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ABSTRACT

This paper presents an elementary proof of the well-known Routh-Hurwitz stability criteri
on. The novelty of the proof is that it requires only elementary geometric considerations in
the complex plane. This feature makes it suitable for use in undergraduate control system
courses.
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1. Introduction

The determination of stability of lumped parameter, linear, time invariant systems is one of
the most fundamental problems in system theory. According to Gantmacher, [Gan. 1, p. 172-
173] this problem was first solved in essence by Hermite [Her. 1] in 1856, but remained
unknown. In 1875, E. J. Routh also obtained conditions for stability of such systems [Rou.
1]. In 1895, A. Hurwitz, unaware of Routh's work, gave another solution based on Her
mite's paper. The determinantal inequalities obtained by Hurwitz are known today as the
Routh-Hurwitz conditions, taught in virtually every undergraduate course on control theory.

Unfortunately, Hurwitz's proof of the result is very complicated, involving algebraic manipu
lations. Indeed, the proof is so complicated that most elementary textbooks (for example,
[Dorf 1], [Kuo 1]) choose not toprove it at all, but rather to state it as a fact.

In a recent paper, Mansour [Man. 1] proves the Routh-Hurwitz Theorem in a very simple
manner using the Hermite-Bieler Theorem. Motivated by Mansour's proof, this paper pre
sents a proof based on elementary geometric considerations in the complex plane. It thus
provides a clear geometric insight into what makes the procedure work. It also slightly
extends Mansour's work by providing a proof of the second part of the Routh-Hurwitz criteri
on: the number of sign changes in the first column of the Routh Table is the number of open
right half-plane zeros.

The idea behind the proof of the theorem is simple. It will be shown that at each step the
Routh procedure (i) eliminates precisely one zero of the characteristic polynomial (ii) pre
serves the position of the jco-axis zeros, and (iii) ensures that the remaining off jco-axis
zeros do not cross the jco-axis. By observing the sign changes in the first column of the
Routh table, it can be determined whether the eliminated zero is a zero in the open right half-
plane or the open left half-plane. Thus, in n steps, precisely n zeros have been eliminated
and thesignchanges indicate the number of right half-plane zeros of theoriginal polynomial.

2. Statement of Routh-Hurwitz Stability Criterion

Theorem 2.1 (Routh-Hurwitz) - Consider a nth order polynomial in s

p(s) =aQ +ajS +... VIs11"1 +V" where ^ € 1R >i= 1> 2,... n, and a^.

Assume without loss of generality that n is even. Split the even polynomial p(s) into its
even and odd part by p(s) =hn/2 +j(s2) +sgn/2(s2), where \a +^s2) is even and of degree
n, and where g^s2) is even ^d of degree n-2. Consider the well-known Routh table, writ
ten in the following form:
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nn/2+ 1

Sn/2

hn/2
Sn/2- 1

nn/2- 1

*n an-2 ^ a2

Vl ^-3 *n-5 al

bn-l bn-2 bn-3 bl
cn-l cn-2 cn-3 c2

dn-l dn-2 dn-4 •••• d2

kl k2

h h
m.

*0

§2

h2

Si

bl
Table 1 - The Routh Table

where

a ^n
bn-l =V2 "-^- ^.3 bn-2 =*n-4 ""a^" *n-5

Vl Vl
cn-l " V3 ' -jT^~ bn-2 Cn-2 ~ V5 " "h~~ Dn

Dn-1 un-l

etc.

Then p(s) is Hurwitz (i.e., p(s) has all its zeros in the open left half-plane) if and only if
each element of thefirst column is nonzero, i.e. ^ > 0, an.j > 0, b^ > 0,... mT > 0, nx > 0.

3. Preliminary Lemmas

We first start with a definition which makesprecise the notionof net phase change.

Definition 3.1 Consider a polynomial p(s) and a continuous, oriented curve C c <C which
starts at Sj e (C and ends at s2 e <C. Suppose p(s) * 0, for all s e C. Let the curve be
parameterized by the continuous function <|>:[0, 1] -» C. Since p(s) * 0 for all s e C this
means that arg(p(s)) is well-defined mod27t; so we choose arg(p(<|>(0))) arbitrarily and for
all r e (0, 1], we choose arg(p(<|>(r))) such that r -> arg(p(<|)(r))) is continuous. Then we
define the function

argnet ( p(.) ) := arg(p(<t>(l))) - arg(p((|)(0)))
C

= arg(p(s2)) - arg(p(S!))



Roughly speaking, argnet ( p(«) ) is simply the net phase change as p(») traverses C. For

example, in Figure 2, if the plotted solid locus is p(C), then argnet (p(0 ) =2k.
The following lemma gives a relationship between the location of zeros of a polynomial and

its net phase change.

Lemma 3.3 - Consider the polynomial p(s) = aQ +a2s + ... a^s11-1 + a^11 where aj e 1R , i=
1, 2, ...n, with an * 0 and a0 * 0 (so p(s) is of degree n, and p(0) * 0). Then p(s) has L zeros
in the open left half-plane counting multiplicities, R zeros in the open right half-plane count
ing multiplicities and 2K zeros ± jcOj on the jco-axis with multiplicities mi5 i=l, ... K, (i.e.,

K

there area total of M= 2 X mi jco-axis zeros) if and only if
i=l

(i) pk(jc0i) =0for k=0,... mfl, i=l, ...K but p^Qcflj) * 0, i=l,... K, and p(jco) * 0for all
C0€ lR+\{coii=l,...K).

(ii) argnet ( p(0 ) = rc/2( L - R + M)
C

where the oriented curve C is the jco-axis, except for indentations on the right at each jco-
axis zero jcoj, i.e., it starts at0 and ends at +j<».

Imag

s - plane

b

Real

Figure 1 - Plot of the curve C

Proof of Lemma 3.3 - ^ Since p(s) is an nth degree polynomial, it has precisely n
zeros. By assumption, precisely M are on the jco-axis, while the remaining zeros lie in the
open right half-plane or open left half-plane. In addition, since each zero jcoj has multiplicity
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mj, this implies pk(jo>i) =0 for k=0, ...mrl. Thus, (i) is proved. To prove (ii), note that each
simple open right half-plane zero contributes -7t/2 radians of phase to the net argument as s
traverses C, while each simple open left half-plane zero contributes rc/2 radians of phase.
Due to the indentations on the right of the jco-axis zeros, each simple jco-axis zero pair con
tributes n radians of phase, etc. Thus,

argnet ( p(«) ) = n/2( L - R + M)
C

This proves (ii).

«= By assumption p(s) has precisely M/2 pairs of jco-axis zeros counting multiplicities, so it
can be factored as

K „ „nii n - M
P(s) = n (s2 + coj2) n (s - szi)

i=l i=l

where {szi, i=l, ... n-M} denotes the remaining zeros of p(s). If we make the curve indented

to the right of the jco-axis, wecandefine argnet ( p(»)). Bycomputation itsvalue is

n-M[n-M \

LI (s - szi)
. i=l /

Now, if the number of open right half-plane zeros does not equal R, then the

argnet ( p(») ) * n/2( L - R + M), which leads to a contradiction. •
C

The following result is the main result of the section which characterizes the effect of one
step of the Routh-Hurwitz procedure.

Lemma 3.4 - Let p(s) = aQ + slys + ... a^s""1 + a^" where a{ e IR , i= 1, 2, ...n with an * 0
and ^ * 0. Assume n is even. Let h(s2) and sg(s2) be the even and odd parts of p(s),
respectively, i.e.,

h(s2) := aQ +a2s2 +... +an.2s11"2 +a^"
sg(s2) := ajS +a3s3 +... +VIs" 1-

Assume a^j * 0. Suppose that p(s) has L zeros in the open left half-plane counting multi-
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plicities, M jco-axis zeros counting multiplicities, and R (=n-L-M) zeros in the open right
half-plane counting multiplicities. Define

N(s,A.):=p(s) + A.s2g(s2)

= h(s2) + A,s2g(s2) + sg(s2).

Then,

(i) jcot is a jco-axis zero of p(s) with multiplicity m{ ifand only if jcoj is a jco-axis zero of
N(s, X) with multiplicity m{ for arbitrary leR;

(ii) Given any closed, bounded interval I c IR, there exists a curve C as in Figure 1 such

that N(s, X) * 0 for all s e C, and for all Xel. Thus argnetNK X) [s well-defined for XeL

Choose an interval I =[-^%.xl IWlN- Choose the curve Cso that "S11^*- X) is
well-defined for all Xe I. (This can be done by part (ii).) Then,

(iii) IargnetN(»,A.) - argnet(p(«)) I< tc, for all A. € I;
C C

(iv) (argnetN^-an/a^) - argnet(p(«)))sign(an/an.1)= tc/2;

(v) If, in addition, aya^ > 0, then N(s, -^/^.i) has L - 1 zeros in the open left half-plane,
M zeros on the jco-axis, and R zeros in the open right half-plane, in each case counting multi
plicities. If on the other hand a^a^ < 0, then N(s, -zj^.i) has L zeros in the open left
half-plane, M zeros on the jco-axis, and R - 1 zeros in the open right half-plane, in each case
counting multiplicities.

Proof of Lemma 3.4 -

Proof of (i) - ^ Take Xe IR, arbitrary; jcoj is a jco-axis zero of N(s, X) with multiplicity mi

means d^N^, X) = o for k=0, ...mrl. Equivalently, hk(-C0:2) + X(s2g(s2))k|io). +
dsk '

(sg(s2))k|im. = 0 for k=0, ... mrl. Since both the real and imaginary parts of Nk(jc0j, X)
J i

must be zero, this means that hk(-C0j2) + A.(s2g(s2))k|j(0. =0 and (sg(s2))k|ja). =0 for k=0,

... mrl. The latter expression implies that gk(-C0j2) =0 for k=0, ... mrl. This in turn implies
hk(-C0j2) = 0 and g^-fflj2) = 0 for k=0, ...mfl, which implies p^Oj) = h^-co^) +
(sg(s2))k|ja)i=0fork=0,...mrl.



=> jcoj is a jco-axis zero of p(s) with multiplicity mi means pk(jcoi) =0 for k=0, ...mrl.
Equating the real and imaginary parts of pk(jcoi) =0, we have h^-coj2) =0 and gk(-C0j2) =0
for k=0, .... rrii-1. This in turn implies h^-cOj2) +A,(s2g(s2))k|jco. =0 for any Xe ]R and for

k=0, ...mj-1. Finally, this implies that for arbitrary Xe IR, Nk(JcoiA) = hk(-coi2) +
A.(s2g(s2))k|j0). +(sg(s2))k|jc0i =0fork=0,...mrl. This proves (i).

Proof of (ii) - This statement merely asserts the existence of a curve C which insures
argnet ( N(«, X) ) is well-defined for all X in the closed, bounded interval I. Since the details

are not relevant to the restof the proof, the details are left to the Appendix.

Proof of (Hi) - For simplicity, first assume that p(s) has no jco-axis zeros. For this case
we take the curve C to be the positive jco-axis.

N(jco,A.), X* 0

Y p(jco)=N(jco,0)

Real

Figure 2 - Graph of co-» N(jco,A,), 0 < CO < °o

Since s2g(s2) is an even function of s, -A,co2g(-co2) only contributes to the real part of
N(jco,A.). In particular, points a and b in Figure 2 above are fixed points: indeed, let C0j be

such that p^) =b. Then gHo^) =0, which means that NCJco^ X) =b, for all Xe L Next,
order the zeros of co2g(-co2) by 0=co0 <C0j <c^ <...c^<©°.

First consider co e (0, C0j). Since there are no zeros of cog(-co2) in this interval, this



implies that sign(Im( N(jco, X) )) is aconstant on (0, co^ x I. By part (ii) above, N(jco, X) *
0 for all co e IR+ and for all X e I, so argnet ( N(», X) ) [s well-defined. In particular,

[0, °°]

argnet( N(«, X) ) is well-defined and continuous which implies that argnet(N(», X)) =
[0, (d{\ [0' ®V
argCNQQ)^)) - arg(N(jO, X)). But arg(N(j<alf X,)) =arg(p(jco1)), and arg(N(jO, X)) =arg
(p(j0)) since 0 and cox correspond to the fixed points aand b in Figure 2. Thus, the net argu
ment change between 0 and C0j is independent of X.

The same reasoning applies for co e (cOj, co^, for co e (co2, co3), etc., up to co g (co^,

cojj). Hence,

argnet ( N(», X) ) = argnet ( p(») )
[0, G>k] [0, ©k]

Thus, the only difference in argument occurs for co e (cok, °°). Since there are no zeros of
G)g(-co2) in mis interval, this again implies that sign(Im( N(jco, X) )) is constant (See Fig
ure 2). This in turn implies that |argnetN(.,A.) I< n . Since argnet ( N(«, A.) ) =

[o)k, oo] 10. ©rJ
argnet ( p(«) ), we then have
[0, cok]

|argnetN(»,A) - argnet(p(»)) I< n
[0,oo] [0,oo]

for all A. € I, which proves (iii) for the case where p(s) has nojco-axis zeros.

Proof of (iv) - Note by the definition of I that -V^-i e L °rder the zeros of ^'^ as
before, and use arguments identical to that of part (iii) to obtain

argnet(p(.)) - a^net^-an/a^)) =argnetfeW) - .argncKNK-a^an-i))
[0,~1 [0,oo] [tok, <*>] [wk, H

Since ^ isa fixed point (i.e., independent of X), we then obtain

= arg(p(jco)) - arg(N(jco,-an/an.1))
co—> °° oo—» °°

Since we are taking the limit as co-» «>, we only need to consider the leading term of each
polynomial. Performing this operation, and using properties ofarg, we obtain in succession



= arg(an(jco)n) - arg(an.1(jco)n-1)
(0—> oo CO—> <»

= arg [ana^^ViCJo))11-1]
C0-» ~

= argJajco/V!]
co—»<»

If a^a^^O, then the net argument difference is rc/2, and if a^a^ < 0, then the net argument

difference is -rc/2. This proves (iv) for the case where p(s) has no jco-axis zeros.

If p(s) has jco-axis zeros, then part (i) shows that N(s, X) has the same jco-axis zeros with
the same multiplicities. This means that the only difference in argument can come from the

non-jco-axis zeros. If we extract the jco-axis zeros by pt(s) = p(s)/ .ft (s2 +C0|2), then
p^s) has no jco-axis zeros, so we can apply the arguments above. For example, to prove
(iii) we know from above that

IargnetNjKA.) - argneuW*)) I< n
[0,~1 [0,oo]

where Nj(s, X) =N^s, X)l U (s2 + coj2) for all Xel. This then imp!

IargnetN(»,A) - argnet(p(«)) I< n
C C

which proves (iii). Statement (iv) is proved similarily.

Proof of (v) - The net argument difference between N(s, -an/a^) and p(s) as s traverses C

is sign(an/an.l}iU2, by applying part (iv) above. Applying the converse of Lemma 3.3 shows

that N(s, -SLj/^i) and p(s) have the same number of zeros on the jco-axis, and a difference
of a most one in the number of open right half-plane or open left half-plane zeros, depending
on the signof a^a,,^. Thisproves (v). •

4. Proof of Theorem 2.1 (Routh-Hurwitz)

Let us first emphasize some notation. As before, assume n is even.

Let hn/2_w(s2) be the even polynomial of degree n-2w whose coefficients lie in row 2w+3.
(See Table 1). Let gn/2-w(s2) be the even polynomial of degree n-2w whose coefficients lie
in row 2w+2. (Again see Table 1).

res



To construct the Routh Table, perform the calculations indicated in section 1. This corre
sponds ateach step to finding a An/2.w e IR, ora M>n/2-w e R such that

Ka-^$2) =^w+lfe2)+ ^n/2-ws2giV2-w(s2)
gn^-w(s2) =gn^-w+l(s2) +hi^-w^-w+l^2)

where the leading term of h^.^s2) and gn/2.w(s2), respectively, is cancelled. If this proce
dure cannot be performed (i.e., the leading term of gn/2.w(s2) or h^.^s2) is zero), then a
zero is in the first column of the Routh Table. The standard procedure given in elementary
textbooks is to replace the zero by e > 0, and proceed. See section 5 for some of the implica
tions of this.

Proof of Theorem 2.1 (Routh-Hurwitz)

=> If p(s) is Hurwitz, then each of its zeros are in the open left half-plane. Consider the
first step of the Routh procedure. By Lemma 3.4, part (v), N(s, -&J\.{) = Kp.^2) -
ajj/ajj.js^^s2) + sgn/2(s2) has the same number of zeros in the open left half-plane as
p(s) except for the eliminated zero. Since all the zeros of p(s) are in the open left half-plane,
the eliminated zero must also be in the left half-plane. Thus, by the definition of hn/2(s2) and
Lemma 3.4, sgn/2(s2) + hn/2(s2) has precisely n-1 zeros in the open left half-plane, and
a^^ is positive. By exactly the same reasoning in the next step we have that h^s ) +
sg^.^s2) has precisely n-2 zeros in the open left half-plane, and \^\r\ is positive.
After n steps, all zeros have been eliminated and each element in the first column is posi
tive.

<= If each element in the first column is positive then Lemma 3.4, part (v), shows that pre
cisely n zeros in the open left half-plane have been eliminated. Thus p(s) is Hurwitz. •

5. The Second Part of the Routh-Hurwitz Theorem

Based on Lemma 3.4, we have the second part of the Routh-Hurwitz criterion.

Theorem 5.1 - Consider a nth order polynomial in s

p(s) =^ +ajs + ... VIs11"1 +V" wnere ai€ 1R 'i== *' 2' •**n-

As before, assume for simplicity that n is even. Suppose when calculating the Routh Table
that no element in the first column is zero. Then the number of sign changes in the first col
umn of the Routh Table is the number of open right half-plane zeros of p(s).
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Proof of Theorem 5.1 - At each step the algorithm (i) eliminates precisely one zero of
p(s), (ii) preserves the position of the jco-axis zeros, and (iii) ensures that the remaining off
jco-axis zeros do not cross the jco-axis. By Lemma 3.4 part (v), the eliminated zero is in the
open left half-plane if the ratio of the associated coefficients is positive, whereas the elimi
nated zero is the open right half-plane if the ratio of the associated coefficients is negative.
Thus the number of sign changes in the first column indicates the number of open right half-
plane zeros of p(s) that were eliminated. •

Remark 5.2 - If a zero does appear in the first column during the Routh procedure, care must
be exercised in ascertaining the zero positions of the original polynomial. By adding an e > 0
to a column, the position of the zeros are being perturbed (since the zeros of a polynomial are
continuous functions of their coefficients provided ^ remains bounded away from zero).
Attempting to deduce properties of the zeros of the original polynomial based on the proper
ties of the perturbed polynomial can often lead to erroneous conclusions as the following
examples show.

Example - Let p(s) = s2 + 1. The Routh table for this example is

1 1 0

e 0

1

where £ > 0. Since there are no sign changes, the "Theorem" states "there are no zeros in
open right half-plane", which is true. However, by choosing p(s) = -s2 - 1 the corresponding
Routh table is then

1 -1

e 0

-1

where e > 0. This leads to the "conclusion" that there are two zeros in the open right half-

plane. Note that adding the e > 0 merely pushes the jco-axis zeros of the original polynomial
off the jco-axis. Much more insidious examples can be constructed that make it very difficult
to tell the position of the zeros of the original polynomial. (See, for example, [Gan. 1, p. 184,
Example 4].) However, we do have the following proposition.

Proposition 5.3 - Suppose that during the construction of the Routh table that a zero in the
first column is encountered. Then

(i) If there are one or more nonzero elements in the same row, then p(s) has a least one zero
in the open right half-plane.
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(ii) If the row is zero, then (a) p(s) has at least one pair of jco-axis zeros, or (b) p(s) con
tains a factor of the form (s + cc0)(s - oc0) for some a0 e IR, or (c) p(s) contains a factor of
the form (s +(Xq +PqJXs +Oq - P0j)(s - (Xq +P0j)(s - Oq - PqJ) for some a0, P0 s IR.

Proofof Proposition 5.3 - Proof of (i). Since there is a zero in the first column in the Routh
table, Lemma 3.4 shows that p(s) has at least one zero in the closed right half-plane. With
out loss of generality, assume that the zero is the second element of the first column, i.e.
sg(s2) has a leading coefficient of n-3. Suppose that the only zeros of p(s) in the closed
right half-plane are jco-axis zeros, say M counting multiplicities. Then extract the jco-axis

zero pairs from p(s) by p,(s) = p(s)/ n(s2 +C0:2> Equivalently, px(s) = h(s2)/
i=l

Jl (s2 + co-2) + sg(s2)/ Jl (s2 + CO:2). By assumption, px(s) is Hurwitz and thus has every
i=l l i=l

coefficient positive. However, h(s2)/ n(s2 + C0j2) is of order n-M, while sg(s2)/ II(s2 + coj2)
is of order n - M - 3. Thus, pj(s) has its n - M - 1 coefficient equal to 0, which contradicts
the fact that pj(s) is Hurwitz. This proves (i).

Proofof (ii) - Encountering a zero row during construction of the Routh table means that at
some step

nn/2-w+l(s ) ="^n/2-ws 8n/2-w(s )
Sn/2-w+l(s ) = "hi/2-wnn/2-w+l(s )

Hence, the polynomial h^.^s2) + sg^.Js2) or sg^.^s2) + h^.^s2) equals (1 -
\i/2-ws)sgn/2-w(s2) or <! - ^n/2-w+ls)hn/2-w+l(s2)' respectively. Thus, since gn/2.w(s2)
and hn/2.w+1(s2) are even and real, this means that the zeros are of the type stated in the
Proposition. Working our way back up the Routh table, note that p(s) can be written as lin

ear combinations of gn/2-w(s2) and K/l-w+l^ or 8n/2-w+i(s2) and K/l-w+i^- Thus'
p(s) alsohas the statedproperty. •

Appendix - Proof of Lemma 3.4 (ii)

The goal is to find a curve C as in Figure 1 with a sufficiently small indentation about each
jco-axis zero so that N(s, A,) * 0 for any Xe I and any s e C.

Take any bounded interval I c IR. From part (i) of Lemma 3.4, N(s, X) has the same jco-
axis zeros with the same multiplicities as p(s), say a total of M. Therefore, only n-M zeros
of N(s, X) depend on X. Let (z^A.), i=l, ...n - M) denote these zeros of N(s, X). Note that
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the Z|(X) are acontinuous function of Xexcept in aneighborhood of X=-aja^i-
Note that these zeros never cross the jco-axis, i.e., there is no X e I and no i e {1, ...n - M}

such that Re(zi(A)) = 0. In addition, note that at X=-VVl' *e degree of N(s, X) drops
by precisely one. Thus, precisely one member of [z{(X), i=l, ...n - M}, say Zj(X), goes to

infinity as X -> -s^\_v and it tends to infinity along the real axis, as an asymptotic expan

sion shows. This means that there is a closed interval Ij c I with \zj(X) | <<» for all Xe Ij,
satisfying min min( |zj(A) - JCO: | ) = min min( |z,(A) - jcot |) . This latter

ie {1, ...M) Xel ie {1, ...M} Xelj

expression has an achievable non-zero minimum, since the locus Zj(Ij) is closed and bound
ed, and never crosses the imaginary axis. Call this minimum distance Rj.

So now consider z(I) := { z{(X)\ i=l, ...n - M, i * J, X€ I} c (C, the locus of all off-imagi

nary-axis zeros of N(s, X) (except for Zj(A,)). Since I is closed and bounded, this locus is a

closed and bounded set. Therefore, min |z(I) - jcoj | is a finite, non-zero constant,
ie {l, ...M)

denoted R. Let R* = min(Rj, R) > 0. We can thus make the radius of the indentation about

each jco-axis zero jcoj equal to R*/2, which proves (ii).
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