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Abstract

The ability to rapidly implement VLSI custom processor based systems
is limited by the tools that can map high level language expressions into
microcode for the new architectures. Past efforts have used dedicated code

generators or simplified control structures not requiring code generators.
A bottom up design approach has been used to develop a prototype self
retargeting microcode generator for the Lager Silicon Assembly System. A
graph tracing algorithm was developed and implemented as the basis of the
code generator. By making use of structural information normally supplied
for layout generation, the algorithm can map C language statements to a
variety of architectures. The prototype code generator has been tested on
parts of a multiprocessor fingerprint filtering system. Results show that the
approach is feasible, but improvements are needed. The report discusses the
design condsiderations and development of the prototype code generator.
A tutorial example for the prototype microcode generator is presented in
this report.
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Chapter 1

Introduction

A design of a filter for a fingerprint recognition system has shown that a custom

multiprocessor architecture can provide a compact high throughput system that will process

an image in about 10 seconds [1]. Using multiple Kappa processors from the Lager system

[2], an optimistic estimate is about 25 seconds. On a VAX 8650, it takes 5 minutes [3]. The
amount of speedup attained in this case is directly related to the amount of customization.

Custom designs can provide higher performance, but the increase in performance is gained

at the cost of increased design time and increased processor complexity.

The Lager IV Silicon Assembly system provides support for the development of

complex integrated circuits. It is oriented towards structural compilation from hardware

descriptions and currently provides support for a single processor architecture that can be

slightlyaltered. The user pays a costfor making changes: the hardware description and the

architecture descriptions necessary for both the compiler and microcode generator must be

modified and then verified. In order to explore an entirely new architecture, the user must

create several new description files and debug them before they will be useful for processor

design.

1.1 Goals and Objectives

The problem examined in this research project was the generation of microcode

for custom micro-programmed processors. This research was motivated by the implementa

tion of a multiprocessor fingerprint filter system. The design of the processors had already

been completed [1], but since each processor used a new architecture, none of the existing



Lager tools could generate the microcode. Thus the objective of this research was to pro

vide a means of mapping microcode descriptions to a class of architectures. Inherent in

this objective was the desire to minimize the cost of retargeting the microcode generator

when switching from architecture to architecture, allowing designers more freedom in their

implementations without forcing them to use an existing target architecture or to rewrite

existing tools.

The goal of this project was to create a prototype microcode generator that could

retarget itself usinginformationfoundin the design database. The designer wouldonly have

to specify the structure of the processor and provide a microprogram description. To aid

the designer in microprogram verification, a simulator should be provided for microprogram

descriptions. Finally, the prototype microcode generator should be able to generate the

microcode for the 3 processors in the fingerprint filtering system.

1.2 Outline

This report consists of 6 chapters. Chapter 2 reviews concepts about retargetable

microcode generators and their relation to silicon compilers. In Chapter 3, the basic

approach to the problem is outlined. Some details of the implementation for the microcode

generator developed in this project are discussed in chapter 4. Chapter 5 gives a tutorial

example of using the microcode generator. The report concludes with a discussion of the

results in chapter 6.



Chapter 2

Basic Concepts for Microcode

Generation.

2.1 An Overview of Microcode Generation.

A basic code generator like the one shown in Fig. 2.1 translates an input description

to binary machine code using information about the processor architecture. The architec

tural information includes the timing schemes used in the processor, the type of registers

available, information about the controller, and the instruction set.

Software programmable processors use code generators that are optimized for a

given target architecture. An example is the code generator in the Intel ASM86 assembler,

which was written specifically to handle the peculiarities of the 8086 microprocessor [4].
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Figure 2.1: A Basic code generator,



The fixed architecture of a general purpose processor allows software developers to apply

estabUshed techniques for code generators used in assemblers and compilers. Heuristic

approaches must be used for code generation because the complexity for generating optimal

code is not known [5]. The appropriate code generation techniques for a given architecture

are determined by the target machine and the instruction set.

ASIC designs encourage the development of new architectures that handle com

putations for algorithms in a dedicated and efficient manner. Since a code generator is a

function of the instruction set and the target machine, the best code generator for an ASIC

processor is an application specific one. Development of specialized code generators for

every new ASIC would be costly, so a more generalized code generator is desired.

A solution is to develop a retargetable code generator which can generate mi

crocode for many different target processors. Retargeting is performed by providing infor

mation about the new target machine. Generalized code generation techniques are applied

which can lead to suboptimal code. Although the code is suboptimal, the gain in develop

ment time is substantial. Thus retargetable code generators provide the more generalized

framework for ASIC processor design.

2.2 Instruction Sets and Code Generation.

The information necessary for code generation consists of the processor instruction

set and the collection of binary control words defined by a hardware implementation of the

instruction set. These 2 sets of information can be summarized in a behavioral description.

Mueller has pointed out 2 approaches for expressing instruction sets [6]. One method is

based on grammar descriptions while the other is based on data flow graphs.

In the grammar method, a set of micro-operations is defined. These micro-

operations are combined into lists to form instructions. The legal combinations of micro-

operations are defined by a grammar, much Uke the way that English grammar provides

rules for combining words into sentences. Micro-operations are usually defined as mnemonic

strings. During code generation, control words are assembled by translating the mnemonic

strings to their binary equivalent.

In the data flow method, instructions are expressed in terms of data flow graphs.

Each node in the graph represents a micro-operation, while each edge represents data flowing

from one node to the next. A collection of nodes and edges forms an equivalent data flow
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Figure 2.2: Using data flow graphs to describe an add instruction.

graph representing an instruction. Fig. 2.2 iUustrates an example of assembUng some nodes

and edges to create an instruction representation. Since the instruction is represented in

graphical form, an algorithm is needed to translate graphs to binary control words.

The data flow method provides a more generaUzed framework from which to build

a retargetable codegenerator. With a data flow approach, an annotated graph of data flow

in an architecture can be used to cleanly and uniquely describe instructions. The data flow

approach has the advantage that more information can be stored in a graph then in a list

of micro-operations. The arrangement of micro-operation nodes in the graph can reflect

actual features in an architecture.

2.3 Silicon Compilation and Code Generation.

Retargetable code generators can be used in silicon compilers. For a given sihcon

compiler, various approaches give different results. No single approach seems to suit all the

needs of the different code generation environments.

There are 2 types of sihcon compilers. One type (structural compiler) uses struc-



tural descriptions to generate a layout. The Lager System is an example of this type [13].

The second type (behavioral compiler) uses behavioral descriptions to synthesize the neces

sary hardware descriptions from information found in leafcellUbraries [7] [8] [9] [10]. There

is some control over the decisions made at each level of synthesis, but not as much as with

the structural compiler, which allows fuU specification of the design at all steps.

The behavioral sihcon compiler usuaUy includes powerful synthesis tools that can

essentially define the instruction set and account for other processor characteristics. Thus

the required code generator is a translator that matches mnemonics and substitutes binary

machine language code. The simpUcity of this type of code generator is gained at the cost

of developing complex synthesis tools which define the instruction set for the processor.

Two types of code generators can be developed for structural compilers. The first

type requires the human designer to provide a description of the instruction set. The code

generator uses this description to map the algorithm description onto the architecture. The

second type of code generator uses the structural description and supplementary behavior

descriptions to deduce the instruction set and generate the microcode. In the first case,

a human must provide extra information in the form of an instruction set to retarget the

generator, but in the second case, the generator deduces the instruction set.

2.4 Microcode Generation and The Lager System.

2.4.1 Past Microcode Generation Work in the Lager System.

The Lager I system was targeted to a single processor architecture [11] [12] for

which a dedicated assembler and assembly language simulator were developed. A predefined

and Umited instruction set Umited the scope of the problem so that an effective solution

was obtained.

The Lager III system [13] provided a structural description language that could

be used to describe general hardware configurations. A datapath compiler provided the

potential for a user to explore and rapidly prototype new datapath designs [14].

The Lager III system supported the Kappa architecture [2]. The assembler for

this architecture, rassCG, translated a grammar description of an instruction into the cor

responding machine language. A compiler was also developed that could take a high level

program description in a C like language and compile it into the input for rassCG [15].
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Simulation of processor designs was performed using a simulator called DSIM, which was

based on LISP submodules and was slow.

Lager IV is an enhanced version of Lager III. It is implemented in the C program

ming language and uses the OCT database to store information. Lager IV uses a modified

version of the Lager III microcode generator.

2.4.2 Background on Lager IV and the OCT database.

Before discussing the approach, it is necessary to review some of the basic concepts

of the Lager IV system. The review presented here is Umited. More information can be

found in the Lager IV User's Manual and the OCT Tools Distribution Manual.

Lager IV.

Lager IV is a system used to perform the layout for ASIC designs. The user writes

a structural description language (sdl) file describing the hardware configuration of the

design. The sdl files can be written hierarchically. Directives in the sdl files dictate which

layout generation tools wiU be used at each level of the hierarchy. The layout generation

tools include a module generator, a place and route tool, and a datapath compiler. Designs

can be parameterized to increase flexibUity.

Fig. 2.3 shows the layout processwhich is directed by the DesignManager, the user

interface for Lager IV. During the layout generation process, the Design Manager creates

the structure master view (smv), the structure instance view (siv), and the physical view

which are stored in the OCT database.

The OCT Database.

A description of the OCT database can be found in the OCT Tools Distribution

Manual [16], but a summary of OCT concepts is presented here to point out the more

important issues. The OCT view is the place where information is stored. The view is

accessed by opening a particular facet of the view. The siv and smv mentioned in the

last subsection are examples of views. Within the view, different types of objects are used

to construct a directed graph. OCT provides objects called NET, TERM (terminal), and

INSTANCE. By attaching TERMs to INSTANCES, NETs can then be used to connect

other INSTANCES through the terminals. Other OCT objects are BAGs and PROPs



•k

•k

Create

SMV
sdl files <

V

>f

Create

SIV

Layoutparameters i f f

>f

Generate

Layout

11

The Design Manager

Figure 2.3: Design process using Lager IV.

(properties). BAGs can be used to hold coUections of other OCT objects. A PROP can be

attached to OCT objects to describe a property associated with that object.

2.5 Summary

To reduce design time for ASIC processors, flexible and retargetable code gener

ators are needed. Within the Lager System, past efforts have focused on dedicated code

generators. Lager IV provides the environment for the development of retargetable code

generators. Since data is stored in graphical form using the OCT database, it is possible to

create a code generator using the graphical approach to describe the instruction set.



Chapter 3

Developing a Microcode

Generator for LagerlV.

3.1 Objectives for a Lager IV Assembler.

The objectives for this research were:

• To develop an assembler that would work for the fingerprint filter processors.

• To simplify the format of the architecture description file, or eUminate the need for

one.

• To simpUfy and generaUze the assembly language input.

• To provide a simulator for verification of the assembly language input.

• To provide a system that would help Lager IV users in developing new processor

architectures for other appUcations.

• To place emphasis on microcode generation, leaving other issues Uke code compaction

and optimization for future tools.

These objectives were developed from a study of the Lager III rassCG assembler.

The assembler required a register transfer language program, the equivalences between

register transfers and the actual microcode, and some additional information about timing.

The input file formats for rassCG are discussed in [13].

12
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3.2 Assumptions and Models for a Code Generator.

The goal of this project is not code optimization, but rather to focus on ways to

minimize the effort needed to specify the necessary architectural information to a retar

getable code generator.

In microcode and control hardware generation, previous researchers have focused

on finite state machine solutions and code optimization techniques [17]. The approach has

been to assume that the datapaths of a processor system were predefined. The task was

then to optimize the definition of control word structure with respect to speed or area

constraints, and then synthesize control hardware.

In this research, the datapaths were also assumed to be predefined. Additionally,

a target control unit was assumed. The approach was to try and extract the architectural

information from the smv design database and from some extra behavioral information and

use this as input to a retargetable code generator.

3.2.1 An Overview of the Approach to Code Generation.

The data flow method for expressing a processor instruction was adopted for this

microcode generator. The data flow method was introduced in section 2.2. Fig. 3.1 illus

trates the approach to microcode generation. The input instruction must clearly indicate

where the source operands and result are stored. The storage location of the result wiU

be referred to as the destination. By using the sources and destination as reference points,

a data flow graph of an instruction can be traced within the structure master view. This

information along with supplementary behavioral information can be used to translate the

instruction to microcode.

This scheme eUminates the need for the user to code the instruction set into

a database. The code generator verifies which instructions can be implemented on the

processor. The code generator can retarget itself, but the connectivity graph, in this case

the structure master view, must be specified in such a way that a connectivity search

wiU converge to the correct data flow graph that represents the current instruction. An

architecture model provides the necessary guideUnes.
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3.2.2 The Architecture Model.

An architecture model provides Umits that simphfy the solution to the problem.

The adopted model sufficiently describes the 3 fingerprint processors and most other pro

cessors that can be described in terms of blocks of combinational logic separated by latches

or registers.

An examplemodelarchitecture is iUustratedin Fig. 3.2. There is a singlecontroUer

and an arbitrary number of datapath blocks and memories. Each ceU in the datapath

must have a behavioral description that can uniquely identify the functions of the cell.

Additionally, datapath ceUs must have only one connected output terminal for data. The

last assumption is required by the algorithm used to map assembly language expressions to

microcode. The number of data input terminals on datapath ceUs has been Umited to 2 or

less.

The architecture model assumes that the processor can be described in terms

of datapaths implemented by the Lager IV program dpp, memory blocks like RAMs and

ROMs, and the controUer block. A system level description of the processor must contain

only references to sdl files describing blocks that fit in this Ust.

The model assumes two phase non overlapping clocks since the controUer model

uses this clocking scheme. The controUer model adopted for this project is based on the

controUer from the Lager Kappa processor, which is iUustrated in fig. 3.3. The spUt structure

allows control flow and data flow to proceed in parallel. Data operations are directed by the
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control store, while control flow is managed by the control finite state machine. The major

changes made to the Kappa controUer were the exclusion of the timer and loop counter.

Loop counting is assumed to take place on the datapath itself. This allows nesting of loops,

but also incurs a one cycle overhead that could be avoided by using the loop counter.

Previous use of the Lager Kappa architecture has shown the controUer to be ver

satile. It handles looping and jumping instructions efficiently. Conditional inputs to the

control finite state machine can be used for jumping or branching, but a one cycle delay

occurs between the time the signal is presented to the controUer and the time that the

control signals from the control store reflect the branch.

Since the controUer is partitioned into 2 parts, it is possible to create a single

controUer that oversees program execution spread across several datapaths. It is possible to

broadcast the control finite state machine status to several partitioned control store finite

state machines. In addition to increasing layout efficiency, the smaUer partitioned control

store finite state machines may be faster. This alternative has not been explored in this

project.
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3.2.3 Effects of Assuming an Architecture Model.

The restrictions provide some general design rules to foUow. The restrictions and

assumptions were imposed to insure that all processor instructions can be expressed in

terms of a data flow graph. PipeUning may seem difficult, but by foUowing the restrictions,

it is stiU possible to design pipeUned architectures. PipeUned instructions can bo expressed

if the data transfers between pipeUne latches are considered register transfers.

The choice of a single target controUer Umits the scope of the application. For

processors that only require simple control, this controller would be too large and too

complex. But for algorithms that containnumerous control flow operations, the controller

provides good support.

The architecture model does not address the issue of multiprocessor systems rhat

require communication between separate controUers. In order to design multiprocessor

systems, it may be necessary to alter or enhance the architecture model to provide for

interprocessor communication.

The architecture model also does not address input data streams. Since the finger

print appUcation stored data in memories, the algorithms were developed without, consid

ering streams. The introduction of some new control flow constructs in the input assembly

language would allow the model to handle streams.

3.3 A Behavioral Description.

In addition to the connectivity information available from the structure master

view, the binary control signals needed for the machine language instructions must be

stored on a ceU by ceU basis. The information about control signals and operations that

the ceU can perform can be stored in the OCT database for each coll in a separate view.

An experimental behavior view for the OCT database was developed for this application.

It is assumed that designers wiU make use of Ubrary leafcells, so behavior views should

be defined for each Ubrary ceU. Thus an sdl description should be sufficient to describe a

processor architecture because the behavior view can be obtained using the Ubrary.

A leafcell may be able to perform more than one operation. For instance, an

adder subtractor ceU can perform both addition and subtraction. The symbols "+" and "-*'

were used to describe the behavior. Within the behavior view for the cell, provisions were
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made to store these types of descriptions and the corresponding binary signals necessary to

execute the operation. Further details on the behavior view wiU be discussed in Chapter 4

as part of the details of the current implementation.

3.4 Summary

In this chapter, the main objectives and approach for a retargetable microcode

generator were presented. An architecture model was adopted to allow assumptions which

wiU simpUfy the implementation. WhUe the restrictions seem cumbersome, they do allow

the processor instructions to be defined in terms of data flow graphs. These data flow

descriptions can be extracted from the information found in the structure master and the

behavior views. A code generator based on this approach can retarget itself every time a

new algorithm is mapped to a new processor architecture specified by a structure master

view, provided that the corresponding behavioral views already exist in the Ubrary.



Chapter 4

Implementation Details of the

Microcode Generator.

4.1 Overview.

The microcode generator was written and developed in the C programming lan

guage. The microcode generator is made up of a parsing unit and a mapping unit as shown

in fig. 4.1. A C Uke language was chosen for the input program description. The sdl/bdl

description shown in the figure can be accessed through the structure master view. The

output of the assembler consists of various parameters needed by the Lager system to create

the structure instance view from the structure master view. Among the output parameters

are the logic tables for the finite state machines of the controUer, which are written in a

format accepted by the program espresso [16]. The Lager tools can use espresso to minimize

these tables.

The code generation flow diagram is shown in fig. 4.2. The input program is first

processed by the parsing unit, which creates a Ust of aU the data manipulation statements

and a Ust of all the control flow statements. The control flow statements are then mapped to

the format required by the control finite state machine and are written out to a file. Next,

the Ust of data manipulation statements is passed to the mapper unit, where each statement

is processed. The mapper unit makes use of information from the behavioral view and the

structure master view to map the statement to the machine language equivalent. When all

the statements are correctly mapped, a file with the control store logic tables is written.

19
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Figure 4.1: Basic diagram of the microcode generator.

The discussion of the microcode generator wiU be divided into 2 sections, one

focusing on the parsing unit, and the other focusing on the mapping unit.

4.2 The Parsing Unit.

The parsing unit processes the input program, spUttingit into 2 Usts. The language

is a subset of C with a few added constructs. C was chosen for its structured programming

and the fact that it was originaUy developed as a portable language. In addition, C com-

patibiUty would aUow the input code for the microcode generator to be compiled using the

standard C compiler, making a microcode simulator unnecessary. Code could be written,

developed, and verified in C.

4.2.1 The Input Program Model.

The input program must foUow a general model which wiU guide the parser in

recognizing program features in the program. The program model is iUustrated in fig. 4.3

using a contrived program. In the declaration section, the variables are assigned types.
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Program Declarations

Block #1 of Code

Control Flow Statement

Block #2 of Code

Block #3 of Code

define IMGSIZ 512

int ddiradr.dmem;

flag signADDER;

mainO{

yWndwoO,;

xWndw = 0;;

while (yWndw 1° IMGSIZ) {

nWndw = MAXSMOSEZ;;

sideWndw = nWndw/2;;

xStart = xWndw

xWndw = l;;

yWndw = l;:

99

Figure 4.3: Example of the program model.

They are also paired with the names used for a memory or register in the structure master

view where they wiU be stored. The exact syntax is given in Appendix A. The program

model forces the user to bind the symboUc variables to the actual memory resources in

the processor. The model also assumes that all variables are global. The program body

foUowing the declaration section is written in C. The body of the program is made up of

blocks of sequential statements separated by control flow statements Uke while, do, or if.

4.2.2 Details About the Parsing Unit.

The parser was developed using the Unix faciUties Lex and Yacc. Lex is used to

specify a lexical analyzer and Yacc allows the user to specify rules by which tokens passed

from the lexical analyzer can be recognized. Yacc accepts specifications that are based

on LALR grammars with disambiguating rules. Together they can be used to generate a
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procedure that wiU handle the input of a program from a text file.

The lex specification used in this project contained definitions for recognizing

keywords. Some of the keywords were from C, whUe others were defined to aid recognition

of special constructs. For instance, the keyword nop was added so that the microcode

generator would recognize a statement for no operation.

The yacc description contained rules for controUing the parsing and recognizing

the structure of single C statements. The parser was designed to parse a single statement

at a time, then to process it, and then to go to the next statement.

The parser recognizes 2 consecutive semicolons as the end of a processor cycle.

Consider the foUowing statement:

z = x + y;

a = &;;

In standard C, this would be interpreted as 2 consecutive sequential statements: the double

semicolon does not affect the operation. It merely impUes that after the second statement,

there is an empty statement. In contrast, the parser interprets the code to mean that 2

statements wiU be executed simultaneously.

To create the control flow graph, the parsing unit reads each Une and determines

whether it is a control flow statement or a data manipulation statement. Consecutive data

manipulation statements form a block, which is assigned a number. When a control flow

statement is encountered, the previous block of statements is considered closed. The next

data manipulation statement starts a new block, which is assigned the next consecutive

number. The parsing unit keeps track of which blocks to jump to and the conditions for

jumping when the end of a block is encountered. This Ust of jumps and conditions for

jumping constitutes the control flow graph. A simple interface module was written to

translate this Ust to a finite state machine description.

When processing the data manipulation statements, the parser creates a parse

tree of the statement. Fig. 4.4 shows how the parser assembles the parse trees into a larger

structure. Parse trees belonging to the same machine cycle are Unked together in a Unked

Ust. The Unked Ust is then attached to a cycle node. Cycles are Unked to form blocks. The

final Ust is sent to the mapper unit.
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Figure 4.4: Data structure used in the parser.

4.3 The Mapping Unit.

The mapping unit deduces the controlsignals necessaryfor a register transfer given

the structure master view of a processor. The mapping unit consists of the mapper module,

the initiaUzer module, and some interface modules. The initiaUzer module determines the

most general configuration for the processor control word. The interface modules translate

the Ust of control words produced by the mapper to finite state machine tables.

4.3.1 Description and Theory of the Mapping Algorithm.

Three terms wiU be defined to avoid confusion in the ensuing discussion. Data

flow wiU be used to refer to the classical data flow paradigm, which uses data flow graphs to

represent algorithms. The term data path wiU refer to the actual physical path that data

travels through when a register transfer occurs. Datapath, a single word, wiU refer to the

hardware for evaluating arithmetic and logic operations in a processor.

The datapaths in a system are representative of data flow graphs. The legal data
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flow can be configured by applying different combinations of control signals. During a given

machine cycle, the datapath for a synchronous machine is analogous to a partitioned section

excised from a larger data flow graph. Within the data flow graph, each hardware cell is

represented by a node, while the edges entering and exiting the node represent the data

or signals entering or leaving a ceU. The firing of a node is accompUshed by applying the

correct control signals during a given machine cycle. With this interpretation, the data flow

graph for one machine cycle can be described as a series of data transfers from edge to edge.

To Ulustrate this concept, a sample datapath is shown in Fig. 4.5. A data flow

graph of a possible instruction is also shown in the figure. The 5 nodes in the graph are 2

multiplexers, an adder, a shifter, and a node that can supply the constant 2. A one to one

mapping from the data flow graph to the datapath can be found. Using the table of control

signals for the datapath blocks, wecan determine the set of control signals that will achieve

the operation described in the data flow graph.

A mapping algorithm was developed to perform the mapping of register transfers

as described in the last paragraph. In a given transfer, it is assumed that aU data flows

together to a single destination. Althoughseveral registers mayserveas sources for the data,

the final result must appear in a single register or memory location. With this assumption,

a backward search starting at the destination wiU locate the correct path in which data

must flow. This is why the architecture model must assume that aU blocks have a single

output terminal.

A depth first search was adopted for this algorithm. A depth first search returns

the first solution it encounters, whichmay not be the optimal solution. Due to the nature of

the problem, a register transfer usually only has a single mapping on a custom architecture

so the the search should converge to the optimal solution.

This backward search wiU proceed through aU the datapath ceUs, without regard

to the function of the ceU. The correct backward search termination condition occurs

whenever a source operand register or memory is encountered. Since the search can only

estabUsh the path for data flow, a forward trace is needed to allow checkingof the datapath

ceU functions. During the forward trace, the control signals for the register transfer are

estabUshed by examining the behavior view.

The algorithm is organized in a sequential manner. The backward search proceeds

by examining one sourceoperand at a time. Once a source operand is matched, the forward
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trace begins and continues until a cell with 2 inputs is encountered. At this point the

backward search for a second operand ensues. Thus, the backward search and forward

trace are interleaved. This interleaving requires that specific conditions to be defined for

handling the failure of either forwardor backward searches. These rules guide the algorithm

so that it converges. Success of the algorithm occurs if the forward trace reaches the root

node of the backward search and no source operands remain. At the conclusion of the

algorithm, the necessary control word has been created.

4.3.2 The Implementation of the Mapper Module.

The actual implementation makes use of a stack, which is necessary to maintain the

state of the search. Information about all cells previously visited in the current backward

search must be in the stack, as well as indicators of the cells remaining to be searched.

A stack allows a non recursive implementation that was easier to debug and required less

memory.

The backward search of signal flow in the structure master view takes place by

following the nets connecting terminals on cell blocks. For cells Unked by nets within the

same facet, this involves getting a terminal, then getting a net, and then locating a new

terminal on the net which is connected to the next subcell. The search only proceeds along

terminals that have been declared with the TERMTYPE property DATAJSIGNAL. The

DIRECTION property of the terminals is examined to insure that the trace proceeds from

the input terminal of the current cell to the output terminal of the new cell. However, if the

trace involves cells on 2 different levels of the hierarchy, then several nets and the formal

terminals of the instances are involved. Separate net tracing algorithms must be applied.

The backward search establishes the input terminal and the output terminal neces

sary for data transfer to occur through the node. This is part of the information stored in the

stack during the search. The search makes use of the formal parameter MODULEJTYPE,

which was added to the structure master view for this project. The MODULEJTYPE of the

cell determines the general type of function the cell can perform. To terminate a backward

search, the MODULEJTYPE is examined. If it corresponds to a memory, the name from

the structure master view is compared to the name of the operand being searched for. If it

matches, the backward search ends successfully.

The forward trace makes decisions at each cell to determine the correct control
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In this case, once a register output enable is set, the control bits for the entire address field

are set. The scheme to detect conflicts will then work correctly.

4.3.3 The initializer module.

In the Lagerlll Kappa processor, the control word was optimized to minimize

routing and area. With only the assumption ofcontroller structure, the rest of the processor

elements will define the control word. In addition, the control word is influenced by the

type of looping and jumping that wasimplemented in the controller. Since the control word

is not predefined, the initializer module must make a reasonable guess at an efficient word

width and structure.

Several complications arise. The controller architecture is general and will support

both horizontal and vertical control words. Horizontal control words allow faster commu

nication, but take up more area since the control store is wide. Vertical control words take

up less space, but can require complex instruction decoders and possibly pipeline delays.

The simplest solution is to have the initializer module find the most primitive

horizontal control word and apply optimization later on. This was the approach adopted

for this project because it allows the user to experiment with different control word sizes

using post processors. Once the problem is more fully understood, optimization programs

can be incorporated into the microcode generator to optimize the control word for the given

application.

The initializer works as follows. The initializer examines every cell in the design

hierarchy. For every cell, the initializer looks at each cell terminal to decide if it is associated

with a control signal. Any terminal associated with a control signal must have TERMTYPE

property CONTROL-SIGNAL. The initializer allocates a bit space in the control word for

all terminals that have this property. A post processor is provided so a user can reorder

this initial assignment, or delete signals that are not needed.

4.3.4 The interface modules.

As with the parser unit, the interface modules for the mapper convert the infor

mation from the mapper unit into programmable logic array (pla) descriptions. For both

the parser and mapper units, the output files are in the kiss style format accepted by the

optimization program espresso. In addition to the 2 files in kiss style format, a third file is
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signals. The forward trace begins at the last correctly matched source operand. A parallel

forward trace is performed on the parse tree of the operation being mapped. The control

signals are determined by examining the current parse tree node and the behavioral view.

The parse tree created by the parser shows the necessary operation to be implemented.

Based on the current node in the parse tree, queries are made to determine the necessary

control signals. Several C routines were written to process this information and determine

which function a cell must perform. In essence, the routines form a mini expert system

with hard coded rules for mapping operators to cells. To add new behavior primitives, new

C routines will have to be added.

Once the desired function of the cell has been determined, a query to the behavior

view will return the necessary control signals. Thus a behavior view must exist for every

leafcell that requires a control signal. The behavior view can be accessed by examining

the behavior view with the same leafcell name as the current cell being examined in the

structure master view. Example behavior descriptions can be found in Appendix B. The

information from this behavior description language (bdl) file is stored in the behavior view.

As the search proceeds, the control signals are collected in a control word. The

configuration of the control word is determined by the initializer module, which will be

discussed in the next section. A successful search and trace causes the control word to be

passed to the interface modules for processing. If the search fails, the current operation

cannot be mapped onto the datapath and the program terminates.

Since parallel register transfers are allowed, a scheme to detect resource allocation

conflicts was implemented. During initialization, a control word format is created. Prior to

generating the microcode for each cycle, the control word is initialized. Each time a control

signal is added to the control word, the correct position for the control bit is established

and a check is made to see what the value is at that position. If the value is unset, then the

control signal is placed there. If the value is set, a check is made to see if the set value is

the same as the valueof the control signal to be added. If it is, no conflict has occurred and

the mapper continues. Otherwise there is a resource allocation problem and the mapper

notifies the user and aborts processing.

This simple scheme for resource allocation conflicts has a problem. If the control

signals for the register files are assigned individually, then the scheme fails. Since the control

bits are checked when they are set, it is possible to have 2 registers on the same bus with

their outputs enabled. One way to avoid this is to use an address field for the register file.
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created by an interface module. This third file contains the parameters necessary for the

generation of the controller.

4.4 Summary.

The microcode generator implemented in this project consists of a parser unit and

a mapper unit. The parser accepts a C Hke program description and creates the control

finite state machine description from it. The mapper unit uses tracing algorithms to produce

the microcode for the control store. The next chapter provides a detailed example for the

detailed use of the generator.



Chapter 5

Use of the Prototype Microcode

Generator

This chapter will provide a tutorial example on use of the microcode generator.

A user's manual can be found in Appendix A. The example comes from the fingerprint

filtering system [1],

5.1 The Design Process Using the Microcode Generator.

Fig. 5.1 shows a flowchart depicting the use of the microcode generator in the

design process. In the first step, an algorithm is analyzed and a processor architecture is

proposed. Concurrently, the preliminary sdl files describing the processor and the C like

algorithm description are written. When the sdl files are complete, the structure master

view is created using DMoct. After the algorithm is coded, it can be compiled with the C

compiler and debugged. Next, the program and the smv can be submitted to the microcode

generator, which creates the parameter files. If the results are satisfactory, the structure

instance view and the layout can be generated using DMoct.

5.2 An Address Calculation Unit Example.

A segment of code from the orientation algorithm of the fingerprint filter will be

mapped onto an address calculation unit. Extra detail about the design of the orientation

processor can be found in reference [1],
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Figure 5.2: The address calculation unit datapath.

5.2.1 Examining the Algorithm.

The fingerprint image is stored in a 512 by 512 pixel array. The filtering operations

only take place on the interior 504 by 504 pixel image. The algorithm causes the 4 pixel

deep border to be assigned a background value of 0. The algorithm is illustrated below.

1. Write a zero to every pixel in the first 4 rows.

2. Write zeroes into the bottom 4 rows of the array.

3. Write zeroes into the first 4 columns of rows 5 to 507.

4. Write zeroes into the last 4 columns of rows 5 to 507.

The algorithm will require some jumping and nested looping. The controller model

adopted by the microcode generator will provide support for this.

5.2.2 Defining the System Architecture

By analyzing the algorithm and consulting the Lager cell library, a datapath can

be designed to handle the calculations. The datapath is shown in fig. 5.2. This datapath

has more hardware than is necessary to implement the algorithm stated above because the

complete orient algorithm requires it.
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In the initial design, the adder/subtractor is represented as a single cell. In reality,

it is made up of an adder with 2 controlledinverters at each of the inputs. While it is possible

to write tiling procedures to designate this cell combination as a leafcell, this description

would be redundant and would clutter up the cell library. For microcode generation, it is

simpler to consider it as a single cell since the adder/subtractor behavior is attributed to

only 1 cell instead of being spread over 3. In the future, a structure processor might be

used to substitute the 3 cells for the single cell designation during creation of the structure

instance view.

The system block diagram for the processor is shown in fig. 5.3. Each block, even

if it will eventually be external to the chip, must have an sdl description. So in this case,

we will have an sdl file for the datapath and the ram. In the actual orient processor, the

controller also controls a second datapath but for this example, the only necessary part

from this datapath is a register to supply the zero to be written into the memory. It is

named data in the figure. A separate sdl file was also written to account for this register.

Special attention needs to be given to sdl files written for the cells at the block

level. Although these files may contain hierarchy, the mapper module was written to ignore

some of it. Appendix B contains the sdl files for the RAM and datapath blocks shown

in fig. 5.3. Note that the RAM sdl file contains TERMTYPE properties and the MOD-
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ULE.TYPE is MEM for memory. The datapath sdl file has MODULEJTYPE DATAPATH,

but TERMTYPE properties are only assigned to the terminals attached to the parent. The

discrepancy here is due to the fact that for a datapath, the mapper needs to look at the

leafcells with the behavior view descriptions. The MODULEJTYPE DATAPATH tells the

mapper to go down in the hierarchy.

In addition to the sdl files at the block level, bdl files must also exist. For every

cell used in the datapath, a corresponding bdl file shouldexist. Also, in this case, a bdl file

should be written for the ram. Example bdl files are given in Appendix B.

Once the block level sdl files are written, a final sdl file describing the system

architecture is written. The microcode generator is only concerned with the data flow in

the system. There is no need to declare the controller at this level, so it willbe left out. Only

the data nets connecting data terminals need to be declared. The nets which eventually

will connect the control terminals of subcells to the controller can be ignored for now.

The sdl files for this example can be found in Appendix B. The system architecture

is defined, and the preliminary sdl files have been created. The user must now run DMoct

with the -m option to create the structure master view needed by the mapper. In addition,

the bdl files for all the necessary leaf cells should have been processed so that behavior

views exist.

5.2.3 Algorithm coding.

Once the structure master view has been successfully created, the user can now

code the algorithm into the pseudo C code accepted by the microcode generator. Appendix

A contains a summary of the input syntax conventions. The coding must represent the

algorithm in register transfers that will map onto the datapath previously created.

The coded program is shown in Appendix B. It consists of some declarations and

the program body. The int declaration declares the variable name used in the program

in the first field while the second field declares the name of the register or memory where

the data will be stored. Note that the register name must be the same as the instantiated

register name declared in the sdl files.

The code is nearly C compatible. By changing the integer declarations, the code

can be compiled and executed. After the codeis written, it should be compiled and verified.
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5.2.4 Microcode Generation.

Once the user has tuned the microcode description and has successfully obtained

a structure master view and the behavior view, the next step is to generate the parameters

necessary for the layout generation of the controller. Afterplacing the microcode description

in the same directory as the structure master view, the microcode generator is invoked by

typing asm. The program prompts the user for the program name. If parsing succeeds, the

program prompts the user for the name of the structure master view. When the program

succeeds, the successful ending prompt is returned.

If errors are encountered during parsing or mapping, the user needs to decide where

the error occurred in order to correct it. The parsing errors can be deduced by using the

-p flag and looking at the debug file called parse.log. The cause of the error can usually be

determined from this file or from careful examination to make sure that all grammar rules

were followed. If a mapping error occurs, attempt to trace the path, and see if the error

can be detected. Errors in mapping can also occur if the behavior view is not correctly

specified.

Upon successful execution of the microcode generator, several files are produced.

The file asm.tables gives information about the symbols, state transitions, and flags that

were translated from the program description. There are 2 files, cfsm.esp and cstore.out,

that are written in kiss format. The cstore.out file can be used with the file bit.data as

inputs to the post processor, which will be discussed in the next section. In addition, if

debugging flags were specified, severallog files will also be produced. The last file produced

is called pcu.parval. This file contains the necessary parameters for the generation of the

control unit. The actual files from this example are displayed in Appendix B.

5.2.5 Post processing.

At this stage, the user can decide how to order the control signals in the control

store finite state machine. The file bit.data gives the configuration found by the microcode

generator. By deleting or interchanging lines, the user can set up a specified configuration.

Once the bit.data file has been edited, the program post is run. Post specifically

looks for the files bit.data and cstore.out. It reorders or deletes the fields in the espresso file.

The resulting file is called cstore.esp. At this stage, the microcode generation is complete.
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5.2.6 Layout

To complete the layout, the user must modify and complete the sdl files for the

entire processor. The controller sdl files must be included. The file pcu.parval can be edited

to add the extra parameters necessary for datapaths or other hardware. Once this is done,

the Lager Design Manager can be invoked to complete the mask level layout.

5.3 The Fingerprint Smooth Processor, a Second Example.

The smooth processor performs smoothing of the orientation image produced by

the orientation processor in the fingerprint filter. The design of the smooth processor is

similar to the orientation processor [1]. Both processors make use of register files to avoid

memory bandwidth problems associated with a single RAM. The main point of this example

is to show how the microcode generator can be used for a full processor application.

The original microcode descriptions were written in C. After compiling the code

and using it to filter some actual fingerprint images, many bugs were found. The microcode

was written under a set of scheduling constraints which were imposed to eliminate simulta

neous access of the shared memory was impossible. Because of the scheduling constraints

and the bugs, the program had to be rewritten and rescheduled. During the rescheduling, a

lifetime analysis for the program variables was performed. The number of registers required

for the processor was reduced by one third. The final program was compiled and verified

with actual fingerprint images.

Experiments with small segments of the code have shown that the size of the

control store will be large. Register files require many control signals, so the size of the

control store is Unked to the size of the register files used in the processor. In the original

design, the smooth processor required space for 37 variablesin 2 register files. The lifetime

analysis showed that 2 register files of 13 registers would be necessary. Work was performed

to use address decoders to reduce the number of bits necessary to control the register files.

In a future version of the smooth processor, the size of the register files could be significantly

reduced by providing some dedicated hardware for nested looping.

Due to a problem in implementing a parser for the behavior description language,

the work on the smooth processor was suspended.
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Evaluation and Conclusions-

6.1 Problems with the Current Implementation.

This project has shown that the Lager data structures in the OCT database can

support retargetable microcode generation. A prototype retargetable microcode generated

was presented. There are still many problems but it is clear that future work could provide

viable retargetable code generators. Some of the problems will be discussed in the next few

paragraphs.

The parser can be easily fooled. Because of the current parsing scheme, the parser

can have trouble matching parentheses correctly. While it parses a subset of the C language,

several additions to the syntax give clues to the parser on how to interpret control flow

constructs. A description of the syntax is given in appendix A, and if it is followed, the

results can be good. However, if something goes wrong, the error messages provided by

the parser are vague. The parser was implemented quickly, so future work could focus on a

better input language and a more versatile parser.

The mapper module works correctly, but it can run into problems if asked to

map statements that are ambiguous. The mapper can usually deduce that single operand

instructions imply that the value zero could be added to the operand as it passes through

an adder. It is also possible for the mapper to get stuck somewhere in the depth first search.

In most cases, the statement can be coded differently so the mapping succeeds.
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6.2 Future Work.

The microcode generator is an unfinished product. While it can be used in its

present state, the interfaces are primitive. It hasn't been integrated into the Lager system.

Possibly, the microcode generator could be hnked to the Lager III compiler to facilitate the

mapping of high level descriptions to new architectures. The easiest way to link it would

be to use the mapper unit to create the structural architecture description that currently

must be written by hand.

Work still needs to be performed on refining the behavior description. Assigning

operations to cells limits their flexibility. It is desirable to have higher level operations map

to single cells, but it may be more efficient to combine several cells to perform a higher level

operation. Perhaps a better approach would be to provide support for a behavior view that

is based on hierarchy. Additionally, the behavior view should be examined and modified so

that it can support the information needed by synthesis systems.

While this approach to retargetable microcode generation was shown to work, the

large amount of searching makes it inefficient. Other approaches should be considered. Two

separate approaches will be mentioned.

One alternative is to enhance the behavior view to support hierarchy. In this

scheme, behavior views would be created at higher levels of hierarchy. At the datapath

level, the behavior view would contain higher level operations matched to sets of control

signals. At the highest level of hierarchy, the behavior view would contain the processor

instruction set. This approach is a more elegant version of the sadl file implementation used

in Lager HI. With this approach, it may be possible to start the Design Manager from the

behavior view level instead of the structure master view level. A structure processor might

be developed that could create a structure master view from a behavior view.

The second approach would be to create a tool that facilitates the process of defin

ing an instruction set. This tool wouldallow the instruction set to be declared mnemonically

in a file. The mapper tool would then create a file with the correspondence between an

instruction and the microcode. A table look up algorithm could then be applied to generate

the microcode from an input program. This would greatly increase the efficiency of the code

generator.

Future work will probably move away from the microcode generation problem.

Many researchers are pursuing synthesis systems that can take a high level behavior descrip-
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tion, and synthesize a system to perform a specified task. These compilers will undoubtedly

provide processors that are well designed and optimized under certain specifications. But

until the synthesis problem is solved, tools like a retargetable microcode generator will be

invaluable in developing new ASIC systems.

6.3 Conclusion.

The microcode generator developed in this project has met the stated objectives.

The C Hke input allows program development in C using the standard C compiler. The code

generator was apphed to parts of the fingerprint filter processor designs to show functional

ity. The code generator was fully functional and retargetable for thesecases. The microcode

generator developed in this project is inefficient since the searching algorithms are applied

so many times. Future work could improvethe efficiency and provide more rigorous testing.

The project has shownthat a retargetable microcode generator is a possibiHty for structural

silicon compilers. Moreover, the code generators can significantly decrease the design time

and increase the abiHty of designers or design tools to explore the design space.
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Appendix A

User's Manual

Note: This was intended to be a stand alone user's manual. Some of the informa

tion that appears repeats information already presented in the report.

A.l Introduction

The assembler requires 2 input files: a C description of the algorithm and an sdl
description of the data flow in the processor.

Previously in LagerIII, rassCG was used as the assembler tool. The rassCG pro
gram required the user to create a structural architecture description, which basically con
tained the same information found in the sdl file mixed with some behavioral description.
It also required the user to write the program in the assembly language, which was defined
in the structural architectural description file. There was no guarantee for the correctness
of this algorithm.

The assembler described in this manual only requires the 2 files mentioned above.
In addition, the parser was written in such a way that with only minor changes, the C
description is still compatible with the standard C compiler.

A.1.1 A Discussion of the Assembler Applications and Limitations.

This assembler is meant to aid the rapid development of new architectures for
custom processors. The assembler assumes that the controUer is a modified version of the
Lager Kappa controller. Target appHcations are algorithms with complex control flow, and
lower sampHng rates.

The prototype assembler has Hmited features. It is mainly intended to aid the
design of a chip set for a fingerprint filter. However, the differences in architecture show
that the tool may have potential for more general appHcations.

A.1.2 General Concepts of Implementation.

The assembler is implemented as a parser and a mapper. The parser serves to
translate the C description to internal data structures and to extract the control flow graph.
The mapper uses a tracing algorithm to determine the path of the register transfer impfied
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in the C code, and then retraces the path to determine the necessary control signals to
implement the register transfer.

Parser Implementation.

The parser was written using Lex and Yacc. The main purpose of the project
was to test out the retargetable assembler concept, so Httle attention was paid to writing a
good error detecting parser. When errors occur, the parser usually doesn't provide helpful
diagnostics. This is a general problem when using Yacc. In order to provide robust error
handling, the Yacc description must contain matches for aU anticipated errors and messages
for handling these errors.

Most Yacc parsers are written by matching compound expressions. A variable
name would form a simple expression, and this would be the lowest level of token matching
in the Yacc file. An equation would become the second level of simple expressions. A group
of expressionsforms compound expressions and so on. The Yacc parser is built around this
sequence of definitions.

In the attempt to extract control flow, the use of compound statements was aban
doned. Instead, equations were matched, and control flow deHmiters Hke while, if, and
do were matched as terminators or beginning points for new blocks of sequential executed
code. In this case, a terminating bracket should be associated with the last beginning point
encountered. If brackets are misplace, the parser would have trouble recognizing this. This
points out just one of the many problems with the parser.

If a future version of this tool is created, the parser should be developed with error
handHng in mind. It would be best to just parse the description in the classical mariner,
placing the results in a database or in internal memory. Not only would this allow better
error handHng and detection, but it would also help the detection of control flow, especially
the cases where a block of code consists of a single instruction.

Mapper Implementation.

The real input to the assembler is not the sdl file, but the structural master view
(smv) created by DMoct. The smv is stored in the OCT database format. If an sdl file is
available, run DMoct with the -m flag to create the smv.

The basic mapping algorithm is to trace the actual path that wiU be taken by a
signal. The tracing takes place in 2 operations. In the first operation, the destination and
source memory locations are located in the smv. A depth first trace is used to locate the
data flow path from destination to source. The assembler restricts all data transfers to the
class where many source operands merge to one destination operand. The depth first search
will locate the first viable solution. If the search does not converge, then the mapping is
not possible.

The second operation is to trace the path from source to destination. Along
the way, all blocks along the path are examined. The behavioral view is consulted to
determine the correct operation to be performed by each block. The assembler accumulates
the necessary control signals, and then prints them to a file. The output tables are in the
espresso format.
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Although the actual algorithm is more complex than this simple summary, the
concepts may help you to understand why the assembler requires certain parameters Hke
MODULEJTYPE and TERMTYPE.

A.2 SDL Descriptions.

The sdl description for data flow paths must have only 2 levels of hierarchy. By
this I mean that there must be the top level description with macroceUs Hke memories,
datapaths, and controUers. The second level can contain description of datapaths using
dpp, and other descriptions. Anything not on the data flow path can have more than 2
levels of hierarchy.

The datapath description must be written with register transfers in mind. The
algorithm used to perform the mapping actually traces the data flow involved in a register
transfer to determine the correct path. This means that a black box description of the
external rams must be written and included in the processor sdl description.

AU blocks must have a corresponding bdl description. This allows the assembler to
determine which operations can be performed by each block. Currently, only the operations
+, -, *, and / are recognized by the assembler. AU other operations are considered to
be data channeHng operations, which are handled by multiplexers. Further, the * and /
operators are associated with shifters. This Hmitation is caused by the current version of
the assembler. A future version could ehminate this.

The assembler assumes that aU blocks have a unique output, or only one output
tied to an actual net. The blocks can have as many inputs as desired, but blocks must only
have either one input, in which case it is considered a MUX, or 2 inputs producing one
output, in which case it is of the class ADDER. Other block types supported are REG for
registers, REGFILE for register files, and MEMORY for rams and other external memories.

The names are crucial in the sdl file. The names of registers and memories must
correspond letter for letter with those used in the C description declarations. However, you
must be sure to name the registers and memories at their lowest instantiation. Thus, if you
want a reg2port, then instantiate that with the variable name.

It is also important that the properties TERMTYPE and DIRECTION are added
to every file below the top level file. However, only do it for the data terminals on the
parent! Doing it for the control signals wiU cause them to be added to the control word.
Thus for control signals, their TERMTYPE (which should be CONTROLJSIGNAL) and
DIRECTION should be declared at the lowest level of the hierarchy.

Be careful of feedback loops. Make sure that a closed circular path always has
at least one memory, register, or regfile inside the loop. If not, the tracing algorithms will
enter infinite loops.

The sdl description need not contain the controUer. The purpose of the assembler
is to generate the necessary parameters for the controUer. The controUer can be generated
from a group of sdl files that aren't quite debugged yet. The top level file is caUed pcuH.sdl,
which wiU probably change, so it won't be confused with the Kappa controUer.
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A.3 C Language Description File.

The assembler accepts a C language description for the algorithm to be imple
mented. However, the description must be written in a subset of the C language. The
parser defines the acceptable syntax. It was written with the help of the Unix utilities Lex
and Yacc, so if you are famiUar with reading Yacc files, this is the best way to see what the
actual accepted syntax is.

One feature of the assembler syntax is the use of double semicolons to delimit the
end of a machine cycle. Statements that occur concurrently in one cycle are written like in
the example below.

y = b-rx;

a = c + d\\

This impHes that 2 additions can take place in the same cycle. This may be
possible, for instance, if a were an address being calculated in an address calculation unit,
and y were held in a register in the main ALU datapath.

The double semicolon feature made parsing complex. Although the assembler
wiU often catch misplaced semicolons, the error messages are not very informative. If the
assembler crashes, this is one area to check.

A.4 Variable, Flag, and Constant Declarations.

A.4.1 Constant Declarations.

There are 3 types of variables: register, register file, and memory.

A.4.2 Flag Declarations.

AU flags in the program need to be declared. In C, they would be declared as
integers, but the assembler recognizes the keyword flag. There are 2 types of flags: those
associated with sign bits from adders, and those that are other types. The other types can
be a constant decoder, or some logic. The declaration is shown below.

flag sign.ADDER, notdone;

The flag sign should be takenfrom the block caUed ADDER defined in the sdl file.
The flag notdone wiU be assigned a value if it is from a constant decoder. Otherwise, it is
given no special type.

A.4.3 Variable Declarations.

Register Variable Declarations.

Register variables are those that reside in a single register. The block described in
the sdl file wiU have MODULEJTYPE REG. They are declared as shown.
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int variable.sdlname;

The field variable is the variable name used in the program. The field sdlname is
the name given to the instance of the register in the sdl file.

Constants are declared much Hke in C. It would have been nice to use the c

preprocessor, but that can come later. A constant is defined as foUows.

#define KONSTANT 16

Constants are used as multiply or divide coefficients. They are also used to specify
the value of the constants stored in the constant decoders.

Memory Variable Declarations.

Memory variable declarations assume that data is stored in memory like a one
dimensional array. The declaration looks Hke this:

int ramnameCsize];

The string ramname must be the name of the instance of the memory in the sdl file.
Size is not parsed. It is declared so the description maintains compatibiHty with standard
C. The reference to the array has the same effect. It is the ramname that matters not the
index. It is assumed that the address for the array was calculated in a previous cycle and
latched into an address register for the ram. Immediate addressing is provided, but that
wiU be found under register file declarations.

Register File Declarations.

Currently, a form of immediate addressing is supported, provided the module is
given MODULE-TYPE REGFILE. It requires specialized declarations.

memsize regf[3];
memloc A.regf [0], B.regf[l], C.regf [2];

These 2 Hnes completely declare the immediate addressing mode. What happens
is a field in the control word is set aside for the register file regf, and it wiU be 2 bits long,
since log2(3) + 1 = 2. The program variable A wiU always have address 0 in the field and
so on for B and C. The indexes must be manifest constants, not declared constants. If you
desired to have a ram with mapped memory, then write a fake sdl file for it, and give it
MODULEJTYPE REGFILE.

A.5 Assembler Syntax Conventions.

A.5.1 While and Do While loops.

The assembler syntax also supports looping. WhUe and do while loops are sup
ported. However, the controUer architecture has a one cycle pipeHne delay, so the test for
exit condition must be hand scheduled so that it appears 2 cycles before the actual exit test
in the code is written. An example follows.
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while ( sign != TEN )

i
y = b + x;

a = c + d;;

>»» if (y - yMax < 0) sign - 1; else sign = 0;; <««

y = y - l;;
>

The arrows point to the exit condition test. It is scheduled so the sign bit is
presented to the controUer at the correct time, 2 cycles before the might may be exited.

A.5.2 Flags and Timing Conventions.

Flags for conditions must be determined by the user. Any flag is ok as long as it
is generated at the correct time. The adder sign bit can be used. Constant decoders can
be used to set flags when a number on the datapath matches the number hard coded in
the decoder. Decoders can be tricky to use, because the number to be decoded must be
dumped onto the datapath 2 cycles before the flag is to used. The best way to achieve this
is to calculate the number during the correct cycle, or transfer the number from its register
to a temporary register.

If scheduHng constraints won't aUow the flag to appear on the correct cycle, delays
can be used so that the delayed flag occurs on the correct cycle.

A.5.3 If Else Statements.

The if else, and if else if ect. constructs are supported. However, several syntax
assumptions were made. We can divide the if statement into 3 classes. The first class is the
simple test that sets a flag. Another is a 2 way branch that merges again. The last class is
the multiway branch using the if else if construct.

Simple If Else.

The if else construct to set a flag looks like this:

if ( x - y < 0 ) flag = 1; else flag =0; or
if (x-y<0) flag =1; or
if (!(x - y < 0)) flag = 1; else flag = 0; or
if (edge != NDIRN1) flag = 1; else flag = 0;

AU these are examples of legal statements. InequaHty is only supported as sign
bits from adders. Thus, you may only compare to 0. The ! negation operator is supported
to some extent, but it isn't as robust as in C. If the flag is associated with an undelayed
sign bit, the flag must be declared with an adder notation (read the declaration section).
The if statement does not have to be a single machine cycle. It can be part of a concurrent
statement. If only a single flag is given, the else condition wiU assume it's complement.
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If Else as a Branch.

A branch wiU assume that a choice can be made between blocks of executable code.
The if else in this compiler assumes that the 2 paths merge. It may support an if with no
else clause, but this hasn't been tested. It wasn't necessary for the present appHcation. An
example is shown below.

if ( sign )
{
X = y + z;;

y

}

= y + l;;

else

i
X = y;;

y = y - a;;

>; <««

The arrows point to a very vital feature of the assembler. AU if initiated branches
must be terminated by };. If you forget this, the assembler does very weird things, and it
may not give you an error!! Also note that the branch must be initiated off a flag value.
The flag must be set up 2 cycles before the actual branch.

If Else If Multiway Branch.

The if else if construct is similar to the if else.

if ( sign && p != TEN)

•C
x = y + z;;

y = y + l;;

>

else if ( !sign kk p == TEN)

x = y;;

y = y - l;;

}

else if (Isign && p != TEN)
{

y = x;;

y = y + l;;

>; <««

The && (and) operator is supported. The (or) operator is parsed correctly,
but the actual mapping for it has not been implemented. It requires some minor changes
in the way espresso files are generated. A general problem in using multiway branches is



50

getting both flags set 2 cycles before the jump is to take place. One method is to delay
one signal and evaluate the other at the correct time. Also, never terminate this type of
if with a plain else clause. Always use the else if. The plain else clause can be difficult to
implement because you must know which conditions weren't met. Again the arrows point
to the only way to successfuUy terminate the else if structure.

A.5.4 Loops and jumping into and out of them.

Leaving loops. When you leave loops or branches, you must always jump to a
block of code, never to another branch. This simpHfies the state transitions, since states
tend to multiply rapidly. Take the example below.

This code would be numbered Hke this:

leave block 0 (the reset state)

if (sign)

•C
y = y + 1;; block 1

}

else

{
y = x;; block 2

>;
if (p = NDIRN1)

•C
x = z;; block 3

>

else

{
x = x + 1;; block 4

>;

The required transitions are 0 to 1, 0 to 2, 1 to 3, 1 to 4, 2 to 3, 2 to 4. With
a single pass assembler, it is difficult to determine this. Thus, it was not aUowed for this
prototype version.

A.6 Subroutines.

A single subroutine is aUowed. It must be declared by the keyword subr(). It can
be called as many times as you Hke. However, the assembler expects the main program,
and then the subroutine after it. If it is the other way, it won't work, and you'U get that
ambiguous message "syntax error". The jump before and the jump out of the subroutine
must occur from a single block. Jumps from multiway branches wiU not be processed
correctly.
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A.7 Assembler Directive STACK

The assembler directive STACK causes a stack to be used in the processor. A
stack may be advantageous if there are quite a few blocks of code in the subroutine, and/or
the subroutine is caUed many times. The reason for this is that if no stack is used, the state
machine wiU just use new states for the subroutine, guaranteeing a return to the proper
state. A stack will only require 2 extra states per subroutine caU. The directive STACK
must appear with the rest of the program declarations.

If a stack is used, then be aware that an extra nop cycle is encountered in the
return jump. Refer to Khalid Azim's thesis for the details. An extra state caUed Dummy
is inserted.

A.7.1 Multiplies and Divides.

AUmultipHes and adds are assumed to be implemented via shifts. This means one
of the operands must be a constant, and should be a power of 2. The constant coefficient
must be declared using the #define declaration. An expressionHke a*b involving2 variables
wiU cause the assembler to crash. Also, an expression Hke a*16 wiU also crash.

A.8 Other Topics.

A.8.1 NOP - the no operation.

NOP is supported. To make the C compiler skip a NOP, just define NOP as a
semicolon. The actual implementation for a NOP causes all blocks to default to the bdl
description for NOP.

A.8.2 Output Files

Currently, the assembler outputs aU kinds of files, "pcu.parval" contains the pa
rameters needed by pcuH.sdl. "cfsm.esp" contains the espresso input file for the control
finite state machine, "cstore.out" contains the espresso file that must be run through the
post processor, "asm.tables" contains information about the assembly process Hke symbol
tables, the state transition table, and the flags used in the program.

The file "bitinfo" teUs what each field of the control word corresponds to. By
rearranging the Hnes the user can reorder or delete redundant or unnecessary control fields.
This file and "cstore.out" become inputs to the post processor, which reorders the espresso
file as the user specified when altering "bit.info".

The espresso files are set up for plagen. The right most bit of the input and output
planes gets mapped to bit 0 of the pla. In "cstore.out", the EOB signal should always be
in bit 0, the right most bit. Bit info numbers the fields with respect to this convention.

Debugging files can be obtained by using the asm invocation with flags specified.
The -p flag gives the "parser.log" file, with aU the debugging information from the parser.
The -n flag gives aU information from the initiaHzation after reading the smv. The -t flag
gives aU information according to the terminal tracing algorithm.
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A.9 Post Processor.

The post processor is caUed post. It requires "cstore.out" and "bit.info" as inputs.
It wiU delete or rearrange the control signal fields given the edited "bit.info" file from the
assembler.



Appendix B

Example Files for the Address
Calculation Unit Example.

The contents of this appendix document the example presented in 5 for the orient
address calculation unit.

B.l Input Microcode Description.

#define RIDGE 4

#define IMGSIZ 512

#define IMR2 508

#define SIZE 262144

int yImg.R20, xlmg.RlO, dirnlmg[SIZE] , RIDGESIZ.C13, IMR.C12;
int address.latch;

int zero.imreg;

mainO {

ylmg = 0;

xlmg =0;;

while (ylmg != RIDGE) {
address = xlmg + yImg*IMGSIZ;;

while (xlmg != IMGSIZ) {
dirnlmg[address] = zero;
xlmg= xlmg+l;;

address = xlmg + yImg*IMGSIZ;;

}

ylmg= ylmg+l;;

xlmg =0;;

}

/* Note: xlmg is still 0 here. */
ylmg = IMR;;
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while (ylmg != IMGSIZ) {
address = xlmg + yImg*IMGSIZ;;

while (xlmg != IMGSIZ) {
dirnlmg[address] = zero;
xlmg= xlmg+l;;

address = xlmg + yImg*IMGSIZ;;

>

ylmg= ylmg+l;;

xlmg = 0;;

}

ylmg = RIDGESIZ +1;;

/* Note: xlmg is still 0 here. */
while (ylmg != IMR2) {
address = xlmg + yImg*IMGSIZ;;

while (xlmg != RIDGE) -C
dirnlmg[address] = zero;
xlmg= xlmg+l;;
address = xlmg + ylmg*IMGSIZ;;

}

ylmg= ylmg+l;;

xlmg = 0;;

}

ylmg = RIDGESIZ + 1;;

xlmg = IMR;;

while (ylmg != IMR2) {
address = xlmg + ylmg*IMGSIZ;;

while (xlmg != RIDGE) {
dirnlmg[address] = zero;
xlmg = xlmg + 1;;
address = xlmg + ylmg*IMGSIZ;;

}

ylmg = ylmg + 1;;

xlmg = xlmg + 1;;

}

NOP;;

/* Test subtraction */

xlmg = ylmg - 1;;
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B.2 SDL Description of the Address Calculation Unit.

i!!ii!!!!!!!! !!!!!!i»i!!!!>)!!if!i>>>»»»'»ii)MiiiMMii»i)MMM ihmi

;;; This is the system level sdl description of the Orient ACU example

(parent-cell system)
(parameters N N2 NDIRN1 HALFLT IMR R RM1 IMRM1 IMGEDG)
(layout-generator Flint)
(subcells

(oacudp DP ((N N) (NDIRN1 NDIRN1) (HALFLT HALFLT) (IMR IMR) (R R)
(RM1 RM1) (IMRM1 IMRM1) (IMGEDG IMGEDG)))

(genericmem dirnlmg ((ADDWIDTH N) (DATWIDTH N2)))
(data DAT ((N N2))))

;Data Nets

(net connect (NETWIDTH N) ((DP ADRBUS) (dirnlmg ADDRESS)))
(net tozero (NETWIDTH N2) ((dirnlmg DATAIN) (DAT OUT)))

(end-sdl)

lll»lllllllllllllll•ll•llllllllll••l•lllll•ll•»»»»'»»'»»»»»',,',,,,',,

;;; This is the sdl file for the datapath used in the ACU example.

;;;i;i»;;;;;;;;;;;;JiJi;;;;ii;;;;iiiiiiiiiiiiiiiiiiiiiiiii»i»»'»'»»»''

(parent-cell oacudp)
(parameters N NDIRN1 HALFLT IMR R RM1 IMRM1 IMGEDG

(MODULE.TYPE "DATAPATH"))

(layout-generator Flint a)
(structure-processor dpp)
;It seems that N is a keyword in DPC
(subcells (bufferbig BIN1 ((N N)))

(buffersmall BIN2 ((N N)))

(reg2port (RIO Rll R12 R13 R14
R15 R20 R21 R22 latch) ((N N)))

(regconstant CIO ((N N) (constant NDIRN1)))
(regconstant Cll ((N N) (constant HALFLT)))
(regconstant C12 ((N N) (constant IMR)))
(regconstant C13 ((N N) (constant R)))

(acumux MUX1 ((N N)))

(acumux MUX2 ((N N)))

(upl SHA ((N N)))
(up2 SHB ((N N)))
(up2 SHC ((N N)))
(up4 SHD ((N N)))

;(xorl X0R1 ((N N)))

;(xorl X0R2 ((N N)))
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;(adder AS ((N N)))
(addersub AS ((N N)))

(decoder DECl ((N N) (constant RM1)))
(decoder DEC2 ((N N) (constant IMRM1)))

(decoder DEC3 ((N N) (constant IMGEDG))))

;DATA NETS

;register files
(net rl ((BINl OUT) (RIO IN) (Rll IN) (R12 IN) (R13 IN)
(R14 IN) (R15 IN)))

(net rlout ((RIO OUT) (Rll OUT) (R12 OUT) (R13 OUT) (R14 OUT)
(R15 OUT) (CIO OUT) (Cll OUT) (C12 OUT) (C13 OUT)

(MUX1 IN)))

(net r2 ((BIN2 OUT) (R20 IN) (R21 IN) (R22 IN)))
(net r2out ((R20 OUT) (R21 OUT) (R22 OUT) (MUX2 IN)))
(net bus2a ((MUX2 OUT) (SHA IN)))

(net shl2 ((SHA OUT) (SHB IN)))

(net sh23 ((SHB OUT) (SHC IN)))

(net sh34 ((SHC OUT) (SHD IN)))

;(net bus2b ((SHD OUT) (X0R2 IN)))

(net bus2b ((SHD OUT) (AS INI)))

;(net bus2c ((MUX1 OUT) (XOR1 IN)))
(net bus2c ((MUX1 OUT) (AS IN2)))

;(net addl ((X0R1 OUT) (AS INI)))

;(net add2 ((X0R2 OUT) (AS IN2)))
;Net connection to the external bus

(net toadrreg ((latch IN) (AS OUT) (BINl IN) (BIN2 IN) (DECl IN)
(DEC2 IN) (DEC3 IN)))

(net toout ((latch OUT) (parent ADRBUS)))

;CONTROL NETS

;register load signals
(net CNTLrl ((parent A1LOADO) (RIO LOAD)))
(net CNTLr2 ((parent A1L0ADOINV) (RIO LOADINV)))
(net CNTLr3 ((parent A1L0AD1) (Rll LOAD)))
(net CNTLr4 ((parent A1L0AD1INV) (Rll LOADINV)))
(net CNTLr5 ((parent A1L0AD2) (R12 LOAD)))
(net CNTLr6 ((parent A1L0AD2INV) (R12 LOADINV)))
(net CNTLr7 ((parent A1L0AD3) (R13 LOAD)))
(net CNTLr8 ((parent A1L0AD3INV) (R13 LOADINV)))
(net CNTLr9 ((parent A1L0AD4) (R14 LOAD)))
(net CNTLrlO ((parent A1L0AD4INV) (R14 LOADINV)))
(net CNTLrll ((parent A1L0AD5) (R15 LOAD)))
(net CNTLrl2 ((parent A1L0AD5INV) (R15 LOADINV)))
(net CNTLrl9 ((parent A2L0AD0) (R20 LOAD)))
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net CNTLr20 ((parent A2L0AD0INV) (R20 LOADINV)))
net CNTLr21 ((parent A2L0AD1) (R21 LOAD)))
net CNTLr22 ((parent A2L0AD1INV) (R21 LOADINV)))
net CNTLr23 ((parent A2L0AD2) (R22 LOAD)))
net CNTLr24 ((parent A2L0AD2INV) (R22 LOADINV)))
register oe signals

((parent A10ENO) (RIO OEN)))
((parent A10ENOINV) (RIO OENINV))
((parent A10EN1) (Rll OEN)))
((parent A10EN1INV) (Rll OENINV))
((parent A10EN2) (R12 OEN)))
((parent A10EN2INV) (R12 OENINV))
((parent A10EN3) (R13 OEN)))
((parent A10EN3INV) (R13 OENINV))
((parent A10EN4) (R14 OEN)))
(parent A10EN4INV) (R14 OENINV)
(parent A10EN5) (R15 OEN)))
(parent A10EN5INV) (R15 OENINV)
(parent A10EN6) (CIO OEN)))
(parent A10EN6INV) (CIO OENINV)
(parent A10EN7) (Cll OEN)))
(parent A10EN7INV) (Cll OENINV)
(parent A10EN8) (C12 OEN)))
(parent A10EN8INV) (C12 OENINV)
(parent A10EN8) (C13 OEN)))
(parent A10EN8INV) (C13 OENINV)
(parent A20ENO) (R20 OEN)))
(parent A20ENOINV) (R20 OENINV)
(parent A20EN1) (R21 OEN)))
(parent A20EN1INV) (R21 OENINV)
(parent A20EN2) (R22 OEN)))
(parent A20EN2INV) (R22 OENINV)

mux nets (2 muxes)

net CNTLml ((parent AMUX1SEL) (MUX1 CNTL1)))
net CNTLm2 ((parent AMUX1SELINV) (MUX1 CNTL2
net CNTLm3 ((parent AMUX10THER) (MUX1 CNTL3)
net CNTLm4 ((parent AMUX1LSB) (MUX1 CNTL4)))
net CNTLm5 ((parent AMUX2SEL) (MUX2 CNTL1)))
net CNTLm6 ((parent AMUX2SELINV) (MUX2 CNTL2
net CNTLm7 ((parent AMUX20THER) (MUX2 CNTL3)
net CNTLm8 ((parent AMUX2LSB) (MUX2 CNTL4)))
shifter controls

net CNTLsl ((parent ASHA) (SHA SHIFT1)))
net CNTLs2 ((parent ASHB) (SHB SHIFT2)))

net CNTLol

net CNTLo2

net CNTLo3

net CNTLo4

net CNTLo5

net CNTL06

net CNTLo7

net CNTL08

net CNTLo9

net CNTLolO

net CNTLoll

net CNTLol2 (

net CNTLol3

net CNTLol4 (

net CNTLol5 (

net CNTL0I6 (

net CNTLol7 (

net CNTL0I8 (

net CNTLol9

net CNTLo20

net CNTLo21

net CNTLo22 (

net CNTLo23

net CNTLo24 (

net CNTLo25 (

net CNTLo26 (
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(net CNTLs3 ((parent ASHC) (SHC SHIFT2)))
(net CNTLs4 ((parent ASHD) (SHD SHIFT4)))
(net CNTLs5 ((parent ASHINVA) (SHA SHIFT1BAR)))
(net CNTLs6 ((parent ASHINVB) (SHB SHIFT2BAR)))
(net CNTLs7 ((parent ASHINVC) (SHC SHIFT2BAR)))
(net CNTLs8 ((parent ASHINVD) (SHD SHIFT4BAR)))
;xor controls

;(net CNTLxl ((parent ASSUB1) (X0R1 CNTL1)))
;(net CNTLx2 ((parent ASSUB2) (X0R2 CNTL1)))
(net CNTLx2 ((parent ASSUB2) (AS CNT)))
;adder controls

(net CNTLal ((parent AASCIN) (AS CIN)))
(net CNTLa2 ((parent AASCININV) (AS CININV)))

(terminal ADRBUS (TERMTYPE DATA_SIGNAL)(DIRECTION OUTPUT))

(net Vdd ((BINl Vdd)(BIN2 Vdd)(RIO Vdd)(Rll Vdd)(R12 Vdd)(R13 Vdd)
(R14 Vdd)(R15 Vdd)(CIO Vdd)(Cll Vdd)(C12 Vdd)(C13 Vdd)(MUXl Vdd)
(MUX2 Vdd)(SHA Vdd)(SHB Vdd)(SHC Vdd)(SHD Vdd)(AS Vdd)(DECl Vdd)
(DEC2 Vdd)(DEC3 Vdd)(parent Vdd)))

(net GND ((BINl GND)(BIN2 GND)(R10 GND)(R11 GND)(R12 GND)(R13 GND)
(R14 GND)(R15 GND)(CIO GND)(Cll GND)(C12 GND)(C13 GND)(MUX1 GND)
(MUX2 GND)(SHA GND)(SHB GND)(SHC GND)(SHD GND)(AS GND)(DECl GND)
(DEC2 GNDKDEC3 GND) (parent GND)))

(end-sdl)

lllllllllllllllllll»lllllll»lllll>|||»||||»»»»»»»»»'»,,,»,,»''»''',

;;; Sdl file for the cell data used in the system.sdl file.

;;;;;;;;;;i;;;;;;;;;;iJJiiiiii»i»iiiiiii»i*»»>i>iii>i»>>>>'»',»»>»>

(parent-cell data)
(parameters N (MODULEJTYPE "DATAPATH"))
(layout-generator Flint a)
(structure-processor dpp)
(subcells (reg2port imreg ((N N))))

(net out ((parent OUT) (imreg OUT)))
(net load ((parent ILOAD) (imreg LOAD)))
(net loadi ((parent ILOADI) (imreg LOADINV)))
(net oen ((parent IOEN) (imreg OEN)))
(net oeni ((parent IOENI) (imreg OENINV)))

(net Vdd ((parent Vdd)(imreg Vdd)))
(net GND ((parent GND)(imreg GND)))
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(terminal OUT (TERMTYPE DATA.SIGNAL)(DIRECTION OUTPUT))

(end-sdl)

;;; Although not part of the ASIC, a model was needed for a RAM. This
;;; sdl file describes a generic RAM cell.

»»»ifii»»»»»»»»»J»»»»»t»J»5»»i»»»»»»»»»i»»»»»»»»»»»»»»»»»»»»»»»»>*»'

(parent-cell genericmem)
(parameters (MODULEJTYPE "MEM"))
(subcells

(memory_load LOAD)
(memory.out OEN))
; nets for the parent cell.

(net inl ((parent IN) (LOAD IN)))
(terminal READ)

(terminal WRITE)

(terminal OUT (DIRECTION OUTPUT))

(terminal IN (DIRECTION INPUT))

(end-sdl)

B.3 Behavior View BDL files used by the Assembler.

MIMMMIIMMIIMIIMMIIIMIIIIIIIIMinilllHIIIIIIIIIIIIIIIMII

;;;;; bdl description for acumux.

iiiiiii»iiiiiiiiiiiiiii»iiiii»i»i»»»iiiiiiiiiiiiiii»»ii»»i»i»i»i»»ii

(behavior-cell acumux)

(terminal CNTLl)

(terminal CNTL2)

(terminal CNTL3)

(terminal CNTL4)

(terminal IN (DIRECTION INPUT))

(terminal OUT (DIRECTION OUTPUT))

;symbolic truth table

(symbolic.tt
(case (output (VALUE "IN"))
(condition (CNTLl 0)(CNTL2 1)(CNTL3 0)(CNTL4 0))

)

(case (output (VALUE "1"))
(condition (CNTLl 1)(CNTL2 0)(CNTL3 0)(CNTL4 1))

)

(case (output (VALUE "0"))
(condition (CNTLl 1)(CNTL2 0)(CNTL3 0)(CNTL4 0))
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)

(case (output (VALUE "-1"))
(condition (CNTLl 1)(CNTL2 0)(CNTL3 1)(CNTL4 1))

)

(case (output (VALUE "nop"))
(condition (CNTLl 1)(CNTL2 0)(CNTL3 0)(CNTL4 0))

)

)

(end-bdl)

;;»i;;;;;;;;iiiiiiiiiiiiiiiiiiiiiiiiiiii»iii»iiiiiii»»»»'»»»»»,»»»

;;; bdl description for addersub

if»fif»»»»»»»;»i»»»»»»f»ifi*»i»»»»»»»i»»»»»»»»»i»*»»»»»»»»»»'»»**»

(behavior-cell addersub)

(primitives
(addition ADD)

(subtraction SUB)

)

; nets for the parent cell,

(net inla ((parent INI) (ADD INI) (SUB INI)))
(net in2a ((parent IN2) (ADD IN2) (SUB IN2)))
; Control and outputs

(terminal CIN)

(terminal CININV)

(terminal COUT)

(terminal COUTINV)

(terminal COUTN.IINV)

(terminal OUT)

(termianl OUTINV)

(terminal CNT)

; Symbolic truth table

(symbolic_tt
(case (output (TERM (ADD OUT) (parent OUT)))
(condition (CIN 0) (CININV 1) (CNT 0))

)

(case (output (VALUE "nop"))
(condition (CIN 0) (CININV 1) (CNT 0))

)

(case (output (TERM (SUB OUT) (parent OUT)))
(condition (CIN 1) (CININV 0) (CNT 1))

)

(end-bdl)

i>!i!l!!!!l!!!i>!!!!J)!ii)MMi JlMMHMIMMMMMMIMIMMIM Ml
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;;; bdl description for genericmem

(behavior-cell genericmem)
(primitives
(memory.load LOAD)
(memory.out OEN))
; nets for the parent cell.

(net inl ((parent IN) (LOAD IN)))
(terminal READ)

(terminal WRITE)

(terminal OUT)

; Symbolic truth table

(symbolic.tt
(case (output (VALUE "nop"))

(condition (WRITE "0") (READ "0"))

)

(case (output (TERM (parent OUT) (OEN OUT)))
(condition (READ "1") (WRITE "0"))

)

(case (output (OP "LOAD"))
(condition (READ "0") (WRITE "1"))

)

)

(end-bdl)

;;;;;;;;;;;;;;;;;;;;;;i;;iiiiiiiiiiJiiiiiiiiiiiii»iiiiiiiiii»»»»»»»

;;; bdl description for reg2port

JiiiJiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii'i'iii**'*

(behavior-cell reg2port)
(primitives
(memory.load LOAD)
(memory.out OEN))
; nets for the parent cell.

(net inl ((parent IN) (LOAD IN)))
; Control

(terminal LOAD)

(terminal LOADINV)

(termianl OEN)

(terminal OENINV)

(terminal OUT)

; Symbolic truth table

(symbolic.tt
(case (output (VALUE "nop"))

(condition (LOAD 0)(LOADINV 1)(OEN 0)(OENINV 1))

61



)

(case (output (TERM (OEN OUT) (parent OUT)))
(condition (LOAD 0)(LOADINV 1)(OEN 1)(OENINV 0))

)

(case (output (OP "LOAD"))
(condition (LOAD 1)(LOADINV 0)(OEN 0)(OENINV 1))

)

)

(end-bdl)

llllllllllllllllllllllllllllllllllllll»|•l|»»»»»»»»»»»»'»'»,»,»»,,','

;;; bdl descriptions for shifters upl, up2, and up4.

»»i»»»»f»i»fff»»»»»»»»»»»»»»»ii»»»»»»tit»ii»»»»»ii»»»»»»»»»»»»»»,,,»'

(behavior-cell upl)
(primitives
upshift1 Dl)
(net inl ((parent IN) (Dl IN)))
(terminal OUT)

(terminal SHIFT1)

(terminal SHIFT1BAR)

(symbolic.tt
(case (output (VALUE "nop"))
(condition (SHIFT1 0)(SHIFT1BAR 1))

)

(case (output (VALUE "IN"))
(condition (SHIFT1 0)(SHIFT1BAR 1))

)

(case (output (TERM (parent OUT) (Dl OUT)))
(condition (SHIFT1 1)(SHIFT1BAR 0))

)

)

(end-bdl)

(behavior-cell up2)
(primitives
upshift2 D2)
(net inl ((parent IN) (D2 IN)))
(terminal OUT)

(terminal SHIFT2)

(terminal SHIFT2BAR)

(symbolictt
(case (output (VALUE "nop"))
(condition (SHIFT2 0)(SHIFT2BAR 1))

)
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(case (output (VALUE "INI"))
(condition (SHIFT2 0)(SHIFT2BAR 1))

)
(case (output (TERM (parent OUT) (D2 OUT)))
(condition (SHIFT2 1)(SHIFT2BAR 0))

)

)

(end-bdl)

(behavior-cell up4)
(primitives
upshift4 D4)
(net inl ((parent IN) (D4 IN)))
(terminal OUT)

(terminal SHIFT4)

(terminal SHIFT4BAR)

(symbolic_tt
(case (output (VALUE "nop"))
(condition (SHIFT4 0)(SHIFT4BAR 1))

)

(case (output (VALUE "INI"))
(condition (SHIFT4 0)(SHIFT4BAR 1))

)

(case (output (TERM (parent OUT) (D2 OUT)))
(condition (SHIFT4 1)(SHIFT4BAR 0))

)

)

(end-bdl)

B.4 Output Files from the Assembler.

!i!!!i!!i!i!i!!!!i!!!!i!!!!!!ii»Miiiiiiiiiiiii)i)iiiiiiii)iiiiiiiiiiiii

;;; This is the "asm.tables" file created by assembler from the orient.c
;;; program and the structure master view of the sdl file system.
JI i J} JJ I! JJJ > iI5 I iIJ I iJ ! I J» »!! ! JJ»! »i »i»>»»»• ii ii » »» » »ii »» » »» » »ii i» i» ii »

♦♦♦♦♦♦♦♦Symbol Table********

NAME= dirnlmg TYPE= Variable MEM= dirnlmg
NAME= xlmg TYPE= Variable MEM= RIO
NAME= ylmg TYPE= Variable MEM= R20
NAME= zero TYPE= Variable MEM= imreg

NAME= IMR TYPE= Variable MEM= C12

NAME= IMR2 TYPE= Constant VALUE= 508

NAME= IMGSIZ TYPE= Constant VALUE= 512

NAME= RIDGESIZ TYPE= Variable MEM= C13
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NAME= RIDGE TYPE= Constant VALUEs 4

NAME= SIZE TYPE= Constant VALUE= 262144

NAME= address TYPE* Variable MEM= latch

♦♦♦♦♦♦♦♦StateTable********

Block= 1 NextBlocks 2 Cond: EOB

Blocks 2 NextBlocks 3 Cond: EOB

Block= 3 NextBlocks 3 Cond: (not (IMGSIZ))

Block= 3 NextBlocks 4 Cond: (IMGSIZ)

Block= 4 NextBlocks 2 Cond: (not (RIDGE))

Blocks 4 NextBlocks 5 Cond: (RIDGE)

Blocks 5 NextBlocks 6 Cond: EOB

Blocks 6 NextBlocks 7 Cond: EOB

Blocks 7 NextBlocks 7 Cond: (not (IMGSIZ))

Blocks 7 NextBlocks 8 Cond: (IMGSIZ)

Blocks 8 NextBlocks 6 Cond: (not (IMGSIZ))

Blocks 8 NextBlocks 9 Cond: (IMGSIZ)

Blocks 9 NextBlocks 10 Cond: EOB

Blocks 10 NextBlocks 11 Cond: EOB

Blocks 11 NextBlocks 11 Cond: (not (RIDGE))

Blocks 11 NextBlocks 12 Cond: (RIDGE)

Blocks 12 NextBlocks 10 Cond: (not (IMR2))

Blocks 12 NextBlocks 13 Cond: (IMR2)

Blocks 13 NextBlocks 14 Cond: EOB

Blocks 14 NextBlocks 15 Cond: EOB

Blocks 15 NextBlocks 15 Cond: (not (RIDGE))

Blocks 15 NextBlocks 16 Cond: (RIDGE)

Blocks 16 NextBlocks 14 Cond: (not (IMR2))

Blocks 16 NextBlocks 17 Cond: (IMR2)

Blocks 17 NextBlocks 18 Cond: EOB

♦♦♦♦♦♦♦♦♦♦♦♦♦Symbolsand their notation**************
Name: IMR2 Type: Decoder Decode value: 508
Name: RIDGE Type: Decoder Decode value: 4
Name: IMGSIZ Type: Decoder Decode value: 512
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;;; This is the file "cfsm.esp" created by the assembler from the program

;;; "orient.c".

iiiiiiiiiiiiiiiiiiiii iiiiiiiiii >»iiiiiiiilliiiiiiiliiii»ii>ii»ii»»»*»i'»>

.i 9



.o 10

.type f

00000 1000000001

10000—0 1000000001

01000—0 0100000010

11000—0 1100000011

00100—0 0010000100

10100—0 1010000101

01100—0 0110000110

11100—0 1110000111

00010 0 0001001000

10010—0 1001001001

01010—0 0101001010

11010—0 1101001011

00110—0 0011001100

10110—0 1011001101

01110—0 0111001110

11110—0 1111001111

00001—0 0000110000

10001—0 1000110001

01001 1 0100110010

10000—1 0100000010

01000—1 1100000011

11000—01 1100000011

11000—11 0010000100

00100-0-1 0100000010

00100-1-1 1010000101

10100 1 0110000110

01100 1 1110000111

11100—01 1110000111

11100—11 0001001000

00010—01 0110000110

00010—11 1001001001

10010 1 0101001010

01010—1 1101001011

11010-0-1 1101001011

11010-1-1 0011001100

001100—1 0101001010

001101—1 1011001101

10110 1 0111001110

OHIO 1 1111001111

11110-0-1 1111001111

11110-1-1 0000110000

000010—1 0111001110
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000011—1 1000110001

10001—1 0100110010

.e

iiiiiiiiiiiiiiiiiiitiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii''i'i»'''»''>'>''

;;; This is the file "cstore.esp". It was created by editing the file
;;; "bit.info" which gives information on how the bits will be stored in
;;; the finite state machine. The program "post" was used to generate

;;; this file.

»»»>»»»»»»»»»JJJiii»»»i»J»i»»»»»»»»»iiiiiii»»i»»»ii»»»»»»»»»»»»»»»»»»»»'

.i 7

.o 41

.type f
1000001 10000000000010000000000010010000000000001

0100001 01000000000001000010000000000011110000001

1100001 11000000000000000000000000010100000001010

1100010 01000000000001000010000000000011110000001

0010001 00000000000011000000000010100000000000000

0010010 10000000000000000000000010010000000000001

1010001 00000000000010000000001000010000000000001

0110001 01000000000001000010000000000011110000001

1110001 11000000000000000000000000010100000001010

1110010 01000000000001000010000000000011110000001

0001001 00000000000011000000000010100000000000000

0001010 10000000000000000000000010010000000000001

1001001 00000000000010000000000100010100000000001

0101001 01000000000001000010000000000011110000001

1101001 11000000000000000000000000010100000001010

1101010 01000000000001000010000000000011110000001

0011001 00000000000011000000000010100000000000000

0011010 10000000000000000000000010010000000000001

1011001 00000000000010000000000100010100000000000

1011010 10000000000000000000001000010000000000001

0111001 01000000000001000010000000000011110000001

1111001 11000000000000000000000000010100000001010

1111010 01000000000001000010000000000011110000001

0000101 00000000000011000000000010100000000000000

0000110 11000000000000000000000000010100000000001

1000101 00000000000000000000000010010000000000000

1000110 10000000000001000000000010100000001100001

0100101 00000000000000000000000010010000000000001

.e
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;!ilMl!iMIMMMIIIIMIIIIIIIIIIIIIIIIIMI"IIIIMIMIIIIIIIIMMMII

;;; This is the file "pcu.parval". It was generated by the assembler.
;;; It provides the parameters needed by the controller in order for the
;;; Design Manager to generate the final layout.

(num_of_blks 18)

(num.of_states 19)

(stack.depth 0)
(num.of_cond 3)

(num_of_loopslice 0)
(cfsmtab "cfsm.esp")
(max_blk_size 2)

(cstoretab "cstore.esp")
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