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Abstract

We arguethat a synchronous logic circuit computing a vector boolean
function f(x) does so in some time T, and hence the relevant value of
the circuit is not its static value (the value at t = oo) but rather its
value at t = T. We demonstrate a circuit containing an untestable
stuck-at-0 fault with the property that, when the fault is set, the de
lay of the circuit increases dramatically, and, hence, the value of the
output of the circuit at t = T is incorrect. We show that this fault is
not a delay fault in the sense of [5,13,6,12], but is rather a classic stuck
fault in the sense of testing theory. This fault is therefore not redun
dant byany reasonable definition, even though it is redundant by the
conventional definition. We introduce a new concept of redundancy,
called r-redundancy. We propose a method of generating tests for
r-irredundant stuck faults, and discuss several methods ofobserving
these faults.

1 False Paths in Combinational Logic Circuits

One issue which arises in the design of integrated circuits is that of ensuring
that a design meets a set of timing constraints. Circuit simulators such as
SPICE are occasionally used to make this determination; however, circuit
simulation is typically too slow to be used for an entire circuit. Hence, a
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Figure 1: A False Path

common approach is the use of programs called timing verifiers such as [17]
or [10], which areused eitheralone to estimatethe critical delay, or to iden
tify the critical path for lateranalysis by a circuit simulator. Timing verifiers
are typically quite fast; indeed, for fully-restoring combinational logic the
problem is simply that of finding the longest path througha directed acyclic
graph, whichis wellknown to be 0(|V|+ \E\). However, these programs will
always identify the longest path as the critical path of the circuit. This path,
however, is not the path of real interest: the path of interest is the longest
path down which a signal can propagate. Paths down which no signal can
propagate are called false paths, and the problem of identifying them, and
so finding the longest true path through the circuit, is known as the false
path problem.

Consider, for example, the circuit in figure 1. For x to propagate to a,
we must have y = 1. For a to propagate to 6, we must have z - 1. But for
b to propagate to c, we must have y = z - 0. Hence the path {ar,a,6,c,d}
is false.

The false path problem has been known for some time. The earliest
complete discussion in the literature appears to be due to Hrapcenko [9] l.

1Hrapcenko's manuscript was kindly brought to the attention of the authors by Prof.



Hrapcenko demonstrated that, for every integer n, there exists a function
for which the actual delay of the minimal network is n + 8 but for which the
longest path is 2n + 8. Hrapcenko further observed that false paths arise
naturally in the design of carry-acceleration adders, and suggested that the
longest path through a carry-acceleration adder will be on the order of 2n
nodes, while the delay willgrowapproximatelyas n. The problem of detect
ing false paths for the purpose of timing verification has been extensively
studied over the last few years[4,3,15,14]. A detailed treatment of the phe
nomenon and rigorous results can be found in [15], wherein a tight, correct,
and robust algorithm to report the longest true path in a network. Hence
the delay of a network may be generally assumed to be set to that of the
longest sensitizable path.

2 Carry-bypass Adders and r-Irredundant Faults

One can picture an arbitrary piece ofsynchronous circuitry as a set of banks
of combinational logic separated by clocked registers, as in figure 2. In such
a circuit, the clocks may be taken to be set to the length of the longest
true path in the preceding bank ofcircuitry; the effective value of the vector
boolean function Ci is therefore the values present at the register inputs
when the clock <pi falls at t = tx. From the example of figure 1, it is easy to
see that a stuck fault can make a false path true.

Consider, for example, the circuit pictured in figure 3. If the marked
fault is stuck-at-1, then the false path x-a-b-c-d is in fact true. Now, let
x arrive at t —1 while y and z arrive at t = 0. If x is toggled from 1 to
0 at t = 1, the output of the circuit in the presence of the fault does not
toggle to 0 until t = 5, while a standard false path analysis indicates that
the true critical path of the circuit is of length 4. If the clock is set to fall at
t = 4, the value of the circuit will be incorrect at that time, even though xyz
is not a test vector for the marked stuck fault (this fault is conventionally
untestable: the lead is unobservable).

While the circuit of figure 3 is obviously conjured, the problem of these
untestable faults occurs in real circuitry. In fact, these faults occur in circuits
which typically form the critical path of a microprocessor. The reason for
this is simply that adding circuitry tomake critical paths false isa designers'
favourite trick for speeding up a circuit.

N. Pippenger of UBC



Figure 2: Generic Synchronous Circuitry



Figure 3: Stuck Fault Making Long Path True

Consider, for example, a carry-bypass adder, of which one block is de
picted in figure 4. The carry-bypass adder is a conventional ripple-carry
adder, withan extra AND gateand MUX added to each block, as depicted
in figure 4. The circuitry derives from the simpleobservation that if all the
propagate bits through a block are high, then the carry out of the block
C0ut is equal to the carry in to the block, Ctn. Hence the multiplexer simply
selects Cout = C;„ when all the propagate bits are high, and the carry chain
bypasses the entire block.

The heuristic appears simple, but it has theeffect ofreducing the length
ofthe truecritical pathbya factor ofabout two, depending upon thenumber
of bits in the adder and the size ofeach block. The true critical path and
longest path in a 16-bit carry-bypass adder with block size 4 are shown in
figure 5. This diagram is adapted from one appearing in [3].

Now, consider again the picture of the carry-bypass block, shown in
figure 4. Note that the observability condition for the output of the AND
gate at Cout is Cm©Cin. The controllability condition to test the condition
that the output of the AND gate is stuck-at-0 is PqP\P2Pz. But in that
case, we must have that C^ = C,n, since all the propagate lines are driven
high. Hence the output of the AND gate is untestable for stuck-at-0 in the
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conventional sense.

Nevertheless, consider the case where a* ^ 6,- for every i, i.e., the output
of each AND gate is controlled high. In this case, a stuck-at-0 fault on the
output of one of the AND gates willincrease the length of the critical path
by approximately 4. If the clock is set to close at the length of the critical
path as reported by a true critical path algorithm suchas [14,15], as is likely
in practice, then the output of the circuit will be in error when the register
is closed. In other words, the "untestable" fault caused the circuit to behave
incorrectly.

Note that this fault is not a delay fault in the sense of [5,13,6,12]. That
theory wasconcerned with determining the behaviour of a circuit where each
gate was performing correctly, but where some gates switched slower than
nominally. This fault is a classic stuck fault that demonstrates its effects in
the time domain, and must be attacked by a combination of classic stuck-
fault testing techniques and the new algorithms devised recently for timing
verification.

This examplehas far-reaching consequences for the fields oflogic synthe
sis and test generation. It has long been conjectured in the logic synthesis
community [2] that untestable faults could easily be removed from a circuit,
once found. This is a central focus of recent improvements to the BOLD
synthesis system [?]. Further, it has recently been stated that [?] 100%
stuck-fault and multifault testability is a desirable goal of logic synthesis.
This example indicates that such a goal may well be undesirable, unless it
can be shown that each such circuit can be transformed into a 100% testable
circuit with no impact on area or delay. We conjecture that this will never
be shown; we believe that it is not true, though this is very much an open
question.

The test generation community must also consider such faults. The stuck
fault raised here can lead to catastrophic failure of the circuit,and hence it
is of high priority to devise means of testing and observing this fault. We
shall see below that observing this fault is problematic in general circuits.

The next three sections are taken virtually verbatim from [15]. Readers
familiar with the contents of that paper may wish to skip these sections,
and proceed directly to section 6.



3 Basic Definitions, Notation, and Dynamic Sen
sitization

In this paper, we will be computing the conditions under which paths may
transmit events as the satisfying sets of logic functions. Some elementary
definitions from the theory of logic functions follow.

Definition 3.1 A cube is a product of literals; eg, xyz, xy

Definition 3.2 The cofactor of a junction f wrt a literal x (x), written
fx (fx)t w the function obtained by evaluating f at x = 1 (x = 0). Since
it is clear that for any literals x, y, (fx)y = (fy)x, we write this as fxy and
so define the cofactor of f over any cube c = xi...xn in the obvious way:
Jc = Jx\...xn'

This definition yields a classic theorem, due to Shannon:

Theorem 3.1 (Shannon Expansion) Given any function f, any variable
x, we have:

f = xfx + xfw

For purposes of clarity, we outline a very simple timing model here. The
results of this paper, however, do not depend on the precise characteristics
of this model; we can show that they hold for slope delay models, models
with separate rise and fall delays, and different delays on each pin.

Definition 3.3 A path through a combinational circuit is a sequence of
nodes, {<7o>—,<7m}> such that the output ofgi is an input ofgi+\.

Definition 3.4 Each node g in acombinational circuit has aweight w(g).
The value of node g at time t is that determined by a static evaluation of
the node using the values on its inputs att —w(g).

Definition 3.5 We define delay as follows:

1. The delay through apath P = {gQy ^gm) isdefined as d(P) = ££0 w(g{).
This is also called the length of the path.

2. The delay at a gate d(f) = w(f) + max{d(i)\i 6 inputs(f)}
3. When delays in more than one network are under consideration, the

notation dpj(f) denotes the delay of node f in network N.



We assume that the wires of a circuit act as ideal capacitors; that is,
once assigned a value the wire holds that value until changed by a compu
tation at its source node. We assume that the primary input vector c2 has
become available at t —0; all inputs change simultaneously then. Further,
for all negative values of <, the wires of the circuit hold the static values de
termined by some input vector c\. Notationally, we capture this assumption
by speaking of the value of function / at time t, /(ci, c2, <), where ci is the
input vector from -co < t < 0, and c2 is the input vector from 0 < t < oo.
Clearly /(_,c2,*) = /(c2) for t > d(f), since after time t - d(f), / has
assumed its static (final) value.

Definition 3.6 An event is the transition of a node from a value of 0 to
1, or vice-versa.

We envision a sequence of events {e0, ...,em}> each e,- occurring at node
/,-, and each event e,- occurring as a direct consequence of event e,_i. We
say that event e0 propagates down path {/0, ...,/m}.

Definition 3.7 A path P = {/0, ...,/m}, /o a primary input, is sensitiz
able if some event eo may propagate down this path to the output fm.

Definition 3.8 The critical path of a network is its longest sensitizable
path.

This permits us to consider the boolean conditions for a path to be
sensitizable. Let event et- be the transition of node /,- from 0 to 1. Event
el+i is the transition of /,-+1 from either 0 to 1 or 1 to 0. In the former case,
we have that fi+1 tracks /,-, in the latter, /;+1 tracks ft. The conditions
under which this is possible is a boolean function, the arguments of which
we call side inputs.

Definition 3.9 Let P = {/0,..., /m} be a path. The inputs to /,- that are
not /„•_! are called the side inputs to P at /,-. We denote the set of side
inputs as S(/;, P).

Using the Shannon expansion, wecan write the condition for /,• to track
fi-i as fifi^fijr^- = 1. Similarly, for /,- to track /,_!, we must have
Jifi-ifijTZf —!• Since the sensitizing condition is that one of these must
hold, we may write the sensitizing condition as:

10



or, equivalently, as

af£r =*/<-. ®/*jet (2)
g|^- is described in the testing literature [1] [18], and is referred to there
as the boolean difference.

Now, clearly we must have g^- = 1 when event e,_i is propagated
through /,-. We denote the time ofevente,-, *(c,-), as r,-.

Lemma 3.1 Let e0 propagate down path {/0, ...,/m}, /o a primary input.
r/*enr(e,) = Ei=o<"(/;)•

Theorem 3.2 A path {/o, ...,/m}, /o a primary input, is sensitizable iff 3
input vectors ct,c2 3 Vi s^-(c1,c2,r1_1) = 1.

Sketch of Proof: Follows easily from the definition of boolean difference
and from the previous lemma, since the event can propagate through stage
i iff the sensitizing condition holds at the time the event is generated, which
is TV-!. •

4 Sensitization Conditions: Robustness and Fam
ilies of Circuits

The delay model used in timing analysis methods is a worst casemodel; it is
intended to provide an upper bound for the delay ofall circuits which may
be manufactured and operated in particular environments. A real circuit
is not the idealized circuit of timing models; it is a circuit with the same
topology, but with possibly smaller delays at some of the nodes. Hence
the estimate provided by the algorithm must hold for an entire family of
circuits, the "slowest" - in the sense ofhaving the slowest components - of
which is the one under analysis. Hence it is important that anycritical delay
algorithm be robust in the following sense: if the delays onsome or allgates
in the network are reduced, then the critical delay estimate provided by the
algorithm is not increased. When the algorithm is applied to the worst-
case circuit, a robust criterion thus guarantees that the estimate obtained is
valid for any circuit in the family. Colloquially, we refer to this robustness
property as the monotone speedup property.

Recall that every valid criterion must meet the monotone speedup prop
erty: if the delays on some or all gates in the network are reduced, then

11



out

Figure 6: Monotone Speedup Failure

the critical delay estimate for the network is not increased. This guarantee
cannot be given by the dynamic sensitization criterion, because the sensiti-
zabilityof a path is inherently determined by the precise internal delays of
the circuit. Hence, one can speed up a circuit and thus make a previously-
unsensitizable path sensitizable. This path may be arbitrarily long (though
not the longest in the circuit if such is unique); in particular, it may be
longer than the longest-sensitizable path in the slowernetwork.

Example: Consider the single-input circuit in figure 6. Assume the delay
on all gatesare as marked. Note when a is toggled from 1 to 0 at t = 0, from
t = 2 to t = 3 there is a 0 on both u and w, so x = 1 from t —4 to t = 5.
However, in this case y = 0 throughout, so out = 0 throughout. Similarly,
when a toggles from 0 to 1,from t = 0 to t = 2 there is a 1 on each input of
V> so y = 1 from t = 2 to t = 4. However, in this case x = 0 throughout, so
out = 0 throughout. This circuit therefore has no dynamically sensitizable
paths and its delay is 0.

If we now speed the circuit up by removing the delay buffer between b
and u, so that u now arrives at t - 1, but all other delays are unchanged,
when a is toggled from 0 to 1 we have a zero on each input to x from t = 1
(when u turns from 1 to 0) to * = 2 (when w turns from 0 to 1). Hence
x = 1 from t = 3 to t = 4. But y = 1 from * = 2 to t = 4, so out = 1

12
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Figure 7: Timing Diagram of Monotone Speedup Failure

from t = 5 to t = 6. Hence there is at least one dynamically sensitizable
path in this circuit of length 6; by reducing the delay on the wire from the
inverter to u from 2 to 0, we haveincreased the criticaldelay on this circuit
from 0 to 6. A full timing diagram of the situation appears in figure 7. In
this diagram, the solid lines represent the behaviour of the "slow" original
circuit; the dotted lines the behaviour in the sped-up, or "fast" circuit.

This phenomenon - that one candemonstrate circuits where the longest
true path ofa circuit increases length as components are sped up - appears
to hold in every level-sensitive logic where each wire holds its value until the
value is changed. In fact, given that the exact delay times at the nodes in a
circuit are only determined up to some given tolerance, the sensitizability of
a path within a given circuit may vary between two "identical" but separate
realizations. Hence the longest sensitizable path appears to be an inherently
nondeterminate property of logic circuits.

5 The Viability Theory

A stronger property that satisfies these constraints is viability. Before we
formally introduce the concept of viability, we wish to introduce its motiva
tion.

Fundamentally, a node /,- is dynamically sensitized to an input /,_i at
Ty_! but not statically sensitized to /,_! only if the value of the function
37^7 changes value at rt-_! or later. This can only occur if there are events
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on some set of inputs to gffi at or after r,_i; these are called late side
inputs. Under these conditions, we may assume that each of these inputs
are at any value at r,_i, and hence (to be conservative), we assume that
they are set to any value which will propagate the event. Mathematically,
we do this by "smoothing" the function -£M- over the late inputs.

Definition 5.1 For anyfunction f and variable x, the smoothing oper
ator Sxf is defined as:

Sxf = fx+te

Intuitively, we ignore x when calculating the value of Sxf. It is easy to
prove that SxSyf = SySxf. We may thus define, for a set U = {xi,..,xn},
Suf = SXlSX2...SXnf, and for U = 0, 50(/) = /.

Definition 5.2 Consider a path P = {fo,...,fm}. Q is said to be a side
path of P at fi ifQ terminates in g, a side input to P at /,-.

Definition 5.3 A path P = {/0, ...,/m} is said to be viable under an input
cube c if, at each node fi there exists a (possibly empty) set of side inputs
U' —{9u —»^n} to P at ft, such that, for each j,

1. gj is the terminus of a path Qj,
2. d(Qj) > 7v_i andQj is viable under c

s- (*jj£r)(«) = i
Intuitively, at each node we find the conditions which simultaneously

permit a set of side inputs U (a subset of the late side inputs) to undergo
events later than r,_i, and the remaining side inputs to statically sensitize
the node. It is important to note that this can only occur if there is some
assignment to the variables in U which statically sensitizes the node; the
effect of the smoothing operator is to permit this assignment to be made,
independent ofconditions elsewhere in the network. Effectively, the variables
in U are made independent variables by the smoothing operator. Note that
the case U —0 corresponds to static sensitization.

In [15], it is shown that the viability criterion is both correct (in that all
dynamically sensitizable paths are viable) and robust (in that the longest
viable path in a "fast" networkis no longer than the longest viable path in a
"slow" network). In preparationis a report that demonstrates that viability
is the tightest robust, correct criterion.

14



5.1 The Viability Function

At some very fundamental level, any set condition may be expressed as a
multiple input logic function. We are interested in making explicit the logic
function that underlies viability, because the computation ofthe viable paths
may be made more efficient through explicit computation of this function,
because various properties may be proved through use of this function, and
because we shall develop a powerful theorem which permits us to quickly
establish the correctness of approximation procedures.

The viability function if)p on a path P is easy to define: ipp(c) = 1 iffP
is viable under c. This hardly permits us more insight than the viable path
definition, however. Now, we prefer to define rj)p in terms of some function
i>j} at each node /,-. We develop this function intuitively, then justify its
definition in a theorem at the end of this section.

Intuitively, weexpect that the function ijjp will be the product of the vi
ability conditions at eachnode /,-, which in turn are captured in the function

m

»=0

Since time plays an important part in the definition of viable path, it is
convenient to capture it in the definition of the viability function. For any
node £, let V9tt be the set of paths terminating in g of length at least t.
Then

Letting U be any subset of 5(/j, P) we can express the viability condition
on the subset as:

g€U

since this condition must be satisfied for one subset, we may write:

UCS(fitP) g&J

In summary, we define:

Definition 5.4 The set of paths which terminate in g of length > t are
denoted Vg^

15



Definition 5.5 The viability function (also viable set) ofa path P = {/0,..., fm}
is defined as:

m

+p = TL*p (3)
i=0

where

^= e c^sffe-) n **n-1 w
UCS(fitP) g&J

and

1>9'*= E *Q (5)
Q&g,t

We have immediately:

Theorem 5.1 P = {/b5—»/m} w viable under some minterm c iff c satis
fies ^p.

6 r-Irredundant Faults

We now have the mathematical and conceptual tools in place to consider
the concept of r-irredundant faults. Broadly, we want a definition which
will permit us to determine when a stuck fault willcause a circuit to report
an incorrect value when the output is sampled at time r. Note that our
previous discussion of the uncertainty in delays requires that we consider
the entire family of circuits represented by a single circuit, N. We often
refer to such a family as the network family N.

Notation: Each multiple-fault c on a network family N denotes a family
of faulty networks. This faulty family will be denoted Nc. To each network
N' in the network family N there exists a corresponding faulty network N'c
in Nc. If a node in N is denoted /, its counterpartin Nc is denoted fc.

Definition 6.1 A single- or multiple-stuck-at-fault c on a network family
N, inducing faulty family Nc, is said to be r-redundant iff, for each output
f of N, fc @/ = 0 at all t > r in every network N' in the family repre
sented by N. If a fault is not r-redundant then it is r-irredundant. If a
circuit is r-irredundant, then there is some input vector v, which excites the
irredundancy condition and we say that the fault is tested by v.

16



In sum, the presence of the irredundant multiple stuck-fault c causes
some network in the family to misbehave at some time t > r.

Now, it is clear that conventional (time-independent) multiple stuck-
faults fit nicely into this picture as a special case, namely co-irredundant
stuck faults. This gives us a hint that we are looking at a spectrum of
irredundant (or redundant) faults, parameterized in the time axis. The
next theorem makes this clear.

Theorem 6.1 Let N be any network family. Let r0 > r, where r is the
maximal length of the critical path over the family N. c is a To-irredundant
multiple-stuck fault in N, and is tested by input vector v, iff:

1. c is a conventionally irredundant multiple-stuck fault in N, and is
tested by input vector v; or

2. there is no dynamically-sensitizable path, terminating in an output, of
length > r0 in any network in the family represented by N, but there
is such a path in the family represented by the faulty network Nc, and,
further, there exists an input vector vi such that vi and v exercise the
path in Nc.

Proof: For the first item, clearly any conventionaUy-irredundant fault is
also ro-irredundant (set t = oo). For the second, assume there is such a
path. Then in some network in the family Nc, when vi and v are applied
in succession, there is an event on output fc at some time t > r0. Choose
€ < t - TQ. Now, the value of fc at t - e differs from the value of fc at t + e.
The value of / in N is fixed to its final value at some time t0 < r0, and hence
must disagree with the value of fc in the faulty family Nc at either t + e or
t-e. Both these latter times are > r0, and hence the fault is r0-irredundant.
Conversely, assume the faultis r0-irredundant. Thenbydefinition the faulty
family JVC disagrees withthegood family at some time *> r0. Ifsome output
changes value at i, then clearly there is a dynamically sensitizable path in
the faulty family exercised by vx and v, and so the second item is satisfied
since there is no dynamically-sensitizable path in the good family of length
> tq. Otherwise, the value of the faulty family at oo equals its value at r0,
and must differ from the value of the good family at r0 (which is also its
value at oo). If these values agreed, there is no fault, and hence they must
disagree in the values at oo. In this case, c is a conventionally-irredundant
stuck fault. •

17



Corollary 6.2 Let c be a T\-irredundant multiple stuck-fault in a network
family N with maximal critical path length r. Then c is also To-irredundant
for all T\ > tq > t.

The clearly interesting set of faults is the rt-irredundant set, where r* is
the length of the clock; clearly Tk>T, where r is the maximal critical-path
length over the network-family N. We wish to characterize r-irredundant
multiple stuck faults. In order to do this, we need a conjecture, which seems
quite likely to be true.

Conjecture 6.1 Every path in a network-family N, viable under c, is dy
namically sensitizable in some member of N.

If this conjecture is in fact true, then the identity of dynamically sensi
tizable paths over a family with the set of viable paths in the slow member
of the family gives us a tight criterion for finding such irredundant faults,
and a correct (though expensive) method of identifying these faults: set the
candidate fault, run a timing simulator using the viability criterion (e.g.,
[14]) over the faulty network, and determine if there are any viable paths
of length > Tk. Note that this procedure will return a superset of the r-
irredundant multiple stuck-faults if the identity aboveis inexact, since it is
known that the set of viable paths of a network contain a path at least as
long as thelongest dynamically sensitizable path over a network family. Fur
ther, anycritical-path-correct sensitization criterion [15] used inconjunction
with this procedure will return such a superset. Further, the test vectors
associated with the multifault is the satisfying set ofthe sensitizing function
for the path in the faulty network. Hence this procedure not only verifies a
r-irredundant multifault, it also gives the test vector for it.

This procedure is expensive and inelegant, however. It is on a par with
setting a conventional multiple stuck-fault in a network N and then com
puting the satisfying set of iVc ® JV to obtain a test vector for the fault. We
wish to characterize the set of such multifaults in a way that permits us to
localize the search for these faults in the graph.

Note that oo-irredundant multifaults may be found by conventional test
generation means. What we are interested in is the set of multifaults which
are rj.-irredundant but not oo-irredundant.

Intuitively, we expect that the set of rfc-irredundant multifaults to set
static sensitizing values on side inputs to a long false (in the original network
family) path. Something quite like this is in fact the case.
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Theorem 6.3 Letc be a Tk-irredundant multifault which is not oo-irredundant,
and which, when set, makes viable a path P = {/0,...,/m} with d(P) > r/t.
Then c isfault-equivalent to a Tk-irredundant multifault d with the following
properties:

1. The edges directly set by the fault c' are all side inputs to P.

2. The edges set by c' are all set to sensitizing values; i.e., if edge g is set
by c', g6 5(/t-, P), then g is set to a value satisfying gfA-.

This proof really

Proof: Since c makes viable a path P = {/0,...,/m} with d{P) > r*, then needs work- But
for some /,- on P ipfe is increased (some may be decreased, but these can be *'m more inter~
neglected). Using the expansion for ij)p\ we have that: ested m gwmg

you the outline of

4>p* = J^ (Suffi-) JJ ^-r«-i the Proof here
ucs(fitP) '"l g&J

is increased. Hence for some set UC5(/,-, P) we have that (Su$t~)Hgeu il>9'Ti-1
is increased. We have two cases:

1. (£u$jfj^) is increased. In this case, we must have that some h e
5(/,-, P) —U is set to a sensitizing value by c; or

2. if>9,n-i is increased for some g E U. But this effect can be achieved
by the simple device of setting each such g to its sensitizing value in
the multifault. Once this is done, any settings in the multifault which
served only to increase ip^n-i can be repined by these settings.

c' is obtained from c by replacing all the settings which serve to increase
i^g^n-i wjth the relevant g set to sensitizing values. •
2

Now, unfortunately this does not translate well to single stuck-faults; it
does not appear to be the case that every rjfe-irredundant single-stuck fault
is fault-equivalent to a rjt-irredundant single-stuck fault on a side input to
the long path made viable by the fault. This is due to two effects, which
may occur either separately or jointly.

2The use ofthe phrase "sensitizing value" isa little misleading here. For most gates,
fi> 37^7 k a single cube, and hence only one value of g will sensitize the cube. For other
gates, any satisfying assignment may be chosen
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1. A single stuck-fault potentially sets many nodes to values in the net
work through direct simulation, i.e., it causes a multifault, which in
turn may directly sensitize the long path. This can be traced using
direct forward simulation of the fault, and the relevant multifault ex
tracted.

2. A single stuck fault may occur as a side input to a side path, i.e., may
make a long side path to the long path viable, which in turn makes the
long path viable. In this case the relevant single stuck-fault is fault-
equivalent to the appropriate single-stuck fault at the head of the long
side path.

Each of these separate effects are easy to investigate. However, the combi
nation of these effects are problematic. If it is believed that an interaction
of these two effects giving rise to a r^-irredundant multifault is unlikely,
then simply processing the single stuck-faults on the side inputs to the long
paths is sufficient to find most or all of the rjt-irredundant singlestuck faults.
Experimental work on this needs to be done.

Note that this theorem implies that the polarity of the relevant multifault
is quite firmly fixed: each side input involved in the multifault must be stuck
at a sensitizing value. This information, combined with the well-known
information that almost all single-stuck faults are oo-irredundant, leads to
the conclusion that relatively few single-stuck faults need be tested, and
hence that the relatively expensive procedure of setting the fault and then
doing a timing simulation on the faulty network in order to obtain the test
set is acceptable. This section re

ally needs to be

7 Observability of r-Irredundant Faults beefed up

It is insufficient to simply generate tests for r-irredundant faults. The ef
fect of setting the single- or multifault must be observed on the fabricated
wafer. Sadly, timing analysis literature has little encouraging to say on this
problem, even if the networkcan be tested at speed.

The difficulty lies in the concept of the network family. The viability
theory, even if the conjecture is true, does not guarantee that the path
found to be viable will be dynamically sensitizable in the network under
test; rather, (at best) it onlyguarantees that the path will be dynamically
sensitizable in some network in the family. There is no guarantee that
the die under test on the fabrication line is that circuit. Worse, even a
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single fabricated circuit is not a single circuit throughout its lifetime; since
it operates in a variety of thermal and electrical environments, and so gives
rise to a circuit family, of which the circuit under test is not necessarily the
slowest. Finally, such networks generally undergo hazards; sampling at r*
does not guarantee that twoeventsat some primary output do not He offin
the future: merely guaranteeing that the output at r* is equal to the good
output is no guarantee that a r*-irredundant fault does not exist; it merely
guarantees that an even number exist. Further, if one of the affected paths
speeds up during operation, at some point the chip may latch in the value
duringthe hazard. Hence, if one fails to observe the fault on the process line,
that is no guarantee that the fault does not existor that, if it does exist, it is
irrelevant. The fault may exist, and, during the lifetime of the chip, cause
the circuit to malfunction. This point cannot be stressed too much. New
techniques for observing the fault must be devised, at least in general logic
networks (the problemis somewhat alleviated in precharged-unatenetworks
such as DCVS). Two possibilities include:

1. Built-in Self Test (BIST) techniques of a new form. Standard BIST
uses a set of feedback-shift registers to compute a signature of the
network, and checks this against an ideal signature. This consumes
little area, and finds almost all irredundant stuck faults. Whether
standard BIST techniques will find all r-irredundant stuck faults with
the same high probability is an open question. However, it is clear
that if only a very few test vectors need be stored to exercise the
r-irredundant faults, then these (and the good and faulty solutions)
may be stored in a smallon-chip ROM. Either approach has the great
advantage of testing the circuit at speed in the operating environment.
Ideally, such checks should be done relatively frequently;

2. Direct observation of critical edges, e.g., those involved in a rjt-irredundant
multifault but not in an oo-irredundant multifault. Since the redun
dant multifault is controllable, direct observation removes this diffi
culty at some cost in circuit area, and permits standard fabrication-line
testing.

One other possibility is to set the clock to tolerate a single stuck failure
on a rjt-irredundant edge. For example, a single stuck failure on a carry-
bypass line will not increase the delay by a factor of 2, to the delay of the
full ripple-carry circuit, but, rather, only by about 4 gate delays; in other
words, in the full 32-bit bypass adder with block size 4, there are eight
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r-irredundant single stuck faults but no (r + 4)-irredundant single stuck
faults. There is obviously at least one (r + 4)-irredundant stuck multifault.
The safe clock rate r* can be determined by setting each suspected single
fault, running the appropriate timing verifier, and finding the clock rate,
and repeating for all single stuck faults. The acceptability of this technique
is likely to depend upon the design environment, and the extent to which
Tk exceeds r.

8 r-Irredundant Faults on Precharged-Unate Net
works

In [16] it is shown that the dynamic sensitization criterion is robust on
precharged-unate networks such as DOMINO[ll], NORA[7], and DCVS[8];
a set of equations used to define the dynamic sensitization criterion on such
networks were defined, similar to the viability equations. Further, such
networks are known to be hazard-free.

An analogue to theorem 6.3 holds for such networks, so, again, only
multifaults incident on a long false path need be considered.

Such networks are extremely well-behaved from a timing point of view.
If electrical conditions on the fabrication line are set to worst-case, then it
can be guaranteed that if fc © / = 0 when a test vector for a r-irredundant
fault is applied to the appropriate die under test, then either the fault has
not occurred on the chip or it will be irrelevant throughout the lifetime of
the circuit under normal operating conditions.
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