

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PARALLEL DIRECT-METHOD SOLUTION

OF A SPARSE LINEAR SYSTEM OF

EQUATIONS

by

Abhijit Ghosh

Memorandum No. UCB/ERL M89/89

31 July 1989

PARALLEL DIRECT-METHOD SOLUTION

OF A SPARSE LINEAR SYSTEM OF

EQUATIONS

by

Abhijit Ghosh

Memorandum No. UCB/ERL M89/89

31 July 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PARALLEL DIRECT-METHOD SOLUTION

OF A SPARSE LINEAR SYSTEM OF

EQUATIONS

by

Abhijit Ghosh

Memorandum No. UCB/ERL M89/89

31 July 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Circuit simulation programs are very important computer-aided design tools for
analyzing theelectrical performance ofcircuits. As integrated circuits (IC's) get larger and
more complicated, it is not always economically feasible to fabricate them and test them

before production and so the IC designer must rely ona circuit simulator for predicting the
performance of circuits prior to fabrication. Unfortunately, circuit simulation speeds have
not kept up with the growing demands of the IC designer. Conventional circuit simulators

were designed for thecost-effective analysis ofa few hundred transistors orless and programs
like SPICE3 can take a long time to simulate a circuit with a thousand transistors on

conventional uniprocessors.

With the continuing decline in the cost of hardware, it is becoming economically

feasible to build computers with many processors. In coming years, one can expect to

see computers with a large number of processors. This expectation has motivated the ap

plication of parallel algorithms to various steps in the transient analysis of circuits. The

subject of this report is the parallelization of the solution of a systemof linear equations, an

important step in the transient analysis of electrical circuits. New scheduling and reorder

ing algorithms have been developed for this purpose and results indicate that appreciable
speedup can be obtained.

Acknowledgements

I greatly acknowledge my research advisor, Professor Richard Newton, for his

inspiration, encouragement and advice during the course of this project. I would also like

to thank Geroge Jacob for answering numerous questions about PDSPLICE. I would like

to thank Brian O'Krafka for suffering through an initial draft of this report, and also for

many interesting discussions on parallel architectures and algorithms.

I would like to thank Professor D. Pederson for his helpful comments and sugges

tions concerning the project and this report. I would also like to thank Tom Quarles for

his help with SPICE, Don Webber for helping in finding the test examples, and Andrea
Casotto for his help with the graphics package.

This project was supported in part by Defense Advanced Research Project Agency
(under contract N00039-87-C00182), Digital Equipment Corporation, AT&T Bell Laborato
ries and Semiconductor Research Corporation. Their support is gratefully acknowledged.

Contents

Table of Contents {

List of Figures ui

List of Tables ;v

1 INTRODUCTION 1
1.1 Circuit Simulation 2
1.2 Parallelizing the LOAD Phase 6
1.3 Organization of this Report 7

2 APPROACHES TO PARALLEL LINEAR EQUATION SOLUTION 8
2.1 Task Granularity 9
2.2 Scheduling 12

2.2.1 Hu's Levelized Scheduling Algorithm 13
2.2.2 Other work 14

2.3 Reordering 15
2.4 Hardware-based Acceleration Techniques 16

2.4.1 Vector Processors 16

2.4.2 Special-purpose Hardware for Parallel Circuit Simulation 17
2.5 Use of MIMD Multiprocessors 18
2.6 Conclusion 19

3 TASK GRANULARITY 20
3.1 Task Graph 20

3.2 Fine Grain Parallelism 21

3.2.1 Maximum Speedup Obtainable from Fine Grain Parallelism 27
3.3 Medium Grain Parallelism 27
3.4 Large Grain Parallelism 29
3.5 Implementation of Medium Grain Approach 31
3.6 Results 32

3.7 Conclusions 33

11

4 SCHEDULING 34
4.1 Terminology 35
4.2 Dynamic Scheduling 37
4.3 Static Scheduling 38
4.4 Scheduling Algorithm 39

4.4.1 Algorithm 39
4.4.2 Implementation 42

4.5 Interprocessor Communication 43
4.5.1 Reducing synchronization overhead 44
4.5.2 Implementation 46

4.6 Results 47
4.7 Conclusion 49

5 REORDERING 50
5.1 Graph Model of Matrix 53

5.1.1 Fillin Generation 54
5.1.2 Gaussian Elimination 55
5.1.3 LU Decomposition 56

5.2 Reordering Algorithm 56
5.3 Results g3
5.4 Conclusion §5

6 CONCLUSION 66

Bibliography 69

List of Figures

1.1 Structure of a Transient Simulator 4
1.2 SOLVE and LOAD Times as a Function of Circuit Size 5

3.1 Example Matrix 21
3.2 Task graph for line grain parallelism 23
3.3 Task graph for fine grain parallelism 25
3.4 Task graph for medium grain parallelism 29
3.5 Task graph for large grain parallelism 30
3.6 Computation tree for element 044 31

4.1 Scheduling algorithm 40
4.2 Load on processors at some point during scheduling 41
4.3 Synchronization algorithm 45

5.1 Example matrix 50
5.2 Task graph for matrix shown in Figure 5.1 51
5.3 Reordered matrix 52
5.4 Task graph for matrix in Figure 5.3 52
5.5 Example matrix #2 53
5.6 Associated graph for matrix shown in Figure 5.5 54
5.7 Graph for matrix after row and column interchange 54
5.8 Graph for matrix after fillin generation for elimination of first row 55
5.9 Example matrix #3 58
5.10 Partial Graph of matrix shown in Figure 5.9 59
5.11 Reordering Algorithm 61
5.12 Choosing Algorithm 62
5.13 Algorithm for correcting problem 63

in

List of Tables

3.1 Time to solve for various matrices 32

4.1 Characteristics of the circuit matrices 47
4.2 Performance predicted by scheduling algorithm 47
4.3 Speedup achievable without synchronization 48
4.4 Speedup achievable with synchronization 48
4.5 Speedup comparison 49

5.1 Effect of reordering on Tc 64
5.2 Effect of reordering on actual execution time 64

IV

Chapter 1

INTRODUCTION

Circuit simulation programs like SPICE [39] and ASTAP [56], have proven to be

importanttools for the analysis of the electrical performance ofcircuits. These programs can

perform a variety ofanalyses, including ac, dc, and transient analysis of circuits containing a

wide range of non-linear active devices. The phrase that best characterizes the circuits and

systems of today is very large scale. Designers today plan to put a whole systeminvolving a

millionor more transistors on a single chip. This high degree of integrationrequires the use

of various computer-aided design tools. With the advent of ASIC's (Application Specific

Integrated Circuits), IC vendors are aiming for the quickest possible turn-around time and

low non-recurring engineering costs (NRE). Thus fast and accurate computer-aided design

tools have assumed a new significance.

As circuits get larger and more complicated, it is not always possible to fabricate

them and test them before production. The IC designer must rely on a circuit simulator for

evaluating the performance of circuits. Over the past decade, the level of integration has

grown almost exponentially and the number of devices on a chip have touched the million

mark. Although the designer typically simulates only small parts of a chip, sometimes

it is necessary to simulate a whole system, which may consist of ten thousand or more

transistors. Unfortunately, circuit simulation speeds have not kept up with the growing

demands of the VLSI designer. Conventional circuit simulators were designed initially for

the cost effective analysis of a circuit containing few hundred transistors or less. Programs

like SPICE3 [41] can take a long time to simulate a circuit with a thousand transistors,

and the effect of a minor change to a circuit may take hours to verify. Obviously, designers

need faster circuit simulators for simulating large circuits. Before going into the details of

improving the performance of simulators, in the following section is a brief review of the

basic algorithm of a direct method circuit simulator.

1.1 Circuit Simulation

One of the most common analyses performed by circuit simulators, especially in the

design of digital circuits, is time-domain transient analysis. With transient analyses, precise

electrical waveform information can be obtained if the device model and parasitics are

characterized properly. A simulator reads an input description detailing circuitconnectivity

and element parameters and assembles a set of non-linear ordinary differential equations

(ODE's) to represent the circuit behavior. There are two common ways of assembling these
equations — Sparse Tableau Analysis (STA) [56] or Modified Nodal Analysis (MNA) [39].

Sparse Tableau Analysis involves the writing of the Kirchoff's Current and Voltage Law

(KCL and KVL) equations and appending the branch equations to them. The resulting
coefficient matrix is very sparse, but it requires sophisticated programming techniques to

exploit the sparsity of the matrix [23]. Modified Nodal Analysis is a generalization of Nodal

Analysis method where the KCL equations are written first and then the currents of all

possible branches are eliminated using branch equations. Finally, all node voltages are
substituted for branch voltages and a set of equations involving node voltages is obtained,
together with some branch equations. The MNA coefficient matrix is also very sparse,
though not as sparse as the STA matrix. All coefficient matrices can be assembled by
inspection of the circuit.

For circuits containing non-linear elements, a set ofnon-linear simultaneous equa
tions has to be solved. In classical simulators, the equations are solved numerically using
the Newton-Raphson (NR) iteration method, and the coefficient matrix corresponds to a
Jacobian matrix. The original circuit can be interpreted as a Sparse Tableau of a linear
circuit whose elements are specified by the linearized branch equations. This linear circuit
is called the companion network [47]. A circuit simulator, when analyzing a circuit, can
first linearize the branch equations of the non-linear elements and then assemble and solve
the circuit equations for the companion network.

For dynamic circuits (circuits containing capacitors or inductors and other non
linear elements), a set ofnon-linear ordinary differential equations has to besolved. Circuit
simulators such as SPICE and ASTAP, when analyzing the transient behavior ofdynamic

circuits, discretize the branch equations by replacing the derivatives of the circuit variables

with a stiff-stable integration formula. After the branch equations have been discretized,
a dc solution problem has to be solved using the NR-iteration technique. The process of
discretization, linearizing, and assembling the final coefficient matrix for solution is often

called the LOAD (refer to Figure 1.1) phase ofsimulation and it is linear incomplexity [47]
(the time taken for loading the coefficients grows linearly with the number of elements in
the circuit).

Assuming that the circuit equations have been assembled, they have to be solved

in the most efficient way. Algorithms for solving a system of linear equations arediscussed

in [3]. There are two classes of methods for solving the linear equations — direct methods

and iterative methods. Direct method algorithms can find the exact solution of the system

of linear equations in a finite and known number of steps, if computations are carried

out with infinite precision. Most circuit simulators use direct methods because of their

robustness and predictability. This report is restricted to the use of direct methods for

the same reason. Among the direct methods available, Cramer's rule is very well known

but it is too costly to consider for a computer solution. If n is the number of equations in

the linear system, Cramer's Rule would require 0(n!) operations to solve a dense system.

Though circuit simulation problems give rise to very sparse system of linear equations,

the operations required for Cramer's Rule would result in substantial fillins during the

elimination process [47], thus loosing the advantage offered by a sparse system. Other

methods like Gaussian Elimination (GE) [3] and LU decomposition [3] are used in practice.

Strassen's algorithm [52] is the optimalwayof solving a system of linear equations, but the

algorithm is very complicated. Ease of programming makes GE the most efficient algorithm

available for solving a system of linear equations. This phase of the simulation is called the

SOLVE phase. For GE, or LU decomposition, the complexity is 0(n3) for a full matrix of

size n x n. For sparse matrices it has been observed that the complexity of the solution

algorithm is O(n^) where /3 is between 1.2 and 1.8, depending on the sparsity of the matrix

[47]. Thus exploiting the sparsity of the matrices is of great importance for minimizing both
storage and execution time.

A flow chart depicting the structureof a transient simulatoris shownin Figure 1.1.

The two important phases, LOAD and SOLVE, are shown. As the number of circuit el

ements in the analysis grows, the time required to formulate the nodal equations grows

Predict values of variables at t(n+l)

1
Replace capacitors and inductors with

resistive elements using integration
formulae

Replace nonlinear elements with
conductances and independent sources
using Newton-Rhapson Method

Assemble Linear Circuit Equations

1

LOAD

Solve Linear Circuit Equations

Did Newton-Rhapson Converge ?
T

Yes

Test solution accuracy via Local
Truncation Error

SOLVE N<

Save solution if acceptable

Select new time step and compute
new integration formula coefficients

I
Done ?

T
Yes

T
Print and plot results

Figure 1.1: Structure of a Transient Simulator

CPU

TIME

«

10000-

1000 -

SOLV

100

LOAD

10 •

1

1 j 1—

1 10 100 100010000

CIRCUIT SIZE

Figure 1.2: SOLVE and LOAD Times as a Function of Circuit Size

linearly with circuit size but the time required to solve the circuit equations increases at a

faster rateand rapidly becomes the dominant cost of the analysis. For the circuit simulator

SPICE2 [39], the solution time is about 10% of the total time for a circuit of less than

thirty transistors, but reaches halfthe total CPU time for a circuit containing three thou
sand transistors. These two phases are the two major bottlenecks which limit the speed of

a circuit simulator, with the SOLVE phase being the more critical of the two. In Figure 1.2

the time to form the equations and solve them is plottedagainst the numberof circuit nodes

for a family of MOS circuits. This result implies that for large circuits, where SOLVE time

dominates the total run time, an improvement in SOLVE time would have a large impact

on overall simulator throughput. The figure shows that the crossover point is around 500

nodes.

With the continuing decline in the cost of hardware it is becoming economically

feasible to build computers with many processors. In coming years, one can expect to see

MIMD (Multiple Instruction Stream Multiple Data Stream) computers, with hundreds of

processors. This expectationhasmotivated the application of parallel algorithms to various

steps in the transient analysis process. The LOAD phase can be easily parallelized and is

the topic of the next section. Parallelizing the SOLVE phase is a difficult problem and is

the subject of this report. Methods to speed up the execution of the SOLVE phase using a
MIMD multiprocessor and a new set of algorithms are presented.

1.2 Parallelizing the LOAD Phase

Since circuit model evaluation is expensive, a number of techniques have been

employed to reduce the time taken for the linearization phase. It has been shown that table

lookup reduces the model evaluation time by eliminating the need for repeated calculation

of device coefficients [21,29,50]. Some circuit simulation programs [57] do not update the

Jacobian at each NR-iteration, on the argument that the Jacobian matrix is inaccurate

when distant from the solution and when near the solution its accuracy makes frequent

updates unnecessary. It has also been shown [40] that an element-bypass technique, where

models are evaluated only if their input voltages or currents have changed by more than a

certain amount, can result in significant savings. Special-purpose hardware [21] have been

built to enable fast parallel model evaluation for MOSFET's. In [55] a vectorized scheme for

model evaluation is discussed. Vectorization is achieved whenever all devices reference the

same model parameters or when all homologous devices in different instances of the same

sub-circuit definition reference the same model parameters. Model evaluation is split into
a gather-scatter and a computation phase. There is no clear advantage with vectorization,
mainly because of the gather-scatter bottleneck. However, with gather-scatter hardware,
device model evaluation time can be significantly improved [59].

For a multiprocessor, the LOAD operation can be parallelized easily. The LOAD
operation consists ofdifferent parts, each with acertain degree of parallelism. Only a small
portion of the work has to be done sequentially. The bulk of the computation consists of
evaluating the linearized companion elements of various devices and storing ("stamping")
them into the final coefficient matrix. This is usually done bydevice type. The resistors are
evaluated and stamped on to the Jacobian, then the capacitors, and then the MOSFET's
and other devices. If there are enough processors, all devices can be evaluated in parallel.
There are two approaches to storing the final value in the Jacobian — one that uses locks
and another that does not. In the first approach stamping the value on to the Jacobian
must be atomically locked so that no two processors can add to the same location in the
matrix at the same time. This is a lock-synchronized parallel loop.

One example ofalockless approach would be the use ofmultidimensional matrices.
Here auxiliary arrays are used to extend the matrix into the third dimension with the depth
in this direction at any point being equal to the number ofdevices that stamp on to the
corresponding matrix location. Each contribution to aparticular location is then assigned a

unique location in the auxiliary array. With such astructure, the evaluation and stamping
of devices can be done completely without locks. After all stamping is done, the three-
dimensional matrix is collapsed into atwo-dimensional matrix bysumming the contributions
that go into each location. This part can also be done in parallel as each location can be
added independently. Though faster, this approach uses much more memory and there is
overhead in keeping track of the matrix contributions at each location.

The two approaches outlined above are at the two extremes. A unified approach
would use multiple locks. The basic idea is to use different locks for different regions of
the memory so that a processor would have to idle only if another processor is writing into
the same region that it needs to write into. The number of locks to be used and the set

of circuit nodes that should be assigned to each of these locks depends on the number of
processors available.

Significant research [44] has proved that parallelizing the LOAD phase is not a

very difficult problem. Many researchers [44,62,6] have reported linear speedup in loading
timewith up to 16 processors. Efficient parallelization of the SOLVE phase is less straight
forward.

1.3 Organization of this Report

This report is organized as follows. Chapter 2 is a survey of work already done

in this area. In Chapter 3 we take a look at the amount of parallelism inherent in the

SOLVE phase. Three levels of task granularity are described and the reasons for choosing

medium grain parallelism are given. In Chapter 4 the problem of optimum scheduling of

computation graphs on a finite number of processors is presented and a heuristic solution

algorithm is given. Chapter 5 contains the description and a heuristic solution of the

problem of reordering a matrix for minimizing parallel computation time. Conclusions are

presented in Chapter 6.

Chapter 2

APPROACHES TO PARALLEL

LINEAR EQUATION

SOLUTION

Parallelizing linear equation solution has been a subject of research for a long
time. Approaches to the problem can be found in [30,53,36,9,13,6,27]. On multiprocessor
systems, it has been shown [53] that Gaussian elimination can be efficiently parallelized
when solving dense, large-scale linear systems. Nested dissection techniques [36] allow
efficient parallel solution ofwell-ordered sparse linear systems. However, circuit matrices,
in addition to their extreme sparsity (three or four non-zero elements per row or column),
have an irregular structure that makes most decomposition techniques, including nested
dissection, difficult to use [49]. Since most circuits give rise to sparse, irregular matrices,
from now on only approaches suitable for such systems are described.

In [30] a parallel algorithm based on LU-decomposition, called Segmented Partial
Pivoting (SPP), was implemented on the BBN Butterfly Parallel Processor as a first step
towards parallelizing the solution of irregular, sparse linear systems. In the SPP algorithm,
each processor is assigned ablock ofrows from the system matrix ; for each column in the
matrix, all the processors work within their assigned blocks to determine local pivot can
didates and then to eliminate other non-zero elements in the column. Next the processors
compete to set alock. The local pivot ofthe processor that sets the lock becomes the global
pivot for the given column, and the processors use the global pivot to eliminate their own

local pivots. This process is repeated until the system is triangular. Forward elimination
and backward substitution is also done in parallel. These operations employ parallel multi
plication and subtraction after an unknown has been solved for, as well as parallel division,
which is made possible by the sparsity of the matrix. Experimental results using the SPP
algorithm indicate high speedup using about ten processors, but no improvement beyond
that. Further, the competetive global pivot selection scheme results in a large number of
fillins, indicating that even with the parallelism exploited, parallel solution may not be
faster that efficient uniprocessor solution. This study thus leads to two conclusions : first,
there is a relatively low degree of parallelism in the parallel linear equation solution for
circuit matrices; secondly, schemes that attempt to exploit as much parallelism as possible
may result in excessive fillins, thereby nullifying their advantage.

The approach taken in [26] is to break up the task of solution of a sparse system
of equations into a number of subtasks, some of which can be executed in parallel. Then
the problem of parallel equation solution has three separate sub-problems. They are :

• Scheduling

• Reducing interprocessor communication

• Reordering to minimize parallel computation time

In this chapter approaches adopted by other researchers for solving these problems are
briefly reviewed.

2.1 Task Granularity

The amount of parallelism achievable depends on the size of the individual tasks

to be executed in parallel. The size of the tasks is what wecall task granularity. There are

three levels ofgranularity : fine grain, medium grain and coarse grain. Fine grain parallelism
is the parallelism exploited when the size of each task is a single floating-point operation.

The number of tasks is large and scheduling becomes a difficult problem. As the name
suggests, medium grain parallelism uses tasks that are larger than single operations. This

is achieved by combining a group of tasks in fine grain parallelism intoa single task. Large
grain parallelism uses even larger tasks, typically complete row eliminations. The main

issues in deciding on task granularity are :

10

• The amount of parallelism available.

• The complexity of the scheduling problem.

• The amount of interprocessor communication needed.

• Suitability of the computation method to the underlying computer architecture.

Cox [12] describes threeapproaches based ontask size. Homogeneous multi-tasking

is similar to fine grain task granularity. All tasks to be executed in parallel are approxi

mately of the same size and there are a large number of such tasks. Precedence constraints

between tasks makes the problem of scheduling and reducing interprocessor communica

tion harder. Cox observes that synchronization overheads more than oflset the gains from

parallel processing for this approach. Cox's coarse grain parallelism involves partitioning
the circuit into sub-circuits and solving each of them individually on separate processors.

Partitioning a matrix into submatrices results in over 50% increase in total number of ma

trix operations which must be performed. This increase in matrix operations is a result of

restricted ordering within each of the sub-circuit matrices. Within these matrices, nodes
that have connections to other subcircuits through the interconnect must be ordered last.

This restriction produces many more fillin terms during LU decomposition than would oc
cur without partitioning. The results indicate that hardly any improvement is achievable

on a small number of processors. A mixture of these two methods yield the heterogeneous
macro-tasking approach. Circuits are partitioned into functional units following the natural
hierarchy ofthe specification. Moreover, the method treats closely coupled devices as aunit
and minimizes the number of off-diagonal terms used to describe the block interconnection.

All tasks such as loading of matrices, LU factorization, etc. are performed as data and
resources become available, and as they are required for additional processing. Scheduling
oftasks is done according to their relative priority. Cox reports that this approach gives
the greatest speedup in execution time using parallel processing.

Wing and Huang [58] describe a computation model for the parallel solution of
linear equations. They define a task graph that models the computation of the LU factors
ofamatrix, as well as forward and backward substitution. They use elementary divide and
update operations as individual tasks - giving fine grain task granularity. They derive the
lower bound on the number ofprocessors required for completing the evaluation ofthe task
graph in the minimum possible time and also a lower bound on the computation time for a

11

given number of processors.

The sensitivity of the performance ofa parallel algorithm to the underlying ar
chitecture is shown in the paper by Saad [43]. He analyzes the behavior of two different
implementations ofGaussian elimination in a hypercube based architecture. Suppose that
rows (or columns) ofa matrix are distributed in some way among the processors. At each
step j of the first implementation, called the broadcast algorithm, the elimination row is
sent to all processors that hold at least one of the rows i, i+1, i+2,..., N. This data move

ment is a broadcast operation : one processor sends data to all or a subset of the others.

Once broadcasting is completed, the arithmetic corresponding to the ith step of Gaussian
elimination is performed.

The second approach differs only in its organization. Processors are no longer
required to perform the jth step of Gaussian elimination at the same time. A processor
waits for the jth row, passes it to thenext processor as soon as it arrives and then proceeds
with the arithmetic. Thenext processor will in turn pass therow to aneighbor and proceed
with the arithmetic. This is called pipelining.

The second approach requires only a one dimensional or a two dimensional grid
of processors for its implementation. The question arises : can we expect the broadcast
method that takes advantage of the complicated hypercube topology to outperform the
pipelined methods? Saad concludes that if a matrix is mapped by stripes, i.e., a few rows
orcolumns per processor, there is nocompelling reason for using a broadcast algorithm. If
a matrixis split into square blocks and mapped to the nodes of a processor grid embedded
in the hypercube, then pipelined techniques are better.

An interesting account of the effect of communication cost on parallel Gaussian

elimination can be found in [37]. The target architecture is assumed to be an MIMD

computer. The time for accessing a data from the shared memory is taken to be equal

to the time for performing an arithmetic operation. They consider two forms of Gaussian

elimination and show that the communication costs in one are significantly smaller than

the other. Therefore communication costs also depend on the way computation is done.

Sadayappan and Visvanathan [44] discusses three levels of task granularity in par
allel Gaussian elimination. Their coarse grain task granularity uses the target-row directed
formulation of Gaussian elimination. Here a single task is the elimination of a complete

row of a matrix. They conclude that parallelism is very limited. Their fine grain approach
uses tasks that are individual update or divide operations, as in [26]. Using a task cluster

12

scheduling algorithm and a vector processor they were able to get appreciable speedups.

They conclude that the real overhead in a fine grain approach is not scheduling but operand

access. Their medium grain approach tries to alleviate the problem of operand access by

replacing the repeated scatter-gatheroperations on the target-row by using an indirect des

tination pointer. They claim that this approach yields better speedup than the other two. A

similar treatment of task granularity canbe found in [10]. Arnold [4] shows that for parallel

forward and backward elimination on an MIMD computer with a single bus, contention for

the bus is not a major time consuming factor. This shows that operand access time is not

a major bottleneck in the substitution phase.

2.2 Scheduling

Once tasks that can be executed in parallel are identified, it is necessary to sched

ule them on processing elements. One very important aspect in multiprocessor system
design is the analysis of algorithms for scheduling parallel tasks onindependent processors.
Associated with each task is a non-negative real number representing the execution time
of the task on any of the processors. A valid schedule is an assignment of the tasks to the
processors so that none of the precedence relationships between the tasks are violated, and
no more than one processor is assigned to a task at any instant. Anadditional assumption
that is often made is that the execution ofeach task must be completed once it is begun,
i.e., the schedule is non-preemptive. The objective is to find a schedule that minimizes the

finishing time ofthe computation graph. Scheduling is avery important part ofany parallel
triangularization algorithm and a significant amount of research has been done in this area.
The main issues in scheduling are :

• Static or Dynamic Scheduling.

• Scheduling to minimize the computation time.

• Scheduling to minimize the overhead in communication.

Finding an optimal schedule for acomputation graph for more than two processors
is an NP-complete problem [38]. Only heuristic solutions are obtainable. In Chapter 4a
heuristic solution to the scheduling and interprocessor communication problem is presented.
In the following section the simple yet effective scheduling algorithm due to Hu is given.

13

2.2.1 Hu's Levelized Scheduling Algorithm

Many scheduling or sequencing problems can be formulated as follows. Given n

tasks with known times to perform each tasks and with ordering relations among these
tasks, two problems posed are the following :

• Assume that all tasks must becompleted by time T. Arrange a schedule that requires
the minimum number of processors.

• Ifm processors areavailable, arrange a schedule that completes all tasks at the earliest
times.

Hu [25] proposed an algorithm for solving the above problems.

The precedence constraints between tasks can berepresented by a directed acyclic
graph (DAG) consisting of n nodes representing the tasks and directed arcs representing
the precedence constraints. The graph must be acyclic fora schedule to be found. We shall

write Ni > Nj if node Ni must precede node Nj. The nodes in the graph form a partial
order. A node Nk is called a final node if there does not exist a node JV,- in the graph so
that Nk > Ni. A node Nj is called a starting node if there does not exist a node JV,- such
that Ni > Nj. Anode Nt is labelled with a:,- = x{ + 1ifXi is the length of the longest path
from Ni to the final node in graph G. The final node by the above rule has a label 1. We
now give the algorithm for finishing the tasks at the earliest time with a given number of
processors.

Algorithm

Preliminary: Label all nodes with a,- = *,-+1 where x{ is the length ofthe longest
path from Ni to the final node in G.

Rule : If the total number ofstarting nodes is less than or equal to m where m is
the total number of processors available, then choose all starting nodes for processing.

If the total number ofstarting nodes is greater than m , choose m starting nodes
with values of a,- not less than those not chosen. In the case of a tie, the choice is arbitrary.

Remove completed tasks from the graph. Then repeat the rule for the remaining
graph.

Hu shows that the above algorithm completes all tasks at the earliest possible
times if the graph is a tree and all tasks are homogeneous. In most cases this assumption

14

is not valid, and the algorithm does not find the optimum schedule. This strategy is used

by Huang and Wing in their optimal matrix triangularization algorithm [26].

2.2.2 Other work

Thomas et al. [2] compares several scheduling algorithms for parallel processing

systems. Cases where task execution times are deterministic and others in which execution

times are random variables are analyzed. It is shown that different algorithms suggested

in the literature vary significantly in execution time. They also present a dynamic pro

grammingsolution for the case in which the execution times are random variables. Despite

having fixed number of operations in each task, the memory access times makes the time

taken for each task a random variable. A scheduling algorithm that takes this fact into

account and gives a schedule that works optimally in the average case is very important.

Srinivas [51] gives an optimal scheduling algorithmfor a dense Gaussian elimination DAG.

He establishes a lower bound for the schedule length and proves that for dense matrices,

these bounds are achieved. His algorithms, however, are not optimalfor sparse systems.

Kohler [31] discusses the critical path method for scheduling tasks on multipro
cessor systems. After a review of known theoretical results, a general branch and bound

algorithm for finding optimal schedules is presented. The critical path heuristic is very
similar to the heuristic used byHu [25]. Theschedule is generated by placing task T; before
Tj whenever the critical pathofT; exceeds that ofTj. The critical path ofTj is defined as
the length of the longest path from Tj to a terminal node. The schedules produced by a
simple critical path priority method are shown to be near optimal for randomly generated
computation graphs.

Dekel and Sahni [15] discuss parallel scheduling algorithms. Their algorithms
are targeted for Single Instruction Stream Multiple Data Stream (SIMD) computers and
can be easily extended to MIMD computers. They develop a design technique for parallel
algorithms based onbinary computation trees [14] and consider various scheduling problems
and obtain fast parallel algorithms for each. Rote [42] discusses a solution to the different

but related problem ofscheduling n tasks with different processing times on one processor
inorder to maximize the number oftasks that are scheduled in time. He uses thetechniques
of Dekel and Sahni [14].

Two classes of scheduling algorithms are possible. Casotto [8] uses dynamic

15

scheduling in the parallelization of a sparse matrix package. With dynamic scheduling
there is a high overhead involved. Generalized static scheduling is discussed in the paper
by Lee [18]. Chen and Hu [11] describe a task clustering algorithm which is static. Each
processor has its own list of tasks and thealgorithm used for assigning tasks to processors is
very simple. They use an elemental task model and tasks that have the same row or column

number are assigned to the same processor. Unfortunately, this algorithm can create load
imbalance.

2.3 Reordering

Circuit matrices can bereordered toachieve various objectives, including numerical
accuracy, stability, and maintaining sparsity. The familiar Markowitz [24] method is used
to minimize the number of fillins generated. Ping Yang [61] discusses a simple partitioning
and reordering algorithm that guarantees that no zero-valued pivot will be generated for a
matrix formulated by the modified nodal approach. The issue of minimizing the number of
fillins is also addressed. For nested dissection there exist algorithms for reordering amatrix
into a block-bordered diagonal form [48]. The Cuthill-McKee [19] reordering algorithm is
used toreduce the bandwidth ofasymmetric sparse matrix. The minimum degree ordering
algorithm [54] is averypopular fill-reducing algorithm. It reduces to the Markowitz criterion

for asymmetric matrices. Betancourt [5] describes a minimum depth reordering algorithm
that is based on choosing the vertex to be eliminated to be one with least depth in the
computation graph. He also considers a combination of theminimum degree and minimum
depth algorithm and concludes that an algorithm that picks the next vertex on the basis of
depth and breaks ties on the basis ofdegree produces an ordering with the smallest amount
of computation. A survey of various reordering techniques for sparse symmetric matrices
can be found in [20]. Zmijewski [63] suggested an algorithm for ordering and partitioning
that notonly allows for more parallelism but also reduces thecommunication overhead. His
work is based on the Kernighan-Lin partitioning algorithm [7].

Most of the above algorithms are targeted for reducing uniprocessor solution time
and can be used for sparse, symmetric, positive definite matrices. None ofthese algorithms
address the issue ofreducing computation time ina parallel processing environment. While
solving large system ofequations, we are interested in solving the system in the least possible
time, butnot necessarily with the least amount ofcomputation. It may be possible to trade

16

offfillins forbetter completion time. Thefollowing algorithms were aimed at minimizing the

parallel computation time. Forsparse, symmetric, positive definite matrices, Jess and Kees

[28] provide a strategy for reordering tominimize the height ofthe computation graph. Ina
related paper, Liu and Mirazian [34] give an efficient algorithm for this reordering strategy
which islinear with respect to thenumber ofnon-zeros in thefilled graph. Liu [33] proposed
a variant of the Jess and Kees algorithm based on Elimination tree transformations. These

algorithms work only for symmetric, positive definite matrices and cannot be used for most

matrices seen in circuit simulation. Huang and Wing [26] proposed an algorithm that works

for all kinds ofcircuit matrices but for large systems, the time taken to find the operation
sets and the depth sets can be quite large. Also, this algorithm assumes fine grain task
granularity.

Rose [17] showed that the problem offinding a permutation matrix P for a given
matrix A, such that the matrix PAPT has the minimum number of non-zeros after elim

ination is NP-complete. There is almost no hope offinding a polynomial time algorithm
for minimizing the number offillins produced. This is only a sub-problem ofthe complete
reordering problem. We are interested in permutation matrices that minimize the paral
lel computation time. It is my conjecture that this problem too is NP-complete and only
heuristic solutions can be attempted.

2.4 Hardware-based Acceleration Techniques

While a number of number ofalgorithmic techniques [45,40,32,57,46,29,60] have
improved thespeed ofcircuit simulators, large-scale improvement in the speed still depends
on hardware-based approaches. The first parallel computers were the SIMD (Single In
struction Stream Multiple Data Stream) computers, like vector and array processors. In
the following section, work on vector and array processors is described briefly, revealing that
a high degree ofparallelism is available in the LOAD phase. Subsequently, special-purpose
hardware approaches to parallel circuit simulation are presented.

2.4.1 Vector Processors

The first parallel processors available were vector processors and pioneering work
on developing parallel circuit simulators was preformed on vector and array processors. The
first parallel circuit simulator CLASSIE [55], was implemented on the CRAY-1, CYBER

17

205 and FPS-164. CLASSIE employed user defined node tearing [49] to decompose a cir
cuit into cells, according to functional and structural hierarchy, at the non-linear equation
level. Identical cells are analyzed in parallel using vector operations. CLASSIE provides a
number ofmodifications tostandard circuit simulation algorithms. Firstly, it orders devices
according todevice type thereby saving time gathering model parameters. Furthermore, by
decomposing thecircuit into smaller subcircuits, it circumvents thelinear equation solution
problem. Also, it employs code generation to reduce linear equation solution time. For
sparse matrix solution, a speedup of 12 was obtained by efficient vectorization. Overall

circuit simulatior run timewas decreased bya factor of 4. Although CLASSIE in its vector

mode is faster than its scalar mode and speedup increases as circuit size grows, its perfor
mance is not encouraging on the whole. This is primarily due to the data gather-scatter
overhead in vector operations.

It was shown in [59] that vectorized LU-decomposition can result in significant
gains in simulation speeds if the vector processor has special purpose hardware for data
gather-scatter. Further, while CLASSIE requires identical subcircuits in parallel, the vec
torization algorithm used in [59] automatically detects parallelism within theirregular struc
ture of the matrix. The Block Vectorization Algorithm (BVA) and the Maximal Vector
ization Algorithm (MVA) used in [59] give very good performance for certain examples.
However, speedup figures are not too good for small vectors and, also, the speedup depends
on the decomposition of the matrix. If a good decomposition cannot be found, then the
speedup obtained ismediocre. Inaddition, vector processors, being SIMD machines, require
static scheduling and this forces all elemental operations to beof the same length and the
same type. A general-purpose parallel processor using an MIMD architecture, allows more

flexibility in scheduling and performing individual elemental operations according to their
respective requirements.

2.4.2 Special-purpose Hardware for Parallel Circuit Simulation

As a result of the increasing sophistication and the reduced cost ofVLSI, it is now
economical to synthesize hardware for the purpose ofperforming a certain set ofoperations
that were previously performed using software. To this end, numerous designs have been
proposed that replace computation intensive sections of circuit simulation programs with
special-purpose hardware. Aspecial-purpose attached processor MMAP (MOS-Model At-

18

tached processor) that evaluates the dc-MOS transistor equations has been designed and

evaluated in [21]. The special-purpose processor is attached to an IBM PC-XT personal

computer, and the circuit simulator used is BIASC [22], a subset of SPICE written in the

C programming language and designed to run on the IBM PC. A prototype MMAP utilizes

pipelining and local memory to evaluate linear models for four MOSFET devices simultane

ously. Experiments with the prototype MMAP shows that it incurs a 20% communication

overhead, while simulations indicate that with efficient operation of the system, the over

head may be as high as 60%. In addition it was observed that 40% of MMAP's time was

spent in transferring data between its processing and memory unit which were on separate

chips.

BLOSSOM [30] is a special-purpose architecture system proposed for parallel,

sparse linear equation solution. It consists of a reconfigurable systolic array connected

to a host computer. BLOSSOM uses its own memory, data bus and executive control

unit to operate independently once the system to be solved has been loaded into its local

memory. Submatrix operations performed by the processors are micro-coded. Results from

a software simulation of the BLOSSOM system indicate that most of the partitions are

2x2 submatrices. For a 1957 x 1957 matrix it is seen that a 2 x 25 processor array solves

the system 9.25 times faster than a 2 x 2 array, indicating 74% efficiency. Given the high

efficiency of BLOSSOM, it is evident that such hardware-based approach shows promise

for rapid parallel sparse linear equation solution. However, the hardware required is rather

expensive, and its nature prevents any other use of it. From the economic standpoint, it is

better to use a multiprocessor which can be used for solving a wide range of problems.

2.5 Use of MIMD Multiprocessors

Most recent work on parallel sparse matrix solution [36,62,27,6,9] involve the use
ofMIMD (Multiple Instruction Stream Multiple Data Stream) general purpose multiproces
sors. Such an architecture allows more flexibility in scheduling and performing operations
according to their respective requirements. The work ofJacob [27] deserves special mention
as it is the starting point of this research.

In [27] tasks thatcan beexecuted in parallel are identified in two ways. In the first
method, all pivots that can beeliminated independently are considered for parallel elimina
tion. Each processor does all operations necessary for the elimination of the pivot assigned

19

to it. The study of different pivot selection algorithms and their respective concurrency
potentials was made using the Pivot Dependency Graph (PDG). In the second method, all
row operations during the elimination of a pivot, that are independent are considered for

parallel execution. For this method, a Row Dependency Graph (RDG) is used. The RDG-
based methodis able to exploit more parallelism than the PDG-based method. This method

can be made more general, and using the Task Graph approach described in Chapter 3,
more parallelism can be exploited. Both dynamic and static scheduling was studied in [27].
The scheduling scheme used is quasi-static. It exploits static scheduling byusing the known
PDG or RDG, yet dynamically prevents high-priority tasks to preempt less important ones.
Using a quasi-static scheduling algorithm Jacob was able to avoid most of the overheads

inherent in dynamic scheduling when the number of tasks is large, as in the case ofa large
system of equations. A new pipelined algorithm was also presented, that simultaneously
addressed the problems of poor linear equation parallelism and the inter-phase bottleneck
betweenthe LOAD and the SOLVE phase, and the factorization and forward and backward

elimination phase. For a 155-node, 416-MOSFET transistor digital-to-analog circuit, simu
lation speedup using the algorithms mentioned was 5.18 on a8-processor Sequent. Though
it is possible to get substantial speedup with this approach, reordering rows and columns of
a matrix to decrease parallel solution time can have a significant impact onthe performance
of a parallel simulator.

2.6 Conclusion

The three aspects of parallel solution of a sparse system of linear equations were

discussed in this chapter. All the major problems encountered are NP-complete. Some
of the heuristics used by other researchers have been described. In the following chapters
each of these problems are discussed in more detail and our solutions to these problems are
presented.

Chapter 3

TASK GRANULARITY

The efficient solutionof dense matrices on parallel computers is fairly well under

stood [51,35]. However, the compact representation of sparse matrices, combined with the
structural irregularity of the sequence of operations, makes parallelization of solution of a

sparse matrix a challenging problem. For this purpose, the whole task has to be broken

up into independent sub-tasks, which can then be solved in parallel. The amount of paral

lelism available depends on the size of the tasks, or task granularity. Standard algorithms
for triangularization show significant amount of parallelism when each task corresponds
to individual divide and update operations. This is the fine grain parallelism approach.
Single operations can be combined to form larger tasks. Such tasks might correspond to
computing the value of an element in the triangularized matrix. This is the medium grain
approach. When all tasks correspond to operations on a row or a column, we have the
large grain approach. In this chapter three levels of task granularity are examined with the
goal of identifying the one most suitable for implementation on a shared memory MIMD
computer.

3.1 Task Graph

Introduced by Huang and Wing [26], this graph is a representation of the opera
tions and dependencies in the solution ofalinear system ofequations. The triangularization
process consists ofaset ofoperations on which aset ofprecedence relations exist. The pro
cess can therefore be represented by a directed acyclic graph G(Vt E) where Fis a set of
nodes representing the operations and Eis a set ofedges between nodes i and j if the result

20

Oil 014

022 «25

033 034 ^36

041 O43 044 a46

fl52 055 056

063 064 O65 a&6

21

Figure 3.1: Example Matrix

of node t is used by node j. The graph is acyclic because there are no cyclic precedence
relations in linear equation solution. For the matrix of Figure 3.1, the task graph for LU
decomposition of the matrix is shown in Figure 3.2.

3.2 Fine Grain Parallelism

Consider the matrix shown in Figure 3.1. The list of operations needed to LU
decompose the matrix is given below.

1. ai4 = ai4/an

2. O44 = O44 — d4i * a\4

3. fl25 = 02s/fl22

4. <Z55 = <*55 — <*25 * O52

5. 034 = 034/033

6. fl36 = 035/033

7. 044 = 044 — 034 * 043

8. 046 = O46 — O36 * O43

9. O64 = 064 — 063 * O34

10. 066 = O66 — 063 * O36

11. O46 = 046/044

22

12. 066 = 066 — 064 * O46

13. 056 = 056/055

14. 066 = Oee — Q>65 * O56

Let us assume that all floating-point operations take one unit of time. Then it

takes 22 units of time to complete the LU decomposition of the matrix, using a sequential

algorithm. The levelized task graph for these operations is shown in Figure 3.2. The

numbers in the nodes correspond to number of the operations in the list above. The arrows

are the edges depicting dependencies. A node is called simpleif only one operation is done at

that node. If morethan one operation is done at a node, it is called complex. In Figure 3.2,

nodes 1, 3, 5, 6, 11 and 13 are simple nodes while 2, 4, 7, 8, 9, 10, 12 and 14 are complex

nodes. In this graph, simple nodes take one unit of time, while complex nodes take 2 units

of time. Levels 1 and 4 take one unit of time to complete, all other levels take two units of

time. The total time to complete the execution of the operations in the task graph, given

a sufficient number of processors is 10 units. The maximum number of tasks that has to

be completed at any level is 5 (at level 2), and with five processors, triangularization can

be completed in the minimum possible time. This is an upper bound on the number of

processors needed to complete the tasks, but not a tight upper bound because execution

can be completed in 10 units of time using only four processors.

Complex nodes in the task graph can be broken up so that the graph only has

simple nodes. The set of operations, considering only simple operations at each node, is
given below.

1. O36 = 035/033

2. 034 = 034/033

3. fli4 = 014/011

4. 025 = 025/022

5. T4 —036 * 063

6. T3 = O36 * 043

7. Tq = O34 * 063

23

Figure 3.2: Task graph for fine grain parallelism

24

8. T5 = fl34 * O43

9. Ti = 041 * Oi4

10. T2 = 025 * O52

11. O66 = O66 — T4

12. 046 = 046 — T3

13. 064 = O64 — Tq

14. 044 = 044 — T\

15. 055 = 055 — T2

16. 044 = 044 — T5

17. Os6 = 055/055

18. 046 = 045/044

19. T% = 065 * O56

20. Tj = 064 * O46

21. ©66 = O66 — Tj

22. O66 = O66 ~ T&

The modified task graph isshown inFigure 3.3. There are eight levels in thegraph,
and each level takes one unit of time to complete execution. The total time to complete the
execution of the task graph, given sufficient number of processors is 8 units. This time the

maximum number of nodes at a level is6 and thus a maximum of 6 processors are needed to

complete the tasks in the minimum possible time. Once again, 6 is the upper bound on the
number of processors needed to complete triangularization as it is possible to complete it
in the minimum possible time using only four processors. Since tasks cannot be subdivided

any further, this is the finest level of task granularity. Temporary variables are necessary
for storing intermediate results. Such temporary variables are shown as TVs in the above
list.

25

Figure 3.3: Task graph for fine grain parallelism

26

Fine grain parallelism is the parallelism exploited when the nodes in the task graph
are single operations on elements of a matrix or on temporary variables. Tasks cannot be

divided any further and all operations are represented as individual nodes in theTask Graph.
Thus the maximum amount of parallelism between operations can be exploited using this
approach. Though this approach extracts the maximum parallelism that is present in the

solution of a sparse system of equations, there are some problems in the implementation
of such a method of solution. The number of processors required to triangularize a large
systemin minimum time is large. It might not be possible to have shared memory MIMD

computers that have that many processors. Working with a smaller number of processors

than the required number, there is the additional problem of optimum scheduling of the
nodes to the processors so that execution is completed in the minimum possible amount of

time. This is an NP-complete problem [38] and only heuristic solutions are available, some
ofwhich have been discussed in the previous chapter. Also, there is the overhead ofstoring
all the temporary results.

Assuming there is an adequate number of processors, it is still not possible to

complete execution in the minimum possible time. This is due to the overhead incurred in

synchronization and inter-processor communication. Consider thetask graph of Figure 3.3,
and assume there are six processors. For a processor toexecute the operations at anode, it
is necessary that the operands have their correct values, (e.g., Node 8 cannot becomputed
before node 2). A simple algorithm that ensures correct evaluation of the task graph
requires all processors to work on nodes of the same level, and check in at a barrier before

proceeding to the next level. Such a barrier is often implemented using atomic locks [l].
Say the time required for an atomic lock operation is x units. With n processors checking
in at a barrier, the time taken at each barrier is nx units. If there are m barriers, then the
total time taken for barrier synchronization is nxm units. On the Sequent Balance 8000, a
lock-unlock operation takes twice as long as afloating-point division (i.e. two units oftime).
With six processors checking in at a barrier, the time required at each barrier is 12 units.
Since six synchronization points are required for the graph of Figure 3.3, the total time
taken for. barrier synchronization is 72 units. This is far greater than the time for solving
the system sequentially (22 units). It will beseen later that this problem can bealleviated
using special techniques, but there isno way to do away with interprocessor communication
overhead, and sophisticated programming techniques are required to exploit the amount of
parallelism available.

27

3.2.1 Maximum Speedup Obtainable from Pine Grain Parallelism

Let the number of operations required to do Gaussian elimination or LU decom

position be n1+6 for a n x n sparse matrix. There are n pivots to be eliminated. Given a
sufficient number of processors, all the work necessary to eliminate any pivot can be done
in a fixed amount of time. For example, for the matrix shown in Figure 3.1, if row 1 is
being eliminated, the operations on all elements affected by row 1 can be done in parallel
as theyare independent ofeach other. For each element, two floating-point operations are
necessary in order to update their value and therefore the elimination of a row can be done

in 2 units of time. The total parallel triangularization time is 2n. The maximum speedup
achievable is :

Speedup — n6/2

Fora sparse matrix, pivots canbeeliminated in parallel as often theyare mutually
independent. If a pivot dependency graph (PDG) [27] is used, then the time taken for

parallel triangularization is2 x (Height of PDG). If theheight ofthePDG is represented
as to1-**, then the maximum speedup achievable is :

Speedup = n6+lr/2

This analysis assumes that interprocessor communication time is negligible.

3.3 Medium Grain Parallelism

As the name suggests, medium grain parallelism uses tasks that are larger than
single operations. This is achieved by combining a set of nodes in the fine grain task
graph into a single node. There are various ways of doing this, and consequently there
are different kinds of medium grain parallelism. Sadayappan and Visvanathan [44] uses a
source-row driven parallel formulation that uses thesource-row directed LU decomposition
algorithm and an indirection vector for each source-target row pair. The innermost loop of
theoperation is a vector operation through the indirection vector, which cuts down on the
number of indirect accesses to the memory.

In our medium grain approach, each node represents an element in a matrix, and
all operations needed to obtain the value of the element in the triangularized matrix is
represented at that node. This idea is best illustrated with an example. Consider the

28

matrix of Figure 3.1. The list of operations necessary for LU decomposition is shown

below. Each formula gives the operations necessary to compute the value of the element in

the triangularized matrix. Thus each element appears on the left hand side only once.

1. Oi4 = oi4/on

2. 036 = 03^/033

3. 034 = 034/033

4. 025 = 025/fl22

5. 044 = 044 — Oi4 * O41 —O34* 043

6. O55 = 055 — 052 * 025

7. 046 = (o46 —O43 * 036)/044

8. 054 = 064 —Og3 * 034

9. O56 = 050/055

10. O66 = 066 —063 * O36 —064 * <*46 —^65 * ^56

The levelized task graph for these operations is shown in Figure 3.4. Level 1 takes

one unit of time, Level 2 takes 4 units, Level 3 takes 3 units and Level 4 takes 6 units.

Total solution time is 14 units, compared to the 22 units required for a purely sequential

solution(and 8 units fora fine grain parallelsolution). The amount ofparallelism obtainable

decreases, but now a smaller number of processors is necessary to achieve the minimum

possiblesolution time. Since the number of processors required is smaller, the concomitant

scheduling and synchronization problems are less severe.

The problemsofscheduling and synchronization encounteredin medium grain par

allelism are more tractable than the corresponding ones in fine grain parallelism. Despite

the loss of a significant amount of parallelism, there is a reduction in the amount of over

head. Using the same synchronization algorithm as used for fine grain parallelism, the total

time spent in barrier synchronization is 24 units (8 units at each barrier and only three

barriersare needed). This is much smallercompared to the 72 units of time spent in barrier

synchronization for fine grain parallelism.

29

Figure 3.4: Task graph for medium grain parallelism

3.4 Large Grain Parallelism

Large grain parallelism uses tasks that are typically larger than single element up
date operations. Often, tasks are complete row eliminations. Sadayappan and Visvanathan
[44] used the target-row directed approach, where given a pivot, all rows depending on the
pivot are eliminated on a single processor. Jacob [27] uses the pivot dependency graph
technique to obtain pivots that can be eliminated in parallel.

Consider the matrix of Figure 3.1. Considering each row and column at a time,
the operations required for LU decomposition are given below.

1. Oi4 = Oi4/an

2. 025 = 025/022

3. 034 = 034/033 ,036 = 036/033

4. 044 = O44 - Oi4 * O41 - 034 * 043 ,064 = 064 - 063 * 034

5. 046 = (046 —043 * a36)/a44

6. 055 = 055 — 052 * 025

7. O56 = O56/O55

30

Figure 3.5: Task graph for large grain parallelism

8. ©66 = 066 — ©63 * O36 — 064* <*46 —^65 * ^56

The levelized task graph for these operations is shown in Figure 3.5. This graph
has 4 levels and the total time required to solve it is 16 units (Level 1 takes 1 unit, 2 takes
6 units, 3 takes 3 units and 4 takes 6 units). The maximum number of processors required
is three.

Large grain parallelism has a major drawback. It exploits only a limited amount

of parallelism. For most applications the amount of parallelism achievable is so limited that

though only a few processors are needed toachieve the maximum speedup, and the speedup
is very small.

Considering the advantages and disadvantages of all levels of task granularity, we
conclude that the medium grain parallelism offers the best compromise. It has an appre
ciable amount of parallelism and yet does not have severe synchronization and scheduling
problems. This approach is used for our work.

31

Figure 3.6: Computation tree for element 044

3.5 Implementation of Medium Grain Approach

In this section the single processor implementation of the element based medium

grain parallelism approach is described. At various stages, the matrix of Figure 3.1 will be
used as an example.

Given a matrix, the objective is to find the value of each of its elements in the

triangularized matrix. The algorithm used for triangularization gives a specific sequence of

operations needed to obtain the value of an element in the triangularized matrix from its

original value. This sequence of operations is represented symbolically at each element in

the form ofa computation tree. For example, element a44, has the computation treeis shown

in Figure 3.6. Internally, this tree is represented using linked lists. The computation tree

of an element is evaluated to give the value of that element in the triangularized matrix.

Before building computation trees, all possible fillin's are generated. The computation tree

method of representing computation gives us great flexibility in trying various algorithms
and evaluating their performance. In our implementation, the algorithm for triangular
ization is provided in a file using a pseudo-C syntax. This algorithm is then parsed and

computation trees are built for each element. Fillin generation is also done according to the
algorithm specified.

After getting computationtrees for each element, fanout lists arebuilt. The fanout

list of an element a is a list of other elements in the matrix that need the value of element

a in computing their values. For example, the fanout list of element a43 contains elements

Matrix No. of No. of Time for Time for

Circuit Size Elements Level 0 Sequential One Proc.

Elements Solution (s) Solution (s)
IY0UNG 76 1222 272 0.50 0.62

PSPI 80 687 165 0.15 0.23

NAY 166 1202 489 0.11 0.17

A2D1 218 1630 673 0.17 0.23

BEN2K 402 2205 1438 0.61 0.19

ADDER 450 4360 1370 1.14 1.31

EPROM 687 4199 2111 0.81 0.44

XXI 1013 7145 2287 1.12 0.93

32

Table 3.1: Time to solve for various matrices

044 and 046. Fanout lists are built by looking at the computation tree of an element a

and putting a in the fanout list of all elements that feature in its computation tree. These

fanout lists are edges of the task graph, while the elements are the nodes. The work to be

done at a node is represented by the computation tree.

After all fanout lists are made, the task graph is levelized. All elements that

don't need any computation are marked as level zero elements and are also included as

a part of the task graph. A simple levelizing algorithm is used to assign levels to other

elements in the graph. Only elements of Level 1 andhigher are evaluated. Triangularization

proceeds by starting with Level 1 elements. All elements at a particular level arecomputed

before proceeding to the next. Triangularization is complete when all elements have been
evaluated.

3.6 Results

Table 3.1 contains results from triangularizing various matrices using ourmethod.

The time taken on a single processor by our method is compared to the time taken by the
uniprocessor algorithm used in SPICE3.

We see that for some examples, the time taken by the sequential algorithm is
more than the time taken by our method. This is because our method ignores all level

zero elements during computation. The sequential algorithm deduces the same information

after considerable searching. This indicates that uniprocessor triangularization algorithms
can beimproved byidentifying level zero elements during the first solution, and bypassing

33

them during subsequent solutions. In cases where the number of level zero elements are

small, the sequential algorithm is faster. This is because doing any computation using a
computation tree is slower than doing it with compiled code.

3.7 Conclusions

In this chapter three levels of task granularity for the parallel solution of a sparse
system were examined. Fine grain parallelism exploits the maximum amount of parallelism

but has large scheduling and synchronization overhead. Large grain parallelism, though
relatively free from such problems, exploits very little parallelism. Medium grain parallelism
is a good compromise between the two extremes. An implementation of the medium grain
approach was described, and it was shown that for most large systems, a single processor
solution was faster than a sequential algorithm. In the following chapter, we examine the
issues involved in scheduling for this element based medium grain approach.

Chapter 4

SCHEDULING

Once tasks that can be executed in parallel areidentified, it is necessary to schedule

them to processors so that none of the precedence constraints are violated. For any given

task graph, there is a minimum time required to evaluate all the nodes of the graph. For a

sequential algorithm, this is the sum of the times required for each node. Let this time be

T8eq. Given a large number of processors (equal to or more than the required upper bound)
a parallel algorithm will require a smaller amount of time. The time required is the sum of

the times of the nodes on the longest path in the graph. Let this time be the critical path
time denoted by the symbol Tc. It is not possible to evaluate the task graph in less than

the critical path time even when more processors are added. The breadth of a task graph
having n levels is defined to be :

breadth = max (number of nodes at level i)

Clearly, thema.ximnm number ofprocessors needed tocomplete evaluation ofthe task graph
within the critical path time is equal to the breadth of the task graph. This is the upper
bound on the number of processors required. Whenever there are as many processors as
the upper bound, scheduling is trivial. The algorithm for parallel evaluation is also simple.
All processors work on nodes ofa particular level at one time. Any processor can select any
node. After all nodes at a particular level are computed, then all the processors move on
to the next level. This is done until all nodes are computed.

For a large system of equations, the breadth of the task graph is much larger
than the number of processors available. Under such circumstances, the simple algorithm
given above fails to complete evaluation within Tc. Whenever the number of processors is

34

35

smaller than the upper bound, it might not be possible to complete the execution within

Tc. However, for the given number of processors, there exists a minimum possible time for

evaluating the taskgraph. Let this time be theminimum task graph evaluation time using n
processors denoted by the symbol Tn. Our scheduling algorithm should be able to schedule

nodes onto processors so that evaluation is complete within T„. The simple scheduling
algorithm rarely completes an evaluation within Tn. La fact, it can be shown that finding
a schedule that completes evaluation within Tn is an NP-complete problem [38]. In most
cases, we have to be content with near-optimal schedules found using heuristics.

The wayscheduling is done places restrictions on howthe processors should evalu

ate the nodes so that precedence relations ofthe task graph are not violated. In the simple
example above, it was required that all processors work on nodes of the same level; if any
processor finishes early, it waits forall others to finish before it goes to the next level. Inter

processor communication is necessary to ensure such a protocol. Obviously, there is some

overhead involved in doing this and the overhead is dependent on the kind of scheduling
algorithm used.

In general, there are two classes ofscheduling algorithms —dynamic scheduling
algorithms and static scheduling algorithms. In thenext two sections these two techniques
are discussed.

4.1 Terminology

Parent and Child Processes

In many parallel processing applications, programs start executing on a single
processor as a single process. This process is called the parent process. When a portion of

the task can be executed in parallel, the parent forks (creates) a number ofnew processes
called child processes. A child process is a duplicate of the parent process, with the same
data, register contents and program counter. If the parent has access to files and shared

memory, the child has access to the same files and shared memory. However, they have
different process identification numbers (PID's). On the Sequent Balance 8000 whenever a

child is created, its PID is returned to the parent. From this point on, the parent and the
child are separate entities. The child processes then start running on the other processors
of the system. After the child processes have completed their work, the parent process

36

terminates them.

A UNIX fork operation is relatively expensive (about 55 milliseconds on the Bal

ance 8000). A parallel application typically forks as many processes as it is likely to need

at the beginning of a program and does not terminate them until the program is complete.

DYNDC (version of UNIXon the Sequent Balance8000) allows any parent process

to fork only as many child processes as there are processors, giving a one-to-one mapping

between processes and processors. In this report, the terms are often used interchangeably.

Their meanings should be clear from the context in which they are used.

Parent and Child Tasks

Precedence relations in a task graph are represented as edges between nodes. If

there is an edgefrom node i to node j, then node i is the parent task of node j and node j
is the child task of node i.

Locks

At any point in the execution of a parallel program, when two or more parallel

processes can read or write the samedata structure, then the resultsof the programdepends

on when a given process references that data structure. There are two basic types of

dependencies : access dependencies and order dependencies. Access violations occur when

two or more processes try to access a shared data at the same time. Order violations

occur if two or more processes try to access the same shared data structure in the wrong
order. To avoid these violations, processes must communicate with each other to execute

the dependent sections one at a time. This communication is done using locks.

A lock can ensure that only one process accesses a shared data structure at a time.

A lock has two values : locked and unlocked. Before attempting to access a shared data

structure, a process waits until the shared data structure is unlocked. The process then

locks the lock, accesses the shared data structure and unlocks the lock. When a process
waits for a lock to become unlocked, it spins in a tight loop, doing no useful work. This
spinning is referred to as busy-wait

The hardware locks providedon the Sequentare referred to as atomic locks because

the action required to lock are performed in a single atomic (indivisible) operation. Hence
it is impossible for two processes to acquire the lock at the same time.

37

Barrier

A barrier isasynchronization point. A processor does the following when it reaches
a barrier :

1. Mark myself present at the barrier.

2. Wait for the other processors to arrive.

3. Proceed.

4.2 Dynamic Scheduling

In dynamic scheduling, each processor schedules its owntask at run time by check

ing a task queue. The task queue contains tasks that are waiting to be executed. La our

case, allnodes requiring evaluation are kept in the queue. Tasks are put in the queue before

hand, or are put in the queue by other processors. A processor takes the first task from

this queue, and works on it. As soon as it completes its work, it takes the next available

task from the queue. If nomore tasks are available, then the processor idles, waiting for all
other processors to finish.

A useful feature ofdynamic scheduling is that it results in dynamic load balancing.
All processes keep working as long as there is work to be done. Since the workload is dis

tributed among the processes, the work can be completed sooner. Unfortunately, dynamic
scheduling entails a significant amount of overhead. Suppose a task graph has k nodes and
m levels. Let us assume that there is only one task queue, and all the nodes of the task

graph are already put there and say there are n processors. It is necessary to use atomic
locks toensure that only one processor takes an element from the queue atatime. If locking
takes two units of time, it requires 2k units of time to take elements out of the queue. In
order to enforce the precedence relationships, no processor should be allowed to work on a

task as long as its parent tasks are not completed. Whenever a processor takes a task from

the queue, it has to verify that the parents of the task have been evaluated. This can be

done in many ways. One way to do this would be to store explicit information about the
parents at each node. Also, each node can have a flag to indicate whether it is computed

ornot. Whenever a node is to be computed, the processor makes sure that all parents have

this flag set. When a processor finds that a parent task has not finished, it spends time
idling in a wait loop.

38

Another way of enforcing the precedence relations is to make sure that all proces

sors work on nodes of the same level at any time. A global level counter is used to keep

track of the level of the nodes the processors are working on. If a processor gets a node

with level different from the level indicated by the level counter, it checks in at a barrier to

indicate that no more tasks for that level are left. As soon as all processors have checked in

at the barrier, one of the processors increments the counter index and the processors start

working on the nodes of the next level. This approach is equivalent to using multiple task

queues, one for each level of the graph. Processors workon nodes at a levelby taking a task

from the queue corresponding to that level. When no more tasks are left, processors check

in at a barrier before proceeding to the queue for the next level. Since there are n processors

checking in at the barrier and there are m levels, 2n(m —1) units of time is required for

barrier synchronization. Though the time spent in sychronization is higher here than in

the previous algorithm, this algorithm uses less memory since explicit information about

parent tasks don't have to be stored. This is a memory versus speed tradeoff. An estimate

of the worst case overhead involved in dynamic scheduling is 2k+ 2n(m - 1) units of time.

4.3 Static Scheduling

In static scheduling, tasks are scheduled at run time, but are divided in some

predetermined way, so that each processor has its own set of tasks to do. Given a set of

tasks, the processors complete all their tasks and wait for other processors to finish. Since

each processor has its own task queue, there is no need to lock before removing tasks from
thequeue, thereby eliminating the 2k units oftime overhead involved indynamic scheduling.
The time required for initial scheduling is the only overhead. In most applications the task
graph is evaluated many times and the cost of initial scheduling is spread over the number

of times the solution of the system of equations is attempted. If the time taken to complete
each task is known o priori, it is also possible to achieve proper load balancing.

Precedence relations and the constraints they impose on the way the processors

evaluate the tasks have been ignored hitherto. The barrier synchronization algorithm de
scribed above can be used to ensure proper evaluation of each node. In that case, the
overhead for synchronization is comparable to that ofdynamic scheduling. It will be shown
later that with some preprocessing, this overhead can be significantly reduced for static
schedules. Static scheduling is more attractive since it has reduced overhead.

39

4.4 Scheduling Algorithm

In this section the scheduling algorithm used forour element based medium grain
approach is described. Since static scheduling has significantly smaller overhead than dy

namic scheduling, static scheduling is chosen. Since the the number and type of operations

at each node is known a priori, it is possible to schedule the nodes so that load balancing
is achieved and processors have minimum idle time.

We defer the discussion on synchronization and interprocessor communication un

til the next section. In this section, it is assumed that no interprocessor communication

is necessary, and a scheduling algorithm is described that produces schedules that have
minimal computation time.

The medium grainapproach produces tasks that are not homogeneous in terms of

the number of operations needed to complete each task. If all processors are working on
nodes of the same level, it is not necessary that they all take the same time. In order to

get an optimal schedule, it has to be ensured (to the maximum extent possible) that nodes
that are scheduled on processors that finish earlier do not depend on the nodes that are

going to take a longer time. This added degree of freedom makes the scheduling problem
more difficult. The algorithm described below is a simple modification of Hu's levelized

scheduling algorithm. Since tasks arenot homogeneous, theyare not scheduled only on the
basis of their level in the graph, but processor idle time and load balancing is also taken
into account.

4.4.1 Algorithm

While scheduling nodes to processors we try to achieve proper load balancing and
seek the minimum possible execution time. Firstly, all the nodes on the critical path are
assigned toa single processor. Ifall theother nodes can bescheduled ontheother processors
so that none of them have more load than the processor that evaluates the critical path,
then the schedule is the best possible one. The scheduling algorithm starts at the topmost
level ofthe task graph. While scheduling nodes at a particular level, all nodes at that level
aresorted in a way that will bedescribed shortly. Anode is taken from this list and assigned
to the processor that until then had thesmallest load. After all nodes at a particular level
have been scheduled, the same procedure is repeated for nodes at the next level, until the
bottom most level is reached. The algorithm is given in Figure 4.1.

build_schedules(task_graph, num.procs)

{

/*Input: Task graph and Number of Processors.

Output: An ordered list of nodes for each processor. */

/* First get the critical path through the graph */
cpath = critical.path(task_graph);

level = 1 ;

while (level <= maxjevel){

nodeJist = all nodes in the task graph with level = level;

/* Sort the node list in descending orderof time required to
evaluate the node */

sort_aodeJist (nodeJist);

/* Put the critical path node on Processor 0 */
add_toJist(listP[0], cpathnode);

while (nodeJist){

procnum = choose_processor(nodeJist, time_array, nunuprocs)
addJoJist(listP[procnum], node);

timejarray[procnum] = time_array[procnum] + timejofjiode(node);

}

level = level + 1;

>

Figure 4.1: Scheduling algorithm

40

N
u

m

b
e

r

o

f

P
r

o

c

s

]

Time

Figure 4.2: Load on processors at some point during scheduling

41

The routine critical path() gives us thecritical path through thegraph. All nodes
at a particular level are sorted into a list called the nodeJist. The routine add_toJist()
adds a node to the list of a particular processor. As an index of the load on the processors,
an array called timejirray is maintained. At anypoint this array contains the total amount

ofwork done by that processor in terms ofthe amount oftime it will need to compute all
thenodes scheduled for it. The routine choose_processor() selects the processor with the
minimum possible load. Thus nodes are always scheduled on the least loaded processor.

Consider the situation depicted in Figure 4.2. The figure shows the load on each
processor in terms of the time required to complete all the tasks scheduled for it. If a node

is now scheduled, it will be assigned to processor number 2. However, if this node depends
on the node which processor 1 is working on, then processor 2 will spend time waiting for
processor 1 to finish before it can start computing. If there are tasks available that are

ready, then processor two can start working on them. To eliminate this wait time the time
when a task is ready has to be estimated.

Given a task graph, the number ofoperations needed at eachnode is an indication

of the amount of time taken to complete the evaluation of that node. If a node has n
operations, we say that it takes n units oftime to evaluate the node. The symbol te is used
to denote this evaluation time. Since all computation trees are known apriori, evaluation
times can be assigned to each node. Assuming that all computations start at time t = 0,
then the time of completion (*c) of a node is the time when some processor completes the

42

evaluation of that node. Assume that nodes of level k are being scheduled. Then all parents

of the nodes have already been scheduled. It is possible to find the tc for all parents of any

node that is about to be scheduled. Assign to all nodes a number TCmax defined as :

2cma* = max { *c of all parents of the node }

Then T^^ for a node is the time when the node becomes ready for computation. Nodes

are sorted in ascending order according to the valueof their TCmax. Nodes are scheduled by

picking up the head of the list and scheduling it onto the least loaded processor.

For some levels of the task graph, there might be n nodes at that level, while there

are k (k > n) processors available. If subsequent levels in the graph also have n or smaller

number of nodes, then only n processors are necessary for the rest of the triangularization.

Whenever the number of nodes at any level becomes less than the number of processors

available, then only the required number of processors is used for computation. For such

situations, some processors are deliberately alloted more tasks than others in order to

minimize the interprocessor communication overhead.

4.4.2 Implementation

The above algorithm is very easy to implement. Wehave built into its implemen

tation some additional features that help us evaluate the quality of our schedules. Given a

task graph, the number of operations needed at each node is an indication of the amount

of time taken to complete the evaluation of that node. If a node has k operations, then its

te is equal to k. Since all computation trees are known a priori, each node can be assigned

an evaluation time. Assuming that all computations started at time t = 0, then the time

of completion (tc) of a node is the time when some processor completes the evaluation of

the node. Assume thereis an adequate number ofprocessors, so that when a node is ready
for evaluation, there is a free processor that can evaluate it. Then the time of completion
for a node is :

tc = max (ta : ieA) + te
icA

The set A is the set of all parents of the node, and tc- is the tc of the ith parent. The time

of completion for all nodes at level one is equal to their evaluation times. The minimum

possible time of evaluation of the task graph is the maximum of the times of completion of
all nodes. It is easy to compute the time ofcompletion ofeach node in the task graph and

43

find their maximum. This is the minimum possible time of evaluation of the task graph,
assuming no synchronization overheads. This time is called Tmin.

Oncea schedule is made, it is of interest to find out the time required by processors

using the schedule to complete the execution of the task graph. Each processor has a list

of nodes that it has to evaluate. For each node, the wait time tw (using previous notation)
is defined as :

*„, = max (t^ : ieA) - Tprcv

Tprev is the time the processor completes the execution of the previous node in its list. All

negative wait times are set to zero. Then the time of completion of any node is defined to

be:

All level zero nodes have zero tw. We can compute the tc of each node in a list and the tc
of the last node in each list gives us the time taken to evaluate the list. The maximum of

completion times for all lists gives us the time taken to complete the evaluation of the task

graph. This time is called Tacfced. The sum of the wait times on individual processors is
also an indication of the total idle time.

4.5 Interprocessor Communication

In order to enforce the precedence relations of the task graph, it is necessary that

nodes be evaluated only after their parents have been evaluated. In the previous section, the
concept of wait time was introduced. Wait time can be estimated but cannot be accurately
known. This is because floating-point operations are not the only factors that determine

the time of evaluation. Non-deterministic memory access times play a major role in the

evaluation time. This non-deterministic nature of the evaluation timeofeach node prevents
guaranteeing that waiting for a predetermined time for the parents to complete will always

ensure that the parent tasks are complete. Thus some form of interprocessor communication
is necessary.

The barrier synchronization method investigated in the section onstatic scheduling
has large overhead when the number ofprocessors and the number oflevels in the task graph
are large. We propose a different method ofsynchronization which is based on the following
observation. To reach a particular node in the list, the processor must have completed the

44

evaluation of all nodes before that node in the list. Thus all parents of that node that

are scheduled on the same processor have already been computed. It is only necessary to

make sure that the other parents of the node have been computed before computing that

node. The other parents of the node have been assigned to other processors, sometimes

more than one parent to a processor. Since the position of the parents in the lists of the

other processors is known, it is onlynecessary to seeif the other processors have processed

beyond that particular element in their list. In that case all parents have been computed

and the node can be evaluated. In casethere is more than one parent on a single processor,

it is only necessary to consider the parent furthest down in the list. All nodes in the list

have an index, which is their position in the list. Saywe have an array called the Processor

Index Array (PIA), which for each processor holds the index of the element it is working

on. Associated with each node in the list is a Required Index Array (RIA) which holds

the minimum index value of each processor before the element can be computed. When

corresponding elements of the Processor Index Array are greater than the Required Index

Array, the element can be computed. The algorithm for evaluating all the nodes in the

node list for a particular processor is given in Figure 4.3.

4.5.1 Reducing synchronization overhead

The problem of scheduling nodes of a task graph onto k processors is similar to

the problem of partitioning the nodes of a graph into k subsets. Then the problem of

reducing inter-processor communication is equivalent to finding partitions no larger than
a given maximum size, so as to minimize the total cost of the edges cut. If all edges are
assigned the same cost, then this is equivalent to finding partitions with smallest numberof

edges between them. Since edges between partitions imply inter-processor communication,
a partition like the one above will require the miniTmim interprocessor communication.

There are various approaches to solving this problem. Since the problem is NP-

complete, finding optimum partitions by exhaustive search takes an inordinate amount

of computation. Max flow-min cut and clustering are the more commonly used methods.
However, these methods donot in general include any provision for satisfying constraints on
thesizes ofthesubsets. Kernighan and Lin [7] developed an efficient heuristic procedure for
partitioning graphs. This algorithm is used to improve the schedules so that interprocessor
communication is minimized.

solve(nodeJist)

{

/* Input: A node list

Output: All nodes evaluated */

while (nodeJist not exhausted){

node = nextJnJist(nodeJist);

until (PIA > RIA)

spin;

evaluate (node);

increment-processorJndex();

}

Figure 4.3: Synchronization algorithm

45

46

Algorithm

The partitions generated by the algorithm of Figure 4.1 constitute the starting

partitions. The essential idea is to start with these partitions and then by repeated ap

plication of the two way partitioning procedure make the partitions as close as possible to

pairwise optimal. Of course pairwise optimality is only a necessary condition for global op-

timality. There may be situations where some complex interchange of three or more items

from three or more subsets is required to reduce the pairwise optimal solution to the global

optimum. However, there is no efficient procedure to do this. The algorithm selects (i,j)

as the next pair of sets to be optimized where either i or j has been changed since the last

time the pair (i,j) was considered.

During pairwise optimization, the following rules have to be observed while inter

changing nodes between processors. These rules ensure that the resulting schedule won't

lead to a deadlock or cause serious load imbalance.

• Only two elements of the same level can be interchanged with each other.

• The nodes selected should roughly have the same te. Heuristically, their te's should

not differ by more than 10%.

4.5.2 Implementation

It is necessary to do some preprocessing to build up the Required Index Array at

each node in the list. The computation tree of each node gives us the parents of the node.

Since duringscheduling the processor assignment for each node can be stored, it is easy to

find the processors on which the parents areevaluated. Ifa parent ofa node is evaluated by
the same processor as the node, it is ignored. For parents on other processors, the Required
Index Array holds the index of the node. For two parent nodes on the same processor, the

higher index number is stored in the Required Index Array. This preprocessing is done once
at the beginning of the solution process. Since the task graph is evaluated many times, the
cost of preprocessing is spread over the number of times it is evaluated. Each processor
writes to different locations in the Processor Index Array, while reading from all others.

Therefore locks are not needed. Elimination of locks saves a considerable amount of time

since locking and unlocking are costly operations.

47

Max. Breadth Max
Circuit Size 6 7 Speedup

Fine Grain

of Task

Graph
Tc •Laeq Speedup

Med. Grain
IYOUNG 76 1.13 0.18 145 55 1695 28689 17
PSPI 80 0.87 0.26 70 40 690 10056 15

NAY 166 0.54 0.36 49 194 987 6249 6
A2D1 218 0.51 0.52 128 251 573 8253 14

BEN2K 402 0.35 0.58 132 411 1842 6888 4

ADDER 450 0.63 0.38 239 536 3468 56049 16

EPROM 687 0.35 0.58 217 696 1923 14874 8

XXI 1013 0.37 0.23 32 381 2754 31686 12

Table 4.1: Characteristics of the circuit matrices

Circuit

Number of Processors

4 6 8 11

•'•ached S •^ached S •* ached S •* ached S

IYOUNG 7377 3.88 5019 5.71 3930 7.30 3276 8.75

PSPI 2529 3.97 1719 5.84 1356 7.41 1149 8.75

NAY 1734 3.60 1392 4.48 1266 4.93 1176 5.31

A2D1 2199 3.75 1608 5.13 1299 6.35 1125 7.34

BEN2K 2802 2.45 2424 2.84 2247 3.06 2154 3.19

ADDER 14505 3.86 10035 5.58 7785 7.19 6555 8.55

EPROM 4650 3.19 3588 4.14 3099 4.79 2814 5.28

XXI 9462 3.34 7818 4.05 7053 4.49 6720 4.71

Table 4.2: Performance predicted by scheduling algorithm

4.6 Results

In this section the results for our scheduling and synchronization algorithms are

presented. The first set of results show the effectiveness of the scheduling algorithm. The
meanings of most of the terms are explained in the corresponding sections. Table 4.1 gives
the characteristics of the circuit matrices and gives the speedups theoretically attainable
from the fine grain and the medium grain approach. The 6 and 7 of the matrices discussed

here is the same as that in chapter 3. Thesymbol S denotes speedup. The speedup formula
for the fine grain approach is obtained by using the formula in chapter 3. For the medium
grain approach, the maximum possible speedup is obtained using the formula :

Speedup= Tseq/Tc

It is seen that in most cases, the scheduling algorithm finds a schedule that can

Circuit T•Laeq

Number of Processors

4 6 8 11

T9ol S Taol S Taol S Taol S

IYOUNG 0.62 0.16 3.83 0.11 5.54 0.08 7.03 0.06 8.98

PSPI 0.23 0.06 3.84 0.04 5.85 0.03 7.44 0.02 9.39

NAY 0.17 0.05 3.57 0.04 4.63 0.03 5.26 0.02 5.90

A2D1 0.23 0.07 3.68 0.05 5.13 0.04 6.46 0.03 8.26

BEN2K 0.19 0.07 2.55 0.06 3.09 0.05 3.41 0.05 3.67

ADDER 1.31 0.34 3.79 0.24 5.45 0.19 6.97 0.14 8.88

EPROM 0.44 0.13 3.37 0.10 4.47 0.08 5.37 0.07 6.16

XXI 0.93 0.30 3.10 0.25 3.73 0.23 4.02 0.19 4.85

Table 4.3: Speedup achievable without synchronization

Circuit •*-aeq

Number of Processors

AI 6 8 11

T8ol S Taol S Taol S Taol S

IYOUNG

PSPI

NAY

A2D1

BEN2K

ADDER

EPROM

XXI

0.62

0.23

0.17

0.23

0.19

1.31

0.44

0.93

0.17

0.06

0.05

0.07

0.07

0.36

0.14

0.31

3.66

3.55

3.50

3.37

2.58

3.56

3.02

3.03

0.12

0.05

0.04

0.05

0.06

0.25

0.11

0.24

5.25

5.21

4.39

4.61

3.19

5.06

3.98

3.79

0.09

0.04

0.03

0.04

0.05

0.20

0.09

0.21

6.58

5.82

5.26

5.69

3.56

6.35

4.79

4.35

0.07

0.03

0.02

0.03

0.04

0.16

0.07

0.19

8.31

8.46

6.13

7.34

4.04

8.01

5.69

4.80

Table 4.4: Speedup achievable with synchronization

48

complete execution within a time close to the minimum, for a smaller number of processors
than the upper bound.

Table 4.3 and Table 4.4 gives the actual execution time of various task graphs

with varying number of processors. To estimate the overhead involved, each task graph is
solved in two ways, once using waiting, the other one using our synchronization algorithm.
Waiting is done by using the wait time derived as a by-product of finding Tc. If the wait

time is n units, then n dummy floating-point divisions are done before proceeding to the
next node in the list. This algorithm doesn't evaluate the task graph correctly most of

the times, but gives us a good estimate of the time that solution would take if there were

no synchronization costs. Table 4.3 gives the solution times using this waiting algorithm.
Table 4.4 gives the solution times using our synchronization method.

We note that the overhead introduced by our scheduling algorithm is quite small.

Circuit Number of Speedup Speedup
Processors Jacob Our algo

1 1.00 1.00

2 2.61 1.87

DECPLA 4 2.41 3.38

6 2.83 4.89

8 2.51 6.01

1 1.00 1.00

2 1.84 1.92

DAC 4 3.15 3.61

6 3.85 5.10

8 4.47 6.37

49

Table 4.5: Speedup comparison

A comparison is made between the speedups obtained by Jacob [27] against those obtained

by the approach presented here, for examples for which the same matrices were available.

It is seen that the approach presented here provides significantly better speedups.

4.7 Conclusion

Scheduling is an important aspect of any parallel algorithm for solving a system
of linear equations. Using our medium grain approach, scheduling is made difficult because
of theheterogeneity of the tasks. However, in most cases, our scheduling algorithm is able
to find near minimum time schedules for a smaller number of processors.

A different synchronization algorithm was given and it was shown that it was

better than barrier synchronization. The overhead incurred is quite small, and in most
cases speedups close to the maximum possible were obtained. Comparison of the approach
presented here with that of Jacob [27] showed that the approach presented here was better.

Chapter 5

REORDERING

It is well known in sparse matrix techniques that the number of divide and update

operations depends on the order in which the rows and columns are arranged. For a very

large system of equations, we are interested in minimizing the amount of time taken to

complete the evaluation of the task graph. For a sequential algorithm, this is equivalent to

minimizing the number of operations needed in evaluating the task graph and also minimiz

ing the number of fillins generated. Consider the matrix shown in Figure 5.1. A sequential

algorithm will take 19 units of time (where a unit of time is the time taken for a single

floating-point operation) to completethe evaluation of the task graph shownin Figure 5.2.

The numbers in brackets inside nodes is the te of each node. Given a sufficient number of

processors, a parallel algorithm will take 11 units of time to evaluate this graph (Tc for the

graph is 11).

If the matrix is reordered to give the matrix shown in Figure 5.3, the sequential

algorithm takes 15units of time to complete the evaluation of the corresponding task graph

x x

x x

x x

x xx 9

x xx

x $ x x

0 is a fill-in

Figure 5.1: Example matrix

50

51

Figure 5.2: Task graph for matrix shown in Figure 5.1

shown in Figure 5.4. The number of operations needed to triangularize the graph have
decreased, and the new ordering does not produce any fillins. The parallel algorithm now
takes 15 units of time to complete theevaluation of the new task graph. It is evident that in

trying to decrease the number of operations required for triangularization we have limited
the amount of parallelism available. For a parallel algorithm, the objective of reordering
to minimize fillins and reducing the number ofoperations may compete with the objective
of reordering to minimize computation time. It is evident that in trying to minimize the
fillins, there is a reduction in the degree of parallelism that might exist among operations,
and consequently the parallel completion time goes up. On the other hand, if parallelism
is maximized by generating more fillins, the completion time might increase due to the
increased number of operations. Also, more fillins means more dependencies and therefore
a larger communication overhead.

The problem of minimizing completion time can now be stated as follows. Given

any matrix A, find an ordering of the rows and columns of A so that the completion time
of the triangularization process using the medium grain parallelism approach is minimized.

x x

XXX

XXX

XXX

XXX

X X

Figure 5.3: Reordered matrix

Figure 5.4: Task graph for matrix in Figure 5.3

52

37 37 37

37 37 3?

X X

X X

53

Figure 5.5: Example matrix #2

In other words, find an ordering of the rows and columns such that the critical path time

Tc is minimized. This is a difficult optimization problem [17]. A heuristic algorithm based
on local minimization of completion time is presented in the following sections.

5.1 Graph Model of Matrix

It isconvenient to use a graph model ofa matrix in thedescription ofthealgorithm.
In this section the graph model is developed and its use is illustrated.

Foranygiven matrix Aofsize nxn theassociated graphG(A) is defined as follows.
It is a bipartite graph consisting ofn row nodes, one for each row, and n column nodes,
one for each column. The row and column nodes are numbered according to the number of
the row or column they represent. Edges are onlyallowed between row nodes and column

nodes. An edge between row node i and column node j exists ifand only ifatJ- is a non-zero
element in the matrix A. For the matrix shown inFigure 5.5 the associated graph is shown
in Figure 5.6. All elements in a row are represented as edges from the corresponding row
node, and all elements ina column are represented as edges from the corresponding column
node. Two nodes are said to be connected if there exists an edge between them. A path
in the graph is a sequence ofalternating row and column nodes such that any two adjacent
nodes in the sequence are connected.

Given a matrix A and its associated graph G(A), for any matrix B which is ob
tained by interchanging rows and column of A, G(B) can be easily obtained. If rows
(columns) a and 6in Aare interchanged the new associated graph is obtained by renum
bering row (column) node a to 6 and row (column) node 6 to a. If columns 1 and 4 are
interchanged in the matrix of Figure 5.5 then the new associated graph is obtained by in
terchanging the numbers of the column nodes 1 and 4 in G(A). If now the rows 1 and 4
are interchanged, the new graph G(A) is obtained by interchanging the number of the row

54

R

Figure 5.6: Associated graph for matrix shown in Figure 5.5

R

Figure 5.7: Graph for matrix after row and columninterchange

nodes 1 and 4. The resulting graph is shown in Figure 5.7. Note that we have done pivot

reordering, bringing a44 to an, and the resulting graph is obtained by renumbering a pair
of row and column nodes.

This graph model can be used to interpret the process of Gaussian elimination

and LU decomposition. Before giving an interpretation of Gaussian elimination and LU

decomposition, we need an algorithm that helps us generate all the fillin elements. Since

the fillins generated are the same for Gaussian elimination and LU decomposition, only one
fillin generation algorithm is necessary.

5.1.1 Fillin Generation

The fillin generation algorithm is as follows. Suppose that the fcth row is being
eliminated. Form the set Ek given by :

Ek = { r : r is a row node and r is connected to column node k and r > k}

55

R

Figure 5.8: Graph for matrix after fillin generation for elimination of first row

Form the set Fk given by :

Fk = { c : c is a column node and c is connected to row node k and ok}

Form the cartesian product of Ek and Fk which is defined as :

Ek X Fk = {(r,c) : r e Ekandc e Fk}

The ordered pairs (r,c) e Ek X Fk are edges in the graph that represent elements

that are affected by elimination of the kth pivot. All edges that are in Ek X Fk and not in
the graph already, represent fillin elements. Fillin generation corresponds to adding these
edges in the graph and marking them as fillin edges. For the matrix shown in Figure 5.5,
considering the first row as the pivot row, we get Ek = {2,4} and Fk = {2,3}. The fillin
edges are (4,2) and (4,3). The resulting graph is shown in Figure 5.8 where the fillin edges
are shown by broken lines.

We now give aninterpretation of Gaussian elimination and LU decomposition for
this graph.

5.1.2 Gaussian Elimination

At the kth stage of Gaussian elimination, element akk is considered as the pivot.
There must exist an edge between row node k and column node k. Ifnot, byasuitable set of
row and column interchanges, an element can be brought into position (k, k). Now generate
all the fillins due to the elimination ofthis pivot using the fillin generation algorithm. Mark
row node k and column node k as eliminated. Also mark all edges connected to row node
k and column node k as eliminated.

56

5.1.3 LU Decomposition

At first all the fillin elements are generated using the fillin generation algorithm

for each pivot. At the kth stage of LU decomposition, mark row node k and column node

k as eliminated and also mark all edges connected to them as eliminated.

5.2 Reordering Algorithm

Given a matrix, our objective is to reorder the matrix in such a manner that the

completion timeis minimized. To achieve this objective, the amount of parallelism have to

be increased, inter-processor communication and also the amount ofcomputation has to be

reduced. As has been shown earlier, the goals ofincreasing parallelism and reducing the
amount ofcomputation are conflicting. It seems that to increase the amount ofparallelism,
the number of fillins have to be large. However, with more fillins there are more edges
in the task graph, and higher overhead in execution of tasks. Thus the goals of reducing
inter-processor communication and increasing parallelism may conflict.

If a sparse matrix can be reordered into an upper or a lower triangular form,
then there are no intertask dependencies. More precisely, there is nothing to be done in
the triangularization process in such a case. However, most practical matrices cannot be

reordered to an upper or lower triangular form. If a matrix is close to this form, the inter
task dependencies arefewer and theamount ofcomputation issmaller. Our objective would
be to find an ordering that takes a matrix closer to an upper or lower triangular form from
its given structure. This is our reordering heuristic.

The algorithm starts by making a choice for the first row of a matrix. The row

selected to be the first row has to have an element in position (1,1). From all rows having
elements at position (1,1), the row that has the minimum numberofelements in it is chosen.

This ensures that the fillins generated by the first row will be a minimum. If there is a

tie, the row with the elements furthest away form the diagonal is selected. The reason
for this is as follows. Any element after the diagonal will generate primary fillins in the
column in which it is present. The primary fillins canproduce more fillins. These are called

secondary fillins. In order to keep the number offillins down, we try to generate fillins as
late as possible in the elimination process. Selecting a row with elements furthest from the
diagonal helps to do this. Once a choice is made, the selected row is swapped with Row 1,

57

which is equivalent to interchanging the numbers of the row nodes in the associated graph.

All edges connected to row node 1 and column node 1 are then marked eliminated.

For each subsequent rowk, a choice is made from amongthe remaining set of rows

the row that helps keep the matrix closest to the upper triangular form. The selected row

is then brought into position for row k. First of all a set of rows called the qualifying set

is formed. For any row k, the qualifying set Qk is the set of all rows below it having an
element at (k, k). In terms of G(A), Qk is given as :

Qk = { r : r is a row node connected to column node k and r > k }

From this set of rows, the row that takes the matrix closest to the upper triangular form is
chosen. The following heuristics are applied.

• If a row in the qualifying set with no elements before position (k,k) is found, then it
is the best choice.

• If there is more than one such row, the row with the least number of elements after

the diagonal is chosen.

• If there is still a tie, the row whose elements after the diagonal are farthest from the
diagonal is chosen.

In terms of G(A), this is equivalent to finding a row node in Qk with the smallest number

of edges marked eliminated. The best choice is one with no eliminated edges connected to
it. If more than one such node exists, then the one with lesser degree is chosen. If there is
still a tie, the row node connected to higher numbered column nodes is chosen.

If there is no row with no elements before (k,k), then the row that minimizes the
cost function Ck given below is chosen.

Ck = WaNF + WbNb

In the formula above, Np is the number of fillin elements generated by choosing that row
as the pivot, and Nb is the number of elements before the diagonal, while Wa and Wb are
given weights. After each pivot row is chosen and the corresponding row node numbers
are interchanged, the row and column nodes and all edges connected to them are marked
eliminated.

•

Rowb X X

Rowc X X

Rowk X

.

58

Figure 5.9: Example matrix #3

Consider the matrix shown in Figure 5.5. For row 1, the best choice is row 4. If

rows 1 and 4 are swapped, the qualifying set for row 4 becomes empty. This is because the

current row 1 does not have any element beyond column 3, and should only be swapped

with rows with number3 or less. Let Cmo* be the column number of largest column node

connected to row node k. Then the new definition of the qualifying set Qk is :

Qk = { r : r is a row node connected to column node k and k <r < Cmax }

Once the qualifying set is found, the heuristics mentioned above may be applied

to choose the best candidate row. Before the heuristics can be applied, we have to make

sure that there is no row in Qk that does not have anyelement after (k,k). In such a case,

evenif that row has elements before the diagonal, it has to be chosen, because it cannot be

used for any row below row k. In terms of the graph G(A), the algorithm ensures that if

thereis a row nodein Qk with only onenon-eliminated edge then that node is chosen. This

is called the preemptive rule, which has to be applied before the choice heuristics. Note

that if the original matrix had all non-zero diagonal elements then only one such row can

exist in the qualifying set. Moreover, if such a row exists, it will be the current row k.

Suppose for a certain row p, row k is the best choice. Then akp is non-zero but
we don't know whether apk is non-zero or not. If apk is zero, then after the swap, row p
is left with a zero diagonal element. If there are no rows below row k with an element in

column k, then Qk will be empty. This happens because all rows with elements on colunm

k have been chosen for rows above. The only way to continue with the algorithm is to swap
the current row k with some row above (or make a composite set of row swaps) so that an
element is brought in at position (k, k) without introducing a zero element at any of the
diagonals above. If the original matrix had all non-zero diagonal elements, then it is easy

59

Figure 5.10: Partial Graph of matrix shown in Figure 5.9

to see that the current row will have elements before position (k,k). Say that current row

has an element (k,a) where a < k. Then if row a has element (a,k), then we can bring
in a non-zero element at position (k,k) without introducing any zero's in other diagonal

positions by swapping rows a and k. In terms of the graph G(A), this is equivalent to doing

the following : for every column node a connected to row node k such that a < k, if row
node a is connected to column node k, then swap row nodes a and k. This might not always

be possible. Consider part of a matrixshown in Figure 5.9. Obviously the condition stated

above is not satisfied. However, the situation can still be remedied by swapping rows c and

b and then swap rows 6 and k. In terms of the graph G(A), this is equivalent to finding a
path from column node k to row node k such that the following constraints are satisfied :

• If a column node is visited, the corresponding row node is visited

• Only eliminated edges are traversed

If the set of row nodes in the path is maintained in the order visited, then swapping the
rows in that order will bring in a non-zero element at (k,k). It can be easily shown that

such a path will always be found if the original matrix had non-zero diagonal elements.
This is illustrated with the example ofFigure 5.9. The graph for the corresponding matrix
is shown in Figure 5.10. The path from column node k to the row node k can be easily
seen, and the order in which nodes are visited is {c,b,k}. By swapping nodes c and b and

then band k, the problem is solved. This procedure also works for the first case where only
a simple swap was necessary.

Whenever Qkisempty, theset ofrow swaps takes the matrix away from the upper
diagonal form. To ensure that this is happens infrequently, a range limiting heuristic is
applied. This heuristic ensures that for a particular row k under consideration, only those

60

rows which are withina certain range R ofrow k should be considered in the qualifying set.
Define Rmax as :

Rmax = min {Cmax, k + R }

Then the definition of the qualifying set is :

Qk = { r : r is a row node connected to column node k and k <r < Rmax }

The mainreordering algorithm is shown in Figure 5.11. The routineget jqualifying_set

computes the qualifying set Qk (as defined above) for a given row k. If the qualifying set

is non-empty, then the choosing heuristics can be used to find the best candidate row.

The choosing heuristics are implemented in the routine get.choice. If the qualifying set

is empty, then the routine correct.problem is called to find a set of row swaps to take

care of the situation. After the rows have been swapped, the appropriate fillins have to be

generated.

The algorithm for choosing the best candidate row is given in Figure5.12. At first

the preemptive rule is applied to Qk. If there is an element that preempts the application

of the heuristics, then it is chosen. Otherwise, the heuristics are applied in choosing the
best row. Theroutine get.best returns all rows in Qk that do not have an eliminated edge
in G(A). If this set is not null, then the routine choose_best_row applies the other two
heuristics to choose the best row. If there are no rows without elements before (k,k) then
thecost function is used to determine thebest choice. By varying the values ofthe weights
Wa and Wb, we can reorder to minimize fillins or minimize the number of elements before

the diagonal.

The algorithm used in the routine correct.problem is given in Figure 5.13. All
old fillin edges are removed from the graph, as some eliminated rows are going to be in
terchanged. Then the routine find .path finds the shortest path from the column node k

to the row node k satisfying the required conditions. Once the path is found the routine
swapjrows performs the set of swaps.

The problem of finding the shortest path from the row node k to the column node

k satisfying the constraints can be reformulated to make it easier. If row nodes and column

nodes are thought of as one node for all nodes less than k, then the problem of finding the
shortest path satisfying theconstraints reduces to finding theshortest path in the modified
graph between row node k and column node k. This can be easily done using Dijkstra's

reorder jnatrix(matrix)

{

/*Input: Matrix to be reordered

Output: Reordered matrix */

size = size_of(matrix);

range = 0.2 * size ;

for (k=l; k<size ; k++){

Qk = get_qualifying_set(k);

if (Qk not empty){

bestjchoice = get_choice(Qjb);

}

else{

correct_problem(k);

bestjchoice = 0;

}

if (first_choice > 0)

swap_rows(k, bestjchoice);

generateJillins(k);

}

return (matrix);

Figure 5.11: Reordering Algorithm

61

getjchoice(Qfc)

{

/*Input: Qk for a particular row k

Output: The best choice for row k */

/* Apply the pre-emptive rule first */

if (row k is in Qk and does not have element beyond (k, k))
return (k);

else {

choicejset = get_best(Qfc);

if (choicejset is not null){

/* We choose the best amongst these */

choice = choose_best_row(Qjt)»

return (choice);

}

else{

/* No rows with no elements before (k, k) */
foreach (row j in Qk) {

C(j) = WaNF + WbNb;

}

choice = j* such that C(j*) = min,- C(j);
return (choice);

}

}

}

Figure 5.12: Choosing Algorithm

62

correct_problem(k)

{

/* Input: The number of the row for which Qk is empty

removejaJl_oldJUlins();

path = find_path();

swap_rows(path);

generate_new_fillins();

return;

}

}

63

Figure 5.13: Algorithm for correcting problem

shortest-path algorithm [16].

As is evident, this algorithm transforms any matrix as close as possible to an

upper triangular form. If a matrix is already close to a lower triangular form, it may be

easier and better to transform it into a lower triangular form. To transform a matrix to a

lower triangular form, the algorithm can be applied to the transpose of the matrix. The

reordering algorithm is applied to both the original matrix and its transpose. The one that
gives a smaller computation time is selected.

5.3 Results

Table 5.1 gives the results ofreordering ona set oftest matrices. The comparison
is made on the basis of Tc obtained from the scheduling algorithm. We see that for most of

the examples considered, the heuristics were able to find an ordering that had smaller Tc.

In the table, 7V> is the number of fillins, Ne is the number of elements and NL
is the number oflevels in the task graph. P.I. indicates percentage improvement. We note
that in one case the algorithm produced no improvement. This is probably because the
matrix cannot be reordered to give a better matrix. We note that in some cases the number

64

Circuit Size Before Reorder After Reorder

P.I.

Time

takenNF NE NL Tc NF NE NL Tc
IYOUNG 76 800 1222 34 1695 230 652 19 '588 65 1.21

PSPI 80 409 687 24 690 376 654 24 675 2.17 1.50

NAY 166 519 1202 25 987 807 1490 31 882 11 2.28

A2D1 218 738 1630 16 573 743 1635 16 573 0 5.44

BEN2K 402 205 2205 11 1842 194 2194 11 1839 0.16 20.76

ADDER 450 2316 4360 43 3468 1829 3873 38 1311 62 5.82

EPROM 687 1122 4199 25 1923 1234 4311 27 1911 0.62 50.31

XXI 1013 3644 7145 200 2754 4947 8448 205 2298 17 26.68

Table 5.1: Effect of reordering on Tc

Circuit Taol Taol
Before After P.I.

Reorder Reorder

IYOUNG 0.075 0.018 75

PSPI 0.027 0.020 25

NAY 0.028 0.027 3

A2D1 0.032 0.027 15

BEN2K 0.047 0.037 21

ADDER 0.163 0.082 50

EPROM 0.077 0.076 1

XXI 0.192 0.106 45

Table 5.2: Effect of reordering on actual execution time

of fillins went up but still the value of Tc went down, indicating that increasing parallelism
may require more fillins.

Table 5.2 gives us the actual times of evaluation of the task graphs of each of

the matrices, using eleven processors. We compare the percentage improvement values
in the above table to those from table 5.1 to arrive at conclusions about the amount of

sychronization overhead involved. We see that in most cases, the overhead introduced by
more fillins is very small. In fact we get better percentage improvement in speedup than
what the schedule forecasts. This is due to the smaller synchronization overhead incurred
after reordering.

65

5.4 Conclusion

An algorithm for reordering matrices to minimize the completion time was given.

It was observed that the goals of minimizing completion time and minimizing fillins are
conflicting. For some cases, to increase the amount of parallelism available, the number of
fillins have to be increased.

Results indicate that our algorithm does find an ordering which requires smaller

amount of time for parallel completion of evaluation. In most cases, it is not necessary
to reorder a matrix once it has been reordered. This reordering can be done once at the

beginning of computation, and can be used for the rest of the simulation. The cost of

reordering, like that of scheduling, is spread out over a number of solutions.

Chapter 6

CONCLUSION

We have discussed three aspects of parallel solution of a sparse system of linear

equations, namely, scheduling, interprocessor communication and reordering to minimize

the computation time. Finding a schedule that minimizes the interprocessorcommunication

and the total computation time is known to be NP-complete. Our conjecture is that the

problem of reordering is NP-complete too. Some of the heuristics used by other researchers

in solving the above problems were outlined.

Three levels of task granularity for the parallel solution of a sparse system were

examined. Though fine grain parallelism exploits the maximum amount of parallelism it

has high scheduling and synchronization overhead. Large grain parallelism, though rela
tively free from such problems, exploits very little parallelism. Medium grain parallelism

is seen to be a good compromise between the two extremes. The computation tree model

introduced by Huang and Wing [26] to represent tasks to be done in parallel and their

inter-dependencies was adopted for ourwork. Tasks were represented as computation trees.
An implementation of the medium grain approach was described, and it was found that,
for most large systems, a single processor solution was faster than a sequential algorithm.

Scheduling is an important aspect ofany parallel algorithm for solving a system of
linear equations. Since the problem offinding an optimum schedule is NP-complete, only
heuristic solutions can be attempted. We argued against the use of dynamic scheduling
techniques and showed how static schedules can produce faster run times. The scheduling
algorithm developed tries to assign jobs to the processors so that completion time is min
imized. For the medium grain approach, scheduling is more difficult because of unequal
task size. However, in most cases, the scheduling algorithm was able to find near minimum

66

67

time schedules with a smaller number of processors than the maximum required. For many
implementations of the fine grain approach, interprocessor communication time dominated

thetotal solution time. Adifferent synchronization algorithm was proposed and was shown
to be better than lock-based barrier synchronization. The synchronization overhead was
thus significantly reduced. In most cases we were able to obtain speedups close to the
maximum possible. Comparison of the approach developed in this report work with that of
Jacob [27] showed that the algorithms in this report performed better in terms of speedup
achievable.

The issue of reordering the rows and columns of the matrix for minimizing the
computation time was also addressed. We saw that the goals of minimizing completion
time and minimizing fillins are conflicting. Some heuristics were developed for solving the
reordering problem. An algorithm based on these heuristics was presented. For some cases,
it was observed that in order to minimize the computation time the number of fillins had to

beincreased. Results indicate that our algorithm does find an ordering which takes minimal
time for solution. In most cases, it is not necessary to reorder a matrix once it has been

reordered. This reordering can be done once at the beginning of computation, and can be

used for the rest of the simulation. The cost ofreordering, like that ofscheduling is spread
out over a number of solutions.

For large examples, the number of processors required to complete the execution

in the minimum possible time is very large. Most multiprocessors today do not support

a very large number of processors. If the matrix can be reordered so that the breadth

of the task graph is equal to the number of processors, scheduling becomes a trivial task.

This problem is slightly different from the reordering problem treated here, and needs to

be solved. Though static scheduling gives better performance than dynamic scheduling we

have seen that synchronization overheads are not insignificant. Reducing synchronization

overhead by reordering or using specialized hardware has to be investigated. We have used

the standard Doolittle's LU decomposition algorithm as the algorithm for this research.

There is a possibility that different solution algorithms may show varying performance. It

might be possible to finda solution algorithm that for all kindsofmatrices produces the best

average result. Identification of such an algorithm is very important for a viable parallel

circuit simulator. Digital circuits show a significant amount of temporal latency. Thus all

entries in the Jacobian do not change every time it is loaded. An event-driven solution

algorithm would detect all the changed values in the new Jacobian and recompute only

68

those elements whose values are affected by this change. Since all LU factors don't have to

be computed, the amount of time required for solution may decrease. However, there might

be some overhead involved in this method. The viability of an event-driven sparse system

solver also has to be investigated. Lastly all the algorithms need to be incorporated in a

working circuit simulator like SPICE3.

Bibliography

[1] Balance 8000/21000 Parallel Programming. Sequent Computer Systems, Inc., Novem
ber 1986.

[2] Thomas Adams, K. Chandy, and J.R. Dickson. A Comparison of List Schedules for
Parallel Processing Systems. Communications ofthe ACM, 17(12):685-690, December
1974.

[3] A.V. Aho and J.D. Ullman. Design and Analysis of Computer Algorithms. McGraw
Hill, 1980.

[4] Christopher P. Arnold, Michael I. Parr, and Michael B. Dewe. An Efficient Parallel Al

gorithm for the Solution ofLarge Sparse Linear MatrixEquations. IEEE Transactions
on Computers, C-32(3):265-272, March 1983.

[5] R. Betancourt. Efficient Parallel Processing Technique for Inverting Matrices with
Random Sparsity. IEEProceedings, 133(4):235-240, July 1986.

[6] Gabriel Bischoff and Steven Greenberg. CAYENNE : A Parallel Implementation of
the Circuit Simulator Spice. In Proceedings of the ICCAD, 1986.

[7] B.W.Kernighan and S.Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
The Bell System Technical Journal, 49:291-307, 1970.

[8] Andrea Casotto. Parallel Algorithm for Sparse Matrices : LU Decomposition. 1985.
Class Project at UCB.

[9] Mi-Chang Chang and LN. Hajj. iPRIDE : A Parallel Integrated Circuit Simulator
Using Direct Method. In Proceedings of the ICCAD, pages 304-307, 1988.

69

70

[10] Chien-Chih Chen and Yu-Hen Hu. Parallel LU Factorization for Circuit Simulation

on MIMD Computer. In Proceedings of ICCAD, 1988.

[11] Chien-Chih Chen and Yu-Hen Hu. A Practical Scheduling Algorithm for Parallel LU

Factorization of Circuit Simulation. In Proceedings of ICCAD, 1988.

[12] PaulCox, Richard Burch, and BertonEpler. Circuit Partitioning for Parallel Process

ing. In Proceeding of the ICCAD, 1986.

[13] Paul Cox, Richard Burch, Dale Hocevar, and Ping Yang. SUPPLE: Simulator Utilizing

Parallel Processing and Latency Exploitation. In Proceeding of the ICCAD, pages 368-

371, 1987.

[14] Eliezer Dekel and Sartaj Sahni. Binary Trees and Parallel Scheduling Algorithms.
IEEE Transactions on Computers, C-32(3):307-315, March 1983.

[15] Eliezer Dekel and Sartaj Sahni. Parallel Scheduling Algorithms. Operations Research,
31(l):24-49, January-February 1983.

[16] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-
ematik, 1:269-271, 1959.

[17] D.J.Rose and R.E.Tarjan. Algorithmic aspects of vertex elimination. In Proceedings
of the 7th Annual Symposium on the Theory of Computing, 1975.

[18] E.AXee and D.G.Messerschmitt. Static Scheduling of Synchronous Data Flow Pro
grams for Digital Signal Processing. IEEE Transactions on Computers, C-36(l):24-35,
January 1987.

[19] E.CutHill and J.McKee. Reducing the bandwidth of sparse symmetric matrices. In
24th National Conference of the ACM, 1969.

[20] Alan George and Joseph W-H Liu. Computer Solution ofLarge Sparse Positive Definite
System. Prentice Hall, Inc, 1981.

[21] R.S. Gyurcsik. AnAttached Processor for MOS-transistor Model Evaluation. PhD the

sis, University ofCalifornia at Berkeley, 1986. Memorandum No. UCB/ERL M86/82.

[22] R.S. Gyurcsik. BIASC :A Circuit Simulation Program for the IBM PC. Wescon/85
Professional Program Session Record 32/4, San Francisco, CA, Nov. 1985.

71

[23] Gary Hachtel, Robert K. Brayton, and Fred G. Gustavson. The Sparse Tableau Ap
proach to Network Analysis and Design. IEEE Transactions on Circuit Theory, CT-
18(1):101-113, January 1971.

[24] H.M.Markowitz. The Elimination form of the Inverse and its Application to Linear
Programming. Management Science, 3:255-269, April 1957.

[25] T.C. Hu. Parallel Sequencing and Assembly Line Problems. Operations Research,
9:841-848, 1961.

[26] John W. Huang and Omar Wing. Optimum Parallel Triangulation ofa Sparse Matrix.
IEEE Transactions on Circuits and Systems, CAS-26(9):726-732, September 1979.

[27] George K. Jacob. Direct Methods in Circuit Simulation Using Multiprocessors. PhD
thesis, University of California at Berkeley, 1987. Memorandum No. UCB/ERL
M87/67.

[28] J.A.G.Jess and H.G.M.Kees. A data structure for parallel LU decomposition. IEEE
Transaction on Computers, C-31:231-239, 1982.

[29] A.R. Newton J.L. Burns and D.O. Pederson. Active Device Table Look-up Models
for Circuit Simulation. In IEEE International Symposium on Circuits and Systems,
pages 250-253, Newport Beach, CA, May 1983.

[30] H.F. Ko. A Special Purpose Architecture and Parallel Algorithms on a Multiprocessor
System for the Solution of Large Scale Linear Systems of Equations. PhD thesis,

University of California at Berkeley, 1986. ERL memo.

[31] Walter H. Kohler. A Preliminary Evaluation of the Critical Path Method for Schedul

ing Tasks on Multiprocessor Systems. IEEE Transactions on Computers, :1235-1238,
December 1975.

[32] E. Lelarasmee. The Waveform Relaxation Method for Time Domain Analysis ofLarge
Scale Integrated Circuits : Theory and Applications. PhD thesis, University of Califor

nia at Berkeley, 1982. Memo Number ERL-M82/40.

[33] Joseph W. H. Liu. Reordering Sparse Matrices for Parallel Elimination. Technical

Report CS-87-01, York University, Department of Computer Science, January 1987.

72

[34] J.W.H. Liu and A. Mirazian. A linear reordering algorithm for parallel pivoting of

chordal graphs. Technical Report, Department of Computer Science, York University,

1987.

[35] R.E. Lord, J.S. Kowalik, and S.P. Kumar. Solving Linear Algebraic Equations on an

MIMD Computer. Journal of the ACM, 30(l):103-117, January 1983.

[36] Robert Lucas, Tom Blank, and Jerome Tiemann. A ParallelSolution Method for Large

Sparse System of Equations. In Proceeding of the ICCAD, 1986.

[37] M.Consard, J.M.Muller, Y.Robert, and D. Trystram. Communication costs versus

computation costs in parallel Gaussian elimination. In Parallel Algorithm and Archi

tectures, pages 19-29, Elsevier Science Publishers B.V.(North Holland), 1986.

[38] M.R.Garey and D.S.Johnson. Computers and Intractability — A Guide to the Theory

of NP-completeness. Freeman : San Francisco, 1979. Problem SS9.

[39] L. W. Nagel. SPICE2 : A Computer Program to Simulate Semiconductor Circuits.

PhD thesis, University of California at Berkeley, 1975. Memo Number ERL-M520.

[40] A.R. Newton. The Simulation ofLarge Scale Integrated Circuits. PhD thesis, Univer
sity of California at Berkeley, 1978. Memo Number ERL-M78/52.

[41] T. Quarles. Spice3 User Guide. January 1988.

[42] Gunter Rote. A Parallel Scheduling Algorithm for Minimizing the Number ofUnsched
uled Jobs. In Parallel Algorithm and Architectures, pages 99-108, Elsevier Science
Publishers B.V.(North Holland), 1986.

[43] Yousef Saad. Gaussian Elimination on Hypercubes. In Parallel Algorithm and Archi
tectures, pages 5-17, Elsevier Science Publishers B.V.(North Holland), 1986.

[44] P. Sadayappan and V.Visvanathan. Parallelization and Performance Evaluation of
Circuit Simulation on a Shared Memory Multiprocessor. Technical Report, AT&T Bell
Laboratories, 1988.

[45] K. Sakallah and S.W. Director. An Activity Directed Circuit Simulation Algorithm. In
IEEE International Conference on Circuits and Computers, pages 1032-1035, October
1980.

73

[46] R.A. Saleh. Nonlinear Relaxation Algorithms for Circuit Simulation. PhD thesis,
University of California at Berkeley, 1987. Memo Number ERL-M87/21.

[47] A. Sangiovanni-Vincentelli. Computer Design Aids for VLSI Circuits, chapter Circuit
Simulation, pages 19-113. Groningen, The Netherlands : Sijthoff and Noordhoff, 1981.

[48] A. Sangiovanni-Vincentelli, Li-Kuan Chen, and L.O. Chua. An Efficient Heuristic

Cluster Algorithm for Tearing Large Scale Networks. IEEE Transactions on Circuits
and Systems, CAS-24(12), December 1977.

[49] A. Sangiovanni-Vincentelli, L.K. Chen, and L.O. Chua. A New Tearing Approach —
Node-Tearing Nodal Analysis. In Proceedings of IEEE International Symposium on
Circuits and Systems, pages 143-147, 1977.

[50] T. Shima, T. Sugawara, S. Moriyama, and H. Yamada. Three-dimensional Table

Look-up MOSFET Model for Precise Circuit Simulation. IEEE Journal of Solid-State
Circuits, SC-17:449-454, June 1982.

[51] Mandayam A. Srinivas. Optimal Parallel Scheduling of Gaussian Elimination DAG's.
IEEE Transactions on Computers, C-32(12):1109-1117, December 1983.

[52] V. Strassen. Gaussian Elimination is not optimal. Numerische Mathematik, 13:354-
356, 1969.

[53] R. Thomas. Using the Butterfly to Solve Simultaneous Linear Equations. Technical
Report, BBN Labs Memorandum, Cambridge, MA, March 1985.

[54] W.F. Tinney. Comments on using sparsity techniques for power system problems.
Technical Report, Sparse Matrix Proceedings, IBM Research Report, 1969.

[55] A.Vladimirescu. LSI Circuit Simulation on Vector Computers. PhD thesis, University
of California at Berkeley, 1982. Memorandum No. UCB/ERL M82/75.

[56] W.T. Weeks et al. Algorithms for ASTAP — A Network Analysis Program. IEEE
Transactions on Circuit Theory, CT-20:628-634, November 1973.

[57] J.K. White. The Multirate Integration Properties of Waveform Relaxation, with Ap
plications to Circuit Simulation and Parallel Computation. PhD thesis, University of
California at Berkeley, 1985. Memo Number ERL-M85/90.

74

[58] Omar Wing and John W. Huang. A Compulation Model of ParallelSolution of Linear

Equations. IEEE Transaction on Computers, C-29(7):632-638, July 1980.

[59] F. Yamamoto and S. Takahashi. Vectorized LU Decomposition Algorithms for Large

Scale Circuit Simulation. IEEE Transactions on Computer-Aided Design, CAD-

4(3):232-239, July 1985.

[60] P. Yang. AnInvestigation of Ordering, Tearing and Latency Algorithms for the Time-
Domain Simulation of Large Circuits. Technical Report, Report R-891, Coordinated
Science Lab., University of Illinois, Urbana, August 1969.

[61] Ping Yang. An Efficient Ordering Algorithm in theModified Nodal Approach for VLSI
Circuit Simulations. In Proceeding of the ICCAD, 1985.

[62] Chen-Ping Yuan, Robert Lucas, Philip Chan, and Robert Dutton. Parallel Electronic

Circuit Simulation on the iPSC System. In IEEE Custom Integrated Circuits Confer
ence, 1988.

[63] Earl Edward Zmijewski. Sparse Cholesky Factorization on a Multiprocessor. PhD
thesis, Cornell University, 1987.

	Copyright notice1989
	ERL-89-89

