Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ASYNCHRONOUS DYNAMICAL SYSTEMS
PART II: NON-DETERMINISM AND
REALIZATION

by

Kemal Inan

Memorandum No. UCB/ERL M89/77

23 June 1989

ASYNCHRONOUS DYNAMICAL SYSTEMS
PART II: NON-DETERMINISM AND
REALIZATION

by

Kemal Inan

Memorandum No. UCB/ERL M&9/77

23 June 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

ASYNCHRONOUS DYNAMICAL SYSTEMS
PART lI: NON-DETERMINISM AND
REALIZATION

by
Kemal Inan

Memorandum No. UCB/ERL M89/77

23 June 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

ASYNCHRONOUS DYNAMICAL SYSTEMS PART II : NON-DETERMINISM AND REALIZATION !

Kemal Inan

Department of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory
University of California, Berkeley, CA 94720

ABSTRACT

The shortcoming of the deterministic ADS model is illustrated by examples of 'deadlock’ and
"livelock’ that is ignored by deterministic semantics . The examples motivate the generalization of the
deterministic ADS theory to nondeterministic environments. This is accomplished first by defining non-
deterministic images of deterministic marked process spaces and then using an extended signal theory to
definre nondeterministic ADS and its environment .

The realization problem for ADS is defined and solved for the deterministic case and generalized
to the nondeterministic case . The relation between buffer-free representation through the response
function and buffer dependent representation by the state function of the ADS raises issues peculiar to
nondeterminism such as computing realizations that preserve deterministic behaviour. Different
equivalence definitions including bisimulation [5] are presented in the context of ADS and the expres-
sive power of the underlying semantics are compared . The distinction between weak and strong
equivalence is shown to be related to scenario analysis for data flow networks [7] .

1 Research supported in part by NSF Grant ECS 8719779, by the MICRO program of the State of Califomia and a
grant from Pacific Bell .

1. Introduction

This is the second part of a three part paper on asynchronous dynamical systems. In this paper
two problems are addressed : first the ADS theory presented in part I is generalized to incorporate non-
deterministic signals and second , the problem of realization of response functions by ADS is formu-
lated and solved first for the deterministic case and then extended to the nondeterministic case. Based
on these results various definitions of ADS equivalence are presented and related to each other.

In the context of dynamical systems the term ’nondeterminism’ points to the existence of exter-
nally observed sequence of event transitions that does not correspond to a unique set of internal transi-
tions of the system. The underlying system is typically a state machine or a synchronization tree (5]
which is a special kind of state machine , possibly infinite and acyclic so that it has no prior commit-
ment to a specific definition of equivalence among its states. State transitions are labeled by events and
a special symbol denotes the invisible event for modeling unobservable transitions . In such a machine
a unique sequence of visible events may drive the system to a set of different states . This may , for
example , happen if from a given state there are different transitions with identical event labels or there
are unobservable transitions . Under such conditions the system is said to behave in a nondeterministic
way and models are suggested that capture relevant features of such behaviour .

A nondeterministic semantics is a formalism that differentiates nondeterministic behaviour by
directly or indirectly imposing an equivalence relation on the set of all state machines described above .
The expressive power of a nondeterministic semantics is measured by the level of refinement induced
by its equivalence classes . For example two machines are defined to be trace equivalent if they accept
the same sequences of visible transitions . This is one of the coarser equivalence definitions that is used
for deterministic modeling .Milner’s observational equivalence and its related concept of bisimulation
(5] or Hoare’s definition of equivalence through failures and divergences [4] are alternative definitions
of nondeterministic equivalence. In the context of computer languages , different definitions of
equivalence correspond to different expressive powers of the corresponding languages that support non-
determinism [6] .

In this paper we model nondeterministic behaviour using a modified form of Hoare’s approach to
nondeterminism . Our perspective is slightly different from that of a language designer . We implicitly
assume that at some detailed level of modeling ADS environment behaves deterministically. As we sim-
plify interconnected ADS by the appropriate use of the projection operator we introduce nondeterminis-
tic behaviour to the reduced qugls. We would like the model of nondeterminism to be expressive
enough such that the reduced models are simpler , yet they incorporate the necessary information that
allows us to predict the worst case behaviour of the original deterministic model. Therefore , for exam-
ple , we allow a process to recover from diverging conditions instead of imposing CHAOS after diver-
gence as Hoare does. Doing so we retain greater amount of information about the behaviour of the ori-
ginal system at a negligible cost of representation complexity . The definition and concepts of non-
deterministic marked processes and extension of ADS to nondeterministic environments are all treated
in section 2 .

In section 4 we introduce the asynchronous dynamical realization problem . Two fundamental
results are derived that state the conditions for a response function to be realized by ADS . The first
result states the necessary and sufficient conditions for a deterministic response function to be realized
by a deterministic ADS and constructs an ADS in the proof . The second result again states the neces-
sary and sufficient conditions , under mild hypotheses , for a nondeterministic response function to be
realized by nondeterministic ADS that behaves deterministically on trajectory inputs , that is , inputs
with a single trace and its prefixes . These results characterize response functions as buffer-free
representations of asynchronous dynamics and problems like optimal use of buffering for maximal

-3

parallelism or deterministic behaviour of a synthesis become practically relevant questions .

The distinction of strong and weak equivalence of section 3 is related t the scenario analysis of
Dennis used for data flow models [8] . In the context of data flow models scenario analysis is an
approach that allows a unique characterization of interconnected actors when input-output description of
each actor is not sufficient to characterize the interconnected behaviour uniquely. This situation has a
natural formulation in ADS environments where the input-output histories correspond to response func-
tions and scenario analysis coincides with fitting a specific realization to such response functions. The
ADS approach looks richer both in its signal variety and nondeterministic representation power . A
detailed treatment of this issue with concrete applications to input-output computations will be
presented in part III of this sequence .

Our operational perspective of nondeterministic modeling culminates in the concepts of strong
and weak nondeterministic equivalence given in section 3 , which stand for equivalence relations
defined on the space of original , non-reduced , deterministic ADS representations . The refinement
corresponding to strong nondeterministic equivalence corresponds to the differentiating power of the
nondeterministic ADS model used in this paper . We distinguish the semantics of our definition by
relating it to the concept of bisimulation (5] , a dynamically invariant definition of equivalence in the
context of ADS environment , and show that any bisimulation refines our model of nondeterminism .
Finally the results of the paper are discussed in section 4 by pointing to some open problems .

2. Nondeterministic ADS Environment

In this section we generalize the results of the part I of this paper to incorporate nondeterministic
phenomena . This generalization , founded upon an operationally simple and efficient representation of
nondeterministic signals leads to an algebra of ADS block diagram manipulation techniques as to be
demonstrated in part IIT of this sequence of papers. ~

The deterministic definition of an ADS given in part I of this paper disregards problems of non-
determinism inherent in ADS dynamics. This point is illustrated by the examples below . For these
examples we make the simplifying assumption that all the input and state signals in U and X behave
deterministically in a representation R = (U ,X,Y). By this it is meant that for any such signal v :

s*<a>e trv = the process v/s cannot remain idle indefinitely .

This is the implicit assumption of determinism which is an externally imposed semantics to the formal
definition of deterministic processes . Now let s"<a>e€ rH (1) then two types of phenomenon may
violate this deterministic assumption : '

(1) There may exist a trace ¢ of S(u) such that tdy =setrH(u) and tr(S(u)/t) = (<>} . This
implies that the state signal S (u) , if trapped at ¢ cannot progress any further and H(u)/s cannot
progress also.

(2) There may exist an infinite set I" of traces of S(u) such that te " > tly = s . This implies
that the state signal S(u) makes an arbitrary number of transitions that are invisible at the output
H(u) . Again H (u)/s cannot may not be able to make any progress at all .

Consider the example given in Figure 2.1 . If an input « is applied with tru := (< >,<a>} then
the state signal §(u) may generate an arbitrary number of ¢’s invisible at the output (case (2) above) ;
as it generates b’s at the output it may end up at state 2 and the output cannot develop any further
although trH (u) = b" (case (1) above) . We shall loosely use the words "deadlock’ and ’livelock’ to
refer to situations illustrated in cases 1 and 2 respectively .

-4-

In simplifying an interconnected ADS one uses repeated layers of state projections eventually to
compute a simple input-output relation. At each reduction step further nondeterministic behaviour is
introduced accumulatively of the type mentioned above. If an interconnected system reduction method
is to accomplish more than an input-output 'logical correctness’ check , that is , if it is to detect
*deadlock’ or ’livelock’ situations also , then it is essential that the accumulative effects of the kind of
phenomena described above is captured by a nondeterministic model that is simple and computationally
effective. This is achieved in two steps : first a model is developed for representing nondeterministic
marked processes ; second this model is used for re-defining the ADS operators to handle nondeter-
ministic signals such that the construction of a logical nondeterministic ADS environment is complete .

We shall define a nondeterministic process space in the image of a given deterministic process
space and use this definition to model the nondeterministic signals in ADS. For reasons of consistency
we start at the embedding space level 2 . ’

Let W = W(A M, D) be a given (deterministic) embedding space with the usual partial order and
length projection operators <’ and *Tn’ . We define the nondeterministic image of W as the embed-
ding space 3 given by the triple (W , <, ®n) where the embedding set W := W(A .M, ¥) is given by
the following definitions of M and ¥

M =2 x{01)xM

and V¥ is the set of partial functions p defined on prefix-closed subsets of A" with the general structure
B= (LM la) t AT =22 x (0,1} x M

where L, € @ and for any allowable s € A”
Bepn(s);CcB) = Cepls) 2.1)

Following Hoare [4] we call W,(s) the refusals of the process at the trace s and a member of the
refusals a refusal set or simply a refusal . A refusal B is called a maximal refusal if B ¢ D and
D e u(s) implies that B = D . The interpretation of a refusal B is simple : if after the execution of the
trace s , the environment offers the process the elements of B as the only possible next transitions , the
process may stop without any further progress . The mark associated with p; denotes infinite hidden
traces of a process named , again after Hoare , a divergence . If at a trace s the mark Py (s) = 1 then
this signifies the possibility that the process may engage in an infinite activity of hidden transitions after
executing the trace s . Our definition , however , differs from that of Hoare’s , since we allow for
recovery after divergence whereas Hoare assumes a chaotic state of affairs - that is -, every trace and
every refusal is possible after a divergence - after the process diverges. The difference arises from our
perspective of efficiency . If nondeterminism is viewed as a byproduct of system reduction either by
hiding events or relabeling them , then efficiency in nondeterministic representation means preserving
the maximum amount of information on the original system’s behaviour with minimum representation
complexity for the reduced system .

In order to keep the notation simple we shall use the same symbols '<’ and *Tn’ instead of Z and
Ta for the new nondeterministic partial order and length projection operators. The context should fix
the meaning. The new partial order '<’ for the embedding space is defined by letting v < w if and
only if

2 For a definition of embedding space see pant I of this paper , for a detailed treatment see [3] .

3 This is a much simpler version of the nondeterministic embedding space suggested in [3] . The reason for the
simplification is due to the special structure of the ADS environment .

MWDwrvgow,

@) Uv(s)=p,w(s) foralsewv ,
G w)cyv(s) forallse v .
@) paw(s) S pgv(s)forallse v .

According to this order the larger of two processes with identical traces is more deterministic , that is to
say more predictable , because of requirements (3) and (4) .

The length projection operator *Tn’ is defined by
r(wTh)=(Getrv | #s < n)
R @ TR)(s) = ppv(s)
Ha(v Tr)(s) = pav(s)
and

Lv(s) if#s < n
P«r(VT")(S) = 2.4 if#S=Il

Fact 2.1

The embedding set W together with the partial order and length projection operators constitutes an
embedding space 4 . In particular if v; is a chain in W then it converges to v where

trv = UfrVI
j
WV (s) == M Kvi(s) (2.22)
jz2Jd
Hmv(s) = Upvs(s)
where J is any integer that satisfies : j >/ = s € #rv; ; finally

0, if for some j , uyvj(s)=0
Hav(s) = 11 otherwise (2.2b)

We first observe that deterministic behaviour is a special case of the nondeterminism defined
above . More precisely a process w € W is said to behave deterministically if for each s € trw
Mow(s)=2"
Haw(s)=0
where B, is defined by

agB, «= s "<a>eurw 2.3)

After defining a nondeterministic embedding space in the image of a given deterministic embed-
ding space we establish a correspondence between deterministic and nondeterministic processes in a
simple way. For this we use the symbols 'n’ and '§’ as operators that convert a deterministic process
into a nondeterministic one and vice-versa . More precisely let w € W then we define n(w)e W as

4 The fundamental property of an embedding space is that the partial order is complete and the basic calculus opera-
tors , namely the choice function , post-process function and the length projection function are all continuous with
respect 10 the pantial order defined. The reader is referred 1o (2] for the exact definition of an embedding space .

follows :
trnw) = trw
R MW)(s) = pw(s)
W Mw)(s) = B,
Ha(w)(s) =0
where B, is given by (2.3) . Note that (w) is the largest nondeterministic process in W that agrees in
traces and the deterministic mark with the deterministic process w . In particular it behaves determinist-
ically .
In a similar way let w € W and define 8(w)e W as the process obtained from w by deleting the
u, and p, components of its marking function and setting p3(w)(s) = Hnw(s) .
The following relation is immediate :

Sw)) = w
v <MEM)) 24

for all we W and v € W . In particular 7 is a one-to-one mapping of W into W whereas 8 maps W
onto W . We define below a marked process space for the nondeterministic case where there are two
universal nondeterminism axioms that must be satisfied in addition to any arbitrary set of marking
axioms.

Definition 2.1

Any subset IT of W is called a nondeterministic marked process space provided that it satisfies the
axioms of a marked process space (see [1]) and the following general marking axioms of nondetermin-
ism.Forall PeITand s e trP :

(1) If <a> ¢ rP/s then <a>€ B for all maximal refusals B in p, P (s),
(@) If ugP(s)=1then W, P(s) =24 .

Fact 2.2

The function 8 maps marked process spaces in W into marked process spaces in W . Conversely if IT is
a marked process space in W then the set of processes given by

MM:=(QeW | thereexist P € IT such that Q <1(P)) (2.5)
constitutes the largest marked process space in W (with respect to set inclusion) that satisfies the rela-
tion

I =1

Before we generalize the domain of the ADS operators to cover nondeterministic arguments we
define the sum of nondeterministic spaces below. Let W,V be the nondeterministic images of the
embedding spaces W and V respectively . We define

WoV)y=WeoYV)

Similarly let IT and © be process spaces in W and V respectively then we define the sum space of ju
and © as :

Mo =0 ® 9

-7-

Recall that [w] in the deterministic case is a notation used for the set of all subprocesses of w
[1] . For the nondeterministic case it will acquire a slightly different meaning . If w € W where W is
the nondeterministic image of W we define the set [w] as a subset of subprocesses of w such that if v
is in this subset then each maximal refusal of v at a trace s includes some maximal refusal of w at s .
In other words if D is a maximal refusal of v at s then D = E\F where E is some maximal refusal
of w at s and F is a subset of A . Therefore , for example , any subprocess of w that possesses a
maximal refusal that does not contain some maximal refusal of w at some given trace is not in [w].
Intuitively [w] stands for all subprocesses of w in which the nondeterminism is cumulative with respect
to w . As an example take trw (<><a><c>} , where pw(<>)=2 and
trv = {< ><a>) . If pv(<>) =2@#<) then v e [w] whereas if p,v(< >) = 2{#<} then v is not
in [w] since a is not in any maximal refusal of v.

We shall extend the definitions of the three ADS operators , namely sum '®’ , intemal sum '+’
and projection '.’ , to incorporate nondeterministic arguments in their domains and produce nondeter-
ministic signals in their ranges. We shall use the same symbols for these extended operators so as not
to overcrowd the symbolism . Since nondeterminism covers the deterministic case no meaning is lost in
this symbol superimposition. Also throughout we assume that all the nondeterministic process spaces
are nondeterministic images of given deterministic spaces in accordance with (2.5) above .

The following definition extends the sum operator and its restricted version the internal sum
operator , to nondeterministic process spaces.

Definition 2.2 ,
Letx € TI and y € © then we define the nondeterministic sum operator as follows
tr(x®y) = tr(6(x) ® 8(y))
Hn(x @ y)(s) = pn@d(x) @ 3(y))s)
Ha(x®y)(s) = max(uax (s 42)pay (s L))
and pu, (x®y)(s) is the smallest subset of 24 that satisfies :
(1) 2% < 1, (x®y)(s) if B=CD where C € t,x(sd,) and D e p,y (s i,).
(2) If uy(x®y)(s) = 1 then p, (xDy)(s) = 24 .

We define the nondeterministic internal sum operator of x and y with respect to the cover sets [X]
and (Y] where X,Y are processes in 1T and © respectively with x € [X] and y € (Y] by

tr(x +y) =)+ dy))
Hm(x +¥)(s) = p@(x) + 8¢))(s)
Ha(x+yXs) = max(uax (s dx gy (s y))
and again W, (x + y)(s) is the smallest subset of 2* such that :
(1) For each pair C € u,x(slx) and D € p,y(sly) define B as

B :=(C nD)y(C NnBx) U D N By) 2.6)

where By is the set of next transitions of X /(s {x) and By is defined similarly . For each such B
2 cp(x +y)s).

(2) If pax +y)(s) = 1 then p, (x +y)(s) =2* .

-8-

First , observe that (x + y)e [X®Y] since by the first definition above every maximal refusal of
X®Y at s is of the form CAD with C and D maximal refusals of X/(sx) and Y/(s Ly) and therefore
by (2.6) above maximal refusals of x + y are increments to those of X@®Y as required by the bracket
notation. Second , observe that both definitions satisfy the associativity condition where for the internal
sum operator it can be shown by induction that for the process x; + - -+ +x, with cover sets [X;], B
in (2.6) can be replaced by :

B=(Cn - nCGYYCinBYy '+ UG NB,)
where each C; is a refusal of x; at six] and B; is the set of next transitions of X;/(s ’in) .

The following definition extends the projection operator to nondeterministic range and domain.

Definition 2.3

P eI and O € © where II and © are deterministic process spaces . We define P.Q € © as follows :
ir(P.Q) = tr (3(P).8Q)) '
Hm (P.Q)(s) = &P).8(Q))

and if T, is defined as
T,=¢ewP 1 tlp=5)

The divergence at s , g (P.Q)(s) is set to 1 iff one or more of the following conditions hold :

(1) For some q € T, the set

T:=0tetr(Plg) | tigs=<>)

is infinite ;

(2 ForsometeT, ,u;P(t)=1;

) HeQ(s)=1.
The refusals at s , W, (P.Q)(s) , is defined as the smallest subset of 24 that satisfies the following
requirements :

(V) Ifte T, and B € 1, P(r) has the property that :

t “<a>eT; >aecB ~

and C e 1,0 (s) then 2% < p.(P.OXGs) .
@) If py(P.Q)(s) =1 then p, (P.Q)(s) =2* .

The definition of the nondeterministic projection is important in the sense that it is here that the
new refusals and divergences are generated. According to the conditions that set the divergence index
to 1 the process diverges if either the process P makes inifinite transitions transparent to Q after gen-
erating the trace s ; (see also Lemma 2.1 below) or along a trace of P that moves on the inverse image
of 5 the process P diverges : or Q diverges at s. In most applications the process Q behaves determin-
istically therefore the first two conditions are the typical sources of divergence.

One peculiarity of nondeterministic projection is the multiplicative effect of refusals when a pro-
cess is consecutively projected onto itself. Consider a process P such that 7P = (< >,<a;>, * * * ,<a,>]}
and the maximal refusals are (a;} for j = 1,...,n. It follows from the definition above that P.P has
the same traces as P but the maximal refusals are (a;,a;} for all distinct pairs a; and g; . Similar argu-
ments apply to P.P.P where pairs are replaced by triples and finally P. - - - .P where projection is

-9.

repeated n times the whole set of events is the maximal refusal.

The condition that the set T defined above is infinite is equivalent to the existence of an infinite
trajectory that is transparent to Q as stated precisely by the following lemma .

Lemma 2.1

The set T in Definition 2.3 is infinite if and only if there exists and infinite sequence of traces {¢;} such
that for each j

(l) tj eT ,

(D) #; >j ,

(iii) For all i,j the traces ¢; and ¢ agree on the first min (i ,j) entries .

The hidden infinite trajectory <t is defined as the limit of the trajectories t; defined by their maximal
traces given by £; Tj .

The condition that generates the diverging infinite trajectory is more delicate then it may look. To
appreciate this consider the processes P and Q where tP :=:{a"cb" ; n 20} 3 and #Q = {c"} .
Clearly 1 (P.Q)(< >) = 1 since P can generate arbitrarily many a’s hidden to Q. Yet py(P.Q)(c)=0
although there are infinitely many traces of P that generate ¢ for P.Q . The reason why the process
does not diverge is that it cannot make infinite transitions that are hidden to Q after generating ¢ . This
is captured by the requirement that a trace ¢ should exist such that ¢ -LQ = ¢ and infinite hidden traces
are in P/q. For the example above , once a ¢ is given , a finite integer n is fixed and only " can be
generated after producing the event c. Further consequences of this observation follow in the re-

statement and the proof of the nondeterministic version of formula (3.13) in [1] (see Fact 2.4 item (3)
below).

The first condition for the refusals in Definition 2.3 is subtle and requires justification. The
justification is supplied by Lemma 2.2 below

Lemma 2.2

The refusals given by the Definition 2.3 satisfies the general axioms of nondeterminism .

Proof of Lemma 2.2

We have to show that if ¢ #(P.Q)/s then it belongs to all the maximal refusal sets in p, (P.Q)(s)
. There are two cases. B

In the first case there exists ¢t € T, such that there does not exist any a€ A and t"<a>e T, .
Then by condition (1) any refusal set B of P(¢) - in particular the empty set - can be 'unioned’ with
any refusal set F of Q(s) to generate a refusal B\F of (P.Q)s) . On the other hand if
 ¢ tr((P.Q)/s) then b must either be a member of some maximal F of Q at s ; or belongs to
trQ/s but it does not get perturbed by P , i.e., b belongs to every maximal refusal of P(¢”) for t’e T, ,
hence it belongs to the maximal refusal B of P(¢) . In both cases b € B\F and we are done .

In the second case starting from any te T, we can paste invisible transitions of P 1o it
indefinitely. But this implies that ps(P.Q)(s) = 1 by condition (1) of divergences which further implies
that w, (P.Q)s) =24 .

5 Note that P cannot be generated by a finite state machine .

-10 -

The following result relates the deterministic and nondeterministic ADS operators through the &
and 7| maps. Identical notation is used for both the deterministic and nondeterministic ADS operators
and the distinction follows from the context.

Fact 2.3
(1) Let v,w be nondeterministic processes in nondeterministic spaces then
S(v ®w)=3v @ dw

S(v +w)=3v + dw
S(v.w) = Sv.dw

(2) Let v,w be deterministic processes in deterministic spaces then
nv &w)=nv &Nw
nv +w)=nv +Mw

and

Nw) 2> Mv.anw

It turns out that the important results derived for the deterministic versions of the ADS operators
are either valid for the nondeterministic case or can be made so by slight modifications . One operation
to be clarified in this re-interpretation of formulas under nondeterminism is the union of signals for the
nondeterministic case since it is used both for the post-process and choice operations under projections
(see Fact 2.2 , (5) and (6) in [11). If v, is a set of nondeterministic signals indexed by ¢ in a nondeter-
ministic signal space [V'] we define (v, as

t

tr(\Uve) = \Utrv,
K (V2)(s) 1= pvee(s) (2.73)

KUV)(s) = (U K vie(s)

teT’

where
T"=@ lsewv)
and ¢’e T’ ; finally .

Ha(\Uve)(s) =1 iff for some ¢ , pyv,(s) = 1 (2.7v)

Observe that unlike the deterministic case the union is not necessarily larger than its components
in the nondeterministic partial order. This is because if two indices ¢ and ¢’ correspond to two signals
sharing a trace s then at s the divergences and refusals are combined to generate a less predictable pro-
cess .

Finally we extend the definition of a solid process space to the nondeterministic case .

A nondeterministic process space IT is said to be solid if for each P in IT , any process that
inherits a prefix closed subset of the traces of P and legitimate subsets - i.e. those subsets that sausfy
the universal nondeterministic marking axiom of Definition 2.1 - of its refusals at each trace s , is also
in IT . Observe that if IT is a solid deterministic space then 1T defined by (2.5) is also a solid nondeter-
ministic process space. Henceforth we assume all the nondeterministic process spaces to be solid 6
The basic novelty of nondeterminism is the possibility of differentiating signals in [V'] not only by their

§ For a given nondeterministic process V' in a solid marked space the subset [V'] is closed but not necessarily solid
since there are subprocesses of V' that are not in [V].

- 11 -

traces but also by their divergences and refusals on identical traces which measure the behavioral pred-
ictability of the signal at that trace.

Unlike the deterministic case projection operator is not continuous with respect to its first argu-
ment . We give counter-examples below.

For the counter-examples considered we take the event alphabet as A := {a,b} . First take P" 10
be a deterministically behaving chain where wP”* := a” and let the deterministically behaving process
Q be defined by rQ = b". Then for each finite n we have P (P".Q)(< >) = 0 since P has no infinite
trajectories . However the chain P" converges to P and in the limit the projection diverges , that is
1z (P.Q)< >) = 1 since P can generate infinitely many a’s concealed from Q .

A similar situation arises also in refusals. This time define recursively the traces of the elements
of deterministically behaving chain P" as” :

{a" W trP,y ,n even

irPy = {a”b) la™" W trP,y ,n odd

where 7P = (< >} and take Q as in the previous example . Then whenever n is even , P" can make
n hidden a transitions and refuse everything after that. Therefore according to the definition of refusals
we have for n even

HP O)<) =24

On the other hand if n is odd P* cannot refuse b at any stage since at each stage there is an invisible
path of a’s to generate the transition b. Therefore for n odd we have

B (P".Q)< >) = 2l
and the sequence of refusals oscillate between these two values where convergence is not possible.
Properties of extended ADS operators are summarized by Fact 2.4 below.
Fact 2.4

The extended projection operator is not necessarily continuous in any of its arguments but the nondeter-
ministic versions of the sum and the internal sum operators are associative and ndes functions of their
arguments. The internal sum operator is also continuous in its arguments . The following properties are
enjoyed by the extended operators where all processes are assumed to be members of nondeterministic
process spaces .

(1) For any w and v
Hav(s) < pa(wv)(s)
1 (s) € 1 (wy)(s)

and formulas in [1] , namely (3.3)-(3.6) extend to the nondeterministic case. On the other hand the
idempotency result (Fact 3.2 item (4) in [1]) is replaced by the corresponding inequality

P.PQ)Y<PQ

for the nondeterministic case.

7 It can easily be checked that this recursive definition of traces is prefix-closed .

12 -

(2) For the post-process and choice function formulas the relations
Ba(PPYs)(t) = Wal \U (PIm.PIs))(E)

ml;‘. =5
1 (PPYs)(t) = o { X Im.Pls)) () (2.8)
mip=s

hold and therefore the post-process formula in (3.7) in [1] extends to the nondeterministic case. Simi-
larly (3.9) in [1] also extends to the nondeterministic case .

(3) The divergences and refusals satisfy the following relations :
Ha(w ® v)s)e) = pawitsd,) ® viis L))
(W @ v)s)(e) = pwi(s) ® visd,))e)
Haw(s) £ pa((w®v)w)(s)
Hw(s) o 1 (Ww®v)w)s)
Ma(uw)(s) £ pg(u. (w@v)w)(s)
W (uw)s) < 1 (. (wev).w)s)

and if the following conditions are satisfied :

2.9
(2.10)

(2.11)

(C1) w and v behave deterministically ,
(C2) The process u is generated by a finite state machine ,
then the inequalities in (2.11) can be replaced by equalities .
These results imply that (3.12) and (3.13) in [1] are replaced for the nondeterministic case by

wov)w <w 2.12)
and

u. (wodv)w < uw (2.13)
and the inequality may be replaced by an equality in (2.13) if conditions (C1) and (C2) hold .
(4) For the internal sum operation the relations

Ha(w + vYs)E) = pa(whis dw) + viEs Ly ()
1 (0 + vS)(E) = (s dy) + 1G5 Ly))E) 2.14)

and

Hav(s) < pag(vvy+ -0 +vv)(s)
Wv(s) S (Vv + ¢ - +0V,XS) (2.152)

where v = v, +... +v, and
Hav(s) £ Hg((w +v).V)(s)
By (s) © U ((w +v).V)(s)

hold. Therefore the formulas (3.15) and (3.17) in [1] are valid whereas (3.16) is replaced by the version
below 8 .

(2.15b)

VYV + s +vy, <V (2.16)

8 For an example where the inequality in (2.16) becomes strict see the proof of Fact 2.4 in the appendix .

-13 -

We define a nondeterministic asynchronous dynamical system (nondeterministic ADS)
representation as a triple R = (U X,Y) where the processes U , X and Y are nondeterministic processes
in arbirary marked process spaces and U and Y behave deterministically . The state function
S : U] > [X] is defined by '

rS):=(se X | slyetru)
M S (u)(t) = pX (1)

the divergence marking W,S (u)(s) is defined by
HaS (u)(s) = max{pqu(sly) , naX (s))

and refusals at trace s , 11,5 @)(s) , is defined as follows :

Let B, denote the set of all events corresponding to next possible transitions of the process
Ul(sdy) and define the restricted refusals of a signal u at trace sl , denoted by R, (sly) as
the set with members consisting of the intersection of refusal sets in w,u (s {y) with B;. Then

WLSu)s) =D e2* ID=F UG ;FeR,(sy):GepnX(s))

The response function H : [U] — [Y] is defined by
H@u) =8u).Y

Fact 2.5

(1) When u=U the restricted refusals Ry (sly) consists of the empty set . This follows from the
assumption that U behaves deterministically . Consequently we have the familiar formula X = S(U) .

(2) As in the deterministic case we have
Sw)U suifueXU]

and if u € [X.U] and it behaves deterministically then
Sw)U =u

where the set [X.U] is called the projected domain of the state function. For the nondeterministic case
the projected domain restricts not only the traces of applicable inputs but it bounds the maximum pred-
ictability of input blocking at eacli trace by setting a lower limit for the refusals imposed by the state
process. Any further expansion in refusals is due to the nondeterministic behaviour of the input signal
and not the state process X .The projected domain enjoys the property

S(u) < Sw) 2.17)
for any u € [U] , where ui= Sw).U .

(3) S(.) is a continuous and ndes function of its argument. However H (.) is not necessarily a continu-
ous function since the nondeterministic projection is not a continuous function of any of its arguments.
Restriction of § to the deterministically behaving subset of its projected domain is a one-to-one func-
tion. S (u) can be expressed as

Su)=X.Mm@BX) ® U)+ u).m@X)) (2.18)

We present an example of a nnondeterministic ADS below. Recall that the process HALT,
denotes a process with only the empty trace with the mark m ; if the mark m is ignored by writing

-14 -

HALT , it is implicitly understood that it can be derived uniquely from the context - for example if it is
a signal it inherits the mark of the cover process at the empty trace - .

Example 2.1

We use the job-shop example given in Example 4.1 of part 1 of this paper to exhibit the nondetermin-
ism involved when the model is reduced to hide the private state transitions. The representation for the
nondeterministic ADS is given in Figure 2.2(a) where the processes U ,X and Y represented by the state
machines all behave deterministically. As in Example 4.1 the discrete events e f ,c,n and a stand for
*enter shop’ , ’job failed’ , 'job completed’ ,'next job accepted’ and ’acknowledge failure’ instants
respectively. From this we obtain the reduced representation R = (U ,)?,Y) where X :=X. uey) .
Clearly the state process X given in Figure 2.2(b) does not behave deterministically . As a simple nota-
tion we mark every state of a nondeterministic process by the maximal refusals and the divergence
index at that state where each distinct maximal refusal is specified by its subset consisting of only those
events that are possible next transitions (It is implicitly understood that events that are not possible tran-
sitions belong to every maximal refusal anyway) . Therefore the notation [{a };0] means that the transi-
tion <a> can be refused although it is a possible next transition and the process does not diverge at this
state . This corresponds to the case where the job is succesfully completed (a hidden event) so that
failure cannot be acknowledged.

If u is defined by u = (n = HALT) where u is assumed to behave deterministically then the
corresponding nondeterministic state signal .§(u) and the output signal l-?(u) are given in Figure 2.2(c)
where S and H refer to the reduced ADS (U X,Y) . In both signals <a> will get refused if the job is
succesfully completed.

If on the other hand u is given by the recursion u = (n — u) where, this time , n is assumed to
be a refusable event by u at any stage , as represented by the state machine of Figure 2.2(d) , then the
corresponding state and output signals are also given in Figure 2.2(d). Note that in this case the output
signal H(u) also diverges (thus the 1 in the notation of the state mark) at each trace since arbitrarily
large number of n’s hidden to the output are possible after each transition of the event a .

Finally we relate nondeterministic ADS to a deterministic ADS by using the relation between the
ADS operators - in particular the projection operators - expressed by Fact 2.3 above and apply these
relations to extend the signal representation of ADS to the nondeterministic case.
Let R =(UX,Y) be a given nondeterministic ADS and define its deterministic image by
SR := (8U ,6X ,8Y) then the following relations prevail :
SX.U) = &X.8U
&(Sg(u)) = Ssr (Ou) (2.19)
S(Hp (1)) = Hgp (Su)

Conversely assume that R = (U ,X,Y) is a deterministic ADS and define the nondeterministic image of
R by NR = MU nX nY) then the corresponding relation is given by
nX.U) 2 nXnU
N(Sr @) = Spr(nue) (2.20)
N(Hg 1)) = Hypg(Mu)

The extension of representation signal and the system signal to nondeterministic environments is
straightforward (see part I Definition 4.2) except for the following modification involving the represen-
tation signal :

-15 -

rw)=Sw)(nB@XNeUdY)

which is viewed as a signal with the cover set [N(8(X)) ® U ® Y] . The modification of replacing X
by its deterministically behaving version ensures that the cover process behaves deterministically.

Using (2.19) and (2.20) one can derive the appropriate inequalities between signals corresponding
to deterministic or nondeterministic image representations. For example if r(x) and r(5u) are the
representation signals of R and 8R then

F(3u) = 8(r (u))
r(u) < n(r@u))

3. Equivalence and Realization by ADS

In this section we derive results on the realization of a given response function by either a deter-
ministic or a nondeterministic ADS . In the first part we restrict our attention to the deterministic prob-
lem. Later we generalize the concepts and results to the nondeterministic case.

Let us start by stating the deterministic realization problem for ADS . Suppose we are given
arbitrary processes U,V,Y with V < U and a function G : [V] — [Y] . What conditions should G , as
well as V,U and Y , satisfy such that an ADS representation R = (U ,X,Y) realizes G in the sense
that

V=XU
G(v)=Hz(v) forallv e [V]

We already know that Hj is a continuous function , therefore continuity of G is a necessary condition .
But it is not a sufficient one. Consider the following example where V =U =Y and &7V = (a"} , ie.
both input and output processes consist of repetition of the single event a . For any non-negative
integer n define u, € [U] as the process with the traces consisting of a” and its prefixes . The function
G is defined by letting it map the argument u, into G(4,) := 4,4+ . The function G is continuous by
construction . On the other hand G cannot have a realization R = (U X,U) with X.U = U . To see this
let u, € [U] then we must have

Sw,).U =u,
by the property of the state functiczp whereas
H(up) =S uy).U =ty G(U,) = hpyy
which implies that R cannot be a realization of G.

One way to circumvent this problem is isolating the input transitions from the output ones. For
this we define event decoupled processes as below.

Definition 3.1

Let (P; } , be a family of processes defined in arbitrary process spaces. The family is said to be event
i€

decoupled (ed) with respect to a process Q if for each s € rQ

A\ Pils »LP.,) = {< >}

iel

If the process Q is not specified it is taken to be any process with the traces A~ .

- 16 -

As an example take processes P and R with respect to Q where maxrP := {acb} ,
maxtrR = (bda} and maxtrQ := {abcd - - - } where maxwr denotes the maximal trace of the process.
Then although P and R share the events a and b in their traces they are nevertheless ed with respect
to Q since the traces of Q guarantee that P and R do not share either a or b as a common transition
along the projection of the traces of Q as required by the definition .

A simple special case for the above condition would obtain when the alphabets aP; of the
processes P; are disjoint sets where for any process P , aP denotes the set of all events that appear at
least in one trace of P. It can easily be seen that if either Q has traces A™ or Q is the sum of the P;
processes then the special case stated above has to prevail.

In order to derive a second restriction on G we note an important property of both the state and
response functions of ADS , namely the preservation of the least upper bound of signals which we refer
to as the lub property % :

SQuy L u) =Sy LIS
Huy | u)=H@uy) L) H@uo (3.1)

where § and H denote the state and response functions of an ADS representation (U ,X,Y) and «, and
u, are arbitrary processes in [U] and for arbitrary signals p and ¢ in the same signal space the lub
(least upper bound) function * |_| ’ is defined by

r(p L) q) =0tpUlrqg

Clearly if G is to be realized then it must also satisfy the lub property stated above. The following
realization theorem states the conditions for the existence of an ADS that realize a given response func-
tion with the restrictions discussed above . Before we stating the theorem , we define a trajectory pro-
cess which is used both in the proofs of Theorem 3.1 and Theorem 3.2 . A finite trajectory is a
marked process consisting of a single trace s and all its prefixes. The number #s is called the length of
the trajectory. A trajectory is defined as the limit of a chain of finite trajectories.

Theorem 3.1 (Deterministic Realization)

Let U,V and Y be given marked processes in given marked process spaces where V < U and assume
that V and Y are event decoupled . Then a function G : [V] — [Y] is continuous and satisfies the lub
property if and only if there existsan ADS representation D = (U X ,Y) that realizes the function G .

IfR =(UX.Y)and R = (U XY) are two different realizations of a given function G then it does
not necessarily follow that X. (U®Y) = }f.(U @®Y) . That is , the relative interleaving order of the out-
put with respect to the input may be arbitrary. Consider the following response function G :

G (HALT) := HALT

G({<a>)) = {}

G(lac})) = {bd}
where U=V is given by the state machine in Figure 3.1 (a) and Y in Figure 3.1 (b) . In the above nota-
tion we denote the signals in the domain and the range by their maximal traces . We present in Figure
3.2 (a) and Figure 3.2 (b) the state diagrams of two different state processes X and X that realize the
function G above . The principal difference of the second realization is that it uses buffering. If we

9 The derivation of (3.1) is obvious and omitted.

-17 -

think of the input transitions as demands for consecutive services and the output transitions as the exe-
cution of these services then the second realization buffers the next demand before it executes the first
one.

In order to demonstrate , in general , that the distinction between different realizations can be
attributed to different buffering strategies we focus to the proof of the realization theorem given in the
appendix. The proof first constructs a pre-state function on the input trajectories , which sets a lower.
bound on the state function and extends these to arbitrary signals by using the continuity and lub pro-
perty of the response function . The inductive step in defining S'(u) for a trajectory u is given by
(A10). Clearly choice of different R, satisfying (A9) in the proof will yield different p, and hence a
different pre-state function by (A10). The choice of R, as R corresponds to the maximal (infinite)
buffering strategy. To see this observe that v :=s"<a>"q is a legitimate trace of S(u) where g is any
trace of G (z). This corresponds to the choice of a triple (¢,¢,< >) which certainly satisfies (A6) .There-
fore all the output traces , i.e. t#G(u) , can be generated after buffering the entire input trajectory

“<a>.

Now consider the following prudent buffering strategy by choosing R, as follows :

For each r € G (u) decompose the trace r as r =¢"t where g is the largest prefix of r in
rG (") . Choose any p € rS(u’) such that ply is a largest prefix - note that p may not be
unique - of s . We let R, be taken as the set of all such (r,g,p) subject to ¢ = r as r ranges in
trGu) .

If for the moment we make the assumption that .§(u) = §Sp(u) this realization corresponds to a more
efficient buffering strategy since s - or the largest prefix of s - has already been serviced by ¢ in this
definition. So the suffix trace t corresponds to the service for the additional demand specified by <a> -
or w'<a> - . Since choice of p above is not unique and in general §(u) < Sp(u) it is not clear that this
prudent buffering strategy is actually a minimal strategy where the word "minimal” is made precise by
the following definition.

Definition 3.2

A function G satisfying the hypothesis of Theorem 3.1 is called a realizable function. If there exists a
realizadon R = (U ,X,Y) where X is generated by a finite state machine G is called a regular realiz-
able functon. A reahzauon R = (U X,Y)of a regular realizable G is called a minimal realization if
for any other realization R= w ,X,Y), IX1 € IX! where |P | denotes the cardinality of the minimal
state machine (no. of states) that"generates the traces of the process P . The unique cardinality of a
minimal realization is called the complexity index of the function G.

Example 3.1

Let U=V be a process with traces {(a;,' ' .a.)"} and Y be a process with the traces
{@ .8)) .Foreach trace s of U there is a trace 5 of Y where each a; in s is transformed to
d; in 5. We define the function G : [U] — [¥] by first defining it on each trajectory T in [U] as

Gty =7

where T has the maximal trace s and T is the trajectory in [Y] with the maximal trace 5. We extend G
to entire [U] by using the /ub property and and assume it to be continuous so that it uniquely extends
to chain limits. A minimal realization of G is given by using the state process in Figure 3.3 . Therefore
the complexity index of G is n+1 although it may have buffered realizations with arbitrarily large
number of states. Therefore one can abstract the complexity of a task defined in an input-output func-
tional form from its buffered implementations as seen in this simple example.

- 18 -

We now extend the realization problem to nondeterministic environments. We replace the
processes V < U and Y by deterministically behaving nondeterministic processes in appropriate non-
deterministic spaces and as before let G : [V] — [Y] . We shall call a nondeterministic ADS ,
R = (U XY) a realization of G if :

D ¥X.U)=8V),
) (GW)=8Hg()) forallve [V].

This formulation reduces the problem to a deterministic one by matching only the deterministic
images of the response and the projected domain. If we look at the practical aspect of the realization
problem then it is reasonable to assume that G is given and behaves deterministically - to be made pre-
cise soon - and it is desired that a realization of G behaves deterministically as well. The fact that this
is not always achievable is demonstrated below.

It is instructive to understand the possibility of inherent nondeterminism that may arise from the
structure of V and G and the realization mechanism which involves the projection operator. Consider
the example where V =U, U = (< ><a>} , oY = ['b'} and G(v) =Y for all ve [V] . Then if
(U X.Y) is any realization of this response function then we must have by definition 8(X.U) = 8V and
therefore tr (X.U)=trU . On the other hand again by definition 8(G(V)) =8(Hg(V))=3XY)=Y
which implies that X must generate arbitrarily many b’s before or after (or both) generating the input
transition <a> . But this implies that either py(X.U)(<>)=1 or py(X.UX<a>) =1 (or both are 1),
that is the process X.U diverges at some trace. Therefore for any realization we must have X.U <V
and the (projected domain) process X.U cannot behave deterministically .

Now consider the example by again letting V =U where U = {a°}) , Y as above and
G (v) := HALT for all v € [V]. Then by definition of a realization 8(G (V)) = 8(Hz (V)) = 8(X.Y) and
therefore X is not allowed to generate any trace with a b transition in it. On the other hand again by
definition we have 8(X.U) = 8(V) which implies that X must generate arbitrarily many a’s which in
turn implies that py(Hz)(V)(< >) = 1 and so for any realization we have Hg (V) < G (V) without equal-
ity since Hp (V') cannot behave deterministically.

Finally consider the following typical example of nondeterministic behaviour via the refusals. Let
G be defined as

G(HALT) := HALT
rG(<a>) = (< >} ~-
rG(<c>) = {<><d>})

where U =V and #rU = (< ><a>,<c>} ; Y is any process that includes the traces and <d> and
as before arguments of functions are denoted by the maximal traces of the corresponding signals. We
assume that G has the lub property therefore irG (<a>,<c>) = {< >,,<d>} . Then for any realiza-
tion of G we must have

I, S (<a><c>)(< >) = 2164}

although both and <d> belong to the traces of G(<a>,<c>) which violates the deterministic
behaviour requirement . In order to see this let (U X,Y) be any realization of G , then G(u) =S u).Y
where tru = {< ><a><c>} and if S(x) makes an input transition it can only be an <a> or a <c> .
But if it is an <a> then d ¢ (S (u)/a).Y and if it is a <c> then ¢tr (S (u)/c).Y . This is because
such situations would violate the definition of G above. This example shows that expecting determinis-
tic behaviour in general is ruled out . However , as to be demonstrated below , if the input signal u is
restricted to be a trajectory then the kind of situation above could be circumvented by appropriate reali-
zations. Since in reality real time operations only allow for trajectory inputs the kind of inherent

219 -

nondeterminism described above does not seem to have any practical significance .

These examples , degenerate as they may be , exhibit that nondeterministic behaviour , both at
the input blocking level and the output generation level , may be an inherent property of the function
(and its projected domain) as opposed to being a property of a particular realization of it . We can
therefore ask the legitimate question as to what requirements G should satisfy such that it has realiza-
tions that do not give rise to nondeterminism whenever the input signal behaves deterministically. In the
following part of this section we formulate the nondeterministic realization problem and its solution ina
way related to this question .

Let P be any process in a nondeterministic process space TT and define P3 as the subset of deter-
ministically behaving signals in [P] . This set can be defined using the operators & and n as follows :

PP :=(peP]InGE)=p) (3.2)
It is easy to show that P3 is closed under chain limits. It is also evident that P® is isomorphic to the set
{8(P)] < I in the obvious way.

We state below definitions on G that characterize the potential nondeterminism in realization of
it. Recall that a process or a signal is called finite 10 if its trace set is a finite set. It is called infinite if
it is not finite.

Definition 3.3

The function G : [V] — (Y] is called bounded from above on a subset K of its domain if it maps
finite signals in XK into finite signals . It is called bounded from below on a subset L of its range if the
inverse image of finite signals in L are finite signals. It is called stable relative to (K,L) if it is
bounded from above on K and bounded from below on L . It is said to behave deterministically on a
subset K of [V] if it maps deterministically behaving signals in X into deterministicaily behaving sig-
nals , that is

veV¥nK » Gv)eY®

The deterministic image of G denoted 8G : [6V] —> [8Y] is defined by
3G (w) =3(GMmw))

for all w e [8V].

We can state the nondeterministic realization theorem as below :
Theorem 3.2 (Nondeterministic Realization)

Consider the nondeterministic realization problem where the input and output spaces are assumed to be
event decoupled . There exists a realization R = (U ,X,Y) of G with X € [U®Y] such that :
OHXU=V,
@QDveViAnT > Hp(v)e Y® , where T denotes the subset of all trajectories in [V],
B)G)=Hz(v)forallve V3N T,

if and only if the function G behaves deterministically on T , is stable relative to (T,G(V)) and its
deterministic image 3G is continuous and satisfies the /ub property.

10 This is not to be confused with a process or signal generated by a finite state machine since infinite processes can
be generated by finite state machines.

.20 -

Theorem 3.2 states the necessary and sufficient conditions for a function to be realizable in a
deterministically behaving way. If G is not stable then any realization will lead to nondeterminism as
illustrated by the degenerate examples given above. Under the absence of these deterministic behaviour
conditions Theorem 3.1 gives the necessary steps involved in realizing the deterministic image of G
given by 8G defined above.

As in the deterministic case the buffering strategies and realizations are related in a similar way.
The additional aspect that enters into the nondeterministic realization theory is the possibility of con-
structing a state function so as to avoid nondeterministic behaviour. Although the proof of Theorem 3.2
in the appendix uses an infinite buffer construction for avoiding nondeterminism , specific examples
may require finite buffer capacity for maintaining deterministic behaviour.

Example 3.2

Consider the nondeterministic realization problem where V < U and Y are given by the state machines
in Figure 3.4. The function G is defined on the trajectory subset of [V] as follows :

(1) On the special trajectories below , G is defined as
G ({<a>)) = <b,>
G ({<a;>)) = <bp>
trG({a\a2a3) = m

where the argument of G , which is a trajectory , is specified by its maximal trace and the .
symbol on the right denotes the prefix closure of the trace set in question.

(2) Any trajectory with a maximal trace of the form (¢, - - - c,) maps into a process with traces
{g, - - - &,) where each c; is either an a; or an a, in which case the corresponding &; is b, or b,
in the same order ; or some c; stands for the triple (31aa3) (this is the only form in which the
transition a5 can appear according to the definition of V in Figure 3.4) in which case &; can be
both or (b;b,) and all possible unions are taken to accomodate both possibilities. Therefore
, for example , the trajectory with a maximal trace

(ayaza;a2a1a,a3)
will map under G into a signal with traces equal to the closure of the following :

(b1b2b2b 16N (bbb 1B X _J(b1b2b2b N _J(bb2b)

It can easily be observed that the function G defined above is continuous and can be extended to the
entire (V] imposing the /ub property. It is assumed that all the processes in question behave determin-
istically. In Figure 3.5 two different state processes corresponding to two different realizations of G are
given . In Figure 3.5 (a) the realization suffers from the defect that H((a1a,)) does not behave deter-
ministically at the nuil trace < > . Indeed let ¢ := a,a, then although tdy = <> and € rH ((a,a7)
it cannot be completed as ¢ " t’e trS((a,a5) such that (¢ * t)y = <b,> . Therefore <b,> is refused
by H((a,a4)) , violating a deterministic behaviour requirement.

In Figure 3.5 (b) this is fixed , yet , this time X.U still does not behave deterministically at the trace
(a1a9) . To see this consider the trace ¢ := a,bja.b,€ rX then although <as>e€ r(X.U)/(a1a2) and
tly = (a,a,) there does not exist ¢ * ¢’€ X such that t’Ly = a,a,a; . Therefore <as> is refused by
(X.U)(a,a7) violating another condition for deterministic behaviour.

The solution for a deterministically behaving synthesis is given in Figure 3.6 . Note that more buffering
was required to maintain deterministic behaviour.

The results and discussions above suggest the following definitions of equivalence for ADS
representations :

Definition 3.4

Two ADS representations R = (U X,Y) and E=(U}~(,Y) are said to be strongly equivalent if
X.U =X.U and

Sp(u).(UBY) = Spu).(UeY) forall u e [U] 3.3)
They are said to be weakly equivalent if the formula (3.3) is replaced by
Hg(u) = Hx(u) for all u € [U] (34)

The definitions of strong and weak equivalence above apply for both deterministic and nondeter-
ministic ADS. Strong equivalence is indifferent to private state transitions but the input and output tran-
sitions must occur in an exact pre-specified order . On the other hand weak equivalence only demands
that the output for each input is fixed but the relative order of input transitions with respect to output
transitions may vary due to buffering considerations. Weak equivalence is meaningful when concern for
the input-output functionality of ADS overrides buffering strategies of implementation. In this sense it
captures a buffer-free representation of a system. Clearly strong equivalence is a refinement of weak
equivalence.

It will be shown in part I of this sequence that a response function of a loop-free interconnected
set of ADS is only a function of the weakly equivalent representative of each ADS. If , however , there
are loops then , in general , it is a function of strongly equivalent representatives of component ADS
representations-. This result is related to the scenario analysis of Dennis for data flow networks [7] .
Scenario analysis is a method of fitting scenarios that impose a partial order between the input and out-
put transitions of an interconnected data flow graph when individual input-output histories are
insufficient to derive the overall history . The correspondence is as follows : histories and scenarios in
[7] correspond to the response functions and the strongly equivalent representatives of individual ADS
representations of our approach respectively . The ADS approach is more general in the sense that it
has a richer signal space of representations and it allows for nondeterminism ! .

We define an ADS as the equivalence class of strongly equivalent representations . Among these
there is a distinguished one given by D := (U,C,Y) 12, where C is the unique process in [U@®Y] given
by C :=X.(U®Y) and [X] is the state space of any member of the equivalence class. We call this the
canonical representation of the dynamical system , which is well-defined by the fact that S(U) =X .

It is legitimate to ask at this stage whether the functions § and 1 preserve equivalence , strong or
weak . It is easily observed that if R is strongly equivalent to R then it is not necessarily true that NR
is strongly equivalent to né . Therefore the map 7 is not well-defined on the set of deterministic ADS
identified by strongly equivalent classes . On the other hand the function & preserves both weak and
strong equivalence. Therefore the inverse image of M obtained by applying 8 to nondeterministic
processes map sets of equivalence classes of nondeterministic ADS representations into subsets of the
corresponding equivalence classes of deterministic ADS. Based on this observation we define nondeter-
ministic equivalence as below

11 The term nondeterminism used in {7] merely states the possibility of non-trajectory responses to trajectory inputs
and has little to do with the concept of nondeterminism in this paper.

Definition 3.5

Let R be a given deterministic ADS representation . We say that R is strongly (weakly) nondetermin-
istically equivalent to R if R is strongly (weakly) equivalent to NR .

The strong nondeterministic equivalence partitioning reflects precisely the differentiating power of
the nondeterministic model we use. In other words as was emphasized in section 1, if one starts with a
deterministic ADS model and use projections to obtain a nondeterministic reduced model , then the
differentiating power of the nondeterministic model is up to a nondeterministic equivalence class in the
original deterministic ADS. It can easily be observed that strong nondeterministic equivalence is a
refinement of strong equivalence.

Finally we relate dynamical concepts of equivalence summarized above to the well-known con-
cept of bisimulation (5] , a definition of equivalence that is dynamically invariant in the terminology of
our framework. The definition of bisimulation as given below is an adaptation of the concept to ADS
environment .

Definition 3.6
Consider the set of all deterministic ADS representations {Ry = (U X.Y)}x where U and Y are fixed

input and output processes and X is any marked process . An equivalence relation ’ = * on this set is
called a bisimulation if Ry = Ry implies that for each nondecreasing sequence of traces s; € rX there

exists a nondecreasing sequence of traces ¢; € trX and vice-versa such that
(1) SI'JI(U oY~ tj’L(U ev) for each j N
(2) #(s;) is an unbounded sequence if and only if #(t;) is an unbounded sequence ,

(3) Ry/s; = Ry/t; for each j where for any representation R = (U X .Y) the post-representation
Rls is defined as R/s = (U/(sdy)X/is.YI(sdy)) [1].

Fact 3.1
(1) Srong nondeterministic equivalence is not a bisimulation .
(2) Any bisimulation refines strong nondeterministic equivalence .

The following example illustrates concepts of equivalence explained above
Example 3.3 B

Consider the three deterministic ADS representations with the state processes given in Figure 3.7 . It
can easily be shown that all these representations are strongly equivalent to each other. On the other
hand R, is nondeterministically equivalent to R; whereas R, is nondeterministically equivalent to nei-
ther . To see this observe that the process X;.(U @ Y) may refuse both d and e for j = 2,3 whereas it
cannot refuse these events for j = 1 after producing the input trace bc . Further details are obvious and
omitted.

We claim that R, cannot be equivalent to R ; under any bisimulation relation. Consider the state trace
Bb in X3 (in the definition of bisimulation we take the infinite sequence constant for each j) then
there are two possibilities in picking a corresponding trace from X if condition (1) of bisimulation is to
be satisfied :
(1) We pick the trace bt in X, . But then rXy(b1)= (< ><c>ce) whereas
tr(X+4/(Bb)) = (< ><c>,cd} and therefore these two post-representations cannot be bisimulation
equivalent since ce is incompatible with cd and violate condition (1) .

-23 .

(2) We pick the trace b in X,. In order to show that Xo/b cannot be bisimulation equivalent to
Xy(Bb) we move one more step by considering the trace tc in X/b. The only candidate in
Xy/(Bb) is the trace ¢ and again incompatibility arises since

tr(X/b)(tc)) = (< >,<e>)
tr (X+/(Bb)Yc) = {< ><d>}

4. Conclusions

We have extended the tools and concepts of ADS environment to deal with nondeterministic sig-
nals. For that purpose we defined a model of nondeterminism similar to Hoare’s CSP [4] and redefined
ADS as an input-output dynamical representation on nondeterministic signals . We showed by Fact 3.1
that our ‘model of nondeterminism is superior to deterministic ADS and inferior to any bisimulation
based nondeterminism [5] in its expressive power. The real practical advantage of the model will be
demonstrated in part III of this series when interconnected nondeterministic ADSs will be used as a
representational and computational tool for parallel program specification and verification .

We have defined the realization problem for the deterministic and nondeterministic cases and
presented conditions of realizability for response functions. Instead of supplying detailed solutions to
computational problems of ADS formulations we have tried to emphasize basic concepts and questions
of asynchronous dynamics. For example the problem of computing the complexity index of a given
response function or the theoretical problem of resolving whether deterministic behaving synthesis can
be achieved via finite buffering (recall that the proof of Theorem 3.2 uses an infinite buffering realiza-
tion) are problems that have not been tackled here . These problems and others in which the freedom
in weak equivalence is used as an optimization parameter - e.g. maximizing parallelism by choosing the
largest relevant state process subject to buffering constraints - are open .

APPENDIX
Proofs of Fact 2.1 , Fact 2.2 and Fact 2.3 are straightforward and omitted.

Proof of Lemma 2.1

The proof in one direction is ixprﬁediate. Let (pg;); be a countable and infinite subset of T and for
each j define inductively a subsequence {p;; }; of the infinite trace set of the previous stage as follows :

At stage j—1 the set {p1); }; has the property that the first j-1 entries of p(;y); are identical for
each i and at stage j we choose any subsequence of this collection denoted {p;}; such that the
first j entries of each trace are identical. Observe that we can choose such infinite subsequences
at each stage . This is because when traces are grouped with first j entries identical there are
finite such groups and therefore at least one group must have infinite elements and we choose the
subsequence with the members of this group. Finally we set ¢; := p;; and the result follows.

Proof of Fact 2.4
(1) The proof is straightforward and omitted.
(2) First observe that

ud«P.Ifys)(¢) = Ha(PPXs™1)
1, (PPYs)(e) = 1, (PPY(s"t) (AD

-2 -

by the transitivity of the post-process and for any m € rP such that mip = st there is a decomposi-
tion (not necessarily unique)

m=m " m, (A2)
where

mpl«,; =S A3)

m2‘]’};ls =t

We first prove the equality of divergences in (2.8) . Let pd(PJ;)(s‘t) = 1 then there are three cases to
consider :

(i) The set T in the definition of the extended projection is infinite. Therefore there exists ¢ € rP such
that gl = 5°t and by Lemma 2.1 there is an infinite trajectory t with traces ¢; in P/q which is tran-
sparent to Q/(s"t) , i.e. tj¢Q,(,~,) =< > . Using the decomposition given by (A3) we can jdenﬁfy
g = my"m, and the trajectory T satisfies the corresponding condition of divergence for P/m,.Pls at ¢
since ((P/m,)my)=Plq and mylg, =t by (A3) above. Therefore ud(P/mlﬁ/s)(:) =1 and by the
definition of union operation given by (2.7b) with v=m, we have

wal U PPN =1

vig=s

(ii) There exists g € trP where ¢lp = s"t and u P (q) = 1. Then using the decomposition (A3) above
the same reasoning holds for P/m,.P/s at t since Wwy(P/m;)(m2) = naP(q) =1 . The rest follows from
the same union argument above.

(iif) We have py(P)(s"t) = 1 therefore py(P/s)(¢) = 1 and so for any m , pg(P/m.Pls)(t) = 1 . The rest
again follows from the union argument.
These arguments are all reversible and we omit the details . This establishes the equality of the diver-
gences . We next prove the equality of refusals. Again we prove the resuit in one direction. Reversing
the arguments is straightforward. Let D e . (P.P)(s"t) then ruling out the trivial case where
Wy (P.P)(s"t) =1 we have :
There exists t’e rP ,Be W P(tYand C e u,}s(s“t) such that

t'dp=s5"

(t"<a>Np=5"t > aeB

D =B C

Letting m :=¢’ where m is given by (A2) we have B € W,(P/m)(m2) and malps =t by (A3). If
(my<a>Wp, =1t then m"<a>ls=s"t and by hypothesis ae B . Also C € W, (P/s)(t) by transitivity
of post-process which proves that D = B(C € p,(P/ml.Isls)(t) and the rest follows from the union
formula (2.7a) . This completes the proof of the post-process formula.

The proof for the choice function formula is similar and omitted.

(3) We only prove the formula (2.11) both for divergence and refusals which in tumn yield (2.13) . We
also prove the equality version of (2.11) , hence (2.13) , under the conditions (C1) and (C2). The rest is
similarly proved and is omitted .

In order to prove (2.11) for divergence we first let py(uw)(s)=1 and show that
Wg(u. (w®v).w)(s) = 1. There are three possibilities :

(i) For some q € ru and ql,, = s the process u/q has infinite races of the form ¢; transparent to w/s,
ie., t;d,,,; = <> . We define the partitioning

=25 -

m " m; = (q - ’j)J’w@v = qJ’w@v - ‘j‘l'(wev)lq

and claim that (. (w®v))/m has traces m; , tranparent to w/s where m = ql, e, . Clearly , using the
deterministic version of the formula under proof

(m~m), =s
and therefore
midy,s =<>

which proves the transparency. If the set {m;} is infinitc we are done by condition (1) of divergence
definition. If , on the other hand , m; is a finite set then for some J , m"m; = m"p € tr (u.(w®v)) for
all j >J . But this implies that

Ha(u. (wv))(m'p) =1

by condition (1) of the divergence definition applied to . (w®v) . The result follows by applying con-
dition (2) of the divergence definition.

(ii) For some ¢ € tru such that td,, =5 , pau(t) = 1. Then by chain use of condition (2) we have
Ha(u. WOVt ey) =11
Ha(w. (wv)w)(s) =1

(iii) paw(s) =1 = (. (wdv)w)(s) =1.

This proves the inequality for divergences.

We next prove the inequality (2.11) for refusals. For this first let

D ey, (uw)s)

then , ruling out the trivial case where both processes diverge , there exists ¢ € ru where t1,, =5 and
B € p,.u(t) such that

(¢t “<a>, =5 >aeB
and D = B C for some C € U, w(s). We then deduce that
Be u‘r(u° (W ev))(t ’Lwev)

P

since

[t " <a>Npey =tdua] = [t “<a>)H, =tl, =51 >aeB
where we took the null set in p,(w ® v)(tl.e,) t0 add to B so that we obtained B again . But this
implies that

D =B C e 1, (u.wdv).w)s)
since

[((tdwey) “<a>W,, = tlue] = [“<a>), =1, =51 > aeB

This proves the formula (2.13). We next prove the equality version of (2.11) , hence (2.13) , when (C1)
and (C2) hold. Before however consider the following two counter-examples to (2.11) corresponding to
the violations of the conditions (C1) and (C2) respectively :

1 - Take
tru = {<><a><c>) ; woul< >) =20}
rw = (< ><c>) ; pw(c>) =288y 2leel

irv = (<><c>) s pw(k>) = alabc)

-26 -

where all divergence indices are assumed to be O . Then we have
1, (uw>(< >) = 2(82] U glac}

whereas
1, (1. (w®v).w)(< >) =2lab<)

since

1, (u. (w@v))(< >) = 2{24] U 9lac)

2 - Take tru : (@a"cb™} and trw : {¢"}, trv := (6"} . Clearly py(u.w)(c) =0 by the paragraph
following Definition 2.3 . On the other hand the process u. (w@®v) has traces {cb"} and therefore
Hal(u. w®v)).wl(c) = 1 where after ¢ infinitely many b’s are transparent to w/c . Therefore the
process u. (w@v).w diverges whereas u.w does not .

We proceed with the proof of (2.11) for the special case . Let puy(u. (w®u).w)(s) = 1 then using (C1)
only two possibilities arise :

(i) There exists ¢ € tr (u. (w®v)) such that gd,, =s and (u.(w®v))/q has infinitely many traces tj
transparent to w/s . From this we deduce an infinite set of traces m; € tru such that by appropriate
partitioning we may write

m; =m j s my;
where

m; ooy = q9

majdowenyg =t
By assumption (C2) # is a process generated by a finite state machine therefore we can divide the
infinite set of traces {m,;}; into a finite set of groups such that each group represents the common state
into which the initial state of u is driven after executing any member trace m,; . Since the original
sequence is infinite at least one group must have infinitely many elements. Let r denote any member of

the trace group denoted by the infinite index set R corresponding to the state with the infinite subse-
quence constructed above then u/r has infinitely many traces , namely {my; }R , that is transparent to
je€

w/s since -
Majduis = tjidyis =< >
which proves that p;(uw)(s)=1.
(ii) For t € tr (u. (w®v)) where tl,, =5 , pg(u. W®v))(t) = 1 . Again by (C1) there are only two pos-
sibilities :
() There exists q € tru where ql,, =t and u/q has infinite collection of traces r; that are
transparent to (w@®v)/t . But since
(@lue) =ql, =1, =5
and
ridwis =<>
we have L (u.w)(s) = 1 by condition (1) of divergence .

(I) There exists ¢’e tru such that t',g, =¢ and pyu(:?) = 1. But then ¢, =¢d, =5 and
therefore [(u.w)(s) = 1 by condition (2) of divergence .

.27 -

Next we prove the refusals side of equality version of (2.11) . For this let D e pu, (u. (w®v).w)(s) then
either there is ¢ € tr (u. (w®v)) where g !,, = s and B € 1, (u. (w®v))(g) such that

B ey, (u.(wov)iq)

(@ “<a>N, =s > aeB (A%)

and D =B(C for some Cep,w(s) ; or Wy(u(w®v)w)(s)=1. The lauer implies that
ty(uw)(s) = 1 by the previous proof and and therefore D € W, (u.w)(s) = 24 . Otherwise there are two
possibilities :
(D) There is p € tr(x) , Be p,u(p) and Ce 1, (w®v)(g) such that
pi’wev = q
((p°<a >)~L(wev) = P‘L(wev)] >aeB (A5)
B=ByC
Using (A4) and pi, =¢ql, =5
p ~ <a>N, =5] = [(g°<a>N, =s] > aecB

We claim that a € B. If not it must belong to ¢ , but using the condition (C1) that w and v ,
hence w®v , behaves deterministically we cannot have <a>e tr(w®v)/g) and therefore the
hypothesis of the second proposition in (AS) is satisfied which implies a € B , which in wrmn
proves the claim .

Using the claim proved above we can write D as D = §U(éuc) where B satisfies the required
conditions and it is enough to show that (éuC Ye u,w(s) . But this follows because first
Ce L (w®v)(g) and by definition of the sum operator C is a subset of some refusal of w at
gl, =5 , and second w behaves deterministically and therefore it has only one maximal refusal
which implies that refusals of w are closed under unions. '

(D) py(u. (w®v))(g) =1 . Then by condition (C1) the only possibility for divergence is when u
has infinite traces hidden to (w®v)/q and therefore to w/s which proves that u.w diverges at s.
This completes the proof of (2.13) for the special case with equality .

Finally we present an example where (2.16) holds with strict inequality. Take trw = (< ><a>}
trv := (< >,) where #W (@) ; 'V = (ba"} and assume that all processes w,v,W,V behave deter-
ministically. Then p, (w + v)(< >y = & whereas

(W +v)w + W + v)v)(<>) =28}

This follows since v can make in (w + v).w a hidden transition upon which it also locks w to
inhibit an <a> transition by definition of V above , so that

1 ((w + v)w)(<) = 28]

and the rest follows easily.

Proof of Fact 2.5
(1) Straightforward and omitted.

(2) First we prove that S(u).U < u on a trace s shared by S(«).U and u € (U] . Let pyu(s) =1 then
by definition there exists ¢ € X such that tly = 5 and

MaS @)(t) = max(uau(s) , LX) =1

-28 -

Proof of Fact 2.5
(1) Straightforward and omitted.
(2) First we prove that S(u).U < u on a trace s shared by S(u).U and u € [U] . Let pyu(s) = 1then
by definition there exists ¢ € X such that tly = s and

HaS (u)(t) = max(ugu(s) , paX (1)) =1
which implies by condition (2) of divergence for projection

Ha(S@)UNs)=1
Now let D € W, u(s) , then by definition

D NBIUF € 1S (u)(t)
where te X ,tdy =5 , F e 1, X(t) and B, is the set of next transitions of U/s . In particular one
can choose ¢ such that there is no a with the property (t"<a>)\y =s , for unless this is possible we
can indefinitely paste invisible transitions to a given ¢ which implies that p (S (u).U)(s) =1 and we
are then done since

Dep,Sw.U)s)=24
by definition. Thus with this special ¢ we must have by the definition of refusals for projection

(D NB X UF JC)E 1, (S).UXs)
where C € W, U (s) is arbitrary. Choosing F = @ and C = ((4 \ B;) nD) we obtain

DB N JF\UC =D

which proves that D € u,.(S (®).U)(s) .

We now prove the reverse relations given that u e [X.U] . Let py(S(u).UXs) = 1. Then bearing in
mind the assumption that U behaves deterministically two possibilities exist :
(i) The process S () has an infinite trajectory transparent to U/s . But this implies that for some
ge X with gly =5 , X/q has an infinite trajectory transparent to U/s . This implies that
PaX.UX(s)=1 and if u e [X.U] then u <X.U so that p,(X.U)s) < pqu(s) and therefore
Rau(s)=1.) -
(ii) For some ¢ € trS(u) with tly =5 , paS()(t) =1 . Then either pyu(tly) =1, in which
case we are done , or ;X (t) = 1 which implies by condition (2) for divergence in projection that
RaX.UXs)=1. Again u € [X.U] implies the result.
We now prove the reverse result for refusals. Let D € p,. (S ().U)(s) then there either exists ¢ € 75 (1)
with tdy =5 and B € 1,5 (1) where (t"<a>)dy =s = a € B such that

D =B C
for some Cepn,U(s) ; or ng(Sw).U)s)=1 . If the later is valid then by the previous result

pau(s) =1 and therefore D € p,u(s) = 2* . Therefore we assume the existence of ¢ with the alleged
properties . Then by definition of §(u) the set B is given by

B = (KB, Z\F

for some K € p,u(s) and F € n, X (¢) where , as before , B, is the next event transition set of U/s .
First observe that

-29 -

FUC e t,X.UXs)

by definitions of £ and C . In order to justify this observation we need to show that for the ¢ above
(t"<a>)y =s where t"<a>e X implies that a € F. But by the property of ¢ established above
a € B and by the definition of B above we must have a € F since a cannot be a member of B, (recall
<a>ly;s = < >). Therefore it remains to show that

K By \UF \JC) e 1uls)

given that u € [X.U] and it behaves deterministicaily. Recall that for deterministically behaving signals
there is a single maximal refusal and therefore refusals are closed under union operation. But
K € p,u(s) and therefore K NB, € W, u(s) since the KB is a subset of K . Also (F{_C)e uuls)
by the assumption u € [X.U] and thus the result follows by the closure property of union as stated
above.

Proofs of (2.17) , (2.18) and the rest are omitted .

Proof of Theorem 3.1

The proof in one direction is trivial since the response function is continuous and has the [ub property.
Therefore it remains to prove the existence of a realization for the given response function.

We construct a pre-state function §(u) , defined on [V], taking values in [V®Y] , by using induction
on its domain. The state process X is then defined as the limit SVTh)asn — oo

We construct § on each finite trajectory on [V] by using induction on the length of the trajectory
and use the lub property of G for the extension to arbitrary processes on VTrh . We use the notation
* <’ for the order on traces 13 whereas '<’ is used for the partial order on processes .

We start by defining S on the trajectory of length zero , namely the null process HALT in [V] as
tr (SCHALT)) = trG (HALT)
RS(HALT)(s) = (WU (<).uG (HALT)(s))
Now set the induction hypotheses as follows
(1) (Input Projection) : Su).U = u
(2) (Output Projection) : S(x).Y = G (u)
(3) (Continuity) : 2 < u = S(2).< S()
(4) (Consistency) : %<u = S(u) < Sp(w) where D = (U.,Su),Y) and if p € trSp (1) then there exists
p’ e trS(u) such that
p=p"w
ply =plyw
We shall prove these hypotheses for all u € [V]. Initially we prove this for trajectories in (V] using
induction on the length . We assume that the hypotheses (1)-(4) hold for all trajectories u of length

n-1 in the projected dqmajn [V1 and prove their validity for trajectories of length n. It can be verified
using the construct for S on the null input above that (1)-(4) are valid whenn =0 .

Let s"<a> be the maximal trace of the trajectory u and let u’ denote the trajectory of length n—1 with
the maximal trace s .

135 < ¢ means s is a prefix of { .

-30-

Let ié,‘ denote the set of all triples (r,¢,p) that satisfy :

rewuwG@)
gsr;qeuG’) (A6)
peturSw);ply=¢

and define the prefix closed set f),,(r .q.p) foreach (rg.p)e ﬁu as

pu(rgp)=@eA” Iz < pwa>t;ply w=s;gt1=r) (AT)
and let
Pui= U Alrgp) (A8)
(rqpleR,

where R, is any subset of ﬁ,‘ which satisfies the condition

reaG);r ¢ rGw"l > (r.q.p)e R, for some feasible q,p (A9)
We define the pre-state function on u by defining its traces as below

trSQu) = p, \U rSu”) (A10)

Observe that the choice of R, is left arbitrary except for the condition (A9) . For example the set Rl
satifies (A9) and therefore can be taken as a possible R, 14 .

We claim that with the extension of § given by (A10) the induction hypotheses (1) to (4) above hold
for n . The proof of hypothesis (3) is obvious by the definition (A10). We prove the remaining below.
Throughout we shall use the assumption that the input and output signals are event decoupled (ed).

(1) Let t’e tr(Su).U) , then there is ¢ € rS(u) such that ¢’ =¢tdy. If t € S(u”) we are done by
hypothesis (1) since

t'=tly e’ cr(u)

Otherwise t € ﬁu(r ,q,p) for some (r,g.,p)e R,. Therefore ¢+ < p"w’<a>"t and by definitions (A6)
and (A7) using the ed assumption

tdy < s*<a>

and therefore t’ € tru . -

Conversely let ¢t € tru . If t € tru’ we are done by hypothesis (1) and (3) since
t € r(SwHU) < ir (Sw).U)

Otherwise t =s"<a> . Let re trG(u) and r ¢ trG(u”) then by definidon of choice of R, constrained
by (A9) there exists (r p,q) that satisfies (A6). The fact that such p and ¢ exist is guaranteed by induc-
tion hypotheses (1) and (2). Construct the trace v as

v i=p'w'a>t
where w is defined o complement ply to s as in (A7) and t satsfies ¢g*t=r . We have
v € p,(r.q.p) and therefore v € trS(u) by (A10) and the fact that (r,q.p) € R, . Therefore since

viy =ply'w<a>=s5"<a>=t

that follows from ed assumption we have ¢ = vly € tr(S(u).U).

14 Different choices of R(u) lead to different buffering strategies . Avoidance of nondeterministic behaviour is also
related to this choice (see the main text and the proof of Theorem 3.2 for details).

231 -

Q) Let t'etr (.';'(u).Y) then for some ¢ tr.§(u) Jt=tly (Ifte §(u ") then we are done by hypothesis
(2) since

t'=tly e rtGW" g rG(u)

using the continuity of G. Otherwise ¢ € p, and for some (r,.g.p)€ R, we have ¢ € E),,(r .q.0). Hence
t £ pw'a>t and tly < g™t =r by definitions (A6) and (A7) and therefore ¢’ € G (u). This
proves that S(u).Y < G(u) .

Conversely let r € rG(u). If r € trG (u”) we are done by induction hypothesis , else r ¢ rG (u”) and
by using the fact that (r,g,p)€ R, for some ¢ and p by constraint (A9) - again existence of such ¢
and p are guaranteed by the induction hypothesis - we utilize the same construction of v as in the proof
of (1) above and show that r € tr (.§(u)Y).

(4) Let v e §(x) then by induction hypothesis (3) v € #r5(u) . But by construction of S) ,viyetrn
and so by definition v € trSp (u).

Let p e trSp (1) then by definition of D , p € trS(u) and pdy e ructru . Ifpe tr§(u’) we are done
by induction hypothesxs since then p € Sp- (u) where D’ := (U ,S(u’) Y) . Otherwise unless 4 = u which

is a trivial case P < p"w by (A7) where pe trS(u’) If u = u’ we are done , else apply the induction
hypothesis (4) to p using D’ as above and the result follows.

We have proved by induction that (1) to (4) are valid for all » . Now for any v € (Vv Tn] we can write

= J‘_S'vT

where each T is a trajectory . Define
Swy=8(1JT) = L] ST)

which defines § on (VTnl. It is straightforward to show that hypotheses (1)-(4) apply to this extended
domain [VTn] by using the lub property of the G function . We define S(v) for arbitrary v as the
chain limit of S(vT#) and choose X := S(V) .

We next prove that hypothesis (2) holds when S is replaced by Sp where D = (U X,Y) . We use
hypothesis (4) in the limit case to prove this. By (4) we have for any v € [V], S(v) < Sp(v) , therefore
it is sufficient to show that

Sp(v).Y < Sw).Y -

Let s € tr (Sp(v).Y) then there éxists t € wSp(v) such that tly = s .Using (4) there exists p € tr (§(v))
such that ¢ = p*w and ¢ty = ply"w. But this implies that all the transitions in w are input ones by ed
assumption and tly = ply = 5 and we are done.

Finally applying (1) in the limit we have S(V).U =X.U =V .

Proof of Theorem 3.2

(=) We show using the existence of R with the given properties that G satisfies the requirements
stated in the theorem . The fact that G behaves deterministically on T follows from conclusions (2) and
(3) of Theorem 3.2 . By the definition of a realization of G we have d(X.U)= 8V and
S(Hg(v)) = 8G (v) for all v € [V] and hence using Fact 2.5 and the definition of G , R is a realiza-
tion of 8G . Therefore by (3.2) 8G must be continuous and must satisfy the [ub property.

We show that G is stable relative to (T,G (V)) by contradiction. First suppose that G is not bounded
from above. Then there is a trajectory v € V® and integer n such that the signal G (v Tn) has traces of

-32-

unbounded length. More precisely there exist an infinite sequence of traces {s;} such that for all
integers i :

sietr(GvTn))

#S,' >i
But since by hypothesis

GwTn)y=Ha(wTr)=Sg(vTn).Y
there exists another infinite sequence of traces {f;} such that

t;etr(Sgp(v Tn)»

#ti _>_i

t; J«y =8

t; Jru ewr(v Tn)
On the other hand the signal vTn has finite number of traces and hence there is a subsequence [”‘.-}
and a trace t€ (v Tn) such that

gly =1
for all {. But this implies that !5

HaX.U)R) =1
which clearly contradicts the conclusion (1) that X.U =V since V is assumed to behave deterministi-
cally.

The proof that G must be bounded from below follows similar arguments , therefore it suffices to sum-
marize an outline. Assume that it is not bounded from below then there exists in G(V) aye Y%, an
integer n and v € V3 such that v has unbounded traces where

GWw)=yTn

We can take v to be an infinite trajectory without loss of generality using the construction given by the
proof of Lemma 2.1 . By hypothesis G(v)= Sg(v).Y and therefore there exists infinite sequence of
traces 5; of v and another sequence #; of Sg(v) that satisfy similar requirements to the previous case .
This argument similarly leads to_the conclusion that for some T € trY the process Sg(v).Y diverges at
trace T , in other words

HaHp (v)(7) = 1

which violates the condition that H,(v)e Y3 for ve V3 A T . This completes the argument that G is
stable .

(<) We use the construction given in the proof of Theorem 3.1 for a deterministic realization of 8G
with domain 8V, Let R := 14 X,SY) denote the deterministic realization of 8G constructed according
to the proof of Theorem 3.1 then we choose R = (U ,X,Y) as the nondeterministic image of R , namely
R = 1113 = U ,‘n)f,Y) . Considering the reverse inequalities that follow from (2.20) we have to show
under the hypotheses on G that :

nX.8U) < X.U

15 For a construction of an infinite hidden trajectory see the statement and proof of Lemma 2.1 above.

-33-

and
NHRGV)) < Hr (v)

whenever v is a trajectory for the latter inequality . In other words it is enough to show that X.U
behaves deterministically and Hp behaves deterministically on V8 A T . We do this in two steps . In
the first step we show that the refusals behave deterministically. By this we mean that at any stage the
refusal sets cannot contain events that can generate transitions. In the second step we show that the
processes in question do not diverge .

Before proceeding with the details of the proof we first make explicit our choice of buffering for the
specific realization we use for the proof. We choose R, = éu , 1.e., the realization that corresponds to
infinite buffering in using the procedure of Theorem 3.1 to synthesize 3G . Note that under this choice
hypothesis (4) for ¥ =V in the proof of Theorem 3.1 can be replaced by the equality Sp (12) = 3’(:2) ,
namely the pre-state function coincides with the actual state function.

Now let s € i (X.U). We demonstrate that any event a such that <a> belongs to tr (X.U)/s can-

not belong to any of the refusal sets in y,(X.U)(s). Noting that X is a process that behaves determinist-
ically (X :=nX) it is enough to prove the following statement :

Suppose that s"<a>e tr(X.U) then for each ¢ € rX such that tly = s there exists t “t’e X
such that
¢ty =s5"<a>

Let u denote the input trajectory with the maximal trace s°<a> and let y:= tdy. By definition
t € rSp(u”) and by hypothesis (4) in the proof of Theorem 3.1 under infinite buffering € tr (S'(u)8
where u’ denotes the input trajectory with the maximal trace s . It also follows that Y= tdye rG") .
Now let r be any trace of G (u) such that v is a prefix of r. Then R, = 15,‘ by the infinite buffer selec-
tion as stated above and we have (r,yt)e€ R, . Therefore :"< >"<a>"te trS‘(u) by definition (A9) and
(A10) where Y~ T = r and the result follows with ¢’ := <a>

Next we prove that for each trajectory v € V3 , refusals of Hg(v) behave deterministically . In other
words we show that if <a> belongs to tr (Hg (v)/s) then a cannot be a member of any refusal set in
W, (Hr (v))(s). We prove this by using induction on the length of the input trace v. When v is of
length zero result follows trivially by definition of §(HALT) in the proof of Theorem 3.1 . Assume it
holds for n = #s where s"<a> demnotes the maximal trace of trajectory v. It suffices to prove the fol-
lowing statement also using the fact that Sz (¢) behaves deterministically by (2.20) .

Suppose that g°e trHp(v) then for each te€ irSp(v) such that tdy = g there exists
t “t’e rSg(v) such that

(IAI')~LY=q‘
Since t e rSp(v) = tr§(v) it can be written as
t Sp°w'<a>"r

where p € trS(0v?) , ply “r =¢ and ply “w =5 and v’ is the ajectory with the maximal trace s .
But ¢"e rG(v) is given , hence by definition

@ ply.p)eR, =R,
since ply is a prefix of ¢ and p € #rS(v") . This implies that

t < pw’<a>"re tr§(v)=lrSR(v)

-34 -

and construction of ¢’ is obvious.

Finally we show that X.U and Hg(v) both do not diverge , the latter evaluated at any v € VSN T . We
prove this by contradiction for each case.

Suppose X.U diverges at s then since X behaves deterministically by definition there exists ¢ € rX
such that ¢y =5 and X/q has infinitely many traces with null projection on U/s. But this violates
the condition that G is bounded from above on T since for v = u where u is the deterministic behav-
ing trajectory with the maximal trace s , G(x) = Hp(u) = Sp(#).Y has traces of unbounded length by
the event decoupling assumption and the fact that X € [U®Y] .

Now assume that Hg (v) diverges at some s for some v € V3 A T. Then because Sg (v) behaves deter-
ministically we have for some q € Sz (v) such that gy =5 , S,(v)/q has infinitely many traces that
have null projections on Y/s. But this violates the condition that G is bounded from below on G (V) by
taking y as the trajectory with the maximal trace s , since projecting the unbounded traces on Sz (v)/q
on U/(gly) we again get unbounded set of traces on the input v/(q ly) by the event decoupling
assumption on the input and output transitions. This completes the proof of Theorem 3.2 .

Proof of Fact 3.1

Proof of (1) is trivial. To prove (2) we shall be content with proving that if R is not strongly nondeter-
ministically equivalent to R then they cannot be bisimulation equivalent. The remaining details are rou-
tine.

We assume without loss of generality that R and R are strongly equivalent , otherwise condition (1) of
bisimulation is violated by choosing a trace in X.(U®Y) which is not in }f.(U @®Y) and we are done.
Then there are two ways in which strong nondeterministic equivalence can be violated as explained
below (each process is assumed to be replaced by its image under n below without a change in the
notation) .

" (1) For some s , W (X. (U®Y))(s) = 1 whereas ud(f.(UeY))(s) =0. Then since U ,X and Y
are assumed to behave deterministically there exist ¢ € X where tdeyy=s and X/t has
infinitely many increasing traces ¢; invisible to (U®Y)s . Now suppose that g; are the
corresponding increasing traces in X according to the definition of bisimulation. Then it must be
true that qjl«wgy) =g for all j and #(g;) must be unbounded by conditions (1) and (2) of
bisimulation . But this violates the hypothesis that the latter process is non-divergent at s .

(2) For some s , B € i, (X. (U®Y))(s) whereas B ¢ 1, (X.(U®Y))(s) . We can assume , without
loss of generality , both processes to be nondivergent at s by using (1) above . Then there exists
t € trX such that tlyeyy=s and t"r"<a> ¢ X for all a € B and all r where (t"r)}yer) =5 .
On the other hand for all p e trX such that pJ'(UQy) = 5 there exists at least one event b € B such
that p“q°e trX for some q with the property (p"¢)dwery=s . We claim that R/t cannot
be bisimulation equivalent to ﬁ/p for any choice of p above . We demonstrate this by choosing
the trace ¢ € Jflp . Clearly X/t cannot have a corresponding trace satisfying condition (1) of
bisimulation because of the above property of ¢ .

REFERENCES

{11 K. Inan " Asynchronous Dynamical Systems I ", ERL Mem. No. UCB/ERL M89/59 , 17 May. 1989

=35 -

(2] K. Inan , P. Varaiya , " Finitely Recursive Process Models for Discrete Event Systems " , JEEE
Trans. Automat. Contr. , vol.LAC-33, No.7, pp. 626-639 , July 1988.

[3] K. Inan , P. Varaiya , "Algebras of Discrete Event Models " , I[EEE Proc. vol.77 , No.1 , pp. 24-38 ,
Jan. 1989 .

(4] C.AR. Hoare , Communicating Sequential Processes , Herts, England: Prentice-Hall International,
1985 .

(5] R. Milner , " Lectures on a Calculus for Communicating Systems " , in Control Flow and Data
Flow: Concepts of Distributed Programming , (M. Broy ed.) , NATO ASI Series F : Vol. 14 Springer
Verlag , 1985, pp. 205-228 .

[6] P. De Nicola , M. Hennessy , "Testing Equivalences for Processes ", Theoretical Computer Science
34 (1984) , pp. 83-133 .

{71 1.B. Dennis , "The Scenario Theory for Non-Determinate Computation” , in Control Flow and Data
Flow: Concepts of Distributed Programming M. Broy ed.) , NATO ASI Series F : Vol. 14 Springer
Verlag , 1985 , pp. 382-398 .

- 36 -

Figure Captions

Figure 2.1 Example for nondeterministic behaviour

Figure 2.2 Reduced job-shop example for a nondeterministic ADS

Figure 3.1 Input and output spaces for the realization example

Figure 3.2 Unbuffered and buffered realizations

Figure 3.3 Example for complexity index

Figure 3.4 Input and output spaces for the nondeterministic realization example

Figure 3.5 Nondeterministically behaving realizations

Figure 3.6 A deterministically behaving realization

Figure 3,7 Example for different ;tiuivalence relations on ADS

State X

Figure 2.1

Output Y

Reduced State X

(b)

Figure 2.2 (a) & (b)

{3,0]

[
Input Signal u Output Signal H(w)

State Signal §(u)

(c)

%ﬁ "
o [{n},0]

Input Signal u

(d)

Figure 2.2 (c¢) & (d)

Output Y

Realization X

(b)

Figure 3.2

Figure 3.3

Effective Input V Output Y

(b) (¢)

Figure 3.4

Realization 2

Realization 1

(a) (b)

Figure 3.5

Deterministically Behaving Realization

Figure 3.6

Output Y

Figure 3.7

	Copyright notice1989
	ERL-89-77

