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ABSTRACT

This project demonstrates the use of SIMPL-2 (SIMulated Profiles from the Lay
out) and SIMPL-DDC (Design interface with X windows) as an interface to other pro
cess and device simulators. An interface to RACPLE for analyzing topography depen
dent parasitic resistances and capacitances is implemented. Enhancements to SIMPL to
call the non-planar etch simulation capabilities of SAMPLE are also presented. These
integrated CAD tools are applied to a patterned photoresist planarization process, and
to VLSI Hopfield neural networks. It is found that the patterned photoresist planariza
tion process shows a relatively high tolerance to reasonable misalignments. VLSI
neural networks show significant topography dependent RC parasitic delays which
increase as the square of the number of neurons. Based on experience gained as a
result of this work, several suggestions for the future of SIMPL are offered.
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1. Introduction

1.1. Background

Process and device design for modem integrated circuits depends on a complex interrelationship

of manufacturing techniques, physical phenomena, device requirements, and designer experience. With

increases in integrated circuit complexity and decreases in device feature dimensions, computer-aided-

design software has come to play an important role in product development. It is now practically incon

ceivable that an integrated circuit could be designed without the help of circuit simulators such as

SPICE [Nag75] and layout routing tools such as TimberWolf [Sec85]. Most commercial enterprises

involved in chip-making have robust software and computing environments available for IC simulation,

routing, and design. Such is however not the case for process and device modeling. Despite the many

successes of device simulators such as PISCES [Pin84]] and MINIMOS [Sel80], and process simulators

such as SAMPLE [01d79] and SUPREM [Ho83a], process and device simulation is not nearly as well

established in industry as circuit simulation and layout automation. This is evidenced by the fact, that

whereas it is now nearly impossible to design a circuit without a circuit simulator, it is still possible for

device and process engineers to do their jobs without availing themselves of the software capabilities at

hand.

Process and device modeling is a difficult task given the variety and complexity of physical

phenomena which must be considered. Even when the physics of a certain situation can be reduced to a

handful of equations, often algorithms for numerical solution require computing power beyond that

readily available. The challenge for process and device simulation involves developing accurate

models, determining parameter values for those models, and then implementing algorithms which per

form the necessary calculations in a reasonable amount of time. To achieve these goals, many existing

simulators depend on simplifying assumptions which restrict their applicability and accuracy.

SUPREM-m [Ho83b] only handles diffusion and oxidation in one dimension. SAMPLE-1.6a [Add85]

requires planar layers for lithography and etching simulation in two dimensions. Additionally, many of



the physical models used by process simulators are heavily dependent on empirical results. SAMPLE,

for example, requires experimentally derived development rate equations and curve-fitting parameters

for each photoresist material it is required to simulate. The empirical nature of many of the models

limits the range over which input parameters may be varied and thus limits the usefulness of the simu

lation software.

New versions of these programs, however, are closing the gap between process simulation and

process reality. SAMPLE-1.7a [SAM88] includes models for non-planar etching, and advanced resist

chemistries. A program for development rate parameter extraction, PARMEX [Bel88], will soon be

available for rapidly characterizing photoresists for SAMPLE. SUPREM-IV [Raf86] handles diffusion

in two dimensions. CREEP [Sut87] is a new program for oxidation, annealing and reflow simulation.

COMPOSITE [Lor85] includes many improved etching models as well as providing an extensive library

of topography, diffusion and implantation simulation programs.

Advances in process simulation are moving in the direction ofcomplete three-dimensional model

ing. Already, the program SPLAT [Toh88] is capable of simulating the variation of light intensity

throughout a field on a wafer in to a microlithography system, including the effects of lens aberrations.

Future work will involve simulating resist dissolution and pattern transfer in three dimensions in order

to give a more complete physical picture of process phenomena. The advances in physical modeling

for process simulators, coupled with the recent availability ofpowerful "super-minicomputers" indicates

that this trend towards improved process simulation will continue.

1.2. Problem of Process CAD Integration

One problem that has arisen as a direct result of the increased number of simulation programs

available, is the difficulty of passing data from one simulator to another. Production line processes

depend on the interaction of several different processing steps. Existing process simulators generally

concentrate on only a certain fraction of possible processes. For many research and design applications

this is sufficient, but there is now a more pressing need for integrating the many available CAD pro

grams for process simulation. It is also desirable to use process simulators to create input data for



device simulators so that the electrical characteristics of a given device can be examined with respect to

process variations. Additionally, process simulators should be connected to the layout so that the effect

of design rules and mask alignment on topography can be considered.

The latter problem of connecting the layout to the simulator has already been addressed by

SIMPL-1 and SIMPL-2 [Gri84], [Lee85]. Both of these programs were designed to generate a device

cross section along a cut-line on the layout based on a process flow description. SIMPL-2 can represent

a device cross section using arbitrary polygons and is therefore quite general when it comes to describ

ing a device geometry. SIMPL-2 lacks sophisticated process models, however, and is thus of primary

interest to layout designers but not to process engineers. SIMPL-2 offers rigorous simulation only in the

case of metal, deposition, in which case SAMPLE is called. SIMPL-2 also lacks many convenient

features from a user's point of view. The graphics are slow and it is not possible to manipulate the

display easily.

SIMPL-DIX [Wu88a] solves many of the problems of graphics and user friendliness by providing

a design interface using the X window system [Sch86]. SIMPL-DIX also supports a variety of features

for analyzing the effects of mask misalignment (WORST), problems due to the layout and geometric

effects (HUNCH), and characteristics of the simulated device profile itself (CRITIC). Furthermore,

SIMPL-DDC combined with SIMPL-2 is well positioned to fill the need for an integrated design

environment, providing for the flow of information between process simulators as well as acting as a

front-end input generator for device simulators. Some initial work in integrating the SIMPL programs

with CREEP, SUPREM-III and PISCES-II has recently been reported [Wu88b]. Figure 1.1 presents a

summary of existing and proposed tools integration using SIMPL.

13. Project Overview

It is the intent of this project to demonstrate the feasibility and flexibility of SIMPL as an inter

face to process and device simulators. The usefulness of this approach will be demonstrated as SIMPL

is applied to a few selected problems suited for analysis with these programs. SIMPL has been con

nected with RACPLE [Lee83] for analyzing topography dependent resistive and capacitive parasitics.



SIMPL is also used for displaying the results of non-planar etch simulation using SAMPLE-1.7a. This

report details the new algorithms and interface code needed to integrate RACPLE and SAMPLE non

planar etch with SIMPL. These integrated CAD tools are applied to problems of multilevel planariza

tion schemes and dense interconnect technologies. Finally, based on experience derived from working

on this project, several suggestions for improving the SIMPL programs are offered.



2. A General Approach to Software Integration with SIMPL

2.1. SIMPL-DIX and SIMPL-2

SIMPL-DIX and SIMPL-2 are two separate programs which, together with SIMPL-1, form a suite

of programs known generically as SIMPL (SIMulated Profiles from the Layout). It is worthwhile to

understand the capabilities and purposes of these programs in a general way before considering their

specific implementations. SIMPL-2 was originally developed to allow a layout designer to rapidly deter

mine the cross section of a device which would result from a particular layout To achieve this,

SIMPL-2 uses arbitrary polygons to represent device cross sections. Crude, but fast models for simulat

ing deposition, etching, exposure, development, oxidation, and ion implantation are available. SIMPL-2

is capable of displaying two-dimensional process effects such as "bird's beak" oxidation, lateral

diffusion under a mask edge, and undercut in etching. A link to SAMPLE for rigorous simulation of

metal deposition is included to describe sidewall and step coverage accurately. Using SIMPL-2, it is

possible to generate a realistic cross section of a device such as the Berkeley CMOS inverter [Gib86].

SIMPL-DIX was developed to provide a high-level graphics interface and convenient user

environment for programs like SIMPL-2. A major goal of SIMPL-DIX is to provide an environment for

integrating dissimilar process and device simulation programs. SIMPL-DIX uses the X window system

for displaying graphics information and for generating a menu-driven user interface. SIMPL-DIX

currently invokes SIMPL-2 to create the database needed to describe a device cross section. SIMPL-

DIX also maintains its own database for describing all polygons in a profile, but this database is pri

marily intended for storing graphics information and thus lacks many of the features of the SIMPL-2

database. For example, SIMPL-DEX does not maintain data describing polygons adjacent to a given

polygon, whereas SIMPL-2 contains the material type and relative location of all polygons sharing a

boundary or vertex point.

In addition to the link with SIMPL-2, SIMPL-DIX has a number of internal tools to assist the

designer in performing and analyzing simulations. This points to the ability of SIMPL-DDC to analyze

a profile or layout generated by other programs. The HUNCH feature allows a designer to specify



logical operations between masks or sets of mask to identify locations where topographical problems

are anticipated. The CRITIC feature is currently being developed to allow aspects of a device profile to

be investigated automatically.

The SIMPL programs together form a suitable design environment for process and device simula

tion. SIMPL-DIX provides a convenient graphics and user interface, whereas SIMPL-2 maintains the

most complete data base for describing device profiles. The original goal of SIMPL to link process

simulation with the device layout can now be extended to include integration of other device and pro

cess simulators.

22. Profile Data Representations

Several schemes exist for representing device cross sections. Most can be classified as belonging

to either one of two types: linked polygons or multiple layers. SIMPL-2 uses linked polygons to

describe a device profile. This technique offers the advantage ofbeing quite general. Nearly all device

profiles can be conveniently described in this way. Polygons can be added, removed, or altered by using

a suite of subroutines to manipulate the database. Figure 2.1 shows the basic setup of the linked

polygon data structure.

An alternative approach to representing device cross sections is to use multiple layers. This

method has certain computational advantages for simulating processes such as etching, resist dissolu

tion, and deposition. SAMPLE and COMPOSITE use multiple layers to represent device profiles. Gen

erally, a layer must span the entire length of a simulation window. In regions where no material of a

given layer type exists, it is possible to specify a layer of zero thickness. Some programs, like COMPO

SITE, do not require that a layer span the entire simulation window, and instead maintain an additional

flag at each vertex in the layer to describe whether the point is the starting or ending point of a layer.

Figure 2.2 shows how layers can be used to describe a profile in SAMPLE.

In order to integrate programs, it is necessary to translate data between different data representa

tions. It is not difficult to translate a polygonal data representation into a series of layers. This can be

achieved by writing the surface of the profile as one layer, removing one surface polygon, writing the



new surface as the next layer, and so on down to the substrate. Going from layers to polygons, how

ever, is somewhat more difficult Two contours, describing one polygon, must be identified and merged,

with extraneous points being removed. Fortunately, there are many special cases where it is not neces

sary to translate an entire profile back and forth between different simulators. In the case of layer depo

sition, only the surface layer need be sent, and only the new deposited layer must be returned. In the

case of etch simulation, usually the entire cross section must be sent, but only the new resulting surface

contour need be returned. In some special cases, it is a trivial matter to include this new contour in the

original profile. In other more general cases, all polygons above the new contour must be removed, and

polygons that intersect it must be clipped. This case is not uivial to implement Integrating programs

which share similar databases, such as COMPOSITE and SAMPLE, or SIMPL and CREEP, is concep

tually simple but translating among profile representation formats can become tedious and time-

consuming.

A standard Profile Interchange Format (PIF) has been proposed [Duv88] but has not yet been

fully implemented. PIF is a polygon based data representation which could be used for passing data

among different programs. It would still be necessary to translate a PIF profile representation into that

used by a particular program, but the difficulties of coordinating different formats would be streamlined

with such a standard. The problem of tools integration would be greatly eased by a standard format for

describing device cross sections. The basic concepts of data translation would still be necessary, but

their implementation would be greatly simplified.

23. SIMPL as a User Interface

Another area to be addressed involves the convenient input of data to a simulation program.

SIMPL is a menu driven environment which greatly facilitates its use. A user need not be intimately

familiar with the specifics of SIMPL in order to get started with it This menu feature can be extended

to other simulators called by SIMPL. Input files for a program such as SAMPLE can be built up

automatically through a series of questions presented by SIMPL. The less time someone has to spend

learning how to use a program, the more likely that person is to use it If less time is spent writing



input files, more time can be devoted to using the program or doing other work. The advantages of a

menu driven user interface are clear.

SIMPL-DIX offers several routines for creating menu options on the display, and for prompting

data input from a user. It is a relatively easy task to create new menu options for SIMPL and instruc

tions for doing so are clearly spelled out in the thesis on SIMPL-DIX [Wu88a].

2.4. Displaying Data with SIMPL

It is similarly straight-forward to display data using SIMPL. All of the data structures required by

the X window system are already set up in SIMPL-DIX. Routines for locating points in the display

viewports are easily used. Basic X window function calls can be used to display numerical data on the

screen, highlight certain regions of the display, or draw new information to the screen. The only chal

lenge in displaying data with SIMPL is deciding precisely where on the screen to put the data so that it

is most useful and most cleanly represented. Figure 2.3 is an example ofdisplaying data associated with

individual polygons in a SIMPL cross section.

2.5. Unix Interface

SIMPL-DIX uses the interprocess communication (IPC) facilities in the Berkeley UNIX 4.3BSD

release [Sec85] to provide a connection to SIMPL-2. This method ofcommunication is useful for pass

ing information to an interactive program. It is also possible to communicate with programs through

files, by creating an input file for a given program and then using a Unix system call to run that pro

gram. The method using IPC is more sophisticated in that it allows multiple process to be run simul

taneously. Unix system calls, however, are easier to implement and are adequate in situations where it

is not necessary to run multiple processes. SIMPL uses both methods of inter-program communication.

IPC is used for the SIMPL-DIX to SIMPL-2 interface since both programs are run simultaneously and

short streams of data, such as process commands, are continuously sent between them. Unix system

calls are used to run SAMPLE since large streams of data, such as profile contours, must be sent back

and forth. Additionally, nothing is gained by using IPC in this case, since SIMPL must wait for the data
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3. Interface to RACPLE for Parasitic Evaluation and SAMPLE 1.7 for Nonplanar Etching.

3.1. The RACPLE Program

RACPLE (Resistance and Capacitance of Profiles in Lithography and Etching) is a post processor

for the SAMPLE program. It calculates the effective ratio of length vs. depth for a thin film deposited

over a nonplanar surface. The effective number of lateral squares (length/depth) can be used to deter

mine the resistance along the film or the capacitance across the layer. For a planar conducting layer, the

resistance is given by

R ^resistivity ){LID )(VW)

the capacitance for a planar dielectric is given by

C ^{permittivity )(LID )W

RACPLE calculates the effective LID for a thin film by locating critical features in the profile and then

dividing the film into small sections for which the resistance can be approximated. This approach has

an accuracy of better than 5% when compared with a numerical solution of the Laplace equation. Care

should be taken though, since RACPLE does not include the effects of fringing fields for determining

capacitance. RACPLE should only be used for capacitance simulation if the dielectric is thin compared

to its length and width. Resistance calculation is accurate for a wide range of geometries. More infor

mation on RACPLE is contained in the original report on the program [Lee83b].

RACPLE is consistent with the basic philosophy of SIMPL in providing rapid evaluation of a

device profile with a minimum of computational effort. Despite its limitations, RACPLE is a useful pro

gram for topography dependent electrical parameter extraction, and is a useful addition to the SIMPL

design environment

3.2. SIMPL - RACPLE Interface.

SIMPL-DIX is used to generate input files for RACPLE, call RACPLE to calculate parasitics, and

then display the results along with the device profile. The interface extracts each polygon in the

SIMPL-DDC data base, creates an input file for each polygon, and then runs RACPLE.



11

RACPLE uses the SAMPLE plotting file format (f77punch7) as its input data representation. The

interface takes the polygon as given by SIMPL-DIX and writes it as a top contour and a bottom contour

in a SAMPLE format plot file. The polygon as represented in SIMPL-DIX is a linked list of coordinate

pairs which traverse the polygon boundary in a clockwise direction. There is, however, no preferred

location for the first vertex in the list The entire polygon must be read in order to determine which

points make up the top contour and which make up the bottom contour. Figure 3.1 gives the shape of a

typical generic polygon. The left and right edges need not be vertical, but this is often the case for a

polygon which touches the edge of the simulation window. The interface traverses the polygon to deter

mine the relative location of the first vertex in the list, as well as the character of the left and right

edges. The head vertex is classified as belonging to one of eight types as shown in Figure 3.2, either a

corner point 0, 2, 4, or 6 or an intermediate point 1, 3, 5, or 7. From this information, the interface

arranges the points into a top and bottom layer which are written to a file in SAMPLE plot file format.

Figure 3.3 shows how the example polygon of Figure 3.2 is split up into two layers.

The routines used by RACPLE expect a high density of points to describe a profile contour, even

if the profile is a line segment. SIMPL, in order to save space, eliminates redundant points from a

polygon, so that a line segment is described only by its end points. To ensure computational accuracy

with RACPLE, the interface inserts additional points in the contours until no pair of adjacent points are

separated by more than about l/20th the length of the contour. Failing to do this can result in errors of

as much as 75% for typical profiles, since RACPLE cannot split up the profile correctly if the layers

lack a sufficient number of points.

As each input file is created, it is run with RACPLE and the results added to a file called,

appropriately enough, RACPLE_RESULTS. The interface uses the Unix system command to call

RACPLE since this method is convenient to implement and sufficient for the purposes of this interface.

Once all the polygons have been evaluated by RACPLE, the results can be displayed. The interface first

determines the dimensions of the display viewport using global variables in SIMPL-DIX. Each piece of

data generated by RACPLE is associated with a particular polygon which has one point in its upper left
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comer. SIMPL-DIX displays the RACPLE data along the top and bottom of the profile viewport and

draws a line from the data to the corresponding polygon. To avoid a sloppy display with many crossing

lines, the data is first sorted by the x-value of the upper left vertex of the polygon associated with that

piece of data. For polygons that have upper left corners with the same x-coordinate, an additional sort

by.the y-coordinate is performed. The code for most of the routines used in the RACPLE interface is

listed in Appendix B as file dix_action4.c. The contents of this file are compiled as part of SIMPL-

DIX.

RACPLE is called from the CRITIC menu in SIMPL-DIX which is in turn part of the TOOLS

option of the main SIMPL-DIX menu, of the version of SIMPL-DIX currently in use in our research

group. RACPLE was included as a CRITIC option because it is a program for criticizing and analyzing

profiles, and thus fell naturally into that category of programs.

33. SIMPL interface to run SAMPLE 1.7 for Nonplanar Etching

SAMPLE release 1.7a includes programs for simulating the etching of nonplanar layers [Lyo88].

To provide an interface to these routines, an additional command was added to SIMPL-2 to create a

SAMPLE input file for nonplanar etch simulation. To begin, the top of the profile, where the topogra

phy meets air, is traversed by SIMPL-2 and the points describing this contour are saved in an array.

The polygon containing the topmost vertex is deleted, unless that polygon has a lowest vertex lower

than the lowest vertex of any other polygon that makes up the surface. Figure 3.4 shows some cases of

polygons making up surface layers, and which would be deleted. Once a polygon is deleted, the new

surface is traversed and saved as the next layer. Once the substrate is reached, all of the layers are writ

ten to a SAMPLE input file as parameters for "nonplanar" statements. The database in SIMPL-2 is

restored by rebuilding the original topography from data which had been stored in a cross-section data

file.

SIMPL-2 then prompts for the etch rates of the materials represented by each layer. Finally,

SIMPL-2 requests the etch time for the simulation. Usually, SIMPL requests the etch or deposition dis

tance and the calculates the corresponding time, but for multiple materials with different etch rates, the
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resulting etch distance is known only after the simulation is run. With the etch rates and geometries of

each of the layers, the interface creates a complete input file for running the SAMPLE etch machine.

Using aUnix system call, SAMPLE 1.7a is run with the input file and the results are stored in aSAM

PLE format plot file. SIMPL-DIX can display the results of the etch simulation in the profile viewport

as shown in Figure 3.5. Currently, SIMPL-2 cannot take the result of the etch simulation and update its

profile data base, except in one special case: if the etch contour consists ofonly one material from end

to end, all the polygons above it can be removed, and the etch contour used as the surface of a new

polygon to replace the polygon currendy cut by the etch contour. This is certainly not a general inter

face, but it can be useful as will be seen in a later example. A general interface will be available in the

near future, but is not a part of this project. The routines used for the nonplanar etch interface are listed

in Appendix B as F77Layers.c. These routines are compiled as pan of SIMPL-2.
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4. SIMPL for Analysis of a Patterned Photoresist Planarization Process

4.1. Process Overview

A standard technique for planarization is etch back of a resist-coated dielectric layer [Ada81]. In

this technique a dielectric film is deposited over the topography to be planarized. An organic film like

photoresist is then spun on in such a way as to planarize the entire surface of the layer. The combina

tion organic film and dielectric are then etched in a plasma environment that has been designed to pro

duce equal etch rates in both materials. The limitations of this process have been documented [Sti87].

The thickness of the deposited film is a function of feature density. As the distance between the features

increases, the planarizing effect of the film is lost.

A planarization process using a sacrificial fill layer of patterned photoresist has been proposed

which solves planarization problems encountered in both intermetal dielectric for a 1.2 micron 256K

SRAM technology and trench isolation for a 0.8 micron 1MSRAM technology [She88]. Photoresist is

used to fill valleys in the deposited film. After the dielectric (e.g. boro-silicate glass) is deposited on

the topography, a photoresist is spun on with a nominal thickness equal to the step height of the under

lying topography. The resist is the patterned in such a way as to remain in areas where conformal cov

erage of the dielectric is expected to occur. A second layer of resist is now deposited on top. A high

degree of planarization exists for the last deposition step since most of the nonplanar regions were filled

in by the patterned photoresist The etch-back proceeds from this point leaving a planar dielectric layer

covering the topography.

Misalignment of the mask used to pattern the first layer of photoresist can be expected to coun

teract the planarizing benefits of this process and degrade device performance. However, as will be

shown using process simulation, this masking step has noncritical dimensions and alignment require

ments. Adding masking steps adds to the cost of the process, but some of this cost may be saved given

the relatively high tolerance of this masking step to misalignment error.
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4.2. SIMPL Simulation of the Patterned Photoresist Planarization Process

This patterned photoresist planarization process can be simulated using SIMPL. The substrate SI

is chosen to represent some underlying topography. In this case, the topography consists of 1.6/1.4

micron lines and spaces next to a 14 micron region with no lines. The height of the lines is 0.85

microns. Figure 4.1 shows this topography. 1.5 microns of glass (PSG) is deposited using isotropic

deposition. 0.75 microns of resist (RST) is deposited vertically on top of the dielectric as shown in Fig

ure 42. This resist is patterned with the mask NB leaving a box of resist as shown in Figure 4.3. 1.0

microns of a second resist is deposited as shown in Figure 4.4. After using SAMPLE to simulate the

etch back, the resulting profile is as shown in Figure 4.5. To complete the process, a metal layer is

deposited on top of the dielectric as shown in Figure 4.6. The complete SIMPL-2 process file for this

simulation is listed in Appendix A as process.rbxl

This process is sensitive to misalignment of the mask used to pattern the resist (NB). The

WORST feature of SIMPL-DIX is used to shift the mask NB to the right The result of shifting the

mask NB to the right by 0.6, 0.9, 1.2, 1.8 microns and then simulating the process is shown in Figures

4.7, 4.8, 4.9, and 4.10 respectively. Also, if the mask NB is originally too small due to excessive pro

cess bias, the result is shown in Figure 4.11. At a certain point the effect of mask misalignment is to

gready diminish the planarizing advantage of the process. After 0.7 microns misalignment, the prob

lems are severe.

43. Results - RACPLE Analysis

To get a more quantitative measurement of the effect of mask misalignment in this process, RAC

PLE can be used to measure the number of lateral squares in the dielectric layer. Figure 4.12 is a plot

of lateral squares of PSG versus misalignment. For no misalignment and misalignment of 0.6 microns,

RACPLE measures about 8.2 lateral squares for the PSG layer. At 0.7 microns misalignment, the RAC

PLE measurement jumps to 12.4 and continues to climb to 13.9 for a misalignment of 0.9 microns. For

1.1 microns misalignment RACPLE measures 12.28 squares, and for more than 1.2 microns misalign

ment, the measurement setdes at 11.33 lateral squares and remains there for misalignment of up to 2.4
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microns. Similarly, for the profile of Figure 4.11, in which the mask NB is biased too small, RACPLE

calculates 11.83 lateral squares for the dielectric layer.

It is apparent that the misalignment or mask size error to create a noticeable degradation of dev

ice performance is on the order of 50% of the minimum linewidth for this example. This supports the

claim that the masking step has noncritical dimensions. The degree to which the masking step tolerates

error has been shown here with SIMPL. One interesting feature of Figure 4.12 is the sudden jump in

the number of lateral squares at 0.7 microns misalignment which settles at around 1.2 microns misalign

ment One cause of this effect is the fact that at above 1.2 microns misalignment, the thinning of the

dielectric on the left side of the structure is compensated by an excess of dielectric on the right side. At

0.7 to 0.9 microns misalignment, there is a serious thinning on the left side, but no noticeable thicken

ing on the right. The capacitance across the dielectric on the left side is actually quite high for all

cases of misalignment greater than 50% of the minimum linewidth, but is compensated on the right side

if the mask is misaligned enough.

Using SIMPL, it has been shown that mask misalignment tolerance is good up to about 0.6

microns for this case, but results in serious performance degradation for further misalignment. The

effects of altering layer thicknesses, or changing feature dimensions and spacings can be expected to

affect the misalignment tolerance. These effects can be investigated with SIMPL.

4.4. Comments on Approach

This approach to analyzing the above planarization process can identify certain trends using ele

mentary models. It would be interesting to include additional process effects and more comprehensive

analysis of the exact electrical nature of the device. Microloading effects which would cause a variation

in etch rate across an individual die are not accounted for by the etch simulation models. As a result,

certain topography effects which might be problematic in real devices are not seen in this simulation.

Additionally, RACPLE gives only an estimate of the electrical properties of the profile. A complete

analysis of the multiple parasitic capacitances and even inductances would be of interest
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5. Application to VLSI Hopfield Neural Networks

5.1. SIMPL for Neural Network Analysis

It was originally proposed that the linking of SIMPL process simulation with RACPLE analysis

could be used to investigate parasitic resistive and capacitative loading effects in highly interconnected

computational structures such as neural networks. SIMPL and RACPLE have been applied to an

analysis of parasitic loading in a structure similar to that developed at AT&T Bell Laboratories [Jac86].

It will be shown that layout and topographical features in processing do have an impact on neural net

work performance.

5.2. Overview of a Reported VLSI Neural Network

The properties of highly interconnected arrays of amplifiers have generated much interest for their

potential use in a new class of computing circuits. The properties of such networks have much in com

mon with biological information processing systems (brains) in that they are massively parallel and fault

tolerant The basic network configuration is shown at the top of Figure 5.1. Several amplifiers are con

nected such that each amplifier output is available as input to any of the other amplifiers. The actual

feedback connection is made with a resistor, and the pattern of resistors in the network determines the

behavior of the entire circuit

The basic operation of the circuit can be described as analogous to the motion of a particle

through a potential energy field in a multidimensional space. This analogy holds if the matrix of inter

connect resistances is symmetric. The output voltages V, of each of the N amplifiers are independent

coordinates in space. The amplifier gain characteristics are assumed to be symmetric around V=0. For

this case, the energy function is

where V=g(u) is the transfer function of the amplifiers, T^T^l/fy are the coupling resistors

between the amplifiers, l//?i=Xyl//?,y and 7^=0 [Hop84]. If the system is put into any particular state

by applying voltages at the inputs, the energy function gradient will cause the circuit to relax to a stable
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state which is close to the initial state. This type of circuit can be used as a content-addressable

memory [How87]. The search operation is done in a fully parallel way and the time to reach a solution

is determined by the speed of the amplifiers and the time constant of the resistor network.

At the bottom of Figure 5.1 is a circuit diagram showing the basic make-up of a single neuron.

The resistances and capacitances, in addition to the resistive weight are due to parasitics in the VLSI

implementation of the network. To study these effects, a single interconnect element was fabricated

with SIMPL.

S3. SIMPL Simulation of a Neural Network Element

Using electron-beam lithography, a 12x12 resistor matrix that fits into a 6x6 micron square was

fabricated by a group at AT&T Bell Laboratories [Jac86]. To generate a device cross section using

SIMPL, the basic geometry of the AT&T device was used. A 0.5 micron thick oxide layer was grown

on the substrate. 0.1 microns of tungsten was deposited and patterned into 0.3 micron lines and spaces.

0.1 microns of a polyimide was deposited as an interplanar dielectric (using SIMPL anisotropic deposi

tion with a 20 degree source angle. A resistor hole was created and filled with polysilicon. Finally, a

0.1 micron layer of nickel was deposited (using SIMPL vertical deposition). The resulting cross section

is shown in Figure 5.2. The cut line was positioned such that the profile generated represents one period

(0.5 microns) of the tungsten line. A second simulation for a cross-over point with no contact is shown

in Figure 5.3. The SIMPL process file for Figure 5.3 is listed in Appendix A.

5.4. Parasitic Analysis

For a planar nickel layer which is 0.5 microns long, 0.1 microns thick and 0.2 microns wide, The

number of lateral squares is 5 and the overall resistance is

R =7.850-cmx5x-—
0.2|im

The inter-metal capacitance is on the order of

C=3.9x8.85* 10-14—x3x0.2tim
cm

Using RACPLE to measure the resistance of the nickel electrode, the number of lateral squares is 7.085
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instead of 5, giving an increase of 40%. Measuring the inter metal capacitance by running RACPLE

over the width of the tungsten electrode only, gives 4.7 lateral squares instead of3, an increase of more

than 56%. Additional capacitances from the electrode to the substrate are negligible in comparison with

the inter-metal capacitance. Using these values in the above equations, the total RC of the upper elec

trode is about 1.0 picoseconds. If there are a thousand such, tungsten lines, the total RC delay of the

nickel line is about 1 microsecond. If we assume an amplifier delay on the order of a microsecond,

clearly the interconnect delay time is an important mechanism. Topography related effects can have a

serious impact on neural network circuit performance, since the total distributed RC delay constant of

the counter electrode increases as the square of the number of neurons. With planarization techniques,

the interconnect delay can be reduced to improve circuit performance.

5.5. Comments on this Approach

SIMPL and RACPLE are in place for studying topography and process dependent effects in novel

circuits such as neural networks. As demonstrated above, basic trends in the characteristics of novel

devices can be investigated with integrated process and device simulation. It is worth pointing out that

industry is not yet developing VLSI neural networks which use processes much different from those

used for conventional CMOS chips. The interest in neural networks now is in getting the chips to work

and finding applications for them [Hec88]. Still, many new architectures and designs for VLSI neural

networks are being proposed, and tools such as SIMPL and RACPLE can be used to provide an initial

assessment of some of the electrical issues involved.

It would be interesting to perform a full three-dimensional analysis of the interconnect structure,

including ones with resistive weights. Process simulation should generate the device geometry in three

dimensions to provide the right link between process flow and device analysis. The nature of the circuit

poses some interesting challenges as well. It has been proposed that the stability properties of Hopfield

neural networks can be related to the properties of individual neurons [Mic87]. This synthesis of system

theory and device technology should also be brought to the analysis. Rigorous software for process and

device simulation will be needed for problems of dense interconnect networks in general, and has a
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ready application in neural networks.
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6. Future Directions for SIMPL

6.1. Profile Data Management

In the area of profile data management, two questions must be addressed. First, what data should

be maintained? Second, how should this data be transferred to places where it is needed? For SIMPL,

the first question can be answered this way: SIMPL should maintain a description of a device profile

which completely describes the device geometry, and materials involved. The profile data description as

it now exists handles most of this information. However, some additions are needed to completely

describe a profile. Currendy, SIMPL only describes the net charge of dopant contained at a particular

location in the substrate. This should be changed so that the species of dopant is included. Such infor

mation is needed for diffusion simulation with programs like SUPREM. SIMPL should also maintain

information about impurities in materials other than the silicon substrate. No information is currendy

maintained about impurities present in a gate oxide, for example. Another addition to the profile

description which is still needed is the ability to describe a floating island of material which is com

pletely surrounded by another material. There are ways around this, usually involving dividing up the

surrounding material into two parts. Ideally however, the SIMPL data base would handle a floating

island of material as a normal case.

The second question involves how data is transferred. Currendy, this is one of the major

bottlenecks which noticeably slows down the performance of SIMPL. SIMPL-DIX and SIMPL-2 use

files to transfer profile information back and forth. The time spent writing files can be significant when

large pieces of data must be transferred. It is easy to write programs that communicate through files, but

it is not very efficient from a user's pointof view. In this day of powerful computer work-stations, with

several megabytes of RAM storage available, SIMPL should avoid communication with files. Instead,

data should be stored in memory common to both SIMPL-DIX and SIMPL-2.

Likewise, in the area of communication with other programs, it is desired to get around the need

to use files. This is not an easy problem to solve yet, especially for programs written in different pro

gramming languages. There is some promise, however, that a PEF data base will one day become
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available. Eventually it will be possible to send aprogram a pointer to the root ofa data tree instead of

a file full of data. Without aPIF parser this is not yet a possible alternative, but it should be pursued.

62. Tools Integration with SIMPL

There is already strong interest in industry for an integrated design environment for process and

device simulation. SIMPL has the potential for filling this gap, but work remains to be done. SIMPL-

DIX is a suitable framework for creating menu driven interfaces to various programs, but it is not

always an easy environment in which to do development work. For aprogrammer wishing to integrate a

new simulator into SIMPL-DIX. it would be useful to have some sort of library of standardized routines

from which to build the application interface. Many routines which fit that description already exist in

SIMPL-2 and SIMPL-DIX but they are not organized in an efficient manner. Many must also be rewrit

ten in order to be useful for general applications. As it stands now, it often takes programmers several

months to understand the intricacies of SIMPL. Instead of tracking down routines which already exist, it

is often easier to write new ones. This only adds to the size and complexity of SIMPL. One might say

that SIMPL is becoming so convoluted that the name should be changed to HARD. SIMPL, if fully

integrated with programs like SAMPLE, SUPREM and PISCES, would become a powerful design

environment. With a standardized approach to integrating new simulation software into its framework,

SIMPL would remain at the leading edge in the face of rapidly changing technology. Admittedly, this

would be a major undertaking, but industry would be very interested in a design environment which

could easily be connected to proprietary device and process simulation software.

Listed in Appendix C are several of the C functions in SIMPL-2 which are useful for tools

integration and profile manipulation. This list includes C functions available in the most recent release

version of SIMPL-2 as well as new ones written as a part of the ongoing development of SIMPL. A

few routines in SIMPL-DDC which were used in this project are also listed. The routines are organized

according to their use in tools integration and profile manipulation. It is not an exhaustive list of the

functions available in SIMPL but is intended as a first step in organizing the routines in a useful

fashion.
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Another area to be considered is the possibility of integrating SIMPL with the OCT/VEM

environment [Har86]. Many of the software tools needed for integrating SIMPL with other simulators

exists in OCT/VEM. Additionally, the issue of upgrading from X windows version 10 to version 11

would automatically be solved if SIMPL is included in OCT/VEM. Once those programs switch to XI1,

so will SIMPL. The trade-offs and advantages of integrating SIMPL with OCT/VEM should be further

explored. Some combination of these options, where SIMPL can be used as a stand-alone environment

and where it is also available in OCT/VEM may ^ me most flexible and useful approach.

A standard PIF format is also a necessity in order to pursue the goal of tools integration. It is pos

sible to develop custom interfaces for each simulation program that becomes available, but the time

involved is often great If every process and device simulation program communicated with PIF, this

aspect of tools integration would be trivial.

63. Problems in the Implementation of SIMPL

Recent releases of SIMPL suffer from some implementation problems which hamper the

effectiveness of the program. The biggest problems involve the internal etch simulation models. Many

standard cases are not handled correcdy, and the resulting profiles are incorrect. There are also cases

where SIMPL-2 incorrecdy searches the database, which instead of merely giving a false profile, cause

the program to crash unexpectedly. The implantation routines often suffer from overflow problems.

The grid which SIMPL-2 uses to store doping concenuation information is sometimes allocated

incorrecdy. The routines are also prone towards developing infinite loops which freeze the program.

SIMPL-DIX has some minor problems, generally resulting when some global variable is not reset prop

erly. Occasionally, attempts to re-initialize SIMPL-2 from SIMPL-DEX are not successful.

This lack of robustness takes away from the usefulness and credibility of the program. When a

perfecdy normal process cannot be simulated by SIMPL, most potential users simply give up. These

problems are not due to major shortcomings of the ideas behind SIMPL, but can be traced to problems

of implementation and inconsistencies in the software. At some point, these implementation problems

will need to be thoroughly investigated and cleaned up.
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6.4. Conclusion

SIMPL is a useful tool for studying the complex interrelationship of physical phenomena that go

into modem integrated circuit process design. This project has demonstrated how some basic tools can

be integrated into the framework of SIMPL, shown how SIMPL can be used to analyze proposed

processes, and listed some of the work that must be done to keep SIMPL at the cutting edge of CAD

technology for process and device simulation. It is hoped that this report is a useful contribution to this

increasingly important field in integrated circuit design and manufacture.
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Figure 4.3 After patterning photoresist. . .
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Figure 4.6 Metallization step gives final topography.



Figure 4.7 Effect of 0.6 micron misalignment



Figure 4.8 Effect of 0.9 micron misalignment



Figure 4.9 Effect of 1.2 micron misalignment
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Figure 4.10 Effect of 1.8 micron misalignment



Figure 4.11 Effect of mask NB being too small



Misalignment in microns

Figure 4.12. Effective lateral squares in the dielectric
versus misalignmentof mask used to pattern
the resist in the patterned resist planarization
process.



Basic schemetic of Hopfield neural network:
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Figure 5.1. Hopfield Neural Network
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Appendix A

SIMPL-2 Process Files



*f!wsf****************************************************************************

LAYOUT FILE : rbxl.cif

SUBSTRATE TYPE: p type, concentration lel4

CUT-LINE COORDINATES : xl - -1705, yl - 271
x2 - 596, y2 - 276

•fr******************************************************************************

* 1 *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? rst
THICKNESS OF THE MATERIAL (micro-meter) ? 1.0
ISO, ANISO, VERT, or SAMPLE MENU (I,A,V,or S) ? v
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 2 *

WHICH PROCESS ? EXPO

WHICH MASK ? ns

INVERT THE MASK (yes or no) ? no
NAME OF THE EXPOSED RESIST ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? DEVL

NAME OF THE LAYER TO BE DEVELOPED ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? ETCH

WHICH LAYER DO YOU WANT ETCH ? si
ETCH ALL (yes or no) ? no
AMOUNT OF VERTICAL ETCH (micro_meter) ? 0.85
RATIO X/Z OF ETCHING (0.0 <» RATIO <= 1.0) ? 0.0
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 5 *

WHICH PROCESS ? DEVL

NAME OF THE LAYER TO BE DEVELOPED ? rst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 6 *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? psg
THICKNESS OF THE MATERIAL (micro-meter) ? 1.5
ISO, ANISO, VERT, or SAMPLE MENU (I,A,V,or S) ? i
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 7 .*

WHICH PROCESS ? DEPO



NAME OF THE MATERIAL ? rst

THICKNESS OF THE MATERIAL (micro-meter) ? 0.75
ISO, ANISO, VERT, or SAMPLE MENU (I,A,V,or S) ? v
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 8 *

WHICH PROCESS ? EXPO

WHICH MASK ? nb

INVERT -THE MASK (yes or no) ? no
NAME OF THE EXPOSED RESIST ? erst
DO YOU-WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? DEVL

NAME OF THE LAYER TO BE DEVELOPED ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 10 *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? rst2
THICKNESS OF THE MATERIAL (micro-meter) ? 1.0
ISO, ANISO, VERT, or SAMPLE MENU (I,A,V,or S) ? i
DO YOU WANT TO DRAW-THE CROSS SECTION (yes or no) ? yes

* 11 *

WHICH PROCESS ? ETCN

etchrate for RST2, layer 3 (um/sec) ? 0.01
etchrate for RST, layer 2 (um/sec) ? 0.01
etchrate for PSG, layer 1 (um/sec) ? 0.01
etchrate for SI, layer 0 (um/sec) ? 0.001
timestep in seconds ? 50
number of steps ? 4
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 12 *

WHICH PROCESS ? ETCU

DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

* 13 *

WHICH PROCESS ? DEPO

NAME OF THE MATERIAL ? metl

THICKNESS OF THE MATERIAL (micro-meter) ? 0.85
ISO, ANISO, VERT, or SAMPLE MENU (I,A,V,or S) ? i
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? END



********************************************************************************

LAYOUT FILE : nn.cif

SUBSTRATE TYPE: p type, concentration 0

CUT-LINE COORDINATES : xl - -59, yl - 12
x2 - 30, y2 - 12

********************************************************************************

* 1 *

WHICH PROCESS ? OXID
OXIDE THICKNESS (micro-meter) ? .5
Xt (micro-meter) ? .5
Xe (micro-meter) ? .25
ul ? .1

u2 ? .5

u3 ? .9

dl ? .1
d2 ? .5

d3 ? .9
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

* 2 *

WHICH PROCESS ? DEPO
NAME OF- THE MATERIAL ? wmtl
THICKNESS OF THE MATERIAL (micro-meter) ? .1
ISOTROPIC, ANISOTROPIC, OR VERTICAL (I, A, or V) ? v
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

* 3 *

WHICH PROCESS ? DEPO
NAME OF THE MATERIAL ? rst
THICKNESS OF THE MATERIAL (micro-meter) ? .25
ISOTROPIC, ANISOTROPIC, OR VERTICAL (I, A, or V) ? v
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

* 4 *

WHICH PROCESS ? EXPO

WHICH MASK ? wmtl
INVERT THE MASK (yes or no) ? no
NAME OF THE EXPOSED RESIST ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

* 5 *

WHICH PROCESS ? DEVL
NAME OF THE LAYER TO BE DEVELOPED ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT



WHICH PROCESS ? ETCH
WHICH LAYER DO YOU WANT ETCH ? wmtl
ETCH ALL (yes or no) ? no
AMOUNT OF VERTICAL ETCH (micro_meter) ? .1
RATIO X/2 OF ETCHING (0.0 <- RATIO <- 1.0) ? .1
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

* 7 *

WHICH PROCESS ? DEVL
NAME OF THE LAYER TO BE DEVELOPED ? rst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

* 8 *

WHICH PROCESS ? DEPO
NAME OF THE MATERIAL ? poly
THICKNESS OF THE MATERIAL (micro-meter) ? .10
ISOTROPIC, ANISOTROPIC, OR VERTICAL (I, A, or V) ? a
SPUTTERING SOURCE ANGLE (degrees) ? 20
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

* 12 *

WHICH PROCESS ? EXPO

WHICH MASK ? psg
INVERT THE MASK (yes or no) ? yes
NAME OF THE EXPOSED RESIST ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

* 13 *

WHICH PROCESS ? DEVL
NAME OF THE LAYER TO BE DEVELOPED ? erst
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

* 14 *

WHICH PROCESS ? DEPO
NAME OF THE MATERIAL ? nmtl
THICKNESS OF THE MATERIAL (micro-meter) ? .10
ISOTROPIC, ANISOTROPIC, OR VERTICAL (I, A, or V) ? v
DO YOU WANT TO DRAW THE CROSS SECTION (yes or no) ? yes

WHICH PROCESS ? WAIT

WHICH PROCESS ? END



Appendix B

Source code for the majority of the routines developed for this project.

dix_actions4.c
F77Layers.c
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/* dlx action*.c
• "Fourth part of SIMPL-DIX action routines.
•

• See "coraraand_control.c".
•

• Editard M. Scheckler Nov. 15, 1988
• Copyright (C) 1988 0. C. Berkeley SAMPLE Group
•/

•Include <etdlo.h>
•Include <math.h>
•Include <X/Xllb.h>

• Include "Blrapl-dlx.h*
•Include "slmpl.h"
•Include "clf.h"
•Include "command.h"

•Include "display.h"
•Include "default.h"

External declarations.

char 'RACPLE Path;
extern dlxVlewport DIX_Vlewport(VIEHPORT_SIZEJ,

extern floatVlew ProflleVlew;
extern floatBound ProflleBound;

extern short Pattern_Slie;

extern short Coraroandld;
extern short Menu_Id;

extern short Cut 1IneStatus;

extern short Layout_Status;
extern short Pattern_Status;
extern short Proflle_Status;
extern short Prof HeFrame_Statu8;

extern Font Info •Body_FontInfo;
extern Color Background_Color;
extern Color ForegroundjColor;
extern simpI Polygon *SIMPL_PolygonRt;
static float x)eft|S0|,yleft(50|;
static float squarea|SO|;

Routines to call a version of RACPLE

Added: Oct ?4, 1988 EWS

If the file RACPI.F.RESULTS already exists, then DIX
assumes that It belongs to the current profile. If not
surh a file Is created by calling RACPI.F. for narh polygon
In t ho prof 11«».

DoRacpleO
I

FILE *fpp,*fopen();
9ImplPolygon *Polygonptr; , ,
char polyname(NAM£_SIZE|;
char Junk(80),colon;
struct floatpath *Polypath;
lnt 1,11;

Polygonptr - SIMPL_PolygonRt;
1-0;

If((fpp-fopen("RACPLE RESULTS","r"))!-NULL)(
lf(GetYesOrNo("RACPLE_RESULTS exists. Use It?")--YES)(

/•read the file*/
fscanf(fpp,"%s %s",Junk,Junk);
fscanf(fpp,"»a %s %s %s %a %s %s %s Is",Junk,junk,

Junk, Junk, Junk, Junk, Junk, Junk, Junk) ;
for(;;)l
fscanf(fpp,"%d",4ll);
If(11 !- 1 ) break;
fscanf(fpp,"%s",polyname);
fscanf (fpp, -%f",txleftlU);

fscanf(fpp,"*f",tyleft(1|);
fscanf(fpp,"%f",*squares 111);

l**;

1

fclose(fpp);
I else (

fclose(fpp);
goto makenew;

|/*GetYesOrNo*/
I else |

makenew: fpp - fopen("RACPLE RESULTS", "w") ;
fprlntf (fpp, ••••••RACPLE RESULTS ** \n") ;
fprtntf(fpp,"Material Type, Head Vertex (x,z), • of Lateral Squares\n")

while (Polygonptr I- NULL) (
CreateRacplelnput(1,Polygonptr,ixleft(11,tyleft111);
RunRacple(1,(squares(11);

sprIntf(polyname,"%s",Polygonpt r->name);
fprlntf(fpp,"%3d %6s %12.3f %7.3f %9.3f\n",l,

polyname,xleft(1) ,yleft 111,squares!11);
Polygonptr - Polygonptr->next;

I**}
\ /*whlle*/

fclose(fpp);
I /'If/

PrlntRacpleData(I);

PrlntRacpleData (number of points)

Routine to sort each row of data by value of
x coordinate and print It to profile viewport

Revised 11/8/88 KHS

Print RacploUata (I)
I nl I ;

I
dlxVlewfiort. vl«'w;
1til m.ix pet row, no rows, no col;
lnt l«-ft t'tlun, i Ight edge, top edge, hoi torn edge;
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lnt wval,hval,xval[501,yval(50|,xpolnt(50|,ypolnt|S0);
lnt Index, J,k,1,ln,klm,gap,n,flag;

float tempx, terapy,temps,prevx;
lnt samexl|10|,samexr(10|tno_«aa«(ltoh(10),htol(10|;
char value|15|;

char prompt_otrlng(80|;
Pixel fore,back7

Font Info 'font;

FILE *fp;

view - DIX Viewport[1J;
left edge - GetProflleVlewX(view,Proflle_Vlew,ProflleBound.left);

right edge - GetProflleVlewX(vlew, ProflleVlew, ProflleBound.right);
top edge - GetProfl leVlewY(view. ProfUevfew, ProflleBound.top) ;

~bottom_edge-GetProflleVlewY(view. ProflleVlew,ProflleBound.bottom);
sprint f(value,"%f",squares(O));
wval - GetTextHldth (value,5,BodyFontInfo);
hval - (2*TEXT_MARGIN)*Body_FontInfo->helght;

back - Background_Color.pixel;
fore - Foreground_Color.pixel;
font - Body_FontInfo;

raax_per_row - ((rlght_edge - left_edge)/wval) - 3;
If(l%maxjper_row ~ 0) (

no_rows - i/raax_per_row -1;
I else |
norows - l/max_per_row ;

for(l-0;l<-no_rows;l*+)(
If(l--no_rows 44 i%max_per_row 1-0) I

no_col - l%max_per_row;
I else I

no col - max_per row;
)/MfV

/ ••••••••••

Do a shell sort on each row using x-coordlnate
••••/

1m - 1•max_per_row;
for(gap-no2col/2; gap>0;gap/-2)

for(J-gap;J<no col;J*»)
for(k-j-gap;(k>-0 it xleft(ktlm) >

xleft(k+lra«gap));k—gap) I

klm - k

temps-squares(k lm|;

lm;

tempx-xleft(klm|;
tempy-yleft(klm);

xleft(klm|-xleft(klm»gap);
yleft(klro|-yleft(klm+gapl;
squares(klm|-squares|k1m»gap| ;
xleft(klm+gapl-tempx;
yleft(klm*gap|-tcmpy;
squares|klmtqap|-temps;

)/*for k»/

Try to eliminate crossing lines
• /

/•fp - fopen("debuq","w");•/
ltoh(0)-l;
htol|0)-0;

prevx - xleft[lm|;

- 0;

flag - 0;
r..im«>K I | no same) - 0;

for(k-0;k<no_col;kt»)(
klm - k ♦ Ira;
xpolnt(klm)-GetProfll«Vl«wX(vlew,Proflle_Vlew,

xleft(klm)); t
ypolnt(klm|-GetProfileVlewY(*lei«,Proflle_Vlew,

yleft(klml);
if(klm < max_per_row)|

yval(klm) - bottoraedge - TEXT_MARGIN
- Body_FontInfo->helght;

xval(klm| - left_edge ♦(wval+wval/3)*klm

♦ wval/S * wval*(max_per_row - no_col)/2;
| else |

yval(klra| - topedge ♦ (klra/max_per_row -1)*
(Body_FontInfo->helght ♦ TEXTMARG1N);

xval(k)m| - left_edge ♦ (wvaUwval/3) •
(klm%max~p*r_row)+wval»(max_per_row -
no colJ/2 *• wval/S;

I
1(( k!-0 44 xleft(kIn)-prevx < 0.001) (

samexr(no same|-klm;
If ((l--0~44 xpolnt|klm)< xval|kln|)||

(1>0 44 xpolnt(klm|> xval

ltoh(no_same| - 1;
htol(no_same| - 0;

I
If ((1—0 44 xpolnt(klm|> xval(klm))11

()>0 44 xpolnt|klm|< xval

ltoh(no_saoe| - 0;
htol|no same) - 1;

)

flag - 1;
If(k — nocol - 1)(

nosameH;

)

I else (
If (flag — 1) no_same*+;
flag - 0;
IIoh(no_same|-1;
htol(no_same1-0;
samexl(no_same| - klm;
prevx - xleft(klm|;

| /*for k*/
for(n - 0; n < no_same; n**)|
/•fprlntf (fp,"%l;xl-%l, xr-%l\n",n,samexl|n|,samexr |n|) ;•/
for(qap-(saroexrln|-samexl(n|*l)/2;gap>0;gap/-2)

for(J-gap;J<(samexr|n|-samexl(n|*l);J**)
for(k-J-gap;(k>-0 44 ((yleft(k*samexl|n|*lm) >

yleft(k*lm»samexl(n|*gapi)44(ltoh|n|—1) II
(yleft (k+saraexl|n| +lB| < yleft|k*lm

*saraexl(n|+gap|)44(htol |n|—1)) ) ;k
klm - k*lm«-saroexl(n|;

/•fprlntf(fp,"swap %1 %i; htol «l Itoh «l\n-,klm,gap,ltoh(n|, htol (nj) ;•/
tempx-xleft(klm);
tempy-yleft|klm|;
temps-squares(klm);
xleft(klm|-xleft|k)m+qap|;
yleft(klmj-yleft Iklro»gapl;
squares|klm|-squares|klm*qap);
xleft|klm«qap|-tempx;
yleft|klm«gap|-tempy;
squares|klm»gap|-temps;
xpolnt |klm»g.ip| -xpolnt |klm| ;
yi>olrit |k Imxj.ii'l -ypotnt Ik lm) ;

•gap)
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I /'for n*7
/•close(fp);*/

|/*for !•/

xpolnt(klm)-GetProfUeVlewX(view,Prof lie
xleft(klml);

ypolnt(klra|-GetProflleVlewY(view,Proflle
yleft(klm|);

for(lndex-0;lndex<l;lndex+»)(
sprintf(value,"If",squares(index));

Pr1ntText(vlew,xva111ndex|,yva1(1ndex|,
wval,hval,value,font,fore,
back, CLIP_RIGHT);

if(index >- raax_per_row II l<-max_per_row|(
yval(Index| - yvallindex) ♦ BodyFontInfo->height;
I

XLlne(view.self,xval(Index),yvalJlndexl,
xpolnt(lndex),ypolnt(Index),1,1,

(back"fore),GXxor,AHPlanes);

XFlushO;

|/«for loop*/

Create Racple Input

This routine reads a ploygon in the SIMPL-DIX linked list
and decomposes It Into an upper and lower layer. The layers
are written to a file which can be used as input to RACPLE.

Revised 10/13/88 EMS

Bugs: Sometimes it fails to print out the second layer
I think there is a bug In one of the possible

Cases.

CreateRacplelnput(fllecnt,Poly,xleft,zleft)
lnt fllecnt;

slmplPolygon *Poly;
float »xleft,*zleft;

(

FILE *fp;
floatPath *pathptr;
float xmln,xmax,zmln,zmax,xmaxz,xmlnz;
float xmaxzm,xmlnzra;
float xhead.zhead;

float xO|b001,zO(500);
float xl(M)0|,zl(500|;

float x?|b00),z2|b00|;
lnt l,1,k;
Int. head loc.degen edge;
char f11enamn|801;
lnt count,Ixmln,Ixmax,Ixmaxm,ixmtnm;
lnt number pr sl ,numt>er pt s?;

f I nil x and z ext rema

•»•/

xmln - 1000.0;

xmax - -10.0;

xmaxz - -10.0;
xrainz - -10.0; , »

xmaxzm - 1000.0;
xmlnzm - 1000.0;

zmln - 1000.0;

zmax - -10.0;

count - 0;
pathptr - Poly->path;
xhead - pathptr->polnt.x;

zhead - pathptr->polnt.y;
while (pathptr 1- NULL) I
xO|count| - pathptr->point.x;
z0(count) - pathptr->polnt.y;

If(pathptr->polnt.x >- xmax)(
If (count !- 0 44 pathptr->polnt.x — xmax) (

if(pathptr->polnt.y >- xmaxz)I
lxmax - count;

xmaxz - pathptr->polnt.y;
) else if(pathptr->polnt.y <- xmaxzm)(

Ixmaxm - count;

xmaxzm - pathptr->polnt.y;

I

) else {
lxmax - count;

Ixmaxm - count;

xmax - pathptr->polnt.x;
xmaxz - pathptr->polnt.y;
xmaxzm - pathptr->polnt.y;

)/*lf pathptr */
If(pathptr->polnt.x <- xmln)(

If(count!- 0 44 pathptr->polnt.x ~ xmln)I
If(pathptr->polnt.y >- xmlnz)I

lxmin - count;

xmlnz - pathptr->polnt.y;
I else if(pathptr->polnt.y <- xmlnzm) I

lxmlnm - count;

xmlnzm - pathptr->polnt.y;

I
) else (

lxmln - count;

lxmlnm - count;

xmln - pathptr->polnt.x;
xmlnz - pathptr->polnt.y;
xmlnzm - pathptr->polnt.y;

I
)/Mf pathptr*/

If(pathptr->polnt.y >- zmax)
zmax - pathptr->polnt.y;

If(pathptr->polnt.y <- zmln)
zmln - pathptr->polnt.y;
pathptr - pathptr->next;

count♦♦;

| /'while*/

/
determine relative location of head vortex

and corner points.

/

If (lxmln—lxmlnm 44 Ixmax— ixmaxm) (degen edge - 3;
| else If (lxmln -- lxmlnm) (degen edge - 1;

| clsp lf(lxm,ui -- iKin.ixm) I'logi-n eilgp - >:
\ f\ se IdiMji-n «Mlt|p - fi; |
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if (xhead — xmln 44 ihud — xmlnz) I
h«ad_loc - 0;

I else
if(xhead — xmax 44 zhead — xmaxz) I

head_loc - 2;
I else
If(xhead — xmln 44 zhead — xmlnzm) I

head_loc - 6;
I else
if(xhead — xmax 44 zhead — xmaxzm) (

head_loc - 4;
)else

if( lxmln > lxmax 44 lxmlnm > Ixmaxm ){
headloc - 1;

) else
lf( lxmln < lxmax 44 lxmlnm < ixmaxm )I

head_loc - 5;
I else
if( degenedge — 0 II degen_edge — 1)(

If(xhead — xmax 44(zhead < xmaxz 44 zhead > xmaxzm)) (
head_loc -3;

I
) else
lf( degen edge — 0 || degenedge — 2)(

if (xhead — xrain 44 (zhead < xmlnz 44 zhead > xmlnzm)) (
head loc - 7;

I

switch(headloc) I

case 0:

case 6:

case 7:
numberptsl - lxmax - lxmln *1;

number pts2 - lxmlnm - Ixmaxm *1;
If(headloc — 6)(

'number pt62 - count - ixmaxm *1
I
for(k-0;k<number ptsl;k*») (

xl(k) • x0(lxmln+k|;
zl(k| - z0|lxmln4k);

I
(or(k-0;k<number_pts2;k*») I

If(head loc—6) lxmlnm-count;
x2|k| -~x0(lxmlnm-k|;
z2|k| - zO(lxmlnm-k);

)
If(headloc — 6)I

x2(0|-x0|0|;

z2(0|-z0(0|;

I
break;

case 2: '

case 1:

case 4:

/• needs patch for case 2*/
number ptsi - lxmax - lxmln »1;
number pts? - lxmlnm - Ixmaxm »1;
for(k-6;k<number pts2;ki ♦) I

x?|k| - xO|lxmlnm-k|;
r?|k| - 7.0| Ixmlnm-kl;

I

for(k-0;k<nurober_ptsl;k**) I
xl(k| - x0[lxmln*k|;
zl[k| - zOflxmlntkl;

I
break;

case 1:
number_pts2 - lxmlnm - ixmaxm ♦ 1;
number ptsl - lxmax ♦ count-lxmln ♦ 1;
for(k-0;k<number_pts2;k+M (

x2[k] - xO(lxminm-k);
z2(k) - zOlixmlrun-k);

)
for(k-0;k<number_ptsl;k4+) (

If(k < count-Txmin)(
xl|k) - xO|ixmln*k|;

zllkl - zO(ixmlntk);
) else |
xl(k| - x0(k-(count-lxmln));

zl|k| - zO(k-(count-lxmln)1;

)

I
break;

case 5:
number ptsl - lxmax - lxmln * 1;

• number pts2 - lxmlnm ♦ (count-ixmaxm) ♦ 1;
for(k-0;k<number_ptsl;k*+)(

xl(k| - x0(lxmln*k|;
zl|k) - z0|lxmln*k|;

)
for(k-0;k<number_pts2;k»M (

If(k <- lxmlnm)(
x2[k| - xO(lxralnm-k);
z2(k| - zO(lxmlnm-k);

I else (
x2(k| - xO(count-(k-ixminm));

z2(k| - zOlcount-(k-lxmlnm)|;

I

I
break;

default:

number_ptsl-l;
number pts2-l;
xl|0|-99.99;

zl(0|-99.99;
x2(0)-99.99;
z2|0)-99.99;

break;

) /"switch*/

•xleft - xmln;

•zleft - xmlnz;

/ /
/• write layer Information to f77 format file •/
/ '

sprlntf(filename,"RACPLEInput.%1",f1lecnt);
fp - fopen(f1lename,"w");

•••••write first layer to file • */
AddPolntstol-iycr (x2, z?,4numl>er pts2) ;

fprlntf (fp,"\n %l().6f *10.(if %10.6f %10.6f\n",
xmln.xmax,zmln-zmax-0.1,0.1),

fprlntf(fp,-%10.6f \n -,2.0);
fprlntf(fp, "%10.6f \n",1.0'immher pts?);
loi (1-0; )<nuntlM>i |>ir.?;)»t)
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fprlntf(fp,"«10.6f %l0.6f\n",x2(J|,
z2(J) -zmax );

/4*.**»«wr}te second layer to fii«**'***»***"*/
AddPolntstoUyer(xl,zl,4number_ptsl);
fprlntf(fp,"%10.6f \n",1.0*number_ptil);
for (J-0;J<number ptsl;J**)(

fprlntf(fp,"%10.6f %10.6f\n",xl(Jl,
zl(J)-zmax );

I
fclose(fp);

)/'Create Racple Input*/

AddPointstoLayer(xx,zz,nn)
float *xx,*zz;

lnt 'nn;

(
float eps;

float mlnlength;
lnt 1,J,flg,dbgcnt;
float xnew(500|,znew(500|;

mlnlength - fabs(xx('nn-lI -.xx(0))/20.0;
eps - 0.0001;
xnew(0| - xx(0|;
znew(O) - zz|0);

J - 1;
dbgent - 0;
while(dbgcnt<10)|

dbgent»♦;

J-i;
fig - 0;

for(i-l;K'nn;l**)(
If(fabs(zz(l|-zz(i-H)<eps 44 fabs(xx|l |-xx(l-l|)>ralnlength)(

fig - 1;
xnew(J)-(xx(l|*xx(l-l|)/2.0;

znew|J|-(zz(l|*zzli-l|)/2.0;

J»*;
I

xnew[J|-xx(l|;
znew(J)-zz(l);

J";
I
lf(flg — 1)1

for(i-l;l<J;i**)(
xx(l|-xnew|l|;

zz(l|-znew|l);
/•••••patch to eliminate small sharp spikes

from RACPLE Input /
if (1<1-1)(

If (fabs(xnew(lU|-xnew|l-l|) < mlnlength/3.5 44
(znew|l-l|<znew(l|)44

(znew|l«l|<znew(l))>I
zzMI - (znew|l-l|»znew|l»l|)/2.0;

I

I

I

•nn - );

I else rot urn(0);

I

I

/

This routine calls RACPLE with the appropriate Input
file. Output is sent to RACPLE_Output.»
The Output file Is read and the number of lateral %

squares for the first layer Is returned

revised 10/13/88 EHS

RunRacple(fllecnt,outputdata)
float *output_data;
int fllecnt;

(
FILE 'fp;
FILE 'fp2;
lnt Idum;
char str(17|,str2(7|;

char command(80|;

char Racple1801;
char debug|80|,outfile(80|;

char message_strlng(80|;

sprintf(messagestring,"Running RACPLE : %1",fIlecnt);
Prompt(message_strlng);

If(RACPLE_Path 1- NULL)|
strcpy(Racple, RACPLE_Path);

I else I
strcpy(Racple,DEFJRACPLE_PATH>;

/•strcpy(Racple,-/users2/edscheck/DEVICESIM/racple/racple");•/
sprintf (command,"%s < RACPLE_Input.%t > RACPLEOutput.%1",

Racple,f1lecnt,f1lecnt);
system(command);

/* sprintf(debug,"debug.%1",f1lecnt);
fp2 - fopen(debug,"w");

fprlntf(fp2,"%s",command);
fclose(fp2); •/
sprlntf(outflle,"RACPLE_Output.*1",fllecnt);
fp - fopen(outflie,"r");
fscanf(fp,"%l %17c %f %7c",4ldum,str,output_data,str2);
/•fscanf (fp,"%f,output_data); •/
fclose(fp);

)/*RunRacple*/

/•"" /
Display Nonplanar EtchO
/ • r
i

dlxVlewport view;
Pixel fore,back;

Font Info 'font;

FILE *fp,•fopen();
float xmx,xmn.ymx,ymn.nlns;

float no pis;

float xxl,yyl,xx2,yy?;
lnt I, ),xl,yl,x?,y2;

view - DIX Viewport |1|;
bark - Rackijround Color .pixel ;
fon' - Foreground Color.pixel;
font - Body Font Into;
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fp - fopen("SAMPLE_netchf77",-r");
fscanf(fp,"%f%f%rYfn,4xmn,4xmx,4ymn, 4ymx);
fscanf(fp, "%f"«4nlns);
for(J-0;J<nlns;J**)(

read a line segment

fscanf(fp,"%f",4no_pts);
fscanf(fp,"%f%f",4xxl,4yyl);
yyl - (ProflleBound.top ♦ yyl);
xl - GetProflleVlewX(view,Proflle_Vlew,xxl);

yl - GetProflleViewY(vlew,Proflle_View,yyl);
for(l-l;l<no pts;l+*)(

fscanf(fp,"%f%f",4xx2,4yy2);
yy2 - (ProflleBound.top ♦ yy2);

x2 - GetProfileVlewX(view,Proflle_Vlew,xx2);
y2 - GetProflleVlewY(vlew,Proflle_Vlew,yy2);

/»* ••

draw It to screen

••••/
XLlne(view.self,xl,yl,x2,y2,1,1,(back-fore),GXxor.AllPlanes);

XFlushO;

xl - x2;

yl - y2;
)/*for 1*/

|/*for J*/
fclose(fp);

I
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/*F77Layers.c
• Routines used to run non-planar
• etch simulation with SAMPLE
•

•Edward H. Scheckler Dec. 1, 1988
•Copyright (C) 1988 U.C. Berkeley SAMPLE Group
•/

•include -SIMPL.h"
•Include "SIMPLJIacros.h-
•Include "Local.h"

•Include <stdlo.h>

typedef struct layers I
float x(500|;

float z|S00|;
char layer_type(151;

lnt number_pts;
) LAYERS;
static LAYERS layer_array(30|;
static lnt number_layers;

static POLYGONPTR top_poiy list(30);
/ /
Run nonplanaretchf)
/"• /

(
FILE *fp;
char command(100);

char Samplel_7(100);

GLprlntf("initializing for nonplanar etch");
lf(-l I- HrlteSAMPLEnplnrO) I

sprlntf(Samplel 7,"/users2/edscheck/bln/samplel.7-);

•lfdef UNIX
GLprlntf("running SAMPLE1.7 . . .-);

sprlntf(command, "%s < SAMPLE_nonplanar > SAMPLE, nOutput",Saroplel_7);
system(command);

sprlntf(command,"rav -f f77punch7 SAMPLE_netchf77");
system(command);

•endir

I

)
Run_nonplanar_update(flag)
lnt flag;

I
FILE 'fptr;
char YORN(3|;
char command(100|;

If (flag — 1)1
RedeflneProfileO;

I else |

fptr - fopen("temp_save","r");
Bead Oata2(fptr);
fclose(fptr);

I
sprlntf(command,"rm -f temp save");
system(command);

Redefine Profiled

/ • /

I
COORDINATES tp| IOOO|,ht |lO0O|;

lnt ntp,nbt;

lnt l.J;
FILE *fp;
float xmx,xmn,zmn,zmx,nlns,nntp;

fp - fopen("SAMPLE_netchf77",-r"»;
fscanf(fp."%f%f»f%f",4xmx,4xmn,4zmn,4zmn);
fscanf(fp."%f",4nlns);
for(J-0;J<nlns;J**)(

fscanf(fp,"*f",4nntp);
ntp - l'nntp;

for(l-0;Kntp;l»*K

If (J—3)(
fscanf(fp,"%f»f",4bt(U.x,4btli|.z);
nbt - ntp;

I else (
fscanf(fp,"%f%f,4tp|l|.x,4tp(l|.z);

I

I

I
fclose(fp);

/• for(l-0;i<layer_array(3|.number_pts;l**)(
bt(l|.x~- layer_array(3|.x(l);

bt(l|.z - layer_array(3T.i(H;
I
nbt - layer_array(3).nurnber_pts;»/

/• if(layer_array(2|.layer_type — NULL)'/
sprlntf (laye^arraym.layer^ype.-PSG-J.-

NewTop Poly(tp,ntp,bt,nbt,layer_array|2|.layer_type);

)/*Redefine_Profile*/

/ /
Get_Layers()

This routine extracts the profile stored In SIMPL-2 and
Interprets it as a series of layers which can then be written
to a SAMPLE plot file In f77puncl>7 format.

It Is also used to write an Input file for SAMPLE nonplanar
etch

BUGS - destroys SIMPL-2 data structure
This has been remedied by saving profile in a data file
so that It can be reloaded at the end of this routine.

FILE »fptr,•fopen() ;

lnt l.J;
POLYGONPTR topjx>Iygon,t mpl polyqon,top2_poIygon;
POLYGONPTR Fl nd Polyqon <), Find top polyO;
VERTEXI'TR top v, top2 v;
VF.RTKXPTR trnpl v;
VK.RTKXPTR Get l.e f I Top () ;

char 'Write save(lle();

char previous 11*>|;
char Material name|IS|;

ch.ir 'fi.ive name;

ch.»t s n.ime I HO I ;

ch.ir YOUHI II;
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char layerflle_name(14);
float xleft(30|,xrlght(30),zleft(30|;

float top_z,top2_t; /• highest point In layer »/
float bottom_of_poly0;

save SIMPL data structure since
subsequent code will destroy it.

fptr - fopen("temp_Bave","w");
Hrltesavef1le2(fptr);

closelfptr);

The Layers are extracted by reading the top contour, and
then deleting the polygon which make up the top
contour which also shares the same material type as the top
most vertex. This continues until the substrate is reached.

1-0;

for(;;)

I J - 0;
top2_z-0.0;

top_z-0.0;
top_polygon - NULL;
top2 polygon - NULL;
troplpolygon - NULL;

tmpl_v - Get_LeftTop();
top2_v - tmpl_v;

top_v-tmpl_v;
while (tmpl v->xz.x < xmax) I

If(strcmp(tmpl_v->bMtrl,"AIR")—0) I
layer array(i).x(J) - tmpl_v->xz.x;
layer~array(l|.z|J**l - tmpl_v->xz.z;
strcpy(previous,tmpl_v->aMt rl);
Move(4tmpl_v,tropl_v->aMtrl);

) else |
layer array(l).x(JI - tmpl_v->xz.x;
layer^arraylll.zIJ**! - tmpl_v->xz.z;
1f(strcrop(tropl_v->aMtrl,previous) —0) (

strcpylprevious,tmpl_v->bMtrl);
Move(4tmp)_v,tmpl_v->bMt rI);

| else (
strcpy(previous,tropl-v->aMtrl);
Move(4tmpl_v,tmpl_v->aMtrl);

I

)

If(tmpl_v->xz.z > top_z) (
top_z - tmpl_v->xz.z;
top_v - tmplv;

top_polygon - Flnd_top_poly(top_v);
I

tmpl polygon - Flnd_top_poly(tropl_v);
It(top polygon !-NULL)(
lf( strcmp(top_polygon->Name,

tmpl_polygon->Name)J-0)(
/• find top of this polygon •/

If(tmpl v->xz.x > top2 z) (
top2 z - tmpl v->xz.x;
lop2 v - tmpl v;

top2 polygon - Find top poly(top? v);
I

I

I /•while*/

/• read In last, vortex*/

layer array!1|.x(J| - tmpl_v->xz.s;
layer~array(l).z|jM| - tmpl_v->xz.z;

layer_array|l|.number_pts - J ; ,

lf(bottom_of_poly(top_polygon) < bottom_ofjpoly(top2_polygon))I
toppoTygon - top2_polygon;

)

strcpy(layer_array(11.layer_type,top_polygon->Name);

if(strcmp(topj>olygon->Name,"SI")—0) (
xleft(1|-xmln;

xrlght(1|-xmax;
break;

Find_xmin_and_xmax(top_polygon,4xleft(1),4xrlght(11, 4zleft(11)
top_poly_llstTi) - toppolygon;

Delete Polygon(toppolygon);

i*»;

)
number_layers - 1*1;

/• fptr - fopen("terap_save","r");
Read_Data2(fptr);
fclose(fptr); •/

I
/• /
float bottom of_poly(plyptr)
/ / ~
POLYGONPTR plyptr;

I
float bottom;

VERTEXPTR tmpv;

lnt i ;

if(plyptr — NULL) (
return(-100.0);

)
bottom - 10000.0;

plyptr->Nvertex - Count Vert Ices(plyptr);
tmpv - plyptr->HeadVertex;

for(l-l;l< (plyptr->Nvertex); 1**K
If(tmpv->xz.x < bottom) bottom - tmpv->xz.x;
Move(4tmpv,p)yptr->Name);

ret urn(bottom);

/ •/
POLYGONPTR Find top poly(top v)

/• ••'/
VERTEXPTR top_v;

(
POLYGONPTR Find Polygon(),top polygon;
char Material name(IS I,-

1f (Other(top v->aMtr1,"AIR")--TRUE)I
strcpy(Materlal name,top v->aMt rI);

| else If(Other(top v->bMlrI,"AIR")--TRUK)|
strcpy(Haterlal name,top v->DMIrl);

| else I ((Other (top v->rMt r I, "AIR")--TRUE) I
strcpy(Materlal name,top v->cMttl);
) else |

SlinF.xlt {"error finding top polygon type!");



F77Layers.c Fri Dec 9 16:29:38 1988 3

)
top_polygon • Flnd_Polygon(top_v,Matorlal_name);
return(top polygon);

)
/•"" * "** /
Write SAMPLEnplnr()

/•*••*• ••• ***/

(
lnt 1,J;
FILE *fp,*fp2;

float rate, steps, starttlme,etchmodel;
lnt lsteps.lstarttlme,letchmodel;
char askstrlng(80);

Get Layers();
/' * ..a.*.. *.**.. ♦/

/* write SAMPLE Input file for nonplanar etch •/
/' * /

If (number_layers > 5)(
GLprlntf("Too many layers for this version of SAMPLE");
return(-l);

I
GLprlntf("creating nonplanar Input file");

fp - fopen("SAMPLE_nonplanar","w");
fprlntf(fp,"etchnumlay" %d ;\n",number_layers);

for(l-number_layers-l;i>-0;l—)(
lf(l — 0 ) (
fprlntf(fp, "etchprof\n");
) else (

fprlntf(fp, "nonplanar %d\n",number_layers - 1 -1 );
I

for (J-0;J<layer_array(i).number_pts;J++)(
If (I (J!-0 44 (layer_array(l|.x| J|—layer_array(l| .x| J-11

44 layer array11) ,z (J |~layer_array (11. z(J-1)))) I
fprlntf(fp,"%10.6f %10.6f\n", layer_array(l).xlJ),

-1.0*(layerarrayjl|.zlJ) -zmax) );

I

I
fprlntf(fp," ; \n") ;

)
/• sprintr(askstring,"Etchmodel (see SAMPLE user guide)");
Ask (askstrlng);
Answer FloatProc(ask string,letchmodel);

letchmodel - 1*etchmodel;*/

letchmodel - 1;

fprlntf (fp,"etchrates %d ",letchmodel);
for(l-number_layers-l;l>-0;l~) (
sprlntf(askstrlng,"etchrate for %s, layer %d (um/sec)",

layer_array|nujnber_layers-l-l I .layer type, 1);
Ask(askstrlng);

Answer Float Proc(askstrlng,4rate);
fprlntf(fp,"~»10.6f ",rate);

I
fprlntf(fp," ; \n") ;
fprlntf(fp,"etchplot 1 0 0;\n");
fprlntf(fp, "etchwlndow %10.6f ;\n",xmax-xmln);

fprlntf (fp, "etchaccur .1 ;Vn");
sprlntf(asksl r lng,MtImestep In seconds");
Ask (askstrlng);

Answer Float I'roc (askst rlnq,4start t Ime) ;
sprlntf (askstrtnq,"number of steps");
Ask (askst ring);
Answer Float I'roc: (askst r I ng, 1st eps) ;

I st eps - I *st eps;

lstarttlme - l*starttlme ;
fprlntf(fp, "etchtlme %d %d, %d;\n",lstarttlme,

lstarttlme*lsteps,1steps);
fprlntf(fp."etchrun ;Vn"); ,
fprlntf(fp,"end ;\n");

fclose(fp);
GLprlntf("SAMPLE nonplanar written");

)
/"""»•*•"/
Find xmln_and_xmax(poly_ptr,xleft,xrlght,zleft)
/*"****"•••/

/••'""*"
Routine to find the leftmost point and right most
point of a polygon and return the x-coordinate values
of those vertexes

**•«••*"""/

struct Polygon 'polyptr;
float *xleft,'xrlght7*ileft;
I

struct Vertex 'tempVertex;

•xleft - 10000.0;

*xrlght - 0.0;
•zleft - 0.0;

If (poly_ptr->HeadVertex !- NULL) (
tempVertex - poly_ptr->HeadVertex;
do |

1f(Move(4tempVertex, poly_ptr->Name)'—0);
If(tempVertex->xz.x < *xleft)(

•xleft - tempVertex->xz.x;

If(tempVertex->xz.z > 'zleft) (
'zleft - tempVertex->xz.z;

I

I
If(tempVertex->xz.x > 'xrlght)(

•xrlght - tempVertex->xz.x;

I
I while(tempVertex !- poly_ptr->HeadVertex);

I

I



Appendix C

Catalogue of useful C functions in SIMPL-DIX and SIMPL-2 listed according to their use.



Catalogue of useful C functions in SIMPL-2
This compilation lists several functions in SIMPL-2 which are useful for designing interfaces with

other programs. Abrief summary of the purpose of each function is listed along with its location in the
SIMPL-2 source code. The version heading indicates whether a funcuon is include in the release ver
sion (R). or was developed subsequently by Alex Wong (ASW) or by Edward Scheckler (EWS). For a
complete descripUon of the function consult the comments in the source listing for SIMPL-2. The func
tions-listed here are grouped in the following categories:

Traverse a string, locate something in the data base
'Alter the data base
Test for a condition

Utility functions
Prompts and communication with user
Load/Save

Function Name

Traverse, locate

Location Version

Get_LeftTopO String* R
Returns a pointer to the vertex

at the top left of the profile.

Get_RightTopO Suing* R
Returns a pointer to a vertex
at the top right of the profile.

Fmd_Polygon(Venex^4ame) String* R
Returns a pointer to a polygon of a given name
which contains the specified vertex.

Move(VertexJvlaterial) String* R
Moves to the next vertex on the polygon with
the given material name.(Moves clockwise).

Move3ackward(VertextMaterial) Stringx R
Moves counterclockwise around the polygon

to next vertex with given material name.

Get__LefiPolyO String2.c ASW
Returns pointer to the top left polygon.

GetJUghiPolyO String2.c ASW
Returns pointer to the top right polygon.

Fmd_Last_PolygonO String3.c ASW
Returns pointer too the last polygon in linked
list data structure.

Fmd_top_poly(Vertex) F77Layers.c EWS
Returns pointer to the polygon with the
given vertex as long as one of the material
names stored in that vertex is AIR



Get_LayersO F77Layers* EWS
Extracts profile and stores it in an array as a series
of layers.

Find_xmin_and_xmax(Polygon,xl,xr^l) FHLayers* EWS
"-Finds x and z coordinate of leftmost vertex

and x coordinate of rightmost vertex

Alter Data Base

Delete_Polygon(Polygon) String* R
Removes polygon from data base.

Separate_Polygon(Polygon) String* R
Removes polygon pointer without changing the
linked vertexes.

Insen_Polygon(PolygonlJ>olygon2) String* R
Inserts a polygon node Polygon1 following
the node Polygon2

Append_Polygon(Polygon) String* R
Append Polygon to last polygon in data structure.

Polyize_AirO String3* ASW
Makes AIR into a polygon

Rename.Polygon(old_namejiame,Venex) String3* ASW
Renames a polygon

Merge.PolyO String3* ASW
Merges all polygons which touch and are of same
material type.

Del_Dup_PolygonO String3* ASW
Deletes duplicate polygons.

One_D_Search_orJnsert(Vertex,name,position) String* R
Search for a vertex with given x position
if not found, insert a venex.

TwoJ3_Search_orJnsert(Vertex,xl,zl,x2,z2,p,q,name) String* R
TTiis function scans through the edges between vertex
p and q following 'name* and finds the crossing point
with the line segment (xl,zl),(x2,z2).

fosert(Vertexl,Vertex2,Vertex3,name) String* R
Inserts Vertex 1 between Vertex2 and Vertex3
following name.

Link(Vertexl,name,Vertex2) String* R
link Vertex pointer 1 with 'name* to Vertex pointer 2.



Delete_Unk(Vertex^ame) String2* ASW
Deletes a link to a vertex of given 'name'

Delete„LinktoV(Venexl,Vertex2) String3* ASW
Deletes a link between vertex 1 and 2.

AIRize-String(Vertexl,Vertex2rname) String* R
assigns AIR to vertices along a string.

Writela_AIR(veriex) String* R
"Fills vertex material names with "AIR"

DeIete_Mtrl(name,Vertex) String* R
Set pointer at a give name in Vertex to NULL

Add_Mtrl(Vertexl,Vertex2,name) String2* ASW
Set pointer in Vertex 1 to point to Vertex 2
with given name.

Subsmute(Vertexjiamel,name2) String* R
Change name of pointer in Vertex.

Rename(Vertexl,Vertex2tname,name) String* R
Rename the string between Vertex 1 and Vertex 2.

New.VertexO Stringlc ASW
Returns a new vertex with null pointers .

New_PolygonO String2* ASW
Returns a new polygon with null pointers

CopyJVertex(Vertexl,Vertex2) String2* ASW
Copies a vertex.

DeLBadHeadVertex(array_of_vertices,integer) String3* ASW
Cleans up a list of vertices with a bad head vertex.

RedefineJProlileO F77Layers* EWS
Takes last contour in SAMPLE_netchf77, and uses it
to update the profile after a nonplanar etch simulation.
Not yet fully implemented.

Test for information

Count_Vertices(Polygon) String* R
Counts the number of vertices in a polygon

CountJ*olygons(Root_Polygon) String* R
Counts the number of polygons in the data base

Which_Node(VertexltVertex2,name) String* R
Find pointer in vertex containing 'name*

Inside_PoIygon(flagJ>olygon,x^) String* R



Determines if point is inside given polygon

Is_There(Name.Vertex) String* R
Checks if there is 'name' in vertex.

Material(Venex^iame) String* R
.Checks if there is an adjacent material
"which is not AIR or BNDR

Other(namel4iame2) String* R
Checks if material name is other then

nil, BNDR or AIR

Verify(Polygonjiame,error) String* R
Traces through the polygon to test if the
polygon is well formed. Error string set

Full(Vertex) String* R
Returns TRUE if vertex pointers are all assigned

Thickness(Vertex,name) String* R
Returns floating point thickness of a polygon

Test_Segment(Venexl,Vertex24iamc) String2* ASW

Test_Connect(Vertexl,Venex2) String2* ASW

Test_Connect_Mtrl(Vertexl,Vertex2jiame) String2* ASW

Two_Same(Vertex) String3* ASW
Test if there are two materials of the same
name in a vertex.

Empty_Vertex(Venex) String3* ASW
Tests if vertex is empty

Test_Cyclic(Vertexl,Vertex2,name) String3* ASW

Utility

Free_Polygon(Polygon) String* R

Free_Vertex(Vertcx) String* R

Free_Mask(Mask) String* R

Free_Block(Block) String* R

Prompts

GLprintf(char_string) GraphicsJJtfls* R
Prints a character string to the display

Ask(char_string) GraphicsJJuls* R



Used to generate a prompt to the user.

Answer_Float(requesuanswer) Misc*
Get answer from user, convert to floating point

Answer_Up_Proc(request,answer) Misc*
-Get answer string from user, convert to upper case

Answ.er_Integerrequest^nswer) Misc*
Get answer from user, convert to integer

Load/Save

Write.SavefileO Write_Data*
Saves data base in a file

Read.DataO Read_Data*
Loads data base from a file

Write_Savefile(fp)
Save data in file indicated by file pointer fp.

Write.Data* EWS

Read_Data2(fp) Read.Data* EWS
Load data from file indeicated by file pointer fp.

A Few Useful Routines and Global Variables in SIMPL-DIX

GetYesOrNo(message) prompt_control* R
Prompts the user to click Yes or No with the mouse.

GetProfileViewX(Wewport,profile,x) view_control* R
Used to translate x coordinate to an integer
describing position in the viewport

GetProfileViewY(viewport,profile,y) view.control* R
Similar to above

PrintText(variable list) graphics.control* R

SIMPL_PolygonRt
Global variable for start of linked list

containing profile data in SIMPL-DIX

SIMPL-2 source files which were altered for this project:
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Deposition*
Do_Process*
Etching*
Read.Data*
WriteJData*

_F77Layers* (new file)

SIMPL-DIX source files which were altered for this proj'ect:

command_control*
dix.main*
dix_action4.c (new file)
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