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1. Hopfield Networks

It is well known [1, 2] that a neural network can be used to compute the minimum of a function

E(x) defined ona hypercube [0, l]n as follows. Let vi(t) be the state atnode i attime t and set

Vi(t) = g(Ui(t)) (1.1)

^T=-EiW)) (1.2)
where Ei(v) =-^- E(v) and gis an increasing function. The special case of aquadratic E

_ 1E(v) = -^j;Wijvijvj-2eivi (1.3)

where we assume Wij = Wji, results in

Ei(v) = -2Wijvj-.ei (1.4)

which is particularly well suited for realization as an analog integrated circuit.

As Hopfield and Tank [3] and others [e.g., [4]) have shown, avariety of computational problems of

considerable complexity can be reduced to computing the global minimum ofaquadratic function. With

current technology, anetwork with several hundred nodes and with the dynamics given by equation (1.1)

through (1.3) can probably be built on asingle chip. The potential for simple and fast computation thus
created is exciting indeed.

However, (l.l) and (1.2) represent essentially agradient-descent method for minimization, and such

methods do not always reach aglobal minimum. To see this we write using (1.1) and (1.2)

^E(v(t)) =2;Ei(v(t))i|̂ (15)

=2Ei(v(t))g'(ui(t))^



= -Zg,(ui(t))Ei2(v(t)) £ 0
i

which shows that Eis decreasing but not strictly decreasing and the equilibrium reached may only be a
local minimum.

2. Boltzmann Machines

For some problems it is sufficient to restrict v{ to binary values, say Vi =0,1. The collection of the

states at all the nodes ofthe network v(t) ={Vi(t)} now takes values in {0,l]n, and v(t) will be called the

configuration of the network at time t. ABoltzmann machine [5] is anetwork where v(t) is a {0,1}"

valued discrete-time Markov chain with state transitions defined as follows:

For each ve{0,l}n define a neighborhood N(v)e{0,l}n. We assume that

v' €N(v) => ve N(vO and v4N(v). At time t+1we choose av' s N(v(t)) at random (say with equal
probabilities) and set

v(t+l) = v' with probability p(AE) (2.i)
= v(t) withprobability l-p(AE)

whereAEis given by

AE = E(v')-E(v(t)) (2.2)

and p(AE) is a probability of the form

p(AE) =e"'̂ AEf(IAEI) (2.3)
for some decreasing function f. Familiar examples include

p(AE) =min(l,e"TAE)
-JjrAE

e ** e

and

= e-7TAE P-^2TIAEI

-•JrAEp(AE) = 1^— = 2e ^
i+eT^ cosh(^.)



It is clear that v(-) has a bias for moving in the direction of decreasing AE, butwill move with nonzero

probabilities even for increasing AE.

The one-step transition probability is given by

P(vlvo) = Prob(v(t+l) = vlv(t) =v0)

= IN(vq)l P(E(V)"E(vo)) v€ N<vo> (2-4)

= 0 v*v0, v^N(v0)

and

where IN(vq) I denotes the cardinality ofN(v0). With pgiven by (2.3), we have

£P(vlva)e~TE(v<>>|N(vo),

=P(vlv)e"TE(v)IN(v)l+ T P(vlv0)e"TpE(v°>IN(v0)l
v0eN(v)

=IN(v)le"+E(v)- T fdEM-E^le"^^^01
v'e N(v)

+ Z f(IE(v)-E(v0)l)e"7>'lE(,,+E(v'')1
v0 6N(v)

= IN(v)le"TE(v)

It follows that a probability distribution of the form

P(v(t) =v) = KIN(v)l e"TE(v)

is left invariant by the transitions.

If, in addition, the Markov chain is irreducible, i.e., every v can be reached from any initial
configuration v0, then



P(v(t) =vIv(to) =v0) • KIN(v) Ie" TE(v) (2 5)
(t-t„)-»oo

where Kis the normalizing constant. If we assume IN(v) I is independent of v, then the stationary distri
bution is simply

*>-*.-+•« (2.6)

where Z=2 e T is called the partition function in statistical mechanics
V

Equation (2.6) is called the Gibbs or Boltzmann distribution, and the Markov chain v(t) a Gibbs

field. Anetwork with such a v(t) has been called aBoltzmann machine [5]. It could also have been called

a Gibbs machine.

3. Simulated Annealing

Because the stationary distribution ofaBoltzmann machine is given by

FW-•*.-+•» (3.1)

the peaks of P(v) coincide with the minima of E(v). As the parameter T(temperature) decreases to zero,

P(v) will approach aset of Dirac 8-functions at the global minima of E(v). This is the principle on which

simulated annealing is based [6].

Suppose that we choose asequence {Tk} decreasing to 0sufficiently slowly so that for large k, v(k)

isdistributed approximately according to

1 - 4- E(v)Pk(v) =^-e ^

Then we would expect v(k) to converge to aglobal minimum. This is indeed the case for Tk of the form

Tk = THTT+lEr (3-2)



where c is a "sufficientlylarge" constant [7].

Simulated annealing can be extended to the continuous variable case. This is done with the

Langevin algorithm [8,9], which is defined by aset ofstochastic differential equations ofthe form

dvi (t) = - Ei (v(t)) dt +V2T dWi (t) (3.3)

where E4 =-^ Eas before and {Wj} is aset of independent Wiener processes. The goal, once again, is

to get a stationary distribution for v(t) characterized by the density function

P(v) = ± e T (3.4)

However, for vsR" there may be no density function of this form since exp (- ^ E) may not be integr-

able. For ve [0, l]n, (3.3) also does not guarantee astationary density of the form (3.4) without impos

ing a"reflecting boundary'• condition at every boundary Vi =0,1 [8].

4. Diffusion Machines: Stochastic Hopfield Networks

We propose ascheme that is amodification of both the Langevin algorithm and the Hopfield net

work. Suppose that we inject noise in aHopfield network so that at the ith node the equations of dynam
ics are now given by (c.f. (1.1) and (1.2)):

Vi(t) =g(Ui(t)) (4 1}
dm(t) =-Ei(v(t))dt+ai(u(t))dWi(t) (42)

where (4.2) is astochastic differential equation of the Ito type [10]. As in the Langevin algorithm, {W*}
areindependent Wiener processes.

The question we now pose is the following: Can cVs be found so that v(t) is astationary Markov
process with the following stationary density?

Po(v) = ^-e T (4.3)



The answer is surprisingly simple, and unique. The required oq is given by

so that (4.2) becomes

Furthermore, if we denote

dUi(t) = -Ei(v(t))

"TtJJ

dt +A/^T^rv r(Ui(t))

f(x) = g/(g"1(x))

then Vi (t) satisfies the stochastic differential equation.

dWi(t)

dvKt) = -f(vi(t))Ei(v(t))dt +Tf(vi(t))dt +V2Tf(vi(t)) dWi(t)

(4.4)

(4.5)

(4.6)

(4.7)

If f(x) - 0 at x=0,1, then stationarity ofv(t) is assured. Ifnot, areflecting boundary is needed at each

Vi = 0,l.

To derive (4.4), we first note that with asmooth g, we can use the Ito differentiation formula [11]

and derive asetof stochastic differential equations for v^ which are of the form

dvi(t) = mi(v(t))dt +Oi(v(t))dWi(t)

The transition density p(v,t Iv0, to) ofv(t) must satisfy the Fokker-Planck equation

3p _ y 9 1 9
T-3%(a?P>-miP

It follows that if (4.3) istobe the stationary density then we must have

y a i aT"3%(ai2Po)~miPo = 0

which is satisfied if mtand a? satisfy

i=4-^(-TEi(v))+'3lr(Tai2)m

(4.8)

(4.9)

(4.10)

(4.11)



Since(4.8) is derived from (4.1) and (4.2) using the Ito differentiation formula, we have

dvj(t) =g,(ui(t))dui(t) +̂ g//(ui(t))ccl2(u(t))dt (4.12)

Comparing (4.12) and(4.8), we get

<Ji(g(u)) = g'(Ui)Oi(u) (4.13)
and

mi (v) =- f(Vi) Ei (v) +j- (/ nf)' (Vi) of(v) (4.14)

where f is given by

f(x) = g/(g"1(x)) (4.6)

Comparing (4.6) with(4.11) now yields

}o?(v) =Tf(vO (4.15)

which is arelationship of great simplicity.

Anetwork with dynamics governed by (4.1) and (4.5) (equivalently (4.7)) will be called adiffusion

machine. We propose that it be used as the basis for studying simulated annealing and machine learning

[5]. As aneural computing system, it has anumber of important advantages. First, it is quite general.

There is no need to assume that the minimum occurs at acomer ofthe cube. Second, it allows the non-

linearity g to play astabilizing role in ensuring stationarity. Finally and most importantly, it is well

suited for direct circuit implementation, thus providing potentially much faster computation for both

annealing and machine learning.

5. An Example

A favorite choice ofg is

g(x) =^-(l+tanh|.) (5.1)



which yields

i(x) = -^ (1 - tanh* i) =^L (cosh -|)~2 (5.2)_ 1 n ♦„„u2Xn_ 1 / uJCv-2
a

and

f(y) =iisr* (y)) = -^ [i - (2y- lfi (5.3)

= |y(i-y)

Equations (4.5) and (4.7) now become

dui(t) = -Ei(v(t))dt + 2VaTcosh Ui(t)
dWi(t) (5.4)

dvi(t) =-|"Vi(t)[l-vi(t)]Ei(v(t))dt+^-[l-2vi(t)]dt (5.5)
+W7Vi(t)[l-vi(t)]dWi(t)

As a second example, consider the case

g(x) = x , 0<x£l

=1 , x>l

= 0 , x<0

This example corresponds to the Langevin algorithm as considered in [8]. Because g"l (v) does not exist

in this case, this example is not really adiffusion machine. If it is to be considered at all, reflecting boun

dariesat Vj = 0,1, are required [8].

6. Rate of Convergence

Adiffusion machine can be used with acooling schedule {Tk} to achieve simulated annealing. For

that purpose an estimate of the rate at which

p(v,tlv0,to)->p0(v)

isneeded. Diffusion theory provides a powerful approach to such estimates (c.f., [9]).



Under theassumption f(x) =0, x =0,1, wecan write [??]

P(v,tlv0,0) = poMye-kyxMy^vo)

where Xare the eigenvalues, and yxthe normalized eigen functions, ofthe equation

T?^r PdWiw+i^a + ^Po(v)Vx(v) = 0

(6.1)

(6.2)

It can be shown that X=0is the smallest eigenvalue with y0 (v) =1, and the eigenvalues can be ordered

0 = Ao < X\ < X2 - • •

Using (6.2) for ylf multiplying each term by \|flf and integrating, we get

*i J Po(v)y?(v)dv =TV f p0(v)f(Vi)
10.1]° i [0.1]°

Since \pi isnormalized and orthogonal to \|/0 =1, we get

Xi = minT J po(v)Vf(vi)
v 10.11- i

3y(v)
dvT

subject to the conditions

and

J Po(v)y2(v)dv = 1
[0.1]»

J Po(v)\|/(v)dv =0
[o. li

3yi(y)
-?v—

dv

lt is clear that Xi >0, and its dependence on T and gcan be studied via (6.3).

From (6.1) we get

lp(v,tlvo,0)-po(v)l

If we denote

= IZe-**st\|/k(v)Yk(v0)l
k=l

= e_x,t
k=l

Vk(v)Vk(vo)

dr

(6.3)

(6.4)

(6.5)



then for t> 1

10

K(v) = e^ lp(v,llv,0)-p0(v)l

lp(v,tlvo,0)-p0(v)l ^e'̂ Wk^k^o) (6.6)

^e-^supkfr)
v

which gives an estimate ofthe rate of convergence of the transition density to the equilibrium distribu

tion.

7. Analog Realization

Equations (4.5) and (4.7) are Ito equations. To realize them in analog circuits using Gaussian wide

band noise requires acorrection term [10]. With the correction term, (4.5) and (4.7) can be rewritten as

dl(t) =-*(v(t))+Tt§^+V^ m» (7.D
Vi(t) =- f(vi (t) )Ei (v(t) )+-£ f (Vi (t) )+V2T f(Vi (t) )Tli (t) (7.2)

where T|iis a Gaussian white noise.

For the example given in section 5,we can write for (7.1)

Ui (t) =- Ei (v(t)) - 2T sinh ^L+2Vaf cosh Bi2- n, (t) (7.3)

Ablock diagram realization of(7.3) is given in Figure 1.
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Figure 1: A Node in a Diffusion Machine

8. A Continuous Operating Learning System

Hinton et al. [5] defined a learning problem for Boltzmann machines that can be extended to diffu

sion machines. Suppose that the nnodes in the network are divided into two groups: visible nodes and

hidden nodes. The space [0,l]n is correspondingly factored into the cartesian product VxH, where

V=fvi: ivisible) and H={vi: i hidden). Now, suppose that aprobability density function pis specified

in Vand we want to find a set of weights wy so that the stationary distribution of Vi(t) on the visible

nodes willbe as close to p as possible.

We now modify our earlier notation to make the dependencies more explicit Let p0(v,h; w)

denote the stationary density of the entire network for ve V, h€ H, and let wdenote the weights. Let

the density onValone bedenoted by

Po(v;w) = fpo(v,h;w)dh

The problem now is to find wso that po (v; w) approximates p(v).

Following [5], we use the asymmetric divergence

G(w) ==|p(v)/n f3(v)
Po(v;w) dv

(8.1)

(8.2)



as ameasure of approximation, and shall choose wtominimize G(w). Now,

and

Hence,

and

where

Mv,h;w) =^e-TE<"'-)

Po

V*H

<^f \ r -T"E(v,h;w) ,
Z(w) = [ e T 'dvdh

(v; w) = —H.

^I^v.hiw)
dh

j e-fE(v,h;w)
dvdh

VxH

^^ =̂ 4aE(j4;W)[po^h;w)-p(v)po(hlv;w)] dvdhTwjp Tv«

p0(hlv;w)= Po^h»w)
Po(v;w)

12

(8.3)

(8.4)

(8.5)

(8.6)

If we denote by E0 the expectation with respect to po(v,h; w) and by Ethe expectation with respect to
P(v) po(h Iv; w), then we can write

Eo

» «

dE
-E dE

"

dWij dwiy
- *

We first observe that if Eis the quadratic function given by (1.3), then

9E c . .^r=-ViVj for i*j .

=- ^ v? for i=j .

(8.7)

9GHence, we can estimate ^- by running the network in two modes: (a) free-running mode that yields

Eo, and (b) clamped mode where for the visible nodes (Vi) are found to have adistribution given by pto
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yield E

Next, we observe that we can use the Langevin algorithm to minimize G(w). Specifically, we can

set

where G;= ^

dwjj(t) = -Gij(w(t))dt +V2SdZij(t)

ij ="Sw^ comes ftom me two C0Pies of *e network running in two different modes, Zy are

independent Wiener processes, and S is the temperature for the "weight machine" and is different from

the temperature Tofthe networks used to generate Gy. Ablock diagram ofthe "learning dynamics" is

given in Figure 2.

Training
Samples

0

Free-Running
Network

A

w (t)

Weight Machine

w (t)

Clamped Network

Figure 2: AContinuously Operating Learning System

Intuitively, if we change W(t) slowly incomparison to the dynamics ofthe two networks, then we

should expect the two networks to reach approximate equilibrium before the weights are changed

sigmficandy. The continuously operating nature of adiffusion machine in the learning mode makes it a

most attractive system.
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Conclusion

In this paper we consider a class of stochastic networks which we name diffusion machines, that

result from amodification ofcontinuous-variable Hopfield networks. We show that by injecting white

Gaussian noise in aspecific way at each node ofaHopfield network, we obtain adiffusion process with a

stationary density of the Boltzmann form. It follows that cooling of the noise sources can be used to

achieve annealing, which in turn can be used to obtain aglobal minimum. As such itis closely related to

both the Boltzmann machine and the Langevin algorithm, but superior to both in terms of possible

integrated circuitrealization [12].

Learning algorithms similar to those proposed from Boltzmann machines are aparticularly interest

ing problem for study. We propose an arrangement consisting ofthree coupled diffusion machines that

perform the functions oftraining, learning, and weigh-adjustment concurrentiy in continuous operation.

This is in contrast to learning in Boltzmann machines which alternated between alearning phase and an

"equilibriating" phase. Asubstantial speed advantage for diffusion machines is likely.
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