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ABSTRACT

A self-learning controller is proposed as an intelligent controller for

dynamic processes, employing a control policy which evolves and improves

automatically. A key component of the controller is a rule-based system which

provides a linguistic description of control strategy. This strategy has the form

of a collection of fuzzy conditional statements which are implemented and

manipulated using fuzzy set theory. The inference engine of the controller is

based on the principles of approximate reasoning, while its learning capability

is provided by neuron-like elements, which are derived from animal condition

ing theory. It is shown that the system can solve a fairly difficult control learn

ing problem. More concretely, the task is 1-D pole balancing, in which a pole

is hinged to a movable cart to which a continuously variable control force is

applied. Simulation results demonstrate that improved learning performance can

be achieved in relation to previously described systems employing bang-bang

control. Furthermore, the proposed controller is relatively insensitive to varia

tions in the parameters of the system, e.g., changes in the length and mass of

the pole, initial angle, failure criteria, and slanting the base of the car-pole sys
tem.
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I. Introduction

There are many complex industrial processes which cannot be satisfactorily controlled by

conventional methods due to the unavailability of quantitative data regarding input-output rela

tions. And yet, skilled human operators can control such systems quite successfully without

having any quantitative models in mind. Furthermore, the operation of many man-machine

systems requires the use of rules of thumb, intuition, and heuristics. In such cases, the use of

rule-based control based on approximate reasoning becomes an increasingly attractive alterna

tive.

In fact, during the past several years, rule-based controllers based on fuzzy logic and

approximate reasoning [8,9] have emerged as one of the most active and fruitful areas for

research in the application of fuzzy set theory [17]. Such controllers have been used to deal

with uncertainty in complex, ill-defined processes, particularly in man-machine systems, where

they are effective in capturing the approximate and qualitative aspects of human reasoning.

Among the representative applications of fuzzy-logic-based controllers are the subway system

in the city of Sendai [16], container ship crone control li5j, elevator control [5], nuclear reac

tor control [7,2], and automobile transmission control [6,14]. Experience has shown that a

rule-based controller using approximate reasoning makes it possible to emulate and even sur

pass the decision-making ability of a skilled human operator.



Although there is an extensive literature describing various applications of fuzzy logic

controllers using approximate reasoning, the acquisition of the rule base in such controllers is

not as yet well understood. In past applications, fuzzy decision rules have been obtained either

from verbal expressions or obr^rv^cns of hnn»?Ji operator control actions. Since domain

experts and skilled operators do not structure theirdecision-making in any formal way, the pro

cess of transferring expert knowledge into a usable knowledge base is tedious and unsys

tematic. Our research aims at the development of a better understanding of such problems,

with a view to enhancing the potential of fuzzy logic-based controllers. Figure 1 shows a

schematic representation of the proposed controller which includes a neural net and a rule-

based controller employing approximate reasoning.

The problem of learning via credit assignment [4] is described in Section II. The state

ment of the pole-balancing problem follows. This problem may be viewed as a canonical

example of dynamic control. Some concepts from earlier related work are given in Section in.

They serve as a basis for comparison of previous and proposed approaches. The proposed

approach, a combination of techniques drawn from fuzzy logic and neural network theory, is

presented in Section IV. Here, a rule-based controller using approximate reasoning (fuzzy logic

controller) is introduced, and a learning system with two neuron-like elements which are

derived from animal conditioning theory, is proposed. Computer simulation results are

described in Section V. The paper closes with a concluding remark in Section VI.

n. The Problem

A. Learning via Credit-Assignment

Many rule-based controllers with approximate reasoning have been built to emulate

human decision-making behavior, but few are focused on a key aspect of human learning,

namely, the ability to create fuzzy decision rules and modify them on the basis of experience.



In machine learning, the problem of learning to control physical dynamical systems has been,

and remains, a challenging goal. In this context, the credit-assignment problem is often encoun

tered in adaptive problem-solving systems, and is especially acute when evaluative feedback is

delayed or infrequent. Basically, the credit-assignment problem, is to determine a strategy for

assigning positive credit (reward) to desirable actions and negative credit (punishment) to

undesirable actions in a way that would lead to the achievement of a specific goal. In what

follows, we describe an approach to the building of an intelligent rule-based system that can

learn to control a dynamical system without prior knowledge of its input-output relations.

B. A Case Study: The Pole-Balancing Problem

Our approach focuses on a paradigmatic control problem - the pole-balancing problem -

which has been the object of several studies in the literatures of control and neural networks.

Figure 2 shows the pole balancing system. A rigid pole is hinged to a cart, which is free

to move on a one-dimensional track. The pole can rotate in the vertical plane of the track and

the controller can apply an impulsive force of bounded magnitude to the cart at discrete time

intervals. By balancing the pole, we mean that the pole never deviates by more than, say, 12

degrees, from the vertical. The equations of motion of the cart-pole system are not known to

the controller, which implies that the cart-pole system is treated as a black box. What is

known is a vector describing the cart-pole system's state at every time step. If the pole falls, it

receives a failure signal. After a failure signal has been received, the system is reset to its ini

tial state and a new attempt is made. On the basis of this evaluative feedback, the controller

must develop its own control strategy and learn to balance the pole for as long as possible.

Since a failure signal usually occurs only after a long sequence of individual control decisions,

the sparsity of this signal makes the credit-assignment problem nontrivial.

The cart-pole system is modeled by two second-order differential equations which include

the nonlinearities and reactive forces of the physical system [3,1]. The dynamics of the cart-



pole system are characterized by four state variables, namely, angle of the pole with respect to

the vertical axis, 0, angular velocity of the pole, 0, position of the cart on the track, x, and

velocity of the cart, i. The equations in question are:

. n . -F -m/02 sinQ +\icsgn(x) u~0
g sinQ + cosQ [ 6 ] - i-£—

x me +m ml
. ,£ _ mcos2®1

3 m, + m

., F + ml [02 an 0 - 0 cos 0] - ncsgn (x)
wc + m

where

^: acceleration due to gravity, 9.8 meter/ sec2,

mc: mass of cart, 1.0 kg,

m: mass of pole, 0.1 kg,

jic: coefficient of friction of cart on track, 0.0005,

lip', coefficient of friction of pole on cart, 0.000002,

/: half length of pole, 0.5 meter,

F: applied force: [-10, +10] newtons, continuous.

In testing the performance of the system, the simulator was run by applying the Adams

predictor-corrector method with a time step of 20 ms on a Sun workstation.

in. Previous Related Work

There are two noteworthy previous studies which have addressed the pole-balancing prob

lem. The first is that of Michie and Chambers [13] in 1968. They constructed a program

called BOXES that learned to balance the pole by applying two opposite constant forces. The

second study is that of Barto, Sutton, and Anderson [1] in 1983, which used neuronlike



-5-

adaptive elements to solve the same problem by using two constant forces. In general, both

approaches can handle the credit-assignment problem that we mentioned. In both, the state

space is partitioned into several non-overlapping regions and no symbolic reasoning techniques

are employed. Both are limited to only two control actions: pushing the cart left or right with a

force of fixed magnitude. The problem is thus one of bang-bang control.

In contrast to these approaches, we attempt to solve the problem through the use of sym

bolic problem-solving techniques, employing a fuzzy rule-based controller with approximate

reasoning. Furthermore, a continuous control scheme is employed, namely, the controller can

apply a force with a magnitude within [-10,+10] newtons. In this way, better performance of

the controlled system may be achieved but the complexity of the problem is increased substan

tially. An overlapping partition of the state space forms a linguistic space. The overlapping

partition enhances the speed of learning and robustness. We will have more to say about these

issues at a later point

IV. The Self-Learning Rule-Based Controller

In this section, we present the theory of the proposed intelligent controller, which has the

capability to leam its own control policy for balancing the pole. Figure 3 shows a schematic

representation of the intelligent controller configured for the pole balancing task. It consists of

a neural net and a rule-based controller employing approximate reasoning. The neural net has

only two neuronlike elements, namely, an associative critic neuron (ACN) and an associative

learning neuron (ALN). These two elements contribute the learning component of the con

troller. The rule-based component has four elements: a rule base, a fuzzy decoder, decision

making logic, and a defuzzifier. In general, the rule base is a collection of fuzzy conditional

statements which take the form of if-then rules. The fuzzy decoder inspects the incoming sys

tem state and fires the rules in parallel. The decision-making logic emulates human decision

making behavior by employing approximate reasoning. The defuzzifier takes a fuzzy control

decision from the decision making logic and determines a crisp, i.e., a non-fuzzy control action

for the cart-pole system.



In more detail, our system has a configuration similar to Barto's [1], but it differs on the

component level as well as the functional level. In principle, it is a rule-based controller com

posed of a linguistic description of the control strategy, which is self-learned. This strategy

takes the form of fuzzy conditional statements, e.g., if the anele of the pole is positive large

and the angular velocity is positive large, then the force is positive large. The fuzzy condi

tional statements are also referred to as fuzzy control rules. These are implemented and mani

pulated by using fuzzy set theory [17,20,18]. The inference mechanism of the intelligent con

troller uses approximate reasoning [9]. The learning capability of the controller is provided by

two neuronlike elements. The ACN is derived by using Pavlovian conditioning theory [11,10].

The proposed ACN model also provides a basis for understanding and explaining Pavlovian

conditioning in animal learning studies [10]. The ALN derives from the Instrumental Condi

tioning Theory [11]. It is an associative memory system which remembers the temporal rela

tionships between input and output More information about the two neuronlike elements will

be presented at a later point

A. A Rule-Based Controller Employing Approximate Reasoning

In recent years, rule-based controllers employing approximate reasoning have emerged as

one of the most active areas of research in the applications of fuzzy set theory [12,9]. Such

reasoning [19] plays an essential role in the remarkable human ability to make rational deci

sions in an environment of uncertainty and imprecision. In essence, approximate reasoning is

the process or processes by which a possibly imprecise conclusion is deduced from a collection

of imprecise premises. By employing the techniques of fuzzy set theory [17], approximate rea

soning (with precise reasoning viewed as a limiting case) can be studied in a formal way.

The concept of a fuzzy set may be viewed as an extension of an ordinary (crisp) set In

a fuzzy set an element can be a member of the set with a degree of membership varying

between 0 and 1. Thus, a fuzzy set F in a universe U = {«,-, i=l,...,«} is defined by its

membership function jiF : U -> [0,1]. If the Mu.) are 0 or 1, the fuzzy set is an ordinary set

As a special case, a fuzzy singleton is a fuzzy set containing just one element with degree 1.



A concept which plays an important role in the applications of the theory of fuzzy sets is

that of a linguistic variables [19]. To illustrate, if speed is interpreted as a linguistic variable,

that is, a variable whose values are linguistic labels of fuzzy sets, then the values of speed

might be

T(speed) = [slow, moderate, fast, very slow, more or less fast, • • • }.

In a particular context, slow may be interpreted as, say, "a speed below about 40 mph",

moderate as "a speed close to 55 mph" and fast as "a speed above about 70 mph". Figure 4

shows this interpretation in the framework of fuzzy sets.

The set-theoretic operations on fuzzy sets are defined via their membership functions.

More specifically, let A and B be two fuzzy sets in U with membership functions \iA and u*,

respectively. The membership function \iAuB of the union AuB is defined pointwise for all

ueU by

Maub(<0 = max [\iA(u),\iB(u)).

Dually, the membership function \iAnB of the intersection AnB is defined pointwise for all

ueU by

M-Ans(") = min [\iA(u),\iB(u)}.

If Ai An are fuzzy sets in Ux UR, respectively, the Cartesian product of

Ai , An is a fuzzy set in the product space U^x •• •x£/„ with the membership function

VAxx...xAH(ultu2t' •• ,un) =min {p*,(«!>, •• • .M*.(«„)}.

Assume that the fuzzy sets A, A', B, and B' are the linguistic \ alucs of.. ind ;. An example

of approximate reasoning involving x and y is the following-
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premise 1 : x is A\

premise 2: if x is A then v is B.

consequent: y is B\

For instance:

premise 1 : the speed of a car is very high,

premise 2 : if the speed of a car is high then the probability of an accident is high.

consequent: the probability of an accident is very high.

This type of fuzzy inference is based on the compositional rule of inference for approximate

reasoning suggested by Zadeh [19].

A rule-based controller consists of a set of fuzzy control rules which are processed

through the use of approximate reasoning. For simplicity, suppose that we have the two rules:

R\ : if x is Ai and y is BY then z is Cu

or

R2: if x is A2 and y is B2 then z is C2.

Approximate reasoning, given (x is A') and (y is B'), computes the degree of partial match

between the user-supplied facts and the knowledge rule base as follows.

The degrees of match of (A,- and A) and (Bt and B) are given respectively by

a,- = max mm[\iA(u), \iA(u)),
u '

p, = max min(jjj»/v\ u5(v)}
V "'

The firing strength of the i* rule is given by

Xi = min{a,, p,}.

Hence, the /* rule recommends a control decision as follows:

^c.<w) = min{x,-tui:.(w)}.
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The consequences of multiple rules can be combined by a conflict-resolution process which

treats the sentence connective or as a union operator. The combined consequence is then given

by

MH>) =maxUic.,uc<;].

The combinationof consequences is illustrated in Figure 5.

In on-line processes, the states of a control system are essential to a control decision

(action). The underlying data are usually obtained from sensors and are crisp. It may be neces

sary to convert these data into the form of fuzzy sets [8]. In practice, however, crisp data are

frequently treated as fuzzy singletons. In this case, the corresponding inference mechanism is

shown in Figure 6. Furthermore, in on-line control, the inference process should lead to a

non-fuzzy control action. This necessitates the use of a defuzzifier. A defuzzifier can be

implemented by using max criterion, mean of maximum or center of gravity algorithms [9].

The defuzzifier used here is employing the mean of maximum algorithm, which produces the

mean value of all local control actions whose membership functions reach the maximum.

In what follows, the fuzzy control rules are assumed to be of the form

Ri : if x is At and y is Bt then z is C,-, / = 1, 2 n ,

where x, y, and z are linguistic variables representing the angle of the pole with respect to the

vertical axis, angular velocity of the pole, and applied force, respectively; A,-, Bt, and C, are the

linguistic values (fuzzy sets) of the linguistic variables x, y, and z in their respective universes

of discourse, [-12.+12] acgrees, R, and [-10, +10] newtons. The definitions of linguistic values

Ai and Bt are shown ir. Figure 7 (a) and (b). The problem is to learn the linguistic values Cit

which take the form of triangles, defined on the control force universe [-10,+10] newtons. As

shown in Figure 7 (c), the location of the vertex of such a triangle is to be learned, while the

coordinates of the base are functions of the vertex location value, say in the extreme case, +/-2

newtons away from that vertex.
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To summarize the ideas thus far discussed, Figure 7 (d) illustrates a 2-D linguistic state

space. The x axis is 0 with seven linguistic values; the y axis is 0 with three linguistic values.

Thus, 7x3 fuzzy control rules are involved. Each fuzzy control rule corresponds to a fuzzy cell.

The premise of a fuzzy control rule determines the cell's coordinates in the linguistic state

space. The consequent of the rule is taken to be the content of the cell, which is to be learned

by the proposed neurons, the ALN and ACN. Once a system input is sensed, the cells are fired

in parallel. The fuzzy decoder takes the current state of the cart-pole system as an input and

has n outputs (firing strengths) going to the ALN and ACN. Each output of the fuzzy decoder

corresponds to a fuzzy cell. The activity of the output is the firing strength. The firing

strength serves as an input to both the ALN and ACN, and is also used to compute the recom

mended control action in each rule (cell).

B. Learning with a Neural Net

As has been mentioned in Section II, the principal difficulty in the learning process is that

the training information (failure signal) is very sparse. Many of .the previously employed

neural networks such as the Adaline, perceptions, and Hopfield nets, are effective for the solu

tion of supervised pattern classification problems. Although the basic idea underlying our

approach is similar to Barto's [1], it departs from Barto's in some significant respects. More

specifically, our network consists of the ALN and ACN which perform unsupervised learning.

The ACN has to do with the criticism from the environment associated with the system state.

The ALN takes the criticism and associates n fuzzy control actions with n fuzzy cells (the con

sequents of n fuzzy control rules). Since the ACN predicts the criticism at every time step, the

ALN can continuously update itself before the failure signal occurs. This is the basis for the

solution of the credit-assignment problem.

l.ACN

The ACN is derived from Pavlovian conditioning theory [10]. Pavlovian conditioning

[11] was introduced by Pavlov in 1927. The best known example of Pavlovian conditioning
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comes from Pavlov's research on the conditioned reflex of salivation by dogs. Prior to condi

tioning, when a dog hears the sound of a bell, it pricks its ears. Then, when the food is

presented to it, it salivates. If this sequence of events is repeated, the dog soon starts to salivate

in reaction to the sound of the belL In effect, the dog has been "conditioned" to react to the

bell. Figure 8 illustrates the conditioning of a Pavlov dog. As can be seen, the sound of a bell

can be used to predict the occurrence of salivation before the presence of food. This predictive

relationship between food and the sound of a bell has important implications. Thus, the ACN

captures this predictive nature of the Pavlovian conditioning.

The correspondence between Pavlovian conditioning and the behavior of our control sys

tem is as follows (see also Figure 9). Food corresponds to the evaluative feedback (failure sig

nal). The salivation by reflex is equivalent to an external reinforcement r(t) with the value -1.0

if failure signal occurs, otherwise 0.0. The sound of a bell relates to the iA fired fuzzy cell

(fuzzy control rule) with firing strength x,. The salivation resulting from the bell's sound is the

predictive reinforcement vt(t) of the /* fuzzy cell. It is worth noting that, in the extreme, the

i* rule with firing strength either 1.0 or 0.0 is the exact case of presence or absence of food in

the conditioning of a Pavlov dog. In other words, our ACN operates in a continuous mode,

which treats Pavlovian conditioning as a special case. In effect the ACN attempts to predict

the reinforcement v,(r) that can eventually be obtained from the environment by choosing a

control action for that fuzzy cell.

As an extension of single-input-single-output analogy, multiple inputs in the ACN neces

sitate an output which is a weighted sum of the predictive reinforcements of all fired fuzzy

cells. The weighted sum p(t) is the total reinforcement of all fired fuzzy cells at time t Furth

ermore, an internal reinforcement r(0, the criticism, is generated as a temporal difference of

the total predictive reinforcements.

As shown in Figure 3, the ACN has an external reinforcement input, r(t), from the cart-

pole system, n inputs, xt(t), i=\ n, from corresponding fuzzy cells, and an output, ?(t), as
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intemal reinforcement signal (criticism) for the ALN and itself. The total reinforcement at time

t is given by

P(r) =C(tvJ(r)xl(r)),
«=i

where G could be a sigmoid-shaped function, identity function, mean of maximum algorithm

or center of area algorithm. The associative learning rule for the /* fuzzy cell is in part

characterized by a local memory trace xy(0 and the internal reinforcement 7(t). The predictive

reinforcement v,(0 of the i* fuzzy cell (fuzzy rule, fuzzy system state) is updated by

v,a+D = v,(/) + Pr(/)x](0,

where p is a positive learning-rate parameter. The local memory trace is defined by

xK/+l) = fc*(0 + (l-X)l*(Ovi(Ol,

where X, 0 £ X<1, is a trace-delay parameter. The trace takes the form of an exponential curve.

It is strengthened by the degree of firing strength of the i* fuzzy cell (fuzzy control rule)

together with its current weight and weakened if the rule is not fired. The trace thus keeps

track of how long ago the i* fuzzy rule fired and also how often it was fired. The internal

reinforcement is calculated as

Ht) = r(t) + yp(t)-p(t-l),

where y, 0 <y<1, is a discount-rate parameter. The internal reinforcement serves as criticism,

depending on a relative difference of p(t) and p(t-l). If the pole does not fall and yp(t)>p(t-l),

then r(r)=0 and r(/)>0, a reward is given. If the pole does not fall and yp(t)<p(t-l), then

r(t )=0 and r(r)<0, and a punishment is effected. The discount factor y implies a bias for the

condition in which pit) equals p(t-l). More specifically, once the pole does not fall and keeps

in the same state, a reward is given through the use of a discount factor. On the other hand, if

the pole falls, then p(t)=0, r(/)=-l and r(O<0, and a punishment is issued. If p(t-l) fully

predicts the occurrence of the failure, there is no punishment As shown, a negative feedback

mechanism is implicitly incorporated into the internal reinforcement
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The proposed ACN model might be viewed as an extension of the Sutton-Barto model

[10]. More specifically, in the context of animal learning phenomena, a sigmoid-shaped

acquisition curve is observed. This is not simulated in the Sutton-Barto model. In our model,

it can be achieved by making a change in the associative strength proportional to the current

associative strength [10]. It has been demonstrated by computer simulation that the ACN

accounts for many phenomena observed in Pavlovian conditioning, such as a sigmoid-shaped

acquisition curve, inter-stimulus interval effects, trace conditioning, and delay conditioning. A

more detailed discussion of this aspect of our model is described elsewhere [10].

2. ALN

The ALN is derived from the Instrumental Conditioning Theory [11]. A simple example

is teaching adog to perform atrick. During training, if the dog does well, it is given areward.

If not, it is punished. After training, the dog has learned a new trick. The association of the

dog's response and reinforcement has in effect been "conditioned". The correspondence

between this conditioning and the ALN is as follows (see also Figure 10). A dog corresponds

to the i* fuzzy control rule with firing strength xf. The response of the dog relates to the con

trol force (wifi) of the i* rule. The reinforcement as reward/punishment is equivalent to the

internal reinforcement from the ACN. The ALN does the following: the iA fuzzy control rule

can produce correct control force of the i,h rule under the internal reinforcement from the

ACN. In effect, the ALN is acontent-addressable memory system which associates each fuzzy

rule with an appropriate fuzzy control action.

As shown in Figure 3, the ALN has an internal reinforcement input, r(r), from the ACM,

n inputs, x,(0, i=l,..., n, from the fuzzy decoder, a control action input F(t), from the defuz-

zifer, and n associative weights w,- j=i, ..., n, as outputs for the rule base. Each associative

weight Wi(t) is transformed - by using the concepts of dynamical normalization and

fuzzification - into a fuzzy set having the form of a triangle as described in the previous sec

tion. The location of the vertex of the triangle is given by

fi(t) = H(Wi(t) + noise(t)), i = 1 n ,
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where H is a dynamic sigmoid function which may be viewed as a dynamic normalization

function and provides a continuous output within the range [-10.+10]. For the purpose of com

puter simulation, the following function is used:

lOx x>0,

//(*,0=«

T(t)+x

e x=0,

lOx

T(thx x<0.

where T(t) = klmaxwi(t) is an offset-tuning parameter which determines the slope of the

sigmoid-shaped curve; and kx is a constant The associative learning rule for each w,(r) is

wi(f+l) = wJ(r) + S(Or(Oe/(0,

a(0 =
0*2

k2+r

where 5 is a dynamical positive learning-rate parameter with a initial value a and k2 is a

weight-freeze parameter. The weight-freeze parameter determines the decreasing rate of the

dynamical learning rate a. r(t) is the criticism from the ACN. The associativity trace, et(t), is

given by

e,(H-l) = &,-(/)+ (l-6)F(*)xl-(0,

where 8, 0 £ 6 <1, is another trace-decay parameter. The associativity trace takes the form of

an exponential and it remembers for how long and how often a fuzzy control rule has fired as

well as what control action was taken at that time.

Figure 11 illustrates the signal flow of our proposed controller J«»ing a :cuiiii»i6 process.

A brief summary of the interpretation of variables used here is also g^ry jn Table I. Once a

system state (0,0) is sensed, the set of fuzzy control rules (fuzzy cells) is fired in parallel. A set

of firing strengths (x.) is then generated. The firing strength is used to compute the recom

mended action in each rule and also serves as input to both ALN and ACN. The information

about the system state is then fed into the two neuronlike elements by the set of firing

strengths. More specifically, the firing status of each rule is encoded by its firing strength. The
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firing strength together with the predictive reinforcement (v,-, or desirability) of the iA fuzzy

rule (fuzzy system state) generates the local memory trace (x-, desirability trace) of the /*

fuzzy rule (cell). The total reinforcement p, or equivalently, the desirability of all fired fuzzy

cells, is computed based on the firing strength and the reinforcement (desirability) of each

fuzzy rule (fuzzy cell, fuzzy system state). A non-fuzzy control action, F, is determined after

the processes of inference combining and defuzzification. The control action, F, together with

the firing strength, xit of each rule contributes the associativity trace, e,, of each rule. After

applying the control action to the plant, a goal evaluation, r, is made, which takes binary

values. Based on the yes-no evaluation, the criticism, r, which is a more informative evalua

tion, is generated. It plays an important role in the solution of the credit-assignment problem.

The weights (vif w,) in learning rules are thus updated on the basis of the criticism and their

own local memory trace, (x-, et). A fuzzy control force in each rule is generated from the w,

by the use of dynamic normalization and fuzzification.

V. Simulation Results

We implemented our system as shown in Figure 3 on a Sun workstation. For com

parison purposes, we also implemented Barto's system [1] for solving the same problem. The

parameter values used in our simulation were: a=1000, p=0.5, 7=0.95, 5=0.9, X=0.8, e=0.1,

*!=0.015, and &2=2500. The noise in the force-generating equation of the ALN is zero-mean

Gaussian with a standard deviation of 0.01. The learning system was tested for 6 runs. Each

run consisted of 60 trials. A run was called "success" whenever the number of steps before

failure was greater than 500,000. The external reinforcement r(t) was -1 when the failure sig

nal occurred, otherwise, it was 0. Every trial began with the same initial cart-pole states, 0=0,

0=0, x=0, x=0, and ended with a failure signal when I0I>12 degrees. All memory traces, x,

and e,, were set to zero. In each run, the noise was provided by a Gaussian random number

generator with varying seeds; all the weights, w,-; were set to zero, and a lower bound vf (=-

0.0001) was set to all the weights.
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A. Learning / Training

Figure 12 and 13 illustrate the simulation results based on our proposed controller and

Barto's system, respectively. In ever}' case, both systems are capable of learning to balance the

pole. However, experiments show that our system has a better learning performance. The pro

posed controller learns to balance the pole within 15 trials. Most of these cases involve less

than 10 trials and are too close to be distinguished in Figure 12. The performance of Barto sys

tem varies around 50 trials. The Gaussian noise did have some effecton the Barto's system.

Additional observations were made on the state trajectory of the angle of the pole with

respect to the vertical axis. We observed the data after the systems learned their own control

strategy. The data showed that, in every case, our controller could keep the angle within a

smaller region compared with Barto's. Figure 14 and 15 illustrate two sets of these data from

our system and Barto's, respectively.

B. Adaptation

Adaptation is intended to adjust to unforeseen changes in environmental conditions using

prior knowledge. Training involves constructing a knowledge base of an application domain

(e.g. a pole-balancing task) with little a priori domain knowledge. The capability of learning to

solve new tasks by modifying previous learned knowledge (adaptation) is compared with that

of starting from scratch (training). Extensive simulation studies of such schemes have been car

ried out. They show that i*1* niYipp«v» confrr»Uer tolerates a wide range of uncertainty as well

as a lack of system information, e.g., parameter changes in the length and mass of the pole,

various initial states of the angle of the pole, changes of failure criteria, and a slanted cart-pole

system.

The adaptation experiments were based on pre-learned knowledge by employing the same

parameter settings as that in the last section. The length and mass of the pole were 0.1kg and
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1.0m, the angle constraint for failure evaluation was -/+12°, and the initial value of the angle of

the pole with respect to the vertical axis is 0.0°. The system took 6 trials to learn the task.

In the first set of experiments, the system is required to adapt to changes in the length

and mass of the pole. Four experiments were done as shown in Table n. The first two were to

increase the original mass of the pole by a factor of 10 and 20, respectively. The last two were

to replace the original pole by two shorter poles. The length and mass of the first pole were

reduced to 2/3 of the original values, while the second one is 1/3. Without pre-training, the

system took 45, 208, 15, and 9 trials to learn these tasks. However, with the pre-trained

knowledge, the system successfully completed these tasks without any further trials.

In the second set, we added a more severe constraint on the angle of the pole for failure

evaluation as shown in Table HI. The angle constraints were changed from +/-12° to +/-6°, and

to +/-3°, respectively. The system needed 39 and 104 trials to learn these tasks with no initial

knowledge. With pre-training, the system adapted to the first task without further trials and to

the second one with 31 trials.

In the third set, the system was required to adapt to the changes in the length and mass

of the pole (by a factor of 2/3) and angle constraint (+/-6°). In Table IV, training took 16 tri

als, while adaptation needed 4 more trials only (6 trials).

In the fourth set, we changed the initial states of the cart-pole system in five experiments

as shc"-^ in TnV*a v The initial values (angle of the pole, angular velocity) were moved to

(5.7°. 0). (10.0°. 0). (10°, 0), (5.3°, \l.\9°lsec), and (-8.59°, 40.U°/sec), respectively. Without

pre-training, the system needed 11, 11, 6, 11, and 13 trials to learn these two tasks, respec

tively. The system with pre-trained knowledge completed the tasks without further training

except in one case.
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Finally, the cart-pole system was lifted at the right end in such a way that the base of the

system and the surface of the table formed an angle of 12°. The system took 35 trials to bal

ance the pole. However, the system with the trained knowledge needed 8 more trials; to be

more specific, it took 8+6 trials to complete the new task.

VI. Concluding Remark

In this article, we have proposed a symbolic problem-solving approach to a class of

learning control problems. More specifically, we have attempted to develop an intelligent con

trol scheme by integrating human decision-making (in terms of a rule-based controller using

approximate reasoning) and animal learning behavior (in terms of two neuronlike elements).

The proposed rule-based controller learns and improves its rule base for better control strategy

from experience. In this way, we avoid an ad-hoc rule-tuning process which is usually

inefficient and lacking in consistency. Computer simulation results show that the learning capa

bility of our controller represents an improvement over previous approaches. This is achieved

in part by employing approximate reasoning as the inference engine of the controller and by

employing a continuous control scheme rather than bang-bang control. Furthermore, our con

troller is relatively insensitive to variations in the parameters of the system environment. In

addition, the controller can be primed with pre-trained control knowledge which minimizes

rapid changes during adaptation.

The approach described in this paper may be viewed as a step in the development of a

oeuer understanding of how to combine a fuzzy logic based system with a neural network to

achieve a significant learning capability. We plan to address various aspects of this important

issue in subsequent papers.

better
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Figure Captions

Fig. 1. A schematic representation of a self-learning rule-based controller.

Fig. 2. The cart-pole system.

Fig. 3. The proposed intelligent controller configured with the pole-balancing component.

Fig. 4. Diagrammatic representation of various linguistic values of speed.

Fig. 5. Diagrammatic representation of approximate reasoning using a fuzzy input.

Fig. 6. Diagrammatic representation of approximate reasoning using a crisp input.

Fig. 7. (a) Linguistic values of the angle, (b) angular velocity, and (c) applied force, (d) A
two-dimensional linguistic state space.

Fig. 8. A schematic paradigm of Pavlovian conditioning procedure.

Fig. 9. The correspondence of Pavlovian conditioning and the ACN.

Fig. 10. The correspondence of Instrumental Conditioning and the ALN.

Fig. 11. The signal flow of the proposed intelligent controller.

Fig. 12. Learning performance based on the proposed intelligent controller.

Fig. 13. Learning performance based on Barto's system.

Fig. 14. (a) State performance of the pole angle based on the proposed controller, (b) State per
formance of the pole angle based on Barto's system.

Fig. 15. (a) State performance of the pole angle based on the proposed controller, (b) State



performance of the pole angle based on Barto's system.
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Table Captions

Table I. A summary of interpretation of variables.

Table n. Adaptation / training results due to parameter changes of the length and mass of the
pole.

Tablem. Adaptation / training results due to angle constraint for failure evaluation.

Table IV. Adaptation / training results due to parameter changes of a pole plus change of angle
constraint

Table V. Adaptation / training results due to changes of initial state.



Table I

A summary of variables

subindex i: the ith fuzzy cell (fuzzy control rule, fuzzy system state).

0(0,9(0: angle of the pole and angular velocity.
F(t): control force applied to the plant.
x,(0: firing strength at time t.

r(t): goal evaluation, which takes binary values.

Vi(t): predictive reinforcement (desirability) of the i* fuzzy system state.
xi(t): desirability trace which is a function of x,(0, v,(0 and jcj(/-l).
p{t): total reinforcement (desirability) of all fired fuzzy cells at time t,

r(r): criticism for current motion.

G: a sigmoid-shaped function.

w,(/): control force before dynamic normalization and fuzzification.
/,(/): control force before normalization.

ei(t): associativity trace which is a function of F(0, Xi(0 and e,(f-l), keeping track of
firing frequency and history of the i* fuzzy cell and control action.

5(0: dynamical learning rate.



Table II

parameter changes of
the length and mass of pole

Pole Adaptation Training

maSS length no. ofadditional from scratch
^ trials

10x same 45

20x same o 208

(2/3)x (2/3)x o 15

(1/3)x (1/3)x 0 9



Table III

angle constraint

for failure evaluation

(originally, -/+12)

Angle Constraint Adaptation Training
no. of add. trials from scratch

+/-6 o 39

+/~3 31 104



Table IV

parameter changes of a polo
plus change of angle constraint

Pole Angle Adaptation Training
maSS length Constraint no. ofadd. trials from scratch

(2/3)x (2/3)x +/-6 4 16



Table V

changes of initial state
(started with 0)

Initial State Adaptation Training

angle ang. Vel. no. ofadd. trials from scratch

5.73 0.0 0 11

-8.59 0.0 0 11

10.0 0.0 1 6

5.30 17.19 0 11

•8.59 40.11 0 13
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