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Abstract

To narrow the gap between the theory and its application to real problems, this
dissertation addresses the practicality of hardware design verification. This goal is achicved
by dividing the verification problem into two subproblems: correctness checking of finite-

state machines and equivalence checking of multilevel behavioral descriptions.

An efficient algorithm is presented for the correctness checking of finite-state
machines. The algorithm checks to sec if an implcmentation, given by a net-list of gatcs
and latches, satisfies a specification given as a state transition table. When the implementa-
tion is incorrect, an input sequence that distinguishes the implementation machine from the
specification machine is provided to help the user locate errors. Experimental results show

that the method can be applied to fairly large systems.

For the equivalence checking of behavioral descriptions, a formal technique based on
theorem proving methods is used. Because verification is performed by a formal technique,
complete verification can be achieved without exhaustive simulation. Bchavior is specificd
in a hardware description language that deals with timing and functionality in one para-
digm using functional (denotational) semantics. Type dcfinition mechanisms and macros

are provided, along with recursive definitions. The behavioral verification system automati-



cally handles type dcﬁnilions and exploits hicrarchy. Hierarchy is exploited when checking
functional equivalence by using techniques such as inductive verification of recursive
descriptions. Hierarchical timing verification is also supported by the abstraction of timing
information by constraint propagation. During the abstraction of timing information, thc
availability of functional rclations between signals eliminates the static-inscnsitizable-path

problem.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

The ultimate goal of computer-aided design (CAD) of integrated circuits(IC’s) is to
build systems which can generate automatically designs of entire circuits from the user-
supplied requirements. However, the achievement of this goal is not foreseeable in the near
future. Current approaches involve human intervention, and design verification continues to

be an important problem.

Traditionally, simulation at various levels of description has been used for the
verification of hardware design. In order to achieve a complete verification using this
approach, exhaustive simulation must be performed. Unfortunately, excluding very simple
designs, exhaustive simulation is nearly impossible. To overcome this limitation, formal
verification techniques have been proposed. However, in order to apply these techniques to

real design problems, more research work is needed.

In this dissertation the practicality of the hardware design verification is addressed in an
effort to narrow the gap between the theory and its application to real problems. To achieve
the goal of obtaining a more practical verification system, the verification problem is divided
into two subproblems: correctness checking of finite-state machines and equivalence check-

ing of multilevel behavioral descriptions.



1.2. Hierarchical Design Methodology

To address the complexity of a very-large-scale-integration (VLSI) design, the concept
of hierarchical design has been widely accepted. This idea is similar to the structured pro-
gramming technique, which has been used by software engineers for many years. A hierarchi-
cal methodology allows the designer to specify a design in a modular, multilevel manner,
starting from the top level and working to the bottom. In VLSI design, this process involves a
decomposition by which a complex entity is partitioned into multiple, less complex subenti-
ties. The decomposition of the design into modules is arbitrary, but typically it is organized
according to the functional structure of the system under design. The top level of the design is
a high-level description of the entire design in terms of modules and the interconnection of
those modules. The modules are abstracted to hide unnecessary details from the designer and

to allow him to think about only necessary information on a given level.

When a design is performed in a hierarchical environment, the verification of a large
system can be split into smaller and simpler problems. This "divide-and-conquer” approach
provides a practical approach to solving the complex verification problem. The increasing
importance of the logical structure in VLSI design (1,2], demands methodologies and tools

to support hierarchical decomposition at high levels.

1.3. Timing and Functional Verification

In an equivalence checker for multilevel behavior, not only must the functional

behavior be verified but it is also necessary to address timing behavior.

Most timing verifiers deal with flattened-down descriptions of a design at a specific
level, usually in switch-level or gate-level [3,4,5). However, with hierarchical descriptions it

is more desirable to be able to handle the timing information in a hierarchical manner. The



abstraction of timing behavior, as well as functionality, is important. Also, as the timing
verification is performed with the known functional relations of signals, the static-
insensitizable-path problem, which has been an important problem in timing verification, can

be eliminated.

In this work, the functional verification problem is formulated as an equivalence check
between two descriptions. The description language and its verifier are presented. The verifier
exploits hierarchy and structural regularity, both of which are very important to achieve the

goal of practical formal verification.

1.4. Organization of the Dissertation

In Chapter 2, various aspects of design verification are introduced and the relationship
between simulation and formal verification is explained. This is followed by a description of
the concepts and terms needed in later chapters along with a definition of the verification

problem addressed in this work.

Chapter 3 deals with the verification problem of finite-state machines. In this case, the
problem is to check whether the implementation satisfies the given specification. The finite-
state machine verification problem is defined and an efficient algorithm is presented. Experi-

mental results are also presented.

Previous and related work is reviewed in Chapter 4. Because the study of formal
approaches began earlier in the software domain than in hardware design, the most common
techniques used in program specification and verification are described first, then existing for-
mal hardware verification techniques are described. Finally, the problems and issues of these

existing methods are addressed.



The behavioral description language used in this research is introduced in Chapter 5.
The semantics of the language is based on a functional formalism. The primitive constructs
are introduced with their semantics. In the language for data abstraction, three kinds of type
constructing mechanisms are provided and parameterized designs may be defined as recur-
sive cells. Also, some macro facilities are provided for the convenience of describing

hardware.

The timing verification part of the behavioral verifier is presented in Chapter 6. After
the timing constraints of synchronous digital systems are reviewed, the static-insensitizable-
path problem is addressed. The timing model and the mechanism used for abstracting timing
information are described. To illustrate the elimination of the static-insensitizable-path prob-

lem, some experimental results are provided.

Chapter 7 deals with the functional verification aspect of the behavioral verifier.
Theorem provers utilized in existing hardware verification systems are reviewed and the
theorem prover employed in the verification system implemented as part of this work is
explained. Also, to illustrate the performance of the verification system, several verification

examples are provided.

Conclusions and future research work in the formal verification field are included in

Chapter 8.



CHAPTER 2

THE HARDWARE DESIGN VERIFICATION PROBLEM

2.1. Introduction

When a hardware or software system is designed there is always the problem of deter-
mining whether the design behaves as the designer intended. In a software system design, the
final product is a program or a package of programs and the reproduction of the final result is
usually very easy and inexpensive. However, in hardware design, the final product is not as
easy to implement and in general it is very expensive to build the first version. Therefore it is
necessary to check the correctness of the design prior to fabrication so as to prevent costly
errors and corrections at a later prototype debugging phase. This activity is called design
verification, design test or design correctness checking and should be distinguished from pro-
duct test. In a product test, the goal is to see if there has been any physical failure during the
fabrication process (which should not occur if the fabrication process is perfect). However,
since the manufacturing cycle is not perfect, each of the products should be tested before
being brought to market. The number of manufactured devices is generally very large and
the evaluation cost of each device is critical for the total cost of the product. Hence it is
important to devise a set of test inputs which detect most of the probable errors incurred dur-
ing fabrication, yet is small enough so that manufacturing costs are within a reasonable limit.
On the other hand, the goal of a design test is to check the correctness of the design so that if
the manufacturing process was perfect, the final product would be fault free; that is. it is also

what the designer intended. The focus of this dissertation is the design test problem.



Early integrated circuit design was performed manually. Since the circuits involved
were relatively small and simple, this approach was quite satisfactory. The first digital
integrated circuits (IC’s) were available commercially in the early 1960’s; it was a number of
years before computer-aids were applied to the design and verification of these circuits. In
retrospect, it is surprising how little the computer has been used in the design of IC’s. Early
circuits were small enough that mask patterns could be drawn by hand, and then photographi-
cally reduced to generate the IC masks directly. For the verification of the function of the cir-
cuit, however, simulators proved very useful. Initial work in the mid-1960’s thus focussed on
the development of device analysis [6,7)] and circuit analysis [8,9] techniques. The circuit
simulators were originally developed for the analysis of nonlinear and radiation effects in
discrete circuits. It was not until the early 1970’s that circuit simulators suitable for IC
analysis became generally available [10,11,12,13,14,15]. As the digital hardware contin-
ued to become integrated into monolithic form and with increasing complexity, industry
turned to the computer to store IC layout data and produce the masks required for manufac-
ture. Systems for layout digitization and interactive correction found extensive use by the
early 1970’s. However, it was not until the mid-1970’s that programs for the physical layout
rule checking of the circuit began to find widespread use [16,17]. By 1975 it had become
clear that computer-aids were a necessity in the design of complex IC’s, both for physical and
for functional design and verification. Until then, the layout of an IC and its transistor-level
schematic diagram had been quite separate. In the late 1970’s, computer programs became
available for tasks such as connectivity verification [18], extraction of transistor-level
schematics from IC artwork data [19,20,21] and even extraction of gate-level schematics
from the transistor list [22]. These programs are loosely coupled in general and are often
incompatible with one another. It was not until the mid-1980’s that much effort was invested

in making the computer-aided design (CAD) systems integrated.



In this chapter, various aspects of design verification are introduced, and the relation
between simulation and formal verification is explained. Finally, the concepts and terms
needed in the sequel of the dissertation are described, along with a definition of the

verification problem.

2.2. Various Aspects of Design Verification

Throughout the process of designing VLSI circuits, a variety of different representa-
tions or views of the design are used. These representations may refiect a particular level of
abstraction, such as a functional specification or mask layout, or they may reflect the view
required for a certain application, such as the information required for simulation or formal
verification. The choice of appropriate representations for each level of the design process is
a key factor in determining the effectiveness of computer aids since it is through these
representations that both the structure of the design and specific information relating to a par-
ticular design level are expressed. The design process involves transformations between
these representations, both for design and verification. In this section, a classification of
representations is presented. This classification is used in the later part of this section to

relate various aspects of design verification.

The major categories of design representations are shown in Figure 2.1 [23]. These
representations fall into one of three major categories: behavioral, schematic, and physical.
At the behavioral or algorithmic level, the functional intent of a design is described indepen-
dent of a particular implementation. In some cases, programming languages such as con-
current Pascal [24] have been used to represent the design at this level, as well as to provide
simulation capability. Languages specifically designed for this task, called hardware descrip-

tion languages (HDL's), have also been developed (25,26,27,28].



Algorithmic or Behavioral
Behavioral View Data-Flow
Register Transfer
Schematic
Logic Gate
View
Transistor
Physical Symbolic Layout
View Mask Layout

Figure 2.1 Categories of design representation

Once a functional implementation strategy has been determined, a schematic view may
be generated. At its most abstract level, this schematic view consists of a chip plan, illustrat-
ing the loose physical placement of the major components and busses, or a register transfer
level (RTL) description, defining the functional relationships between the major components
of the design. As the implementation is further refined, logic gate level and finally transistor
level schematics may be generated. With each new level of refinement more information
concerned with the detailed physical and functional implementation of the circuit is included
in the description. The final transformation consists of the generation of detailed, mask-level

geometries, from a transistor-level schematic view.



The transition between high-level functional schematic descriptions and lower-level
schematic and mask layout may involve the use of additional views. At the higher level, a
data-flow description of the circuit may serve this purpose. At the behavioral level, this
description may be viewed as the parse tree generated by a compiler operating on the algo-
rithmic description of the intended function. At the RTL level, nodes in the data-flow graph
represent an initial configuration of circuit building blocks used to implement the function,
while branches indicate data paths between these functions. At the physical level, the sym-
bolic layout forms a bridge between a schematic view of the circuit and its mask-level layout.
A symbolic layout contains both explicit connectivity information and the relative placement

of circuit components, such as transistors, cells, and building blocks.

A typical, top-down design flow of a contemporary design system is illustrated in Fig-
ure 2.2. First, from the system specification the designer chooses an architecture. The archi-
tectural design is then refined to the logic and circuit level. Finally, a layout is generated
from the schematics of logic and transistors. An ideal approach is to develop the design from
the specification by a methodology that ensures that it cannot be incorrect. This approach
serves the ultimate goal of CAD researchers, but requires codification of a great deal of
knowledge about the design domain, from the most abstract levels of system description
down to the most detailed levels of implementation. It potentially faces a astronomically
large search space of design alternatives. In software design, the attempt to achieve
correctness-by-construction is exemplified in the principles of a structured programming
methodology [29] and in research into automatic or semi-automatic programming [30]. In
hardware design, research has foc;ussed on pieces of the problem that are the most tedious for
a human designer and therefore prone to human error, such as wire routing or programmable

logic array generation. There have been attempts at automatic design of entire integrated cir-
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system specification l(—
verification :
l function
architectural design ¢
verification :
function, timing
schematic design
(logic and circuit) l(——
verification :
l net-list comparison,
timing
design rule check layout
fabrication

Figure 2.2 A typical VLSI design flow

cuits, including microprocessors that have met with varying degrees of success [32,33].
However, these attempts are still in their infancy and truly general-purpose design synthesis
systems will take many years to perfect. Until all the design processes are performed by
automatic and error-free procedures, the verification of design work created by bumans will
continue to be an important problem. Different aspects of verification are required at dif-
ferent levels during the VLSI design process. The functionality is checked at the architec-

tural level; functional and timing behavior are checked at the logic and circuit level, and
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physical design rules and detailed timing behavior are checked at the layout level. Finally, as

a functionality check, a net-list comparison can be performed.

The problems associated with "verification” can be classified into three categories:
functional verification, timing verification, and physical verification. In functional
verification, the goal is to show that a design correctly implements the specified function. The
goal of timing verification is to show that a proposed design will not malfunction due to
hazards, races, excessive delays, or other timing problems. Timing verification may not prove
the functional correctness of a design, but it can show whether the design will operate within
the timing specifications imposed on it. The problem in physical level verification is in
showing that a proposed design conforms to a set of rules or restrictions. These rules may
reflect physical limitations of the technology being used, or they may be intended to improve

product reliability and maintainability.

2.3. Simulation and Formal Verification

Simulation at various levels has been the most common verification method. The vari-
ous levels of simulation used for integrated circuit simulation, their use, and examples of
simulators for particular levels [34,35] are listed in Table 2.1. The designer can select a
simulator at the proper level depending on the stage of the design process, or may choose a

mixed-level simulator that combines capabilities at two or more levels.

Circuit simulators, such as SPICE2 [15] and ASTAP [14], have been used successfully
for the design and the performance evaluation of integrated circuits, and provide very accu-
rate output waveforms. However, due to long computer run times, it is almost prohibitive to
use these simulators for the analysis of large integrated circuits. An extensive effort has been

made to reduce the required CPU-time for large circuits, while maintaining the same



Level Use Simulator Examples
Behavioral | Algorithmic Verification GASP, SIMULA, ISPS, ADLIB
RTL Logic Verification ISPS, ADLIB, SPLICE2
Logic Logic Verification LOGIS, ILOGS, SPLICE2
Switch Logic Verification MOSSIM, RSIM
Circuit Performance Evaluation SPICE2, ASTAP, SPLICE2

Logic Verification
Device Device Model Development | GEMINI, PISCES
Process Process Development SUPREM, SAMPLE

Table 2.1 Hierarchy of large integrated circuit simulation
waveform accuracy. Techniques include the use of relaxation methods, such as Iterated Tim-
ing Analysis (ITA) [35,36,37] and Waveform Relaxation (WR) [38,39,40]. Relaxation
methods provide significant speed improvement with the same waveform accuracy as
SPICE2 (assuming identical device models) and have guaranteed convergence and stability
properties. However, relaxation-based electrical simulation is still much slower than logic
simulation and the actual CPU-time required depends on the characteristics of the circuit

under analysis.

Logic simulation is an area which has evolved over the last two decades. Since the
logic circuits of interest were already large and computers were less powerful, even the early
work was concerned with efficiency improvement techniques (e.g. [41,42]). Since then, con-
tinuous progress has been made towards the simulation of very large circuits
[43,44,45,46,47). Both temporal and structural sparsity is exploited in these techniques.
Due to the occurrence of new complex MOS transistor designs, which cannot easily be cast
into standard logic gates, transistor level simulation [48,49] has emerged as an alternative.
Also, a new form of simulation technique has been developed which solves for the amount of
time required for a network variable to make a particular change, rather than solving for the

network variables at the given time point (as in conventional circuit simulation) [50].
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Recently, to simulate the behavior of a system across several abstraction levels in one
simulator, so-called mixed-level simulation techniques have been developed
[51,52,53,24,54,55,56,57]. In a mixed system, models of more than one abstraction level
are used, such as circuit analysis, simplified macromodels, and logic simulation. Numerous
mixed-mode and/or multilevel systems include several simulation analysis levels, combining

many of the techniques developed for each level.

Simulation has been used for hardware design verification for so long that for many
people verification means simulation. It remains true that simulation is still the best known
way of answering the question "is my high-level description actually what I want?" However,
simulation has several limitations for verifying the correctness of a design process. As a sys-
tem increases in size and complexity, simulating the system is very costly in both space and
time. The second limitation is that selecting a sufficient set of test inputs to "cover” a sequen-
tial description is almost impossible. In all but the simplest systems, the space of possible
inputs can be vast. For example, a simple multiplier that multiplies two 16-bit integers can
require over four billion different inputs to be sure it simulates correctly, and a system that
contains a single 32-bit register can potentially have over four billion different responses to
each input, depending on previous input sequences. Clearly, we cannot hope to test a system
on every possible input with every possible system state. Rather, a subset of these tests must
be selected, from which we can extrapolate or otherwise conclude the correctness of the
design. Fortunately, the number of test inputs needed grows linearly with the number of
components in the system. Unfortunately, the task of finding them is known to be NP-
complete [58). Therefore, simulation alone cannot guarantee that complete verification has
been achieved unless exhaustive simulation has been performed. Here the meaning of the

term "complete verification” is that when a verification result is positive, it is guaranteed that
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a design operates correctly with all possible tests in the input domain. Finally, even if
exhaustive simulation were feasible, the interpretation of the simulation output is not easy.
Because of these difficulties, there is a need for new verification techniques to supplement the

traditional simulation-based approach to design verification.

An important new approach that has emerged in the last decade is formal verification
[59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79, 80, 81, 82, 83, 84].
In formal verification, both a design and its specification are described by a language in
which semantics are based on mathematical rigor, and the verification is then performed
using symbolic manipulations. This guarantees complete verification when the verification
result is positive. When a formal description is used during the complete design process,
numerous advantages can be seen. For example the description of the actual behavior of an
existing VLSI circuit or specification of the intended behavior of a circuit to be designed is
generally performed informally, usually by means of natural language sentences or timing
diagrams. By formally specifying the required behavior of a design, it becomes possible to
communicate these requirements unambiguously to the people who will implement the
specification, while providing a precise statement of design requirements. The ability to
describe behavior formally in a design language allows the correspondence between specified
behavior and the behavior of the constructed design to be established. As the primary aim in
any design exercise is to produce an implementation that satisfies the behavioral

specification, the importance of behavioral description is evident.

The use of behavior in a design language has not been fully explored to date. The
advent of hierarchical designs requires the rigorous description of both the structure and the
behavior of design components at the various intermediate stages in the evolution of a com-

plete design. The manipulation of the large amounts of descriptive data requires that some of
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the well-established techniques found in programming languages be used to aid the design
process. The use of behavioral description "languages"” (whether they be graphical, textual, a
combination of the two forms, or a data structure) as the medium in which a designer will
work will increase steadily in the future, due to the ever-increasing complexity of VLSI

designs.

Large designs are usually produced in segments, with some parts of the design being
produced by hand and others being produced using design automation tools. An interface
between the components must be specified; this can most naturally be done using a design
language which supports the description of structural, geometrical and behavioral attributes.
Input to design automation systems will require behavioral information if designers are to
work at a higher and more abstract level of design than that of pure structure or geometry.
Most design automation systems, such as automatic placement and routing programs, work in
the structural or geometrical domains. However, abstract behavioral descriptions are being

used as input by an emerging number of true silicon compilers [85, 86, 87].

Finally, the most significant reason for including behavioral description capabilities ina
language is for automatic design verification. Verification techniques using simulation do not
generally make use of behavioral description languages, as they restrict themselves to
describing circuits at a single level of representation such as the circuit level of SPICE2 [84],
or the switch level of MOSSIM [48] and RSIM [88]. Simulation then occurs monolithically
over the complete device description after the design is complete, with the inherent problems
of descriptive complexity and redesign effort when flaws are discovered. An integrated
design and verification process allowing increasingly detailed descriptions of an evolving
top-down design to be verified by simulation or verified by mathematical proof techniques,

breaks both the design and verification tasks into manageable sub-tasks. This approach
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requires a behavioral description language in which behavior is described at different levels
of abstraction, from the interaction among functional blocks down to the behavior of primi-

tive cells. This approach is explained in more detail in the following section.

2.4. Hierarchy and Three Classes of Hardware Modules

Hierarchical techniques are frequently applied in managing complex technical and
organizational problems. It is the purpose of such hierarchical techniques to master complex-
ity by decomposing a complex system into a hierarchy of sub-modules. For a proper appreci-
ation of the merits of hierarchical techniques, it is essential to have an understanding of the
nature of complexity. Hierarchy applied to VLSI design will not generally lead to a reduc-
tion of the number of components in the chip -- on the contrary, there are several reasons to
expect the number of components to increase. It can, however, affect the number of interac-
rions between components which must be taken into account (by abstracting the interfaces
between components), as well as the number of configurations to be considered during
design. These latter aspects are also a measure of system complexity and are known to be
dominant in the design of large systems [89,90). Hierarchy is designed to reduce the magni-
tude of these contributions to complexity by using appropriate decomposition techniques.
The intuitive notion is straightforward. One decomposes a large problem into a number of
smaller parts and while each of the parts can be expected to exhibit only limited complexity,
it is the expectation that the integration of the parts will not lead to a significant increase in
overall complexity. Hierarchical decomposition techniques have long been in use for IC
design supported by CAD tools. Many of these were devised for obtaining a reduction of the
amount of design data; they did not intend to provide nor did they achieve a reduction of

design complexity as measured by CAD program run times. Apparently, hierarchical decom-
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position alone is not sufficient for reducing system complexity. Upon developing an under-
standing of the nature of complexity, it follows that abstraction methods form an essential

ingredient.

In a hierarchical approach, a hardware module consists of a behavioral specification part
and a structural implementation part. A behavioral specification describes how a particular
design responds to a given input, and a structural representation describes how components
are interconnected. According to how a hardware module is composed, modules can be
classified as interior modules and leaf modules. The leaf modules can be further classified
into primitive leaf modules and special leaf modules. These modules are illustrated in Figure
2.3. In a primitive leaf module, the structural part does not exist, and therefore does not need
to be verified. The special leaf module consists of a behavioral part and a structural part, but
its structure does not use any other module and is given as a set of net-lists of elementary
parts. The net-lists are obtained using an extraction program, or are given as the results of
several stages of the synthesis process. In an interior module, the structural part uses some
number of submodules, each of which is either a primitive leaf module or a special leaf
module or another interior module. For example, when a full-adder is given as a top level
module, the Boolean gates may become primitive leaf modules. Or when a microprocessor is
given as a top level module, the control path of the module can be a special leaf module and
the logic blocks for data path can be interior modules. For the verification of a partially
designed system, a designer may declare proper modules as primitive leaf modules. Later,
when the design is implemented by refining the specification of the primitive leaf module, the

module can be verified as a top level interior module.

From the verification point of view, a special leaf module can be treated as an interior

module whose structural part consists of primitive gates and latches. However, the
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Figure 2.3 Three classes of hardware modules

verification approach for interior modules may be impractical for some leaf modules.

2.5. Verification Problem

In general, design verification problems can be classified into two categories. One
category is correctness checking (65, 91], the other equivalence checking [74, 82]. In correct-
ness checking, the verifier checks to see if the structural implementation implies the
behavioral specification. Usually there is more than one way to implement a given
behavioral specification and the implemented result may have more detail than the

specification. Hence even if there were no errors involved during the design process, the
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implementation may not be equivalent to the specification; however, the implementation may
satisfy all the requirements of the specification. Thus a correctness checker verifies that the
implementation implies the specification, i.e., the sufficiency is checked. On the other hand,
an equivalence checker verifies that the two descriptions are functionally equivalent. In
equivalence checking, two implementations are usually checked to see if they are equivalent.
However, if the description language allows that specifications and implementations are
described by the same language, the equivalence check between a specification and an imple-
mentation can also be performed. (Note that each of the correctness and equivalence check-
ers may verify functionality only or may verify the combined behavior of function and tim-
ing).

In this research, the objective is to develop a verification system with two verifiers: one
is a practical correctness checker for special leaf modules of finite state machines and the
other is an equivalence checker for interior modules. The correctness checker has been
implemented using an implicit enumeration method while the equivalence checker has been
implemented using formal verification techniques with the combined behavior of function
and timing checked. In functional verification, the target level still uses a discrete Boolean
form for signal values -- continuous circuit-level variables are not supported. In timing

verification, synchronous digital design is assumed here.



CHAPTER 3

FINITE-STATE MACHINE VERIFICATION

3.1. Introduction

In hierarchical design, consistency between representations of a design at different lev-
els of abstraction must be maintained throughout the design process if the designer is to be
sure of a correct implementation. In this chapter, the correctness checking problem of a
finite-state machine is considered. The verification problem of finite-state machines has been
dealt with in a few different contexts [91,92,93,94,95). In the temporal logic approach
[91,92], the specification is described by temporal logic formulae and the implementation is
represented as a state transition graph. The verification problem is determining if the state
transition graph is a model of the temporal logic formula. In the symbolic approach [93], the
verification problem involves deciding whether two logic-level sequential circuits with differ-
ing numbers of latches are functionally equivalent by using a symbolic comparison. How-
ever, due to the intractability of the problem, the formal approaches taken thus far have been
restricted to medium-sized circuits with few memory elements (4 - 6 latches). In [94], a
finite-state circuit model based on coordinating finite-state machines is proposed. In this
approach, the circuit analysis task consists of determining whether or not the circuit model
performs a given task by proving that a smaller derived finite-state system performs a derived
task. Recently, an algorithm for verifying the equivalence of two sequential machines was
presented [95). In [95], a specification state tramsition graph is extracted from a register-

transfer level description and an implementation state transition graph is extracted from net-



lists of gates and latches. Then a graph multiplication method is used to check the
equivalence. From a practical point of view the approach in [95] is one of the most promis-
ing among the finite-state machine verifiers in terms of speed, and it will be used for com-
parison in the experimental section of this chapter. In [95], some practical-sized circuits
could be verified with reasonable cpu-times. However, the verifier of [95] requires every
Mealy machine to be converted to a Moore machine (which will usually have a much larger
number of states and transition edges than the original Mealy machine). The verifier
presented in this chapter outperforms the aforementioned approach by an order of magnitude
in speed for Moore machines, and even better performance improvements are obtained for

Mealy machines.

In the study of machine identification and fault detection experiments [96,97], it is
necessary that a machine described by a state transition table must be strongly connected (i.e.,
for every pair of states, an input sequence must exist which transfers from one state to the
other), must be minimal (i.e., contains no redundant states), and must have a distinguishing
sequence (i.e., for every distinct state pair, an input sequence must exist which produces dif-
ferent output) [97). However, the specification machine generally does not have all those
properties and thus it is not always possible to devise a test sequence to verify the correctness

of an implementation machine.

In this chapter, an efficient algorithm for the verification of finite-state machines is
presented based on the concept of machine cover [96,97]. Definitions of terms and notation
are given in Section 3.2, and the verification problem dealt with in this chapter is given in
Section 3.3. In Section 3.4, the algorithms used to check the correctness of finite-state
machines are described along with implementation details. In Section 3.5, the verifier is

evaluated with some examples and the experimental results are discussed, conclusions are
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given in the last section.

3.2. Definitions and Notation

In this chapter, standard terms and notation are used (e.g. [96,97,98]). However, a

number of definitions are included here for completeness.
Definition 1 (cube and minterm) :

In an n-dimensional Boolean space, any set of vertices can be represented in sum-of-
product form. Each product terms is called a cube. In a cube notation, each variable takes
one of three values: 0, 1, or *. The don’t-care (DC) value "*" means that a variable can take
either of the values 0 (OFF) or 1 (ON). When a cube represents only one input combination
of 1's and 0’s, this special cube is called a minterm. In general, the number of minterms in a

cube is given by 2%, where X is the number of variables whose value is *.
Definition 2 (ON-set, OFF-set, DC-set, ON-set cover, and OFF-set cover) :

The ON-set (OFF-sét) of a single-output logic function is defined as a set of minterms
which evaluate the logic function to ON (OFF), and the DC-set is defined as a set of min-
terms for which the logic function can take either value of ON or OFF. The ON-set cover
(OFF-ser cover) of a logic function is a set of cubes that cover all the minterms of the ON-set
(OFF-set). In general, the number of cube elements used in a ON-set cover (OFF-set cover)

is not unique.
Definition 3 (completely specified and incompletely specified function) :

When the DC-set of a logic function is empty, the logic function is called completely
specified, otherwise, the function is said to be incompletely specified. Note that when the

logic is given by a net-list of primitive gates, as is the case in this chapter, each of the min-



terms evaluates to 1 or 0. That is, when the logic function is given by an implemented cir-

cuit, the logic function is completely specified.
Definition 4 (finite-state machine) :

A finite-state machine is a system that can be characterized by a quintuple

M=(ZXZ,§,Z,NSF,OF ) 2.1
where X = finite nonempty set of input symbols
S = finite nonempty set of states
z = finite nonempty set of output symbols
NSF = next-state function, which maps § XX — §
OF = output function, whichmaps § XX —Z

The above definition of finite-state machine is referred to as a Mealy machine [97]. The other
type of finite-state machine is a Moore machine [97]. In a Moore machine the output func-
tion OF depends only on the state space §. Note that a Mealy machine is more general in the
sense that any Moore machine can be converted into a Mealy machine without increasing the

number of states and transition edges.
Definition 5 (incompletely specified machine) :

In equivalence checking, two machines are usually specified by structural descriptions,
such as net-lists of gates and latches. In this case, the next-state function NSF is defined for
all the states in the domain of S of Eqn. (1.1), and NSF is a completely specified function.
However, in a hierarchical verification paradigm, the specification is given by a behavioral
description -- in case of finite-state machine, the description is usually an equivalent form of
a state transition table. And if a designer does not specify a next-state or output entry when it
normally would be specified, it is usually because the machine is not expected to enter that
next-state condition. Since the designer does not care what the next-state or output is, it could

be specified as any valid next-state or output. In fact, it could be specified differently under



different machine conditions. Thus, it is reasonable to let an unspecified state transition table
entry assume as many different values as desired. Such a machine is called an incompletely

specified machine.
Definition 6 (applicable input sequence) :

Whenever a state transition is unspecified, the behavior of the machine may become
unpredictable. In order to avoid such a situation it is assumed that the input sequences applied
to the machine, when in any of its possible states, are such that no unspecified next state is

encountered. Such an input sequence is said to be applicable to the state s of a machine.
Definition 7 (state cover and machine cover) :

A state g of a machine My, is said to cover a state s of another machine M if, and only
if, every input sequence applicable to s is also applicable to ¢, and its application to both Mg
and Ms when they are initially in ¢ and s, respectively, results in identical output sequences
whenever the outputs of Ms are specified. The covering concept can be extended to machines
as followﬁ : a machine My, is said to cover a machine M if, and only if, for every state s in
Mg, there is a corresponding state ¢ in My such that g covers s. Thus when a machine My
covers a machine Ms, for any state in Mg, there is a state in Mg which can not be dis-

tinguished by input-output behavior.

3.3. Problem Formulation of Finite-State Machine Verification

The meaning of verification in this chapter is as follows: Given a specification and its
implementation, the verifier checks the correctness of the design with respect to the
specification. If the implementation satisfies the specification, the design is correct. Other-

wise, the design is incorrect.



In this chapter, it is assumed that the specification is described by a state transition table
and the implementation is given as a net-list of gates and latches. The specification machine
will be denoted by Ms, and the implementation machine by Mg. Also, a state of a
specification machine will be denoted by s and a state of an implementation machine by g.
The design verification problem is defined as a checking if implemented machine My covers

the specification machine M.

3.4. Verification Algorithm

The number of states of a finite-state machine grows exponentially with the number of
latches in the implementation machine. However, for large machines the number of states
actually visited, given the input sequences, is typically a small fraction of the total number of
possible states. This is especially true if a state assignment program such as KISS [99] has
been used in the synthesis process, where a minimum amount of combinational logic is the
target and this may or may not produce a minimum bit encoding of the states. Since the
encoding information is generally not available for verification purposes, to deal with general

problems it must be assumed that the state encoding information is not available.

As previously mentioned, the number of latches is not minimal and the number of states
that the implementation machine can take is much greater than that of the specification
machine. There are 2/ possible states in a machine with / latches. From these states, a set of
candidate states is selected. The procedure involved in selecting these candidates will be
explained shortly. From the set of candidates, a state g is arbitrarily chosen. A check is per-
formed to see if the chosen state covers the initial state of the specification machine. This
process is repeated until the correct initial state is found. If all the candidates fail to cover the

initial state of the specification machine, it is concluded that the implementation is not
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correct. This checking procedure is referred to in this chapter as state generation and output
checking and it is described later in this section. The high-level pseudo-code of the main pro-
cedure is shown below. Of course, in the worst-case, this process has complexity of
O (2! x2m), where [ is the number of latches and m is the maximum among the numbers of
don’t-care variables in the primary input segments of state transition edges of Ms. However,
the selection and search procedures described later in this chapter result in much better per-
formance. This is illustrated by the results obtained for real examples, as shown in Section

3.5.

main( )

{
/* read in specification machine Mg */
read_spec_machine( );

/* read in implementation machine Mg */
read_impl_ckt( );

I* levelize the circuit of Mg and find transitive fan-ins
for each output variable */
levelize_ckt( );

conify_ckt( );

/* find all the candidate initial states of Mg */
Qo = enumerate_q0( );

1* main loop */
foreach (go in the set Q¢ ) {

/* initialize */
add s to the set to be covered by go;

if ( generate(so.qo) fails ) {
design is incorrect;

/* prepare for the next candidate qo */
re-initialize;

}

else
design is correct, exit the main loop;



In procedure read_spec_machine( ), the verifier builds up the state transition graph. The input
format is shown in Figure 3.1. In the input format, the first field is an input segment of a tran-
sition edge, the second is a present state name, the third is the next state name, and the fourth
is the output segment associated with the given inputs for the transition edge. The procedure
read_impl_ckt( ) reads in the net-list of logic elements. The current implementation can deal
with the primitive gates listed in Table 3.1. After reading in the implementation circuit, the

verifier levelizes the circuit in topological order for the fast event-driven simulation used in

name traffic

# Highway and Farm road Traffic Light Controller
# (ref. Introduction to VLSI Systems, Mead and Conway, p.87)

#input p-state  n-state  output

O** HG HG 00010
*Q* HG HG 00010
11* HG HY 10010
**0 HY HY 00110
**1 HY FG 10110

10%* FG FG 01000

O** FG FY 11000

*]* FG FY 11000

*k() FY FY 01001

*k ] FY HG 11001
#end

Figure 3.1 Input format of a specification machine




gate name description
AND logical and
NAND negation of and
OR logical or
NOR negation of or
INVERTER logical not
XOR logical exclusive or
XNOR (EQV) | logical equivalence (negation of xor)

Table 3.1 Primitive gates

later stages of the verification. Also, for each of the output variables, a set of input variables
is found which affects the value of the output variable. The input variables thus obtained are
called the transitive fan-ins of each of the output variables. The procedures of

enumerate_g0() and generate( ) are explained in the following subsections.

3.4.1. Enumeration of Candidate Initial States

The goal of the enumeration process is to determine all the candidate initial states in the
state space of the implementation machine. The procedure of the enumeration of candidate
initial states begins with finding a set of output variables which have the same values for all
the transitions from the starting state s of the specification machine Ms. In the next step, for
each of these output variables, enumerate from the input space the ON-set cover when the
logic value of the output variable is 1 and OFF-set cover when the logic value is 0. The cov-
ering set is denoted as cube-set;, j =1,..., k, where k is the number of output variables
which produce the same known output values. In the final step, take the intersection of the

latch part of the cube-sets as follows:



cube —set \(~\cube =set 2 - - + (Ycube —sety

Then the initial state of the implementation machine should be a member of this set. Note
that if none of these candidate initial states covers the initial state of the specification
machine, it is concluded that the implementation is incorrect. The algorithm for enumeration

of candidate initial states is as follows:

enumerate_q0( so )

{
/* initialize the result */
set_of_candidates = UNIVERSE;

/* find output variables which produce the same value for all the
transitions from the starting state of the specification machine Mg */
O =find_output_vars( s¢ );

/* enumerate the ON-set or OFF-set from the implementation
machine Mg and take their intersection */
foreach (output_variable in O) {

if (output_value = 0) {
/* find OFF-set cover */
S = podem(output_variable, 0);
set_of_candidates = set_of_candidates ~ (latch part of §);

else {
/* find ON-set cover */
S = podem(output_variable, 1);
set_of_candidates = set_of_candidates ~ (latch part of §);
}
}

/* when there is no candidate state in the implementation
machine, don’t waste time */
if (set_of_candidate = ) {
the implementation is inconsistent;
exit( );
}
else
return( set_of_candidates );
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The worst case complexity of the above algorithm is O (Npo X COMPLEXITY popeM ),
where Npo is the number of primary outputs and COMPLEXITY popgy is the complexity of
PODEM (path-oriented decision making) method [100). The PODEM method is used to
enumerate the set of cubes in the input space. In PODEM, given an objective, a signal and
the desired value on the signal, a procedure called back rrace traces a path from the signal
backwards to a primary input to obtain a primary input assignment. The primary input assign-
ment is then propagated to see if the desired value at the objective signal has been set up. If
the objective signal has been properly set up, the procedure terminates. If an opposite value is
set up, the procedure backtracks; that is, the previous primary input assignment is ripped up
and the opposite value is assigned to that primary input. If the signal remains unspecified, the
whole process is repeated. The above procedure continues until either a successful primary
input assignment is found or all the primary input assignments have been exhausted. The-pro-
cess is an implicit enumeration algorithm in that all possible primary input patterns are impli-

citly, but exhaustively, examined.

To show the enumeration process, a simple example is given as follows:

Example : Consider the sequential circuit shown in Figure 3.2(a). It consists of four primary
inputs, five primary outputs, and two latches. The partial state transition diagram is also
shown in Figure 3.2(b). There are two outgoing edges from the initial state so. In the
diagram only the output parts are shown for each transition edge. The output variables outl,

out2, and out5 are consistent in their values for the two edges. Assume that the ON-set cover

of outl, the OFF-set cover of out2, and the ON-set cover of out5 are given as follows :

cube —set | (11*%¥0 1%)
cube —set (1100 1%*)
cube—sets = (*100 10)
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in1 —> outl
in2 combinational out2
in3 —> out3
in4 —> outd
psi logic ns1 > out5
ps2 ns2
v
~
P latches
Y

(a)

/10701 e

/10011

(b)

Figure 3.2 (a) a sequential circuit example
(b) state transition diagram

The intersection of the latch part is (1 0), and there is only one possible candidate initial state

in this particular case. Generally, however, each of the cube-sets may consist of many cubes

and the intersection of the latch part would consist of many cubes. For example, if

(* 100 1*) was obtained instead of (* 100 10) in cube—sers, then the intersection

would be (1 *), and there would be two candidate initial states, (1 0) and (1 1).

Note that if any don’t-care values are among the variables of the latch part, all the pos-

sible minterms should be included in the set of candidate initial states. As will be demon-

strated in the experimental results section, when an incorrect initial state is tried the verifier



notices the error so early in its checking process that the total cpu-time spent for wrong initial

states is only a small fraction of total run time for most examples.

3.4.2. State Generation and Output Checking

In this subsection the algorithm of checking if a given state ¢ of the implementation

machine covers a state s of the specification machine is described.

Since the implementation machine is given by a logic circuit, it is completely specified
thus every input sequence is applicable to a state g . Thus to check if a state g in the imple-
mentation machine covers a state s of the specification machine, it is sufficient to check if
every input sequence applicable to s when applied to both machines results in identical out-
put sequences whenever the outputs of the specification machine are specified. The basic
strategy employed in this work is as follows : for each applicable input at the given state s of
Mg, obtain the next state and the output by simulation on the machine Mg . Check if the out-
put of My implies the corresponding output of Ms. When the value of the output variable of
the specification machine is don’t-care, the value of the output of Mp can have any value.
This checking is referred to as output checking. If the output checking fails, the input
becomes a component of the sequence of a counter-example. It is then concluded that the
given state ¢ does not cover the specification state s. If the output checking succeeds, see if
the next state g, has already been generated. If it is a newly-generated state, call the same
procedure with the state pair (s, ., ) recursively, where s, is the next state of s in Ms. If g,
was generated earlier, then check if g, covers s, by referring to the covering set of the state
gn. If 5, is in the covering set of g, , there is no more work to do. If s, is not in the list, repeat

the above procedure with the state pair (s, .gn ).
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3.4.2.1. Example

Before the explanation of the detailed algorithm, a simple example is used to illustrate

the state generation process.

In Figure 3.3, the specification machine is given as an unoptimized machine and the
implementation machine as an optimized one. The specification machine consists of three
states with five edges. Assume that the implementation has two latches and among the four
possible states, two states g and ¢ 3 are enumerated as candidate initial states as illustrated in
Figure 3.3(b). The state g is chosen arbitrarily, and a check is performed to see if state go
covers the state so. Figure 3.3(c) shows the recursive execution tree with each of the argu-
ments, and Figure 3.3(d) shows the evolution of the covering list. First, the state s is added
to the covering list of gq (the stage of the evolution of the covering list is at (1) in Figure
3.3(d)). The outgoing edge with input i1 is simulated on the implementation machine. The
next state of implementation is go, which has already been generated. The next state of the
specification machine, s, is not in the covering list and is therefore added to the covering list
of go (at (2) in Figure 3.3(d)). Now a check is performed to see if state s is covered by state
qo. When the edge with input i1 is tried, the next state pair (s, go) is obtained. Since the
state s is in the covering list of the state g, the check finishes with success (the dotted line
means that the check is performed by referring to the covering list). The next edge with input
i2 is tried. A new state g, is generated and the state s, is added to the covering list of the
state ¢ (at (3) in Figure 3.3(d)). The only remaining edge from s¢ with input i 3 leads to state
pair (so, go) which is checked by examining the covering list. Finally, the only remaining
edge from so with input i2 is checked. Note that the total number of simulations used for

this check is five, which is the same as the number of edges in the specification machine.
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Figure 3.3 Unoptimized specification vs. optimized implementation example

(a) specification machine
(b) implementation machine
(c) execution tree
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3.4.2.2. Cube Simulation and Cube Splitting

Since the input can take on one of the three values (0, 1, and *), the term simulation
here means three-valued logic simulation [101). A simulation pass refers to simulation with
one input vector. A simulation pass is said to be complete if the outputs of the simulated cir-
cuit (after simulation), are known (i.e. 0 or 1). Otherwise, it is incomplere. When the input
vector is a minterm, the simulation pass is called minterm simulation, otherwise, it is called
cube simulation. Minterm simulation is always complete because all the inputs are specified
as 1’s or 0’s. Cube simulation may be either complete or incomplete; in the latter case, 10
make the simulation complete, unknowns in the input vector shall be assigned known values,
0 and 1 at different times. This assignment can be performed for one unknown at a time until
the simulation becomes complete. Finding out if the simulation has become complete also
requires a simulation pass and many passes may be required before the simulation eventually
becomes complete. Because the input vector is a cube, the assignment process can be con-
sidered cube splitting -- every time an unknown is assigned certain values, the cube is split
into two smaller cubes. So, instead of value assignment, cube splitting is considered to make
the simulation complete. The cube splitting process can be depicted by a tree structure as
shown in Figure 3.4. At the first level, the first unknown variable is split and this procedure
is repeated similarly. Which unknown to select at each level is important because a good
split 6rder may prevent the tree from growing into its full magnitude (O (2™) complexity,
where m is the number of unknowns). At each node, the next unknown to be split is selected
using the heuristics explained in the next section. The deeper the eventual cube-split, the

more simulation passes that are needed.
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Figure 3.4 Tree structure of cube splitting

3.4.2.3. Cube Splitting Heuristics

Rather than choosing the unknown variables from the inputs in an arbitrary order (left-
to-right in the example of Figure 3.4), input variables which have a high probability of
resolving the unknown outputs are selected. Figure 3.5 illuﬁtrates the heuristics. First, for
each of the unknown simulation output variables, find the set of primary input variables
which may affect the output, then obtain the intersection and union of these sets. As men-
tioned in the algorithm of the main procedure, the implementation circuit is segmented as a
cone circuit for each output variable [101]. The unknown input variables are then chosen

from the intersection first, and from the union second, to split the cube. This process is
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intersection
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Figure 3.5 Ordering heuristics of split variables

repeated until all the output variables become known. This heuristic may avoid some useless
cube splitting. For example, the last input variable in Figure 3.5 does not need to be con-

sidered in this case.

3.4.2.4. Output Checking

When the implementation circuit is simulated with a primary input vector and the

present state vector, the present state vector contains no unknowns while the primary input
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vector may have many unknowns. As explained in Section 4.2.2, both the next state outputs
and primary outputs may have unknown values. In the case of next state variables, all the
unknowns must be resolved by input space cube-splitting. However, in the case of primary
output 'variables, the unknowns need only be resolved when the corresponding specification
output variables are known. For example, with the specification output (10* * 01), and

simulated output (1 0 1 * * 1), only the fifth output variable must be resolved.

3.4.2.5. Detailed Algorithms

The procedure generate( ) and procedure check_state( ) return success if the given state
of the implementation machine covers the state of the specification machine, otherwise they
return fail. The only difference between the procedure generate( ) and check_state( ) is that
when state ¢ has been generated already, to check the covering, the procedure check_state( )
refers to the covering list first then checks each of the outgoing edges. If the state s is in the
list, the state s is assumed to be covered by the state g. The actual covering check will be
performed when all the previous calls of generate( ) and check_state( ) procedures return to
the point where the state ¢ was first generated. The procedure simulate( ) returns the infor-
mation about completeness of cube simulations. The procedure performs the three-valued
logic simulation using an event-driven technique [42] with topological-ordered [102] level
information. If there are any unknown values in the next-state variables, proc;:dure
split_simulate( ) is called, this splits the cube by assigning values to unknown input variables
using the heuristics explained above. The procedure split_simulate( ) calls itself recursively
until all the next-state variables are resolved. The detailed algorithm of the state generation

process is as follows:

generate(s .¢ )
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{
foreach ( applicable input at s ) {
/* get the next-state q, of q and primary output by simulation */
if ( simulate( ) is not complete )
Qn = split_simulate( );
else
Qn = { dn )5
foreach (g, in the set 9, ) {
if ( check_output( ) fails )
return(fail);
if ( g, is newly generated) {
add s, (the next-state of s) to the set
to be covered by ¢,
if ( generate(s, ,q, ) fails )
return(fail),
} else if (check_state(s, ,gn ) fails)
return(fail),

}
}

check_state(s .q)
{

if (s is an element of the set to be covered by g )
return(success);

else
add s to the set to be covered by g

foreach ( applicable input at s ) {
/* get the next-state q, of q and primary output by simulation */
if ( simulate( ) is not complete )
O, = split_simulate( );
else
Qn ={ qn B
foreach ( g, in the set @, ) {
if ( check_output( ) fails )
return(fail);
if ( g, is newly generated) {
add s, (the next-state of s) to the set
to be covered by g ;
if ( generate(s, ,g, ) fails )
return(fail),
} else if (check_state(s, ,g, ) fails)
return(fail);
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3.4.2.6. Remarks

When the generate( ) procedure succeeds with a (so,g0) pair, the algorithm guarantees
that for each reachable state s from sq in Mg, there exists a state ¢ in Mp which covers s.
For every meaningful machine M, every state of Ms should be reachable from the initial
state of Ms. When the specification state transition graph of the machine M is strongly con-

nected, any state can be used as an initial state for verification purpose.

The total number of simulations is a measure of the algorithm’s complexity. However,
since the total number of simulations depends strongly on input parameters, a tight bound on
the total number of simulations is very hard to obtain. First of all, the number of candidate
initial states is unpredictable. As mentioned earlier, its worst case bound is simply o@hH,
where [ is the number of latches. For a given candidate initial state, the bound of the number
of simulations is roughly given by O (M, x2™), where M, is the maximum among the
numbers of transition edges from each of the states in Ms and m is the maximum among the
numbers of don’t-care variables in the primary input segments of state transition edges of
Mjs. The above bound is rough because sometimes the output checking requires some addi-

tional cube splittings.

The complexity of the verification problem of combinational logic is NP-complete and
that of sequential logic is even worse. The algorithm presented in this chapter is basically a
special case of branch-and-bound method. The branch-and-bound technique has scored
several notable successes in practical computations. However, it is rarely possible to establish
good bounds on its expected complexity. The basic premise of this work is that even for
problems of worst-case exponential complexity, by exploiting special properties of the real
problems that must be solved, the exponential case will never occur. Further, by exploiting

these properties the expected-time complexity can be reduced substantially for real designs.
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Even though the worst case bound is exponential, because the verifier developed in this work
exploits the don’t-care information available in the description of a specification machine, the
expected total number of simulations required is almost linear with respect to the number of

transition edges of the specification machine, as illustrated in the next section.

3.5. Experimental Results

The performance of the verifier was evaluated with three groups of examples. The six
examples of the first set are obtained from finite-state machines developed for real chips. The
second set of five examples is a series of resettable binary up/down counters obtained from
running the program KISS [99]. The last set of examples is also a set of counters, obtained
using the program MUSTANG [103], with an option that makes the program encode states
randomly. The description of the examples are given in Table 3.2. The first and second

columns show the number of states and state transition edges in the specification machines,

respectively. The third column shows the number of primary inputs and primary outputs.
The last two columns show the number of gates and latches of the implementation machines.
The last example of the first group, the cc machine, was obtained from the SPUR [104] cache
controller unit, designed at the University of California, Berkeley and is the largest single
finite-state machine used in the SPUR system. In this example, the number of state transition
edges is very large when compared to the number of states. This is due to the fact that in the
state transition table, all the transition edges are expanded in the primary output s.pace into
minterms that can be grouped into cube notation. This fact leads to long cpu-time for the
verification of this example and it should be thought of as a "worst case” situation. Each of
the counters has two primary inputs: one for "reset” and the other for selecting up or down
counting. The number of primary outputs of each example corresponds to the number of
state bits. Note the very large numbers of gates in the third group of examples, due to the

random state encoding.



Table 3.2. Description of three groups of examples

Finite-State Machine Logic Circuit
Example no. of no..o'f no. of no.of | mno.of
states ransition inputs/outputs gates latches
| edges .

sse 16| 56 7/7 130 6
cse 16 91 7/17 192 4
planet 48 115 7/19 606 6
sand 32 184 11/9 555 6
scf 121 165 27/54 959 8
cc 143 20,736 13/17 731 10
4bit_cnt 16 64 2/4 s4 | 4
6bit_cnt 256 2/6 94 6
8bit_cnt 256 1,024 2/8 142 8
10bit_cnt 1,024 4,096 2/10 198 10
12bit_cnt 4,096 16,384 2/12 262 12
14bit_cnt 16,384 65,536 2/14 334 14
random_4 16 64 2/4 414 4
random_6 64 256 2/6 2,196
random_8 256 1,024 2/8 10,778 8
random_10 1,024 4,096 2/10 51,232 10

Table 3.3 summarizes the results of the enumeration and state generation process during

verification. The first column shows the total number of enumerated candidate initial states

and the second column shows the number of tried candidates before the implementation

machine proved correct. In the scf example with eight latches, all the possible states are

enumerated as candidates. In each example of counter, the state variables are the primary

outputs, and only one state (reset state) is enumerated as a candidate initial state. This is also

true for the examples of the third group, even though the initial states are quite differently

encoded from those of the examples of the second group. The third column shows the

number of states generated by the procedures generate( ) and check_state( ). The verifier
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Table 3.3. Results of enumeration and state generation process

enumeration of candidates state generation

Example no. of no. of no. of no. of

candidate tried generated | unreachable

initial states | candidates states states
sse 64 21 13 3
cse 15 5 16 0
planet 5 2 48 0
sand 6 5 32 0
scf 256 58 115 6
| cc 360 65 143 0
4bit_cnt 1 ] 1 16 0
6bit_cnt 1 1 64 0
8bit_cnt 1 1 256 0
10bit_cnt 1 1 1,024 0
12bit_cnt 1 1 4,096 0
14bit_cnt 1 1 16,384 0

reports any states which cannot be reached from the initial state of the specification machine,
the number of such states is shown in the last column. The sum of the third and fourth
column should be greater than or equal to the number of states in a specification machine.
When the sum of the two numbers is equal to the number of states in a specification machine,
as is the case with all the examples, it is concluded that the implementation machine does not

have any redundant states that can be collapsed into a single state.

Table 3.4 shows the number of calls of the procedure simulate( ), memory size needed,
and cpu-time used for the verification of each example. All the examples were run on a

vAX! 8650 under the Ultrix' 2.0 operating system. The procedure simulate( ) is called not
only while the states are generated but also while the outputs are checked. When the simula-

tion results contain any unknown values in the primary output variables which does not have

' VAX and Ultrix are trademarks of Digital Equipment Corporation.



Table 3.4. Cpu-time comparison

no. of total cpu-time (sec) Graph Mult. Appr.
Example .caus i e finding for wrong total
simulate( ) (kbyte) Oo _Lo’s total * (sec)
| sse 75 85 0.2 01 0.4 R
cse 95 99 0.2 0.1 0.3 - i
planet 128 197 8.6 0.1 10.4 97 ;
sand 266 193 2.9 0.1 5.0 . ?
scf 431 645 | 202 3.2 27.3 587
cc 197,373 | 13,330 L5 283 357 - |
4bit_cnt 64 67 0.1 0 0.2 - |
6bit_cnt 256 103 0.1 0 0.6 - !
8bit_cnt 1,024 233 0.1 0 3.1 -
10bit_cnt 4,096 725 0.1 0 19.8 -
12bit_cnt 16,384 2,659 0.1 0 101 - |
14bit_cnt 65,536 | 10,357 0.1 0 571 - i
random_4 64 139 2.0 0 2.8 - |
random_6 256 535 | 66.0 0 77.1 -
random_8 1024 2,501 | 27.1min 0 30.4min -
random_10 4096 | 11,533 | 624min 0 681min -

a corresponding specification output don’t-care, they are resolved by cube splitting which

requires simulation. If there were no don’t-care values in the primary input segments of all

the state transitions of a specification machine, all the simulations would be complete and the

number of calls to simulate( ) would equal the number of state transition edges in the

specification machine. The second column shows the memory size used. Most of the exam-

ples took less than one megabyte (except a few very large examples). The third column

shows the cpu-time spent finding the set of candidate initial states. The cpu-time spent on

wrong initial states is only about ten percent of the total run-time for all examples except cc.

Note that in the third group of examples, since the states are encoded quite differently from

the corresponding primary output, the output logic gate part is very complex and thus the
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portion of the cpu-time spent for finding the initial state Q¢ for each of the examples dom-
inates the total run-time. The cpu-time for finding the initial state of the "random_10" exam-

ple is quite significant. The example, however, has more than 50,000 gates.

Since there are no standard benchmarks for verification, it is hard to compare the
efficiency of our approach with other techniques. However, note that the verifier in [93]
which is written in Franz Lisp and can deal with somewhat more general problems, took 31
minutes on a Pyramid 90x (approximately three times slower than the VAX 8650) to verify a
4-bit pre-settable binary up-down counter. The last column shows the cpu-time on a VAX
8650 spent by the verifier of [95] which used a graph multiplication approach. This other
approach took more than ten times longer than the approach described here for some exam-

ples.

3.6. Conclusions

An efficient algorithm for the verification of the design correctess of finite-state
machines has been presented. The concept of machine cover enables the verifier to check the
sufficiency efficiently. The verifier checks to see if the implementation is correct with respect
to its specification, which is given as a form of finite-state machine. This approach is suitable
to hierarchical verification systems. The experimental results show that the verifier is fast

enough to be used in real system designs.
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CHAPTER 4

RELATED WORK ON FORMAL TECHNIQUES

4.1. Introduction

Formal techniques for specification and verification have been investigated earlier and
more intensively in software design than in the hardware design. Due to the similarities
between program design and VLSI system design, especially at the behavioral level
[105, 106, 107], most formal hardware verification techniques have stemmed from program

verification techniques.

The formal methods that will be described seek to do for programming what mathemat-
ics has done for engineering. That is, they provide syn;l;olic methods by which the attributes
of an object can be described and predicted. The objects in which this chapter is interested are
computer programs or hardware descriptions, which are themselves strings of symbols. It
should be possible to define transformations upon strings of symbols that constitute a pro-
gram or a description, the result of which will enable us to predict how a given computer or
design entity will behave. If this prediction is independent of specific values of input data of
the program or the description, then it becomes a general statement about that program or
description. If the general statement is formed so that it provides an argument that the pro-
gram achieves its purpose, then it becomes the desired replacement for exhaustive testing and
we call it a formal proof of correctness. When this approach is to be employed, the notion of
the purpose of a program or a description must be made rigorous. This formalization

becomes the specification, which serves to state precisely the requirements and objectives the
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program or the hardware is to satisfy.

In this chapter, previous work on formal semantics is reviewed. Program specification
and verification methods, and existing formal hardware verification techniques are also
reviewed. Finally, the problems of previous formal hardware verification approaches are dis-

cussed.

4.2. Semantics for Programming Languages

In order to reason about any subject, a representation of its various elements is required.
If the reasoning is to be carried out with mathematical rigor, the representation must be a for-

mal model of the subject. Such a model must satisfy three requirements [108]:
1) It must be complete, representing all the essential aspects of the subject being modeled.

2) It must be predictive with conclusions drawn from the model corresponding to the

results obtained by observing the subject itself.
3) It must be well formed. The model should not permit fallacious or ill-formed reasoning.

Three major methods have been developed for the definition of the semantics of pro-
gramming language constructs [108,109): operational, denotational, and axiomatic
approaches. In this section, each approach is reviewed and a comparison of the three is

presented.

4.2.1. The Operational Approach

With the operational approach [110], the semantics of programming constructs of a pro-
gramming language are defined in terms of a more primitive (lower-level) abstract machine,
on the assumption that the state space and operational transformations defining the primitive

abstract machine are so simple that their meaning or effect cannot possibly be misunderstood.
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Specifically, the semantics of the abstract programming language constructs are defined in
terms of the state space and operational transformations of the primitive abstract machine.
Usually this is done for each programming construct by providing a "program"” that translates
the construct into a series of primitive transformations, so that for each programming con-
struct of the abstract programming language there exists a "defining" program in the primitive
abstract programming language. To determine the semantics of a programming construct, one
must trace through its associated (defining) primitive program. Consequently, to determine
the semantics of a program written in abstract programming language, one must trace through
the "translated" program step-by-step to establish its precise meaning. For example,
definitions of programming language constructs that use this approach are provided for PL/1

(by the Vienna definition method) [111] and Algol 68 [112].

To verify programs defined by the operational approach requires the execution of a
trace through of the program written in the primitive programming language. The effect of
program execution may then be determined by the individual transformations. Obviously,
this method is applicable only to specific input values. Hence, a program is verified by
observing the results of program executions and demonstrating that those results are in accord
with the specification of expected results. The concept underlying this verification method,
which maps one input state into one output state, is the common one of program testing. The
specification of the particular set of input states and the corresponding set of output states

constitutes the definition of the test cases -- that is, of the test data selection.

The operational approach characterizes the actual effect of program execution by relat-
ing it to executions of a separate, lower (more primitive) level. The approach does not solve
the original problem of rigorously defining the semantics of programs and programming con-

structs, but merely pushes the problem to the lower level. More importantly, however, the
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operational approach tends to define the semantics of a program only for specific computa-
tions of that program, rather than for the class of all computations that it can perform. In par-
ticular, its use to define semantics of a programming language forces us to consider all pro-
grams that could possibly be written in the language. Thus, instead of giving "functions”
from which the semantics of any program written in the language can be derived, the opera-

tional approach tends to suggest implementations of the language.

4.2.2. The Denotational Approach

With the denotational approach, the semantics of programming constructs of an abstract
programming language are defined by so-called semantic valuation functions [109]. Seman-
tic valuation functions map programming constructs to values (numbers, truth values, func-
tions, and so on) that they denote. These valuation functions are usually defined recursively:
the value denoted by a construct is given in terms of the values of its constituent parts, and an

emphasis on the values denoted by the constituent parts gives the approach its name.

Therefore two things are necessary in the denotational approach to semantics. First, a
state space must be given and with the denotational approach this state space may include
functions in addition to "normal” data objects. Second, a technique for defining semantic
valuation functions must be given. The lambda-calculus [109,113] may, for example, be
used to model the concepts of function and functional abstraction, and conversion rules exist
for syntactic transformations on lambda-expressions. Hence, if the class of functions
representable by lambda-expressions are used to represent valuation functions, the lambda-

calculus transformation may be used to manipulate these valuation functions.

The denotational approach to semantic definitions allows us to talk about construct and

program equality in the sense that two constructs or programs are equal if they both denote
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the same value in the selected value (state) space.

Verification based on this approach proceeds by constructing the valuation functions for
the program constructs and then combining them and the valuation function representing the
input conditions by (algebraic) transformation rules to arrive at valuation function for the pro-
gram. Via further transformation-rule applications the valuation function for the program is

mapped to the valuation function that represents the program final or output condition.

The denotational approach, in contrast to the operational approach, is independent of
specific input values and so supports the definition of the semantics of the class of all compu-
tations that can be performed by a program written in the denotationally-defined abstract pro-

gramming language.

4.2.3. The Axiomatic Approach

The idea of the axiomatic approach is to associate the semantics of programming
language constructs with logical assertions of two kinds. The first, an input assertion, is
assumed true prior to execution of a programming language construct and, from that assertion
and the nature of the language construct (program), a second assertion, the output assertion, is
derived that is true after execution of the construct. The pair of assertions thus characterize all
legitimate input and output states of the construct and hence the effect (semantics) of the con-
struct. Assertions are derived from the construct state-space and from the construct itself.
This being the case, program verification based on this approach is independent of particular
execution flow -- that is, of particular input-output pairs -- and proceeds in a given program
by deriving output assertions from previously obtained input assertions for each construct,
with the derivation guided by both the input assertion and the construct. The output assertion

for one programming construct may be used as the input assertion to a subsequent program-
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ming construct, so that program verification proceeds in an inductive manner. The process
begins with an assertion about program input and concludes when an assertion about the pro-

gram as a whole has been reached (derived).

4.2.4. Comparison of the Three Approaches

The relation of the three approaches is illustrated in Figure 4.1 [109,108], where P
denotes a program written in a programming language and S denotes the state space of the
program.

In the operational approach, a program text P is translated into a parse tree T (p), which
indicates the syntactic structure of the program. This process is denoted as (1) in the figure.

Process (2) represents a translation of the parse tree into a program MC p) in the machine

(2) (3)
TP —> MCp —> MST

()

Figure 4.1 Comparison of the three approaches




code of some standard machine, process (3) represents the execution of the machine code
program to produce the machine state transformation MST . Process (2) is defined by giving
the translation rules for generating code from the tree, and (3) by specifying the operations of
the machine. Different languages can also be described by giving their translation into the
same machine code. So the combination of (1), (2) and (3) gives a standard implementation
of the programming language. The processes (1) and (2) are usually performed by a "com-
piler" and hence the sema£1tics are basically defined by a particular compiler. This may
involve the details of an actual compiler. In hardware verification, the role of a compiler is
played by a "simulator" and the semantics of a hardware description language is usually

determined by its simulator. However, this approach is not suitable for formal verification.

In the denotational approach, an appropriate value space V must be defined onto which
the state space S can be mapped. The program P is then transformed into a program V z) in a
programming language that allows an association between programming constructs and
values in V to be established. Finally, semantic valuation functions are defined which associ-
ate the programming constructs in V (p), and V p) itself, with the appropriate subspaces of the
value space V (in case of A-calculus, the subspaces of V correspond to members of the class
of functions representable by A-expressions). Hence, the semantics of the program V (p) are
explicitly defined. The semantics of program P are indirectly defined by virtue of the
conversion of program P to program V ). The conversion must guarantee that different con-
structs are mapped into different value in the value domain V'; this allows one to talk about
equality in P: two expressions are equal if they both denote the same value in V. Note that
in the operational semantics, the value of a program is defined in terms of what an abstract
machine does with the complete program. Hence the local sub-components of the program

may have global effects. Conversely, in denotational semantics, the value of a program is
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defined in terms of the values of its sub-components, and it is easy to treat any particular part
of the program.

In the axiomatic approach, a rule is associated with each statement of the programming
language. These rules allow one to say what will be true after the statement has been exe-
cuted and to relate it to what was true beforehand. The process is illustrated as (6) in Figure
_ 4.1. From each of the blocks of the program P, a logical formula F (p) is obtained using the
predefined rules. And the logical formula is the semantics of the program. This approach
grew out of Floyd’s work [114] on attaching assertions to the links of flowcharts. Its applica-
tion to high level languages, mainly the work of Hoare [ 115], has made an important contri-

bution to the art of proving the correctness of programs.

4.3. Program Specification Methods

A specification is the embodiment of the requirements a system is to satisfy [108] --a
precise, formal statement that expresses desired behavior in a manner intelligible to an imple-
mentor. The formal specification techniques discussed in this section maintain a semantic
distinction between description, which is referred to here as the specification, and the
described program, which is referred to here as the implementation. Loosely speaking, 2
specification describes behavior in terms of results, whereas an implementation defines
behavior in terms of the procedure used to get the results. This distinction gives rise to the
informal notion of describing "what" (specification) as opposed to "how" (implementation),

and hence to the notion that specification languages are "nonprocedural” in nature.

There are three users of a specification [108], each distinct from the author of the
specification: the validator, the implementor, and the verifier. The validator is the person

who acts as the representative of the sponsor of the system. His or her concern is that it prop-
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erly embodies the requirements. The implementor is concerned with producing a procedural,
and ultimately executable, definition of the behavior described in the specification. The
verifier is concerned with the correctness of the implementation, where correctness is defined
with respect to the specification. The verifier’s task is, therefore, to show the consistency
between two representations of the same behavior, one substantially more detailed than the

other.

In general, the validator seeks a specification language (technique) that enables argu-
ments to be made about the properties of the described implementation, such that it will be
secure or will exhibit other behavior consistent with the sponsor’s goals. The implementor
seeks a specification language that describes desired behavior in the least constraining way,
so that the implementor has maximum freedom in producing that behavior from a program
that must fit the constraints of a real computer. The verifier seeks a specification language
that describes behavior in a manner easily mapped into one of the techniques used for formal
verification. Not surprisingly, these three uses occasionally conflict, and no consensus on the

desirable features of a specification language has yet emerged.

There presently exist three basic families of specification approaches: the algebraic, the
state-machine, and the abstract model (also called the predicate transform method). These
approaches define behavior in units called "functions,” and in a result-oriented or "non-
procedural” way that suppresses most details of implementation, including the step-by-step
procedures that achieve the result. In the remainder of this section the three approaches are

explained.



4.3.1. Algebraic Specifications

The initial theoretical work on algebraic specifications was done by Guttag [116].
From this work two specification languages emerged -- the AFFIRM language [117] and the
OBJ language [118]. The underlying abstraction for algebraic specifications is the set of
integers. Algebraic specification languages also assume "built-in" functions, typically if-

then-else and the Boolean operators, which can be defined trivially using the technique.

Functions are defined in the algebraic technique by stating their relation to each other.
They are functions in the mathematical sense because they may not have side effects and may
only map a value in their domain to a value in their range. The technique is called "algebraic"
because the values and functions of a specification can be viewed as forming an abstract alge-

bra.

The rewrite-rules are an important aspect of abstract algebras. Rewrite rules are used to
reduce expressions systematically in the given algebra. Each rewrite rule defines a transfor-
mation or "rewrite” that may be applied to an expression in the algebra. The rules are of the
form

left — right,

which defines a rewrite of any expression containing lefr: the replacement of the subexpres-
sion left by the subexpression right. In rewrite processes, two basic questions can be asked of

any set of rewrite rules:
1)  Will the reduction terminate? If yes, the so-called finite termination property holds.
2)  Will the result be independent of the order in which the rules are applied?

Rewrite rules that produce results independent of their order of application exhibit unique ter-

mination or the Church-Rosser property [119]. A set of rules that is both finitely and
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uniquely terminating is said to be convergent. The problem of determining whether an arbi-

trary set of rewrite rules is convergent is algorithmically undecidable.

The strong advantage of algebraic specification is its elegant mathematical simplicity;
thus validation of a specification can be carried out mathematically. However, this technique
presents disadvantages. Although algebraic specification is largely free from any representa-
tional or operational contents and consequently can avoid undue bias on the subsequent
implementation, auxiliary or hidden functions are still necessary in specifying the behavior.
As the number of auxiliary functions increase, more information about artifacts of the
specification that are not directly related to description of the behavior are included. Another
major disadvantage is that from the implementor’s or validator’s viewpoint, this technique

shows difficulties in reading and understanding because functions are defined indirectly in

terms of each other.

4.3.2. State-Machine Specifications

The idea of specification based on a state-machine was first developed by Parnas [120]
and evolved significantly as reflected by the work of [121,122]. The underlying abstractions
of state-machine specifications are integers and Boolean objects. The existing languages also
use real numbers and character strings. In addition, they make available to the specifier ele-

mentary extension mechanism such as vectors, sequences, and structures.

In this approach, an abstract data type is viewed as a state-machine; first, the abstract
states are identified and then the behavior is defined by a set of functions to observe and
change these states. Two classes of functions are used: V-function and O-function. A V-
function is used to observe the state. It cannot define any aspect of state-transition. In con-

trast, an O-function defines state transitions by means of effect. The relationship between O-



functions and V-functions is very similar to that between variables and operations in a pro-
gramming language. Informally, a V-function is analogous to an unbounded array with sym-
bolic indices, one index corresponding to each argument position. Another way to think of
V-functions is as mappings between names and values. The V-function name designates a
multi-set of values, and the arguments’ values for a specific invocation select a value from

the multi-set.

The state-machine technique evolved from more pragmatic roots than did the algebraic
approach, and perhaps for this reason the state-machine technique has not received as much
attention in the literature. It has, however, been the technique most used in actual practice.
This is due to the fact that state-machine specifications are more readable in practice and
therefore reviewable for purposes of validation and for guiding implementors. Specification
languages based on this technique include SPECIAL [121], and INA JO [123]. These
languages have a rich syntax that permits the expression of very similar semantics in a range
of alternative forms. This richness in turn means that the specifier’s style is very lightly con-
strained by the language. Therefore the quality of a given specification is greatly dependent
upon the skill of the specifier, to a much greater degree than the quality of a program depends
upon the skill of the programmer (especially with languages like Ada, where the language
syntax explicitly forbids stylistic pathologies). While such pathologies are very obvious in
simple cases, they can be subtle in more complex specifications. In general, clean
specifications can be written for functions whose behavior is easily expressed in terms of
"set-oriented" name/value relationships. However, this method is less satisfactory for more
complex and arbitrary structures and for expressing effects that involve the evaluation of
algebraic formulas. Another inadequacy of state-machine specifications is that this technique

basically lacks the requirement of abstract specification and violates the functional or nonpro-



58

cedural spirit of formal specifications, and may bias the subsequent implementation.

4.3.3. Abstract Model Specifications

The abstract model techniques, which is also sometimes called the predicate transform
method, was developed by Hoare [115] as part of a unified technique for the specification and
verification of abstract data types. In this technique, each function comprising an abstract data
type is defined in the form of pre-conditions and post-conditions based on the underlying
abstraction selected by the designer. Before specification, this underlying abstraction has to
be defined formally so that the resulting specification can be reasoned formally. An abstract
model specification, therefore, has no intrinsic meaning derived from a specific abstract
model specification language; instead, its meaning depends upon the underlying abstraction
selected. For example, when the sequence is selected as the underlying abstraction for the
specification of a stack, the behavior of the stack is reasoned in terms of the sequence. Hence
the usefulness of a given abstract model specification depends greatly upon the appropriate-
ness of the selected underlying abstraction to the functions being specified. A clean and pre--
cise specification is possible when each function is easily defined in the form of pre- and

post-conditions in terms of the underlying abstraction.

When the underlying abstraction consists of concrete programming objects, such as pro-
gram variables, the specification closely directs its implementation. This idea was incor-
porated with the verification-oriented programming languages, Alaphard [124] and Euclid

[125].

The state-machine technique and the abstract model technique share a number of simi-
larities. In fact, in [122] it is observed that the state-machine technique is a variant of the

abstract model technique, and in [108] it is shown that there is a straightforward transforma-
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tion between these two specifications.

4.3.4. Comparison of the Three Techniques

Among the three approaches, the algebraic technique is the neatest and most abstract,
expressing only the essential aspects of the item being specified and thereby coming closer to
the mathematical concept of abstraction under which seemingly disparate entities may be
. described in a way that demonstrates their true similarity. However, when the.ease of reading
and writing a specification are considered, the abstract model and state-machine techniques

are favored over the algebraic technique because of their close relationship with the correct-

ness of the underlying abstraction.

In the behavioral specification, the state-machine and abstract model techniques retain
the flavor of the operational semantics approach by defining semantics of functions constitut-
ing an abstract data type separately. In contrast, semantics of functions are defined through
relationships among the functions in algebraic specification. Thus the algebraic technique

deliberately avoids the operational flavor.

From the aspect of expressive power of a specification technique, which is a measure
for clean and precise specification, each technique has advantages over the others in some
respects while showing weaknesses in others. In conclusion, any one specification technique
is not sufficiently versatile to satisfy all requiremems. It is desirable to develop a unified
approach incorporating different techniques into a single specification language without los-
ing the advantages of each approach. In fact, work to study the relationships between these
techniques has been carried out in [126] and a formal verification approach has been pro-
posed [127] in which the algebraic and the operational approach are combined for a

specification language.
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4.4. Program Verification Methods

Program verification is the demonstration of the correctness of a computer program
with respect to its specification. A common approach to the problem of program correctness
is program testing -- the program is made to run on a sample of ‘critical’ input data. This
method may increase confidence in the correctness of a program but it is far from a guarantee
that the program is free from semantic errors. The notion of critical input data is simply
much too vague. Another approach is program verification, which is the subject of this sec-
tion. This approach avoids the deficiencies of program testing by proving mathematically that
the meaning of the program satisfies its specifications. These specifications must, of course,
be defined with mathematical precision (as described in the previous section). In this section,

the basic concepts of three major verification methods are introduced.

4.4.1. The Inductive Assertion Method

This method, originated by Floyd [114], is one of the earliest verification techniques.
The basic idea of inductive assertions is as follows. Assertions about the relationships among
program variables are placed in the text of a program. These assertions in fact constitute the
specification of a program. The assertions are generally expressed in the predicate logic.
They consist of input, output, and intermediate assertions. Input and output assertions are
located at the entry and the exit of a program. Intermediate assertions are located between
statements of a program such that every loop is cut by at least one assertion. Each assertion
claims that a stated relationship holds each time the program control reaches that assertion,

i.e., assertion is an invariant.

In verifying a program, a formula called a verification condition is generated and

proved to be a theorem for each simple path connecting two adjacent assertions on the pro-
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gram. The validity of all the verification conditions for a program is sufficient to demonstrate
the partial correctness of a program; for all inputs satisfying the input assertion, the output
assertion is satisfied if the program terminates. The techniques to prove termination of a pro-
gram for total correcmess were developed by introducing the induction assertions that bound
the number of loop executions. Since verification conditions are predicate calculus formulas,
it follows that the deductive system used in an inductive assertion proof, consists of the
axioms and inference rules of the predicate calculus. The validity of such a proof relies upon
the predicate transformer, which links program semantics to a predicate calculus formula. A
predicate transformer is a function mapping an assertion and a syntactic unit to another asser-
tion. In the work of Floyd [114], the predicate transformer is a "strongest verifiable conse-
quent" transformer. A strongest verifiable consequent,
sve (sj, Qi) = Re,

is a function that, given a precondition Q; for syntactic unit s; and s; itself, yields the
"strongest" postcondition R, for all outgoing paths from s;. Here the meaning of "strongest"”
is that any postcondition obtainable from the precondition Q; and the syntactic unit s; is

deducible from the condition R,..

A difficulty inherent in the inductive assertion method is the relative independence of
syntactic and semantic definitions. Programs are developed, initially, without formal regard
to their ultimate verification. Formal semantic definitions are then tagged on during program
interpretation. Failure to prove the subsequent verification conditions may be due either to a
fault in the program or to the occurrence of an intermediate assertion that is not implied by

the corresponding strongest verifiable consequent.



4.4.2. The Axiomatic Method of Hoare

Examining the work of Floyd [114], Hoare [115] introduced an alternative to his work
which he presented in the form of the so-called Hoare calculus. Essentially this approach is
identical to the inductive assertions method introduced in the previous subsection; however,
it restricts the programming language to that without interleaved loops. Hence the inductive
assertions method can be simplified. This simplified form leads naturally to the Hoare cal-
culus. The Hoare calculus is a calculus for Hoare logic, in which one can formulate proposi-
tions about the partial correctness of "while-programs”. Here the while-program means that
there are no interleaved loops, and every loop can be expressed by structured while-programs.
In this method, the semantic properties of syntactic units (blocks of a program) are viewed as
theorems in a deductive system. A so-called Hoare formula is defined as follows:

{p} S {q}
where p and g are formulas of the underlying predicate logic (typically the first-order logic)
and S is a block of a program. The Aformula, then, is to be proven by the usual techniques of
applying inference rules to axioms and previously proven theorems to produce the desired

conclustion.

The theorems that can be derived from Hoare’s extended deductive system describe
how the execution of a particular type of semantic of a syntactic unit modifies a given pro-
gram state. However, it is required to associate different semantic properties with a single
syntactic unit, as the meaning given to syntactic units is ultimately defined by the abstract

machine upon which the syntactic units execute.

The axiomatic method does not provide a way to get stronger conclusions than the
inductive assertions method. Its advantage lies in the more direct means it provides for

expressing semantics. It will be applied only to the local properties of iterative constructs,
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rather than (as with the inductive assertions method) to the program as a whole. Conse-
quently, the axiomatic method is more suitable to modern control constructs than the induc-

tive assertions method.

4.4.3. Verification Methods Based on Denotational Semantics

With the denotational approach to semantic definition, the semantics of syntactic units
are defined by a semantic valuation function. An example of a denotational approach to the
definition of the execution function of a small computer can be found in [128]; other
approaches to denotational definitions of the execution function and verification using the
lambda-calculus are discussed in [109]. Here the execution function E (P, do) is defined by a
binary relation, R < D x D, which defines the input-output behavior of the program P
where D is the program state space. The relation R is defined by a semantic valuation func-
tion f formulated in an algebra of binary relations:

R=f(Ry, ... Rm),
where R; is an input-output relation of syntactic unit s; which is a subcomponent of P. The
semantic valuation function f is found by an algebraic method that consists of writing and

solving a set of fixed-point equations.

To prove the correctness of a program, the desired semantics may be specified in terms
of a function of symbolic values. The correctness of a program may then be shown by prov-
ing the equivalence between the symbolic values obtained from the program and the sym-

bolic values denoted by specification.
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4.5. Previous Formal Hardware Verification Techniques

Due to the similarity between program and hardware descriptions at the behavioral
level, most formal hardware verification techniques have been based on the program
verification techniques described in the previous sections. In this section several formal

hardware verification techniques are reviewed.

4.5.1. Symbolic Simulation

To avoid the limitations of the simulation approach to verification, an enhanced simula-
tion approach called symbolic simulation [60,59,66,80] can be used. This is an offspring of
conventional simulation, in the sense that it uses a model for hardware and a simulation
engine, but it differs from the conventional simulation because it considers symbols rather
then actual values for the circuit under consideration. In this way it is possible to simulate
the response to entire classes of values with a notable improvement over the traditional tech-
nique. Symbolic simulation can be extended to veriﬁcz;tion of correctness because
specifications and implementations may be run concurrently and the results manipulated and

compared to establish a proof.

Darringer [60] addressed the application of the symbolic simulation technique to
hardware verification by verifying a logic level description consisting of gates and flip-flops

with respect to a specification in an RTL language such as ISP [129] and DDL [130].

In [59], the authors developed a language for symbolic simulation LSS, which was

used to construct an abstract state machine.

Cory [66] describes designs at a certain level of abstraction as dual structural and

behavioral descriptions in SDL [1] and Adlib [131].
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Bryant [80,132] developed a program that symbolically simulates the behavior of a
MOS circuit represented as a switch-level network. During simulation the user can set an
input to either 0, 1, or a Boolean variable. The simulator then computes the behavior of the
circuit as a function of the past and present input variables. By using heuristic algorithms,
the verification of a circuit by symbolic simulation can proceed much more quickly than by

exhaustive logic simulation.

4.5.2. Predicate Logic

Since the difference between formal and non-formal verification lies in the presence of
a mathematical proof, it is essential to have a well-founded formalism in order to represent
hardware systems. Formal verification of hardware correctness often makes use of
mathematical logic, thus it is worthwhile to consider it in more detail. In this subsection the

basic concepts and terminology are introduced.
A formal deductive system [133,134] is defined by the following items:

e  The vocabulary of logical symbols and syntactic objects which is finite or may be

enumerated.

e A set of formulae that can be generated according to specific rules. These formulae are

called well-formed formulae.

e A finite set of axiom schemes, which are decidable subsets of the vocabulary; the ele-

ments of an axiom scheme are called axioms
e A finite set of inference rules which transform a well-formed formula into another one.

An interpretation of a well-formed formula in a formal system is an assignment of truth

values to each of its atomic components. If the system includes both functions and predi-
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cates, then the interpretation requires the assignment of functions and predicates to the func-
tion and predicate symbols. An evaluation of a well-formed formula is a function associating
a truth value to it starting from its possible interpretations. A formula is valid if, and only if,
its evaluation yields true for all its interpretations. A valid formula is often called a taurol-
o0gy. A formula is sarisfiable if, and only if, there exists at least one interpretation for which it
yields value true. A deduction in a formal system is a sequence of well-formed formulae
f1, . fn Where each f; is either an axiom or a formula obtained by applying an inference
rule on another formula. A theorem t is a well-formed formula for which a deduction exists

with ¢ as the last well-formed formula in the deduction sequence.

In a formal deductive system, the problem of deciding whether a formula is a theorem
or not is called the decision problem. If it is possible to find an algorithm performing such

proofs, the formal system is decidable and the algorithm is called a decision procedure.

A formal deductive system is complete if and only if all valid formulae are theorems;
that is, when all valid formulae can be derived. A formal deductive system is sound if and

only if only valid formulae are theorems; that is when all derivable formulae are valid.

4.5.3. First-Order Logic Approaches

Wagner presented in [61] the first attempt to apply predicate calculus to the verification
of hardware design using an available theorem prover for a number of simple proofs of unit-
delay descriptions at the register transfer level. He developed a transition algebra and used a
non-procedural RTL language modified from CDL [135]. The specification and the circuit
are both represented in his language. The correctness is verified by proving or disproving the
goal from the circuit description using axioms and definitions established from the language

and transition algebra.
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Hanes [64] developed a program that accepted functional and structural design descrip-
tions in a higher-level language, translated them into predicate calculus clauses, and used a
general-purpose theorem prover to establish design correctness. Hanes recognized the impor-
tance of hierarchical structure in designs as a means of reasoning about them, but did not
fully exploit it.

Wojcik [65] demonstrated an approach similar to Wagner’s for verifying logic level
designs. In his method, both the specification and the behavior of the circuit are encoded into
a set of axioms. The verification is then performed by checking the conmsistency of the

axioms using a theorem prover [136].

The inductive assertion method developed for program verification was applied to the
area of hardware verification. Pitchumani and Stabler [63] extended Floyd’s inductive asser-
tion method to formal verification of RTL hardware descriptions. They established axiomatic
semantics of a simplified RTL language for synchronous design and demonstrated the
verification condition generation from the hardware description with assertions. However, no

mechanization of this approach has been yet reported.

Suzuki [137] explores a methodology which is halfway between simulation and formal
verification. The tie to formal verification is represented by the specifications under the form
of input/output assertions in first-order predicate logic. Instead of showing that output asser-
tions are satisfied by the implementation for all inputs satisfying input assertions, he shows
that this holds for selected inputs only. Such inputs are called “"test data". In this method,

both behavior and requirement specifications of hardware are described in Prolog [138,139].

In the DDL Verifier [140], a verification system is applied to synchronous systems at
the functional level. A translator reduces the circuit under consideration to cause/effect

tables, i.e., to tables which show necessary and sufficient conditions for circuit operations.
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The proof method uses backward reasoning and reduction to absurdity. In a later paper [91],
the authors abandoned first-order predicates as a means of expressing specifications and
resorted to temporal logic. (Verification approaches with temporal logic will be described

shortly).

Hunt uses the Boyer-Moore approach [141] to describe and verify the FMB8501
microprocessor [82]. The formalism is a quantifier-free first-order logic. Recursive functions
are the primary means of description for hardware devices. Sequential devices operate

through time, which is modeled as a stream of values.

4.5.4. Higher-Order Logic Approaches

Higher-order logic is an extension to first-order logic that allows variables to range over
functions and predicates. Unrestricted higher-order logic suffers from a number of para-
doxes, the most famous being Russel’s paradox [142]. These can be avoided by resorting to
type theory and a type hierarchy. Only propositional functions belonging to certain classes in
the hierarchy are allowed. Higher-order logic generally encompasses the axioms of infinity
and choice. The former states that the domain of individuals is infinite, the latter is used to

introduce new primitive formulae.

Higher-order logic was originally developed as a foundation for mathematics [143]. Its
use for hardware specification and verification was first advocated by Hanna in the VERI-
TAS system [78]. The VERITAS system is supported by various software tools in charge of
establishing and handling the theory database by a functional programming language, ad hoc
parsers, user-defined inference rules, and goal-directed theorem provers. This approach was

successfully applied to a simple example, demonstrating the correctness of a NOR gate.
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The higher-order logic approach has been investigated intensively by Gordon
[76,84,144). In this approach the specification and the implementation are expressed
directly in the logic, and hence no predicate transformer is needed for each syntactic unit.
The approach to mechanizing logic in HOL system [84] is due to R. Milner [145] who
developed the approach for a system called LCF designed for reasoning about higher-order
recursively defined functions. The HOL system is implemented on top of LCF [145] which
is implemented in Lisp environment. The language of LCF is called ML (the LCF Mera-
Language). ML is an interactive programming language like Lisp. At top level, one can
evaluate expressions and perform declarations. In HOL logic, there are five axioms and eight
primitive inference rules. A proof in the HOL system is constructed by repeatedly applying

inference rules to axioms or to previously proved theorems.

The higher-order logic is a very powerful formalism. However, due to the complexity
of the language, an automatic proof is not easily obtained. The current implementation of the
HOL system lacks automatic proof capability. Also, it is difficult to learn how to use the sys-

tem.

4.5.5. Temporal Logic Approaches

Predicate logic is very powerful when reasoning about the properties of static situations,
but it fails when dealing with dynamic phenomena. In the domain of hardware representation,
it is necessary to cope with particular aspects of reality: timing and temporal evolutions. To
satisfy the requirements of hardware, two choices seem possible: an explicit introduction of
the time variable ¢ into predicate logic, and a generalization of predicate logic to encompass

the temporal domain.
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Following the former approach, some authors introduce time functions, treating time
just as one of many variables, with the usual rules for terms, formulas, and inference
[146,144]. Other authors augment standard logic to cover temporal evolutions, leading to
modal logic [147,148). Predicates in first-order and higher-order logic stand for eternal veri-
ties. On the other hand, modal logic introduces the concepts of "possibility” and "necessity”

in the future.

Modal logic, although more expressive than traditional predicate logic, still lacks the
ability to cope with changes, an essential feature in hardware descriptions. To handie
changes it is necessary to have a formal system that can reason from past events to what can
or must be true at present and in the future. Such formal systems are generally grouped under

the category of remporal logic [148].

In general, temporal logic assumes all usual connectives while adding some typical
operators. Although there are many variants, the basic operators are: henceforth, eventually,
next, and unril. Temporal logic systems may be classified according to the way they consider
time. With time generally modeled discretely, there are different ways of viewing the future.
Past is always linear, while future may be either a unique world or a set of possible worlds. In
the first case, time is linear in the future, too, and such logic is called linear temporal logic.
In the latter case, time is branching in the future and such a system is called branching time
temporal logic. In the former case, a system is supposed to have a unique evolution along

time, whereas in the latter, a set of possible evolutions is considered.

In addition to linear and branching time, instant-based versus interval-based logic is
another important distinction in temporal logic. A temporal logic is instant-based when pro-
positions are asserted on single states only. A tempo