

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MARINER: A SEA OF GATES

LAYOUT SYSTEM

by

Wayne A. Christopher

Memorandum No. UCB/ERL M89/83

28 June 1989

MARINER: A SEA OF GATES

LAYOUT SYSTEM

by

Wayne A. Christopher

Memorandum No. UCB/ERL M89/83

28 June 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MARINER: A SEA OF GATES

LAYOUT SYSTEM

by

Wayne A. Christopher

Memorandum No. UCB/ERL M89/83

28 June 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

We have written a Sea of Gates layout system which uses an innovative sequence of
global and detailed placement and routing steps. The first phase consists of global placement
and routing. Global placement partitions the chip area into a grid of "leaf blocks" and
assigns the cells to these blocks. This partitioning is accomplished by amodified Kernighan-
Lin mincut algorithm known as quadrasection. Global routing by hierarchical refinement is
done concurrently with this process. After the partitioning is completed, the global routing
is removed and redone using a flat maze-routing algorithm, which yields better results
than the hierarchical refinement, algorithm. The leaf blocks are then placed and routed
individually, using a simulated annealing algorithm that takes into account both netlength
and routability, followed by detailed maze routing (currently done by Mighty). Mariner
has been tested on and has yielded good results for small- to medium-sized examples, and
our experiments suggest that substantially better results for larger chips could be achieved,
given more sophisticated global routing algorithms.

Acknowledgements

I would like to thank Lorraine Layer for her help with the Mariner project. She

provided a lot ofgood advice, supplied common sense when I needed it. and most important,

was a great friend.

Also. I would like to thank the other Sea of Gates researchers at Berkeley for their

assistance. Brian Lee developed the Hero router, and provided me with a lot of valuable

advice and feedback. Mitch Igusa and Mark Beardslee developed the Orca system, which

I used to route the output ofearly versions ofMariner. Ren-Song Tsay wrote the Proud

placement program and provided some of the examples used for this report. I would also
like to thank Professor Newton for his support and encouragement, and professor Sequin

for valuable advice.

Honorable mention goes to Randy "Xtrek" Cieslak. Abhijit "Tex~ Ghosh. Steve

"Kitten Heads'* Procter, and Leah "Fang" Slyder. all of whom put up with me and are

pretty cool people in general.

The members of the CAD group at Berkeley have made the last few years a lot of

fun and very educational for me. in particular Professors Brayton, Sangiovanni-Vincentelli,

and Pederson. Pranav Ashar. Jeff Burns. Srinivas Devadas, David Harrison. Beorn Johnson.

Theo Kelessoglou. Chuck Kring. Tom Laidig. Tony Ma, Sharad Malik. Karti Mayaram,

Peter Moore, Brian O'Krafka. Tom Quarles. Rick Rudell. Ellen Sentovich. Kanwar Singh.

Rick Spickelmier, and Gregg Whitcomb.

Finally. I would like to thank my wife Susan, my aunt Alice, and Tom. Matt, and

Pat for everything they've done for me.

n

Contents

Acknowledgements u

Table of Contents 1U

List of Figures v

List of Tables vi

1 INTRODUCTION x
1.1 The Sea of Gates Layout Problem 1
1.2 Existing Sea ofGates Layout Systems 5
1.3 The Mariner Philosophy '
1.4 Overview of Mariner °

2 PARTITIONING 13
2.1 Partitioning 13

2.1.1 The Problem . . ' 14
2.2 Quadrasection 18

2.2.1 Random Partitioning 18
2.2.2 Clustering 19
2.2.3 Kernighan-Lin-Fiduccia-Matheyses 1-9
2.2.4 Suaris-Kedem Quadrasection 20
2.2.5 Simulated Annealing 21
2.2.6 Adaptive Simulated Annealing 22
2.2.7 Adaptive Simulated Annealing with Net Moves 22
2.2.8 Results 22
2.2.9 Control Strategy • • • 24

2.3 Minimum Density Partitioning 25
2.4 When to Stop Partitioning 28

3 GLOBAL ROUTING 31
3.1 The First Global Routing Phase 31
3.2 Routing Area Prediction 34
3.3 The Second Global Routing Phase 3'

in

IV

3.3.1 The Problem 3'
3.3.2 Maze Routing 3S
3.3.3 Control Strategy 42

4 DETAILED PLACEMENT 4J
4.1 Ordering the Detailed Placement Problems 4'
4.2 Adaptive Simulated Annealing 4S
4.3 The Cost Function ^°
4.4 The Move Set °4

5 DETAILED ROUTING 59
5.1 Routing with Mighty 59
5.2 If Mighty Fails 60
5.3 An Ideal Detailed Router for Mariner 62

6 STATUS, CONCLUSIONS, AND FUTURE WORK 65
6.1 Current Status 65
6.2 Conclusions and Future Work 6<

A MANUAL PAGES FOR THE MARINER PROGRAMS 71
A.l admiral(l) '-

A.2 checkplace(l) '4
A.3 mflatten(l) p
A.4 mpadp(l) "_6
A.5 pgroute(l) l°
A.6 regen(l) '9
A.7 skipper(l) 80
A.8 adaptive(3) S1

Bibliography 84

List of Figures

1.1 The Gate Array Design Style 2
1.2 The Standard Cell Design Style 3
1.3 The Sea of Gates Design Style 5
1.4 The Mariner System 9
1.5 Lorraine's Transistor Template H
1.6 Lorraine's NAND3 12

2.1 Partitions 15
2.2 Quadrasection 20
2.3 Minimum Cut Vs. Minimum Density Partitions 26
2.4 The Function adjust 27
2.5 A Block That is Too Small for its Cells 29

3.1 The 2x2 Routing Problem 32
3.2 Hierarchical vs Flat Routing 37
3.3 Two Representations of the Global Routing Problem 38
3.4 Different Ways To Route A Multi-Pin Net 39

4.1 Ignoring the X- or Y-spans of a Net 51
4.2 "Island** Patterns in Layout 53
4.3 Slots Possible for a nand2 Library Cell 55
4.4 A Cell ''Spilling Over" Because of the Wrong Slot Choice 56

.1 Unrouted and Routed Blocks 60o

6.1 The Adder32 Chip 68
6.2 The DES Chip 69
6.3 The Hughes Chip 69

List of Tables

2.1 Comparison of Difficulty Functions 1S
2.2 Simulated Annealing Partitioning Parameters 21
2.3 Partitioning Algorithm Results: Costs of Final Solutions 23
2.4 Partitioning Algorithm Times, in Seconds 23
2.5 Ripup and Re-partition Results 25
2.6 Results of Minimum Density Partitioning 28

3.1 Comparison of Initial Global Routing Cost Functions 34
3.2 Empirically Determined Multiple Pin Equivalent Nets 35
3.3 Cost Weights for Entering Nodes 42
3.4 Density Ratio Coefficients 44
3.5 Global Routing Ordering Strategies 45
3.6 Constant Values for Enter Cost and Arc Weight 45

4.1 Ordering Strategies for Detailed Placement 48
4.2 Pin Assignment Algorithm Results 5'
4.3 Results for Different Weight Sets $8

5.1 Number of Detailed Layouts Completed at Each Iteration 61
5.2 Costs for Blocks More or Less Constrained 61

6.1 Final Results 66
6.2 Runtime . .' 66
6.3 Percent Utilization vs Percent Completion 6/

VI

Chapter 1

INTRODUCTION

In recent years, CAD software has been developed for automating the layout of
many VLSI design styles. At Berkeley, a number of systems are being developed or are
being used for the automated layout of macro-cell [12.4] and standard-cell [59.60] chips.
Several systems are currently being developed for the automated layout of Sea of Gates
chips, one ofwhich is the Mariner system, the subject of this report.

The Sea ofGates design style is similar to gate array, except that there are no pre
defined routing regions. This makes it possible to achieve much higher transistor utilization
percentages, especially when more than two customizable layers of high-quality interconnect
(e. g. metal, polysilicide) are available.

With this added flexibility comes the requirement for more sophisticated layout

algorithms. Anumber of different approaches have been tried, including astandard cell-like
row-based approach, used by the Proud system [68]. and a macro cell-like approach, used
by the Orca system [5]. The Mariner system uses an innovative combination of top-down
partitioning and low-level simulated annealing algorithm for placement, and performs both
global and detailed routing concurrently with the placement.

1.1 The Sea of Gates Layout Problem

The Sea of Gates design style may be compared to other ASIC design styles, in
particular gate array, standard cell, and macro cell. All these styles use standard library
cells (called macros, for gate array and Sea of Gates), which have been optimized for speed
and size. They rely heavily on automated layout systems, with minimal user intervention.

I

.4

Power and ground rails Routing area

-^^

• •••••••••••>•••••{

Sc^ '•"" *

Figure 1.1: The Gate Array Design Style

Cell
area

Routing
area

Finally, they axe often used for applications where fast turnaround time is essential, which

means that efficient layout algorithms must be used.

The gate array design style, also referred to as master-slice, or uncommitted logic

array (see Figure 1.1), is by fax the most common programmable array designed by com

puter. In this approach, a two-dimensional array of replicated transistors is fabricated to

a point just prior to the interconnection levels. A particular circuit function is then imple
mented by customizing the connections within each local group of transistors to define its

characteristics as a basic cell, and by customizing the interconnections between cells in the

array to define the overall circuit. Generally a t^vo-level interconnection scheme is used for
signals and, in some approaches, a third, more coarsely defined layer of interconnections is
provided for power and ground connections. The interconnections are implemented on a
rectilinear grid in the "channels" between the cells. In many cases, channels are also pro-

T "•"••••')' 1 i •.(••• I I 7-71

VZMWKtM&MWtt^^

B^^^^^^gs^^^^^^^m

C33b^^^^^^^^^^^^^^^^^^^^^^3b^^^^5

Kpf^^WWgWjHW^

j\
Feed through*

S«/WW««.'rgKresflrarer ^^?r?r-n B̂^^^^^^S^^aa^^S^ai'^

BSffiftffl^ji^^

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^gj^^S

Hi&««SapSa^^

Figure 1.2: The Standard Cell Design Style

Coll rows

Routing channels

Power and
ground rails

vided wliich run over the cells themselves, and in some arrays, wider channels are provided

in the center of the array to alleviate the congestion often found in that area. Gate-arrays

are used in many technologies, in particular bipolar and CMOS, and arrays containing many

thousands of gates have been fabricated [28.14].

This design style is similar to Sea of Gates, except that gate array defines routing

areas, and no cells may be placed in these areas. These additional constraints make it

both harder and easier for the layout tools — there is more freedom with Sea of Gates to

obtain a better solution, but. the placement program must make more decisions. Unlike

standard cell, and like Sea of Gates, in a gate array design it is possible to generate a cell

placement wliich cannot be routed. It is also very difficult to modify a gate array placement

in any global manner once it has been generated — any change is generally equivalent to a

complete re-placement.

The "standard cell*' (or polycell) approach (see Figure 1.2) refers to a design

method where a library of custom-designed cells is used to implement a logic function.

These cells are generally of the complexity of simple logic gates or flip-flops and may be

restricted to constant height and/or width to aid packing and ease of power distribution.

Unlike the programmable array approach, standard cell layout involves the customization

of all mask layers. This additional' freedom permits variable width channels to be used.

While most standard cell systems only permit inter-cell wiring in the channels between

rows of cells or through rows via pre-determined "feed-through** cells, some systems permit

over-cell routing. Standard cell systems are also used extensively in a variety of technologies

including bipolar and CMOS [51.70].

Note that a standard cell layout is always routable. although the goal of the layout

tools is to minimize the routing area, which minimizes both the area of the chip and the

signal delay.

It is often relatively inefficient to implement all classes of logic functions in a single

design approach. For example, a standard cell approach is inefficient for memory circuits

such as RAMs and stacks. In the "macro-cell** method, large circuit blocks, customized to a

certain type of logic function, axe available in a circuit library. These blocksare of irregular

size and shape and may allow functional customization via interconnect, such as a PLA or

ROM macro [33]. or they can be parameterized with respect to topology as well [32.S.23].
With the parameterized cell, the number of inputs and outputs may be parameters of the

cell. In some systems macro cells may also be embedded in gate-array or standard-cell

designs.

The Sea of Gates design style (see Figure 1.3) also makesuse of pre-defined polysili-

conlayers and customizable metal layers, but there axe no ubaxe-silicon" routingareas where

cells may not be placed. Rather, the whole chip is covered with pre-fabricated transistors,

and it is up to the layout tools to decide where to route nets and where to place cells. In

most cases, it is also possible to route nets over the tops of the cells. For example, few cells

in the Mariner library make extensive internal use of the second layerof metal, and there

is at least one vertical track free per transistor where a wire on the first layer of metal may

be routed.

The major reason that Sea of Gates is difficult to lay out is that once the cells

are put in place, there is no realistic possibility of changing their position — whereas with

another design style, the major blocks could be moved slightly apart, with Sea of Gates

the minimum amount they can be moved is quite laxge. This is not a major concern at the

detailed level, since it is generally possible to look ahead to the routing stage when doing

low-level placement, but at the global level it is a serious problem. If there is a particular

area where the congestion is too great, it is not possible to add any tracks without adding

a large number of them, across the entire chip. Therefore the rough placement algorithm

Pow»r and ground rails

Figure 1.3: The Sea of Gates Design Style

must be very intelligent and look ahead to both the global routing stage and the detailed
placement and routing stages.

Cells in a Sea of Gates library cells typically have many feed-throughs and free

routing tracks available. Thus much of the routing is over- and through-the-cell. and the
detailed router must be able to handle routing problems with arbitrary blockages and pins

both on the boundaries of the problem and in arbitrary places within the interior.

Because the transistor structure of a macro is fixed, there is a set of pre-defined

positions and transformations on the chip that may be used for a given cell. The placement
program must be aware of these constraints in order to generate legal placements. This is
not so much a problem for the placement algorithm as an extra level of infrastructure that

must be provided for the layout system.

1.2 Existing Sea of Gates Layout Systems

The Orca system [5] uses an approach similar to that used by macro cell systems.
During the placement, cells are grouped in clusters in a hierarchical manner. These clusters

are placed by a mincut quadrasection algorithm similar to the one used by Mariner. The
positions are approximate, with variable-sized routing regions between blocks. The router
can ask for more spaceif necessary, by means of spacing requests to the placement program,

which adjusts the locations of the macro blocks and returns the layout to the router. The
router must request space in multiples of the template size.

The Orca router uses a maze-refinement approach, where the nets are routed

on a rough grid, which is then successively refined, with the nets generally routed within
the boundaries of the grid cells used by the previous level of routing. The basic routing

strategy is Lee maze routing. This router was also used by Mariner during the early stages
of the development of the placement algorithms, and yielded good results. Admiral did
not utilize the spacing request feature of the router, however.

The Proud system [68] uses hierarchical partitioning and resistive network opti
mization by successive over-relaxation for placement. The result is an unrouted chip with
the cells grouped in large blocks, each of which contains rows of cells. The chip is then
routed by a standard cell router. Proud is designed to be used with three layers of metal
[45]. and has yielded good results for large industrial designs.

The program SoGOLaR [l] (Sea ofGates Optimized Layout and Routing) gen
erates functional cells for static CMOS circuits in the Sea of Gates layout style. The input

may be specified either as a list of boolean expressions where each expression specifies a
multi-level AOI tree or as a schematic level netlist. For best results it places individual

P/N-transistor pairs with simulated annealing using a suitable cost function to minimize
netlength and to maximize diffusion shaiing. Internal cell routing is performed by COD AR
[69]. a congestion-directed router that combines global and detailed routing algorithms.

Asystem developed by C. P. Hsu et al. [30] uses techniques similar to those used
by Mariner and Orca. It first flattens the netlist. then separates it into anumber of smaller
netlists by means of aclustering algorithm. These clusters are then assigned to regions of the
chip, and axe placed by means ofa standard cell simulated annealing placement program,
such as TimberWolf [59,60]. One advantage of such a system is that it can easily handle
mixed-technology chips. In this case the clustering is based on the functionality of the
component, rather than on connectivity alone. Unlike Mariner, however, this technique is
not fully hierarchical, as it only does one level of clustering. This system has produced good
results for large examples (5lK cells with 69 % transistor utilization). These results were
obtained using Hughes' triple-layer metal process [45], while our examples were produced

for the two-layer MOSIS CMOS process [67].

1.3 The Mariner Philosophy

Most prior layout systems have dealt with the place and route problem by first
placing the cells, and then routing them. There may be some lookahead during the place
ment phase to the routing phase, but feedback from routing to placement is usually limited
to very coarse changes, such as the expansion of routing channels. This is because placement
is usually done in atop-down manner, and high-level decisions cannot easily be modified
without invalidating all of the decisions made further down.

Usually both placement and routing in a top-down system axe each divided into
two phases: global and detailed. During the global phases, more attention is given to large-
scale optimization and less is given to low-level considerations such as exact locations and
capacities. During the detailed phases, the problems have become much smaller, and it is
possible to find exact solutions.

One of the goals of the Mariner project was to combine placement and routing
into a single process, with much tighter coupling than is usually present in layout systems.

Instead ofdoing both of the placement phases before the routing phases, both of
the global phases axe completed before the detailed phases. In the global placement phase,
the chip area and the netlist axe decomposed into agrid of small placement problems, and
during the global routing phase the nets are routed throughout this grid. In the detailed
phases, we use simulated annealing to assign positions to the cells, taking into consideration
our knowledge of the nets passing through the block, and then route the placed block with
a maze router. Note that by doing global routing before detailed placement, we make less
information available to the global router, thus making its solution less exact, but we make
more routing information to the detailed placer.

In addition to interleaving the placement and routing phases in this manner, both
placement phases look ahead to the next routing phase. The global placement algorithm
routes nets by means ofhierarchical refinement during partitioning, and the detailed place
ment phase performs pin assignment concurrently with cell placement.

1.4 Overview of Mariner

The Mariner system consists of the placement and global routing program. Ad

miral, the cell library, a number of small programs to maintain and update the library

cells [41], and programs to accomplish pad placement and power and ground routing. The
detailed router is called by Admiral, but it is not considered part of Mariner. Cur

rently Mighty [62.61] is used for detailed routing. These programs are described briefly
below in the order they would be run to generate a completed layout from a netlist view.

All these programs read their input from and write their output to oct views [24]. with the
exception of the human-readable pad placement file.

The program Mpadp reads an oct view called flat. This view contains cells and
pads from the library, none ofwhich is placed, and nets. It also may read a pad placement
file, in wliich the relative locations of the pads in the netlist and power and ground pads
axe specified, along with definitions of power and ground rings and the dimensions of the
desired core cell area. If this file is not present. Mpadp orders the pads around the chip in

the order they were read from the database, connects default power and ground rings, and
calculates the axea required to achieve a paxticulax transistor utilization percentage, which
may be specified on the command line. Mpadp outputs an oct view entitled unplaced. This
view differs from the input view in that the pads now have locations, power and ground
pads and rings have been added in the contents facet, and a box denoting the available area
for cells and routing has been added to the PLACE layer in the interface facet ofthe array.

The Admiral program reads the unplaced view of the base array and generates

either a placed view or a routed view, depending on whether the user requested routing or
not. Ifrouting was not requested, all the cells will have been given legal positions. Ifrouting
was requested, in addition, all the signal nets will have been given implementations as well
(wires in the METAL-1 and METAL-2 layers connecting all the pins). If Admiral could
not route some blocks (see Chapter 5), the nets in that block will have been implemented
as "spiders'* in the PLACE layer. Ifit could not globally route some nets (see Chapter 3).
they will not have any geometry attached to them, and will be attached to a bag called
UNROUTEDJSTTS. Power and ground nets axe ignored by Admiral.

The power and ground routing program, Pgroute, takes a routed or placed view
and adds power and ground busses, connecting them to the power and ground rings around
the outside of the chip. It produces a view called final. This view is the final output of

Behavioral Description |

unplaced
view

admiral

The Mariner

System

placed
view

pgroute

Padp File Template Parameters

prerouted
view

hero

routed
view

Figure 1.4: The Mariner System

10

the Mariner system, although it can be givenas input to another detailed routing program,

if routing was not provided by Admiral.

A transistor structure (or template) and a cell library for Sea of Gates have also

been developed and described in detail in [41]. The cell library, based on the Mississippi
State University Standard Cell Library [49], contains approximately 30 cells, and is used
by the Berkeley logic synthesis tools [7] to generate netlists. The template we developed is
shown in Figure 1.5. A3-input NAND gate from the libraxy is shown in Figure 1.6. There
are two programs for maintaining the template and the cell library. These are Skipper,
wliich generates a template from chip performance and size specifications-and physical
design rules, and Regen. which modifies the library to fit on a different template than the
one it was designed on. Detailed descriptions of these programs may be found in [41].

11

•• I • ...

... I.:,--.::-p5 »£ " E§ ' ' ' fg v::;!::-':: '

5 m

Figure 1.5: Lorraine's Transistor Template

12

™iv._._,,.!Ll_

*•. ':':'rr:':

\

i

I

J •'.,...

'•''•:'

jj* jgip

Ir.,,,-.,-^

?i!V-m> iw1^.1!1;;"-.^1^^';-•-';'-"" -. •-;-'?' ' 1. '"—"!!c^--^—. -; :.;. '
P?

-lis --..* ? v?

SI? a
py-r - at*-1 •--

gjfilOtfP

p.-

SSI Kpi
•:=i'.i;"-:"i ""!!•;"

atj--.... , , ;;.

K
m

I

.83

m

:.;I3

,,...,....,,.,,,

»— Jp •..•.••;:•.•.•,..-.•... •....• ts. .;,, _,,:::,-±?j
.,..>s,-.., ., -v.-:. ... :.,•....—--i-i.m-,-;..-i

Figure 1.6: Lorraine's NAND3

Chapter 2

PARTITIONING

In order to effectively lay out increasingly large chips, placement algorithms must

make use of hierarchy. Some layout systems make use of the hierarchy already present in

the design [12.4]. Admiral does not use this approach for anumber ofreasons. First, there
may be no such hierarchy. Many ofour examples were generated by logic synthesis tools,
wliich axe now capable of producing netlists with many thousands of logic gates. Second,
the partitioning imposed on the problem by the designer may not. be the best partitioning

from a layout perspective. It has been suggested [16] that a strict partitioning of a system

into datapath and control sections can often lead to a sub-optimal final design, especially in
gate array layout styles. Also, although the optimal shape in isolation for a circuit such as
an ALU isa regular structure, there is no guarantee that this layout remains optimal in the
context of the rest of the chip, especially if parts of the design have been passed through a

logic optimizer. For these reasons, we have taken the approach of starting with a flattened
netlist and hierarchically partitioning it according to connectivity considerations.

2.1 Partitioning

There are a number of different strategies available for partitioning networks.

Among these are clustering [13], which is used to identify strongly-connected groups of
nodes, and dissection. These algorithms are not suitable to partitioning a netlist for place

ment purposes, since we usually want to split the netlist into a small number of pieces

of approximately equal size, and clustering and dissection gives us little control over the

number or size of the partitions. A hybrid approach, using some clustering followed by

13

14

partitioning, has been successful for placement [55]. and might also prove useful for Sea of

Gates layout [ll].

Our basic algorithm is a variant of min-cut partitioning known as quadrasection
which was first used by Suaxis and Kedem for standard-cell layout [65]. Quadrasection is

used to split the netlist and the chip area into four pieces, and is then apphed recursively
to the sub-netlists until a set of ^smalT problems is obtained. What is meant by -small"

is discussed in Section 2.4.

We investigated a number of algorithms for partitioning a netlist. subject to cell
capacity constraints and external pin positions. The algorithms are described below, and
the results are summarized in Table 2.3. Also, we tried an alternate formulation of the
problem, where the quantity being minimized was wiring congestion, rather than total edge
crossings. The results of this experiment axe also described in Section 2.3.

2.1.1 The Problem

The N-way mincut partitioning problem can be described as follows. The inputs
axe a list of nets, a list of cells, and a list ofpartitions. A cell may reside in exactly one
partition, and is considered a point to wliich the nets are attached. The information that
may be specified about these items is as follows:

• nets

1. list of cells connected to the net

2. the criticality of the net. an externally specified value between 0and 1000. wliich
is used as a weighting factor in various places

• cells

1. cell area, in square wiring grid units

2. initial partition cell resides in

3. is cell fixed in that partition?

• partitions

1. total area available for cells

2. distance to all other partitions, using some metric

The problem is to place the cells in partitions, subject to the maximum cell area
capacities of the partitions, in such a way as to minimize the total cost of the nets. The

4 5

6 0 1 7

8 2 3 9

10 11

15

Figure 2.1: Partitions

cost ofa net may be measured in a number ofways: if there axe only two partitions, then
if the net contains cells in both partitions, it costs one unit, otherwise it costs nothing.

The cost may be scaled by the net's criticality. If there axe more than two partitions,

the cost becomes more complex to determine, since the net really should be routed to see

wliich partition boundaries it falls upon. Since doing an actual global route each time a
cell is moved would be prohibitively slow, this process is simulated by using the minimum

spanning tree of the partitions occupied. This is calculated using Kruskal's algorithm [2].
and the results are cached for efficiency.

The Placement Problem

We must map the placement problem at a particular level to this abstraction of

the partitioning problem. In order to do this some extra partitions must be constructed.
The placement algorithm produces a problem consisting offour Teal** partitions and eight
"fake** partitions, which are introduced to contain external pins. The arrangement ofthese
partitions axe shown in Figure 2.1. Partitions 0 through 3 are empty, and represent the
actual cell area available. Partitions 4 through 11 each contain one dummy cell, wliich is

fixed in place. All nets that have external pins that reside on a particular side contain
the dummy cell in the corresponding partition. If a pin is free to float along the top. for

16

instance, the net connects the cells in partitions 4 and 5. and if it is constrained to the

right side ofthe top edge (because the adjacent block has already been partitioned, or the
pin corresponds to a pad which has a fixed position), it contains the cell in partition 5.
Note that if information about the partitioning of a block is to be used to influence, the

partitions of neighboring blocks, the net containing that pin must be routed in the 2 x 2
problem produced by the partition. For this reason, after each block is partitioned, the
nets contained in it are globally routed by means of a hierarchical refinement algorithm,

described in Section 3.1.

We can justify our use of KruskaTs algorithm to calculate the minimum spanning
tree of the complete graph, instead of the minimum Steiner tree of the graph induced by
the adjacencies of the partitions, by the way the placement code calculates the distances
between partitions. The distance between a ufake"* partition and a Teal** partition that
axe adjacent is defined to be 1. The ratio of the distances between pairs of real partitions
that have horizontal boundaries to those between pairs that have vertical boundaries is
calculated to be roughly the same as the ratio between the vertical and the horizontal
net and cell blockage factors, because we want to capture the relative difficulty of routing
horizontal and vertical nets in the distance values. For all other pairs of partitions, the
distance is defined to be the totaldistance along the minimum path between the partitions,

using edges that already have distances defined. By doing this the cost of the minimum
Steiner tree connecting the partitions is wpre-calculated*\

Note that this formulation ignores the problem ofcongestion. It assumes that the
minimum cost path for a net will always be available, while in practice not all nets that
wish to take this path may be allowed to. The minimum density partitioning algorithm
(see Section 2.3) was an attempt to address this facet of the problem more directly.

Unused Area

Another important issue is that of free area, which will be utilized for routing. If
the partitioning algorithm is given the actual value of the amount of room available in each
of the partitions, there will be no control over where the unused area appears. The goal
of mincut partitioning is to minimize the number of edge crossings, and this may be done
at the expense of distributing unused area very unevenly. For this reason, the partitioning
algorithm must be given partitions whose total size is not very much larger than the total

area of the ceUs to be placed. If a total amount of extra room equal to the number of real
partitions times the maximum cell size is left in the partitions, we can be sure that all the
partitioning algorithms described below will always be able to find a possible move. The
problem then becomes where to add the remaining area, or slack.

Slack should be added to partitions based on the perceived difficulty ofrouting the
sub-problem that will be produced. The amount of slack that each partition gets should be
proportional to its difficulty value. Estimating this value is more difficult than estimating
routing area (Section 3.2). since we don't even know what cells or nets are present in this
partition. There axe a few ways this value can be estimated, however. The first is based
on the distance from the center of the block to the center of the chip. Since more nets

tend to be routed through the center of the chip than the edges, a partition closer to the
center will have a higher difficulty value and will need more routing area. This scheme
has the advantage ofbeing simple. On the other hand, the number ofnets going through a
partition can easily be measured more directly. All that is known at this point is the number
of pins on each edge, and in some cases to which half of the edge the pin is restricted (if a
neighboring block has already been partitioned). Define the difficulty of apartition pto be
the sum for all the pins r on all the edges e of that partition of /(f). where

f(pin)= <

0.5 if t is floating

1 if Ms fixed to the half of € adjacent to p

0 if f is fixed to the half of e not adjacent to p

That is, if it is known that a net must pass through this partition, it is given full weight,
and if it is known that it might do so. it is given half weight. Thus the partitions that are

likely to have a lot of external pins will get more slack.

This heuristic can be improved a bit more, however. A net entering a partition

may or may not leave it. Ifanet enters apartition only to connect to apin on acell in that
partition, it will take less routing area than anet that must exit on the other side. For this
reason, a bit more can be added to f(t) if it is known that the net the pin is on has other

external pins. A value of 0.25 has proved to work well.

In Table 2.1, these three methods of calculating difficulty are compared. The
numbers given are the maximum and average net densities after the second phase of global
routing is completed. The third method, taking into account the number of nets that both
enter and leave the partition, seems to be the best overall. For these results, and in general

18

Circuit

Name

Center

Distance

Nets

Entering

Nets •

Entering and Leaving

adder32 0.6 / 0.4 0.5 / 0.3 0.6 / 0.4

prl 1.0 / 0.4 0.9 / 0.5 0.8 / 0.6

square 0.8 / 0.3 1.0 / 0.3 0.8 / 0.3

des 1.1 / 0.5 1.3 / 0.5 0.9 / 0.5

Table 2.1: Comparison of Difficulty Functions

for net densities, the maximum values are more important than the average values, since a

maximum value over 1.0 means that the routing cannot be done.

Another method of dealing with slack is to begin with all partitions having the
same amount of slack, and then iterate, at each stage using the predicted wiring space

required by the previous partition to determine how much slack to give it for the current
iteration. The process would terminate when the quality of the solution, as measured by
the "fairness** of the slack distribution, ceases to improve. We did not test this technique,

but the iterative control structure for the paxtitioning described below has a similar effect.

2.2 Quadrasection

The quadrasection algorithms tested were random assignment, clustering, gener
alized Kernighan-Lin-Fiduccia-Matheyses (KLFM) partitioning. Suaris-Kedem quadrasec
tion. simple simulated annealing, adaptive simulated annealing, and adaptive simulated
annealing using net moves instead of cell moves. Note that all these algorithms, with the
exception of Suaris-Kedem quadrasection, can partition a nethst into an arbitrary number
of partitions, but our tests have been done for 4 partitions in all cases.

2.2.1 Random Partitioning

Random assignment is simple: each movable cell is assigned in succession to a
random partition that has space available. In general, care must be taken that a configura
tion isn't created that has enough total room for the last block, but.no single partition has
enough. However, the placement algorithm is careful toadjust the sizes so that tins cannot

happen.

19

2.2.2 Clustering

Clustering is performed as follows. A seed cell is first picked for each of the
partitions at random. Then for each partition in succession the free cell wliich is most
strongly connected to the other cells is added to that partition, if there is enough available
space. This process is repeated until there axe no more free cells. In order to determine the
most highly connected cell for each partition, gain tables are maintained, much like those
used in the KLFM algorithm.

2.2.3 Kernighan-Lin-Fiduccia-Matheyses

The Kernighan-Lin-Fiduccia-Matheyses (KLFM) algorithm [34] is conceptually
simple, although its efficient implementation can be rather tricky. For the two-way case,

the algorithm is as follows:

WHILE (improvement made in cut-set size) {
WHILE (cells remain to be moved) {

c = the cell whose move to the other
partition would lead to the greatest
decrease in the size of the cut-set;

move c;

}
restore the configuration to the best found this pass:

}

The step of picking the cell with the best gain can be performed in constant time,
using a bucket-sorting strategy which was described in [20]. Briefly, for each partition,
an array of lists of cell moves from that partition to the other is maintained, where the
position in the array corresponds to the gain, or decrease in cut-set size, that would be
obtained if a move in that list were made. Since the range ofpossible gains is proportional
to the maximum number of pins on a cell, the size of the array is relatively small. (If
net criticalities axe taken into account, the axrays would become larger.) Fiduccia and
Mathevses have shown a way to update these gain tables in constant time whenever a move

is made, which leads to the overall linear runtime of the KLFM algorithm.
The generalization to Npartitions is straightforward [65]. The cost the sum of the

sizes of the spanning trees, as described above, instead of the size of the cut-set. Instead
of finding the best cell to move, the algorithm must pick the best {cell, partition) pair.

20

Second cuts

Rretcut
;

Figure 2.2: Quadrasection

where paHition is the destination of the cell. For A" partitions, a total of N x (A* - 1) gain
tables is required. The minimum cost move is chosen from these which do not violate the
capacity constraints of the destination partition. If no move can be made* which does not
violate capacity, one move that does violate capacity is allowed, since the violation will very
likely be eliminated by a future move. Note that although this situation cannot arise in the
original partitioning problem produced by the placement algorithm, it can occur in one of
the sub-problems produced by the quadrasection algorithm.

This algorithm is an improvement algorithm, and it needs agood starting partition
in order to work well. Wetried both the randomand cluster algorithms for initial partitions,

and both results are given in Table 2.3.

2.2.4 Suaris-Kedem Quadrasection

The quadrasection algorithm is essentially a control strategy for KLFM. It is spe

cific to the case where the number ofreal partitions is four, although the technique could be
easily generalized. The area to be partitioned is first divided into upper and lower halves,
and then each of those halves is partitioned into right and left halves. (See Figure 2.2.)
Previous placement algorithms have taken this as the final partition [18]. but following [65].
we apply a further 4-way improvement step. Statistics for the partition with and without
this improvement step are given, as axe statistics for random assignment and clustering as
the initial strategy for the 2-way partitions. These statistics show that the improvement

Parameter Value

initial temperature 100

moves per temperature per cell 10

temperature decrease per point 0.9

points without an accept before stop 3

last temp point cap-violating moves allowed 90

Table 2.2: Simulated Annealing Partitioning Paxametexs

21

step usually leads to an improvement in the final solution of between 10ft and 30ft. and
using the clustering algorithm usually yields better solutions, although not as dramatically
better as the improvement step.

2.2.5 Simulated Annealing

Simulated annealing is used both here and in the detailed placement phase. The
general simulated annealing algorithm is described in Section 4.2. This section describes
the application ofsimulated annealing to quadrasection.

The first simulated annealing algorithm mates use of fixed parameters for the
cooling schedule and the inner-loop stopping criterion. This technique was used by early
placement algorithms [35.59]. and although the adaptive algorithm described below yields
better results, the fixed algorithm is much simpler. The parameters used are given in

Table 2.2.

One move consists of moving a cell from one partition to another. Cells that
cannot move are not considered for movement, and -fake** partitions are not considered as
destinations. The cost function is the spanning tree cost described above. Moves axe allowed
to violate capacity, with a penalty of 1000 times the capacity violation. After a certain
temperature point, such moves are disallowed. After a certain number of temperature
points without a move accepted, the process is terminated.

This is a relatively simple annealing algorithm, and the parameters given above
were chosen empirically, based on a small set of examples.

90

2.2.6 Adaptive Simulated Annealing

The general adaptive simulated annealing algorithm is described in Section 4.2.

It uses the same move set and cost function as the regular simulated anneaHng algorithm

described above, and will not be discussed further.

2.2.7 Adaptive Simulated Annealing with Net Moves

The second adaptive simulated annealing algorithm uses net moves instead of cell

moves. Instead of choosing a cell to move from one partition to another, this algorithm

selects a net and a destination partition, and then moves all the movable cells on that net

into that partition. The xationale behind this is that the goal is to maximize the number

of nets wholly contained in one paxtition. moving a net at a time seems like a more direct

way to achieve this goal. Simulated annealing was chosen as the control framework for

this algorithm since it was the easiest to use — an iterative hill-climbing algorithm like

Kernighan-Lin might have worked better, but if the concept of net moves is a good one,

it stands to reason that it would yield good results in the adaptive simulated annealing

framework also.

2.2.8 Results

The results obtained by partitioning some large netlists with these algorithms axe

given in Table 2.3. The coxxesponding runtimes axe given in Table 2.4. These times were

obtained on a VAX 8650.

Note that although some of the results for the simulated annealing algorithms are

comparable to the results of KLFM and quadrasection. the runtimes become prohibitively

large for even medium-sized examples: no problems with size over 1000 cells were able to

complete in a reasonable amount of time. Simulated anneaHng has been empirically found

to take time* that is roughly quadratic in the problem size to achieve good results, while

KLFM runs in Hnear time.

Among the annealing algorithms, the adaptive anneaHng algorithm did the best,

probably because of the finer control over the cooHng schedule. The net-move algorithm

also did worse than the regular adaptive algorithm. Although this could be in part a result

of the adaptive algorithm's unsuitability as a control framework for this move set. it is

probably an indication that the moves in the move set are too "coarse-grained**, in the

23

! Circuit

Name

Num

Cells

Random Cluster KLFM

Rand

KLFM

Cluster

Quad
Rand

Quad

Cluster

Simple
Anneal

Adapt

Anneal

Net

Anneal

prl 841 1697 554 406 323 253 254 — — —

pr2 3022 3022 2190 1590 1107 1085 1050 — — —

hughes 19724 35582 9843 9426 4496 4235 1861 — — —

square 2508 8370 1543 983 1065 854 854 — — —

adder8 70 172 142 96 98 92 94 — — —

adder16 191 538 523 283 289 254 245 — — —

adder32 384 1143 1110 524 503 441 465 — — —

mult32 5979 10484 4555 2764 1575 1811 1117 — — —

randlOO 100 1740 1091 689 649 682 616 732 682 760

rand200 ' 200 3885 2274 1612 1481 1343 1338 1522 1396 1507

rand500 500 9315 5477 3933 3894 3573 3666 3912 3608 . 3836

randlOOO 1000 18614 11072 7439 7228 6961 6901 7187 7177 7798

rand5000 5000 93085 54694 38890 39033 36704 1 36529 —

—

Table 2.3: Paxtitioning Algorithm Results: Costs of Final Solutions

Circuit

Name

Num

Cells

Random Cluster KLFM

Rand

KLFM

Cluster

Quad

Rand

Quad

Cluster

Simple
Anneal

Adapt

Anneal

Net

Anneal
prl 841 1.3 1.5 9.0 7.6 12.0 14.1 — — —

pr2 3022 5.1 6.1 50.0 29.2 101 56.7 — — —

hughes 19724 43.2 46.6 658 274 604 320 — — —

square 2508 4.8 5.0 29.1 26.0 35.2 32.7 — — —

adder8 70 0.1 0.1 0.3 0.3 0.2 0.4 — — —

adderl6 191 0.3 0.3 1.4 1.4 2.2 1.8 — — —

adder32 384 0.6 0.7 5.0 5.7 3.3 4.6 — — —

mult32 5979 9.7 12.0 76.0 43.5 136 89.3 . — — —

randlOO 100 0.1 • 0.2 0.7 0.4 0.6 0.6 44.3 21.0 47.7
rand200 200 0.2 0.2 1.3 1.0 1.8 1.2 103 88.0 208
rand500 500 0.7 1.1 3.2 3.4 5.6 3.9 374 765 1396

randlOOO 1000 1.5 1.5 9.2 9.3 9.5 9.9 8179 3724 2966
rand5000 5000 6.9 7.9 51.8 39.1 98.0 51.8 — — —

Table 2.4: Paxtitioning Algorithm Times, in Seconds

24

sense that they change the configuration too drastically. There are not enough small moves

to move out of "shallow bowls** [64] without moving too far, when the temperature is low.

Perhaps an approach that provided both the large-scale net moves and the smaller-scale

cell moves would work better.

It has been noted [34] that the KLFM algorithm is very sensitive to the initial

partition given. This can be seen by comparing the columns "KLFM Cluster** with "KLFM

Random", and -Quad Cluster" with -Quad Random**. The clustering algorithm is much

better than random partitioning, and for the larger examples, this difference in starting

quality leads to a difference in quality of final results. For the smaller examples there

seems to be little if any difference in the final quality. Also, in most of the examples the

"KLFM" and "Quad** algorithms that use clustering for the initial partition take less time

than the corresponding algorithms that use random initial partitions. This is because a

better original solution leads to fewer passes.

The example **square** is an artificially constructed netlist. which could ideally be

laid out in a rectangular 50 X 50 mesh, each cell connecting only to its four neighbors.

Thus the ideal partition should have 50 vertical and 50 horizontal crossings on the center

lines. Although this cannot be seen from the data in Table 2.3. due to the weighting factors

introduced by the placement algorithm and extra crossings due to external connections, the

4-way KLFM algorithm produced 56 and 54 horizontal and vertical crossings, respectively,

and the quadrasection algorithm produced 52 and 52 crossings. A result so close to the

known minimum for even one example gives confidence in the essential soundness of the

algorithm.

2.2.9 Control Strategy

We tested a number of different control strategies for applying the partitioning

algorithm. Thefirst was depth-first: after a block ispartitioned, partitioneach ofits children
in turn. This turned out to be too order-dependent, since the first sub-tree partitioned had

much more freedom than the later sub-trees. The second approach tried was ordering all

the sub-problems on a particular level according to their estimated complexity. This also

turned out to be too order-dependent. The approach we settled upon is similar to that

used by Suaris and Kedem, which is to partition the blocks, and then iterate ripping up

and re-partitioning the blocks until there is no more improvement in quality. At that point

Circuit

Name

Depth First
max / avg

Random

max / avg
Est. Complexity

max / avg
Iterated Rip-up

max / avg

adder32 0.8S / 0.55 1.11 / 0.5S 0.S1 / 0.53 0.79 / 0.53

prl 1.02 / 0.51 1.30 / 0.57 0.72 / 0.49 0.71 / 0.49

pr2 1.10 / 0.67 1.25 / 0.05 0.89 / 0.52 0.85 / 0.51

mult32 1.05 / 0.70 1.70 / 0.70 0.91 / 0.61 0.93 / 0.02

randlOOO 2.21 / 0.9S 3.42 / 1.03 1.41 / 0.75 1.32 / 0.72

randoOOO 3.04 / 1.20 4.24 / 2.29 2.04 / 0.97 1.75 / 0.7S

25

Table 2.5: Ripup and Re-partition Results

the next level down is partitioned. This approach was combined with initially ordering the
sub-problems according to estimated complexity. The results of this comparison axe given
in Table 2.5. The figures axe for the maximum and average global routing densities on the
chip after the final global route is completed. The methods for estimating complexity are
discussed in Section 3.2. The iterated rip-up algorithm performed thebest overall, although
ordering the blocks by estimated complexity did almost as well in many cases.

2.3 Minimum Density Partitioning

Another approach topaxtitioning that we tried was mininiuni-density partitioning.
Preliminary trials indicated that this algorithm was not very promising, and we did not have
time to implement it efficiently enough to collect extensive statistics on it. The algorithm

is described below.

We made the observation that mincut partitioning does not take into account the

complexity of the wiring within the partitions, nor does it consider the wiring density at
the boundaries between partitions. There axe cases where a partition has a lower total cost,
using the min-cut metric, yet is less routable (has a.liigher maximum density) than one
with a liigher cost (see Figure 2.3). This lead us to ask whether we could devise a good
partitioning algorithm that uses density directly as acost function instead ofcutsize. and
if so. whether it would yield better results than mincut. in which the cost function is more

loosely correlated to the value we want to optimize.

The cost function we chose has two terms in it. These were the number of tracks

left in each partition. Thti and r„.;. for i G{1.2.3.4}. and the cell area violations in each

26

D

D

p

•••••••••••••••••^

1$:"•* S$H"*il^:|

QQD

(a) totil crossings • 5
max density • 3

:$:$:$• ^•••••••»:;:j:*:j:'*: ••••••••

ill J

>•••••••••••••••••%

6 .ii
(b) total crossings • 6

max dsnstty • 2

Figure 2.3: Minimum Cut Vs. Minimum Density Partitions

partition. C,. The cost is defined by

3 3

cost =Wceti ^2 d +Wwirt ^JadjustCTh.,. Smax) +adjust(rv.,. VmaT))
»'=0 »=0

where WceU and Wwire are 10 and 1 respectively. The function adjust is designed to give

more weight to partitions that have close to 0 free tracks, and is shown in Figure 2.4. Note
that this cost function assumes that the nets have already been globally routed, so the

global routing information must be updated each time a cell move is made.
The terms in the cost function are straightforward to compute. The techniques

for determining the number of tracks free are described in Section 3.2. The difficult part

is computing the change to these values efficiently when a cell move is made. This can be
accomplished by keeping careful track for each cell and net of what contributions they have

made to each of the relevant values.

The available moves are cell moves and possibly cell swaps and net moves. Since

none of the other partitioning algorithms uses cell swaps, and net moves were found to be

ineffective, the moveset was limited to simple cell moves. After a cell is moved, the nets

attached to that cell are globally rerouted in the 2x2 grid.

Anothermajor consideration is the speed of such an algorithm. KLFM partitioning

has O(n) runtime per pass. For another partitioning algorithm to be practically useful, its

1 a» 1-
min max-2 max

Number of free tracks

Figure 2.4: The Function adjust

ll

28

Circuit

Name

No.

Cells

Min Dens

Cost

Min Dens

Runtime

Min Cut

Cost

Min Cut

Runtime

adder8 62 53 7 50 1

adderlG 191 449 121 317 S

adder32 384 972 673 S37 IS

prl 841 3341 1991 2593 37

Table 2.6: Results of Minimum Density Paxtitioning

efficiency must be close to this. However, for testing our minimum density partitioning

algorithm we used the adaptive simulated anneaHng framework. Although we would have
to devise a better control strategy eventually, this experiment gave some indication of what

sort of results we could expect.

This implementation was tested on some small examples. We compared both the
runtime and the final quality with the adaptive annealing mincut partitioning algorithm,

which has the same control framework. The results, which axe given in Table 2.6. wexe not

encouraging. They might be interpreted as follows. The density, although a more accurate

cost function, is not only more difficult to maintain but is too uniform. The difference

in density between two configurations will in general be much less than the difference in

crossing count, since the density takes into account the cell and net blockages, which change
more slowly than the crossings during the course ofpartitioning. Although minimum density

paxtitioning eliminates the need for some of the heuristics that try to predict where the
congestion will be. such as the division of uslack** before partitioning is done, this is not
necessarily a good thing. It seems that in this situation, as is often the case, it is better
to solve some sub-problems that approximate the real problem very well than to find an

inferior solution to the real problem.

2.4 When to Stop Partitioning

Partitioning process terminates when a block that isa good candidate for detailed
placement and routing is reached. There axe a number of factors that must be considered
when deciding whether a block is a leaf problem or not.

The first and most important one is whether partitioning the block further would

make it impossible to place the cells in the block. Since all the cells in a block must reside

29

% %••, x^> ' t

* 's ^ &-t \£ "'* '4.< >* $•«.

Figure 2.5: A Block That is Too Small for its Cells

entirely within the block, if the block is smaller than one of the cells, or small enough that

the cells cannot be arranged within the block, even though the total area of the cells is less

than the block area (as in Figure 2.5). its parent should not have been partitioned.

Also, partitioning a block restricts the possiblelayouts. Cells cannot stretch across

block boundaries, and a net can have only one pin per edge of a leaf block (although after

the second phase of global routing, it may have more than one pin on an edge of a higher-

level block). To reduce the effects of bad partitioning decisions, we tried using a "rip-up

and re-place** heuristic. This consists of collapsing one level of the partition hierarchy and

trying to solve the resulting larger problem.

This provedineffective for several reasons. A placement problem that is four times

larger takes much more than four times longer to run. and Mighty Hkewise scales more

than linearly. Also, if a block is very difficult to lay out. the chances are that its neighbors

will also be very difficult, so the overall complexity will not decrease much. Finally, because

of the way we do the second phase of maze routing, when we collapse one level of block,

nets might have more than one pin on an edge of the leaf block. This situation cannot be

represented by the data structure currently used by the detailed placement system.

Based on these considerations, we have adopted a simple scheme for ending the

30

partitioning process. A block is considered a leaf block if either its width or its height is
less than or equal to 4 times the width or height respectively of one basic tiling unit (see
Figure 1.5). or of the largest cell in the block, whichever is larger. This makes it very
unHkely that the sort of situation pictured in Figure 2.5 can occur.

Chapter 3

GLOBAL ROUTING

There axe two phases of global routing performed before the detailed placement

and detailed routing phases. These axe initial hiexaxchical routing and global maze routing.
The initial routing is performed purely to direct the paxtitioning process. The final global
routing phase is performed after the initial routing has been ripped up. and uses avariation

of the Lee maze-routing algorithm.

3.1 The First Global Routing Phase

The initial global routing uses ahierarchical approach, similar to those of Burstein

[10] and Suaris and Kedem [65]. It is performed concurrently with the partitioning process.
After each block is partitioned, all the nets which pass through this block are assigned

routes through the 2 x 2 grid created by the quadrasection. Note that although we call
this a 2 x 2 routing problem, we also need to determine wliich direction a net takes from

one of the partitions to the outside of the grid. Thus this is more general than the 2x2

problem as described in [42]. A net may have pins on cells in any of the four sub-blocks,
and may have a pin on any of the four sides. Furthermore, the pinmay be floating along an

edge, or restructed to either the first or the second half. (See Figure 3.1.) The pin location
restriction may be a result of either an adjacent block which is already routed, in which

case it is called half-floating, or an external pin on the edge of the chip by the position of

the corresponding pad. in which case it is called fixed.

These conditions may be expressed as an S-tuple {Pq. P\. P2-Pz- Et.Ey.Ei.Er}-
where the P,*s are either 1 or 0 depending on whether the net has a pin in the i'th partition.

31

32

ceil

Intemal pin

J,
UMMiiUiM

fixed

pseudo-pin

net

floating

Figure 3.1: The 2x2 Routing Problem

half
floating

33

and the £,*s take on one of the values {none, upper, lower, floating}. Thus there are
212 possible net types to route. Since enumerating all the possible routes for a particular
net type may be a time consuming operation, a -memo function** is used to calculate the
routes, which remembers all its past return values in an array ofsize 212. Enumerating the
possible routes for a particular configuration is not excessively expensive, though —the
maximum number of routes is 256. but reasonable 2x2 routing problems have only a few

solutions.

The possible routes axe calculated in the following manner. First, each of the 12
edge halves (internal and external) are marked with one of {yes, no, either, maybe},
where yes indicates that there must be a pin on that edge half, no indicates that a pin
may not be on that edge half, either indicates that a pin must be on either that edge half
or the other half of the edge, and maybe indicates that there may or may not be a pin
on that edge half. The choices now are first, for every edge half that is either, whether to
put the pin there or the other half, and second, for every pin that is maybe, whether to
put a pin there ornot. All such choices are then enumerated, and those that either contain
cycles, contain disjoint components, ordon't contain all the paxtitions that contain cells on

the net axe rejected.

Apossible route for a net may be expressed as a 12-tuple {.Yn. AV ...An}, where
A", is 1iffthere is a pin on edge number i. If i is an internal edge, the pin is a pseudo-pin.

These choices axe then given costs, and the lowest cost route for the net is chosen.

We investigated two types of cost functions. The first takes into account the congestion at

each edge, and sets the cost equal to

]£ *(»)/(rathi)
i€edges

where ratioi = density/capacity at edge *,

J 1 if the net has a pin on edge?'
7r(i)= <

[0 otherwise

and

r if r < Cmax

/(>) = \ Faoftr if r >= Cmax and r<1
k FhardT if r >= 1

CmaT, the desired maximum capacity, is a value determined empirically to be 0.75 by

• examining the success patterns of the detailed placement and routing. Faojt (the "soft**

34

Cost

• Function

Fsoft
Value •

Fhard
Value

Max / Avg
Density

Max / Avg
Net Size

Weighted 5 20 1.00 / 0.57 156 / 6.48

Weighted 10 100 1.04 / 0.54 161 / 6.4S

Weighted 10 20 1.09 / 0.55 164 / 6.53

Weighted 3 20 1.10 / 0.55 160 / 6.36

Weighted 20 100 1.14 / 0.54 155 / 6.53

Weighted 3 1 1.15 / 0.55 160 / 6.36

Weighted 2 1 1.21 / 0.56 152 / 6.45

Weighted 2 100 1.21 / 0.56 152 / 6.46

Weighted 1 100 1.33 / 0.55 155 / 6.42

Weighted 1 3 1.47 / 0.55 155 / 6.42

Uniform - - 0.92 / 0.54 157 / 6.41

Table 3.1: Compaxison of Initial Global Routing Cost Functions

penalty factor) and Fhard (the "haxd** penalty factoi) axe 5 and 20 respectively, and are

likewise empirically determined.

The second cost function uses the same sum, with f (ratio) = l.That is. the route

with the smallest number of crossings is always chosen.

Results for these two cost functions are given in Table 3.1. for some values of Faoft

and Fhard• The second oneworks better although it takes no account of the congestion. The

reason for this is that the purpose of this global routing phase is to direct the partitioning

process. If many nets want to cross an edge on one half instead of the other, they should be

allowed to cross there so that the next round of partitioning can take this fact into account,

instead of being forced to take detours, which hides the better routes from the partitioning.

The fact that the routes may violatecapacity constraints does not matter, since these global

routes are not actually used. Furthermore, using the cost function f (ratio) = 1 eliminates

the problem of order dependence in this phase of global routing, since the value of the

function doesn't depend upon the previous density of the edges crossed by the nets.

3.2 Routing Area Prediction

After the partitioning process is finished, wewish to estimatethe routing capacities

of each of the leaf blocks as accurately as possible, before doing the final global route of the

nets. The X- orY-capacity of a block is defined as the total number of routing tracks in that

Number

of Pins

Equivalent
Nets

2 1

3 1.2

4 1.4

5 1.6

6 l.S

i 2.0

• S 2.0

Table 3.2: Empirically Determined Multiple Pin Equivalent Nets

35

direction (not counting those used by power and ground busses), minus the total estimated
blockages. An estimated blockage may be either ablockage from acell or ablockage from
a net internal to the block. Determining this value accurately is very difficult, since the
placement is not known, so we err on the conservative side whenever necessary.

Blockages due to cells within the block may be estimated in a straightforward
fashion. The total length of the obstacles in the appropriate direction is calculated, and
then this is. divided by the width or height of the block to produce the best-case number of
tracks that would be blocked. That is. if there are a total of A>m of vertical wires in cells

of the block, and the height of the block is Epm. K/E tracks are blocked. If a wire runs

in the wrong direction, it is modelled as a series of length 1 wires.

This number is then multiplied by A"ccW, an empirical constant wliich measures

how much the actual value deviates from the best-case value calculated above. This has
been determined to be approximately 1.4. The actual number of blockages is measured by
noting how many external wires can be routed through this block by the detailed router.

Blockages due to nets are calculated in amore interesting manner. First, all multi-
pin nets are expressed as a number of two-pin nets, which are equivalent with respect to
netlength. The empirically derived values for these numbers are given in Table 3.2. Note
that external pins axe excluded from this count, since the number of available external
connections to nets is precisely that which we are trying to determine.

The total number of equivalent two-pin nets. Nequiv. is then multiplied by the

average netlength for this block, which is calculated by the following formula, due to Donath

36

et al[l7.25]. who have derived it from Rent's rule[39]

Eavg =KnetC»-°* yfw—Zl

where

Efret + yft

Vav9 =K\etCp-°*y/(F)-—}-free
[Efrti + ^/r

C = number of cells in the block
Ejre€ = height - horizontal tracks blocked by cell blockages
Vfree = width - vertical tracks blocked by cell blockages
A"„ef = empirical constant, found to be approximately 1.2
p = "parallelism factor** for netlist

The parallelism factor for the netlist is usually between 0.5 and 0.75 for typical
netlists. We do not attempt to estimate the parallelism factor, but rather allow the user to

specify a value for it. Afterthe layout is completed, the actual value found for this constant

is printed, and the user may supply this to successive placement runs.

The total estimated routing tracks available for the block axe thus

Vertical tracks = width - pgtracks - !«// - Vnet

Horizontal tracks = height —Eceu —Enet

where

Eceii = the total number of horizontal cell blockages
^ ce// = the total number of vertical cell blockages*
Enet = the total number of horizontal net blockages
Vner = the total number of vertical net blockages
pgtracks = number of tracks used for power and ground
height = height of the block in tracks
width = width of the block in tracks

We have found this technique to be reasonably good for large sub-problems, but it

becomes less accurate when it is applied to small sub-problems where the effects of detailed

routing are much more pronounced. However, this effect is minimized by the fact that
the global routing algorithms tend to work better on a small scale than a large scale, and
the urip up and re-place** technique can be apphed. The above formulas were derived for
standard-cell designs — a careful examination of their validity for gate array types ofdesigns

might lead to a better better interconnection model for Sea of Gates.

6 6

Q... «.^>

Qi.. ..^

(a) Rafirwnwit routing (b) Rat maz« routing

Figure 3.2: Hierarchical vs Flat Routing

3.3 The Second Global Routing Phase

After the paxtitioning process is completed, all the nets that span more than
one block are ripped up and globally rerouted. This is done because the initial, four-way
refinement global routing algorithm must make decisions early in the partitioning process
that drastically affect available routes later on. without enough information to make the
best, choices. Also, the types of routes that can be generated by the simple refinement
algorithm used here are a subset of the reasonable routes that one might consider. In
Figure 3.2, route (a) is the best route that can be generated by our hierarchical refinement.-
but route (b) is a much better route. The reason that our hierarcliical routing algorithm
cannot generate route (b) is that at each level of the hierarchy, a net can cross any edge
only once. Note that there are techniques for hierarchical routing that relax this restriction
[44]. but these axe more complex and time-consuming. Instead of improving our hierarchical
routing algorithm, we decided to use it only for directing the partitioning, and re-route all
the nets after the partitioning has been completed.

3.3.1 The Problem

The routing problem is as follows. The area to be used for routing is a grid, as
in Figure 3.3a. each of which has a certain number of vertical and horizontal feedthroughs.

38

1 2 S 6

3 4 7 8

9 10

11 12

13

(a) TTwgrtd (b) Th9 graph

Figure 3.3: Two Representations of the Global Routing Problem

These numbers are calculated by means ofthe routing area prediction algorithm described
in Section 3.2. For any boundary between adjacent blocks, the capacity of that boundary
is defined as the minimum of the number of horizontal or vertical feedthroughs for the two

blocks, for vertical and horizontal boundaries, respectively. This grid can be thought of as

an undirected graph, with edges having capacities (Figure 3.3b).

Nets contain pins which reside in graph nodes". External pins, which correspond to
pads, are contained by the node corresponding to the block nearest to the pad. A net can
contain pins in an arbitrary subset of nodes. The global routing problem thus becomes that
of assigning Steiner trees to each net. such that some function of the sizes of the individual
Steiner trees and the density/capacity ratios of the arcs in the graph is minimized.

This problem is in general an NP-complete problem. There has been a great deal
of research to develop heuristic algorithms to solve this problem, none ofwhich have been
entirely satisfactory [38].

3.3.2 Maze Routing

One of the better and simpler classes of algorithms for solving this problem in its

graph formulation is the Lee maze-routing algorithm [43.50]. The Lee algorithm and the
similar Hightower line-search algorithm [26] have also been successfully applied to detailed

39

(a) Twoatattm* (b) All at once

Figure 3.4: Different Ways To Route A Multi-Pin Net

routing [62]. The essential idea of the Lee algorithm is to expand from one or more nodes
in the graph, keeping track of the path to each node so that once the destination is reached
the path taken can be reconstructed.

In the two-terminal case, one can pick one terminal and expand towards the other,

possibly biasing the search in directions that are more likely than others to yield minimal
routes. In the more general case, where a net may have any number of pins, there are
several choices. The problem may be decomposed into a set of two-terminal problems,
where each segment of the net connects two pins (Figure 3.4a). However, splitting the net
in this manner introduces another problem that must be solved — how are the pairs of pins
to be connected chosen, and in what order should they be connected?

The solution we have chosen is to route the multi-terminal net all at once, as

shown in Figure 3.4b. Connection points between wires may also occur in places other than
the terminal locations, which changes the problem from one of finding a spanning tree into
one of finding a Steiner tree. Finding a minimal size Steiner tree has been shown to be
NP-complete [22]. so a heuristic algorithm similar to that used to solve the two-terminal
problem is apphed.

The routing problem is represented by a graph Q, a set of terminal nodes 7 in
the graph, and a collection V of subsets of the graph, each of which is connected. Each
of the subsets V, contains at least one element of T. and represents the nodes reached

40

from that element. Thus at the start ofthe algorithm, each V, consists ofa single element
of T. Additionally, a set of junction nodes J is maintained, where the V, meet during
the expansion process, initially ©. a function Cwhich indicates for each node (except the
terminal nodes) in a member of Vwhich neighbor it was reached from, and a function AT
of the nodes which indicates which element of Vthat node is in. if any. Finally, there is a

priority queue T ofthe nodes on the frontier ofthe maze search.
The objective of the algorithm is to expand all of the V, and whenever two subsets

meet, combine the two. adding the node at which they met to J. When there is only one
subset remaining, retrace the paths from each node in J to the terminal node, and add this
path to the route for the net. The algorithm is as follows.

J = f = V = C = K = H = 6:
FORALL (f 6 T){

V = Vu{{r}}:
insert t into T:

}
WHILE (| V |> 1){

n = first(^):
FOREACH (neighbor m of n) {

IF(3f s.t. {m.t}€ K){
merge K(m) and fC(n):
J = Ju{m}\

} ELSE {
np = K(n)\
Vnp = Vnp U{m};
K(m) = K.(n);
add 77? to T\

}
}

}
FORALL (j € J){

TZ = 1Zu{j}:
WHILE (3xs.t.{j.x}£C) {

1Z = nu{x}\
j = x:

}
i

Themajordecision at this point iswhat cost function to use for the priority queue.
In the case of a constant cost function, the priority quetie becomes a regular queue, and

41

the algorithm becomes the classic Lee algorithm that finds the shortest topographical path.
This can be very slow, however, and fails to take into account the costs of edges. To speed
up the algorithm, the search process can be biased towards routes that are likely to be
optimal, and against ones that are likely to be expensive (such as those that lead in the
opposite direction from the goal). In the two-terminal case, we can start at one node, and
add nodes according to their distance from the other node. This is the idea behind A*
routing [56]. If the routing is done from both ends at the same time, tins heuristic can still
be apphed. If. however, there are more than two terminals, it is not so easy to apply, since
there is no one location that is the goal. It is much easier to take the opposite approach,
namely considering how far the frontier is from the starting point, as opposed to how far it
is from the ending point.

The edges in the graph have weights, which depend on the density of the corre
sponding edges in the global wiring grid. Aweight of oc indicates that the edge is blocked,
and aweight of 0 indicates that the edge is "free**. Since the total cost of a route is de
fined as the sum ofthe weights of the edges that comprise the route, this quantity can be
minimized by making the cost function for the priority queue the sum of the weights of the
edges used to reach the node. Therefore, every time anode is removed from the queue, the
cheapest path available is being expanded.

However, the cheapest path may not always be the most desirable. In the control
strategy described below, at the beginning it is more important to find the best possible
path for each net. independent of the others, which would correspond to a constant cost
function. Near the end. the goal is to find the lowest cost path. In order to achieve this, an
extra term was added to the cost function, wliich is the cost ofentering a node. This cost is
the same for all nodes in a particular pass ofthe maze routing. We tried both keeping this
value constant, and starting with a high cost for entering a node, then decreasing it to zero
in the following passes. Finally, yet another term was added to the cost function, which
is proportional to the total cost of the arcs leaving the node. The rationale here is that it
should be tough to enter anode that will be difficult to leave. Here also we tried using a
constant factor and one that decreases in successive passes. The values of these functions

at the different passes axe shown in Table 3.3 . The residts of comparing the constant and
the varying values, as well as tests to determine the optimal constant factors, are described
below.

Finally, when the neighbors of this node are enumerated, it is done from the least

42

Pass

Number

Enter

Cost

Arc

Factor

1 100 0.5

2 60 0.3

3 30" 0.1

4 10 0.0

0 0 0.0

Table 3.3: Cost Weights for Entering Nodes

expensive to the most expensive, so that if there is a choice of junction points, the best one
will be picked.

3.3.3 Control Strategy

The above maze routing algorithm routes one net. This leaves the problems of what
order to route the nets in. and what to do ifno path can be found. This is an extensively
studied problem, and no generally satisfactory solution exists yet. We tried a number of

.strategies, which axe described below. Results axe given in Table 3.5. Several elements can
be factored out and varied independently —initial routing order, ripup selection strategy,

termination criteria, and the calculation ofedge weights from the density/capacity ratios

at the boundaries.

Initial Ordering

The simplest strategy to implement is an arbitrary ordering, or routing nets in the
order they appear in the database.

The second strategy is to route the shortest nets first. The rationale behind this
heuristic is that a short net will block fewer edges than a long one, and if the long nets are
routed first too many short nets may be blocked. Also, a long net will have more reasonable
alternative routes available.

The third strategy is to route the longest nets first. The rationale behind this
heuristic is that there will be fewer long nets than short nets, and they will be harder to
route since there are more edges that can be congested, so it is better to route them before

routing the shorter, simpler nets.

43

Note that none of these strategies consider net criticality. If a net is marked as
critical, it should be routed earlier than nets which are not so critical, and should get a

more optimal route, but not at the expense of making other nets unroutable.

Ripup Selection Strategy

If some of the nets have no path available, it is necessary to rip up the nets

that block it and reroute them. Some researchers [48] have expressed the belief that if an

algorithm is forced to do any large amount of ripping up. there is no hope of completing
the routing. However, in the absence of an initial routing strategy that works all the time,
ripup and reroute is the only hope for success.

Once the edges that block the current route have been identified, nets which pass
through this edge must be selected for rip-up. One possibility is to select the shortest
net available. The rationale is the same for the shortest-first initial routing: make the

smallest modification possible. Another possibility is to rip up the longest net available,
since presumably it has the most flexibility for re-routing.

It is also possible to take into account the number oftimes a net has already been
ripped up. If a net has been rerouted a lot of times already, perhaps it would be good to
give some of the other nets a chance. On the other hand, if an effort is made to pick the
most likely nets to rip up. there is little point in trying all the other nets equally often if
the likely ones don't help.

Another possibility, which was used in [52]. is torip up all the nets, and iterate until
the no further improvements are made in the maximum density. This has the advantage of
allowing us to put off the question. **How low a maximum density is good enough?**, since it
will continue as long as it can improve this quantity. Also, given the maze routing strategy

above, it will never give a net a net a route that is worse than the previous route. The
problem oforder dependence is also reduced, as can be seen from Table 3.5.

Some alternate strategies that we did not explore are partial ripup [61] and re
cursive rerouting. In partial ripup, a uweak modification** that pushes only a part of the
route aside is made whenever possible. In recursive rerouting, a net would be ripped up.

the primary net would be extended only far enough to occupy the space thus freed, and
then the second net would be rerouted. This rerouting may induce the ripup and reroute

of a third net. and so on. Both these strategies have been used successfully for detailed

44

Ratio Multiplier

0.8 4

0.9 8

1.0 10

1.1 32

Table 3.4: Density Ratio Coefficients

switchbox routing, and they might prove useful for global routing.

Termination Criteria

Finally, there must bea way to determine when enough rip-up and reroute has been

done. If all the nets are ripped up and rerouted in order, the process can be terminated
when no further improvement is achieved. Otherwise, there must be some limit on how

many overall ripups are done, or a limit thenumber oftimes a particular net can be ripped
up. In the latter case, if a net has exceeded its ripup limit, it is locked in place.

Calculating Edge Weights

Before maze routing can be attempted, the density ofrouting at each block bound

ary must be translated into a cost for the axe between the corresponding maze nodes. Maze
arcs have costs that range from 0 to CmaT. A cost of oc indicates that the axe may not be
taken. Instead of blocking off an arc in this manner, a function of the density is used to
map from the density to the cost that grows rapidly as the density approaches and exceeds

1. This is

cost(d) = CmaTa(d)d.

This has the effect of encouraging lower crossing densities. Table 3.4 gives the values of a

for various density ratios.

Results

The numbers in Table 3.5 were generated by running the DES example, using

different ordering strategies and enter cost functions. The cost weights for the runs with
varying arc weights were taken from Table 3.3. and the constant weights were taken from

Initial

Ordering
Arc

Weights

Edge Density
max / avg

Net Size

max / avg

random constant 0.79 / 0.53 159 / 6.42

random changes 0.92 / 0.54 157 / 6.41

shortest constant 0.79 / 0.53 160 / 6.41

shortest changes 0.S8 / 0.54 157 / 6.41

longest constant 0.81 / 0.54 159 / 6.41

longest changes 0.88 / 0.54 157 / 6.41

Table 3.5: Global Routing Ordering Strategies

Enter

Cost

Arc

Factor

Edge Density
max / avg

Net Size

max / avg
0 0.0 0.89 / 0.54 157 / 6.41

0 0.1 0.79 / 0.53 160 / 6.42
0 0.3 0.79 / 0.54 160 / 6.44
0 0.5 0.79 / 0.53 159 / 6.43

10 0.0 0.88 / 0.54 157 / 6.40

10 0.1 0.79 / 0.53 158 / 6.43
10 0.3 0.79 / 0.53 159 / 6.43

10 0.5 0.79 / 0.53 161 / 6.42
100 0.0 0.88 / 0.54 158 / 6.40
100 0.1 0.79 / 0.53 160 / 6.42
100 0.3 0.79 / 0.53 159 / 6.41

100 0.5 0.79 / 0.53 159 / 6.42
30 0.0 0.92 / 0.54 157 / 6.39
30 0.1 0.79 / 0.54 161 / 6.42
30 0.3 0.S1 / 0.53 161 / 6.44
30 0.5 0.89 / 0.61 166 / 6.95
60 0.0 0.89 / 0.55 157 / 6.39
60 0.1 0.81 / 0.53 160 / 6.42
60 0.3 0.79 / 0.53 159 / 6.42
60 0.5 0.79 / 0.54 160 / 0.43

Table 3.6: Constant Values for Enter Cost and Arc Weight

45

46

Table 3.6. It is interesting that much better results were obtained when the same enter
costs and arc factors were used for all passes, instead ofvalues which depend on which pass
this is. This result is different from that obtained by Hong [53]. who found varying weights

to be more effective.

If All Else Fails

If no nets can be ripped up at a particular over-congested edge, we must give
up and leave the net unrouted. This is avery bad thing, since either ahuman or afinal
clean-up stage of the program must route the net individually after the final placement and
routing is completed. This sort of human intervention is unacceptable for rapid-turnaround
ASIC design. It is time-consuming, error-prone, and quite difficult. Therefore, there must
be some sort of last-gasp algorithm that routes the (hopefully) few nets that remain after
the final place and route.

Much more information is available after the detailed place and route is completed.
In particular, the exact positions of all the blockages caused by both cells and routed nets
axe known. However, aflat maze route of the entire chip surface is unacceptable. In achip
with afew thousand cells, the maze might be as large as 1000 x 1000. with amillion graph
nodes. This is bound to be very space- and time-consuming.

On the other hand, it should be possible to use the detailed information available
to formulate amuch more accurate set of capacities for global routing. The unrouted nets
can then be globally routed and added to the detailed routing of the individual blocks in
the route. We have not yet explored this option, however.

Chapter 4

DETAILED PLACEMENT

After the chip has been decomposed into a grid of small leaf problems (or blocks)
by means of partitioning and global routing, these problems must be placed and routed.
The detailed placement process uses simulated annealing, and the routing is done by means

of a switchbox router.

4.1 Ordering the Detailed Placement Problems

The success of the detailed placement and routing process depends strongly on the

ordering of the blocks. If none of the neighbors of a block has been placed and routed, all
the pins on its borders are floating, and it should be easier to place and route than if some
of the pins were fixed, since there are more degrees offreedom. (This may not always be a

correct assumption — the move set and the solution space will be bigger and it may take

longer to find a solution with as low a cost. However, it does not appear to be the case that
constraining the solution by doing adjacent blocks first leads to a better solution.)

The difficulty of each problem is determined by adding up the percentage utiliza

tions of routing capacity on the four sides, and the problems are then done in decreasing

order of difficulty. Table 4.1 shows the results of using some different difficulty functions:

the one described above, the maximum density of all four sides, and a combination of the

sum of the density and percentage ofcell area used. The function that yields the best-results

is the one that incorporates the most information about the difficulty of the problem, which

is the sum of the edge densities and the percentage utilization of the cell area.

47

48

Ordering
Strategy

Circuit

Name

Number

Blocks

Number

Undone

Number

Retries

V, density adder32 28 1 4

maxi density) adder32 2S 0 <

£ density + %area adder32 2S 0 5

Y, density prl 64 23 13

max(density) prl 64 17 18

T density + %area prl 64 17 22

T, density des 256 62 69

max(density) des 256 67 76

]T density + %area des 256 51 61

Table 4.1: Ordering. Strategies for Detailed Placement

4.2 Adaptive Simulated Annealing

The general simulated annealing algorithm, as described in [35]. is as follows.

temp = mitiaLtemperature():
WHILE (outer loop not done) {

WHILE (inner loop not done) {
move = select jnove();

change = cost«change(move);
IF (randomO < acceptJune(change, temp))

accept move;

ELSE

reject move:

}
temp = update-temperature(temp):

}

In asimple annealing algorithm, the initial temperature would be aconstant, the
outer loop would finish either when a pre-set temperature was reached or when no moves
were accepted, the inner loop would finish when acertain number ofmoves per item have
been tried, accept.func would be e{chan9e/temp). and the temperature would be updated by
multiplying the current temperature by aconstant, typically between 0.S5 and 0.95.

A number of improvements can be made upon this selection. These improvements

are described in [57]. but most of the constants given below have been empirically deter
mined. The annealing should be started at atemperature where most moves are accepted.

49

in order to be sure that the solution space is covered evenly. This is done by generating a
number of moves and calculating the standard deviation from the initial, random configu
ration. The initial temperature is then taken to be proportional to this standard deviation.
Empirical tests have yielded avalue of 3as agood constant of proportionality: for this
value, over 90% of all moves are accepted.

The outer loop stopping criterion is kept the same, that is. when no states are
accepted during this pass. Instead of simply exiting the outer loop here, however, the inner
loop is repeated one more time, with the temperature equal to zero. This last pass usually
finds a few more cost-improving moves, but seldom makes a big improvement.

The inner loop stopping criterion is more interesting. The idea is to run at one
temperature until the system has Reached equilibrium**-. At this point, no further good can
be accomplished without reducing the temperature, because any time asignificantly better
configuration is reached, the temperature is such that it is likely that this minimum will soon
be left for another, possibly much higher, configuration. As described in [57]. equilibrium
is detected by maintaining acount of how many accepted moves have cost changes that axe
within aparticular window, and if this count exceeds acertain threshhold before the total
number of accepted moves exceeds a different threshhold, equilibrium has been reached.
Both ofthese threshhold values depend on the previous value ofthe standard deviation of
the cost. As alimiting case, the inner loop is terminated if acertain number of moves has
been accepted, or if a certain number have been tried. Both these limits depend only on
the problem size.

The temperature decrease algorithm, like the inner loop stopping criterion, de
pends on the standard deviation of the costs at the previous temperature point. If the
standard deviation was higher than expected, then the temperature should be decreased
by asmaller amount, since the previous temperature decrease was too great. On the other

• hand, if the standard deviation was small, then the previous decrease was too conservative

and the current decrease can be made larger. The formula used is Tnttv = oToW, where
a = e*Told/<r a is the standard deviation of the cost at the previous time point, and Ais

a constant between 0.5 and 1.0. Since a higher value of A leads to a slower temperature

decrease, and, all other things being equal, abetter but slower final solution, the value of
Ais determined by the quality, which is a parameter ofthe annealing algorithm. Since this
formula may lead to very small values of a for high temperatures, an upper limit on the
temperature decrease possible is set. For simplicity, the value of Agiven above is used as

50

the minimum value for a.

4.3 The Cost Function

The cost function used by the placement algorithm contains a number of terms.

They are:

• total net length

• cell overlaps

• external pins that axe blocked by cell geometry

• slack between pairs of cells

• slack between cells and external pins

• maximum net density

• net density / net capacity ratio

The last two. which deal with net density, turned out not tobeuseful, and axe thus
not calculated in the current implementation. Note that all distance values are calculated
separately for the horizontal and vertical directions, and may be weighted differently for
each direction.

Net Length

The total net length is simply the sums of the sides of the half-perimeter bouuding-
box for the net. Note that for some nets, it is possible to ignore either the horizontal length
or the vertical length, or both. If a net has external pins on both the left and right edges
of the block, no ceU or pin move can change the horizontal span of the bounding box.
(Figure 4.1.) If it has pins on all four sides, no move can change the bounding box at all.
When this is the case bounding box need not be re-calculated.

Overlaps

Cell overlaps occur when parts of two or more cells occupy the same region. Since
nothing prevents us from attempting cell moves that cause overlaps, we must weight overlaps
hiohlv in the cost, function so that even ifsome do occur in the early stages ofannealing, they

X

(a) Ignora horizontal apanotnat

Figure 4.1: Ignoring the X- or Y-spans ofa Net

will soon be eliminated as the temperature decreases. The cells may have any rectilinear
shape, so we must be prepared to form the intersection of arbitrary Manhattan polygons.
In most cases, however, the cells are rectangular, so we special-case polygons with four

vertices and avoid the expensive Manhattan intersection calculation.

Pin Blockages

Whenever a cell blockage is within one grid unit of an external pin. that pin is
considered blocked. Since it is difficult or impossible to route to such a pin. total pin

blockages are included as a term in the cost function. For efficiency, two arrays of flags
are maintained for each edge: the pins array and the pinblocked array. Whenever there is
a pin in a paxticulax position, the pins value for that position is 1. and whenever there is
an obstacle that affects a particular position, the pinblocked value is 1. These arrays are

maintained by the pin move routine and the cell move routine, respectively. To calculate
the total pin blockage factor we merely compare the two arrays.

i

A ii
|

m / \ \ \
bouncflng • i(,.............^................»..^
box : : ;

> i
j 1

h

i
j

j

111

:

(b) fgno»» nat altogatnar

51

Cell and Pin Slack

If netlength were the only major consideration, the produced layouts would often
be unroutable. The cells would tend to group tightly together, since they axe in general

more tightly connected to each other than they are to the external pins. In order to prevent
this, and to leave adequate room for routing between the cells, the slack between cells is
taken into account in the cost function. The slack between two cells ci and c2 is defined

.-,0

as max(0. minsep- dist(c!.c2.)). The slack value is measured independently in the X- and
Y-direction. minsep is currently set at half the width or height of the basic tiling unit
the smallest unit from which the chip template can be made without rotation or mirroring.

This is approximately the size of an average cell. Thus the total cell slack will be zero
roughly when there is a cell's width or height between every two cells.

It also helps the routability of the layout to take note of the positions of the
external pins, and push cells away from them. If there are alot ofexternal pins in one area,
alot of routing room will be required in that area. Pin slack, is calculated in the same way
as cell slack but is between cells and external pins. For every { cell extpin } pair we add
max{0. minsep- 6ist{celLextpin)}. to the pin slack factor.

This factor has significant effect on the layout. It tends to gather external pins
together in one area and open up routing regions for them, which is useful if they are on
nets that merely feed through the block. The cells tend to gather in the center of the block.
which creates "islands" of cells in a sea of routing (See Figure 4.2).

Another possible way to accomplish this would be to add dummy cells that are
attached to nets when there are many nets that want to "take the same route. This would
be equivalent to measuring slack from the center point of anet. as opposed to from the
pins.

Net Density

The use of net density as aterm in the cost function was another attempt to use the
quantity that we axe really trying to minimize directly as the cost function. We tried using
two terms based on the density — the maximum density across the block, and the density
to capacity ratio, which is defined for the horizontal case as sum %%dens{ x)/cap(x). where
dens(x) is the number of nets that cross the vertical fine at .r. and cap(x) is the number of
free horizontal tracks that cross the same line. The vertical density ratio is defined similarly.

The motivation behind including these terms was the observation that there axe
cases where minimizing net length and slack do not in fact minimize routability. much like
minimizing the total crossing count in uiincut partitioning does not minimize the global
routing density. The density factors were relatively time-consuming and troublesome to
compute and maintain, causing the annealing process to run twice as slow for the same
number ofmoves. The costs obtained by this method were no better than those obtained

53

Figure 4.2: "Island** Patterns in Layout

54

without density factors, which suggests that the cases where minimizing netlength and slack

is very far from minimizing density are relatively rare.

4.4 The Move Set

There are three types of moves available during placement. These are cell moves,

cell swaps, and pin moves.

Cell Moves

A cell move consists of changing the location of one cell. Each cell can be thought

of as being in one basic tiling unit or BTU. Within that BTU. it resides in a particu

lar slot and has a particular transformation. Thus its location can be expressed as a

{BTU. slot transform} triple.

First, a new BTU is picked for the cell. Admiral uses range limitingwhen making

this selection, a technique used by simulated annealing algorithms to increase the percent

age of accepted moves at low temperatures. The new BTU will be at most distance 6T

horizontally and 6y vertically from the old one, where

6X =width \ozlQ(9y/(T/Tinit) +1).

and

6y =height\og10{9y/{T/Tinit) +1).
J is the current temperature, and r,„,f is the first temperature point used in the annealing.

The rationale behind using the logarithm of the temperature is that the temperature is

expected to decrease roughly exponentially with time, so the range will decrease lineaxly.

Once a BTU has been chosen for the cell, a {slot, transform] pair within that

BTU must be chosen. Each cell has a list of {slot, transform) pairs which are valid for it.

For instance, in Figure 4.3, the nand2 cell has the following set of {slot transform) pairs.

sO.O NO-TRANSFORM

sO.l MIRRORJC

sl.O NO-TRANSFORM

sl.l MIRROR.X

A {slot transform) pair is chosen at random for the cell. Note that the leaf

placement region is always composed of whole BTU's, so slot will exist for that BTU.

oo

Slfff SO.I

Figure 4.3: Slots Possible for a nand2 Library Cell

56

Figure 4.4: A Cell "Spilling Over" Because of the Wrong Slot Choice

However, a cell may spill over the side of the BTU. as in Figure 4.4. In this case, if the cell

would go outside of the placement region, the move is discarded and another is tried. Since

the sizes of the cells present in a block are carefully considered when the decision whether

to terminate the partitioning process is made (as described in Section 2.4). there are never

cells that cannot fit somewhere in the placement region.

Cell Swaps

A cell swap is much the same, but instead of one cell two are moved. The BTU's

of the colls are interchanged, and if the old slot and transformation used by one coll is valid

for the other cell, it is used for that one. If it is not. then a new, valid {slot transform)

Number

Cells

Number

Ext Pins

Assigned
Before

Assigned
During

Assigned
After

5 14 1312 1011 1172

9 5 2593 2216 2442

14 52 5761 5571 5499

15 35 4602 4422 5043

22 17 3S71 3422 3557

23 55 3962 4001 4552

26 G7 8S41 8256 9S25

Oi

Table 4.2: Pin Assignment Algorithm Results

pair is selected at random. Unlike cell moves, cell swaps do not use temperature-dependent
range limits. It is not dear whether using them would improve the placement quality.

Pin Moves

The third type ofmove that may be generated is the pin move, which consists of
moving a floating pin from one position on its edge to another position on the same edge.
The distance a pin may move is controlled by the same range-limiting technique that is
used by pin moves. An invalid location for a pin will never be generated (e.g. a METAL-1
pin in the same location as a power or ground rail), two pins will never be placed on top
of each other, since this is much easier to enforce than a prohibition against cell overlaps,

and a pin will never be placed within two positions ofa corner. This is important because
some detailed routers, including Mighty, have severe problems with congested corners.

The rationale behind moving pins as part of the simulated annealing process is as

follows. There are three choices for determining pin locations. First, they can be determined

beforehand, perhaps by means of a linear assignment algorithm that looks ahead to the
locations of pins on the same net but in different blocks. Second, they can be determined
concurrently with the locations of the cells, which is the approach we use. Third, they can
be determined after the placement is finished, perhaps as part of the routing process.

Results for these three pin-assignment techniques are given in Table 4.2. Although

the concurrent approach is much more expensive, since there are many more moves, the
results are significantly better.

It is possible to control the probabilities of generating the different typos of cell

58

Cell

Move

Cell

Swap
Pin

Move

Total

Time

Moves

Tried

Moves

Accepted
Final

Cost

1 67 12993 2323 5587

0 43 15038 3605 5274

1 58 133S5 3047 5415

o 11 12799 2513 5303

jl 1 . 66 12575 2137 5186

2 o 62 10263 1707 5702

Table 4.3: Results for Different Weight Sets

moves. Table 4.3 gives some statistics for different weight sets. Note -hat the probabilities
are not dynamically adjusted as a function of temperature. Adju. ment for temperature
is made to a large extent by using range limiting, although it is possible that pin moves
might have different optimal probabilities relative to cell moves and swaps at different
temperatures.

Chapter 5

DETAILED ROUTING

After a detailed placement has been obtained for a block, the block must be
routed. Admiral currently uses the Mighty[62.61.63] channel and switchbox router to

accomplish this.

5.1 Routing with Mighty

The Mighty router is a two-level router that assumes a routing grid. It allows

pins to be fixed anywhere within the routing region and the top and bottom edges, and it
allows them to float on the left and right edges, although this feature seems not to work

with many internal blockages. The information we must provide to Mighty consists of:

• a rectangular routing area

• a set of blockages within the area

• a list of pins within the routing area and on the fixed edges

• a list of nets, possibly with criticalities

These are all straightforward to extract from our representation. All of the pins

are fixed on the periphery of the routing region, with pins on the top and bottom sides of

the block in METAL-1 and pins on the left and right sides in METAL-2. The blockages

are derived from the cells and the power and ground rails. We write an ascii input file

for Mighty, run the program, and read in the routed net information.

Figure 5.1 shows an unrouted block and the same block after the routing has been
completed. The nets in the first picture are drawn as "spiders**, with lines connecting each

60

Figure 5.1: Unrouted and Routed Blocks

pin to the midpoint of the bounding box. In the second picture they are drawn as output

by Mighty. This picture was drawn by the graphical debugging option to Admiral (the

-g flag).

5.2 If Mighty Fails

In the event that Mighty fails to route the block, the quality factor for the an

nealing is increased according to the following formula:

Qncw = 1 - 0.75 + QoidO.Jo

Additionally, the pin slack cost weight is multiplied by the quality factor. The

assumption made is that if the routing failed, it is probably because too much weight was

given to minimizing net length, at the expense ofrouting area. Table 5.1 shows the number

of blocks completed at each try for some examples.

We cannot extract much more information from Mighty than the fact that it

failed. Mighty tells us which nets it is ripping up as it does it. but this can't help us

determine which nets, if any. would, if remo*ed from the problem, allow the block to be

routed.

If. after several tries (currently this number is 6) the block is still unroutable, the

program gives up on this block. Another approach that we tried was ripping up all the

Circuit

Name

Number

Blocks

1st

Try

2nd

Try
3rd

Try

4th

Try
5th

Try
6th

Try
Not

Done

adder32 32 27 4 1 — — — —

prl 64 52 i 2 3 — — —

pr2 228 201 10 7 5 4 1 —

des 256 203 41 11 1 — — —

mult32 34S 264 17 19 26 18 2 2

mult32x6 2012 1029 251 54 91 5 3 579

Table 5.1: Number of Detailed Layouts Completed at Each Iteration

Num

Cells

Ext

Pins

All Sides

Free

Three Sides

Free

Two Sides

Free

One Side

Free

No Sides

Free

17 41 4033 5039 5193 5416 0516

20 42 55S7 6511 6S1S 6135 7145

28 38 10401 8925 9380 9882 10204

4 20 1229. 1225 1254 1280 10S4

5 19 1396 1276 1204 1393 1401

0 27 •1651 2072 2159 1970 2217

Table 5.2: Costs for Blocks More or Less Constrained

61

neighboring blocks (if any were previously placed and routed) and placing the current block

with no constraints. It was expected that this would allow more blocks to be completed by

removing the dependence upon the order of the problems, but this did not occur. It seems

that if there are a lot of difficult problems, they tend to be close together, and at least a

few of them will have to be done with external constraints provided by the others.

Table 5.2 shows some statistics for the placement costs obtained for some blocks

when they are placed and routed at different points in the sequence, and have different num

bers of edges constrained. Note that the costs of the blocks become higher as the placements

become more constrained, but the differences are usually within 109**. More iuiportanr than

the placement cost, however, is the fact that very often blocks may be unroutable when

placed with constraints, while rhey become routable when placed unconstrained.

62

5.3 An Ideal Detailed Router for Mariner

The Mighty router has a number ofshortcomings which make it less than ideal

for use with a Sea of Gates layout system.

First, it is capable of routing only two layers of metal. While most available Sea
of Gates processes provide only two layers of customizable metal, three or more layers will
certainly be widely available in the near future. Several vendors [45] already provide athird
layer of metal.

Although in N-layer metal technologies, where N> 3. the first layer of metal is
likely to be ised mainly by intra-cell routing and the others are likely to be used mainly
in inter-cell routing, adetailed router should be able to make use of free area in METAL-1
and accommodate blockages in the other layers.

Multi-layer channel routers have been written [6]. and it should be a straight
forward extension to a switchbox routing algorithm that is based on maze routing, such
as Mighty's. to handle more than two layers.

Second. Mighty allows pins to float on only two sides of the switchbox. We were
not able to obtain good results using this feature, so we had to fix the positions of all the
external pins. Since positions for these pins anyway are calculated as pan of the placement
process, this was not a problem. However, there were many cases where the placement
algorithm generated aplacement that the router could not route, but it was clear that if
some of the external pins could have been moved, the routing would have completed.

Our ideal router should be able to handle floating pins on all four sides, and
generate routes that are as good as or better than those achieved when any of the pins
are fixed. In practice, a good guess as to the final pin positions might help the router a
great deal, but if the positions generated by the placement were not entirely fixed, the pin
assignment technique could be relaxed somewhat, as described in Chapter 4. leading to
reduced runtimes.

Also, for simplicity we assign all pins on horizontal edges to METAL-1. and all
pins on vertical edges to METAL-2. The METAL-2 pins must be in that layer, since in our
library METAL-1 is always used for power and ground busses on the edges of the blocks, but
the METAL-i pins on the horizontal edges do not have to be in that layer. In fact. Migh-y
breaks its wiring model quite often and routes vertical nets in METAL-2. It sometimes
occurs that a net which is being routed vertically in METAL-2 reaches ablock boundary.

63

goes down to METAL-1. makes the transition to the next block, and then continues again
in METAL-2. This unnecessary use ofvias could be avoided if the router could decide for
itself which metal layer to use for these floating external pins.

The third problem with Mighty is that it (like most routers) assumes that it can
place vias anywhere it likes. Because of the way the Mariner template was designed, there
are some places where vias cannot be placed, due to design rule constraints. Because of
this, the layouts currently produced by Mariner axe not design-rule correct. There are two
solutions to this problem: either modify the template to make it possible to put a via at
every grid location, or add enough intelligence to the router to enable it to avoid putting
vias at these forbidden locations. The first solution, although much easier, would require

expanding the transistors by 2 urn per transistor, which is undesirable.
The last consideration is a general one which is not due to anyspecific characteristic

of Sea of Gates. Most of the cells in the library have either equivalent or permutable

pins. Two pins are equivalent if a net could be connected to either of them without any
electrical difference. Since the pins axe usually in the middle of the cell, and axe connected

to by running a wire over the cell to the pin location, any position on the wires inside the
cell implementing the internal net corresponding to the pin would be equally good for a
connection. (Of course, there may be positions that axe impossible to place a via. and some

positions may be bad because of second-order effects like crosstalk, but these effects are

usually not considered by digital logic routers anyway.)

A set {j>o.p\ p„) is permutable if the nets {»o-"i "n} connected to these
pins may be permuted arbitrarily without affecting the logic function of the gate. An

example of permutable pins are the input pins of an AND gate. If a router is capable of
permuting the nets attached to a set of permutable pins, it can often achieve a better route.

Of course, our detailed placement is carried out usingthe exact positions of the pins, sovery

often the best permutation of the pins for a given placement will be the one used already.

Dealing with floating, equivalent, and permutable pins is easier for most maze

routers than for other types of routers because the basic idea is to expand until the des

tination pin is reached. If the destination pin is replaced by a set of pins, or a range of

possible pin locations, the same general algorithm can be used, stopping when any one of

rhe alternatives is reached.

The Hero router [42]. currently under development, should address some of these

problems. Plans for future enhancements include an arbitrary number of layers and floating

64

pins. The CODAR router [69] also contains many of the features mentioned here.

Chapter 6

STATUS, CONCLUSIONS, AND

FUTURE WORK

6.1 Current Status

The Mariner system is currently running, and we have obtained results for a
variety of small to medium size problems. We have not been able to get acceptable results for
examples larger than about 5.000 cells, for reasons which will be explained in the Conclusions

section.

Table 6.1 shows some statistics for a number of examples, which include some

industrial netlists (prl. pr2. hughes), some interesting netlists created by the logic synthe
sis tool MIS (sml. des). some simple structures also created by MIS (adderS. adderl6.
adder32. mult32). and one large netlist (mult32x6) which can be placed by Admiral but
not routed. The statistics available are the numbers ofcells, nets, cell pins, and distinct cell
types in the netlist. the total netlength in millimeters, the maximum attainable transistor
utilization percentage, and the "parallelismfactor** observed for this netlist (see Section 3.2).
Incomplete results axe given for some examples, as these netlists are too large for Admiral
to lay out. They were run in "placement only** mode, and the useful numbers are the run
times for the placement phases. For these examples, the total netlength given is the total
half-perimeter bounding-box length.

Table 6.2 shows the runtimes for these examples, broken down by the various

phases of the algorithm. As expected, the global placement phase is roughly 0(nlog n). The

66

Circuit

Name

Num

Cells

Cell

Terms

Num

Pads

Num

Masters

Total

Pins

Net

Length
Trans

Util

Parallel

Factor

prl S33 6791 0 7 6153 OOl 44 7 0.41

pr2 3014 25446 0 i 26615 4552. 42 9? 0.52

hughes 25917 201746 0 16 — 23051 58 Vf

des 2069 16SS1 20 15 21532 3245 42 tf 0.02

sml 627 5074 34 11 4017 440 46 7 0.55

adderS 62 490 214 5 311 31 59 7 0.70

adderl6 1S3 1433 4S 10 1104 89 50 7 0.70

adder32 376 2943 96 12 4061 155 35 tf 0.74

mult32 5971 49025 96 13 — 11651 51 tf —

mult.32x6 35826 321278 96 13 — 38694 43% ^^~

Table 6.1: Final Results

Circuit

Name

Input

Time

Global

Place

Global

Route

Detailed

Place

Detailed

Route

Output

Time

Total

Time

prl 0:47 22:33 7:18 16:47 8:41 2:2S 58:34

pr2 4:18 3:51:13 1:19:12 2:11:19 1:10:42 17:19 8:54:03

hushes 20:51 13:57:11 — 11:33:20 — 30:11 26:21:33

des 3:13 53:19 25:00 2:20:41 27:17 37:15 4:46:45

sml 0:44 1:12:56 30:10 10:1S 4:40 3:51 2:2:39

adderS 0:04 0:12 0:15 0:30 0:10 0:07 1:18

adder 16 0:15 0:34 0:17 2:21 1:11 0:26 5:04

adder32 0:34 2:10 1:03 3:19 4:13 1:10 12:29

mult32 7:17 30:11 — 2:55:01 — 10:01 3:42:30

mult32x6 30:44 15:19:51 — 13:22:10 — 35:15 29:48:00

Table 0.2: Runtime

Circuit

Name

25 7c

Util

35 7c

Util

45 7
Util

55 tf

Util

65 7
Util

7o7

Util

prl 100 100 100 S3 50 12

pr2 100 100 90 90 37 30

adder8 100 100 100 100 100 40

adder16 100 100 100 100 100 50

adder32 100 100 100 100 id 12

Table 6.3: Percent Utilization vs Percent Completion

detailed placement and routing phases scale linearly, since the complexity ofthe problems
does not increase greatly with chip size. The global routing phase, however, seems to grow

with complexity of 0)(n2). although for these examples the size is small enough that the
maze routing does not dominate the runtime.

Table 6.3 shows the problem completion percentages obtained when the taxget

transistor utilization percentage is varied. Asexpected, decreasing the transistor utilization
increases the completion percentage. The maximum utilization value decreases somewhat
as the problem size increases, but not dramatically.

Pictures of the chips adder32. des. and hughes are shown in Figures 6.1. 6.2. and

6.3 respectively.

6.2 Conclusions and Future Work

The work described in this report has shown the basic viability of the Mariner

approach to Sea of Gates layout. However, it has also made clear the need for more work in
the areas of global routing, detailed routing, and routing area estimation for Sea of Gates.

The highest priority is the development of good global routing algorithms for Sea

of Gates. The maze routing algorithm currently used is adequate for small and medium-

sized problems, but fails for netlists larger than about 10K cells. Although our problem
is different from the typical global routing problem, in that we cannot determine exact

capacities since the detailed placement has not been completed, recent gate-array global

routing algorithms [44] should prove helpful.

As was mentioned in Chapter 2. there axe algorithms which use a hybrid approach

to partitioning [55]. The first stage consists of a clustering algorithm that groups tightly-

68

"iigll^^

Figure 6.1: The Adder32 Chip

: mm: id.1 •s>HII.:ij„ii:. -i... i : «i::j:ji . i:.-:ht :.:i ...II.. . 'L-.:! « :!..i.rs: i: J •
ill.tri.^Mt .-rr.-.i.r««»,isrs ..;» iii.r;:.'Ktn:<:. ,,;:• { t ;». •;;< , ;; .••.Mi;,.' : -i"?: r mA:> V
i;:jj» «*•*»:• f-aii!H!j:i>;::«v ,.«•«•: »**:.:* •••••. •! :?:»! ' s:i'.» , Us :i: : !t •••' ••.?•' yi',: •
I l(•r..l.-MI!l>!IMM^f"M ..!.!••!• .1.1.til «: :l .1 ..f .|t|'h .!:•»• I .l.tj • »l ' .1 Mil *'fi:' •'">\ w •

69

Figure 6.2: The DES Chip

connected cells together, which greatly reduces the size of the problem given to the next

stage, which consists of some form of mincut partitioning. This approach has been shown

to be promising, and it might prove worthwhile to implement it in Admiral.

A detailed router with more capabilities, as described in Section 5.3, would also be

helpful, although not essential. In a sense, improvements in detailed placement and routing

only lead to a linear improvement in quality or speed, since the leaf problems are always the

same size, but improvements to the global placement and routing can have a much higher

payoff.

The routing axea estimation model is based on empirical experiments done many

years ago with different technologies and layout algorithms. We have more layers of metal,

different design styles, and more effective algorithms, and it is likely that the formulas ob

tained by Donath et. al. [17.25] can be improved forour problem by doing more experiments

and developing a more Sea of Gates-specific model.

The Mariner layout tools have only been tested with one libraxy, the one described

in [41]! We haveanother libraxy [54] which is based on the Siemens transistor template [27].

that we have yet to test. Comparisons should be made between the two as to ease of layout,

and a comprehensive set of figures should be assembled which compare results obtained

with different parameters such as number of feedthroughs for both templates.

Finally, the Mariner system needs more backtracking heuristics. Other systems

can make mistakes and produce sub-optimal results, but if Mariner makes mistakes a

Figure 6.3: The Hughes Chip

correct layout, is not produced. In many cases, when adecision is made- it has to be right
the first time. We can*t easily re-paxtition on a high level or globally re-route because of
lower-level problems, because we would be throwing away too much work for too little gain.
If we had more algorithms that allowed Mariner to recover from bad initial decisions, we
could be more confident that it would generate a working final layout, and we could be
less conservative, knowing that if we made amistake, it would have agood chance ofbeing
corrected later. For instance, the "last-gasp** post-placement global routing described in
Section 3.3 should be implemented, since it is very difficult to get 1009? routing completion

the first time.

Appendix A

MANUAL PAGES FOR THE

MARINER PROGRAMS

i i.

ADMIRAL (1CAD) UNKNOWN SECTION OF THE MANUAL ADMIRAL (1CAD)

NAME

admiral - Sea of Gates placement program

SYNOPSIS
admiral [options][-ooutputcell[:view]]cell[:view]

DESCRIPTION
Admiral is aplacement program - it reads, an oct view with unplaced instances and gives them posmons
which are constent with the Sea of Gates grid, and which should yield good routabiUty and total netlength.
The default input view name is "unplaced", and the default output view name is "placed". The basic stra
tegy is atop-down mincut quadrasection phase followed by aseries of small placements by means of simu
lated annealing. Anintermediate output facet, "clustered", may be used as input or output.

The options are:

-af number
Add some "area fudge" to the sizes ofthe cells for partitioning purposes. When doing the mincut
partition, each cell will seem to be larger by this many "regions". A"region" roughly corresponds
to one transistor. This option may be necessary if aplacement is rather tight and the user wishes
the slack tobe distributed more evenly than the partitioning islikely todo. Ofcourse, the real cell
area plus the total fudge must not exceed the area available for placement.

•ag file Use "file" as the prefix for simulated annealing graph files (see adaptive(3CAD)). Note that these
files will be overwrittenby each simulated annealing step.

•ap name val
Provide asimulated annealing parameter. Currently there aren't any.

-pa alg Use the partitioning algorithm alg for the mincut partitioning. Some available algorithms are
"quad", "klfin", "anneal", and "adapt". The default is "quad" which yields good results quickly,
"adapt" may yield better results but will take much longer. See part(3CAD) for more details.

-po Do the mincut partition only, and exit after writing a"clustered" view.

•pp name val
Provide apartitioning parameter. Currently there aren't any.

•si Run in slave mode. This is used when admiral is running in multi-processing mode and should
not be given by the user,

-spr file Save partition data in file and exit This file may be used as input to the testpart program for
experimentation with partitioning algorithms. See part(3CAD).

-ssfile Keep statistics inthe named file. Currently this does't do anything.

-t template
Use the given template for technology information. The default is
"cad/UbAechnology/manner/ceUsAemplate.

•tf Pre-process the oct facet and write the relevant data into a file, and then read the data into
admiral. Upon output, write the new locations into the file and then update the oct facet This
option may be necessary for very large oct facets.

-d Debug mode.

-cf filename
Use the given file for input and output instead of theoct facet

-g Graphics mode. Draw amap of the partition after the mincut phase is finished, and show the pro
gress ofeach annealing step graphically. This only works if you are using X.

•mp Run in multiprocessor mode. This will cause the annealing problems to be distributed to anumber
of workstations, as specified in the host file. This is currently notworking.

-ms maxsize

Sun Pp1m» T4 Last change: local

ADMIRAL(ICAD) UNKNOWN SECTION OF THE MANUAL ADMIRAL (1CAD)

Use maxsize as the maximum size for an annealing problem, or the size below which the mincut
partitioning will stop. The default is 25. Alarger value will yield better results but cause the pro
gram to run more slowly.

-pn Paranoid mode. Do lots ofchecks for things that can't happen.

•q quality
Specify the "quality" ofthe simulated annealing. This should be anumber between 0and 1. It's
not clear it has any effect

•v Verbose mode.

-wc Write out anintermediate "clustered" view afterthemincutpartitioning phase.

-wp freq
Write "partially-placed" views every freq annealing steps. Currently unimplemented.

SEE ALSO
adaptive(3CAD), checkplace(lCAD), hydra(3CAD), mariner(lCAD), mpadpdCAD), part(3CAD),
pgroute(lCAD)

AUTHOR

Wayne A. Christopher

BUGS

"Area fudge" is a hack.

The -toption should be replaced by determining the template from the cells in the chip.
The multiprocessing stuff doesn't work atthe moment

Sun Release 3.4 Last change: local

CHECKPLACE (1CAD) UNKNOWN SECTION OF THE MANUAL CHECKPLACE (1CAD)

NAME

checkplace - checkthequality of a placement

SYNOPSIS

checkplace cell[:view]

DESCRIPTION
Checkplace checks for overlaps in a placement, calculates the percentage of the chip area used by cells,
and calculates the total and average netlength (half-perimeter) and thestandard deviation of the netlength.

It obtains the bounding box of the instance by examining the geometry onthe 'TLACE" layer in the inter
face facet of the master. This is necessary because themariner hbraiy cells lookbigger than they actually
are.

AUTHOR

Wayne A. Christopher

Sun Release 3.4 Last change: local

MFLATTEN (1CAD) UNKNOWN SECTION OF THE MANUAL MFLATTEN (1 CAD)

NAME

mflatten —Mariner flatten program

SYNOPSIS
mflatten [-d 1[-o outcell[:view] 1cell:view

DESCRIPTION
Mflatten flattens an instance hierarchy to one level Its function is asubset ofthat ofoctflat(lCAD), but it
is much more careful about memory usage, so itcan be used for large (>20K) netlists.

The -d option enables debugging output

SEE ALSO

octflat(lCAD), mariner(lCAD)

AUTHOR

Wayne A. Christopher

Sun Release 3.4 Lastchange: local

MPADP(ICAD) UNKNOWN SECTION OFTHE MANUAL MPADP(ICAD)

NAME

mpadp - Mariner padplacement program

SYNOPSIS

mpadp [-p padp.file] [-v] [-o outcell[:view} cell[:view]

DESCRIPTION

Mpadp arranges the pads in the oct facet inaccordance with the information inthe specified pad placement
file. Thedefault padpjde name is ce/7.padp. The -v option causes verbosity.

The signal pads must be present inthe facet Power and ground pads are added as needed.

PAD PLACEMENT FILE
The pad placement file contains lines which specify various parameters ofthe pad placement They are as
follows.

cell name cellrview;

A cell is defined withthe given name. Typically this willbeused to define power and ground cells, e. g,

cell VDD /cad/UbAechnology/mariner/cells/pads/vddpad:physical;

corner cellrview;

This specifies thecellto place in thecomers of thechip.

bottom cell-spec...;
right cell-spec...;
top cell-spec...;
left cell-spec...;

These lines specify which pads are to go along the sides of the chip. The direction is counter-clockwise.
Each cell-spec may be the name ofacell as previously defined byacell statement or the name ofa formal
terminal in the chip. In the former case, a pad of the appropriate type is created and placed, and in the
second case the pad corresponding tothe formal terminal islocated and moved tothe correct place. Names
of formal terminalsmust be enclosed in quotes. An example is

bottom "a<0>" "a<l>" VDD;

ring net-nameterm-namelayer.width;

A ring is created around the outside of the chip which links up the terminals on adjacent pads with the
name term-name. The paths linking adjacent terminals are contained in a netcalled net-name, and are on
the layer layer and nave width width(in oct units). Forexample,

ring vdd-ringVDD MET1 1200;

placebox width height;

A box is drawn onthe"PLACE" layer of theinterface facet of the cell, which denotes thearea available for
placement The pads are constrained tolie outside of this box. The lower left comer of the box isat (0,0).
The width and height are in oct units,

margin xmargin ymargin;

xmargin and ymargin octunits are left between the inner side of the pads and the place boxin the x- and
y-directions, respectively. This area should be enough for routing to the pads.

OCT POLICY

All pads must be designed so that they win go on the bottom of the chip with no rotation, i. e, they must
face up. The comer cell must go in the lower left comer with no rotation.

SEE ALSO

padp(lCAD), mariner(lCAD)

Sun Release 3.4 Last chanee: local

MPADP (1CAD) UNKNOWN SECTION OFTHE MANUAL MPADP(1CAD)

AUTHOR

Wayne A. Christopher

BUGS

This program dupUcates the function of the program padp, although it uses adifferent mechanism. These
programs should be merged.

This information should be specified via oct

Sun Release 3.4 Last change: local

PGROUTE(ICAD) UNKNOWN SECTION OFTHE MANUAL PGROUIE(lCAD)

NAME
pgroute - do power and ground routing for Sea ofGates

SYNOPSIS
pgroute [-v][-o outcell[:view]]cell[rview]

DESCRIPTION . . „
Pgroute wires up the power and ground columns in aplaced view. The default mput view is placed and
the default output view is"prerouted". The -v flag causes verbosity.

SEE ALSO

mariner(lCAD), admiral(lCAD)

AUTHOR

Wayne A. Christopher

e..- t»„i—— i a T i«t rhanmr local

REGEN (1) UNDC Programmer's Manual REGES (1;

.' NAME

regen- re-create a Sea of Gates library for a new template

SYNOPSIS

regen [-o old.template] [-n new_template] [-d new.directory 1cell:view „

DESCRIPTION
Regen maps a cell library from one template (basic transistor structure) to another. The template that is
currently used by the cells should be given as oldjemplate, the one desired for the new cells should be
newjemplaie. and the directory that the new cells should be placed should be given as newjiirectory.
Regen will then re-create each of the specified cells with the new template instead of the old one. If
the old cell name was .../cellname:viewname, the new name will be newdir/cellname:viewname (i.e, the
leading components of the pathname will be stripped off).
The cells and the templates should conform to the Sea of Gates symbolic policy (as well as the general
oct symbolic policy). The program does the mapping by building up a symbolic grid for both templates
by looking at the positions of the terminals on the template, with the assumption that any terminal will
fall on grid lines in the X- and Y-direction, and any grid line will have at least one terminal falling on
it Then it maps the wiring in the old cell onto the grid for the old template and from there maps it to
the grid for the new template. It then creates the new ceil, makes the appropriate number of copies of
the template, copies the important properties, and creates the wiring.

The templates must each have a property called "CENTER", which tells regen where the middle of the
transistors are. If the new template has more tracks on the outside of the transistors, the grid numbers
of the locations near the center should stay fixed.

RESTRICTIONS

The old template and the new template must have the same number of transistors per block and blocks
> per plug, and must have power and ground routed inthe same layer. Otherwise the topology of the cell

would be different and the automaticmapping wouldn't make sense.

AUTHOR

Wayne Christopher (faustus@ic.Berkeley.EDU)

SEE ALSO

/cad/doc/mariner/*, ckplace(l), stitch(l)

BUGS

3rd Berkeley Distribution CAD

SKTPPER(l) UNIX Programmer's Manual StUffc*. t, i)

NAME
skipper - A ses-of-gates tempUte generator program

SYNOPSIS

skipper

Skipper is an interactive program which generates sea-of-gates templates for both the basic tiling unit
(BTU) (the smallest repetitive unit that doesn't need to be routed to create t full array), and/or i full
chip size amv with I/O pads, comer, and spacer pads. The architecture of the BTU has n-. n-, jk p-
type, (NNPP)'tnnsistors with power and ground buses that mo over the diffusion of the transistors ind
are shared by adjacent columns.
In making the BTU tempUte, skipper allows the user to decide the Nand Ptransistor sizes, the number
of metall tracks between power and ground, power and ground widths, and the number of transistor
pairs between substrate contacts. The user is prompted for all variables over which he/she has control
and for etch is provided areasonable default which either has been calculated from previously given
information or is the current reasonable default

HOW IT WORKS . ' . . _ . . _ .
First Skipper asks if you want to make anew template for the basic tiling unit if the answer is yes it
queries the user for needed informition. As it asks questions about the template it also asks some
things about the chip size template. This is done so that default parameters can be calculated as closely
as possible to what will be needed for the chip size tempUte. If the user doesn't want to make anew
BTU he/she can give the name ofan already existing one and skipper win use that to create achip size
template, warning if parameters such as power and ground widths are insufficient

HOW TO RUN SKIPPER AND LOOK AT THE RESULTS
The best way to become familiar with what skipper does is to run it First time users can easily
become familiar with skipper by typing returns for all of the questions so that the tempUte and chip
produced win be the result of the default parameters. The default BTU tempUte can be viewed using
vem by opening the ceU tempUteiphysicaL The default chip size tempUte is chipmnpUced.

SEE ALSO

vem(l), oct(3), admiral(l)

AUTHORS

Lorraine Layer, Wayne Christopher

BUGS

Send bug reports to "mariner@eros".

7th Edition

ADAPTIVE (3CAD) UNKNOWN SECTION OF THE MANUAL ADAPTIVE (3CAD)

NAME

adaptiveAnnealO - adaptive simuUted annealing

SYNOPSIS

^include "adaptivch"

double

adaptiveAnneal(params, config, probsize, maxmoves, flags, gfile, quahty)
adaptParams *params;
adaptConftg •config;
int probsize;
int maxmoves;

long flags;
char •gfile;
double quahty;

typedef struct adaptParams {
adaptMove •(•generateMoveX);
double (•calcCostX);
double (*costChangeX);
void (*makeMoveX);
void (•disposeMoveX);
void (*loopFuncX);

} adaptParams;

typedef struct adaptStats {
int time;

double temp;
double cost
int numace;

int numrej;
int numbad;

double avgeost
double sigma;
double maxcost

double mincost

double maxchange;
} adaptStats;

adaptMove *
generateMove(conf, temp, inittemp)

adaptConfig •conf;
double temp;
double inittemp;

double

calcCost(conf)
adaptConfig •conf,

double

calcChange(conf, move)
adaptConfig •conf,
adaptMove *move;

ADAPTIVE(3CAD) UNKNOWN SECTION OFTHE MANUAL ADAPTIVE(3CAD)

void

makeMove(conf, move)
adaptConfig *conf,
adaptMove *move;

void

disposeMove(move)
adaptMove *move;

void

loopFunc(conf, stats)
adaptConfig *conn
adaptStats *stats;

LINKING

cc [flags] files [libraries] "cad/lib/adaptive* -lm

DESCRIPTION
The adaptive package provides an easy-to-use adaptive simuUted anneahng framework usable tor a
variety of problems. The cooling schedule and the tennination and inner loop criteria are determined by
the package based on the cost function. For atheoretical description of the technique, see "Probabilisnc
Hin Climbing Algorithms: Properties and Applications", byFabio Romeo.
The params argument contains pointers to all the problem-specific functions. generateMove is caned to
generate arandom move, given a(^figuration. The current temperature and the initial temperanire are pro
vided in case the function wants to do range-limiting. The current temperature may be
ADAPT INF TEMP, in which case the function should return an entirely random move. (This isused to
determine agood initial temperature.) Note that the annealing code wiU only use one move at atime so the
return value ofgenerateMove may be apointer toastatic variable.
The calcCost function should return the cost ofaconfiguration. catoChange should return the cost ofthe
configuration after the move is made. Note that it is essential that the value of cakCost after the move is
made mustbe the same asthatof cakChange before it is made.
makeMove should make the given move on conf. disposeMove wffl be catted to free any storage associ
ated with the move. If there is no such storage that need be freed this parameter may be NULL
IfloopFunc is non-NULL then itwin be called after each temperature point
probsize is ameasure ofhow large the problem is, and is used to determine some parameters, maxmoves
is arough estimate ofhow many moves are possible from any one configuration,
flags isabitwise orof any of the following:

ADAPT_VERBOSE
Print lots of messages.

ADAPT PARANOID
After every move, caU calcCost and verify that the cost is what it should be. This win probably
slow down the annealing quite abit so it should not be used unless the cost function is being
debugged. Actually calcCost wffl be catted after every temperature point to verify that things are
ok evenwithout the ADAPT.PARANOID option.

If the graphs argument is non-NULL, it wffl be taken as aprefix for the names of some files that are
created to hold statistics. CurrenUy these files wffl contain the cost, the average cost, the temperature, and
the high and low values of the "within window" (see the paper by Romeo for âdescription of the within
count), all as afunction oftime. The graphs can be viewed by "cat gfile* Ixgraph".
The quality parameter is afudge factor between 0and I that should control the quahty of the annealing,
which should be inversely proportional to its speed. It's not clear what this should do. A value of 0.5
should yield good results.

SunRelease 3.4 Lastchange:

ADAPTIVE (3CAD)
UNKNOWN SECTION OF THE MANUAL ADAPTIVE (3CAD)

adaptiveAnneal wffl return the final cost of the configuration after the annealing is completed.

SEE ^obilistic Hffl Climbing Algorithms: Properties and Apphcations", Fabio Romeo, U. C. Berkeley.
"Combinatorical Optimization, SimuUted Annealing, and Fraaals", Gregory Sorkin, U. C. Berkeley.

AUTHOR
Wayne A. Christopher

BUGS
The quaUty parameter is ahack and shouldn t be necessary.

SunRelease 3.4 Last change:

Bibliography

[I] G. Adams. K. Roenner. T. Scheller. and P. Tzeng. Sogolar: Sea-of-gates optimized
layout and routing system. EE 292H Report. Fall 198S.

[2] A. Alio. J. Hopcroft. and J. UUman. The Design and Analysis ofComputer Algorithms.
Addison-Wesley, 1974.

[3] S. B. Akers. Routing, chapter 5. pages 283-334. Prentice-Hall, 1972.

[4] M. Beardslee. J. Burns. A. Casotto. M. Igusa. F. Romeo, and A. Sangiovanni-
Vincentelli. Mosaico: An integrated macro-ceU layout system. In MCNC International
Workshop on Placement and Routing. 1988.

[5] M. Beardslee, M. Igusa, A. Kramer. A. Sharma, G. Sorkin, and A. Sangiovanni-
Vincentelli. ORCA: A sea-of-gates place and route system. In MCNC International
Workshop on Placement and Routing. 1988.

[6] D. Braun. J. Bums. S. Devadas. H. Ma. K. Mayaram. F. Romeo, and A. Sangiovanni-
Vincentelli. Chameleon, a new multi-layer channel router. In Design Automation
Conference Proceedings. 1986.

[7] R. Brayton. E. Detjens, S. Krishna. T. Ma, P. McGeer. L. Pei. X. Phillips. R. Rudell.
R. Segal, A. Wang. R. Yung, and A. SangioTOnni-Vmcentelli. Multiple-level logic
optimization system. In ICCAD Digest of Tech. Papers. 1986.

[8] J. B. Brinton. CHAS seeks title of global CAD system. Electronics, pages 100-102.
February 1981.

[9] M. Burstein. Hierarchical channel router. In Design Automation Conference Proceed
ings. 1983.

[10] M. Burstein and R. Pelavin. Hierarchical wire routing. IEEE Trans, on CAD of ICAS.
pages 223-234, 1983.

[II] W. Cliristopher. A. Burstein, T. Collins, and L. Layer. A placement program for sea
of gates. EE 244 Report. Fall 1986.

[12] W. Dai. H. Chen. R. Dutta, M. Jackson. E. S. Kuh. M. Marek-Sadowska. M. Sato.
D. Wang, and X. Xiong. BEAR: A new building-block layout system. In ICCAD
Digest of Tech. Papers, pages 34-37, 1987.

85

86

[13] W. Dai and E. S. Kuh. Simultaneous floor planning and global routing for hierarchical
building-block layout. IEEE Trans, on CAD. CAD-6(5):S2S-S37. 19S7.

[14] C. M. Davis. IBM System 370 bipolar gate-array microprocessor chip. In Proc. IEEE
Int. Conf. Circ. and Computers, pages 669-673. October 19S0.

[15] W. A. Dees and R. J. Smith. Performance of interconnection rip-up and reroute strate
gies. In Design Automation Conference Proceedings, pages 3S2-390. 1951.

[16] S. Devadas. Techniques for optimization-based synthesis of digital systems. PhD thesis.
U. C. Berkeley. 1988. UCB/ERL Memo M88/54.

[17] W. E. Donath. Placement and average interconnection lengths of computer logic. IEEE
Trans on Circuits and Systems. CAS-26(4). April 1979.

[IS] A. E. Dunlop and B. W. Kernighan. A procedure for layout of standard-cell VLSI
circuits. IEEE Trans on CAD of ICAS. CAD-4(1):92-98. January 1985.

[19] B. Eschermann. Hierarchical placement for macrocells with simultaneous routing area
allocation. Master's thesis. U. C. Berkeley, 1988. UCB/ERL Memo M88/49.

[20] C. M. Fiduccia and R. M. Matheyses. A linear time heuristic for improving network
partitions. In Design Automation Conference Proceedings* 1982.

[21] A. El Gamal. Two-dimensional stochastic model for interconnections in master slice
integrated circuits. IEEE Trans on Circuits and Systems. CAS-28(2). Febuary 1981.

[22] M. R. Garey and D. S. Johnson. Computers and Intractability : a Guide to the Theory
of NF•completeness. *". H. Freeman. 1979.

[23] G. B. Goates. ABLE: A LISP-based layout modeling language with user-definable
procedural models for storage/logic array design. Master's thesis. Cuiversity of Utah.
December 1980.

[24] D. Harrison. P. Moore. R. Spickelmier. and R. Newton. Data management and graphics
editing in the berkeley design environment. In ICCAD Digest of Tech. Papers. 19S6.

[25] W. R. Heller. W. F. Mikhail, and W. E. Donath. Prediction of wiring space require
ments for lsi. Journal of Design Automation and Fault- Tolerant Computing, pages
117-144. 1978.

[26] D. W. Hightower. A solution to line routing problems on the continuous plane. In
Design Automation Conference Proceedings. 1969.

[27] H. P. Holzapfel. K. H. Eorninger. and P. Michel. Design and application ofa 201. 3ate
array. IEEE Trans, and Ind. Electr, lE-33(4), Nov 1986.

[28] Y. Horiba. A bipolar 2500-gate subnanosecond inasterslice LSI. In Digest of Technical
Papers. IEEE Int. Solid State Circuits Conf. pages 22S-229, New York. New York.
February 1981.

[29] C.P. Hsu. R. A. Perry. S. C. Evans. J. Tang, and J. Y. Liu. Automatic layour of
channelless gate array. In Proceedings of tixe Custom Integrated Circuits Conference.
pages 281-284.1986.

[30] C. P. Hsu. R. A. Perry. S. C. Evans. J. Tang, and J. Y. Liu. An effective hierarchical
approach to high complexity circuit layout. In Proceedings of the Custom Integrated
Circuits Conference. 1987.

[31] M. Iacopona. D. Vail. S. Bierly. and A. Ignatowski. A hierarchical gate array archi
tecture and design methodology. In Design Automation Conference Proceedings, pages
439-442. 1985.

[32] D. Johansen. Bristle Blocks: A silicon compiler. In Proc. 16th Design Automation
Conference, pages 310-313. June 1979.

[33] J. W. Jones. Array logic macros. IBM J. Res. Develop., pages 98-109. March 1975.

[34] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal 47(2):991-308,1970.

[35] S. Kirkpatrick. CD. Gelatt Jr. and M. P. Vecchi. Optimization bysimulated annealing.
Science. 220:671-680.1983.

[36] T. Kozawa. H. Terai. T. Ishii. M. Hayase. C Miura. Y. Ogawa. K. Kishida. N. Yamada.
and Y. Ohno. Automatic placement algorithms for high packing density VLSI. In
Design Automation Conference Proceedings, pages 175-181.1893.

[37] H. Kubosawa and Some Other People. Layout approaches to high-density channelless
masterslice. In Proceedings of the Custom Integrated Circuits Conference. 1957.

[38] E. S. Kuh and M. Marek-Sadowska. Layout Design and Verification, chapter Global
Routing, pages 169-198. North-Holland. 1986.

[39] B. S. Landman and R. L. Russo. On a pin versus block relationship for partitions of
logic graphs. IEEE Trans on Computers. C-20(12):1469-1479.1971.

[40] U. Lauther. A min-cut placement algorithm for general cell assemblies based on a
graph representation. In Design Automation Conference Proceedings, 1979.

[41] L. Layer. An analysis of sea of gates template and cell library design issues. Master's
thesis, U. C. Berkeley, 1988. UCB/ERL Memo M88/8.

[42] B. Lee. Experiments in hierarchical routing of general areas. Master's thesis. U. C
Berkeley, 1989. to be published.

[43] C Lee. An algorithm for path connection and its applications. IRE Trans. Electronic
Computers, pages 346-365,1961.

[44] J. T. Li and M. Marek-Sadowska. Global routing for gate arrays. IEEE Trans, on
CAD of ICAS. pages 29S-308. 1984.

SS

[45] K. Y. Liao. C P. Hsu. and M. R. Chin. Triple-level metal gate array using channelless
architecture. In Proceedings of the Custom Integrated Circuit* Conference. 19S7.

[46] R. Linsker. An iterative-improvement penalty-function-driven wire routing system.
IBM Journal of Research and Development 28(5):613-024. 1984.

[47] S. Mallela and L. K. Grover. Clustering based simul'ated annealing for standard cell
placement. In Design Automation Conference Proceedings. 1988.

[48] M. Marek-Sadowska. Private communication.

[49] Microelectronics Design Division. Institute of Technology Development. P. 0. Drawer
EE. Mississippi State University. MS 39762. Scalable CMOS (SCMOS) Standard Cell
Family. USC-ISI (Contract No. MDA-903-86-C-0016).

[50] E. F. Moore. The shortest path through a maze. The Annals of the Computation
Laboratory of Harvard Cniversity. 3(2):285-292.1959.

[51] B. T. Murphy. A CMOS 32b single-chip microprocessor. In Digest oj Technical Papers.
IEEE Int. Solid State Circuits Conf.. pages 230-231. New York. New York. February
1981.

[52] R. Nair. A simple yet effective technique for global wiring. IEEE Trans on CAD.
CAD-6(2):165-172. 1987.

[53] R. Nair. S. J. Hong. S. Lies, and R. Villani. Global wiring on a wire routing machine.
In Design Automation Conference Proceedings. 1982.

[54] Y. Nishizaki. A cell library implementation on the Siemens sea of gates Template. EE
290H Report. Fall 1987.

[55] G. Odawara and Some Other People. Partitioning and placement technique for CMOS
gate arrays. IEEE Trans CAD. pages 355-363. May 1987.

[56] C J. Poirier. EXCELLERATOR: Automatic leaf cell layout agent. In ICCAD Digest
of Tech. Papers, pages 176-179.1987.

[57] F. Romeo and A. Sangiovanni-Vincentelli. Probabilistic Hill-Climbing Applications:
Properties and Applications. Computer Sciences Press. Chapel Hill. N. C. 1985.

[58] K. Sawada. T. Sakurai. K. Nogami. T. Ilzuka. Y. Uchino. Y. Tanaka. T. Kobayashi.
K. Kawagai. E. Ban, Y. Shiotari. Y. Itabashi. and S. Kohyami. A 72K CMOS chan
nelless gate array with embedded 1Mbit dynamic RAM. In Proceedings of the Custom
Integrated Circuits Conference. 1988.

[59] C Sechen and A. Sangiovanni-Vincentelli. The TimberWolf placement and routing
package. IEEEJournal of Solid-state Circuits, pages 510-522.April 19S5.

[60] C Sechen and A. Sangiovanni-Vincentelli. TimberWolf3.2: A new standard cell place
ment, global routing package. In Design Automation Conference Proceedings, pages
432-439. 1986.

89

[61] H. Shin. Two Diniensional Routing and Compaction in Computer-Aided Design of
Integrated Circuits. PhD thesis. U. C Berkeley. 1987. UCB/ERL Memo M87/92.

[62] H. Shin and A. Sangiovanni-Vincentelli. Mighty: A rip-up and reroute detailed router.
In ICCAD Digest of Tech. Papers. 1986.

[63] H. Shin and A. Sangiovanni-Vincentelli. A detailed router based on incremental routing
modifications: Mighty. IEEE Trans on CAD. CAD-6(6):942-955. 1987.

[64] G. Sorkin. Combinatorial optimization, simulated anneahng. and fractals. Research
Report RC 13674 (61253). IBM. 1988.

[65] P. Suaris and G. Kedem. Quadrisection: A new approach to standard cell layout. In
ICCAD Digest of Tech. Papers, pages 474-477.1987.

[66] Y. Suehiro. D. Miura. M. Naitoh. S. Tsutsumi, and T. Shirato. A 120k-gate usable
cmos sea of gates packing 1.34m transistors. In Proceedings of the Custom Integrated
Circuits Conference. 1988.

[67] J. D. Trotter. R. Hiltpold. J. Kelly. R. Elling. and M. Landrum. Scalable CMOS Design
Rules for Fabrication through the MOSIS Silicon Foundries. University of Southern
California. P.O. Box 77967, University Park. Los Angeles. CA 90007.

[68] R. Tsay. E. S. Kuh. and C P. Hsu. PROUD: A fast sea-of-gates placement algorithm.
In Design Automation Conference Proceedings. 1988.

[69] P-S. Tzeng and C H. Sequin. Codar: A congestion-directed general area router. In
ICCAD Digest of Tech. Papers. 1988.

[70] M. Watanabe. CAD tools for designing VLSI in Japan. In Digest of Technical Papers.
IEEE Int. Solid State Circuits Conf.. pages 242-243, Philadelphia. Penn.. February
1979.

	Copyright notice1989
	ERL-89-83 (1 of 2)
	ERL-89-83 (2 of 2)

