

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SCHEM: PARAMETERIZABLE SCHEMATIC

ENTRY SYSTEM USING AUTOMATIC

SYMBOL GENERATION

by

Jonathan S. Min

Memorandum No. UCB/ERL M89/73

23 May 1989

SCHEM: PARAMETERIZABLE SCHEMATIC

ENTRY SYSTEM USING AUTOMATIC

SYMBOL GENERATION

by

Jonathan S. Min

Memorandum No. UCB/ERL M89/73

23 May 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SCHEM: PARAMETERIZABLE SCHEMATIC

ENTRY SYSTEM USING AUTOMATIC

SYMBOL GENERATION

by

Jonathan S. Min

Memorandum No. UCB/ERL M89/73

23 May 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SCHEM: Parameterizable Schematic Entry System Using Automatic
Symbol Generation

Jonathan 5. Min

Department ofElectrical Engineering
and Computer Science

University of California, Berkeley

ABSTRACT

A parameterizable OCT/VEM/RPC-based schematic capture system, called
SCHEM, is introduced in this report SCHEM is developed as a graphical inter

face for LagerlV, a silicon compiler system. LagerlV uses OCT as acentral data

base and generates a final layout from an architectural description input through

several phases ofdesign synthesis. Up to now, only a textual description of the

architecture has been available as the input to the LagerlV system. A betteruser

interface, using VEM schematic entry, is implemented in order to directly gen

erate the OCT database.

May 23,1989

Table of Contents

Abstract

1. Introduction

2. OCT, VEM and RPC

3. Overview of LagerlV

4. Implementation of SCHEM

4.1 Overview(Key Issues)

4.2 Hierarchical Design using Automatic Symbol Generator 9

4.3 Parameterization

4.3.1 Module Parameters 11

4.3.2 Parameterized Bus 11

4.4 Ubrary Management/Interface

4.5 The Extractor

5. User's manual

5.1 Design Flow

5.2 Menu Description

6. Conclusion

Acknowledgement

Reference

Appendix

12

14

15

16

16

21

22

22

SCHEM: Parameterizable Schematic Entry System Using Automatic
Symbol Generation

Jonathan S. Min

Department ofElectrical Engineering
and ComputerScience

University of California, Berkeley

1. Introduction

The goal ofthis project is to develop aschematic entry system for the LagerlV silicon com
piler. To use the LagerlV system[Rab85a], a designer had to write structural description
language(SDL) files for leafcells and macro cells. The syntax of the SDL file is lisp-like and
includes four sections: parent-cell, layout-generator, sub-cells, and net-list. An example ofa SDL
file describing the control circuit for a simple microprocessor is given in Fig. 1. This textual
input approach, however, is not only tedious and error-prone but also gives little insight about the
global topology of the circuit described. This might not be aproblem for the experienced user,
but, for the novice user, this serves as one ofthe biggest drawbacks ofthe LagerlV system. The
obvious idea behind a graphical interface is the added commodity ofvisual assimilation ofthe

design, along with the ease ofinteractive editing and language independence.

The hierarchical description ofdesign and parameterization ofboth module parameters and
busses are key issues when implementing this schematic tool. SCHEM uses aschematic symbol
generator to automatically create ablack box symbol for the next level of design hierarchy. The
notion of terminal expander, compared to bus splitter, is introduced to handle parameterized
busses. Also, the maintenance and interface of the cell library, as well as user-friendliness, are

greatly emphasized.

2. OCT, VEM and RPC

SCHEM uses the data structure of OCT, the graphical capabilities of VEM and the modular

code independency offered by RPC compUation. OCT is the Berkeley VLSI/CAD data
manager.[Moo87a]. Adesign has three parts associated with it: namely, cell.viewfacet. Acell

-2-

is abasic unit of achip. It can be as small as aNAND gate, or as large as aCPU. A view is an

aspect ofacell, depending on what design style one uses. The three main standard views are phy
sical, symbolic, and schematic. The physical view is intended for amask-level implementation of
geometry, the symbolic view is very similar. It places instances of physical geometry without
worrying about design rule constraints. The schematic view is intended for high level abstraction
ofdesign. This is suitable for the SCHEM implementation. Each view has a facet named "con
tents", which contains the actual definition of the view, and then may have an "interface" facet,

which is the abstraction of the contents for hierarchy.

Some more OCT terminology is explained here to simplify further reading: property, for

mal terminal, and bag. A "property" isan attribute that can be attached to any object. The termi
nal in OCT is the connector for interconnection. If it is a terminal of the current facet, it is called

the "formal terminal", and other facets may only reference it. The "bag" describes an object

which is onlyused to hold other objects in OCT[Bur88a].

VEM(View Editor Monolith) is an X window-based interactive graphics environment for
viewing and editing the OCT database. VEM has three different modes ofviewing and editing as
well: physical, symbolic, and schematic[Har86a]. SCHEM uses the VEM schematic editing win
dow as its workspace. VEM also facilitates the use of various user application tools on OCT
views through the RPC(Remote Procedure Call) package. In this way OCT and VEM work in
the distributed environment[Spi87a]. Basically, SCHEM is an RPC application program that

interacts with VEM to do graphical interface for LagerlV. The overview of the Berkeley CAD

environment is shown in Fig. 2.

VEM is an on-going research system which is still evolving. Although VEM provides use

ful editing capabilities at present, it still lacks some important editing utilities. Some ofthem will
be available in the next version ofVEM- VEM7:

a) Mouse-driven Instantiation

b) Manhattan Instance Drag

c) Undo capability

d) Displayable Property(Label)

Even though commercial graphical editors such as ViewLogic provide better editing capabilities,
they have some shortcomings, which are inherent to the way they handle their data presentation.

; sdl-file for the description of the controller using logic optimization

(parent-cell controller)
(parameters inputs outputs bdsyn_file)
(layout-generator Flint)
•

(subcells (fsm bdsyn FSM ,,. ..
"" ((inwidth inputs) (outwidth outputs) (bdsyn bdsyn_flie))

)

)

internal interconnection

(net State
((FSM OUT 4) (FSM IN 3))

)

formal (boundary) terminal definition and interconnection

(net INSTO
(net INST1
(net CARRY
(net LOAD
(net SEL1
(net SEL2
(net DATAV

(parent INSTO) (FSM IN 0)))
(parent INST1) (FSM IN 1)))
(parent CARRY) (FSM IN 2)))
(parent LOAD) (FSM OUT 0)))
(parent SEL1) (FSM OUT 1)))
(parent SEL2) (FSM OUT 2)))
(parent DATAV) (FSM OUT 3)))

NOTE: we have to also create clock, ground and supply terminals
and connect them to correspoding terminals

Clocks

(net PHI1 (NETTYPE CLOCK) ((parent PHI1) (FSM PHI1)))
(net PHI2 (NETTYPE CLOCK) ((parent PHI2) (FSM PHI2)))

Supply nets

(net GND (NETTYPE GROUND) ((parent GND) (FSM GND)))
(net Vdd (NETTYPE SUPPLY) ((parent Vdd) (FSM Vdd)))

(end-sdl)

Fig. 1 a SDL file example

4-

application3

application4

VEM

RPC ProtocolOCT

^ t

Remote Other

MachinesLocal UNIX Hie System File System

Fig. 2 the Berkeley CAD environment

Also, since the menus are fixed, the programmer can not customize them. The introduction of

parametrization and hierarchical design is available within the OCT/VEM/RPC environment, in
which the programmer has direct access to the central database and can expand the menus accord
ing to his need. VEM also supports multiple windows per design, which is anecessity for alarge
size design. In short, provided that abetter user-interface all soon be available, VEM has proven
to be the solution for the LagerlV graphical interface. Since the LagerlV system uses OCT as its
central database and the user needs VEM to view physical layout designs anyway, the

OCT/VEM/RPC approach has provided unified integration for the whole LagerlV system.

3. Overview of LagerlV

LagerlV is an integrated automated chip design system that consists ofa set oflayout gen

eration tools and a setof MOSIS SCMOS cell libraries. It currently provides three different lay

out generation tools: stdcell(MSU stdcell layout placer/router), TimLager(Tiler for module layout

generator), and Flint(macrocell placer/router), and also has library cells support for Stdcell, Tim-
Lager, and dpp(a structure preprocessor for bitslice datapaths)[Jai88a]. The Lager system pro
vides many desirable features important in ASIC(Application Specific Integrated Circuit) design,
such as parameterizability and modularity. The parameterizability refers to an object-oriented
style which uses one generic cell for many other applicaUons. changing only its
parameters[Rab85a].

An overview of the OCT database framework assumed by LagerlV is given in Fig. 3.1.

Fig. 3.1 LagerlV Operation Procedure

There are two structural OCT views associated with LagerTV, beside the physical layout view: the
Structure_master view(SMV) &Structure.instance view(SIV)Uai88a]. These views do not have
any geometry information, but they keep all the other information pertinent to the design, such as
connectivity, vectorization. and hierarchy. The SMV represents the parameterized architecture of
the chip to be designed, and its essential features are shown in Fig. 3.2. It keeps its module
parameters in the "FORMAL_PARAMETERS" bag. and netAerminal vectorization information

(

celhgeneric name
view: stmcture_master

facet: contents
facet

INSTANCES
bag<

master. stmcture_master
name: gen. instance name

instance

ACTUALJ>ARAMETERS
bag

name: parameter
type: string

value: s-expr
prop

Fig. 3.2 theStructurejnaster View

" name: \
LAY0UTJ3ENERAT0R)

^ pEQP /
/ name: NETW1DTH \ ^
\ prop / / crtPM AT PAR AMETERS\

V bag /

name:

type: string
value: description

prop

name: DEFAULT
type: par-type
value: constant

prop

in properties called BASEJLNDEX, INCREMENT, and NETW1DTH. These properties are
necessary to provide aparameterizable bus structure. The SIV shown in Fig. 3.3 represents the
architecture of agiveninstance of achip.

DMoct, the design manger ofLagerlV, is the user interface to LagerlV. Given the parame
ter values specified by the user, it creates the SIV from the SMV and automatically executes vari
ous layout tools to generate aphysical chip layout. Essentially DMoct accepts parameter values
for the top level and passes them to its subcells using the parameter relations in the
"ACTUAL.PARAMETERS" bag. In addition, the nets and terminals that have NETWIDTH,
BASEJNDEX and INCREMENT properties attached in the SMV are expanded according to
their final values. It is assumed to provide the input information to all module layout generators.

The hierarchical description of circuit design is flattened in the SIV creation phase by DMoct,

given theSMVs of subcells.

master, design insuiame

name: design insL name

instance

-7

Fig. 3J the Structurejnstance View

4. Implementation of SCHEM

FORMAL.PARAMETERS \
bag /

4.1. Overview (Key Issues)

The task here is to make aschematic interface from VEM to the OCT SMV directly. The
VEM schematic editing provides alimited utility to create vectorization between net/terminal and
other parameters. Remote-application routines are written to make this graphical interface more
user-friendly. Major features of SCHEM are explained in more detail in the following sections.

The realization ofthe project has been organized into three main modules. The first is the
creation of the LagerlV library cells, building blocks, from which the user is allowed to choose
when designing acircuit. The second part of the project is the development of new user interface
in VEM, specifically adapted to the information the user will be asked to enter while designing a
circuit. The interface itself is built using the RPC package, offering portability as well as ease of
modification. The final aspect of the project is an OCT Schematic view to SMV converter. These
three functional partitions in SCHEM are shown in Fig. 4.1.

Schematic
forkspace}^

<SMV>
Contents

-8

Interface

tbrary .
SMV \

Symbol /
Parameters?/^ *

Fig. 4.1 Partitioning in SCHEM

Each design cell contains three views associated with it: schematic, SMV, and symbol. The

schematic view is automatically created inVEM - the workspace for theuser when entering cell

interconnections. The SMV has all the logical information pertaining to the LagerlV policy, but

no geometry. The symbol contains only graphical information - black box model with formal

terminals for the next level of hierarchy. An example of the three views associated with the

design is shown in Fig. 4.2: (a) the symbol view, (b) the SMV, and (c) the schematic view of the

cell. The library consists of both leafcells and blocks which have the SMV and symbol view

only. The schematic viewis notneeded for the library cell, since it is our starting block.

As the user gets acell from the library, only the symbol is instantiated into the workspace in

VEM. However, when the VEM schematic is processed to create the SMV of the design, this

instance is referred to the SMV of the master cell, since this contains the actual contents. For

example, the module parameters associated with the instance are searched from its SMV and

prompted for itsnew values on instantiation. In other words, the SMV is the logical contents and

the symbol is the interface. This partition is different from that of conventional OCT, which is

done at the facet level. This division, done at the view level in SCHEM, has provento be useful

TlUt it VUt ••tic* t>-0 iMdi n-Oct-W)
Ltf flit It AMk%aa.lvf.OimS

wm> "cmtlftlcitchasatio* I tpav^inrtM
9m> •CtntltgiCII^'MI* I ffW«ir

_ * I IttKII

-9

Fig. 4J an Example of theSMV, Symbol, Schematic view

because it avoids thetight binding between the contents and the interface that VEM enforces. As

long as these two views have the same formal terminal names, whatever interconnection changes

onemake in the contents, the interface stays the same. Each cell can also have multiple symbols,

ifnecessary.

4.2. Hierarchical Design using Automatic Symbol Generator

For each level of design, the black box symbol(interface) as well as the SMV(contents) is

generated from the VEM schematic through SCHEM commands. This generated symbol with the

unique label isused torepresent the cell at the next level ofdesign hierarchy. Separating the con

tents and interface in the way described above, the hierarchical description of the chip design of

10

LagerlV is fully supported. Refer to Fig. 4.3 for an example of ahierarchical design.

Fig. 43 an Example of the Hierarchical Design

The automatic symbolgenerator looks for every formal terminal in the VEM schematic, and

prompts for the location of terminals —left, right, top, or bottom. The size of the bounding box

for the symbol is determined by the number of terminals on each side. This forces all schematic

symbolsto be of similar sizes, independent of the size of the contents. The size of the symbol for

a 16-bit ALU and a 16-bit microprocessor should roughly be the same size even though the

number of components they contain are quite different. Furthermore, there is a way to generate

automatically the symbol for all the cells that already have SMVs. This turns out to be useful in

creating the Ubrary symbols directly from their SMVs without going through the schematic view.

11

43. Parameterization

43.1. Module Parameters

The module parameters are stored in the TORMAL.PARAMETERS" bag attached to the
SMV of the subcell. When the subcell is instantiated, the user is prompted for the values of the
parameters in adialog box - acustomized Xwindow available through the RPC package. The
obtained values arc then stored in the "ACrUAL.PARAMETERS" bag attached to the instance.
The values can be either constants or formal parameters defined in the cell in current design. A
typical example ofamodule parameter is NumjDfJits for the datapath cell.

43.2. Parameterized Bus

In SCHEM, the bus is also parameterized. In the macrocell layout, for instance, the user

might need tospecify the following condition:

The odd bits ofbus Xofblockl are connected to the even bits ofbus Yofblock2
and the even bits ofbus Xofblockl are connected to odd bits ofbus Zofblock3.

The representation of parameterized busses in SDL format is shown in the SDL example of Fig.
1. For anet with NETWIDTH =N, for instance, values of BASE_INDEX =0and INCREMENT

= 1represent an evenbit bus.

Graphically, asimple bus splitter as used in other schematic entry tools will not work. Here
the net is logical, meaning that it does not have afinal fixed value yet Two sets of terminal and
net pairs are actually needed to represent even and odd bits. The concept of the terminal
expander is introduced to specify explicitly the presence of two parameterized nets. Refer to Fig.
4.4 for its implementation. Each net has its NETWIDTH, and every termExpander node has
BASEJNDEX and INCREMENT properties associated with it, which are prompted for their
values inacustomized dialog box when the command isexecuted.

-12

BASEJNDEX =0 , "Z^ *v
INCREMENT = 2

BASE_INDEX=1

INCREMENT = 2

Terminal Expander

Fig. 4.4 the Terminal Expander

4.4. Library Management/Interface

As mentioned above, theLagerlV system has 3cell libraries!Jai88a]:

a) TimLager library contains larger self-contained modules such as RAM,

ROM, PLA, registers, and scan-latches.

b)Dpp library contains leafcells for building bit-sliced datapaths such

as adders, multiplexers, shiners, and registers.

c)Stdcell ubrary contains the MSU(Mississippi State University)

standard cells for functions such asNAND and INVERTER.

All the schematic symbols for TimLager and dpp library cells are implemented as black box

models using the automatic symbol generator program. Special attention is given to cells in
stdcell library. Since most ofthese MSU library cells have agate representation, abatch-oriented
program is written separately to generate more meaningful symbols(refer to Fig. 4.5). The cell
and terminal names are also labeled in the symbol. All the cell libraries are grouped and are

available as three palettes in SCHEM, one for each library.

13-

Fig. 4.5 Stdcell Library

The whole LagerlV cell library is organized inatree-like fashion, and itshierarchical struc

ture is stored in the root directory Oager/LagerlV/cellib) as an OCT facet called

"cellib.dir:directory:contents". This OCT facet is read in SCHEM to show the lists of library

cells in a hierarchical fashion, and it can be recreated whenever there is an update in the ubrary

using a program called symtree. This way, we can dynamically maintain the library structure.

Most commercial schematic entry systems instantiate a library cell by its name. This feature is

also available in SCHEM, as well as two more on-line library calling routines mentioned above:

palette and on-line listings. This on-line approach has proven to be desirable, because the user

does not have to look at the library manual all the time. How these routines are implemented is

described in the user's manual section.

14-

4.5. The Extractor

Even though both the VEM schematic view and SMV follow the OCT symbolic
policy[Bur88a], there are some differences in mapping according to their specifications,
geometry being one(lhere is no geometry information in the SMV). In order to implement the
vectorization of nets and terminals along with other features, an extractor program is written to

convert agiven schematic view of the design into the SMV. This function is explained in the fol

lowing:

createSMV(&facet)

delete geometry and unnecessary things from the facet;

forevery formal terminal {

net name=terminal name; /* if netname is not assigned */

addQuote(TERM_EDGE, TERMJTYPE properties);

addQuote(terminal name); /* the LagerlV policy */

}

for every net {

assign unique nameif not assigned;

addQuote(net name)

}

for every instance {

if (terminal expander) {

for every terminal {

do necessary mapping into itsnet and original term;

(attach BASEJNDEX &INCREMENT)

}

delete the instance;

} else {

create LagerlV properties(STRUCTURE_INSTANCE, ORDER);

ReplaceInstance(from -symbol", to"SMV");

}

}

The OCT, oh(OCT helper) library routines are used to access the OCT database directly.

15

5. User's manual

This manual is abrief description ofhow to use SCHEM to generate the LagerlV SMV, and
other essential information which the user needs to know in advance. This manual assumes that

theuseris already familiar withVEM.

Before running the application, VEM needs to know where and how to run it This infor
mation must be included in the user's "vem.bindings" file, with the following two lines:

REMOTE schem localhost 'lagerlbagerF/lbinlschem

schematic schem MENU Application 3 AUAS

All the Uger paths and environment are assumed to be set correctiy. The user needs to add the
following lines in the lager file for this tool to find its path correctiy:

(Schem

"lager/LagerlV/cellib

'lagerlLagerJVIcellibldpplblocks

'lagerlLagerNlcellibldppMEWIblocks

"lager/LagerlV/cellib/stdcell

'lager/LagerlV/cellib/TimLager

'lagerlLagerrVlcelliblTimLagerldpram

"lager/LagerlVfcellib/TimLager/latch

Tager/LagerlV/cellib/TimLager/pla

~lagerlLagerIVIcelliblTimLagerlram3T

"lagerlLagerJVIcellibltermExpander

etc.

)

For the TimLager cell library, the paths for all the blocks are separately added, since each block
has its own leafcells. The lager is astartup file for LagerlV tools, which provides the UNIX
pathnames for the directories required by various CAD tools in the LagerlV system. Refer to
LagerlV Tools Users Manual for details. Furthermore, the name of the local
machine(workstation) should be in the ".rhosts" file in order for RPC to work properly.

16

5.1. Design Flow

The following is abrief sequence of using this schematic tool.

(1) Execute vem

(2) Open a Mcell:schematicM window from VEM

(3) Invoke schem by "schem: rpc-anyM

(4) There are three waysof instantiating acell from getpart pane:

(a) Using get-by-name(N) if you remember the name of the cell

(b) Using Hst-cellibO) tochoose one from an on-line list of library cells

(c) Using acombination of palette-lib(a) and instantiate^)

(5) Use the commands inedit pane tocreate properties specific to the design

(6) Use the commands innet &term panes todraw circuit interconnections

(7) Use the create-SMV command to create the structure_master view

(8) Use thecreate-symbol command to create the interface symbol

(9) Execute DMoct to create theSIV and generate the layout

52. Menu Description

Each SCHEM command has a key-binding for a faster and easier access. Currently,

SCHEM has thirty customized menus in the six menu panes to assist the user in creating the

SMV: getpart, edit, term, net, show, and main. Note that all the VEM commands are still avail
able on the left button of the mouse. However, only basic VEM commands, such as open-

window, zoom, and pan, are recommanded, since others are not compatible with the SMV con

struct The getpart menu pane provides functions necessary to instantiate acell either from the

library or from the working directory. As explained above, the three ways of instantiating acell

provide the user the versatile library interface. Property editing utilities pertinent to the LagerlV
policy are provided in the edit pane such edit-formalPars. The term menu pane provides options
like creating/deleting formal terminals and editing terminal properties, while the net pane serves

options for net editing such as edit-netWidth. The show menu provides all the routines showing
the symbol view and the contents(push-contents) for the hierarchical design, as well as some

basic properties showing. Finally, the main menu pane provides the schematic to the SMV con

verter and the symbol generator program. The usage ofeach function is now described in detail.

17-

Ite character in parenthesis is the available RPC-key binding. For the LagerlV terminology used
here, please refer to LagerlV Silicon Assembly System Manual.

get-by-name(N)
Given the pan name, it finds the full UNIX path name for the cell using Ge«Pa<h0 avauable
from the LagerlV library routines and instantiates it The directory mapping is done from
the lager file. Its identifier is Schem as explained above.

list-cellib(l)

This routine searches the hierarchical suucturo of the LagerlV cell Ubrary stored ,n
"cellib.dir:directory:contents" and instantiates acell of the user's choice.

palette-lib(a)
It has four palettes available now: stdcell. TimLager. dpp and aset of terminal expanders
for the parameterized bus. Adialog box with the four selections is prompted, so that the
user may choose whichever palette he wants.

instantiate^
Clicking apoint in the VEM schematic for location, and moving the mouse into acell of
the user's choice, mis routine finds the master of the cell and its SMV. and instantiate it. It
also prompts for module parameters ifthere are any.

edit-formalPars(F)
It helps the user edit the parameters attached to the FORMAL_PARAMETERS bag. Ttus
routine first asks for the number of parameter and .hen pops acustomized dialog box
according to the number the user specified.

edit-IayoutGen(G)
This menu edits the LAYOUT.GENERATOR property. It does bom creating and ed.tmg.
If ttus command is executed for the first time, it pops adialog box with the list of available
fcyou, generators; if not. it prompts another kind of dialog box with the specfied
LAYOUT.GENERATOR. so that the user may change the value.

-18

edit-structProc(E)

This routine helps to edit interactively the structure processor available in LagerlV: dpp,

plagen, Bds2stdcell. or makeFlatStdSIV.

edit-libraryCell(O)

It edits the library-cell property according to theLagerlV policy.

create-label(Y), delete-label(U)

These routines create and delete labels of the facet. They should soon becomea part of the

standard VEM menu.

create-term(T)

In VEM, the user can only creates a formal terminal over the physical implementation.

This routine creates a formal terminal implementation without this constraint.

delete-term(d)

VEM also provides a standard delete command. But this SCHEM command also deletes a

floating net, which VEM command fails to do.

edit-stdTerm(h)

Since every formal terminal for the stdcell layout generator has TERM_EDGE and

TERM_RELATIVE_POSrnON properties, it is customized to handle them.

edit-busProp(A)

Each node of the terminal expander is prompted for BASEJNDEX and INCREMENT pro

perties for the vectorization of nets and terminals. The mouse should be on the terminal

expander instance.

label-net(w)

This routine names a selected net specified by the user and shows its label. This is a

shortcut of overcoming the lack of the displayable property in current OCT and VEM.

19-

show-formalPars(H), show-IayGen(J), show-structProp

These are customized routines todisplay the specific LagerlV properties into the VEM con

sole window.

show-netProp(Q)

This routine displays all the net properties attached to aselected net, such as NETWIDTH

and NETJTYPE.

show-symbol(v)

This routine shows ablack box symbol representation of the current facet if it exists.

push-contents(V)

This routine allows the user to look at the contents of a schematic symbol at any level of

the design hierarchy, except for the case of library cells.

create-SMV(C)

This RPC routine invokes the schematic-to-SMV translator, which was explained previ

ously.

create-symbol(X)

This routine invokes the automatic symbol generatorprogram.

smv-symbol(y)

This routine has the same function as create-symbol. but it also instructs the program to

process from the SMV. not from the current schematic view. It is useful for creating library
schematic symbols, which already have the SMVs.

dean-facet

This routine cleans mistakes in the current working facet For instance, it deletes a floating

net.

20

quit This routine exits the RPC application.

21

6. Conclusion

SCHEM, a parameterizable schematic entry system that uses automatic symbol generation,

has been implemented to provide agraphical interface to the LagerlV silicon compiler system.

This schematic tool serves the user with many merits of graphical interface, such as the visual

understanding ofthe circuit in design and the ease with which changes may be performed interac

tively to an existing design. The hierarchical description ofthe circuit design is fully supported
using the black box schematic symbol, which is produced automatically by the symbol generator
program. One ofthe tutorial examples which has been generated out using SCHEM. asimple 4-
bitmicroprocessor, is shown inFig. 6 with the final physical layout.

Fig. 6 an Example of Complete Layout

-22

Future work includes completing the menu customization for an easier interface and, inter-
faang into v». schematic capture sys-
especially in the areas of editing and labeling. SCHEM
Is that fully utilizes the advantages of the Od/VEM/RPC environment. The .dea of ti*
XneterizabUity^d hienuchica. design. w*ch SCHEM .presents canbe general^ . sup
port many existing chip and printed circuit board design systems.

Acknowledgement

, would Uke thank Paul Tjahjadi at UCLA for providing useful Ubrary interface rouunes.
Special thanks also to Rick Spickelmier and David Harrison for their helpful ^rmanon^-
X when OCT and VEM went through amajor u^ate. Finally.! thank Professor ,an Rabaey
for his supervision and his useful advice.

References

^Rabaey. S. Pope, and R. Brodersen. "An ln.gra.ed Automat Layout Generation Sys-
tem for DSP a™**." lEEETrans.cn CAD.vol.CAIM.no. 3. July 1985.

M008LMoorc.DavidHaniso,RickL. Spickelmier. and Richard Newto, "OCT. VEM and
RPC/' Technical Report, ERL, UC Berkeley. 1987.

^ff Bums and Rick Spickelmier. "Oct SymboUc View Specification." TechnUat Repon.
ERL, UC Berkeley. March 1988.

^vid Harrison. Peter Moore. Rick Spickelmier. and Richaro New.,™-*£
«, graphics editing in the Berkeley design environment." ,CCAD, W. 20-24. November
1986.

Spi87SL «_ a r«ii Package "Technical Report, ERL, UC Berke-Rick Spickelmier, "Remote Procedure Call Package, lecnm
ley, August 1987.

23

Jai88a.

Rajeev Jain. LagerlV Silicon Assembly System Manual, Release 1.0. ERL. UC Berkeley,

1988.

APPENDIX

fc ,., LagerlV Tools Users Manual schem (1)
schem (1) B

NAME schem - rpc version of schema* emry/capture system for creating suucmre.master vie* of LagerfV

DESCMS is aremote-apphcation „.»enter^^^KP^shouid .«. open awind™ «£—^^™^ ^ - ften *«,^ ^ Ju

VEM schematic editing commands are also available.

0Fn°NL following options are available on the appUcauon-menu panes that schem registers. The character in
the parenthesis is the RPC key binding for each command:
get-by-name(N)

instantiate acellby typing itsname

Pa,*£!nbone of the four paleue windows(stdcell. dpp. TimLager. termExpander)
""tStlto Us. of LagerlV library cells in ahierarchical fashion and insinuate the chosen cell
instantiate^)

instantiate the cell under the cursor

edit-formalPars(F)
edit the FORMAL_PARAMETERS bag

edit-layoutGen(G)
edittheLAYOUT_GENERATOR property

edit-stnictProc(E)
edit the STRUCTURE_PROCESSOR property

edit-libraryCeU(O)
edit the LIBRARYjCELL property

create-label(Y)
createlabel into the facet

delete-label(U)
delete label from the facet by itsname

create-term(T)
create a formal terminal

delete-tenn(d)
delete a formal terminal

^I^Tt^DCE and TERM.RELATIVE.POSmON propenies for suJcell design
edit-termType .

edit the TERMTYPE property ofaterminal

edit-netWidth
edit the NETWIDTH property ofaselected net

edit-netType
edit the NETTYPE property ofaselected net

LagerlV Release 1.2 Ust change: May 1989

schem (1) LagerlV Tools Users Manual schem (*)

label-net(w)
name a net with its label shown

show-formalPars(H)
show the contents of the FORMAL.PARAMETERS bag

sbow-layoutGen(J)
show the LAYOUTJGENERATOR property

show-strctProp
show the STRUCTURElPROCESSOR property

show-netProp(Q)
show theproperties attached toa selected net

show-symbol(v)
showthe schematic symbol of thecurrent facet

push-contents(v)
show the contents of the schematicsymbolunder thecursor

create-SMV(C)
create the structure.master view

create-symbol(X)
generate theinterface symbol for thecell

clean-facet • « • .j,
clean the current facet This command deletes floating nets, etc. create-SMV automaucally mvokes
this before doing any processing

quit(q)
exit the application

The following isabrief sequence ofusing this schematic tool to generate the SMV:
(1) Execute vem

(2) Open a "cell:schematic" window from VEM

(3) Invoke schem by "schem: rpc-any"

(4) There arethree ways ofinstantiating a cell from getpart pane:
(a) Using get-by-name(N) ifyou remember the name ofthe cell
(b) Using list-cellib(l) tochoose one from on-line list oflibrary cells
(c) Using a combination ofpalette-lib(a) and instantiate^)

(5) Use the commands in edit pane to create properties specific to the design
(6) Use the commands in net &term panes to draw circuit interconnections
(7) Use the create-SMV command to create the structure_master view
(8) Use the create-symbol command to create the interface symbol
(9) Execute DMoct tocreate the SIV and generate the layout

A userneeds to add the following lines in his/her "lager" file:
(Schem

Tagerfl-agerlV/cellib
Tager/LagerlV/cellib/dpp/blocks
Tager/UgerIVA*llib/dpp.NEW/blocks
Tager/LagerlV/cellib/stdcell
Tager/L^erlV/ceUib/TimLager

LagerlV Release 1.2 Last change: May 1989

schem (1)
LagerlV Tools Users Manual schem (!)

nagerA^agerlV/cellib/TimLager/dpram
Tager/LagerlV/cellib/TimLager/latch
"lager/LagerlV/cellib/TimLager/pla
"lagerA^agerIV/cellib/TrimLager/ram3T
nager/LagerlV/cellib/termExpander
etc.

^name of the local machine(workstation) should be in the ".rhosts" file in order for RPC to work
Also, the
properly.

Please note

SMV creation process.

SEE ALSO

vem(l), DMoct(l)

EXAMPLES
See "minj/schem/examples for some examples.

BUGS New commands are still being added in SCHEM. Tne LagerlV system needs to %«£*« ^j™ *!
Uk SMV, created by SCHEM, to be recognized by DMoct. Tne future vers.on will support VEM7/X11
with a better user interface.

AUTHORS
Jonathan Min (minj@zabriskie.Berkeley.EDU)
Paul Tjahjadi (tjahjadi@zabriskie.Berkeley.EDU)

that Vdd and GND creation is implicit in stdcell layout cells. This is done automatically in the

LagerlV Release 1.2 Las1 chanSe: Ma* 1989

	Copyright notice1989
	ERL-89-73

