

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ASYNCHRONOUS DYNAMICAL SYSTEMS

PART II: NON-DETERMINISM AND

REALIZATION

by

Kemal Inan

Memorandum No. UCB/ERL M89/77

23 June 1989

ASYNCHRONOUS DYNAMICAL SYSTEMS

PART II: NON-DETERMINISM AND

REALIZATION

by

Kemal Inan

Memorandum No. UCB/ERL M89/77

23 June 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ASYNCHRONOUS DYNAMICAL SYSTEMS

PART II: NON-DETERMINISM AND

REALIZATION

by

Kemal Inan

Memorandum No. UCB/ERL M89/77

23 June 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ASYNCHRONOUS DYNAMICAL SYSTEMS PART II : NON-DETERMINISM AND REALIZATION

Kemal Inan

Department of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory

University of California, Berkeley, CA 94720

ABSTRACT

The shortcoming of the deterministic ADS model is illustrated by examples of 'deadlock' and
'livelock' that is ignored by deterministic semantics . The examples motivate the generalization of the
deterministic ADS theory to nondeterministic environments. This is accomplished first by defining non-
deterministic images of deterministic marked process spaces and then using an extended signal theory to

define nondeterministic ADS and its environment.

The realization problem for ADS is defined and solved for the deterministic case and generalized
to the nondeterministic case . The relation between buffer-free representation through the response

function and buffer dependent representation by the state function of the ADS raises issues peculiar to
nondeterminism such as computing realizations that preserve deterministic behaviour. Different
equivalence definitions including bisimulation [5] are presented in the context of ADS and the expres
sive power of the underlying semantics are compared . The distinction between weak and strong
equivalence is shown to be related to scenario analysis for data flow networks [7] .

1 Research supported in pan by NSF Grant ECS 8719779. by the MICRO program of the State of California and a
grant from Pacific Bell.

1. Introduction

This is the second part of a three part paper on asynchronous dynamical systems. In this paper
two problems are addressed : first the ADS theory presented in part I is generalized to incorporate non-
deterministic signals and second , the problem of realization of response functions by ADS is formu
lated and solved first for the deterministic case and then extended to the nondeterministic case. Based

on these results various definitions of ADS equivalence are presented and related to each other.

In the context of dynamical systems the term 'nondeterminism' points to the existence of exter
nally observed sequence of event transitions that does not correspond to a unique set of internal transi
tions of the system. The underlying system is typically a state machine or a synchronization tree [5]
which is a special kind of state machine , possibly infinite and acyclic so that it has no prior commit
ment to a specific definition of equivalence among its states. State transitions are labeled by events and
a special symbol denotes the invisible event for modeling unobservable transitions . In such a machine
a unique sequence of visible events may drive the system to a set of different states . This may , for
example , happen if from a given state there are different transitions with identical event labels or there
are unobservable transitions . Under such conditions the system is said to behave in a nondeterministic
way and models are suggested that capture relevant features of such behaviour .

A nondeterministic semantics is a formalism that differentiates nondeterministic behaviour by

directly or indirectly imposing an equivalence relation on the set of all state machines described above .
The expressive power of a nondeterministic semantics is measured by the level of refinement induced
by its equivalence classes . For example two machines are defined to be trace equivalent if they accept
the same sequences of visible transitions . This is one of the coarser equivalence definitions that is used
for deterministic modeling .Milner's observational equivalence and its related concept of bisimulation
[5] or Hoare's definition of equivalence throughfailures and divergences [4] are alternative definitions
of nondeterministic equivalence. In the context of computer languages , different definitions of
equivalence correspond to different expressive powers of the corresponding languages that support non-
determinism [6] .

In this paper we model nondeterministic behaviour using a modified form of Hoare's approach to
nondeterminism . Our perspective is slightly different from that of a language designer . We implicitly
assume that at some detailed level of modeling ADS environment behaves deterministically. As we sim
plify interconnected ADS by the appropriate use of the projection operator we introduce nondeterminis
tic behaviour to the reduced models. We would like the model of nondeterminism to be expressive

enough such that the reduced models are simpler , yet they incorporate the necessary information that
allows us to predict the worst case behaviour of the original deterministic model. Therefore , for exam
ple , we allow a process to recover from diverging conditions instead of imposing CHAOS after diver
gence as Hoare does. Doing so we retain greater amount of information about the behaviour of the ori
ginal system at a negligible cost of representation complexity . The definition and concepts of non-
deterministic marked processes and extension of ADS to nondeterministic environments are all treated
in section 2 .

In section 4 we introduce the asynchronous dynamical realization problem . Two fundamental
results are derived that state the conditions for a response function to be realized by ADS . The first
result states the necessary and sufficient conditions for a deterministic response function to be realized
by a deterministic ADS and constructs an ADS in the proof . The second result again states the neces
sary and sufficient conditions , under mild hypotheses , for a nondeterministic response function to be
realized by nondeterministic ADS that behaves deterministically on trajectory inputs , that is , inputs
with a single trace and its prefixes . These results characterize response functions as buffer-free
representations of asynchronous dynamics and problems like optimal use of buffering for maximal

parallelism or deterministic behaviour of a synthesis become practically relevant questions .
The distinction of strong and weak equivalence of section 3 is related to the scenario analysis of

Dennis used for data flow models [8] . In the context of data flow models scenario analysis is an
approach that allows a unique characterization of interconnected actors when input-output description of
each actor is not sufficient to characterize the interconnected behaviour uniquely. This situation has a
natural formulation in ADS environments where the input-output histories correspond to response func
tions and scenario analysis coincides with fitting a specific realization to such response functions. The
ADS approach looks richer both in its signal variety and nondeterministic representation power . A
detailed treatment of this issue with concrete applications to input-output computations will be
presented in part III of this sequence .

Our operational perspective of nondeterministic modeling culminates in the concepts of strong
and weak nondeterministic equivalence given in section 3 , which stand for equivalence relations
defined on the space of original , non-reduced , deterministic ADS representations . The refinement
corresponding to strong nondeterministic equivalence corresponds to the differentiating power of the
nondeterministic ADS model used in this paper . We distinguish the semantics of our definition by
relating it to the concept of bisimulation [5] , a dynamically invariant definition of equivalence in the
context of ADS environment , and show that any bisimulation refines our model of nondeterminism .
Finally the results of the paper are discussed in section 4 by pointing to some open problems .

2. Nondeterministic ADS Environment

In this section we generalize the results of the part I of this paper to incorporate nondeterministic
phenomena . This generalization , founded upon an operationally simple and efficient representation of
nondeterministic signals leads to an algebra of ADS block diagram manipulation techniques as to be
demonstrated in part III of this sequence of papers.

The deterministic definition of an ADS given in part I of this paper disregards problems of non
determinism inherent in ADS dynamics. This point is illustrated by the examples below . For these
examples we make the simplifying assumption that all the input and state signals in U and X behave
deterministically in a representation R = (UJCJ). By this it is meant that for any such signal v :

s~<a>e trv => the process v/s cannot remain idle indefinitely .

This is the implicit assumption of.determinism which is an externally imposed semantics to the formal
definition of deterministic processes . Now let s*<a>e trHiu) then two types of phenomenon may
violate this deterministic assumption :

(1) There may exist a trace t of S(u) such that tiY = s e trH{u) and tr(S(u)/t) ={<>}. This
implies that the state signal S(u) , if trapped at t cannot progress any further and H(u)/s cannot
progress also.

(2) There may exist an infinite set Tof traces ofS(u) such that t 6 T =s> tiv = s . This implies
that the state signal S(u) makes an arbitrary number of transitions that are invisible at the output
H(u). Again H(u)/s cannot may not be able to make any progress at all .

Consider the example given in Figure 2.1 . If an input u is applied with tru := {< >,<a>} then
the state signal S(u) may generate an arbitrary number of c's invisible at the output (case (2) above) ;
as it generates b 's at the output it may end up at state 2 and the output cannot develop any further
although trH(u) = b' (case (1) above) . We shall loosely use the words 'deadlock' and 'livelock' to
refer to situations illustrated in cases 1 and 2 respectively .

In simplifying an interconnected ADS one uses repeated layers of state projections eventually to
compute a simple input-output relation. At each reduction step further nondeterministic behaviour is
introduced accumulatively of the type mentioned above. If an interconnected system reduction method
is to accomplish more than an input-output 'logical correcmess' check , that is , if it is to detect
'deadlock' or 'livelock' situations also , then it is essential that the accumulative effects of the kind of
phenomena described above is captured by a nondeterministic model that is simple and computationally
effective. This is achieved in two steps : first a model is developed for representing nondeterministic
marked processes ; second this model is used for re-defining the ADS operators to handle nondeter
ministic signals such that the construction of a logical nondeterministic ADS environment is complete .

We shall define a nondeterministic process space in the image of a given deterministic process
space and use this definition to model the nondeterministic signals in ADS. For reasons of consistency
we startat the embedding space level2 .

Let W = W(AJA ,<E>) be a given (deterministic) embedding space with the usual partial order and
length projection operators '<' and 'Tn' . We define the nondeterministic image of W as the embed
ding space 3 given by the triple (W , < , tn) where the embedding set W := W(A M ,¥) is given by
the following definitions of M and *F

M :=2* x {0,1} xM

and *F is the set of partial functions p. defined on prefix-closed subsets of A* with the general structure

\l = 0ir,jid,|im): A* -» 2** x {0,1} x M

where |im e O and for any allowable s e A*

(B s Ms) ; CgB) => C e Ms) (2-1)

Following Hoare [4] we call \ir(s) the refusals of the process at the trace s and a member of the
refusals a refusal set or simply a refusal . A refusal B is called a maximal refusal if B g D and
D e [ii(s) implies that B -D . The interpretation of a refusalB is simple : if after the execution of the
trace s , the environment offers the process the elements of B as the only possible next transitions , the
process may stop without any further progress . The mark associated with ^ denotes infinite hidden
traces of a process named , again after Hoare , a divergence . If at a trace s the mark \Ld(s)= 1 then
this signifies the possibility that the process may engage in an infinite activity of hidden transitions after
executing the trace s . Our definition , however , differs from that of Hoare's , since we allow for
recovery after divergence whereas Hoare assumes a chaotic state of affairs - that is , every trace and
every refusal is possible after a divergence - after the process diverges. The difference arises from our
perspective of efficiency . If nondeterminism is viewed as a byproduct of system reduction either by
hiding events or relabeling them , then efficiency in nondeterministic representation means preserving
the maximum amount of information on the original system's behaviour with minimum representation
complexity for the reduced system .

In order to keep the notation simple we shall use the same symbols '<' and 'Tn' instead of < and
Tn for the new nondeterministic partial order and length projection operators. The context should fix
the meaning. The new partial order '<' for the embedding space is defined by letting v < w if and
only if

2 For a definition of embedding space seepart I of this paper , for a detailed treatment see[3] .
3 This is a much simpler version of the nondeterministic embedding space suggested in [3] . The reason for the

simplification is due to the special structureof the ADS environment.

-5

(1) trv c; trw ,

(2) ji^vCj) = yimw(s) for all j e trv ,

(3) \LrW(s) G MrVfa) for all s e frv .

(4) |idw(s) < M.jv(j) for all s e trv .

According to this order the larger of two processes with identical traces is more deterministic , that is to
say more predictable , because of requirements (3) and (4).

The length projection operator 'Tn' is defined by

rr(vTn) := (s e trv I #j < n)
M.m(vTn)(.y) :=^mv(s)
jirf(vTn)(5):=^v(5)

and

m.rv(j) if #5 < n
MvTn)(,):=12A if#^=n

Fact 2.1

The embedding set W together with the partial order and length projection operators constitutes an
embedding space 4 . Inparticular if Vj isa chain in Wthen it converges to v where

trv := \JtrVj
J

\Lrv(s) := r~}\irVj(s) (2.2a)

\lmv(s):=]imvj(s)

whereJ is any integer that satisfies : j >J *> s e trvj ; finally

jO , if for some / , u*Vj(s) = 0
^v^):=1l, otherwise (2'2b)

We first observe that deterministic behaviour is a special case of the nondeterminism defined
above . More precisely a process w e W is said to behave deterministically if for each s e trw

\irw(s) = 23'
[idw(s) = 0

where Bs is defined by

a 4 B~s <=> s * <a>€ trw (2.3)

After defining a nondeterministic embedding space in the image of a given deterministic embed
ding space we establish a correspondence between deterministic and nondeterministic processes in a
simple way. For this we use the symbols 't|' and '5' as operators that convert a deterministic process

into a nondeterministic one and vice-versa . More precisely let w e W then we define T|(w)e W as

4 The fundamental property of an embedding space is that the partial order is complete andthe basic calculus opera
tors , namely the choice function , post-process function and the length projection function are all continuous with
respectto the partial orderdenned. The reader is referred to [2] for the exactdefinitionof an embedding space .

follows :

tri\(w) := trw

\i.mT\(w)(s):=\lw(s)

\irT\(w)(s) := Bs

VdT\(w)(.s) := 0

where Bs is given by (2.3) . Note that t\(w) is the largest nondeterministic process in W that agrees in
traces and the deterministic mark with the deterministic process w . In particular it behaves determinist
ically .

In a similar way let w e W and define B(w)e W as the process obtained from w by deleting the
\ir and \id components of its marking function and setting |i8(w)(j) := \imw(s).

The following relation is immediate :

8(Tl(w)) = w
v<ti(8(v)) K-}

for all w e W and v e W . In particular t\ is a one-to-one mapping of 17 into 17 whereas 8 maps W
onto W . We define below a marked process space for the nondeterministic case where there are two
universal nondeterminism axioms that must be satisfied in addition to any arbitrary set of marking

axioms.

Definition 2.1

Any subset II of W is called a nondeterministic marked process space provided that it satisfies the
axioms of a marked process space (see [1]) and the following general marking axioms of nondetermin
ism. For all P e n and s e trP :

(1) If <a> $ trP/s then <a>e B for all maximal refusalsB in \LrP (s),

(2) If \idP (.s) = 1 then nrP(s) = 2A .

Fact 23.

The function 8 maps marked process spaces in W into marked process spaces in W . Conversely if n is
a marked process space in W then the set of processes given by

II := 02 e W I there exist P eU such that Q <T\(P)) (2.5)

constitutes the largest marked process space in W (with respect to set inclusion) that satisfies the rela
tion

8(!T) = n

Before we generalize the domain of the ADS operators to cover nondeterministic arguments we
define the sum of nondeterministic spaces below. Let W,V be the nondeterministic images of the
embedding spaces W and V respectively . We define

(w e v) := (w e v)

Similarly let II and 9 be process spaces in W and V respectively then we define the sum space of II
and © as :

n e e := (n e 0)

-7

Recall that [w] in the deterministic case is a notation used for the set of all subprocesses of w
[1] . For the nondeterministic case it will acquire a slightly different meaning . If w e W where W is
the nondeterministic image of W we define the set [w] as a subset of subprocesses of w such that if v
is in this subset then each maximal refusal of v at a trace s includes some maximal refusal of w at s .
In other words if D is a maximal refusal of v at s then D = E\jF where E is some maximal refusal
of w at s and F is a subset of A . Therefore , for example , any subprocess of w that possesses a
maximal refusal that does not contain some maximal refusal of w at some given trace is not in [w].
Intuitively [w] stands for all subprocesses of w in which the nondeterminism is cumulative with respect
to w . As an example take trw {<>,<£>,<&>,«:>} , where \irw(o) = 2{a} and
trv = {< >,<a>,) . If^v(< >) = 2{a>>c) , then ve [w] whereas if^rv(< >) = 2{*>c} then v is not
in [w1 since a is not in any maximal refusal of v.

We shall extend the definitions of the three ADS operators , namely sum '©' , internal sum '+'
and projection '.' , to incorporate nondeterministic arguments in their domains and produce nondeter
ministic signals in their ranges. We shall use the same symbols for these extended operators so as not
to overcrowd the symbolism . Since nondeterminism covers the deterministic case no meaning is lost in
this symbol superimposition. Also throughout we assume that all the nondeterministic process spaces
are nondeterministic images of given deterministic spaces in accordance with (2.5) above .

The following definition extends the sum operator and its restricted version the internal sum
operator , to nondeterministic process spaces.

Definition 2.2

Let x e n and y € 0 then we define the nondeterministic sum operator as follows

tr(x®y) := tr(8(x) © S(y))
\Lm(x®y)(s):=\L($(x)®S(y))(s)

\id(x@y)(s) := maxfaaxislxXiitiyisly))

and M*®y)(s) is the smallest subsetof 2A that satisfies :

(1) 2B £ M*®y)(s) ifB=CnD where Ce \irX(slx) andD e \iry(sly).
(2) If \id(x®y)(s) = 1 then Mx®y)(s) = 2A .

We define the nondeterministic internal sum operator of x and y with respect to the cover sets \X]
and [Y] where X,Y are processes in II and 0 respectively with x e [X] and y s [Y] by

tr(x + y) := tr(B(x) + 8(y))

\im(x+y)(s):=mx) + S(y))(s)

V-d(x+y)(s) := maxQiaxisixX^yisiY))

and again \ir(x + y)(s) is the smallest subset of 2A such that:

(1) Foreach pair C € \irx(slx) and D e \iry(.siY) define B as

B := (C nD)^j(C n Bx) \^j (D n BY) (2.6)

where Bx is the set of next transitions of X/(six) and BY is defined similarly . For each such B
2B <zMx +y)(s).

(2) If iid(x + y)(s) = 1 then M* + y)(s) = 2A .

First, observe that {x + y)e [X®Y] since by the first definition above every maximal refusal of
X®Y ats is of the form CnD with C and D maximal refusals of X/(slx) and Y/(slY) and therefore
by (2.6) above maximal refusals of x + y are increments to those of X®Y as required by the bracket
notation. Second , observe that both definitions satisfy the associativity condition where for the internal
sum operator it can be shown by induction that for the process X\ + • • • +xn with cover sets [X,], B
in (2.6) can be replaced by :

B = (Ci n • • • n Cn) vj (ci n 5i) U ' *" U (c» n5»)

where each Cj is arefusal of xj at six and Bj is the set of next transitions of Xj/(slXj) .
The following definition extends the projection operator to nondeterministic range and domain.

Definition 2.3

Pell and Q e 0 where II and © are deterministic process spaces . We define P.Q e 0 as follows :

fr(P.2):=fr(S(P).8(£))

\xm(P.Q)(s):=\i$(P).6(Q))

and if Ts is defined as

Ts :=(tetrP I tiQ =s)

The divergence at s , ^(P.gXs) is set to 1 iff one or more of the following conditions hold :

(1) For some q e Ts the set

T :=(tetr(P/q) I tiQ/s =<>)

is infinite ;

(2) For some r e Ts , nd/>(0=1;

(3)1^(2(^ = 1.

The refusals at * , MP-Q)(s) , is defined as the smallest subset of 2A that satisfies the following
requirements :

(1) If t e Ts and B e \irP (t) has the property that:

t * <a>€ Ts => a e 5 "

and C€ jLirfite) then 2(fluC) c MF.!2)C0 .
(2) If Hd(P.<2)(*) = 1 then M^-QX*) = 2* .

The definition of the nondeterministic projection is important in the sense that it is here that the
new refusals and divergences are generated. According to the conditions that set the divergence index
to 1 the process diverges if either the process P makes inifinite transitions transparent to Q after gen
erating the trace s ; (see also Lemma 2.1 below) or along a trace of P that moves on the inverse image
of s the process P diverges ; or Q diverges at s. In most applications the process Q behaves determin
istically therefore the first two conditions are the typical sources of divergence.

One peculiarity of nondeterministic projection is the multiplicative effect of refusals when a pro
cess is consecutively projected onto itself. Consider a process P such that trP = {< >,<ai>, • • • ,<an>]
and the maximal refusals are [aj] for j = 1. . . . ,n. It follows from the definition above that P.P has
the same traces as P but the maximal refusals are {aj,at) for all distinct pairs a, and a,- . Similar argu
ments apply to PJ*.P where pairs are replaced by triples and finally P. • • • J3 where projection is

9-

repeated n times the whole set of events is the maximal refusal.

The condition that the set T defined above is infinite is equivalent to the existence of an infinite
trajectory that is transparent to Q as stated precisely by the following lemma .

Lemma 2.1

The set T in Definition 2.3 is infinite if and only if there exists and infinite sequence of traces {t}} such
that for each j

(0 h e T ,

(ii) #*j >j >
(iii) For all ij the traces /; and t{ agree on the first min(i,j) entries .

The hidden infinite trajectory x is defined as the limit of the trajectories Zj defined by their maximal
traces given by tflj .

The condition that generates the diverging infinite trajectory is more delicate then it may look. To
appreciate this consider the processes P and Q where trP := :{ancbn ; n >0] 5 and trQ = [c*} .
Clearly \id(P.Q)(< >) = 1 since P can generate arbitrarily many a's hidden to Q. Yet \id(P.Q)(c) = 0
although there are infinitely many traces of P that generate c for P.Q . The reason why the process
does not diverge is that it cannot make infinite transitions that are hidden to Q after generating c . This
is captured by the requirement that a trace q should exist such that qiQ = c and infinite hidden traces
are in Plq. For the example above , once a q is given , a finite integer n is fixed and only bn can be
generated after producing the event c. Further consequences of this observation follow in the re
statement and the proof of the nondeterministic version of formula (3.13) in [1] (see Fact 2.4 item (3)
below).

The first condition for the refusals in Definition 2.3 is subtle and requires justification. The

justification is supplied by Lemma 2.2 below

Lemma 2.2

The refusals given by the Definition 2.3 satisfies the general axioms of nondeterminism .

Proof ofLemma 22

We have to show that if $ tr\P.Q)ls then it belongs to all the maximal refusal sets in MP-Q)(s)
. There are two cases.

In the first case there exists t s Ts such that there does not exist any a e A and t~<a>e Ts .
Then by condition (1) any refusal set B of ?(0 - in particular the empty set - can be 'unioned' with
any refusal set F of Q(s) to generate a refusal B^jF of (P.Q)(s) . On the other hand if
 $ tr((P.Q)/s) then b must either be a member of some maximal F of Q at s ; or belongs to
trQ Is but it does not get perturbed by P , i.e., b belongs to every maximal refusal of P{t0 for t'e Ts ,
hence it belongs to the maximal refusal B of P (0 • In both cases b € B{jF and we are done .

In the second case starting from any t eTs we can paste invisible transitions of P to it
indefinitely. But this implies that \Ld(P.Q)(s) = 1 by condition (1) of divergences which further implies

that|ir(P.2)(j) = 2'* •

5 Note thatP cannot be generated by a finite statemachine

10

The following result relates the deterministic and nondeterministic ADS operators through the 8
and Tj maps. Identical notation is used for both the deterministic and nondeterministic ADS operators
and the distinction follows from the context.

Fact 23

(1) Let v ,w be nondeterministic processes in nondeterministic spaces then

8(v ® w) = 8v © 8w
8(v + w) = Sv + 8w

b(y.w) = Sv.Sw

(2) Let v ,w be deterministic processes in deterministic spaces then

T|(v © w) = r\v ®t\w

T|(V + W) - T|V + T|W

and

T|(v.w) > TlV.T|W

It turns out that the important results derived for the deterministic versions of the ADS operators
are either valid for the nondeterministic case or can be made so by slight modifications . One operation
to be clarified in this re-interpretation of formulas under nondeterminism is the union of signals for the
nondeterministic case since it is used both for the post-process and choice operations under projections
(see Fact 2.2 , (5) and (6) in [1]). If vt is a set of nondeterministic signals indexed by / in a nondeter

ministic signal space [V] we define \^jvt as
t

tri\jvt) := \jtrvt
t t

H« (VJv,)(s) := \ivt>(s) (2.7a)
t

MKjvt)(s):= VJHrvf CO
t re 7"

where

r := (t \ s e trv,)

and t'e 7"; finally

\Ld(KJvt)(s) := 1 iff for some t t\idvt(s)=l (2.7b)
t

Observe that unlike the deterministic case the union is not necessarily larger than its components

in the nondeterministic partial order. This is because if two indices t and t' correspond to two signals
sharing a trace s then at s the divergences and refusals are combined to generate a less predictable pro
cess .

Finally we extend the definition of a solid process space to the nondeterministic case .

A nondeterministic process space II is said to be solid if for each P in II , any process that
inherits a prefix closed subset of the traces of P and legitimate subsets - i.e. those subsets that satisfy
the universal nondeterministic marking axiom of Definition 2.1 - of its refusals at each trace s , is also
in II . Observe that if II is a solid deterministic space then II defined by (2.5) is also a solid nondeter
ministic process space. Henceforth we assume all the nondeterministic process spaces to be solid 6 .
The basic novelty of nondeterminism is the possibility of differentiating signals in [V] not only by their

6 For a given nondeterministic process V in a solid marked space the subset [V-] is closed butnot necessarily solid
since there are subprocesses of V that are not in [V].

-11 -

traces but also by their divergences and refusals on identical traces which measure the behavioral pred
ictability of the signal at that trace.

Unlike the deterministic case projection operator is not continuous with respect to its first argu
ment . We give counter-examples below.

For the counter-examples considered we take the event alphabet as A := [a,b) . First take Pn to
be a deterministically behaving chain where trPn := an and let the deterministically behaving process
Q be defined by trQ :=b\ Then for each finite n we have \id(Pn.Q)(< >)= 0 since P has no infinite
trajectories . However the chain Pn converges to P and in the limit the projection diverges , that is
\id(P.Q)(< >) = 1 since P can generate infinitely many a's concealed from Q .

A similar situation arises also in refusals. This time define recursively the traces of the elements

of deterministically behaving chain Pn as7 :

_ «trPK :=

{an)\jtrPn_x ,n even

{anb)^j{an}\jtrPn.x ,n odd

where trP0:= {<>} and take Q as in the previous example . Then whenevern is even ,P* can make
n hidden a transitions and refuse everything after that. Therefore according to the definition of refusals
we have for n even

Hr(/,M2Xo) = 2A

On the other hand if n is odd Pn cannot refuse b at any stage since at each stage there is an invisible

path of a's to generate the transition b. Therefore for n odd we have

MPn.Q)(<>) = ila)

and the sequence of refusals oscillate between these two values where convergence is not possible.

Properties of extended ADS operators are summarized by Fact 2.4 below.

Fact 2.4

The extended projection operator is not necessarily continuous in any of its arguments but the nondeter
ministic versions of the sum and the internal sum operators are associative and ndes functions of their
arguments. The internal sum operator is also continuous in its arguments . The following properties are
enjoyed by the extended operators where all processes are assumed to be members of nondeterministic
process spaces .

(1) For any w and v

\ldv(s) < M^.vXO

\irv(s)^M^.v)(s)

and formulas in [1] , namely (3.3)-(3.6) extend to the nondeterministic case. On the other hand the
idempotency result (Fact 3.2 item (4) in [1]) is replaced by the corresponding inequality

P-{P-Q)<P.Q

for the nondeterministic case.

7 It can easily be checked that this recursive definition of traces is prefix-closed

12-

(2) For the post-process and choice function formulas the relations

\id((P.P)/s)(t) = \id{ {j (P/m.P/s)}(t)

(2.8)
i4.p=j

M(p-pys)(o = \ir{ u (Pim-pism)
mip=s

hold and therefore the post-process formula in (3.7) in [1] extends to the nondeterministic case. Simi
larly (3.9) in [1] also extends to the nondeterministic case .

(3) The divergences and refusals satisfy the following relations :

M(w © VV*)(0 = Mrf(w/(*^) © v/(jiv))(0
jir((w ©v)/s)(t) =M">'(siw) ©v/(ji„)XO (2,9)
Hdw(j) < Jlrf((w©v).wXj)

Hrw(0 c n„((w©v).w)CO

JI(£(M.W)(5) < [ld(u.(w®v).w)(s)

MU-W)(S) CPrdLtwevJ.wXl) (2-U)
and if the following conditions are satisfied :

(CI) w and v behave deterministically ,

(C2) The process u is generated by a finite state machine ,

then the inequalities in (2.11) can be replaced by equalities .

These results imply that (3.12) and (3.13) in [11 are replaced for the nondeterministic case by

(w®v).w <w (2.12)

and

u. (w©v).w < u.w (2.13)

and the inequality may be replaced by an equality in (2.13) if conditions (CI) and (C2) hold .

(4) For the internal sum operation the relations

\id((w + v)/s)(t) = V^dwKsiw) + v/(siv))(t)

M(» +v)AO(0 =M(*Kslw) +v/(siv))(t) (2'14)

\ldv(s) < HrfO'.V! + • • • +v.vn)CO
/ % , w n (2.15a)\lrv(s) c Mv.V! + • • • +v.v„)(j)

where v := vj +... +vn and

\idv(s) < ^((w+v).V)(0

Hrv(^)GHr((w+v)y)(5) (2-15b)
hold. Therefore the formulas (3.15) and (3.17) in [1} are valid whereas (3.16) is replaced by the version
below 8 .

v.Vi + • • • + v.v. < v (2.16)

and

8 For anexample where the inequality in (2.16) becomes strict seethe proof of Fact 2.4 in the appendix

13

We define a nondeterministic asynchronous dynamical system (nondeterministic ADS)
representation as a triple R = (UJCJ) where the processes U , X and Y are nondeterministic processes
in arbitrary marked process spaces and U and Y behave deterministically . The state function
S : [U] -> [X] is defined by

trS(u) := (s e trX I sly <= fru)

^S0O(O:=|iX(O

the divergence marking |id5(u)(j) is defined by

\i-dS(u)(s) := max{\idu(siu) , l^XCO)

and refusals at trace s ,\irS(u)(s) , is defined as follows :

Let Bs denote the set of all events corresponding to next possible transitions of the process
U/(slu) and define the restricted refusals of a signal u at trace sly , denoted by Ru(slu) as
the set with members consisting of the intersection of refusal sets in \iru(slu) with 5^. Then

M(")CO :=(De2A I D = F u G ; F e ^„(^>ly) ; G €]irX(s))

The response function H : [U]-* [Y] is defined by

//(«):= 5 («).7

Fact 2.5

(1) When u=U the restricted refusals Ruis-^u) consists of the empty set . This follows from the
assumption that U behaves deterministically . Consequendy we have the familiar formula X = S(U) .

(2) As in the deterministic case we have

S(u).U <u if ue[X.U]

and if u e [X.U] and it behaves deterministically then

S(u).U = u

where the set [X.U] is called the projected domain of the state function. For the nondeterministic case
the projected domain restricts not only the traces of applicable inputs but it bounds the maximum pred
ictability of input blocking at eacff trace by setting a lower limit for the refusals imposed by the state
process. Any further expansion Si refusals is due to the nondeterministic behaviour of the input signal
and not the state process X .The projected domain enjoys the property

S(u)<S(u) (2.17)

for any u 6 [U] , where u := S(u).U .

(3) 5(.) is a continuous and ndes function of its argument However //(.) is npj necessarily a continu
ous function since the nondeterministic projection is not a continuous function of any of its arguments.
Restriction of S to the deterministically behaving subset of its projected domain is a one-to-one func

tion. S(u) can be expressed as

S(u) = (X.(T](8X) © U) + k).(t|(8X)) (2.18)

We present an example of a nnondeterministic ADS below. Recall that the process HALTm
denotes a process with only the empty trace with the mark m ; if the mark m is ignored by writing

14

HALT , it is implicidy understood that it can be derived uniquely from the context - for example if it is
a signal it inherits the mark of the cover process at the empty trace -.

Example 2.1

We use the job-shop example given in Example 4.1 of part 1 of this paper to exhibit the nondetermin
ism involved when the model is reduced to hide the private state transitions. The representation for the
nondeterministic ADS is given in Figure 2.2(a) where the processes U\X and Y represented by the state
machines all behave deterministically. As in Example 4.1 the discrete events ej,cyn and a stand for
'enter shop' , 'job failed' , 'job completed' ,'next job accepted' and 'acknowledge failure' instants
respectively. From this we obtain the reduced representation R = (UjCtY) where X:-X. (U®Y) .
Clearly the state process X given in Figure 22(b) does npi behave deterministically . As a simple nota
tion we mark every state of a nondeterministic process by the maximal refusals and the divergence
index at that state where each distinct maximal refusal is specified by its subset consisting of only those
events that are possible next transitions (It is implicidy understood that events that are not possible tran
sitions belong to every maximal refusal anyway) . Therefore the notation [{a};01 means that the transi
tion <a > can be refused although it is a possible next transition and the process does not diverge at this
state . This corresponds to the case where the job is succesfully completed (a hidden event) so that

failure cannot be acknowledged.

If u is defined by u = (n -» HALT) where u is assumed to behave deterministically then the
corresponding nondeterministic state signal 5(u) and the output signal H(u) are given in Figure 2.2(c)
where S and H refer to the reduced ADS (U jt,Y) . In both signals <a> will get refused if the job is
succesfully completed.

If on the other hand u is given by the recursion u =(n -» u) where, this time , n is assumed to
be a refusable event by u at any stage , as represented by the state machine of Figure 2.2(d) , then the
corresponding state and output signals are also given in Figure 2.2(d). Note that in this case the output
signal H(u) also diverges (thus the 1 in the notation of the state mark) at each trace since arbitrarily
large number of n 's hidden to the output are possible after each transition of the event a .

Finally we relate nondeterministic ADS to a deterministic ADS by using the relation between the
ADS operators - in particular the projection operators - expressed by Fact 2.3 above and apply these
relations to extend the signal representation of ADS to the nondeterministic case.

Let R = (UJ(,Y) be a given nondeterministic ADS and define its deterministic image by
87? := (8C/,SX,87) then the following relations prevail:

8(X.C/) = SX.W

S(S*0O) = Ssk(Sk) (2-19)

8(//*(M)) = //M(8u)

Conversely assume that R = (UX,Y) is a deterministic ADS and define the nondeterministic image of
R by t\R := (t\U ,T\X tr\Y) then the corresponding relation is given by

t\(X.U) > T\X.T\U

t\(Sr(u)) = S^(t\u) (2.20)

TKffj,(u))>//lW,(THi)

The extension of representation signal and the system signal to nondeterministic environments is
straightforward (see part I Definition 4.2) except for the following modification involving the represen

tation signal :

- 15-

r(u) := 5(m).(r\(8(X)) ®U ®Y)

which is viewed as a signal with the cover set [T|(8(X)) © U © Y] . The modification of replacing X
by its deterministically behaving version ensures that the cover process behaves deterministically.

Using (2.19) and (2.20) one can derive the appropriate inequalities between signals corresponding
to deterministic or nondeterministic image representations. For example if r(u) and r(Su) are the
representation signals of R and 87? then

P(8u) = S(rOO)
r(u)< Tl(P(SiO)

3. Equivalence and Realization by ADS

In this section we derive results on the realization of a given response function by either a deter
ministic or a nondeterministic ADS . In the first part we restrict our attention to the deterministic prob
lem. Later we generalize the concepts and results to the nondeterministic case.

Let us start by stating the deterministic realization problem for ADS . Suppose we are given
arbitrary processes U,V,Y with V < U and a function G : [V]-* [Y] . What conditions should G , as
well as VyU and Y , satisfy such that an ADS representation R = (UJ(,Y) realizes G in the sense
that

V =X.U

G(y) = HR(y) for all v e [V]

We already know that HR is a continuous function , therefore continuity of G is a necessary condition .
But it is not a sufficient one. Consider the following example where V = U = Y and trV = [a*} , i.e.
both input and output processes consist of repetition of the single event a . For any non-negative
integer n define une[U] as the process with the traces consisting of an and its prefixes . The function
G is defined by letting it map the argument un into G(un) := «n+1 . The function G is continuous by
construction . On the other hand G cannot have a realization R - (U JC,U) with X.U = U .To see this

let une[U] then we must have

S(un).U = un

by the property of the state function whereas

H(un) = S(un).U = un-* G(uH) = un+l

which implies that R cannot be a realization of G.

One way to circumvent this problem is isolating the input transitions from the output ones. For

this we define event decoupled processes as below.

Definition 3.1

Let [Pi } be a family of processes defined in arbitrary process spaces. The family is said to be event
i 6 /

decoupled (ed) with respect to a process Q if for each s 6 trQ

r\tr(Pi/siP.)= [<>}
16/

If the process Q is not specified it is taken to be any process with the traces A* .

16

As an example take processes P and R with respect to Q where maxtrP := [acb} ,
maxtrR := [bda} and maxtrQ := [abed • • • } where maxrr denotes the maximal trace of the process.
Then although P andR share the events a and b in their traces they are nevertheless ed with respect
to Q since the traces of Q guarantee that P and R do not share either a or b as a common transition
along the projection of the traces of Q as required by the definition .

A simple special case for the above condition would obtain when the alphabets oPj of the
processes Pi are disjoint sets where for any process P , olP denotes the set of all events that appear at
least in one trace of P. It can easily be seen that if either Q has traces A* or Q is the sum of the PL
processes then the special case stated above has to prevail.

In order to derive a second restriction on G we note an important property of both the state and
response functions of ADS , namely the preservation of the least upper bound of signals which we refer
to as the Iub property 9 :

S("lU"2) = S("l)US0*2)

H(ux U "2) =#("1) U#("2) (3J)
where S and H denote the state and response functions of an ADS representation (UyX,Y) and ux and
u2 are arbitrary processes in [U] and for arbitrary signals p and q in the same signal space the lub
(least upper bound) function ' |_J ' is defined by

*(p U^'^trp^trq

Clearly if G is to be realized then it must also satisfy the lub property stated above. The following
realization theorem states the conditions for the existence of an ADS that realize a given response func

tion with the restrictions discussed above . Before we stating the theorem , we define a trajectory pro
cess which is used both in the proofs of Theorem 3.1 and Theorem 3.2 . A finite trajectory is a
marked process consisting of a single trace s and all its prefixes. The number fts is called the length of
the trajectory. A trajectory is defined as the limit of a chain of finite trajectories.

Theorem 3.1 (Deterministic Realization)

Let U,V and Y be given marked processes in given marked process spaces where V < U and assume
that V and Y are event decoupled . Then a function G : [V] -> [Y] is continuous and satisfies the lub
property if and only if there exists an ADS representation D = (UX,Y) that realizes the function G .

IfR = (UJC ,Y) and R= (U jt,Y) are two different realizations ofa given function G then it does
not necessarily follow that X.(U®Y)=X.(U®Y) . That is , the relative interleaving order of the out
put with respect to the input may be arbitrary. Consider the following response function G :

G (HALT) := HALT

G({<*>}) :={<*>}
G([ac)):=[bd)

where U=V is given by the state machine in Figure 3.1 (a) and Y in Figure 3.1 (b) . In the above nota
tion we denote the signals in the domain and the range by their maximal traces . We present in Figure
3.2 (a) and Figure 3.2 (b) the state diagrams of two different state processes X and X that realize the
function G above . The principal difference of the second realization is that it uses buffering. If we

9 The derivation of (3.1) is obvious and omitted.

17

think of the input transitions as demands for consecutive services and the output transitions as the exe
cution of these services then the second realization buffers the next demand before it executes the first

one.

In order to demonstrate , in general , that the distinction between different realizations can be
attributed to different buffering strategies we focus to the proof of the realization theorem given in the
appendix. The proof first constructs a pre-state function on the input trajectories , which sets a lower
bound on the state function and extends these to arbitrary signals by using the continuity and lub pro
perty of the response function . The inductive step in defining S(u) for a trajectory u is given by
(A10). Clearly choice of different Ru satisfying (A9) in the proof will yield different pM and hence a
different pre-state function by (A10). The choice of Ru as Ru corresponds to the maximal (infinite)
buffering strategy. To see this observe that v :=s'<a>"q is a legitimate trace of S(u) where q is any
trace of G(u). This corresponds to the choice of a triple (q,q,< >) which certainly satisfies (A6) .There
fore all the output traces , i.e. trG(u) , can be generated after buffering the entire input trajectory
s * <a>.

Now consider the following prudent buffering strategy by choosingRu as follows :

For each r e trG(u) decompose the trace r as r = q"z where q is the largest prefix of r in
trG(u*) . Choose any p € trS(u') such that ply is a largest prefix - note that p may not be
unique - of s .We let Ru be taken as the set of all such (r,qj>) subject to q * r as r ranges in
trG(u).

If for the moment we make the assumption that S(u) = SD(u) this realization corresponds to a more
efficient buffering strategy since s - or the largest prefix of s - has already been serviced by q in this
definition. So the suffix trace z corresponds to the service for the additional demand specified by <a> -
orw*<a>- . Since choice of p above is not unique and in general S(u) <SD(u) it is not clear that this
prudent buffering strategy is actually a minimal strategy where the word "minimal" is made precise by
the following definition.

Definition 3.2

A function G satisfying the hypothesis of Theorem 3.1 is called a realizable function. If there exists a
realization R = (UJC,Y) where X is generated by a finite state machine G is called a regular realiz
able function. A realization R =(U Ji ,Y) of a regular realizable G is called a minimal realization if
for any other realization R- (U jt,Y) , IX I < IXI where IP I denotes the cardinality of the minimal
state machine (no. of states) that"generates the traces of the process P . The unique cardinality of a
minimal realization is called the complexity index of the function G.

Example 3.1

Let U = V be a process with traces [(a{ , • • • ,an)"} and Y be a process with the traces
{(5*! , • • • An)*} • For each trace s of U there is a trace J of Y where each aj in s is transformed to
5) in T. We define the function G : [U] -» [Y] by first defining it on each trajectory z in [U] as

G(z) :=7

where x has the maximal trace s and 7 is the trajectory in [Y] with the maximal trace T. We extend G
to entire [U] by using the lub property and and assume it to be continuous so that it uniquely extends
to chain limits. A minimal realization of G is given by using the state process in Figure 3.3 . Therefore
the complexity index of G is n+1 although it may have buffered realizations with arbitrarily large
number of states. Therefore one can abstract the complexity of a task defined in an input-output func
tional form from its buffered implementations as seen in this simple example.

- 18

We now extend the realization problem to nondeterministic environments. We replace the
processes V < U and Y by deterministically behaving nondeterministic processes in appropriate non-
deterministic spaces and as before let G : [V] -»[Y] . We shall call a nondeterministic ADS ,
R :=(UJC ,7) a realization of G if:

(1) S(X.C/) = 8(F) ,

(2) S(G(v)) = S(//*(v)) for all v e [V] .

This formulation reduces the problem to a deterministic one by matching only the deterministic
images of the response and the projected domain. If we look at the practical aspect of the realization
problem then it is reasonable to assume that G is given and behaves deterministically - to be made pre
cise soon - and it is desired that a realization of G behaves deterministically as well. The fact that this

is not always achievable is demonstrated below.

It is instructive to understand the possibility of inherent nondeterminism that may arise from the
structure of V and G and the realization mechanism which involves the projection operator. Consider
the example where V = U, trU = (< >,<a>] , trY := [b'} and G(v) := Y for all v € [V] . Then if
(U*XyY) is any realization of this response function then we must have by definition 8(X.£/) = 8V and
therefore trQC.U) = trU .On the other hand again by definition 8(G(V)) = b(HR (V)) = 8(X.7) = Y
which implies that X must generate arbitrarily many b's before or after (or both) generating the input
transition <a> . But this implies that either p^(X.£/)(< >) = 1 or [^(X.U)^^ = 1 (or both are 1),
that is the process X.U diverges at some trace. Therefore for any realization we must have X.U < V
and the (projected domain) process X.U cannot behave deterministically .

Now consider the example by again letting V - U where trU - [a*} , Y as above and
G(v) := HALT for all v € [V]. Then by definition of a realization 5(G(V)) = $(HR(V)) = SQC.Y) and
therefore X is not allowed to generate any trace with a b transition in it. On the other hand again by
definition we have 8(X.*7) = 8(V) which implies that X must generate arbitrarily many a's which in
turn implies that \id(HR)(V)(< >) = 1 and so for any realization we have HR(V) < G(V) without equal
ity since HR (V) cannot behave deterministically.

Finally consider the following typical example of nondeterministic behaviour via the refusals. Let
G be defined as

G (HALT) := HALT

trG(<a>) := {< >,] *-

trG(<c>) := {< >,<d>}~

where U = V and trU - [< >,<a>,<c>] ; Y is any process that includes the traces and <d> and
as before arguments of functions are denoted by the maximal traces of the corresponding signals. We
assume that G has the lub property therefore trG(<a>f<c>) = {<>,,<d>] . Then for any realiza
tion of G we must have

M(<a>.<c>)(<>) = i{b,d)
although both and <d> belong to the traces of G(<a>,<c>) which violates the deterministic
behaviour requirement . In order to see this let (UJ(,Y) be any realization of G , then G(u) = S(u).Y
where tru - [< >,<a>,<c>} and if S(u) makes an input transition it can only be an <a> or a <c> .
But if it is an <a> then d $ tr(S(u)la).Y and if it is a <c> then $tr(S(u)/c).Y . This is because
such situations would violate the definition of G above. This example shows that expecting determinis
tic behaviour in general is ruled out. However , as to be demonstrated below , if the input signal u is
restricted to be a trajectory then the kind of situation above could be circumvented by appropriate reali
zations. Since in reality real time operations only allow for trajectory inputs the kind of inherent

19

nondeterminism described above does not seem to have any practical significance .

These examples , degenerate as they may be , exhibit that nondeterministic behaviour , both at
the input blocking level and the output generation level , may be an inherent property of the function
(and its projected domain) as opposed to being a property of a particular realization of it . We can
therefore ask the legitimate question as to what requirements G should satisfy such that it has realiza
tions that do not give rise to nondeterminism whenever the input signal behaves deterministically. In the
following part of this section we formulate the nondeterministic realization problem and its solution in a
way related to this question .

Let P be any process in a nondeterministic process space II and define P8 as the subset ofdeter
ministically behaving signals in [P] . This setcan be defined using the operators 8 and T| as follows :

Ps:=(pe[P] I il(S(p)) =/>) (3.2)

It is easy to show that P8 is closed under chain limits. It is also evident that P8 is isomorphic to the set
[8(F)] c II in the obvious way.

We state below definitions on G that characterize the potential nondeterminism in realization of
iL Recall that a process or a signal is called finite 10 if its trace set is a finite set. It is called infinite if
it is not finite.

Definition 3.3

The function G : [V] -» [Y] is called bounded from above on a subset K of its domain if it maps

finite signals in K into finite signals . It is called bounded from below on a subset L of its range if the
inverse image of finite signals in L are finite signals. It is called stable relative to (KJL) if it is
bounded from above on K and bounded from below on L .It is said to behave deterministically on a

subset K of [V] if it maps deterministically behaving signals in K into deterministically behaving sig

nals , that is

veV8nK *> G(v)eY8

The deterministic image of G denoted SG : [SK] -> [87] is defined by

SG(w):=S(G(r,(w)))

for all w s [SV] .

We can state the nondeterministic realization theorem as below :

Theorem 3.2 (Nondeterministic Realization)

Consider the nondeterministic realization problem where the input and output spaces are assumed to be

event decoupled . There exists a realization R = (UX,Y) of G with X e [U®Y] such that:

(1) X.U = V ,

(2) v e V5 n T => HR(v)e Y8 , where T denotes the subset of all trajectories in [V] ,

(3) G(v) = HR(v) forall v € V8 n T ,

if and only if the function G behaves deterministically on T , is stable relative to (7\G(V)) and its
deterministic image SG is continuous and satisfies the lub property.

10 This is not to be confused with a process or signal generated by a finite state machine since infinite processes can
be generated by finite state machines.

-20-

Theorem 3.2 states the necessary and sufficient conditions for a function to be realizable in a
deterministically behaving way. If G is not stable then any realization will lead to nondeterminism as
illustrated by the degenerate examples given above. Under the absence of these deterministic behaviour
conditions Theorem 3.1 gives the necessary steps involved in realizing the deterministic image of G
given by BG defined above.

As in the deterministic case the buffering strategies and realizations are related in a similar way.
The additional aspect that enters into the nondeterministic realization theory is the possibility of con
structing a state function so as to avoid nondeterministic behaviour. Although the proof of Theorem 3.2
in the appendix uses an infinite buffer construction for avoiding nondeterminism , specific examples
may require finite buffer capacity for maintaining deterministic behaviour.

Example 3.2

Consider the nondeterministic realization problem where V < U and Y are given by the state machines
in Figure 3.4. The function G is defined on the trajectory subset of [V] as follows :

(1) On the special trajectories below , G is defined as

trG([<ax>}) :=<&i>

trG([<a2>}) :=<b2>

trG([axa2az) := \<j(bxb2)

where the argument of G , which is a trajectory , is specified by its maximal trace and the '"'
symbol on the right denotes the prefix closure of the trace set in question.

(2) Any trajectory with a maximal trace of the form (cx • • • cn) maps into a process with traces
[cx- ••cH) where each Cj is either an axor an a2 in which case the corresponding cj is bx or b2
in the same order ; or some cj stands for the triple (a ^2^3) (this is the only form in which the
transition a3 can appear according to the definition of V in Figure 3.4) in which case c} can be
both ox(pxb2) and all possible unions are taken to accomodate both possibilities. Therefore
, for example , the trajectory with a maximal trace

(a xa2aT/a^axaiai)

will map under G into a signal with traces equal to the closure of the following :

(bxb2b2b xbdKjfrb^fidKjQ xb2b2b)Kj(bb2b)

It can easily be observed that the function G defined above is continuous and can be extended to the
entire [V] imposing the lub property. It is assumed that all the processes in question behave determin
istically. In Figure 3.5 two different state processes corresponding to two different realizations of G are
given . In Figure 3.5 (a) the realization suffers from the defect that H((axa-i)) does not behave deter
ministically at the null trace < > . Indeed let t := axa2 then although tiY = 0 and <bx>e trH^aia^)
it cannot be completed as t * t'e trSQia^) such that (t ' t*)lY = <bx> . Therefore <bx> is refused
by H((a xa<i)) , violating a deterministic behaviour requirement.

In Figure 3.5 (b) this is fixed , yet , this time X.U still does not behave deterministically at the trace
(axa<d • To see this consider the trace t :=axbxa2b2e trX then although <a3>€ /r(X.E/)/(aia2) and
tlu =(axad there does not exist t "t'ztrX such that t'lv = axa2a3 . Therefore <a3> is refused by
(X.U)l(aiai) violating another condition for deterministic behaviour.

The solution for a deterministically behaving synthesis is given in Figure 3.6 . Note that more buffering
was required to maintain deterministic behaviour.

-21 -

The results and discussions above suggest the following definitions of equivalence for ADS
representations :

Definition 3.4

Two ADS representations R = (U X,Y) and R= (U X,Y) are said to be strongly equivalent if
X.U = X.U and

SR(u).(U®Y) = SjtuMUGY) for all ue [U] (3.3)

They are said to be weakly equivalent if the formula (3.3) is replaced by

HR (u) = H&u) for all ue [U] (3.4)

The definitions of strong and weak equivalence above apply for both deterministic and nondeter
ministic ADS. Strong equivalence is indifferent toprivate state transitions but the input and output tran
sitions must occur in an exact pre-specified order . On the other hand weak equivalence only demands
that the output for each input is fixed but the relative order of input transitions with respect to output
transitions may vary due to buffering considerations. Weak equivalence is meaningful when concern for
the input-output functionality of ADS overrides buffering strategies of implementation. In this sense it
captures a buffer-free representation of a system. Clearly strong equivalence is a refinement of weak
equivalence.

It will be shown in part HI of this sequence that a response function of a loop-free interconnected
set of ADS is only a function of the weakly equivalent representative of each ADS. If , however , there
are loops then , in general , it is a function of strongly equivalent representatives of component ADS
representations . This result is related to the scenario analysis of Dennis for data flow networks [7] .
Scenario analysis is a method of fitting scenarios that impose a partial order between the input and out
put transitions of an interconnected data flow graph when individual input-output histories are
insufficient to derive the overall history . The correspondence is as follows : histories and scenarios in
[7] correspond to the response functions and the strongly equivalent representatives of individual ADS
representations of our approach respectively . The ADS approach is more general in the sense that it
has a richer signal space of representations and it allows for nondeterminism 11 .

We define an ADS as the equivalence class of strongly equivalent representations . Among these
there is a distinguished one given by D := (U,CJ)12 , where C is the unique process in [U®Y] given
by C := X.(U®Y) and [X] is the state space of any member of the equivalence class. We call this the
canonical representation of the dynamical system , which is well-defined by the fact that S(U) = X .

It is legitimate to ask at this stage whether the functions 8 and T| preserve equivalence , strong or
weak . It is easily observed that if R is strongly equivalent to R then it is not necessarily true that t\R
is strongly equivalent to r\R . Therefore the map t\ is not well-defined on the set of deterministic ADS
identified by strongly equivalent classes . On the other hand the function 8 preserves both weak and
strong equivalence. Therefore the inverse image of T| obtained by applying 8 to nondeterministic
processes map sets of equivalence classes of nondeterministic ADS representations into subsets of the
corresponding equivalence classes of deterministic ADS. Based on this observation we define nondeter
ministic equivalence as below

11 The term nondeterminism used in [7] merely states the possibility of non-trajectory responses to trajectory inputs
and has little to do with the concept of nondeterminism in this paper.

-22-

Definition 3.5

Let J? be a given deterministic ADS representation . We say thatR is strongly (weakly) nondetermin-
istically equivalent to R if t\R is strongly (weakly) equivalent to t\R .

The strong nondeterministic equivalence partitioning reflects precisely the differentiating power of
the nondeterministic model we use. In other words as was emphasized in section 1 , if one starts with a

deterministic ADS model and use projections to obtain a nondeterministic reduced model , then the
differentiating powerof the nondeterministic model is up to a nondeterministic equivalence class in the
original deterministic ADS. It can easily be observed that strong nondeterministic equivalence is a
refinement of strong equivalence.

Finally we relate dynamical concepts of equivalence summarized above to the well-known con
cept of bisimulation [5] , a definition of equivalence that is dynamically invariant in the terminology of
our framework. The definition of bisimulation as given below is an adaptation of the concept to ADS
environment.

Definition 3.6

Consider the set of all deterministic ADS representations [Rx = (UX,Y))X where U and Y are fixed
input and output processes and X is any marked process . An equivalence relation ' = ' on this set is
called a bisimulation if Rx = Rx implies that for each nondecreasing sequence of traces sj e trX there
exists a nondecreasing sequence of traces tje trX and vice-versa such that

(1) sj V ©n= tj^iu ©Y) for each J .
(2) #(Sj) is an unbounded sequence if and only if #(ry) is an unbounded sequence ,
(3) Rx/sj =Rx/tj for each j where for any representation R = (UXJ) the post-representation
R/s is defined as R/s := (U/(slu)X/s,Y/(slY)) [1] .

Fact 3.1

(1) Strong nondeterministic equivalence is not a bisimulation .

(2) Any bisimulation refines strong nondeterministic equivalence .

The following example illustrates concepts of equivalence explained above

Example 3.3

Consider the three deterministic ADS representations with the state processes given in Figure 3.7 . It
can easily be shown that all these representations are strongly equivalent to each other. On the other
hand R2 is nondeterministically equivalent to /?3 whereas Rx is nondeterministically equivalent to nei
ther . To see this observe that the process X} .(U ® Y) may refuse both d and e for j - 2,3 whereas it
cannot refuse these events for7=1 after producing the input trace be . Further details are obvious and
omitted.

We claim that R2 cannot be equivalent to R2 under any bisimulation relation. Consider the state trace
(3Z> in X-i (in the definition of bisimulation we take the infinite sequence constant for each j) then
there are two possibilities in picking a corresponding trace from X2 if condition (1) of bisimulation is to
be satisfied :

(1) We pick the trace bz in X2 . But then tr(X2/(bz)) = [<>,<c>,ce) whereas
tr(X-s/($b))= [<>,<o,cd] and therefore these two post-representations cannot be bisimulation
equivalent since ce is incompatible with cd and violate condition (1) .

23

(2) We pick the trace b in X2. In order to show that X2/b cannot be bisimulation equivalent to
XJ($b) we move one more step by considering the trace zc in X2lb. The only candidate in
Xyflta) is the trace c and again incompatibility arises since

tr((X2Jb)/(zc))= {<>,<«>)

tr((X3/($b))/c)=[o,<d>}

4. Conclusions

We have extended the tools and concepts of ADS environment to deal with nondeterministic sig
nals. For that purpose we defined a model of nondeterminism similar to Hoare's CSP [4] and redefined
ADS as an input-output dynamical representation on nondeterministic signals . We showed by Fact 3.1
that our model of nondeterminism is superior to deterministic ADS and inferior to any bisimulation
based nondeterminism [5] in its expressive power. The real practical advantage of the model will be
demonstrated in part HI of this series when interconnected nondeterministic ADSs will be used as a
representational and computational tool for parallel program specification and verification .

We have defined the realization problem for the deterministic and nondeterministic cases and
presented conditions of realizability for response functions. Instead of supplying detailed solutions to
computational problems of ADS formulations we have tried to emphasize basic concepts and questions
of asynchronous dynamics. For example the problem of computing the complexity index of a given
response function or the theoretical problem of resolving whether deterministic behaving synthesis can
be achieved via finite buffering (recall that the proof of Theorem 3.2 uses an infinite buffering realiza
tion) are problems that have not been tackled here . These problems and others in which the freedom
in weak equivalence is used as an optimization parameter - e.g. maximizing parallelismby choosing the
largest relevant state process subject to buffering constraints - are open .

APPENDIX

Proofs of Fact 2.1 , Fact 2.2 and Fact 2.3 are straightforward and omitted.

Proof of Lemma 2.1

The proof in one direction is immediate. Let [pQi }4- be a countable and infinite subset of T and for
each j define inductively a subsequence [pji)i of the infinite trace set of the previous stage as follows :

At stage 7-1 the set {p^-i),},- has the property that the first7-I entries of P(/-i)» are identical for
each i* and at stage j we choose any subsequence of this collection denoted [pji}t such that the
first 7 entries of each trace are identical. Observe that we can choose such infinite subsequences
at each stage . This is because when traces are grouped with first 7 entries identical there are
finite such groups and therefore at least one group must have infinite elements and we choose the
subsequence with the members of this group. Finally we set f; := p}} and the result follows.

Proof of Fact 2.4

(1) The proof is straightforward and omitted.

(2) First observe that

\id((P.P)/s)(t) = \Ld(P.P)(s't)

M(.PJ)<s)(t) =MP-P)(s*t) (A1)

-24-

by the transitivity of the post-process and for any me trP such that m-lp* = s~t there is a decomposi
tion (not necessarily unique)

m - mx" m2 (A2)

where

mx-lp = s

We first prove the equality of divergences in (2.8) . Let Mp-P)(s*t) = 1 then there are three cases to
consider:

(i) The set T in the definition of the extended projection is infinite. Therefore there exists q e trP such
that qip = s~t and by Lemma 2.1 there is an infinite trajectory z with traces tj in Plq which is tran
sparent to Ql(s~t) , i.e. fy^Q/(j-t) = <> • Using the decomposition given by (A3) we can identify
q - m{m2 and the trajectory x satisfies the corresponding condition of divergence for Plm^ls at t
since ((PIm^lm^Plq and m2ip,5 =t by (A3) above. Therefore MPlmxJls)(t) = 1 and by the
definition of union operation given by (2.7b) with v=mx we have

\id[\J (PAvi/*))(0=l

(ii) There exists q e trP where qip - s"t and \xdP(q) = 1. Then using the decomposition (A3) above
the same reasoning holds for P/mxJ/s at / since MPImdimi) = \KiP(q) = 1 •The rest follows from
the same union argument above.

(iii) We have lLd(P)(s~t) - 1 therefore MPIs)(t) = 1 and so for any m , \id(Plm.Pls)(t) = 1 . The rest
again follows from the union argument.

These arguments are all reversible and we omit the details . This establishes the equality of the diver
gences . We next prove the equality of refusals. Again we prove the result in one direction. Reversing
the arguments is straightforward. Let D e |ir(/,J')(s*0 then ruling out the trivial case where
MP-P)(s*t) - 1 we have :

There exists t'e trP , B € j^P (O and C e \irP(s~t) such that

t'lp = S*t
(t'~<a>)lp = s~t => aeB

D = B \jC

Letting m :-t' where m is given by (A2) we have B e \ir(P^i)(^il and ^"2^ = * bv (A3). If
(m2<a>)ip,s = t then m'<a>lp = s't and by hypothesis asB . Also C € MPls)(t) by transitivity
of post-process which proves that D =B\jC e Mp fmxJ>Is)(t) and the rest follows from the union
formula (2.7a) . This completes the proof of the post-process formula.

The proof for the choice function formula is similar and omitted.

(3) We only prove the formula (2.11) both for divergence and refusals which in turn yield (2.13) . We
also prove the equality version of (2.11) , hence (2.13) , under the conditions (CI) and (C2). The rest is
similarly proved and is omitted .

In order to prove (2.11) for divergence we first let u^(u.w)(s) = 1 and show that
\xd(u. (w®v).w)(s) = 1. There are three possibilities :

(i) For some q € tru and qiw = s the process ulq has infinite traces of the form tj transparent to wis,
i.e., tjXw/s = <> . We define the partitioning

25-

m *m} := (q tj)-lw&v - qiw^v * 0^<w©vV<7

and claim that (u. (w©v))lm has traces mj , tranparent to wis where m :=qlw®v . Clearly , using the
deterministic version of the formula under proof

(m *mj)-iw = s

and therefore

TKjiwis =<>
which proves the transparency. If the set [my} is infinite we are done by condition (1) of divergence
definition. If , on the other hand , mj is a finite set then for some J , m'rrij =m~p € tr(u. (w®v)) for
all 7 >J. But this implies that

|id(u.(w©v))(m>)= 1

by condition (1) of the divergence definition applied to u.(w®v) . The result follows by applying con
dition (2) of the divergence definition.

(ii) For some t e tru such that tiw = s ,\idu(t)= 1 . Then by chain use of condition (2) we have

Mu.(w©v))(fiwev) = l
^(u.(w©v).hOCO = 1

(iii) \idw(s) = 1 * Hrf(K.(w©v).w)(0 = 1 .

This proves the inequality for divergences.

We next prove the inequality (2.11) for refusals. For this first let

DeMu.w)(s)

then , ruling out the trivial case where both processes diverge , there exists t e tru where tiw = s and
B € jJ.ru(0 such that

(t * <a>)iw = s & aeB

and D = B{jC for some C e \irw(s). We then deduce that

5eMr(u.(w©v))(flw©v)

since

[(t A<a>)iw9v = tlw(Bv] *> [(t ' <a>)iw = tiw = s] => a sB

where we took the null set in p.r(w © v)(tl„®v) to add to B so that we obtained B again . But this
implies that

D =B\jCe \Lr(u.(w®v).w)(s)

since

K(fiw®v) *<a>)iw = (tlw<&v)lw] => [(t ~<a>)iw = tiw = s] => a € B

This proves the formula (2.13). We next prove the equality version of (2.11) , hence (2.13) , when (CI)
and (C2) hold. Before however consider the following two counter-examples to (2.11) corresponding to

the violations of the conditions (CI) and (C2) respectively :

1 -Take

tru = {< >,<a>,,<c>) ; jxru(<>) = 2{a}

trw = {< >,t<c>] ; \irw(< >) = 2[aJ,] {j 2<a-c}

trv = {< >,7<c>} ; \irw(< >) = 2[a>b'c]

26-

where all divergence indices are assumed to be 0 . Then we have

|ir(u.w>(< >) = 2{a'b) vj 2{a,cl

whereas

M"- (w©v).w)(< >) =2{a'b-c]

since

]ir(u.(w©v))(< >) = 2^aJ,] {j 2<a-e>

2 - Take tru : [ancbn] and trw : [c*}, trv :- [b") . Clearly M^w)(c) = 0 by the paragraph
following Definition 2.3 . On the other hand the process u. (w©v) has traces [cb*} and therefore
\id[(u.(w®v)).w](c) = 1 where after c infinitely many b's are transparent to wlc . Therefore the

process u.(w®v).w diverges whereas u.w does not.

We proceed with the proof of (2.11) for the special case . Let \id(u. (w®u).w)(s) = 1 then using (CI)

only two possibilities arise :

(i) There exists q e tr(u.(w®v)) such that qiw - s and (u.(w®v))/q has infinitely many traces tj
transparent to wis . From this we deduce an infinite set of traces mj e tru such that by appropriate
partitioning we may write

mj := mi/' mv

where

By assumption (C2) u is a process generated by a finite state machine therefore we can divide the

infinite set of traces [mlj }j into a finite set of groups such thateach group represents the common state
into which the initial state of u is driven after executing any member trace mXj . Since the original
sequence is infinite at least one group must have infinitely many elements. Let r denote any member of
the trace group denoted by the infinite index set R corresponding to the state with the infinite subse

quence constructed above then ulr has infinitely many traces , namely [m2i } , that is transparent to

wis since

Mljiwls ~ tj+w/s =<>

which proves that \id(u.w)(s) = 1 .

(ii) For t e tr(u.(w®v)) where tiw = s , \id(u. (w©v))(r) = 1 . Again by (CI) there are only two pos
sibilities :

(I) There exists q € tru where qiw®v ~t and ulq has infinite collection of traces r, that are
transparent to (w®v)/t . But since

(<7 ^w©v>k* = q^w = tiw = s

and

rjiw/s =<>

we have \id(u.w)(s) = 1 by condition (1) of divergence .

(II) There exists t'e tru such that t'lwev = t and u\rfW(0 = 1. But then t'lw = tiw = s and
therefore \id(u,w)(s) = 1 by condition (2) of divergence .

-27

Next we prove the refusals side of equality version of (2.11) . For this let D e \ir(u.(w®v).w)(s) then
either there is q € tr(u. (w©v)) where qiw = s and B e \ir(u. (w®v))(q) such that

B &Mu-(w®v))(q)
, , j _ (A4)
(q <a>)lw = s => a e5

and D-B\jC for some Ce\irw(s) ; or M^.(w®v).w)(s) = 1. The latter implies that
|irf(u.w)(0 = 1 by the previous proof and and therefore D € M^w)(s) = 2A . Otherwise there are two
possibilities :

(I) There isp € tr(u) , ie \iru(p) and Ce |ir(w©v)(<0 such that

Piw®v = q
[(p*<a>)i(vw©w) =pV©v)] => a e i (A5)
5 =i|j C

Using (A4) andp iw = qlw - s

[(p *<a>)iw = s] => [(^*<a>)iw = ^] => a e 5

We claim that a e i. If not it must belong to C , but using the condition (CI) that w and v ,
hence w©v , behaves deterministically we cannot have «at>€ tr((w®v)lq) and therefore the
hypothesis of the second proposition in (A5) is satisfied which implies a eB , which in turn
proves the claim .

Using the claim proved above we can write D as D =B^^y^jC) where Bsatisfies the required
conditions and it is enough to show that (C[<jC)e\irw(s) . But this follows because first
Ce |ir(w©v)0O and by definition of the sum operator C is a subset of some refusal of w at
qiw = s , and second w behaves deterministically and therefore it has only one maximal refusal
which implies that refusals of w are closed under unions.

(H) Mu.(w®v))(q) = 1 . Then by condition (CI) the only possibility for divergence is when u
has infinite traces hidden to (w®v)lq and therefore to wis which proves that u.w diverges at s.
This completes the proof of (2.13) for the special case with equality .

Finally we present an example where (2.16) holds with strict inequality. Take trw := {<>,<a>} ;
trv := {<>,) where trW [a*} ; trV = [ba*} and assume that all processes w,v,W,V behave deter
ministically. Then Mw + v)(<>y=0 whereas

M(w + v)-w + (w + v).v)(< >) = 2[a)

This follows since v can make in (w + v).w a hidden transition upon which it also locks w to

inhibit an <a> transition by definition of V above , so that

jir((w +v).w)(o) = 2la«*>

and the rest follows easily.

Proof of Fact 2J

(1) Straightforward and omitted.

(2) First we prove that S(u).U <u on a trace s shared by S(u).U and u e [U] . Let \idu(s) = 1 then
by definition there exists t e trX such that / iy = s and

\xdS(u)(t) = max(\idu(s), \ldX(t)) = 1

28

Proof of Fact 25

(1) Straightforward and omitted.

(2) First we prove that S(u).U <uona trace s shared by S(u).U and u e [U] . Let [idu(s) - 1 then
by definition there exists / 6 trX such that / lu = s and

\idS(u)(t) = max(\idu(s), u^X(O) = 1

which implies by condition (2) of divergence for projection

MS(u).U)(s) = l

Now let D 6 \iru(s), then by definition

where t e trX , f ly = s ,Fe Mr-XXO and Bs is the set of next transitions of Uls . In particular one
can choose t such that there is no a with the property (t~<a>)lu =s , for unless this is possible we
can indefinitely paste invisible transitions to a given t which implies that ji^CS(u).U)(s) = 1 and we
are then done since

D<=MS(u).U)(s) = 2A

by definition. Thus with this special t we must have by the definition of refusals for projection

((DnBs)\jFyjC)e MS(u).U)(s)

where C e [irU(s) is arbitrary. Choosing F = 0 and C = ((A \BS) nD) we obtain

(DnBs)\jF\jC=D

which proves that D e MS(u).U)(s).

We now prove the reverse relations given that ue[X.U] . Let lirf(5(u).{7XO = *• Then bearing in
mind the assumption that U behaves deterministically two possibilities exist:

(i) The process S(u) has an infinite trajectory transparent to Uls . But this implies that for some
q e trX with qiv = s , Xlq has an infinite trajectory transparent to Uls . This implies that
\idQC.U)(s) = 1 and if u e \X.U] then u <X.U so that ^(X.C/)(j) < \idu(s) and therefore
u.du(j)=l.

(ii) For some t e trS(u) with tlt/=s , u^5(u)(r) = 1 . Then either \idu(tiv) - 1 , in which
case we are done , or \LdX(t) = 1 which implies by condition (2) for divergence in projection that
\id(X.U)(s) = 1 . Again u e \X.U] implies the result

We now prove the reverse result for refusals. Let D € M^(u).U)(s) then there either exists t e trS(u)
with tiy = s andB s \irS(u) where (t"<a>)lu =s => a € B such that

£> =S^jC

for some Ce\irU(s) ; or MS(u).U)(s) = 1 . If the latter is valid then by the previous result
\idu(s)= 1 and therefore D e \iru(s) = 2A . Therefore we assume the existence of t with the alleged
properties . Then by definition of S(u) the set B is given by

B = (KnBs)\^jF

for some K 6 [iru(s) and F e |irX(0 where , as before , Bs is the next event transition set of Uls .
First observe that

29

F\jCeMX.U)(s)

by definitions of F and C . In order to justify this observation we need to show that for the t above
(r<a>)iu =s where t"<a>e trX implies that a eF. But by the property of t established above
a eB and by the definition ofB above we must have a € F since a cannot be a member ofBs (recall
<a>iuis = < >)• Therefore it remains to show that

(KnBs)[j(F\<jC)&\iru(s)

given that u s [X.U] and it behaves deterministically. Recall that for deterministically behaving signals
there is a single maximal refusal and therefore refusals are closed under union operation. But
K€ \irU(s) and therefore KnBs e \iru(s) since the KnBs is a subset of K . Also (F\jC)<= \iru(s)
by the assumption ue[X.U] and thus the result follows by the closure property of union as stated
above.

Proofs of (2.17), (2.18) and the rest are omitted .

Proof of Theorem 3.1

The proof in one direction is trivial since the response function is continuous and has the lub property.
Therefore it remains to prove the existence of a realization for the given response function.

We construct a pre-state function S(u) , defined on [V] , taking values in \V®Y] , by using induction
on its domain. The state process X is then defined as the limit S(V^n) as n -> oo .

We construct 5 on each finite trajectory on [V] by using induction on the length of the trajectory
and use the lub property of G for the extension to arbitrary processes on Vtn . We use the notation
' < ' for the order on traces 13 whereas '<' is used for the partial order on processes .

We start by defining S on the trajectory of length zero , namely the null process HALT in IV] as

tr(S(HALT)) := trG(HALT)
\iS(HALT)(s) := (y.U(o),vlG (HALT)(s))

Now set the induction hypotheses as follows

(1) (Input Projection) : S(u).U = u

(2) (Output Projection): S(u).Y = G(u)

(3) (Continuity) : u < u => 5(u).< S(u)

(4) (Consistency) : u<u =s» S(u) <SD(u) where D = (uS(u)J) and ifp e trSD(u) then there exists
p' e trS(u) such that

p =p,A w
piu =p/lt/*w

We shall prove these hypotheses for all u e [V], Initially we prove this for trajectories in [V] using
induction on the length . We assume that the hypotheses (l)-(4) hold for all trajectories u of length
n-1 in the projected domain [V] and prove their validity for trajectories of length n. It can be verified
using the construct for S on the null input above that (l)-(4) are valid when n = 0 .

Let s~<a> be the maximal trace of the trajectory u and let u' denote the trajectory of length n-1 with

the maximal trace s .

13 S < t means J is a prefix of t

30

Let Ru denote the set of all triples (r,q,p) that satisfy :

r € trG(u)

q <>r iqetrGQi*) (A6)
p € fr5 (u0 ; piY = q

and define the prefix closed set p« (r ,<? ,p) for each (r,qj>)eRu as

Pu(r,q4>) :=(zeA' \ z £ p~w*<a>~z \ ply ~w = s \ q~z = r) (AT)

and let

Pu := VJ Pu(r4J>) (A8>

where /?u is any subset of Ru which satisfies the condition

[r e trG(u) ; r $ trG(u1)} => (r,qj>)e Ru for some feasible q,p (A9)

We define the pre-state function on u by defining its traces as below

trS(u):=pu {jtrSfr') (A10>

Observe that the choice of Ru is left arbitrary except for the condition (A9) . For example the set Ru
satifies (A9) and therefore can be taken as a possible Ru 14 .

We claim that with the extension of 5 given by (AlO) the induction hypotheses (1) to (4) above hold

for n . The proof of hypothesis (3) is obvious by the definition (AlO). We prove the remaining below.
Throughout we shall use the assumption that the input and output signals are event decoupled (ed).

(1) Let f'e tr(S(u).U) , then there is t e trS(u) such that t' - tiv. If t e S(u") we are done by
hypothesis (1) since

t'=tluttru' <^tr(u)

Otherwise t e pu(r,q,p) for some (r,qj>)eRu. Therefore t < p~w~<a>~z and by definitions (A6)
and (A7) using the ed assumption

tiy < s"<a>

and therefore t'e tru .

Conversely let t € tru .Utetru' we are done by hypothesis (1) and (3) since

t etr(S(u%U)^tr(S(u).U)

Otherwise t = s"<a> . Let r e trG(u) and r $ trG(u*) then by definition of choice of Ru constrained
by (A9) there exists (rj),q) that satisfies (A6). The fact that suchp and q exist is guaranteed by induc
tion hypotheses (1) and (2). Construct the trace v as

v := p~w"<a>*z

where w is defined to complement piu to s as in (A7) and x satisfies q~z = r . We have
v € pu(r,q4>) and therefore v e trS(u) by (AlO) and the fact that (r,qj>)eRu . Therefore since

vi>u = plu~w~<a> = s~<a> = t

that follows from ed assumption we have t = viy e tr(S(u).U).

14 Different choices of R(u) lead to different buffering strategies . Avoidance of nondeterministic behaviour is also
related to this choice (see the main text and the proof of Theorem 3.2 for details).

-31-

(2) Let t'e tr(S(u).Y) then for some t e trS(u) , t'=tiY . If t € S(u') then we are done by hypothesis
(2) since

t'=tlYe rrG 00 £ trG(u)

using the continuity of G. Otherwise t e pu and for some (r,q#)eRu we have t &\%(r,qp). Hence
t < pV<a>*t and tiY < q~z = r by definitions (A6) and (A7) and therefore t'etrG(u). This
proves that S(u).Y <G(u) .

Conversely let r s trG(u). ltretrG(ur) we are done by induction hypothesis , else r <$ trG(u*) and
by using the fact that (r,qj>)zRu for some q and p by constraint (A9) - again existence of such q
and p are guaranteed by the induction hypothesis - we utilize the same construction of v as in the proof
of (1) above and show that r e tr(S(u).Y).

(4) Let ve trS(u) then by induction hypothesis (3) v€ trS(u) . But by construction of S(u) , viv e tru
and so by definition v e trSD (u).

Let p 6 frSfl(«) then by definition ofD , p e trS(u) and piy e fru e;r«. Ifp € trS(u") we are done
by induction hypothesis since then p e Sd<(k) where £>' := (uS(u*)J) . Otherwise unless u=u which
is a trivial case p < p"w by (A7) where pe rrSOO- If u = u' we are done , else apply the induction
hypothesis (4) to p usingD' as above and the result follows.

We have proved by induction that (1) to (4) are valid for all n . Now for any v€ [VTn] we can write

where each T is a trajectory . Define

S(v) =S(JlJT) '.= }jkT)
which defines S on [Vtn]. It is straightforward to show that hypotheses (l)-(4) apply to this extended
domain [Vtn] by using the lub property of the G function . We define S(v) for arbitrary v as the
chain limit of 5(vTn) and choose X := S(V).

We next prove that hypothesis (2) holds when S is replaced by SD where D := (UX J) • We use
hypothesis (4) in the limit case to prove this. By (4) we have for any v € [V] , S(v) < SD (v), therefore
it is sufficient to show that

SD(v).Y <5(v).7

Let s e tr(SD(v).Y) then there exists t e trSD(v) such that tiY = s .Using (4) there exists p e tr(S(v))
such that t - p*w and tly = pivMw. But this implies that all the transitions in w are input ones by ed
assumption and tiY = plY = s and we are done.

Finally applying (1) in the limit we have S(V).U = X.U = V .

Proof of Theorem 3.2

(=>) We show using the existence of R with the given properties that G satisfies the requirements
stated in the theorem . The fact that G behaves deterministically on T follows from conclusions (2) and
(3) of Theorem 3.2 . By the definition of a realization of G we have S(X.U) = 8V and
5(HR(v)) = 5G(v) for all v s [V] and hence using Fact 2.5 and the definition of SG ,5/? is a realiza
tion of 5G. Therefore by (3.2) SG must be continuous and must satisfy the lub property.

We show that G is stable relative to (T,G(V)) by contradiction. First suppose that G is not bounded
from above. Then there is a trajectory ve V8 and integer n such that the signal G(vTn) has traces of

32

unbounded length. More precisely there exist an infinite sequence of traces {$} such that for all
integers i :

Sietr(G(vTn))

#*,- >i

But since by hypothesis

G(vTn) = HR(vU) = SR(vU).Y

there exists another infinite sequence of traces (r,-} such that

tietr(SR(vtn))
Mi >i

tiiY =Si

tiiu e fr(vTn)

On the other hand the signal vtn has finite number of traces and hence there is a subsequence [tk.)

and a trace ze tr(vtn) such that

tk.}u =*

for all i. But this implies that15

MX.U)(z) = 1

which clearly contradicts the conclusion (1) that X.U = V since V is assumed to behave deterministi
cally.

The proof that G must be bounded from below follows similar arguments , therefore it suffices to sum
marize an oudine. Assume that it is not bounded from below then there exists in G(V) a y e Y8 , an
integer n and v eV8 such that v has unbounded traces where

G(v) = yTn

We can take v to be an infinite trajectory without loss of generality using the construction given by the
proof of Lemma 2.1 . By hypothesis G(v)= SR(v).Y and therefore there exists infinite sequence of
traces Si of v and another sequence f,- of SR(v) that satisfy similar requirements to the previous case .
This argument similarly leads to. the conclusion that for some ze trY the process SR(v).Y diverges at
trace z , in other words

\idHR(v)(z)=l

which violates the condition that Hr(v)e Y8 for v 6 V8 n T . This completes the argument that G is
stable .

(<0 We use the construction given in the proof of Theorem 3.1 for a deterministic realization of 5G
with domain 5V. Let R := (SUXfiY) denote the deterministic realization of SG constructed according
to the proof of Theorem 3.1 then we choose i? = (UX,Y) as the nondeterministic image of R , namely
R :=t\R = (Uj\X,Y) . Considering the reverse inequalities that follow from (2.20) we have to show

under the hypotheses on G that:

T\(X.bU)<X.U

15 For a construction of an infinite hidden trajectory seethe statement and proof of Lemma 2.1 above.

-33

and

t\(Hr(5v))<Hr(v)

whenever v is a trajectory for the latter inequality . In other words it is enough to show that X.U
behaves deterministically and HR behaves deterministically on V8 n T . We do this in two steps . In
the first step we show that the refusals behave deterministically. By this we mean that at any stage the
refusal sets cannot contain events that can generate transitions. In the second step we show that the
processes in question do not diverge .

Before proceeding with the details of the proof we first make explicit our choice of buffering for the
specific realization we use for the proof. We choose Ru =RU , i.e., the realization that corresponds to
infinite buffering in using the procedure of Theorem 3.1 to synthesize 8G . Note that under this choice
hypothesis (4) for u - V in the proof of Theorem 3.1 can be replaced by the equality SD(u) = S(u) ,
namely the pre-state function coincides with the actual state function.

Now let s e tr(X.U). We demonstrate that any event a such that <a> belongs to tr(X.U)ls can
not belong to any of the refusal sets in jj.r(X.&OCO- Noting thatX is a process that behaves determinist
ically (X := t\X) it is enough to prove the following statement:

Suppose that s*<a>e tr(X.U) then for each t e trX such that tiv - s there exists t * t'etrX
such that

(t * t*)iu = s * <a>

Let u denote the input trajectory with the maximal trace s"<a> and let y:=tiY. By definition
t e ^(uO and by hypothesis (4) in the proof of Theorem 3.1 under infinite buffering t e trffiu')) »
where u' denotes the input trajectory with the maximal trace s . It also follows that y-tiYetrG(ut).
Now let r be any trace of G(u) such that y is a prefix of r. Then Ru =/?„ by the infinite buffer selec
tion as stated above and we have (r,y,t)eRu . Therefore t'< >~<a>ze trS(u) by definition (A9) and
(AlO) where yM z-r and the result follows with /' := <a>

Next we prove that for each trajectory v € V5 , refusals of HR(v) behave deterministically . In other
words we show that if <a> belongs to tr(HR(v)/s) then a cannot be a member of any refusal set in
)ir(//rt(v))CO. We prove this by using induction on the length of the input trace v. When v is of
length zero result follows trivially by definition of S(HALT) in the proof of Theorem 3.1 . Assume it
holds for n = #5 where s~<a> denotes the maximal trace of trajectory v. It suffices to prove the fol
lowing statement also using the fact that SR(u) behaves deterministically by (2.20).

Suppose that q~e trHR(v) then for each tetrSR(v) such that tiY-q there exists
t At'e trSR(v) such that

(t "O^r = <? * <&>

Since t e trSR(v) - trS(v) it can be written as

t < p " w <a> " r

where p e trSiy') , plY "r = q and piv *w = s and v' is the trajectory with the maximal trace s .
But q~e trG(v) is given , hence by definition

(q*,plY,p)eRv = Rv

since piY is a prefix of q and p e trS(v 0 . This implies that

t < p " w " <a>~ r ~ € trS(v) = trSR (v)

34

and construction of t' is obvious.

Finally we show that X.U and HR(v) both do not diverge , the latter evaluated at any ve V8 n T. We
prove this by contradiction for each case.

Suppose X.U diverges at s then since X behaves deterministically by definition there exists q e trX
such that qi(/ = s and Xlq has infinitely many traces with null projection on Uls. But this violates
the condition that G is bounded from above on T since for v = u where u is the deterministic behav

ing trajectory with the maximal trace s , G(u)-HR(u) = SR(u).Y has traces of unbounded length by
the event decoupling assumption and the fact thatX e[U®Y] .

Now assume that HR (v) diverges at some s for some veV8 nT. Then because SR (v) behaves deter
ministically we have for some q e trSR(v) such that qiY - s , Sr(v)/q has infinitely many traces that
have null projections on Yls. But this violates the condition that G is bounded from below on G(V) by
taking y as the trajectory with the maximal trace s , since projecting the unbounded traces on SR(v)lq
on Ul(qiv) we again get unbounded set of traces on the input vl(qiv) by the event decoupling
assumption on the input and output transitions. This completes the proof of Theorem 3.2 .

Proof of Fact 3.1

Proof of (1) is trivial. To prove (2) we shall be content with proving that if R is not strongly nondeter
ministically equivalent to R then they cannot be bisimulation equivalent. The remaining details are rou
tine.

We assume without loss of generality that R and R are strongly equivalent, otherwise condition (1) of
bisimulation is violated by choosing a trace in X.(U®Y) which is not in X.(U®Y) and we are done.
Then there are two ways in which strong nondeterministic equivalence can be violated as explained
below (each process is assumed to be replaced by its image under T| below without a change in the
notation) .

" (1) For some s , M^.(U®Y))(s) = 1 whereas MXW®Y))(s) = 0. Then since U , X and Y
are assumed to behave deterministically there exist tetrX where tl(u<$Y) = s and Xlt has
infinitely many increasing traces tj invisible to (U®Y)/s . Now suppose that qj are the
corresponding increasing traces in X according to the definition of bisimulation. Then it must be

true that qji(u®Y) = s for all j and #(fy) must be unbounded by conditions (1) and (2) of
bisimulation . But this violates the hypothesis that the latter process is non-divergent at s .

(2) For some s , B e \jtQC.(U®Y))(s) whereas B $ M^-(U®Y))(s) . We can assume , without
loss of generality , both processes to be nondivergent at s by using (1) above . Then there exists

t e trX such that tl(u®Y) = s and t~r*<a> $ trX for all a e B and all r where (t'r)i^U9Y) = s .
On the other hand for all p e trX such that pi«/en = s there exists at least one event be B such
that p~q~e trX for some q with the property (p~q)i(t/®Y) = s . We claim that R/t cannot
be bisimulation equivalent to Rip for any choice of p above . We demonstrate this by choosing
the trace q'e XIp . Clearly Xlt cannot have a corresponding trace satisfying condition (1) of

bisimulation because of the above property of t .

REFERENCES

[1] K. Inan " Asynchronous Dynamical Systems I", ERL Mem. No. UCB/ERL M89/59 , 17 May 1989

-35

[2] K. Inan , P. Varaiya , " Finitely Recursive Process Models for Discrete Event Systems " , IEEE
Trans. Automat. Contr. , vol.AC-33, No.7, pp. 626-639 , July 1988.

[3] K. Inan , P. Varaiya , "Algebras of Discrete Event Models " , IEEE Proc. vol.77 , No.l , pp. 24-38 ,
Jan. 1989 .

[4] C.A.R. Hoare , Communicating Sequential Processes , Herts, England: Prentice-Hall International,

1985.

[5] R. Milner , " Lectures on a Calculus for Communicating Systems " , in Control Flow and Data
Flow: Concepts of Distributed Programming , (M. Broy ed.) , NATO ASI Series F : Vol. 14 Springer
Verlag , 1985 , pp. 205-228 .

[6] P. De Nicola , M. Hennessy , "Testing Equivalences for Processes ", Theoretical Computer Science
34 (1984) , pp. 83-133 .

[7] J.B. Dennis , "The Scenario Theory for Non-Determinate Computation" , in Control Flow and Data
Flow: Concepts of Distributed Programming ,(M. Broy ed.) , NATO ASI Series F : Vol. 14 Springer
Verlag , 1985 , pp. 382-398 .

36-

Figure Captions

Figure 2.1 Example for nondeterministic behaviour

Figure 2.2 Reduced job-shop example for a nondeterministic ADS

Figure 3.1 Input and output spaces for the realization example

Figure 3.2 Unbuffered and buffered realizations

Figure 3.3 Example for complexity index

Figure 3.4 Input and output spaces for the nondeterministic realization example

Figure 3.5 Nondeterministically behaving realizations

Figure 3.6 A deterministically behaving realization

Figure 3.7 Example for different equivalence relations on ADS

Input U

n

Input U

[{} ; 0]

State X

Figure 2.1

n

1) [{a} ; 0]

Figure 2.2 (a) & (b)

Output Y

Output Y

o

0,0]

n

Input Signal u

1

[0,0]

(0J [{n},0]

Input Signal u

n

[0,0]

F*,m.J]_ J '7*"""

[{a},0]

A

State Signal S(u)

-4 2

[0,0]

(c)

n

(V)—,5ft—v]y
Ka},0] [0.0]

Output Signal H(ul

[{n},01 [{a,n} ; 0]

[{a}.l]

State Signal S(u) Output Signal H(u)

(d)

Figure2.2(c) & (d)

0

Input U=V

(a)

(f\ Vmb a Tv-^-<2

Figure 3.1

Realization X

(a)

Realization X

(b)

Figure 3.2

Figure 3.3

(b)
Output Y

n

Input U

(a)

(a)

Effective Input V

(b)

Figure 3.4

Figure 3.5

Output Y

(C)

Realization 2

(b)

Deterministically Behaving Realization

Figure 3.6

Output Y

Figure 3.7

	Copyright notice1989
	ERL-89-77

