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GM: A New Gate Matrix Layout System

Dong-Min Xu

Abstract

The random module generators are necessary in VLSI layout phase. GM is a new

random module generator for CMOS circuits. It is based on the gate matrix layout

style which has received considerable attention over the past few years. GM divided

the whole layout procedure into two one-dimensional assignment problems. Some new

algorithms are developed, and the results are promising.

GM also considered a lot of practical constraints such as the pre-assigned I/O

pins, oversized transistors and critical nets. In order to improve the area usage and the

aspect ratio, it applied the horizontal compaction to the gate matrix. Considerable

improvement over each results has been obtained.
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Chapter 1

1. Introduction

1.1. Gate Matrix Layout

A random logic module is defined as an irregular structure of basic components,

such as transistors and gates. Being widely varied in complexity and type, the modules

can not be kept in a library. So the random module generators are necessary in VLSI

layout phase. In building block layout - a cell based design style, the cells with cer

tain size are in fact the results of the random module generators.

Gate matrix layout was first introduced by Lopez and Law [1] of Bell Laboratory

for the layout of custom CMOS circuits. It is very similar to the Weinberger array [2]

style which were studied in [3][16]. Since it uses a simple and regular structure, it is

easy to complete a random logic automatically. Several module generators [5][6],

based on this layout style, have been seen.

Gate matrix layout is a style for CMOS circuits. An example is shown in fig.l. In

this layout, all the vertical polysilicon gates are placed in columns. All the transistors

connected to the same gate signal are constructed along the same column. The inter

connections among transistors are made by horizontal metal lines. A net is defined as a

series of metal lines and transistors which are connected on a same row. The size of a

gate matrix is proportional to the product of the number of columns and rows. To

minimize a gate matrix, the number of rows should be reduced since the number of

columns is already fixed. Because a row can be shared by more than one unoverlapped



nets, the number of rows heavily depends on the column ordering.
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Figure 1

1.2. Previous Work

In 1982, Wing proposed automatic gate matrix layout [7]. He solved this problem
by using a graph theoretic method which had been well considered in [3]. In this
method, the nets are treated as intervals. A gate matrix is represented as an interval
graph G(V,E), where V is the set of vertices which correspond to nets and E is the set
of edges which connect vertices whose nets overlap in one or more columns. Wing
transformed the gate matrix optimization problem into the problem of finding an inter
val graph from a general graph such that the maximum clique size of the interval
graph is minimum. This problem is actually a one-dimensional assignment ( or linear
placement) problem which has been proved to be NP-complete [8].

Since this is NP-complete problem, most of published algorithms attacked this
problem with heuristic strategies. All the algorithms can be classified into two
categories: the constructive algorithms and the iterative improvement algorithms.

The constructive algorithms can be divided into two major parts. The first part
aims at finding a good gate arrangement such that the total number of required tracks



is minimum. Ohtsuki et. al. [3] used a graph theoretic approach and first formulated

this problem as an augmentation of a graph. By an augmentation, they mean a set of

edges which are added to a graph such that the resulting graph becomes an interval

graph. A augmentation which leads to a least clique number is what we want. Unfor

tunately, this problem turns out to be a NP-complete [8]. Instead, they proposed a

polynomial-time algorithm for finding a minimal augmentation, where an augmentation

is minimal if no proper subset of it is an augmentation. Another linear minimal aug

mentation algorithm [9] by using PQ-trees was proposed in 1981.

Base on the above idea, Wing [7] represented the connection graph by a dominant

versus vertex matrix [10] and obtain an interval graph by reconstructing the matrix in

such a way that its rows are minimally filled with ones so that it has the consecutive

ones property. By using this method, Li proposed a family of heuristic algorithms [11].

We also published an algorithm [12] which improved Li's idea by using a two stages

strategy to get rid of the greedy property. The results were much better than the previ

ous ones.

Some other heuristic algorithms [13][14][15] were also proposed to attack this

problem. Deo [21] formulated this problem as a dynamic programming problem and

used a set of heuristic approaches to deal with the problem. Hwang, et. al. [22] [23]

used a modified min-net-cut heuristic in conjunction with dynamic net lists ( D-nets )

to get a at worst a log-n approximation algorithm.

The second part of the constructive algorithms attacked the one-dimensional prob

lem by searching for an optimal "net ordering", rather than an optimal gate ordering.

The corresponding gate ordering is then constructed according to the obtained net ord

ering. Asano [16][17] first proposed this method. Huang and Wing [18] gave a

modified Asano's algorithm. The considerable improvement was reported.

There existed some other algorithms which can be called iterative improvement

algorithms. These algorithms got an initial result first and then used heuristic

approaches to improve it Leong [19] gave an iterative improvement algorithm. He

employed the technique of simulated annealing and used a cost function that minim

ized both the layout area and the total wire length. Yoshizawa proposed another

heuristic algorithm [20] which used a clustering method to get an initial gate ordering



and then defined two exchange operations to do the further iterative improvement

In addition to the above algorithms, some other improvements were completed to

the gate matrix layout In gate matrix, a group of series-connected transistors can be

placed in either one or two rows [5], if the position of the transistors are exchanger-
able. To allow such an exchange, a special net representation is used for series-

connected transistors. In [22][23], the series-connected transistors are treated as so-

called "D-net", which allows exchanging of transistors in a MD-net".

In [5], two nets were merged into one when they have a MOSFET in common
and overlap at a single gate column. Shu [24] showed a more compact layout which
can be obtained by merging two nets so that they shared common track spaces even
when they do nothave a MOSFET in common. In fig.2, Shu's result, shown in fig.2(b)
was much better than the usual methods, shown in fig.2(a).
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From the experimental statistics, the larger the circuit, the lower its density in a
gate matrix layout In addition, as the circuit size gets increased, the aspect ratio of the
layout may become unacceptable. Huang proposed a heuristic gate matrix partioning
algorithm [25] which divides a gate matrix into several blocks. The interconnection
among blocks are implemented by gates which are placed on the same column such



that no extra routing area is needed.

Recently, a new two-dimensional folding cell generator [26] was proposed. It is
based on gate matrix, but more flexible. It is suitable for NMOS circuits. In order to

allow the folding of both the vertical signal nets and the horizontal poly strips, it does
not require the transistors with the same gate signal to be on the same poly strip. The
results were more compact and the aspect ratio was well controlled.

From the above discussion, we know that most of the authors focused on the

one-dimensional algorithm, rather than implementing a layout system. Here in this

report, we present a new gate matrix layout system which is called GM. A lot of atten

tions was put on both the algorithms and some detail improvements to the gate matrix
layout.

1.3. Organization

In chapter 2, we give an overview of the GM program, and introduce our gate

arrangement algorithm and its results. The considerations for series-connected transis

tors and the horizontal nets merging are included in chapter 3. The net assignment

which is found to be an extended one-dimensional assignment problem is presented in

chapter 4. Chapter 5 shows some layout results of the GM program. The conclusions
are given in chapter 6.



Chapter 2

2. Gate Arrangement

2.1. GM Overview

GM is a gate matrix layout program which can treat the placement and intercon

nections of transistors at the same time. It uses the circuit description files ( at transis

tor level ) as its inputs. The outputs are given in CDF files. The program uses KIC
command to draw the layout results on the screen.

In gate matrix layout style, all the vertical poly strips are usually considered to be

equally spaced. Our program, however, does not keep the polys equally spaced.

Instead, it applies the horizontal compaction to the gate matrix such that the polys are
placed as close as possible if they do not violate the design rules ( see fig.l ). This
process improves both the area usage and the aspect ratio a lot.

Another important feature of GM is that it allows users to do interactive improve
ment on the layout results. If the users consider some critical nets are too long, what
they need to do just points these nets out and put the weight they want on them. GM

will then automatically reroute these critical nets in the shortest possible distance.

GM can also handle some practical constraints such as oversized transistors and

pre-assigned I/O pins. It allows the users to decide a certain range for a I/O pin's posi
tion or specify a special order for I/O pins. The program can automatically check if
there exist conflicts among these pre-assigned I/O pins. Currently, the I/O pins con
straints can be exerted to the vertical polys of the gate matrix.

GM divides the gate matrix layout procedures into two steps: gate arrangement
and net assignment. The gate arrangement tries to determine a good gate sequence so
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as to minimize the number of tracks and the total length of nets. Here, we use a

modified algorithm of our original algorithm [12]. The net assignment is used to

assign nets to tracks such that the total length of the vertical diffusion runs, and the

intersections of the vertical diffusion runs over transistors are minimal. Our recent

work shows that the net assignment problem is also a one-dimensional assignment

problem. But it is a little bit different from the original one-dimensional assignment
problem. We called it an extended one-dimensional problem. Based on our formula

tion, a heuristic algorithm was proposed. The results are satisfying.

2.2. Introduction

In gate matrix layout, shown in fig.3, all P transistors are placed in the top half of

the matrix and all N transistors in the lower half. The column of the matrix are

polysilicon stripes ( also called gates ) which are not always equally spaced A gate

serves two functions: first, as a transistor gate when diffusion areas placed on each

side of the stripes; second, as a conductor which connects two gates of each comple
mentary pair of transistor. The interconnection among transistors are made by seg

ments of horizontal metal lines ( called nets ) which are placed in the rows of the

matrix. A transistor is formed when a horizontal diffusion intersects with a vertical

poly.
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In gate matrix layout, we usually divide the layout procedure into two steps: first,

we determine an optimal gate sequence, so as to minimize the number of tracks and



the total length of nets. Second, we assign nets to tracks.

In [5], Wing, Huang and Wang formulated the above two steps in terms of two

function , f and h. Function f is a one-dimensional assignment problem that assigns the

gates to the columns of the matrix. Function h is the function that puts the nets on to
the rows of the matrix. For function h, Wing, Huang and Wang [5][18] mainly focused
on "realiable" vertical diffusion runs, but they did not present a systematic procedure.

In this chapter, a new gate matrix layout program is introduced, we propose an
improved algorithm based on our earlier work[12] that takes into account practical
constraints, such as I/O nets, I/O gates and critical nets.

2.3. Improved Gate Arrangement Algorithm

2.3.1. Gate Arrangement Problem

The gate arrangement problem can be symbolicly represented by Fig.4, where the
horizontal lines indicate the nets and the vertical lines the gates.
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Figure 4

If we rearrange the order of the columns in Fig4(a), Fig4(b) is obtained. The
number of tracks is reduced from four to three. Thus, the gate arrangement problem is
to find an optimal permutation of columns, so as to minimize the number of horizontal
tracks and the total length of nets.
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2.3.2. I/O Constraints

In gate matrix layout, an I/O pin can be placed at the left or the right boundary

through metal nets, called I/O net. It can also be placed at the top or the bottom boun

dary through polysilicon gates, called I/O gate. Usually, the position of I/O nets and

gates, and the specific order of I/O nets and gates are decided before a gate matrix

layout is generated.

2.3.3. Critical nets constraints

In order to optimize the performance of the layout results, we should consider the

delay problem in gate matrix layout By a critical net, we mean a part of the net path

which influences the performance in a critical way. It should be laid in a shorter dis

tance.

2.3.4. Improved algorithm

Here, we propose an improved algorithm over that in our previous paper [12].

Both the I/O constraints and critical net constraints are considered. We define a vertex

versus gate matrix ( for short, v.g. matrix ) as follow:

Def 1: A v.g. matrix A=(a/y) is a mxn matrix, where m is the number of nets, n

the number of gates. It is defined by

<h

=1 if net i connects gate j and this element is not on a critical path

>1 if net i connects gate j and this element is on a critical path
=0 Otherwise

In the above definition, if au >1, the value of au indicates the weight of the criti
cal part of a net.

In order to demonstrate the definition clearly, an example is illustrated below:

11



Ar-

00001001
00100100
00001 100
00010001
10000011
01202000

From the above matrix Alt we know that net 6 is a critical net So, column 3 and

column 5 should be put as closely together as possible.

A v.g. matrix has the consecutive non-zero element property, i.e., the non-zero

elements in each row occur in consecutive positions. We call the v.g. matrix with con

secutive non-zero element property realizable. If a v.g. matrix is not realizable, one

simply changes the order of columns, fills each rows with ones ( these ones are called

fillins ) and makes the resultant filled matrix A' realizable. Thus, A' realizes the connec

tion relations of matrix A.

In our original algorithm [12], we reconstruct matrix A' from a v.g. matrix A

column by column, so as to realize the given connection relations of A. The algorithm

includes two stages. In the first stage, it divides the candidate gates ( i.e. unplaced

gates ) into the "selectable gate" set ( for short, s.g. set) and "unselectable gate" set (

for short, u.g. set). The division is made in such a way that the nets connecting to the

u.g set have as little incident relation to the current nets (i.e. the nets being considered

) as possible. Then, the next gate will be selected from the s.g. set only. In the second

stage, the algorithm will make further choice from the s.g. set to obtain the best

selected gate. The main objective in this stage is to minimize the total length of nets.

In order to achieve good results, the subsequent selection contains several steps and

considers factors such as the number of fillins, starting nets and ending nets, etc.

In this improved algorithm, we also keep the above two stages strategy. First, we

decide the selectable gate set with exactly the same method as [12]. Second, we make

further choice in selectable gate set with the consideration of I/O constraints and criti

cal path constraints. Also in this paper, we introduce a concept of dynamic constraint

graph. The initial dynamic constraint graph is the very connection graph. All incident

nets in this graph can not be put on the same track. When we reconstruct matrix A'

from matrix A column by column, the dynamic constraint graph will be changed.

When the matrix A' is finally formed, the dynamic constraint graph becomes an

12



interval graph. The clique number of this interval graph is the number of tracks occu
pied by all nets.

In [12], we use a two-stage method to choose an initial column. The obtained ini

tial column has a little incidence relation to the other nets. We found that this method

made most of the nets to be heaped in the center of the gate matrix. The layout results
are influenced a lot by the initial column. In the improved algorithm, we use a new

method to choose an initial column. Our heuristic idea is that the more the short nets,

connected to the initial column, the better is the result This strategy will cause many

short nets placed at the beginning of the layout So the distribution of the nets is more

reasonable than it was before.

For the above matrix Alt assume the I/O constraints are as follow: net 5 and net 6

are placed at the left and right boundary, respectively ( we put two fictitious columns

outside the matrix A[ to indicate the constraints of these two I/O nets ). Column 4 and

column 7 are placed at position 4 and 6 in new formed matrix A[. As indicated earlier,

net 6 is a critical net. So, before we perform rearrangement of the v.g. matrix Au we

already have:

/ a 34**78
0 0 0 0

, o 0 0 0

A - 2 0 0 0
711 ~ 0 1 0 0

-♦1 0 1 0
0 0 0 1 -* i(o f\sct

The algorithm is to construct A' from A column by column. The columns are

placed from left to right in A'. For the partially formed matrix A', the candidate gate set

C is defined by gates which have not been fixed. Assume that the selectable gate set

s.g. has been obtained ( s.g. £ C ). For j e s.g., we define:

fillin(j): the number of fillins which makes A' maintain the consecutive non-zero ele

ment property when column j is catenated to A'.

end(j): the number of ending nets when column j is put in A'. For the above matrix

Ax, assume the partially formed matrix A[ is as follow:

13



A[-

(824
01* *
0000
0000
01*1
I I * *

L001*

When column 4 is put in position 4, only net 4 is laid out. So we have end(4)=l;

distance®: the distance between the current position and the first non-zero element of

the prefixed column (I/O gate ). Assume a net in the partially formed matrix A'

is:

(00000 1 )

In this case, if the current position ( at column 6 ) is occupied by 1, the next
three space will certainly be filled with fillins or ones. The number of these

spaces, three, is called distance. It is clear that the shorter the distance®, the
better are the results.

constraint®: the number of new added edges in the dynamic constraint graph, when
column j is catenated to A'. This will be illustrated as follow: for the above given
matrix Au assume the partially formed matrix A' is:

a;=

IB1

01*
000
000
01 *
11 *

001

Before column 2 is put in A'u the constraint graph is the connection graph, shown
in fig5.(a).

When column 2 is put in A', it will lead into some new constraints, indicated by
broken lines in fig5.(b). In this case, constraint(2)=2 ( 2 is the number of broken lines

). If we really put column 2 in A' after the column choice, the constraint graph will be
changed by adding these two edges. We call this new constraint graph, the dynamic

14



constraint graph.

(b)

Figure 5

start(j): the number of new starting nets when column j is put in the current position.

For the above matrix Au assume the partially formed matrix A\ is as follow:

a;=

18

01
00
00
01
11

Loo

When column 8 is put in position 2, two nets, e.g. net 1 and net 4, are intro
duced. So we have start(8)=2.

critical®: the product of the number of fillins among critical part of nets and its
weight For example, in matrix a[9 when column 7 is put in position 6, the criti
cal^) = 1x2 = 2.

a;=

1824*73*
01 * * 1000
00000011
00001* * 1
01* 10000
11***100

L00 1 * 2* 2*

We define a function a® as follow:

a(/) = critical (j) + constraint (J) +fillin(j) - endQ)

15



For all gates in the s.g. set, we choose the best one, j e s.g., by the following

steps:

(1) Select the column with the smallest a(/), if more than one.

(2) Select the column with the smallest distance®, if more than one.

(3) Select the column with the smallest start®, if more than one.

(4) Select a column arbitrarily.

Now, we constructa[ from Ai step by step:

step 1: I/O net 5 is placed at the left boundary of the matrix AJ. From fig.5(a), the

adjacent nets of net 5 are net 1 and net 4. According to the strategy of [12], the

s.g. set {1,4,7,8} is obtained. Because column 4 and column 7 have been

prefixed, the s.g. set is modified to be {1,8}. Then the function a(j) is calculated

as follow:

column 1 9
fillin 0 0

end 0 0

distance 4 6

constraint 0 0

start 0 2

critical 0 0

a 0 0

According to our choice strategy, column 1 is picked up in this step.

step 2: In this step, s.g.={8}. So only column 8 is chosen for catenating to a[,

step 3: In this step, s.g.={2,5}. So we have:

column 2 5
fillin 3 2

end 0 1

distance 0 0

constraint 2 4

suit 1 2

critical 0 0

a 5 5

According to selection method, column 2 is chosen.

16



The remaining columns chosen by using the above method, are shown in table 1.

Table 1

step u.g. set s.g. set chosen column order of column

1 2.3.4.5.6.7 1.8 1 1.
2 2.3.4.5.6.7 8 8 1.8.
3 3.4.6.7 2.5 2 1.82.
4 40/0 gate) 1.82.4.
5 7 3.5.6 5 1.8.2.4.5.
6 70/0 gate) 1.82.4.5.7.
7 3.6 3 1.82.4.5.7.3.
8 6 6 1.82.4.5.7.3.6.

The merit of this algorithm is that:

(1) it considers the I/O net and gate constraints reasonably.

(2) it can treat critical net constraint so that the circuit performance can be

improved.

(3) it does the gate assignment more wisely, because of the introduction of the

concept of dynamic constraint graph.

2.3.5. Results

We have implemented our improved algorithm. Several examples are tested in

comparison with the results of [18] in table 2. The results are satisfying.

Table 2
No.l No.2

No.3
4-BALU

No.4
N N&P N N&P N N&P

# of transistors

# of gates
# of nets

50

33

48

118
33

87

232

140

199

462

211

370

306

71

131

158

70

84

316

70

214

76

28

36

Lower Bound 14 27 16 30 19 11 22 5

Improved
Gate Matrix

Layoutfll&W)
# of rows 14 28 32 73 40 28 58 10

Our

Algorithm
# of rows 15 30 29 62 36 23 58 10
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Chapter 3

3. Practical Considerations

3.1. Serial Transistors

In a static circuit, the order of a series-connected transistors is logically imma
terial. We consider a group of series-connected transistors as a serial net which is not

connected with other transistors before the gate arrangement. After the gate arrange
ment is done, this net should be connected with the specified transistors. For a serial
transistors group in fig.6(a), it can be treated as a serial net, shown in fig.6(b). ( Here,
»i and »2 are the outside nets to which the serial transistors should connect). After the
gate arrangement is done, the gate ordering may be as shown in fig.6(c). Fig.6(c)
corresponds to the circuit, shown in fig.6(d). By comparing fig.6(a) and fig.6(d), we
know that the ordering of serial transistors are changed. This means the gate of the
serial transistors can be reordered as one wishes. The main problem which we face is
how to connect serial transistors to the outside nets after the gate arrangement is done.

a b c

ll-Cr—I]

(b)

(a)

cab

(c) (d)

Figure 6
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For each serial transistors group, two outside nets are necessary. For each outside
net, we have to stretch it to the left by 1 or the right by r ( see fig.7 ), so as to con
nect it with the end of the serial net. For both outside nets, we can calculate /lf rx of
net nx and /2, r2 of net n2 easily. We choose a connection which has a minimum stretch
for the outside nets.

Ii ni

izu • • • ni

Figure 7

For the example in fig.8(a), /t + r2 = 0, /2 + r, = 3, So we choose min( lx + r2, l2
+ rx ) = /, + r2 = 0, which is shown in fig.8(b).
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Figure 8

3.2. Nets Merging

After the gate sequence is obtained from the gate arrangement algorithm, our pro
gram will do the net merging, as shown below. There are three kinds of nets which
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can be merged. They are shown in fig.9(a). The merged results are shown in fig.9(b).

neti neti netj

netj

neti neti netj

neti

neti

neti
neti neti

(a) (b)
Figure 9

3.3. Adjustment of Vertical Diffusion Runs:

For an initial constructed gate matrix, the distribution of its vertical diffusion runs

may not be reasonable. So our program will balance the vertical diffusion runs at the

two sides of a gate. For the example shown in fig. 10(a), all the four vertical diffusion

runs are placed at the right side of the gate. This may be difficult sometimes for the

net assignment algorithm to be realized without the violation of the design rules. In
order to avoid this tough case, we try to make the number of vertical diffusion runs at

each side of the gate be nearly same. The new distribution of the vertical diffusion
runs for the example is shown in fig.10(b).
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Chapter 4

4. Net Assignment

4.1. Introduction

After gate arrangement, net merging, adjacentment of vertical diffusion runs, and

the treatment of the serial transistors, the net assignment algorithm is necessary for

assigning nets to tracks. Since the number of tracks have been determined at this stage,

the net assignment algorithms can not reduce the number of tracks anymore.

The gate arrangement problem has been proved to be NP-complete. The net

assignment problem still needs more considerations.

For the net assignment problem, if the short vertical diffusion runs in gate matrix

are not considered, the left-edge-first algorithm[4] can find a net assignment with

minimum number of tracks which is determined by the gate assignment algorithm.

In practical cases, however, we have to consider the vertical diffusion runs. Each

vertical diffusion run is attached to a gate. In order to improve the performance of the
circuit, the length of the vertical diffusion runs should be routed as short as possible.
An upper boundary for the maximum length of vertical diffusion runs is necessary.

In [5], Wing and Huang gave a concept of a realizable net assignment. They con
sidered that a net assignment was unrealizable if a transistor is located on the path of a
vertical diffusion run. In this case, the enlargement for an extra space was necessary,
shown in fig.l1, so as to make the layout realizable. Huang and Wing developed a
zone-net assignment algorithm[18]. A zone is decided in such a way that any two nets

in each zone can not be put on the same track, namely, the nets in a zone overlap one
another. Paper [29] gave a well description about this zone decision. The algorithm

in [18] completed net assignment zone by zone from left to right. For the net
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assignment in each zone, Huang and Wing utilized a heuristic method.
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Figure 11

Based on the formulation in [5], Rim and Nakajima proved that the net assign

ment problem is NP-complete[28]. And then a heuristic algorithm was proposed.

In this chapter, we will present a new formulation for the net assignment prob
lem. It is quite different from the formulation in [5]. Based on our new formulation,

we find that the net assignment problem is something like one-dimensional assignment
problem. But it is a litde bit different from the original one-dimensional assignment
problem. So we call it an extended one-dimensional assignment problem.

We have developed an algorithm for this extended 1-d assignment problem. The
results are promising.

4.2. Formulation:

After the gate assignment is done in gate matrix layout, a new gate sequence is
obtained. So, the number of tracks becomes fixed, and the net assignment is next to be
done. Now, we define the unrealizable net assignment as follow:

Def 1: For all vertical diffusion runs at the same side of a gate, if any two of them
intersect each other, we say that the net assignment is unrealizable.
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In fig.12, the vertical diffusion runs v2 and v3 have to intersect each other. So

this net assignment is unrealizable.

E3

1-vl
EIK

£3 "\»v3

Figure 12

In net assignment, we also take into account another factor which is the total

length of vertical diffusion runs.

Def 2: For a given gate matrix layout, we define the total length of vertical diffusion

runs to be the sum of the length of all vertical diffusion runs.

In fig. 12, the length of vertical diffusion run vl is 4-1=3, and the length of v2

and v3 are 3-1=2 and 4-2=2, respectively. So the total length of vertical diffusion runs

is 3+2+2=7.

In net assignment, if a vertical diffusion run intersects with a transistor, an

enlargement should be done, shown in fig.l 1. So those intersections have to be lim

ited so as to reduce the area usage.

Def 3: For a given gate matrix layout, we define the conflict number to be the sum of

intersections of vertical diffusion runs over transistors in the matrix.

For the example shown in fig.12, the vertical diffusion run vl intersects with one

transistor. V2 and v3 intersect with one transistor each. Thus, the conflict number is 3.
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Now, we give our new formulations as follow:

Net Assignment Problem: For a given gate order of a gate matrix, the number of

tracks is fixed. The objective of the net assignment is to put all nets on to tracks

so as to minimize the total length of vertical diffusion runs and the conflict

number while keeping the track number unchanged. The final layout must be real

izable.

4.3. Extended One-Dimensional Assignment Problem:

4.3.1. One-Dimensional Assignment Problem:

One-dimensional assignment problem ( or linear placement, gate sequencing prob

lem ) can be formulated as follow: Given a set of modules, numbered as 1,2, ..., m

and a set of nets nl9 n* ..., «*, together with a net list which specifies the connection

pattern. A net corresponds to a horizontal wire which interconnects modules assigned

to the net The assignment can be considered to be a permutation n = { nit 712,.... rc« }

of modules such that module 7t,- is placed in ith position on a row. The most com

monly used objective function for minimization is the total wire length. However, a

different criterion is used in one-dimensional logic gate array and gate matrix layout.

The number of tracks has to be minimized.

4.3.2. Extended One-Dimensional Assignment Problem:

For the extended 1-d assignment problem, the modules are defined to be the verti

cal strips which have different vertical ranges. The strips are considered having no
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width. Fig.13 shows several strip modules.
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Figure 13

The vertical range of a strip module can be measured by an interval (x1^2)- For

example, the interval of strip module mi is (3,6).

Several strip modules can be put on to the same column, if they do not overlap.
We consider each column, with at least one strip module on it, as a track. The strip
modules in fig.13 occupy three tracks ( or columns ).

The strip modules can be connected by nets. A net can be used to connect strip
modules in horizontal direction. The jogs are not allowed for each net. So it is obvious

that the strip modules can not be connected by a net, if they are on the same track ( or
column ). Fig. 14 shows an example of a connection pattern specified by several nets.
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Figure 14
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The EXtend One-Dimensional Assignment Problem ( EXODAP ) can be stated as

follow: Given a number of strip modules which have different ranges, and a set of

nets which specifies the connection pattern. The extended 1-d assignment problem can

be considered to be an arrangement of strip modules such that the number of tracks (

or columns ) occupied by strip modules and the total length of nets are minimized.

4.3J. Extended 1-D Assignment Algorithm:

This Extended One-Dimensional Assignment Algorithm ( EXODAA ) will assign

all strip modules to tracks ( or columns ) one by one from left to right. The track

which is being treated is called current track. Assume

(a) M is a set of all strip modules connected by a set of nets.

(b) FM is a subset of M whose modules have been fixed on to tracks ( or

columns).

(c) UFM is a subset of M whose modules have not been fixed on to tracks ( or

columns).

(d) CFM is a set of strip modules which have been fixed on the current track.

If we compare strip module mitUFM with all strip module mjeCFM, the algorithm
will decide a selectable module set SM from UFM in such a way that the strip module

mkeSM does not overlap with all mjeCFM. It is obvious that any strip module mktSM
can be assigned on to the current track ( or column) without leading to the overlap of

modules. The set SM is a subset of UFM.

Algorithm EXODAA

{

i=l;

while ( UFM != $ ) {

get SM by comparing strip modules in UFM with

strip modules on the current track i;

if ( SM == fc>) {

i++; SM = UFM;
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}

for all strip modules in SM, select the best strip module r£SM so as to

minimize the total length of nets, and put it on to the current track i;

UFM = UFM - {r};

} /* while */

Now we illustrate the algorithm step by step for fig.14. At the beginning, we

choose an initial module mx and put it on track i (i=l). So we have M = { ml9 m2, m3,

m4 }, FM = { mx }, and UFM = { m2, m3, m4 }. Since the strip module m, overlaps

with all strip modules in UFM, SM is empty. Then we do next track, namely set i=2.

According to the algorithm, we have SM = UFM. If module m2 is put on the track 2,

we get FM = { mu m2 }, UFM = { m3, m4 }, CFM = { m2 }, and SM = { m3 }. The

strip module m3 can be put on to the same track as m2 is on. The final strip module m4

has to be put on track 3 (i=3 ).

In the extended 1-d assignment problem, if we direcdy use left-edge-first algo

rithm to assign strip modules on to tracks, the length of nets may be quite long. The

algorithm EXODAA can survey a lot of choices. So it can surely get much better
results.

For the extended 1-d assignment problem, if we consider each strip modules as an

interval, an interval graph then can be obtained. The left-edge-first algorithm can get

an assignment result with the number of tracks to be the clique number of this interval

graph. It is easy to prove that the number of tracks, which the EXODAA algorithm

needed, is also this clique number.

4.4. Net Assignment:

In gate matrix layout, the objective of the net assignment is to minimize

(a) the total length of vertical diffusion runs, and
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(b) the conflict number

such that the net assignment is realizable.

According to the above discussions, if we consider each net in gate matrix as a
strip module and each vertical diffusion run in gate matrix as a net in EXODAP, then,

the net assignment problem can be transformed into the extended 1-d assignment prob
lem.

Fig.15(a) is a net assignment problem. It can be easily transformed into the
extended 1-d assignment problem, shown in fig. 15(b)
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Our net assignment algorithm is a modified version of the algorithm EXODAA. It
assigns nets to tracks column by column from left to right. The track which is being
treated is called the current track. Assume

(a) N is the set of all nets,

(b) FN is a subset of N whose nets have been fixed on to the tracks,

(c) UFN is a subset of N whose nets have not been fixed on to the tracks yet,

(d) CFN is a set of nets which have been fixed on the current track.

With exactly same method as we used in EXODAA, we can get a selectable net

set SN from UFN. Any net nkeSN can be assigned on to the current track without lead

ing to the overlap of nets. In order to choose the best net nrzSN more wisely at current
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step, we introduce some functions as follows:

v_danger(k): during the net assignment, we must find a realizable layout For the

example shown in fig.15, assume FN={5), UFN={ 1,2,3,4), the current track 2 is

empty. So we have SN={ 1,2,3,4}. The vertical diffusion v2 and v3 can not inter

sect each other, otherwise the layout is unrealizable. So if net 5 is fixed on track

1, net 2 and net 3 can not be placed on to a track until net 4 is placed. In this

case, we say that net 4 is a dangerous net, caused by v3. For each net, several

vertical diffusion runs, like v3, may be connected to it We define the dangerous

number of a net to be the number of this kind of vertical diffusion runs.

V_danger(k) is the dangerous number of net k. In above case, the dangerous vert

ical diffusion run of net 4 is v3. So we have v_danger(4)=l.

In order to make the layout to be realizable, some nets should be exempt from

SN. So the algorithm must modify SN. In the above case, net 2 and net 3 are

needed to be exempt from SN in current step. So we have SN={ 1,4).

v_ending(k): In current step, if net k has been put on to the current track, the number

of ended vertical diffusion runs on net k is v_ending(k). In the above example,
v_ending(l)=l and v_ending(4)=l.

v_conflict(k): when net k is put on to the current track, some vertical diffusion runs

may go over the transistors on this net The number of these vertical diffusion

runs is v_conflict(k).

v_fillin(k): when net k is placed on to the current track, the number of unended verti

cal diffusion runs is v_fillin(k). For the above example, v_fillin(l)=0 and
v_fillin(4)=0.

For all nets in SN set, the algorithm chooses the best one nreSN by the following
steps:

(1) Select the net with the biggest v^_danger(k), if more than one.

(2) Select the net with the biggest v_ending(k), if more than one.
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(3) Select the net with the smallest v_conflict(k), if more than one.

(4) Select the net with the smallest v_fillin(k), if more than one.

(5) Select a net arbitrarily.

Algorithm NET.ASSIGN

{

i=l;

while ( UFN != $ ) {

get SN set by comparing nets in UFN with nets on the current track i;

if(SN = $){

i++; SN = UFN;

}

get rid of the unrealizable layout by modifying SN;

if(SN = $){

printf("Net assignment can't be completed.");

stop;

}

else {

for(netkfSN) {

calculate v_danger(k), v_ending(k), v_conflict(k), v_fillin(k);

} /*for*/

choose the best net r£SN and put it on to the current track i;

UFN = UFN - {r};

}

} /* while */

}

Table3 illustrates the NET.ASSIGN algorithm step by step for fig.15.
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Table 3

UFN let current trade CFNiet SNset modified SN set net-Mrack

1.2.3.4.5 1 k 1.2.3.4.5 1.2.3.4.5 5—>1(initial choice)

1.23A 2 « 1.2.3.4 1.4 4->2

123 2 4 1 1 l->2

2.3 3 * 23 2.3 2->3

3 4 * 3 3 3->4

From the above description, we may say that the net assignment problem can be

considered as an extended 1-d assignment problem. In fact, the net assignment algo

rithm NET.ASSIGN not only rearranges the sequence of the nets, but also puts some

nets which do not overlap one another, on the same track.

5. Conclusion:

The algorithm has been programmed in C and implemented on VAX780. Two

examples from [5] [27] were tested. Our net assignment result did not require any
enlargement for example in [3], as shown in fig. 16, while two enlargements were
needed in [5]. For this example, the total length of vertical diffusion runs in [28] is 25,
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while we use 22. For the example in [27], the total length of vertical diffusion runs we

31



needed was 24, shown in fig. 17. It was better than the result in [27]. All the detail
comparisons are shown in table 4.
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Table 4

Examples H&W R&N Ours

Example1[5]
enlargement 2 0 0

total length
of vrun

23 25 22

Example2[27]
enlargement 0 0

total length
of vrun

28 24

This chapter presents a new formulation for net assignment problem in gate
matrix layout. It also defines a new problem, called extended 1-d assignment problem
which is something like 1-d assignment problem. But it is not the traditional 1-d

assignment problem anyway. The paper proposes a heuristic algorithm to solve this
extended 1-d assignment problem. The algorithm is applied to the net assignment prob
lem. The time complexity of this algorithm is bounded by OCmxn2), where n is the
number of nets, m is the sum of the number of vertical diffusion runs and the number

of gates.
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Chapter 5

Results

Our gate matrix layout program ( GM ) has been implemented in C on VAX780.
It can work in both direct mode and interactive mode. The interactive mode is capable
of making some critical nets shorter by pointing out the list of the critical nets. GM
will improve the length of the critical nets iteratively until users are satisfied. Fig. 18
shows a layout result of a circuit with 118 transistors. The horizontal dark lines are

critical nets. The iterative improvement to fig. 18 achieved the reduction of the area

Figure 18
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usage, track number and total length of critical nets by 2.1%, 2.9% and 7.1%, respec
tively, shown in fig. 19.

Figure 19

For a gate matrix, P/G nets are usually put at the top and the bottom, shown in

•T'1~"""~* T-T7IT riUfT j T-H-l ht-^tti frufr Fi-llr

Figure 20

fig. 18. The transistors are connected to P/G nets by vertical diffusion runs. If a transis
tor is far away from the P/G nets, a long vertical diffusion runs is necessary. The
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circuits performance suffers a lot from the long vertical diffusion runs. GM program
puts some P/G nets into gate matrix such that a limit to the maximum length of verti
cal diffusion runs is set Fig.20 shows an improvement to fig. 18. All the P/G nets in
gate matrix are connected by second layer metal lines which run at the right edge of
the gate matrix.

The program takes a circuit description at transistor level as its input data. For the
four examples obtained from Wing and Huang, the results are shown in table 5. Our
net assignment algorithm was able to complete all these examples while the overlaps
of vertical diffusion runs over transistors did not take place.

Table 5

examples adder alu ittl itt2

# of transistors
P

N

14

14

158

158

59

59

242

232

# of gates 7 70 41 162

# of nets
P

N

8

8

84

105

39

46

175

196

net assignment done done done done

# of tracks 8 57 33 79

We also tested eight other practical circuits. GM went through all these examples.
The results are shown in Table 6.

Table 6

examples IbAdd 2bAddl 2bAdd2 4bAdd 8bCmp 8bIdCmp addCarry decoder

# of transistors
P

N
19
19

36

36
38
38

103

103
50
50

59
59

69

69
17
17

# of gates IS 26 24 60 35 44 41 12

# of nets
P
N

15
19

23
30

25
30

67

77
35
27

44

36
32
50

12
16

net assignment done done done done done done done done
# of tracks 14 15 18 34 21 21 25 14

Here, we present some results in following pages:
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Chapter 6

Conclusions

In this report, a new gate matrix layout program GM is introduced. It can handle

practical constraints such as oversized transistors and pre-assigned I/O pins. It allows
users to do iterative improvement to the layout results, so as to make the critical nets

be re-laid in the shortest possible distance. In order to improve the area usage and the
aspect ratio, GM does not require the poly strips be equally spaced. Instead, it applies
the horizontal compaction to the gate matrix such that the polys are placed as close as
possible.

In this report, a modified gate arrangement algorithm to [12] was developed as a
part of GM package. It can consider some practical constraints, such as the I/O con
straints and critical net constraints. In addition, we formulate the net assignment prob
lem as an extended one-dimensional assignment problem and propose a new net
assignment algorithm. The tested results show that our algorithm has achieved good
results.
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GM(1) Manual GM(1)

NAME

gm - A gate matrix layout generator program

SYNOPSIS

gm [ -i ] [host:display] inputfile [ > outputfile ]

DESCRIPTION

Gm is a program that performs the layout of CMOS circuits in
gate matrix style. This layout style can treat placement and
interconnection of transistors at the same time. The program is
divided into two steps: gate assignment and net assignment. The
gate assignment determines an optimal gate sequence, so as to
minimize the number of tracks and the total length of nets. The
net assignment assigns nets to tracks such that the total length
of vertical diffusion runs, and the intersections of vertical
diffusion runs over transistors are minimal.

Gm allows users to do interactive improvement on the layout
result. This improvement can make some critical nets be laid
in the shortest possible distance.

Gm takes a circuit description at transistor level as its input
data. Its output results are given in CIF files. The program
places the polysilicons of the gate matrix as close as possible
if they do not violate the design rules. So the polysilicons of
the final layout are not equally spaced.

INPUT/OUTPUT

A Circuit Description (CD) file is composed of a sequence of
characters in a limited character set. The file contains input
card, output card, gate sequence card, net sequence card,
subcircuit cards and main circuit card. Each card is composed
of sentances. The sentances are separated with simicolons.

The CD file is described using the standard notation proposed
by Niklaus Wirth: production rules use equals = to relate
identifiers to expressions, vertical bar | for or, and double
quotes " " around terminal characters; curly brackets { }
indicate repetition any number of times including zero; square
brackets [ ] indicate optional factors ( i.e. zero or one
repetition ); rules are terminated by period.

cdFile = { subcircuit } [ input ] [ output ]
[ gateSequence ] [ netSequence ] mainCircuit.

subcircuit = subStart { { blank } { transistor } { subCall }
semi } subEnd.

transistor = t_name { blank } int { blank } int { blank }
int { blank } int [ { blank } int ] type semi.

subCall = s_name { blank } { int { blank } } name semi.
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subStart

subEnd

type
input
pin

inStart

inEnd

orientation

output
outStart

outEnd

gateSequence
gsStart
gsEnd
netSequence
nsStart

nsEnd

mainCircuit

mStart

mEnd

blank

semi

digit
int

char

name

t_name
s name

Manual GM(1)

"subckt" { blank } name { blank }
{ int { blank } } semi.
"ends" semi.

"n" | "N" | "p" | "P" .
inStart { { blank } pin { blank } } inEnd.
name { blank } int { blank } orientation
[ { blank } int { blank } int ].
"input" semi.
"endi" semi.

"t" | "T" | "b" | "B" | "1" | "L" | "r" | "R"
outStart { { blank } pin { blank } } outEnd.
"output" semi.
"endo" semi.

gsStart { name { blank } } semi gsEnd.
"g__order" semi.
"endg" semi.
nsStart { name { blank } } semi nsEnd.
"n_order" semi.
"endn" semi.

mStart { { blank } { transistor } { subCall }
semi } mEnd.
"mainckt" semi.
"end."
it « I ii H

{ blank } ";" { blank }.
ii q ii I ii 2" I ii 2" I I " 9" .

[ "+" | »-» ] digit'{ digit }.
"A" | "B" | | "Z" | "a" | "b" | ...

I "z"

char { { char } { digit } }.
m" name.— limit

= "x" name.

Gm considers upper characters exactly same as lower characters.
Comments which are quoted within '{' and '}', can be inserted
in any positions in CD files.

In CD files, subcircuit and main circuit are composed of
transistors and subcircuit calls. A transistor is given in the
following form:

NAME DRAIN* GATE* SOURCE* SUBSTRATE* [ size ] TYPE;

For example, the following line represents a N-channel
transistor, whose drain connected to the circuit node # 2, gate
connected to node # 1, source connected to Vss, and the
substrate connected to Vss. Its name is mtr ( the first letter
of transistor's name should be "m", and the first letter of
subcircuit call should be "x" ).

mtr 0
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Node number 0 has a special meaning. When it is used in the N
part of CMOS circuit, it represents Vss. When it is used in
the P part, it represents Vdd.

The input and output card are composed of "pin" sentances.
The "pin" sentance starts with the port name, followed by
circuit node number, orientation and a range. The orientation
can be one of top, bottom, left, or right, by using 't', 'b',
'1' or 'r' in this position. For example, if a pin is placed
at the top of the gate matrix, ranging from 7th column to 10th
colomn, it is represented by:

pc 15 t 7 10;

For all I/O pins contained in input/output card, gm can place
them according to a certain sequence which is given by users.
An example of gate sequence card is given as follow. It
indicates that the pin "pa" should be placed at the left of
"pb", and "pb" at the left of "pc". ( The net sequence card
"n_order" is still under development ).

g__order;
pa pb pc;
endg;

The outputs of gm are CIF file ( .cif ), transistor list,
gate assignment result and other stuffs. The CIF file can be
displayed by "xkic" command on a graphic terminal. Also it can be
ploted by "cifplot" on the Versatec electrostatic printer. The
transistor list describes the connection of transistors of entire
circuit. Each transistor is listed with the format which is similar
to the description in the CD file.

An example of CD file "eor" is shown as below:

{ This is an EOR circuit. }

subckt pass 4 12 3;
mn 3 1 4 0 N;
mp 3 2 4 0 P;
ends;

SUBCKT inv 2 1/
mn 2 1 0 0 N;
mp 2 1 0 0 p;
ENDS;

input;
pa 2 t 1 1 ;
pb 1 b 3 4;
endi;
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output;
ps 4 1;
endo;

g_order;
pa pb;
endg;

mainckt;
xinv 3 1 inv;

xpass 4 3 12 pass;
mp3 4 2 1 0 p;
mn3 4 2 3 0 n;
end.

Manual

The output of "eor" is shown below:

the number of P_transistors is 3
the number of N_transistors is 3

P_transistors
name D G S B type
xinv_mp 3 1 0 0 p
xpass_mp 2 1 4 0 p
mp3 4 2 1 0 p 0

N_transistors
name D G S B type
xinv_mn 3 1 0 0 n
xpass_mn 2 3 4 0 n
mn3 4 2 3 0 n 0 6

The number of gates is 4
The number of P nets is 4

The number of N nets is 3

fillins=7

The number of tracks needed in P part is 4
The number of tracks needed in N part is 3
The total number of tracks is 7

The sequence of gates
2 3 0 1

gate arrangement time is 0.016667 seconds.
0 nets are merged in P part
0 nets are merged in N part
Real number of P nets is 4.

Real number of N nets is 3.

Adjustment of vertical diffusion runs in P part
Adjustment of vertical diffusion runs in N part
P nets assignment
P part finally height is 4
N nets assignment
N part finally height is 3

width

0 2

0

5

t number

width t number

0
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The net assignment is completed
Area usage: 174*112=19488
This layout needs 0.250000 seconds
sum time is 0.433333 seconds

For this example, the output of CIF data are stored in
"eor.cif" file.

OPTIONS

-i is used to select an iterative and interactive mode. For the

obtained layout result, gm can make some critical nets
become shorter if the users consider these nets are too long,
Gm first asks if you satify with the layout result. If
the answer is no, it will query the user for further
information. In this step, what the users need to do, only
point out the critical nets and their weights ( >=1 ). After
all the critical nets are given, the users have to answer
"end". Then a new improved layout will be produced. Also the
reduction ( or increase ) of the area, track number and
total length of critical nets are given by gm. This
improvement will keep on going until the users stop it.

An example of this interactive mode is shown as below:

Do you satify with your layout result(y/n)? n
Please point out the nets you want to modify.
input track number (*/'end'): 4
all P nets on track 4 are listed below:
10 54

which net (#/'q')? 10
weight: 2
which net (*/'q')? q
all N nets on track 4 are listed below:
77

which net (*/'q')? 77
weight: 2
which net (#/'q')? q
input track number (*/'end'): 6
all P nets on track 6 are listed below:
40 18 46 68

which net (#/'q')? q
all N nets on track 6 are listed below:
33

which net (*/'q')? 33
weight: 2
which net (*/'q')? q
input track number (#/'end'): end
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host:display
Normally, 3m gets the host and display number from the
environment variable "DISPLAY". One can, however specify them
explicitly. The host specifies which machine to draw the layout
result on, and the display argument specifies the display number
For example, "petrus:l" draws the layout result on display one
on the machine "petrus".

DIAGNOSTICS

The input routine gives out error messages in case of wrong
specification of the CD files.

SEE ALSO

FILES

/users/dongmin/GM/gm
/users/dongmin/GM/manual
/users/dongmin/GM/CD/*.in
/users/dongmin/GM/OUT/*.out
/users/dongmin/GM/CIF/*.cif

gate matrix layout program.
the manual of "gm".
some CD ( input ) files.
the output of above CD files.
the CIF data of above CD files.

All the above files are on the machine "petrus".

AUTHER

Dong-Min Xu

BUGS

send bug reports to "dongmin@esvax"
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