

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A COMMENTARY ON THE POSTGRES

RULES SYSTEM

by

Michael Stonebraker, Marti Hearst,
and Spyros Potamianos

Memorandum No. UCB/ERL M89/82

27 June 1989

A COMMENTARY ON THE POSTGRES

RULES SYSTEM

by

Michael Stonebraker, Marti Hearst,
and Spyros Potamianos

Memorandum No. UCB/ERL M89/82

27 June 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A COMMENTARY ON THE POSTGRES

RULES SYSTEM

by

Michael Stonebraker, Marti Hearst,
and Spyros Potamianos

Memorandum No. UCB/ERL M89/82

27 June 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A COMMENTARY ON THE POSTGRES RULES SYSTEM

Michael Stonebraker, Marti Hearst, andSpyros Potamianos
EECSDept.

University ofCalifornia, Berkeley

Abstract

This paper suggests modifications to the
POSTGRES rules system (PRS)to increaseits usa
bility and function. Specifically, we suggest
changing the rule syntax to a more powerful one
and propose additional keywords, introduce the
notionof rulesetswhosepurposeis to increase the
user's control overthe ruleactivation process, and
expandthe versioning facility to supporta broader
range of applications thanis currently possible.

1. INTRODUCTION

In the POSTGRES data base management
system [WENS88, STON86a], we have designed
and implemented an integrated rules system.
Based on this experience wehave several changes
we plan to make. This paper reviews (in Section
2) the initial proposal as presented in [STON88],
describes the status of thecurrent implementation,
and suggests modifications and additions in three
areas: rulesyntax (Section 3), rulesets (Section 4),
and versions (Section 5). In Section6 we summar
ize the changes.

2. THE CURRENT POSTGRES RULES
SYSTEM

2.1. Syntax

POSTGRES supports a query language,
POSTQUEL, which borrows heavily from its
predecessor, QUEL [HELD75]. The main exten
sions are syntax to deal with procedural data,
extended data types, rules, inheritance, versions
and time. The language is described elsewhere
[ROWE87], andhere wegiveonly oneexample to
motivate our rules system. TTie following POST
QUEL command sets the salary of Mike to the
salary of Bill using the standardEMP relation:

replaceEMP (salary= E.salary)
using E in EMP
where EMPjiame = "Mike**
and Ejiames "Bill"

POSTGRES allows any such POSTQUEL
command to be taggedwith three special modifiers
which change its meaning. Such tagged com
mands become rules and can be used in a variety
of situations as willbe presentlydescribed.

The first tag is "always'* which is shown
below modifying the above POSTQUEL com
mand.

alwaysreplaceEMP(salary = E^alary)
using E in EMP
where EMPjiame = "Mike**
and Ejiames "Bill"

The semantics of this rule are that the associated
command should logically appear to run forever.
Hence, POSTGRES mustensure thatany userwho
retrieves thesalary of Mike will see a value equal
to that of Bill's.

If a retrieve command is tagged with
"always" it becomes a rule which functions as an
alerter. For example, the following commandwill
retrieve Mike'ssalary whenever it changes.

alwaysretrieve (EMP^alary)
where EMRname = "Mike"

The second tag which can be applied to any
POSTQUEL command is "refuse". This tag is
useful to enforce sophisticated protection rules as
noted in [STON88]. Hie final tag is "one-time"
which is useful to implement "alarm clocks", i.e.
rules which fire onceand then permanently disap
pear.

This research was sponsored by the Amy Research Organization Grant DAALQ3-87-0083 and by the Defense Advanced
Research Projects Agencythrough NASA Grant NAG2-530.

2.2. Implementation Options
Currently the PRS optimizes rule execution

along twodimensions. As an example of the first,
consider the following collection of rules:

always replace EMP(salary = E.salary)
using E in EMP
where EMPjiame = "Mike"
and Ejiame = "Bill"

always replace EMP(salary = E.salary)
using E in EMP
where EMP.name = "Bill"
and Ejiame = "Fred"

These rules ensure that Mike's salary is set to
Bill's which is set to Fred's. If the salary of Fred
is changed, then the second rule can be awakened
to change the salary of Bill which can be followed
by the first rule to alter the salary of Mike. Inthis
case an update to the data base awakens a collec
tion of rules which in turn awaken a subsequent
collection. This control structure is known as for
ward chaining, andwe will term it early evalua
tion. The first option available to the PRS is to
perform early evaluation of rules which results in a
forward chainingcontrolflow.

A second option is todelay theawakening of
either of the above rules until a user requests the
salary of Bill or Mike. Hence, neither rule will be
run when Fred's salary is changed. Rather, if a
user requests Bill's salary, then the second rule
must beruntoproduce it ondemand. Similarly, if
Mike's salaryis requested, then the firstrule is run
to determine Mike's salary, in turn triggering the
second rule which is run to obtain Bill's salary.
This control structure is known as backward
chaining, and we will term it late evaluation. The
choice of early or late evaluation is an internal
optimization subject to a collection of restrictions
presented in [STON88].

There is another dimension toPRS optimiza
tion which deals with the rule firing mechanism.
In [STON86b] we analyzed the performance of a
rule indexing structure and various structures
based on physical marking (locking) of objects to
control ruleactivation. When theaverage number
of rules that covered a particular tuple was low,
locking was preferred. Moreover, rule indexing
could not be easily extended to handle rules with
join terms in the qualification. Because we expect
there will be a small number of rules which cover
each tuple in practical applications, we are utiliz
ing a locking scheme.

Consequently, when a rule is installed into
the data base for either early or late evaluation,

POSTGRES runs the command corresponding to
the rule in a special mode and collects a list of all
data items thatareread or proposed for writing by
the rule. On each such data item the system sets
one of several kinds of locks, detailed in
[STON88]. When a query subsequently reads or
writes one of these marked objects, the locks
trigger appropriate rule specific processing. This
processing is termed "record processing"because
it is activated by updates, insertions or deletions of
individual records.

There are situations where lock escalation
maybe desirable. For example, considerthe rule:

alwaysreplaceEMP (desk = "steel")
where EMP.age< 80

Because this rule will read the ages of most
employees, it is preferable to escalate individual
locks on data items to a column level lock. In this
case, rule activation can be performed by rewrit
ingtheuserinteraction. Forexample, thequery

retrieve (EMP.desk)
where EMPjiame = "Mike"

can be easily rewritten as:

retrieve ("steel")
where EMPjiame = "Mike"
andEMP.age<80

retrieve (EMP.desk)
where EMPjiame = "Mike"
andEMP.age>=80

The complete collection ofPRS rewrite rules
is specified in [STON88]. In summary, the PRS
must choose for any rule whether to use early or
lateevaluation and whether to use record process
ing or query rewriting as the ruleprocessing algo
rithm. The tradeoffs between these options are
also considered in [STON88].

23. Current Implementation Status
The current PRS implementation supports

only late evaluation for always replace rules. In
addition, both fine andcoarse granularity locks are
working. However, wehaveonlyimplemented the
recordprocessing algorithms, so coarse granularity
locks are used only to indicate that record level
processing must be done for each record in the
column in question. Consequently, the escalation
of locks does notchange thefundamental rulepro
cessing algorithm, butmerely savesspace.

3. SYNTAX CHANGES

Based on our initial experience with the
rules system and feedback from early candidate

users, we are considering modifying therules sys
tem in the ways discussed in this and the next two
sections.

3.1. Problemswith the Current Syntax
There are at least three problems with the

current syntax. First, it is impossible to specify
transition constraints, such as permitting salary
adjustments only if they are less than $500. This
wouldrequiresomethinglike:

refusereplace EMP(salary)
where new.salary - oldsalary > 500

In the current PRS there is no way to refer to the
new value or the old value of a field. Moreover,
simply adding new and old as keywords changes
the semantics of PRS. For example, the above
command only makes sense when there is a new
value for some employee's salary. Thisis notcon
sistent with the current paradigm ofa rule always
being in execution.

Second, there is insufficient control toimple
ment all useful cases of referential integrity
[DATE81]. Consider for example the EMP and
DEPT relations:

EMP(name, salary,dept)
DEPT (dname, floor).

and suppose one wanted todelete allemployees in
a department asa side effect ofdeleting the depart
ment This is easily specified asthefollowing PRS
rule:

delete always EMP
where EMP.deptnot-in {DEPT.dname}

However, the above rule also refuses the insertion
of employees in a non-existent department
Hence, it implements rule "cascade the deletion
and refuse the insertion". Unfortunately, there is
no way to cascade deletions but take some other
action on insertions. Hence, there is insufficient
granularity ofcontrol

Lastly, although thePRS is a powerful rules
system, it has always been frustrating to some of
us that it could not be used to support view pro
cessing for relational views. Hence, the function
provided byPRS seems a slight mismatch with the
needs of a DBMS rules system. This concern has
caused us to consider changing therules system to
the following one.

3.2. PRSn

PRS contains a rules system that performs
either tuple processing orquery rewrite, depending
on the lock granularity, and automatically deter
mined which rules to evaluate early and which

late. This uniform specification of rules with dif
ferent system-determined implementations will be
modified. Specifically, to add additional control
we are changing the syntax slightly and adding
keywords new and old. This changes the para
digm from the notion ofa command perpetually in
execution to one where events are specified which
cause specific actions to occur. Unfortunately this
will require us to abandon optimizing the early
versus late decision in most cases. It also makes
PRS II closer to other proposals, e.g. [DELC88,
DAYA861.

Thesyntax of a PRSn ruleis thereby:
define rule rulename is
on POSTQUEL event
do POSTQUELcommand(s)

The semantic interpretation is that the action part
of therule is executed once when thePOSTQUEL
event occurs. Multiple rules may be defined based
on the same event; all applicable ones are exe
cuted. POSTQUEL events are specified using the
followingsyntax:

on command-name to object
where condition

Here command-name is one of {append,
replace, delete, retrieve) optionally coupled with
new on an append or replace and old on a replace
or delete. Object is the name of a relation or a
column in a relation andcondition is an arbitrary
POSTQUEL qualification. Command(s) are any
set of legal POSTQUEL commands with two
extensions. First, a POSTQUELrefuse command
with a target list of columns which cannot be
modified is provided. This command allows a rule
torefuse theupdate thatitsevent portion specifies.
Second, we add the keywords new and old which
can be used anywhere thata relation name, tuple
variable or constant can. Thenew keyword refers
to thetuple being inserted in an event involving an
append command or the tuple being updated in a
replace event Theoldkeyword refers to thetuple
that is beingremoved by a delete event or the one
to be updated by a replaceevent

Consider the following rule, using the new
syntax, thatpropagates Bill's salaryon to Mike:

on replace to EMP^alary
where EMPjiame = "Bill"
doreplace EMP(salary = new.salary)
where EMPjiame = "Mike"

In thisrule, theeventspecified by the on condition
is the introduction of a new value forthesalary of
the employee named Bill. At the time this rule is
awakened, there will bea new tuple andthere may

or may not be an old tuple with the fields that are
being replaced. When the rule manager is awak
ened, it processes the rule by running the query
specified by the do statement after first substitut
ing values for fields specified by new.column-
name or oldxolumn-name.

However, theabove rule does notpreclude a
user from directly updating Mike's salary. Hence,
by itself, it is not equivalent to the PRS rule dis
cussed in the previous section. To attain
equivalence, we must add a second rule:

on replaceto EMP^alary
where EMPjiame = "Mike"
do refuse (new.salary)

The second rule is assigned a lower priority than
the first and ensures that no other update can
changeMike's salary.

Detecting an append, delete or replace that
satisfies the on-condition and then executing the
do-statements corresponds to normal forward
chaining. In fact any PRS append, delete or
replace statement used with early evaluation can
be routinely converted into equivalent PRS II
rules. The PRS "always retrieve- rules are also
easily translated. For example, the following PRS
n rule returns Mike's salary each time it changes:

on replace to EMP^alary
where EMPjiame = "Mike"
do retrieve(new.salary)

Backward chaining rules are also easily
expressed. The following rule expresses the stipu
lation that Mike should earn the same salary as
Bill:

on retrieve to EMP^alary
where EMP.name = "Mike"
do retrieve (EMP^alary)
where EMP.name = "Bill"

This rule is awakened when a query attempts to
read Mike's salary. At that time the do-action is
runand retrieves the current salary of Bill instead.
Of course, Bill's salary could be specified in a
similar wayand a backward chaining control flow
results.

If a PRS II rule contains new or old, then
record processing will be used to implement the
rule. However, PRS n rules which do not contain
these keywords will be implemented via query
rewrite. Forexample, considerthe rule:

on retrieve to EMP.desk
retrieve "steel" where EMP.age <80

This rule can use acolumn level lock and beeasily
enforced by a query rewrite algorithm, essentially

the same as the one in the example in the previous
section and in [STON88].

In summary, PRS n canbe supported by the
same implementation used in PRS; that of item
locks or column locks. Item locks are supported
by tuple processing while column locks are sup
ported by query rewrite. The decision on lock
granularity can be made automatically only for
ruleswhich do not use the keywords new andold.
Hie way rules are written determines whether they
will be executed in a forward or backward chain
ing manner, as seen in the two salary writing
examples above. Backward chaining rules can be
precomputed by a demon and their results cached.
However, forward chaining rules cannot be
delayed to late evaluation without changing their
semantics. Hence, there is less room for automatic
optimizationin PRS H. On the other hand, PRS n
has augmented power as demonstrated in the next
section.

33. New Functionality

In this section we indicate how to use PRS II
to perform transition constraints and solve the
viewupdate problem. Restricting salary updates to
$500 is easily accomplished with the following
rule:

on new EMP.salary
refuse (new^alary)
wherenew.salary - oldsalary>500

The other example concerns view update.
Assume thatwe have the following view definition
for a conventional relational DBMS:

define view

EMP-DEPT(EMP.all, DEPTJloor)
where EMP.dept= DEPT.dname

Thisviewis easily expressed as the following PRS
II rule-

on retrieve to EMP-DEPT
do retrieve (name = EMPjiame,
salary= EMP.salary,
dept=EMP.dept
floor=DEPTJoor)
where EMP.dept = DEPT.dname

Standard query modification [STON75] for
retrieve commands is equivalent to the processing
performed by query rewrite for PRS n. However,
the problem with views is that many updates are
semanticallyambiguous. It is not clear, for exam
ple, how to process the following ambiguous
update:

replace EMP-DEPT (floor = 1)
where EMP-DEPT.name = "Mike"

In PRS n, we can allow a user to specify addi
tionalrules to controlsystem behavior in thesecir
cumstances. Specifically, suppose that it is known
that there is exactly one department on each floor.
Thismeans thatthe intent of the update above is to
place Mike in the department located on the first
floor. Thiscanbeenforced bythefollowing rule:

on update to EMP-DEPT.floor
do replaceEMP(dept= DEPT.dname)
where DEPTjloor=new.floor
and EMPjiame = new.name

Processing of an update to EMP-DEPT
occurs in two stages. First a retrieval operation
must be performed to isolate the records to be
modified. This query is rewritten by the "on
retrieve" rule to obtainthe desired data. Next the
system computes proposed updates to EMP-DEPT.
Each such proposed update will fire the "on
update" rule, which will make the correct actual
update.

Hence, views can be supported by two kinds
of rules. The first kind specifies how to handle
retrievals, and triggers standard query
modification. The second kind of rules specifies
what actions to takewith proposed updates of indi
vidual tuples in the view. These rules can resolve
ambiguity in an application specific way and are
the component that is missing from current com
mercial implementations ofviews.

Of course, it is possible to have default
update processing perform the standard algorithm
when no update rules are specified by theuser. In
this way, no extra effort is required for view
updates whichare notambiguous.

4. RULESETS

4.1. Introduction

Currently the rules defined within a
POSTGRES data base are monolithic in organiza
tion, i.e. all rules are active fin* all users at all
times. This is problematic for several reasons.
First a knowledge engineer frequently needs to
modify active rules during thedevelopment phase.
Currently, this must be done tediously bydeleting
and reinserting individual rules. Moreover, when
multiple rules are inserted in the current system,
since the rules become active immediately, syn
chronization hazards canoccur. Forexample, con
sider the following two rules:

replace always EMP(salary = E^alary)
using E in EMP
where E.name = "Mike"
and E^alary < 10000

and EMPjiame = **Joe''
priority = 2

replacealways EMP (salary= E.salary)
using E in EMP
where Ejiame = "Jean"
and E.salary> 10000
and EMPjiame = "Mike"
priority =10

Suppose the rules are entered in the above order
and Mike's salary is initially $5000. In this case,
thefirstrulewillfireimmediately andchangeJoe's
salary. On the other hand, if the second rule is
entered first thenMike's salarywillbe adjusted to
a number above$10,000. and Joe's salary will not
get changed. Such ordering dependencies should
be avoided.

A third motivation for rulesets concerns
applications which have a rule base composed of
both shared and private rules. For example, con
sider a POSTGRES implementation of a text
retrieval system such as RUBRIC [MCCUN86].
Users specify a taxonomy which is used toclassify
an incoming stream of articles into subject areas.
For example, if a user is interested in articles about
scubadiving,he mightdivide the topic into subto
pics such as "coraljreefs,"
Nequipment_maintenance," "dangers," and divide
these into subtopics as well, down to the level of
lexical groupings. When an article is scanned, its
goodness of fit is assessed for each leaf level sub
category. This result is propagated up the taxon
omyand certainty of membership is computed for
each category. When taxonomies are large, users
will wish to use a predefined set of categorization
rules with some private modifications for their own
tastes. This combination of shared and private
rulesis awkward to specifyin the currentsystem.

As a remedy to these problems, we are intro
ducing rulesets into POSTGRES. Rulesets may
be defined and removed at will, and each
POSTGRES rule may optionally be placed into a
ruleset Rulesets are hierarchically structured, and
can be activated or deactivated.

4.2. Ruleset Commands

A ruleset is defined as follows:

Define Ruleset ruleset_name
[inherits ruleset {,ruleset}]
[init_script proc-name]
[cleanup_script proc-name]

It is convenient to group rulesets into an inheri
tance hierarchy, so that common collections of
rules can be shared among multiple rulesets. The

inherits clause provides this capability. The
initjscript is thenameof a POSTGRES procedure
which contains a script of POSTQUELcommands
to be run when theruleset is activated. Typically
this script contains initialization information and
instructions to create any necessary temporary
relations. The cleanupjscript is a procedure con
taining POSTQUEL queries that is invoked at
deactivate time. A rulesei can be removed with
the followingcommand:

Remove Ruleset ruleset_name

Rules can be bound to an individual ruleset and
subsequently removed from a ruleset using the fol
lowing two commands:

Add rule-name to ruleset
Remove rule-name from ruleset

Rulesets can be activated using the following com
mand:

Activate ruleset.name
[Lscript]
Date_signal]
[auto_deactivate]

Here, die i_script flag, if set indicates that the ini
tialization script be run. Normally, an activate
command is acknowledged immediately by the
POSTQUEL run-time system. However, the user
can optionally chose to be notified only when the
inference engine detects that so new inferences
have been made as a result of the ruleset activation
by setting the latejsignal flag. Thisallows assess
mentof the stateof a cascaded computation at the
conclusion of the inference process. Under normal
circumstances, a ruleset remains active until deac
tivated. However, the user can specify with the
auto_deactivate flag that ruleset deactivation
should occur as soon as "the dust settles."

The last command is

Deactivate ruleset_name
[d_script]

This command sets all members of rulesetjname
to "inactive" status. The adscript flag, when set
indicates thatthedeactivation script should berun.

43. Implementation

Eachrule is included in a unique ruleset and
theruleset name is stored with thecommand body
of the rule. POSTGRES will maintain a main
memory hash table to indicate which rulesets are
active. If a ruleis awakened by the rule manager,
a check is initiated to ensure that it is in an active
ruleset If so,processing continues normally; oth
erwise the rule is ignored.

For spaceand implementation efficiency the
lock information placed on individual tuples will
not be updated with "active" markers. Hence,
inactive rules will cause the rule engine to fetch
thecommand bodyof the rule beforerealizing that
the rule currently has no effect (although we may
opt to cache rule/ruleset mapping information).
The alternative is to have deactivation of rules be
very expensive, requiring that all rule locks be
found and updated.

5. AUGMENTED VERSION SUPPORT

In a rules system application it is often use
ful to explore alternate scenarios. For example, in
an automotive application, one might want to
activate a collection of rules that tests for low vol
tage and another set that tests for absence of fuel
Each ruleset will need to run on an individual ver
sionof thesameunderlying relation. Although the
current POSTGRES version system supports alter
nate versions, it requires each version to have a
unique name. This makes scenario construction
difficult because each scenario has to have dif
ferent specifications of commonrulesets. Hence, it
appears that the POSTGRES version system
should be expanded to include the following
notions:

1) Allow versions to be defined with the same
name as the relations they are based on,
appended with revision numbers. This
allows application queries and rules to be
used on versions without the need for
rewrite to accommodate different relation
names.

2) Provide a way to declare the default
(current) version of a relation and an (over
riding) alternate current version ofa relation.

3) Allow the definition of a version to automat
ically include several relations at once, free
ing the user from needing to keep track of
which relations are involved in a logical set
of relations.

4) Allow rules to refer to versions.

Rulesets can be used in conjunction with
such a versioning facility to produce rule customi
zation for dataset experimentation. When an
application creates a new version of a relation set
the new version inherits all of the rules of the old
version. Then the application can delete unwanted
rules from and add new rules to die new version,
and deactivate the rulesets that it is not interested
in.

6. SUMMARY

The modifications we have suggested —an
improved syntax, the introductionof rulesets, and
flexible versioning capabilities — are meant to
improve theusability of thePOSTGRES rules sys
tem. These change the existing design only in
minor ways, and weexpect tohave PRS IIrunning
quickly.

REFERENCES

[BORG85] Borgida, A., "Language Features
forFlexible Handling of Exceptions
in Information Systems," ACM-
TODS, Dec. 1985.

[DATE81] Date, C, "Referential Integrity,"
Proc. Seventh International VLDB
Conference, Cannes, France, Sept
1981.

[DAYA88] Dayal, U. et aL, "The HiPAC Pro
ject: Combining Active Databases
and Timing Constraints," SIGMOD
Record, Vol. 17, No. 1, March
1988.

[DELC88] Delcambre, L. and Etheredge, J.,
"The Relational Production
Language," Proc 2nd International
Conference on Expert Database
Systems, Washington, D.C., Febru
ary 1988.

[HELD75] Held, G. et aL, "INGRES: A Rela
tional Data Base System," Proc
1975 National Computer Confer
ence, Anaheim, Ca., June 1975.

[ROWE87] Rowe, L. and Stonebraker, M.,
"The POSTGRES Data Model,"
Proc. 1987 VLDB Conference,
Brighton, England, Sept 1987.

[STON88] Stonebraker, M. et aL, "TTie
POSTGRES Rules System," TEF.F.
Transactions on Software Engineer
ing, Dec. 1988.

[STON86a] Stonebraker, M. and Rowe, L.,
"Tne Design of POSTGRES,"
Proc. 1986 ACM-SIGMOD
Conference on Management of
Data, Washington,D.C., May 1986.

[STON86b] Stonebraker, M. et aL, "An
Analysis of Rule Indexing Imple
mentations in Data Base Systems,"
Proc. 1st International Conference
on Expert Data Base Systems,
Charleston, S.C., April 1986.

[STON82] Stonebraker, M. et aL, "A Rules
System for a Relational Data Base
Management System," Proc. 2nd
International Conference on Data
bases, Jerusalem, Israel, June 1982.

[STON75] Stonebraker, M., "Implementation
of Integrity Constraints and Views
by Query Modification," Proc.
1975 ACM-SIGMOD Conference,
San Jose, Ca., May 1975.

[MCCUN86] McCune, B., et aL, "RUBRIC: A
System for Rule-Based Information
RetrievaL" IEEE Transactions on
Software Engineering, Vol. SE-11,
No. 9, Sept 1985.

[WENS88] Wensel, S. (ed.), "The POSTGRES
Reference Manual," Electronics
Research Laboratory, University of
California, Berkeley, CA, Report
M88/20, March 1988.

	Copyright notice1989
	ERL-89-82

