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1. Hopfield Networks

It is well known [1, 2] that a neural network can be used to compute the minimum of a function

E(x) defined on a hypercube [0, 1)" as follows. Let v;(t) be the state at node i at time t and set

vi(t) = g(ui®) (1.1)
%‘t(i) = —-E(v(t) (1.2)

where Ey(v) = 337 E(v) and g is an increasing function. The special case of a quadratic E
1

E(V) = -1 3 W;v;jv;— 3 6;v; (1.3)
1,} 1

where we assume W;; = Wj;, results in

Ei(v) = - ,Z W v;—6; (1.4)
which is particularly well suited for realization as an analog integrated circuit.

As Hopfield and Tank [3) and others (e.g., [4]) have shown, a variety of computational problems of
considerable complexity can be reduced to computing the global minimum of a quadratic function. With
current technology, a network with several hundred nodes and with the dynamics given by equation (1.1)
through (1.3) can probably be built on a single chip. The potential for simple and fast computation thus

created is exciting indeed.

However, (1.1) and (1.2) represent essentially a gradient-descent method for minimization, and such

methods do not always reach a global minimum. To see this we write using (1.1) and (1.2)

& B0® = TEv0) SO (15)

= S EvQ) Fuy) 20



= =¥ g EXv@®) < 0
1
which shows that E is decreasing but not stricely decreasing and the equilibrium reached may only be a

local minimum.

2. Boltzmann Machines

For some problems it is sufficient to restrict Vi to binary values, say v; =0, 1. The collection of the
states at all the nodes of the network v(t) = {vi(t)} now takes values in {0,1]?, and v(t) will be called the
configuration of the network at time t. A Boltzmann machine (5] is a network where v(t) is a {0, 1)n

valued discrete-time Markov chain with state transitions defined as follows:

For each ve (0,1})® define a neighborhood N(v)e {0,1}". We assume that
v'e N(v) = ve N(v) and v ¢ N(v). Attime t+1 we choose a v’ € N(v(t)) at random (say with equal
probabilities) and set

v(t+1) = v'  with probability p(AF) 2.1)
v(t) with probability 1 - p(AE)

where AE is given by
AE = E(v')-E(v(t)) (2.2)
and p(AE) is a probability of the form
D(AE) = & T ¢ AR ) 2.3)

for some decreasing function f. Familiar examples include

P(AE) = min (1,6 T%5)

1 1
~mrAE - 1AE)
= ¢ A 7T

and

P(AE) = 1 =



It is clear that v(-) has a bias for moving in the direction of decreasing AE, but will move with nonzero

probabilities even for increasing AE.
The one-step transition probability is given by

P(vivg) = Prob(v(t+1)=vIv(t) =vg)

= TN%T()YI' PEV)-E(vg)) ve N(vp) (2.4)

=0 v#Vp, v&N(vp)
and
1
P(vglvg) = 1 - V) —E(v
(volvo) TN T v e%(v,) P(E(V') — E(vo))
where IN(vo)! denotes the cardinality of N(vo). With p given by (2.3), we have

1
S Pwivge T INwg)l

_1 1
= Pvivie TE INw)l + Pvivore T |NGvg)!
Vo€ N(v)

_1 _1 v
= INw)l e TEV_ > FIEW)-EW)! e 71 EVHEC)]
v'e N(v)

_1
+ f(IE(v) ~E(vg)l) e 2T (E(v)+E(vo)]
)

vo€ N(v,

_1
= INw)l ¢ TE®
It follows that a probability distribution of the form

_1
P(v(t) =v) = K IN(w)l ¢ TV
is left invariant by the transitions.

If, in addition, the Markov chain is irreducible, ie., every v can be reached from any initial

configuration vg, then



1
POV® =vIV(t) =vg) ——— K INv)l e T @2.5)

t-t) o0

where K is the normalizing constant. If we assume IN(v)! is independent of v, then the stationary distri-

bution is simply

PO) = e TEW 2.6)

1
- TEW. i e . A .
whereZ=Y ¢ T is called the partition function in statistical mechanics.
v

Equation (2.6) is called the Gibbs or Boltzmann distribution, and the Markov chain v(t) a Gibbs
Jfield. A network with such a v(t) has been called a Boltzmann machine [5]. It could also have been called

a Gibbs machine.

3. Simulated Annealing

Because the stationary distribution of a Boltzmann machine is given by
1
-wE
PY) = L& TV G.1)

the peaks of P(v) coincide with the minima of E(v). As the parameter T (temperature) decreases to zero,
P(v) will approach a set of Dirac §-functions at the global minima of E(v). This is the principle on which
simulated annealing is based [6].

Suppose that we choose a sequence {Ty} decreasing to 0 sufficiently slowly so that for large k, v(k)

is distributed approximately according to

1
=~ E(v)
Pev) = L e

Then we would expect v(k) to converge to a global minimum. This is indeed the case for Ty of the form

_ [
Te = meisgy (3.2)



where ¢ is a ‘‘sufficiently large’’ constant {7].

Simulated annealing can be extended to the continuous variable case. This is done with the

Langevin algorithm (8, 9], which is defined by a set of stochastic differential equations of the form

dvi () = —E;(v(t))dt+ V2T d W; (1) (3.3)

where E; = 937 E as before and {W;} is a set of independent Wiener processes. The goal, once again, is
1
to get a stationary distribution for v(t) characterized by the density function

Lo
p(v) = -é—e TE (3.4)

However, for v e IR® there may be no density function of this form since exp (~ ,%- E) may not be integr-

able. Forv e [0, 1], (3.3) also does not guarantee a stationary density of the form (3.4) without impos-

ing a “‘reflecting boundary’’ condition at every boundary v; =0, 1 [8].

4. Diffusion Machines: Stochastic Hopfield Networks

We propose a scheme that is a modification of both the Langevin algorithm and the Hopfield net-
work. Suppose that we inject noise in a Hopfield network so that at the ith node the equations of dynam-

ics are now given by (c.f. (1.1) and (1.2)):

vild = gy (1) @.1)
dui(®) = - E;(v())dt+ o5 (ut) ) d W; (t) 4.2)

where (4.2) is a stochastic differential equation of the Ito type [10]. As in the Langevin algorithm, {W;}

are independent Wiener processes.

The question we now pose is the following: Can o;’s be found so that v(t) is a stationary Markov

process with the following stationary density?

“LEw
po(v) = 4 T @.3)



The answer is surprisingly simple, and unique. The required o is given by

o (u(®)) = \/ TEDY @4)
so that (4.2) becomes
a0 = ~E o)+ 7oy 4w 4.5)
Furthermore, if we denote
fx) = g'(g"' (x)) (4.6)

then v; (t) satisfies the stochastic differential equation.
dvi(® = —f(vi( ) E; (v(t) )dt + T £ (v; (t) ) dt + V2T fivii)) dW;(® 4.7

If f(x) =0 at x=0, 1, then stationarity of v(t) is assured. If not, a reflecting boundary is needed at each

vi=0,1.

To derive (4.4), we first note that with a smooth 8, we can use the Ito differentiation formula [11)

and derive a set of stochastic differential equations for v; which are of the form

dvi(t) = m;(v(t))dt+o;(v(t))d W; (1) 4.8)
The transition density p(v,tivg, to) of v(t) must satisfy the Fokker-Planck equation

2 - ;;,?,—i[%—ng,—i(o?p)—map} 4.9)
It follows that if (4.3) is to be the stationary density then we must have

> o [ + & (o,lpo)-mipoJ =0 4.10)
which is satisfied if m; and 2 satisfy

mi = 3 62 (- F B+ S (G oD @.11)



Since (4.8) is derived from (4.1) and (4.2) using the Ito differentiation formula, we have
dvi(® = g’ (ui(®)) du; () + -%- g (u (1)) o (u(r) ) dt
Comparing (4.12) and (4.8), we get

0; (g()) = g’ (up) o4 (u)

and
m;(v) = - fV)E; (v) + 3 Unf) (v) 62 (¥)
where f is given by

fix) = g'(g"! (%))

Comparing (4.6) with (4.11) now yields
7 02W) = TEv)

which is a relationship of great simplicity.

4.12)

4.13)

4.14)

4.6)

4.15)

A network with dynamics governed by (4.1) and (4.5) (equivalently (4.7)) will be called a diffusion

machine. We propose that it be used as the basis for studying simulated annealing and machine leaming

[5]. As a neural computing system, it has a number of important advantages. First, it is quite general.

There is no need to assume that the minimum occurs at a comer of the cube. Second, it allows the non-

linearity g to play a stabilizing role in ensuring stationarity. Finally and most importantly, it is well

suited for direct circuit implementation, thus providing potentially much faster computation for both

annealing and machine learning.

5. An Example
A favorite choice of g is

gx) =  (1+tanh X)

é.1



which yields
g® = 2 (1~ X) = L cosh Xy 5.2)
and
fy) = g (€' (1)) = = [1-Q2y— 1) (5.3)
_ 2
= Syd-y)

Equations (4.5) and (4.7) now become

du;(® = - E;(v(t))dt+ 2VaT cosh [ u‘T(t)] dW;@® G4
dVi® = - 2vO 1-v%OIEv®)d+ 2L [1-2v,o)a 5.5)

£2VIv® -l dWo

As a second example, consider the case

gx)=x , 0<sxg1
=1 , x>1
=0 , x<0

This example corresponds to the Langevin algorithm as considered in [8]. Because g~ ! (v) does not exist
in this case, this example is not really a diffusion machine. Ifit is to be considered at all, reflecting boun-

daries at v; =0, 1, are required [8].

6. Rate of Convergence

A diffusion machine can be used with a cooling schedule {Ty} to achieve simulated annealing. For

that purpose an estimate of the rate at which

p(v;t!vo, to) = po(v)

is needed. Diffusion theory provides a powerful approach to such estimates (c.f., [9]).



Under the assumption f(x) =0, x =0, 1, we can write [

p(v,tivo, 0) = po(v) ; e My (v) ya (Vo) (6.1)

where A are the eigenvalues, and y, the normalized eigen functions, of the equation

TS & [Po(v) £(v) +%f’~7(‘2] +Apo(M YA (¥) = 0 (6.2)

It can be shown that A = 0 is the smallest eigenvalue with o (v) = 1, and the eigenvalues can be ordered
0=A0<A.1 S}\.z' T
Using (6.2) for yy, multiplying each term by V1, and integrating, we get

dyi(v) |2
| [o.fw- Po) WP )dv = T . LP Po (v) f(vp) [ —W.—] .

Since y is normalized and orthogonal to Yo =1, we get

= mi 3 dww) |?
M= %me _I,,. po(v)zl;f(v,)[—(‘;lg(i-l] v (6.3)
subject to the conditions
[ W y2madv =1 64)
[0,1p
and
| pomywyav =0 ©6.5)
[0,1r

It is clear that A, > 0, and its dependence on T and g can be studied via (6.3).

From (6.1) we get

B0, 0= po1 = | F ey ) i (v

=eht lki'il & =Mty (v) yi (Vo) |

If we denote
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K(v) = M Ip(v,11v,0) = po (V)|
then fort> 1
Ip(v,tlvg, 0) = po(v)| <& ™' Vk(v) k(vg) (6.6)

Se Mt sup k(v)
which gives an estimate of the rate of convergence of the transition density to the equilibrium distribu-
tion.
7. Analog Realization

Equations (4.5) and (4.7) are Ito equations. To realize them in analog circuits using Gaussian wide-

band noise requires a correction term [10). With the correction term, (4.5) and (4.7) can be rewritten as

WO = B+ F EGO v
WO = = O) EVO)+ TP 0:0) + ITIm®) i@ 1.2

where 1; is a Gaussian white noise.

For the example given in section §, we can write for (7.1)
(1) = ~E(v) - 2T sinh 240 1 5 VT cosh 5O nw (1.3)

A block diagram realization of (7.3) is given in Figure 1.



11

i — sQ,

.E, u,
- —| integrator |— v
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Figure1: A Node in a Diffusion Machine

8. A Continuous Operating Learning System

Hinton et al. [5] defined a leaming problem for Boltzmann machines that can be extended to diffu-
sion machines. Suppose that the n nodes in the network are divided into two groups: visible nodes and
hidden nodes. The space [0,1]" is correspondingly factored into the cartesian product V xH, where
V= {vj:ivisible} and H= {v;:i hidden}. Now, suppose that a probability density function p is specified
in V and we want to find a set of weights wij so that the stationary distribution of v;(t) on the visible

nodes will be as close to P as possible.

We now modify our earlier notation to make the dependencies more explicit. Let po(v,h; w)
denote the stationary density of the entire network for v € V,he H, and let w denote the weights. Let

the density on V alone be denoted by
Po(v;w) = J;Po(v.hzw)dh 8.1)

The problem now is to find w so that po (v ; w) approximates p (v).

Following [5], we use the asymmetric divergence

G(w) = lp(v) In [ E%g%ﬁ] dv 8.2)



12

as a measure of approximation, and shall choose w to minimize G(w). Now,

-1 .
po(v,h; w) = lw o T Emhi w)
and
- L Ewh:
Z(w) = 1 e T E¢ 'h'w)dvdh .
VxH
Hence,
'Ee"%'l‘:(".h:w)dh
po(viw) = : . .
J' e-TE(V.h.w)dvdh
VXxH
and
aGW -— l aE V,h;w . _ .
awy Tvs[n_id'wl [Po(v,h.w) ﬁ(V)Po(hlv,w)] dvdh @5
where

If we denote by E, the expectation with respect to po(v,h; w) and by E the expectation with respect to

P(v) po(hlv; w), then we can write
aGw) _ 1 JE z| JE

We first observe that if E is the quadratic function given by (1.3), then

aa% = =vjv; for i=#j .
ij

=-%v3 for i=j .

Hence, we can estimate Bawi by running the network in two modes: (a) Jfree-running mode that yields
i .

Ep, and (b) clamped mode where for the visible nodes (vi} are found to have a distribution given by pto
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yield £ .
Next, we observe that we can use the Langevin algorithm to minimize G(w). Specifically, we can

set
dw;j (1) = — Gy (w())dt+ V2S d Z;; (1)
where G;; = a& comes from the two copies of the network running in two different modes, Z; are
9 ij

independent Wiener processes, and S is the temperature for the ‘“‘weight machine’’ and is different from
the temperature T of the networks used to generate Gjj- A block diagram of the *‘leaming dynamics’’ is

given in Figure 2.

Free-Running
Network

E
0 w (t)

. Weight Machine

w (t)

ma

t

Training

L» Clamped Network
Samples

Figure 2: A Continuously Operating Learning System

Intuitively, if we change W(t) slowly in comparison to the dynamics of the two networks, then we
should expect the two networks to reach approximate equilibrium before the weights are changed
significantly. The continuously operating nature of a diffusion machine in the leaming mode makes it a

most attractive system.
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Conclusion

In this paper we consider a class of stochastic networks which we name diffusion machines, that
result from a modification of continuous-variable Hopfield networks. We show that by injecting white
Gaussian noise in a specific way at each node of a Hopfield network, we obtain a diffusion process with a
stationary density of the Boltzmann form. It follows that cooling of the noise sources can be used to
achieve annealing, which in turn can be used to obtain a global minimum. As such it is closely related to
both the Boltzmann machine and the Langevin algorithm, but superior to both in terms of possible

integrated circuit realization [12).

Leaming algorithms similar to those proposed from Boltzmann machines are a particularly interest-
ing problem for study. We propose an arrangement consisting of three coupled diffusion machines that
perform the functions of training, leaming, and weigh-adjustment concurrently in continuous operation.
This is in contrast to leamning in Boltzmann machines which alternated between a leaming phase and an

“‘equilibriating”’ phase. A substantial speed advantage for diffusion machines is likely.
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