate

and effective way of modeling the effects of partial coherence in topography scattering.

The most tedious, but physically insightful, method would be to divide the source into

sements and trace the fields from each segment through the optical system, offthe wafer, and

back. A more efficient approach might be possible by modeling the interactions as biased,

quasi-random phase shifts between fields at adjacent points in space [35]. This could be

implemented on the Connection Machine by allocating extra processors along the incident

field boundaries to introduce appropriate phase shifts in the time domain representation of

the incident field. The exact form and determination of these phase shifts remains to be

delineated.

Finally, we should note a few observations concerning the limitations of the Connection

Machine organization encountered during this study and how these might be impacted by

future developments. The machine is still somewhat of an experimental system and new-

features are constantly being introduced to suit the needs of users. For this algorithm,

communications play an important, if not more important, role than floating point opera

tions. Streamlining local communication channels might reduce algorithm overhead by up

to 30-50% from the current ~ 3 Flops/communication penalty. Another constraint, briefly

discussed earlier, is the 64K bit local memory limitation. The large domains and fine meshes

required for finite difference/element formulations strains the local stack capabilities and

requires variable-saving simplifications to bemade which limit efficiency. As an illustration,

the absorbing boundary conditions on the side require knowledge of the incident field. So

that larger domains could be accomodated, these operations were performed in the dummy
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layers and then stored in the boundary nodes. This could be accomplished more efficiently if

the calculations were performed globally and sent during normal communications, possible

only if local memory were increased.
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Chapter 8

Conclusion

Arigorous new time domain method for simulation of topography scattering issues in optical

Uthography has been developed and verified for accuracy. The approach is very similar

to finite difference techniques used for electromagnetic scattering analysis, but has been

reformulated toexploit the parallel nature ofwave propagation and the computational power

of recent massively parallel architectures such as the Connection Machine. Efficient new

absorbing boundary conditions were devised to reduce the time spent updating boundary

nodes and existing conditions were modified to account for lossy dielectrics. To address

the special needs of optical Uthography appUcations, new periodic boundary conditions

were added along with rapid techniques for obtaining frequency-domain information such

as diffraction efficiencies.

The resulting code, implemented on a Connection Machine CM-2, has been applied to

study several important two-dimensional interaction effects with a flexibiUty not possible

with any other available technique: exposure over nonplanar topography such as reflective

steps, bleaching of contrast enhancement materials, and diffraction from latent images in

photoresist. At the same time, however, the paralleHsm of the method attained remark

able efficiency. Steady-state calculations on structures up to 8 Asquare required less than

40 seconds on a IK machine, extrapolating down to a few seconds on a fuUy configured

16K system. These preUminary results highhght the tremendous potential of the method

to explore general electromagnetic interactions in alignment, overlay, and exposure which

play an increasingly critical role as integrated circuit technology pushes inherent diffraction

limits.
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Figure 1: Simulation oftwo-dimensional diffraction effects on a flat substrate foUowing 50
mJ/cm2 exposure. NormaUzed photosensitizer concentration contours for a0.8 fim isolated
space iUuminated at A= 0.436/xm with AZ-type resist are shown, (a) Distribution on an
aluminum surface as calculated by SAMPLE, (b) Distribution on a perfectly conducting sur
face calculated using the hybrid finite-element/boundary-element method ofreference [13]).
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Figure 7: Blustration of delay structure for arbitrary incidence. The outermost layer of
processors (dummy layers) calculate the incident fields for the boundary conditions. An
extra variable is allocated to each processor for shifting fields along horizontal delay Unes
formed by two sets ofnodes (east/west) as shown. At each time step the processors in each
bank shift their stored value to their neighbor except for those along the innermost edge
which store it directly in theboundary node on theopposite side ofthedomain. The number
of processors in each bank is determined by the angle of incidence through an equivalent
steady-state Floquet time delay.
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Figure 9: Planar dielectric structures for testing the inherent Umits of the algorithm. Ab
sorbing boundary conditions are appUed 0.2/xm below the surface ofthe lowest material to
emulate infinite thickness.
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Figure 10: Symmetric perfectly conducting grating of Petit and Kalhor [30].

Case I: 9Y = 5.0° , 92 = 85.0°

Case II: Ox = 13.8° , 92 = 76.2°

Figure 11: Schematic ofasymmetric echeUe grating for diffraction efficiency calculations.
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Figure 12: Layer structure for flat substrate exposure.
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Figure 13: Comparison of reflectivity vs dose for the structure of Figure 12 at the condition
of maximum thickness sensitivity (tre5 = 5.5A/4).
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Figure 14: Comparison ofreflectivity vs dose for the structures ofFigure 12 at the condition
of minimum thickness sensitivity (trea = 6.0A/4).
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Figure 15: Comparison of the photosensitizer distribution obtained by the time domain
method with calculations by SAMPLE throughout a 0.405mui resist (Figure 12) after ex
posure to a dose of 50 mJ/cm2.
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Figure 16: Example aUgnment grating for analysis of scattering from resist coating and
substrate.
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Figure 17: Models for the substrate and resist coating for the aUgnment example of Fig
ure 16.
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Figure 18: Plot of the diffraction efficiency in first order as a function of resist layer asymme
try. In the calculations, the resist is assumed to be infinite in thickness with the configuration
shown in Figure 17.
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Figure 19: Plot of the diffraction efficiency in first order as a function of substrate asym
metry. In the calculations, the siUcon substrate is assumed to be infinite in thickness with
the configuration shown in Figure 17.
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Figure 20: IUustration of the far-field image of the aUgnment mark of Figures 16 and 17 with
substrate asymmetry. The incident field is anormally incident plane wave (A =0.488/mi)
and the resist is lossless (n = 1.68). A scaled profile of the structure is provided to highUght
the positions of the edges with asymmetry.

Image Intensity Profile for Alignment Mark with Resist Asymmetry

Horizontal distance (microns)

Figure 21: IUustration of the far-field image of the aUgnment mark of Figures 16 and 17
with resist asymmetry.
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Figure 22: AUgnment grating with interpenetrating resist coating.
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Figure 23: Far-field image of the aUgnment mark of Figure 22 for a resist with fi = 1.68
10.02082.



Figure 24: Dielectric layers and image used for latent image diffraction simulations.

FirstOrder Diffraction Efficiency vs Dosefor Rat Substrate
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Figure 25: Simulated first order diffraction efficiencies for the exposure iUustrated by Fig
ure 24. The power for this case rises Unearly with exposure dose. Table V summarizes
the simulation parameters including the SAMPLE inputs used for calculation of the aerial
image.
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Figure 26: Layer structure for CEM exposure.
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Figure 27: Inhibitor distribution contours for the CEM exposure iUustrated by Figure 26.
Table VI summarizes the simulation parameters including the SAMPLE inputs used for
calculation of the aerial image.
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Figure 30: Inhibitor distribution contours produced by the (a) time-domain and (b) hybrid
finite element methods for the exposure over a stepped substrate iUustrated by Figure 29.
The interval between contours is 0.2.



0.00

-1.37
0.00

E
a.

^ **°
o>
to

©
c

o

JC Q5

05

0)

©
en

t***.*'

0.79 1.59 2.38

DISTANCE (H

(a)

Mask

3.18 3.97

0 OS XO 15 ^B 25

Horizontal position / pm

(b)

Figure 31: Simulated development profiles for the photosensitizer contours of Figure 30.
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hybrid finite element method (b) and for 20 second intervals in the 80 second development
for the time-domain method (a).
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Figure 28: Development contours produced by SAMPLE for the CEM exposure iUustrated
by Figure 26 after 80 seconds development: (a) Time-domain results, (b) SAMPLE profiles.



1.5 -r

1.0 --

0.5 --

0 -J-

|—I—I—I—h

0.5

Mask

H—|—I^H—I—h

1.0

Photoresist

Perfect Conductor

Mil

1.5 2.0 2.5/zm

Figure 29: Reflective stepped substrate used by Matsuzawa et al. [13] with the hybrid finite
element method. The photoresist surface has a gradual slope" across the step which was
approximated by a straight Une with a slope of -2.0° from 0 to 2.5 /mi and -1.0° out
to the boundary at 4.0 /mi (not shown). The height of the resist at the left boundary is
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Figure 32: Scanning electron micrograph (SEM) of actual photoresist profile remaimng on
stepped substrate with 0.1 /im aluminum coating. (From reference [13]).
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Appendix A

This appendix outlines the method for determining the coefficients ofthe scattered far-field

for reconstruction or diffraction efficiency calculations. Expanding the scattered field in

outgoing harmonics,

fs(r,t) = Y, {A« cos(ut -Zi-n +Bn sin(u;t - kn •f)}
n

= ]T {An [cos(u;*) cos(fcTi •r) +sinM) sm(kn •Oj
n

Bn [sin(u;t)cos(V- f) - cosM)sin(£, •r)] } (52>+

Consider two times tx and t2 such that cosMi) = 0 and sin(u;t2) = 0 and suppose that

the scattered field is known along C-D for the case of Figure 1. Evaluating (52) at f = r^

multiplying both sides by sin(fcm •f), and integrating over the top surface (x = x0) we have

ffa(?.tx)sm(km-r)dy = £ |.4n Jsm(kn •f) sin(C •r)dy +Bn jcos(kn •r) sin(C •f)dyj
= ^E UnJcOs[(kn-km)>f\ -COs[(kn +km).f\ dy

+ Bn Ism{(km - kn) •t\ +sin [(*m 4-fcn)-r] dy\ (53)

which from orthogonality reduces to

7n = / f*{r,tx) sin(km -r)dy
Jc-D

= 9[^m - cos(2fcmxx0)A_m +sin(2fcmxx0)£-m] (54)

where d is the period and kmx is the x component of thepropagation constant of the mth

outgoing mode. If we perform the same operations with cos(Aj, •f), we get a similar result

712 = / fs(r,tx)cos(km'f)dy
Jc-D

= - [Bm -r cos(2kmxXo)B-m + sin(2fcmxxo)-4-m] (55)



Repeating the previous manipulations with (35) evaluated at time t2 gives

721 = / fa(r,t2) sin(km -r)
Jc-D

dy

SI

= _ [-Bm + cos(2fcmxx0)£_m + sin(2fcmxx0)>i-m] (56

722 = / fa(r,t2)cos(km-f)dy
JC-D

= _ [Am -r cos(2kmxXo)A-m - sin(2fcmxx0).B-m] (57)

Relations (54) through (57) yield four equations in the four unknowns -4m, £m. ^-m. and

B_m which can be solved to give

Am =i [711 +722] <5S)

Bm =^h12 " 7211 59)

A_m =sin(2fcmxx0) ^^ +7i2) _cos(2fcmxx0) ^ _^ (60)

B.m =COS^^Xo) (721 +712) +Sin(2^X0) (7ii - 722) (6D
Using the convention of Figure 7, x0 = 0 at the top boundary so the last two equations

reduce to

A_m =i[72J-7n] <62>

B-m =i[7n +72i] <63>
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Appendix B

Example Connection Machine Code

To establish a perspective of the programming environment of a massively parallel archi

tecture such as the Connection Machine, this appendix presents example code written for

the primary time domain loop of the algorithm. The syntax corresponds to version 5.0 of

the Connection Machine *LISP software and is very similar to CommonLisp with a few

modifications and extensions appropriate to control ofmultiple processor systems. All com

mands which are followed by !! are functions which are performed by all active processors

in parallel. To subselect different sets of processors, to update boundary nodes for example,

conditional tests such as *t/and *cond are carried out on boolean flag variables (pvars)

stored in each processor. If the evaluated expression produces a "false" response (nil), the

processor is removed from the currently selected set and the commands within the scope of

the statement are not performed.

In addition, intrinsic mapping functions such as self-address-grid!!, news!!, and *news!!

permit selection of processors with particular grid coordinates and local fetches/stores in the

context of the NEWS system (discussed in Section 2.2), respectively. With these building

blocks, groups of processors can be manipulated to carry out standard CommonLisp-like

operations in an organized and flexible fashion. It should be pointed out that the system

supports parallel versions of other high-level languages such as C and Fortran as well as

its own assembly level language. More details can be found in the Connection Machine

programming reference manuals.
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example.cm.code

-•- Fonts: (TTKON'I; mode: lisp; syntax: common-Iisp; p.icka<je: *llsp-cl; base: 10; -•-

;;; Doclaral ion ol tin; package is required here
(in-package ' * Ii sp)

;;; I'var declarations

;; e - electric field along z coordinate
• ; hx -• component of the magnetic field along x direction
;; having coordinates (1, j+1/2)
;; hy component of the magnetic field along y direction
;; having coordinates (1*1/2, j)

(•proclaim ' (ty|K« (pvar single-tloat) e hx hy))
(•defvar e (!! 0.0))
(•defvar hx (!! 0.0))
(•delvar hy (! ! 0.0))

;;; Multiplicative values needed by the algorithm

("proclaim '(type (pvar single-float) alpha beta))
("dofv.it alpha (! ! 0.0) )
('del vat beta (!! 0.0) )

;;; Optical index and resist sensitizer concentration

(•proclaim '(type (pvar single-float) n mm))
('delvar n (!! 0.0))
('defvar mm (!! 0.0))

;;; Local scratch memory location

(•proclaim '(type (pvar single-float) reg))
('defvar req (!! 0.0))

;;; This flag is true when a processor belongs to one
;;; of the dummy layers. The top layer Is used for
;;; updating h fields and the lower for e fields

('proclaim '(type (pvar boolean) dummy-layer-north Inc fields))
(•delvar dummy-layer-north nil!!)
('defvar Inc fields nil ! !)

;;; These flags are true when a processor belongs to the boundary layers

(•proclaim '(type (pvar boolean) boundary-north boundary-south boundary))
('delvar boundary-north nil!!)
('delvar boundary-south rill!!)
('delvar hound.)ry nil!!)

;;; This I lag true when layer-resist

(•procl.iiin '(type (pvar boolean) resist resist ce I) )
(•defvar resist nil!!)
('defvar resist eel nil!!)

.*;; II.ig cti-::l<]ii.il i n<| top l.iycr lot di I I tact ion efficiency calculations

('proclaim '(type (pvar huolcin) top-layer))
('<lelv.it top-layer nil!!)

.".•; Thl:; Mag is line when I tic processor i:. not .issue i il .•<! with
! •"." a dummy node

('proclaim '(type (pvar boolean) simulation-domain))
(•defvar simulation-domain nil!!)

;;; Scratch flags

(•proclaim '(type (pvar boolean) err test
simulatlon-domaln-not-south simulation-domain-not-norih))

("defvar simulation-domain-not-north nil!!)
(•defvar simulation-domaln-not-south nil!!)
(•defvar errtest nil!!)

;;; Integration time and spatial discretization Interval

(proclaim '(type single-float dx dt))
(defvar dx 0.0)
(defvar dt 0.0)

;;; Wave parameters

(proclaim '(type single-float amplitude kx omega gammal delta))
(defvar amplitude 0.0)
(defvar kx 0.0)
(defvar omega 0.0)
(defvar gammaf 0.0)
(defvar delta 0.0)

;;; Discretization steps along y-direction and x-direction

(proclaim '(type fixnum "y-dimenslon* •x-dlmension4 •x-dlmension,-l
•y-dlmenslon"-l))

(defvar "y-dimenslon* 64)
(defvar •x-dlmenslon* 64)
(defvar •x-dimension*-l 63).
(defvar *y-dlmension*-l 63)

;;; Computation of the value of the flags

(defun set-flags ()

(•set boundary-north nil
(•set boundary-south nil
("set boundary nil
(•set simulation-domain nil
(•set dummy-layer-north nil
(•set simulation-domaln-not-north nil!!)
(•set simulat ion-doma in-not. -south nil!!)
(•set top-layer nil!!)
(•set inc fields ni1!!)
('sol err test nil!!)

(Ml (-!! (scll-addross-grid! ! (!! D) (M 10))
(•set err lest I ! ! )

The processor:; .issue i.it ed with I he boundary conditions ar<
selectod now



s l?;37;0£g example.cm.code
u£l

(*i< ( !! (sel f-.iddress-gt id! ! (!! 1)) (!! 0))
('set dummy-layer-north t!!)
(prog ()

(•set simulation-domain t!!)

('if (-!! (sclf-address-grid!! (!! 1)) (!! 1))

(prog ()

(•set boundary-north t!!)
(•set boundary t!!)

)

('sot simulatIon-domaln-not-north t!!)
)
(•if (=!! (self-address-grid!! (!! 1)) (!! (the fixnum (1- •y-dlmension*))))

(prog ()
(•set boundary-south t!!)
(•set boundary t!!)

)
('set simulat Ion-domaln-not-south l!!)

I

)

)

(•if (or!! boundary-north dummy-layer-north)
(•set Inc fields l ! !)

This function evaluates the constant terms related to the

boundary conditions.
Input parameters:

amp - local amplitude of the electric field
phase - phase of the incident wave
ky «- wave direction (the incident plane is x-0)
nO Index of refraction for incident region
c speed of light (free space)

(defun inltlalize-boundary-condilions (amp)
(proclaim '(type (pvar single-float) amp))

Initialize fields to sin wave with phase 0

(•if inc fields

(prog ()

(•set reg (!! (the single-float. (• omega dt))))

Compiii .a ion ul I lie incident electric field with
del .ills ul operations given

(* I f dummy-I ayei -nor I h

(prog ()

The value ul the ie.il p.ul ol the exponent i.il is stored
in alpha

('set alpha (*!! (cos!! reg) amp))

The imaginary part of the exponential is stored In beta.

(•set beta (*!! (sin!! reg) amp))

)

(prog ()
("set reg (-!! reg (!! (the single-float (• kx dx)))))
('set alpha (*!! (cos!! reg) amp))
("set beta (•!! (sin!! reg) amp))

The real part of the temporal Increment is stored in gammaf

(setf gammaf (cos (* omega dt)))

The imaginary part of the temporal increment is stored in req

(setf delta (sin (' omega dt)))

;;; Initialization module for gaussian excitation

(defun inltialize-boundary-conditionsO (amp)
(proclaim '(type (pvar single-float) amp))

Initialize fields to sin wave with phase 0

("set e (!! 0.0))

("set hx (!! 0.0))

(•set hy (!! 0.0))

("1f inc fields

(prog ()

("set alpha (!! 0.0))
(•set reg (!! 0.0))

Computation of the incident electric field

(•if dummy-layer-north
(•set beta (•!! amp (!! (• A (exp (- (expt (/ tO tt) 2.0)))))))
(•set beta (*!! amp (!! (* A (exp (- (expt (abs

(/ (t (/ (• kx dx) omega) tO) tt)) 2.0)))))))

)

This Iunction computes the inner loop (or a two-dimensional
M.ixwc! I' •. equ.it ion solver. Tin: I ie.il ment <> I the absorbing



boundary conditions and the incident field .ire included.

The compulation of Ihe incident field requires four multiplications
and two add it ions.

Referring to the variables defined In routine

initialize-boundary-condltlons

we have to compute the following operations:

alpha - alpha"gamma - beta'e
beta • bet a"gamma « alpha'e

Referring to the report, the following equivalence between
the two coordinate systems holds:

y «.M)

x (CM)

x (HEP)

-y (REP)

(delun Inn-loop ()

;;; Computation of the new value of the magnetic field along y

(•if simulatlon-domaIn-not-south
(prog ()

(•set reg (-!! (news!! e 0 1) e))

;;; Subtract off incident electric field

(Ml boundary-north
(•set reg (-!! rog (news!! beta 0 -1)))

:; The following operations are not required along the south
:; boundary (but applied anyways) since absorbing boundary
:; conditions are locally applied to the e field and hy is
r; determined by the outgoing plane wave condition.

("set hy (i!! hy ('!! rog {!! gamma))))

)

)

;;; Computation of the new value of the magnetic field along x

('set reg (-!! e (news!! e -1 0)))
('set hx (t!! hx (*!! (!! gamma) reg)))

;; Coiiipiii ,ii ion of I he electric field

example.cm.code
; The allocation of the variable:; in our scheme requires a different
; treatment of the south side of t he domain to account, for the
; outgoing wave/absorbing boundary conditions.

(•set reg (-!! (news!! hx 1 0) hx))

cbl,cb2 » cl,c2 for bottom boundary

c6 » attenuation factor - exp(-alpha*dx)

(•if simulation-domain-not-north
(•if boundary-south

(prog ()
(•set reg (*!! (!! cb2)

(-!! (*!! (!! c6) (-!! (news!! hx 0 -1) (news!! hx 1 -1))) reg)))
(•set reg (-!! ('!! (!! e:6) (news'! e 0 -1)) (♦! ! reg (•!! {!! cbl) e))))

)
('set reg (-!! (♦!! reg hy) (news!! hy 0 -1)))

)

(prog ()
(•set reg (•!! (!! c2) <-!! (news!! hx 0 1) <♦!! reg (news!! hx 1 I)))))
(•set reg (-!! (-!! (news!! e 0 1) beta) (HI reg (*!! (!! cl) e))))

)

)

; Update of the magnetic field for time n + 1/2 and nodes- dx/2
; and electric field for time n+1.

(•If incflelds
(prog ()

(•set e (-!! (*!! alpha (!! gammaf)) (•!! beta (!! delta))))
(•set beta (♦!! (*!! beta (!! gammaf)) (*!! alpha (I! delta))))
(•set alpha e)

)
(•set e (H! (M ! beta reg) (*!! e alpha)))

Final stage of second order conditions for
north/south boundaries

(•if boundary-north
(•set o (»!! rog (•!! (!! cl) (-!! (news!! e 0 1) beta))))

(* If bounda ry-sout h
(•set e (•!! reg («!! (!! eb.1) (news!! e 0 -I))))
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end ol t he rout ilie

;; Inner time domain loop module for initial gaussian

;; ex Itat ion.

(defun inn-loopO (amp)
(proclaim '(type (pvar single-float) amp))

;;; Computation of the new value of the magnetic field along y

(•set req (-!! (news!! e 0 1) o))

;;; Subtract off incident electric field

(•if boundary-north

(•set reg (-!! req (news!! beta 0 -1)))

•; The following operations are not required along the south
•; boundary (but applied anyways) since absorbing boundary

conditions are locally applied to the e field and hy is
:; determined by the outgoing plane wave condition.

(•set hy (•!! hy (•!! reg (!! gamma))))

;; Computation of the new value of the magnetic field along x

(•sot reg (-!! e (news!! e -1 0)))
('set hx (•!! hx (*!! (!! gamma) reg)))

;; Computation of the electric field

;; The allocation of the variables in our scheme requires a different
•'- treatment of the south side of the domain to account for the
;; outgoing wave/absorbing boundary conditions.

('.-.el req (-!! (news!! hx 1 0) hx) )

•; South boundary user, first order conditions for speed since
;; fields have not reached there yet.

(Ml ::imul.il lon-domain-nol-north
(* i I botind.it y-r.oiit.h

(•set req (-!! reg <M! (!! ?.«) (news!! hy 0 -1))))
(•set req (-! ! (t!! req hy) (new:;!! hy 0 -I)))

)

example.cm.code
(prog ()

(•set reg ('!! (!! <:?) (-!' (news!! hx 0 I ) (M! rog (news!! hx I I)))))
(if (or ( muni I I) (> numil n inil))

(prog ()
(if ( numit I)

(set. f tmpO 0.0)
(setf tmpO (• A (exp (- (expt (abs (/ (- (• (float (1- numlt)) dt)

(♦ (/ (• kx dx) omega) tO)) tt)) 2.0)))))

(•set reg (-!! (-!! (news!! e 0 1) (•!! amp (!! tmpO))) (»!! reg (•!! (!! cl) e)
)

(prog ()
(•set reg (-!! (-!! (news!! e 0 1) beta) (♦!! reg (•!! (!! cl) e))))
>

)

)

;; Update of the Incident electric field parameters.
;; If numit <<•= n inlt apply gaussian; otherwise in
;; transition and introduce sinusoid

(•If incfields

(prog 1)
(if (> numit n Init)

(prog ()
(•set e (-!! (*!! alpha (I! gammaf)) (*!! beta (!! delta))))
(•set beta (*!! (•!! beta (!! gammaf)) (»!! alpha (!! delta))))
(•set alpha e)

)

(prog ()
(•if dummy-layer-north

(•set beta (M! amp (!! ('A (exp (- (expt (abs (/ (- (' (float numlt) dt)
CO) tt)) 2.0)))))))

(•set beta (•!! amp (!! (* A (exp (- (expt (abs </ (- (• numlt dt)
(+ (/ (• kx dx) omega) tO)) tt)) 2.0)))))))

>

>

)

)
(•set e (♦!! (*!! beta reg) (•!! e alpha)))

)

r; North boundary uses second order conditions

(•it boundary-north
(if (> numlt n init)
(•set e (*!! reg (*!! (!! cl) (-!! (news!! e 0 1) ('!! amp (!! ('A (exp

(- (expt (abs (/ (- (* numlt dt) (• (/ (' kx dx) omega) tO)) tt)) 2.0))))))))))
(•set e (M! reg (*!! (!! cl) (-! ! (news!! e 0 1) beta))))

)

)

end ol l.he rotil ino
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