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ABSTRACT

During the past several years, fuzzy control has emerged as one of the

most active and fruitful areas for research in the applications of fuzzy set

theory, especially in the realm of industrial processes which do not lead them

selves to control by conventional methods because of a lack of quantitative

data regarding the input-output relations.

Fuzzy control is based on fuzzy logic - a logical system which is much

closer in spirit to human thinking and natural language than traditional logical

systems. The Fuzzy Logic Controller (FLC) based on fuzzy logic provides a

means of converting a linguistic control strategy based on expert knowledge

into an automatic control strategy. This paper presents a survey of the FLC;

describes a general methodology for constructing an FLC and assessing its per

formance; and points to problems which need further research. In particular,

our exposition includes a discussion of fuzzification and denazification stra

tegies, the derivation of the database and fuzzy control rules, the definition of

fuzzy implication, and an analysis of fuzzy reasoning mechanisms.
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I. Introduction

During the past several years, fuzzy control has emerged as one of the most active and

fruitful areas for research in the application of fuzzy set theory [141]. The pioneering research

of Mamdani and his colleagues on fuzzy control [63,64,65,50,66] was motivated by Zadeh's

seminal papers on the linguistic approach and system analysis based on the theory of fuzzy sets

[142,143,145,146]. Recent applications of fuzzy control in water quality control [127,35],

automatic train operation systems [135,136,139], automatic container crane operation systems

[137,138,139], elevator control [23], nuclear reactor control [4,51], automobile transmission

control [40], fuzzy logic controller hardware systems [130,131], fuzzy memory devices

[107,108,120,128,129,133], and fuzzy computers [132], have pointed a way for an effective

utilization of fuzzy control in the context of complex, ill-defined processes which can be con

trolled by a skilled human operator without the knowledge of their underlying dynamics.

The literature in fuzzy control has been growing rapidly in recent years, making it

difficult to present a comprehensive survey of the wide variety of applications which have been

made. Historically, the important milestones in the development of fuzzy control may be sum

marized as shown below. It should be stressed, however, the choice of the milestones is a sub

jective matter.

1972 Zadeh

1973 Zadeh

1974 Mamdani & Assilian

1976- Rutherford et al

1977 Ostergaard
1977- Willaeys et al
1979 Komolov et al

1980 Tong et al
1980 Fukami, Mizumoto & Tanaka
1983 Hirota & Pedrycz
1983 Takagi & Sugeno
1983 Yasunobu, Miyamoto et al
1984 Sugeno & Murakami

A rationale for fuzzy control [145]
Linguistic approach [146]
Steam engine control [64]
Analysis of control algorithms [5,7]
Heat exchanger and cement kiln control [80]
Optimal fuzzy control [121]
Finite automaton [57]
Wastewater treatment process [113]
Fuzzy conditional inference [24]
Probabilistic fuzzy sets (control) [33]
Derivation of fuzzy control rules [103]
Predictive fuzzy control [135]
Parking control of a model car [97]



1985 Kiszka, Gupta et al Fuzzy system stability [55]
1985 Togai & Watanabe Fuzzy chip [107]
1986 Yamakawa Fuzzy controller hardware system [130]
1988 Dubois & Prade Approximate reasoning [21]

Fuzzy logic, which is the logic on which fuzzy control is based, is much closer in spirit

to human thinking and natural language than the traditional logical systems. Basically, it pro

vides an effective means of capturing the approximate, inexact nature of the real world.

Viewed in this perspective, the essential part of the Fuzzy Logic Controller (FLQ is a set of

linguistic control rules related by the dual concepts of fiizzy implication and the compositional

rule of inference. In essence, then, the FLC provides an algorithm which can convert the

linguistic control strategy based on expert knowledge into an automatic control strategy.

Experience shows that the FLC yields results superior to those obtained by conventional con

trol algorithms. In particular, the methodology of the FLC appears very useful when the

processes are too complex for analysis by conventional quantitative techniques or when the

available sources of information are interpreted qualitatively, inexactly, or uncertainly. Thus,

fiizzy logic control may be viewed as a step toward a rapprochement between conventional

precise mathematical control and human like decision making, as indicated by Gupta [30].

However, at present there is no systematic procedure for the design of an FLC. In this

paper we present a survey of the FLC methodology and point to the problems which need

further research. Our investigation includes fuzzification and defuzzification strategies, the

derivation of the database and fuzzy control rules, the definition of a fiizzy implication, and an

analysis of fiizzy reasoning mechanisms.

This paper is divided into two parts. The analysis of structural parameters of the FLC is

addressed in Part I. In addition, Part I contains five more sections. A brief summary of some

of the relevant concepts in fuzzy set theory and fuzzy logic is presented in Section II. The

main idea of the FLC is described in Section III, while Section IV describes the fuzzification

strategies. In Section V, we discuss the construction of the data base of an FLC. The rule base

in Section VI explains the derivation of fiizzy control rules and rule-modification techniques.

Part II consists of four Sections. Section I is devoted to the basic aspects of the FLC

decision-making logic. Several issues including the definitions of a fiizzy implication, compo

sitional operators, the interpretations of sentence connectives and and also, and fiizzy inference

mechanisms, are investigated. Section n discusses the defuzzification strategies. Some of the

representative applications of the FLC, from laboratory level to industrial process control, are

briefly reported in Section HI. Finally, we describe some unsolved problems and discuss

further challenges in this field.
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n. Fuzzy Sets and Fuzzy Logic

For the convenience of reader, we shall briefly summarize some of the basic concepts of

fiizzy set theory and fuzzy logic which will be needed in this paper. A more detailed discus

sion may be found in [141,41,42,148,149,21].

A. Fuzzy Sets and Terminology

Let U be a collection of objects denoted genetically by {w}, which could be discrete or

continuous. U is called the universe of discourse and u represents the generic element of U.

Definition 1: Fuzzy Set A fuzzy set F in a universe of discourse U is characterized by a

membership function \ip which takes values in the interval [0,1], namely, u^ : U -> [0,1]. A

fuzzy set may be viewed as a generalization of the concept of an ordinary set whose member

ship function only takes two values {0,1}. Thus, a fiizzy set F in U may be represented as a

set of ordered pairs of a generic element u and its grade of membership function:

F - [(u,\LF(u))\ueU). When U is continuous, a fuzzy set F can be written concisely as

F - \j Mf (")/". When U is discrete, a fuzzy set F is represented as F = £ Mf("i)/Wi-
i=i

Definition 2: Support, Crossover Point, and Fuzzy Singleton. The support of a fuzzy set

F is the crisp set of all points u in U such that \iF(u)>0. In particular, the element u in U at

which U/?=0.5, is called the crossover point and a fiizzy set whose support is a single point in U

with u.F=1.0, is referred to as the fuzzy singleton.

B. Set Theoretic Operations

Let A and B be two fuzzy sets in U with membership functions u* and \iB, respectively.

The set theoretic operations of union, intersection and complement for fuzzy sets are defined

via their membership functions. More specifically:

Definition 3: Union. The membership function \iAuB of the union AuB is pointwise defined

for dUlueU by

UaubOO = max (uA(«),)!/, (u)}.
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Definition 4: Intersection. The membership function \iAnB of the intersection AnB is point-

wise defined for all ueU by

HAna(") = min [\iA(u)p.B(u)}.

Definition 5: Complement. The membership function u* of the complement of a fuzzy set A

is pointwise defined for all ue U by

u.j(u)=l-uA(u).

Definition 6: Cartesian Product If Ax,..., AH are fuzzy sets in Ui Un, respec

tively, the Cartesian product of A\ ,..., An is a fuzzy set in the product space U^x • • • xUn

with the membership function

Mv^x •••xa,(«i^2> ' ' • >"«) =min {m.Ai(m,), • • • \iAn(m„)},

M-Ajx• • xA|I("l^2. ***Mn) =Ha^i)^^ ' ' ' M-A^n)-

Definition 7: Fuzzy Relation. An n-aryfuzzy relation is a fiizzy set in t/p< • • • x UH and is

expressed as

RUX*-XUH = {(("1," ' Mn\\LR (Ml,* ••,"»))! («1, ••',"„) 6 C^X • • • X£/n }.

Definition 8: Sup-Star-Composition. If rt and 5 are fiizzy relations intfxKandVxW,

respectively, the composition of # and 5 is a fiizzy relation denoted by R o S and is defined by

R OS = {[(M,W), SUp(U«(M,v)*Uj(V,w))],M6t/,V6V, WSW},
w

where * could be any operator in the class of triangular norms, namely, minimum, algebraic

product, bounded product, or drastic product (also see Part II).

C. Linguistic Variables and Fuzzy Sets

Definition 9: Fuzzy Number. A fuzzy number F in a continuous universe U, e.g., a real

line, is a fuzzy set F in U which is normal and convex, i.e.,

max \iF(u) = 1, (normal)
ueU

\iF(kui+(l-X)u2) > min (jif (ux),\iF (u2)), (convex)

uuu2eU,\e [0,1].
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The use of fiizzy sets provides a basis for a systematic way for the manipulation of vague

and imprecise concepts. In particular, we can employ fuzzy sets to represent linguistic vari

ables. A linguistic variable can be regarded either as a variable whose value is a fuzzy number

or as a variable whose values are defined in linguistic terms. More specifically:

Definition 10: Linguistic Variables. A linguistic variable is characterized by a quintuple

(x, T(x), U, G, M) in which x is the name of variable; T(x) is the term set of x that is the set

of names of linguistic values of x with each value being fuzzy number defined on U; G is syn

tactic rule for generating the name of values of x\ and M is a semantic rule for associating

with each value its meaning. For example, if speed is interpreted as a linguistic variable, then

its term set T(speed) could be

T(speed) = [slow, moderate, fast, very slow, more or less fast, • • • },

where each term in T(speed) is characterized by a fuzzy set in a universe of discourse

£/=[0,100]. We might interpret slow as "a speed below about 40 mph", moderate as "a speed

close to 55 mph" and fast as "a speed above about 70 mph". These terms can be characterized

as fiizzy sets whose membership functions are shown in Figure 1.

D. Fuzzy Logic and Approximate Reasoning

In fiizzy logic and approximate reasoning, there are two important fuzzy implication

inference rules named the Generalized Modus Ponens (GMP) and the Generalized Modus Tol-

lens (GMT).

premise 1: x is A\ (GMP)

premise 2: if x is A then v is B.

consequence: y is B'.

premise 1 : y is B', (GMT)

premise 2: if x is A then v is B.

consequence: x is A'.



The fiizzy implication inference is based on the compositional rule of inference for

approximate reasoning suggested by Zadeh in 1973 [146]. Here we introduce fuzzy sets

A,A',B,B' via linguistic variables x,y instead of crisp sets in the traditional logic. The

GMP, which reduces to modus ponens when A'=A and fl'=fl, is closely related to the forward

data-driven inference which is particularly useful in the FLC. The GMT, which reduces to

modus tollens when B'=not B and A'=not A, is closely related to the backward goal-driven

inference which is commonly used in expert systems, especially in the realm of medical diag

nosis.

Definition 11: Sup-Star Compositional Rule of Inference. If R is a fuzzy relation in

U x V, and x is a fuzzy set in U, then the sup-star compositional rule of inference asserts that

the fiizzy set y in V induced by x is given by [144]

y =x OR,

where x or is the sup-star composition of x and R. If the star represents the minimum

operator, then this definition reduces to Zadeh's compositional rule of inference [146].

m. Main Idea of the FLC

In this section, we present the main ideas underlying the FLC. To highlight the issues

involved, Figure 2 shows the basic configuration of an FLC, where comprises four principal

components: a fuzzification interface, a knowledge base, decision-making logic, and a

defuzzification interface.

[1] The fuzzification interface involves the following functions:

(a) measures the values of input variables.

(b) performs a scale mapping which transfers the range of values of input vari

ables into corresponding universes of discourse.

(c) performs the function of fuzzification which converts input data into suitable

linguistic values which may be viewed as labels of fuzzy sets.

[2] The knowledge base comprises a knowledge of the application domain and the

attendant control goals. It consists of a data base and a linguistic (fuzzy) control

rule base.

(a) the data base provides necessary definitions, which are used to define linguis

tic control rules and fuzzy data manipulation in an FLC.



(b) the rule base characterizes the control goals and control policy of the domain

experts by means of a set of linguistic control rules.

[3] The decision-making logic is the kernel of an FLC; it has the capability of simulat

ing human decision-making based on fuzzy concepts and inferring fuzzy control

actions employing fuzzy implication and the rules of inference in fuzzy logic.

[4] The defuzzification interface performs the following functions:

(a) a scale mapping, which converts the range of values of output variables into

corresponding universes of discourse.

(b) defuzzification, which yields a nonfuzzy control action from an inferred fiizzy

control action.

We are now ready to describe the main ideas underlying the FLC in terms of fuzzy logic.

The structural parameters involved in the design of an FLC will be discussed at a later point.

A. Fuzzy Conditional Statements and Fuzzy Control Rules

In an FLC, the dynamic behavior of a fiizzy system is characterized by a set of linguistic

description rules based on expert knowledge. The expert knowledge is usually of the form

If (a set of conditions are satisfied) then (a set of consequences can be inferred).

Since the antecedents and the consequents of these if-then rules are associated with fuzzy con

cepts (linguistic terms), they are often calledfuzzy conditional statements. In our terminology, a

fuzzy control rule is a fiizzy conditional statement in which the antecedent is a condition in its

application domain and the consequent is a control action for the system under control. Basi

cally, fuzzy control rules provide a convenient way for expressing control policy and domain

knowledge. Furthermore, several linguistic variables might be involved in the antecedents and

the conclusions of these rules. When this is the case, the system will be referred to as a multi-

input-multi-output (MIMO) fuzzy system. For example, in the case of two-input-single-output

(MISO) fuzzy systems, fuzzy control rules have the form:

R^'.if x is Ax and y is Bx then z is Cx,

R2 : if x is A2 and y is B2 then z is C2,

Rn : if x is An and y is Bn then z is Cn,
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where x, y, and z are linguistic variables representing two process state variables and one con

trol variable; Ait Bit and C, are linguistic values of the linguistic variables x, y, and z in the

universes of discourse U, V, and W, respectively, with i=l,2, •••,«; and an implicit sentence

connective also links the rules into a rule set or, equivalently, a rule base.

A fuzzy control rule, such as if (x is At and y is 5.) then (z is C,), is implemented by a

fuzzy implication (fuzzy relation) /?, and is defined as follows:

Mfl, = H(A{ «**, ->C,)(M, V, W) = ftlA/(u) <WK* \iBi(v)] -> Uc,(w),

where A, and B( is a fuzzy set AfxB, in tfxV; J?,-* (Af a/wf 5.) -> C, is a fiizzy implication

(relation) in UxVxW; and -> denotes a fuzzy implication function. As will be seen later, there

are many ways in which a fuzzy implication may be defined.

B. Fuzzification Operator

A fuzzification operator has the effect of transforming crisp data into fuzzy sets. Sym

bolically,

x = fuzzifier(jc0),

where x0 is a crisp input value from a process; jc is a fiizzy set; and fuzzifier represents a

fuzzification operator.

C. Sentence Connective Operators

An FLC consists of a set of fuzzy control rules which are related by the dual concepts of

fuzzy implication and the sup-star compositional rule of inference. These fuzzy control rules

are combined by using the sentence connectives and and also. Since each fuzzy control rule is

represented by a fuzzy relation, the overall behavior of a fuzzy system is characterized by these

fuzzy relations. In other words, a fuzzy system can be characterized by a single fuzzy relation

which is the combination of the fuzzy relations in the rule set. The combination in question

involves the sentence connective also. Symbolically,

R =also(RltR2,-- ,Rit ••• ,Rn),

where also represents a sentence connective.



D. Compositional Operator

In order to infer the output z from the given process states x , y and the fiizzy relationR,

the sup-starcompositional rule of inference is applied

r =y o(x OR)

where o is the sup-star composition.

E. Defuzzification Operator

The output of the inference process so far is a fuzzy set, specifying a possibility distribu

tion of control action. In the on-line control, a nonfiizzy (crisp) control action is usually

required. Consequently, one must defiizzify the fiizzy control action (output) inferred from the

fiizzy control algorithm, namely:

z0 = defuzzifier(z),

where z0 is the nonfiizzy control output and defuzzifier is the defuzzification operator.

F. Design Parameters of the FLC

The principaldesign parameters for an FLC are the following:

[1] Fuzzification strategies and the interpretation of a fuzzification operator (fuzzifier).

[2] Data base:

(a) discretization / normalization of universes of discourse.

(b) fuzzy partitionof the input and output spaces.

(c) completeness.

(d) choice of the membership function of a primary fuzzy set

[3] Rule base:

(a) choice of process state (input) variables and control (output) variables of fuzzy

control rules.

(b) source and derivation of fuzzy control rules.

(c) types of fuzzy control rule.

(d) consistency, interactivity, completeness of fiizzy control rules.
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[4] Decision making logic:

(a) definition of a fuzzy implication.

(b) interpretation of the sentence connective and.

(c) interpretation of the sentence connective also.

(d) definitions of a compositional operator.

(e) inference mechanism.

[5] Defuzzification strategies and the interpretation of a defuzzification operator

(defuzzifier).

IV. Fuzzification Strategies

Fuzzification is related to the vagueness and imprecision in a natural language. It is a

subjective valuation which transforms a measurement into a valuation of a subjective value,

and hence it could be defined as a mapping from an observed input space to fiizzy sets in cer

tain input universes of discourse. Fuzzification plays an important role in dealing with uncer

tain information which might be objectiveor subjective in nature.

In fuzzy control applications, the observed data are usually crisp. Since the data manipu

lationin an FLC is based on fuzzy set theory, fuzzification is necessary during an earlierstage.

Experience with the design of an FLC suggests the following principal ways of dealing with
fuzzification.

[1] A fuzzification operator conceptually converts a crisp value into a fiizzy singleton within

a certain universe of discourse. Basically, a fuzzy singleton is a precise value and hence

no fuzziness is introduced by fuzzification in this case. This strategy has been widely

used in fuzzy control applications since it is natural and easy to implement It interprets

an input xQ as a fuzzy set A with the membership function \iA(x) equal to zero except at

the point jcq, at which \iA(xQ) equals one.

[2] Observed data are disturbed by random noise. In this case, a fuzzification operator should

convert the probabilistic data into fuzzy numbers, i.e, fiizzy (possibilistic) data. In this

way, computational efficiency is enhanced since fuzzy numbers are much easier to mani

pulate than random variables. In [76], an isosceles triangle was chosen to be the

fuzzification function. The vertex of this triangle corresponds to the mean value of a data

set, while the base is twice the standard deviation of the data set In this way, we form a

triangular fuzzy number which is convenient to manipulate [42]. In this connection, it
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should be noted that Dubois and Prade [20] defined a bijective transformation which

transforms a probability measure into a possibility measure by using the concept of the

degree of necessity. Basically, the necessity of an event, E, is the added probability of

elementary events in E over the probability assigned to the most frequent elementary

event outside of E. Based on the method of Dubois and Prade, the histogram of the

measured data may be used to estimate the membership function for the transformation of

probability into possibility [17].

[3] In large scale systems and other applications, some observations relating to the behavior

of such systems are precise, while others are measurable only in a statistical sense, and

some, referred to as hybrids, require both probabilistic and possibilistic modes of charac

terization. The strategy of fuzzification in this case is to use the concept of hybrid

numbers [42], which involve both uncertainty (fiizzy numbers) and randomness (random

numbers). The use of hybrid number arithmetic in the design of an FLC suggests a

promising direction which is in need of further exploration.

V. Data Base

The knowledge base of an FLC is comprised of two components, namely, a data base

and a fiizzy control rule base. We shall address some issues relating to the data base in this

section and to the rule base in the next section. The concepts associated with a data base are

used to characterize fuzzy control rules and fiizzy data manipulation in an FLC. These con

cepts are subjectively defined and based on experience and engineering judgment. In this con

nection, it should be noted that the correct choice of the membership functions of a term set

plays an essential role in the success of an application. In what follows, we shall discuss

some of the important aspects relating to the construction of the data base in an FLC.

A. Discretization I Normalization of Universes of Discourse

The representation of uncertain information with fuzzy sets brings up the problem of

quantifying such information for digital computer processing. In general, the representation

depends on the nature of the universe of discourse. A universe of discourse in an FLC is either

discrete or continuous. If the universe is continuous, a discrete universe may be formed by a

discretization of the continuous universe. Furthermore, a continuous universe may be normal

ized, as will be seen at a later point in this section.
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1. Discretization of a Universe of Discourse

Discretization of a universe of discourse is frequently referred to as quantization. In

effect, quantization discretizes a universe into a certain number of segments (quantization lev

els). Each segment is labeled as a generic element, and forms a discrete universe. A fuzzy set

is then defined by assigning grade of membership values to each generic element of the new

discrete universe. A look-up table based on discrete universes, which defines the output of a

controller for all possible combinations of the input signals, can be implemented by off-line

processing in order to shorten the running time of the controller [90]. In the case of an FLC

with continuous universes, the number of quantization levels should be large enough to provide

an adequate approximation and yet be small to save memory storage. The choice of quantiza

tion levels has an essential influence on how fine a control can be obtained. For example, if a

universe is quantized for every 5 units of measurement instead of 10 units, then the controller

is twice as sensitive to the observed variables.

For the purpose of discretization, we need a scale mapping which serves to transform

measured variables into values in the discretized universe. The mapping can be uniform

(linear), non-uniform (nonlinear), or both. The choice of quantization levels reflects some a

priori knowledge. For example, coarse resolution could be used for large errors and fine resolu

tion for small errors. Thus, in a 3-input-l-output fuzzy system, we may have control rules of

the form:

Ri : if error (e) is Ait sum of errors (ie) is Bt, and change of error (de) is Ct

then output is D-t.

A simple instance of an FLC can be represented by

K4[u(k)] = F\Kxe(k), K2ie(k), K%de(k)\,

where F denotes the fuzzy relation defined by the rule base and Kt, i=1,2,3,4, represents an

appropriate scaling mapping. In this relation, we see an analogy to the parameters of a conven

tional PID controller [63,105], in which as a special case F is a linear function of its argu

ments. An example of discretization is shown in Table I, where a universe of discourse is

discretized into 13 levels with 7 terms (primary fuzzy sets) defined on it. In general, due to

discretization, the performance of an FLC is less sensitive to small deviations in the values of

the process state variables.

2. Normalization of a Universe ofDiscourse

The normalization of a universe requires a discretization of the universes of discourse

into a finite number of segments, with each segment mapped into a suitable segment of the
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normalized universe. In this setting, a fuzzy set is then defined by assigning an explicit func

tion to its membership function. The normalization of a continuous universe also involves a

priori knowledge of the input/output space. The scale mapping can be uniform, non-uniform, or

both. One example is shown in Table n, where the universe of discourse, [-6.0.+4.5], is

transformed into the normalized closed interval [-1,+!].

B. Fuzzy Partition of Input and Output Spaces

A linguistic variable in the antecedent of a fiizzy control rule forms a fuzzy input space

with respect to a certain universe of discourse, while that in the consequent of the rule forms a

fiizzy output space. In general, a linguistic variable is associated with a term set, with each

term in the term set defined on the same universe of discourse. A fiizzy partition, then, deter

mines how many terms should exist in a term set This is equivalent to finding the number of

primary fuzzy sets. The number of primary fuzzy sets determines the granularity of the control

obtainable with an FLC. The primary fuzzy sets (linguistic terms) usually have a meaning,

such as NB: negative big; NM: negative medium; NS: negative small; ZE: zero; PS: positive

small; PM: positive medium; and PB: positive big. A typical example is shown in Figure 3,

depicting two fiizzy partitions in the same normalized universe [-1,+1]. Membership functions

having the forms of triangle-shaped and trapezoided-shaped functions are used here. Since a

normalized universe implies the knowledge of the input/output space via appropriate scale

mappings, a well-formed term set can be achieved as shown. If this is not the case, or a non-

normalized universe is used, the terms could be asymmetrical and unevenly distributed in the

universe. Furthermore, the cardinality of a term set in a fuzzy input space determines the max

imum number of fiizzy control rules that we can construct In the case of 2-input-l-output

fuzzy systems, if the cardinalities of T(x) and T(y) are 3 and 7, respectively, the maximum

rule number is 3x7. It should be noted that the fuzzy partition of the fuzzy input/output space

is not deterministic and has no unique solution. A heuristic cut and trial procedure is usually

needed to find the optimal fuzzy partition.

C. Completeness

Intuitively, a fuzzy control algorithm should always be able to infer a proper control

action for every state of a process. This property is called completeness. The completeness of

an FLC relates to its data base, rule base, or both.
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1. Data Base Strategy

The data base strategy is concerned with the supports on which primary fuzzy sets are

defined. The union of these supports should cover the related universe of discourse in relation

to some level set e. This property of an FLC is called e-completeness. In general, we choose

the level e at the crossover point as shown in Figure 3, implying that we have a strong belief

in the positive sense of the fiizzy control rules which are associated with the FLC. In this

sense, a dominant rule always exists and is associated with the degree of belief greater than

0.5. In the extreme case, two dominant rules are activated with equal belief 0.5.

2. Rule Base Strategy

The rule base strategy has to do with the fuzzy control rules themselves. The property of

completeness is incorporated into fiizzy control rules through design experience and engineer

ing knowledge. An additional rule is added whenever a fuzzy condition is not included in the

rule base, or whenever the degree of partial match between some inputs and the predefined

fuzzy conditions is lower than some level, say 0.5. The former shows that no control action

will result The latter indicates that no dominant rule will be fired.

D. Membership Function of a Primary Fuzzy Set

There are two methods used for defining fuzzy sets, depending on whether the universe

of discourse is discrete or continuous: (a) numerical and (b) functional.

1. Numerical Definition

In this case, the grade of membership function of a fuzzy set is represented as a vector of

numbers whose dimension depends on the degree of discretization. An illustrative example is

shown in Table I. hi this case, the membership function of each primary fuzzy set has the

form of

s

M/(m) = 2>,-/m,-,
1=1

where

a = [0.3, 0.7, 1.0,0.7,0.3].

2. Functional Definition
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A functional definition expresses the membership function of a fiizzy set in a functional

form, typically a bell-shaped function, triangle-shaped function, trapezoided-shaped function,

etc. Such functions are used in an FLC because they lead themselves to manipulation through

the use of fiizzy arithmetic. The functional definition can readily be adapted to a change in the

normalization of a universe. Table II and Figure 4 show an example of a functional definition

expressed as:

H/(x) =exp{^^}.
2a/

Note that if the normalized universe is changed, the parameters uf, cf should be changed
accordingly.

Either a numerical definition or functional definition may be used to assign the grades of

membership to the primary fuzzy sets. The choice of grades of membership is based on the

subjective criteria of the decision. In particular, as we mentioned before, if the measurable

data might be disturbed by noise, the membership functions should be sufficiently wide to

reduce the sensitivity to noise. This raises the issue of the fuzziness or, more accurately, the

specificity of a membership function, which affects the robustness of an FLC. This issue is

discussed in greater detail in [58].

VI. Rule Base

A fuzzy system is characterized by a set of linguistic statements based on expert

knowledge. The expert knowledge is usually in the form of if-then rules, which are easily

implemented by fuzzy conditional statements in fuzzy logic. The collection of fiizzy control

rules which are expressed as fuzzy conditional statements1 forms the rule base or the rule set

of an FLC. In this section, we shall examine the following topics related to fuzzy control

rules: choice of process state (input) variables and control (output) variables, source and deriva

tion, justification, types of fuzzy control rules, and properties of consistency, interactivity, and

completeness.

A. Choice ofProcess State Variables

and Control Variables of Fuzzy Control Rules

1 See Section HI of Pan I in Fuzzy Conditional Statements and Fuzzy Control Rules.
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Fuzzy control rules are more conveniently formulated in linguistic rather than numerical

terms. The proper choice of process state variables and control variables is essential to the

characterization of the operation of a fuzzy system. Furthermore, the selection of the linguistic

variables has a substantial effect on the performance of an FLC. As was stated earlier, experi

ence and engineering knowledge play an important role during this selection stage. In particu

lar, the choice of linguistic variables and their membership function have a strong influence on

the linguistic structure of an FLC. Typically, the linguistic variables in an FLC are the state,

state error, state error derivative, state error integral, etc.

B. Source and Derivation of Fuzzy Control Rules

There are four modes of derivation of fiizzy control rules, as reported in [103]. These

four modes are not mutually exclusive, and it seems likely that a combination of them would

be necessary to construct an effective method for the derivation of fuzzy control rules.

1. ExpertExperience and Control Engineering Knowledge

Fuzzy control rules have the form of fuzzy conditional statements which relate the state

variables in the antecedent and process control variables in the consequents. In this connection,

it should be noted that in our daily life most of the information on which our decisions are

based is linguistic rather than numerical in nature. Seen in this perspective, fuzzy control rules

provide a natural framework for the characterization of human behavior and decision analysis.

Many experts have found that fiizzy control rules provide a convenient way to express their

domain knowledge. This explains why most FLCs are based on the knowledge and experience

which are expressed in the language of fuzzy if-then rules [64,47,50,80,82,59,118,113,58,

127,4].

The formulation of fuzzy control rules can be achieved by means of two heuristic

approaches. The most common one involves an introspective verbalization of human expertise.

A typical example of such verbalization is the operating manual for a cement kiln. Another

approach includes an interrogation of experienced experts or operators using a carefully organ

ized questionnaire. In this manner, we can form a prototype of fuzzy control rules for a partic

ular application domain. For optimized performance, the use of cut and trial procedures is usu

ally a necessity.

2. Based on Operator's Control Actions
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In many industrial man-machine control systems, the input-output relations are not known

with sufficient precision to make it possible to employ classical control theory for modeling

and simulation. And yet, skilled human operators can control such systems quite successfully

without having any quantitative models in mind. In effect, a human operator employs - cons

ciously or subconsciously —a set of fuzzy if-then rules to control the process. As was pointed

out by Sugeno, to automate such processes, it is expedient to express the operator's control

rules as fuzzy if-then rules employing linguistic variables. In practice, such rules can be

deduced from the observation of humancontroller's actions in terms of the input-output operat

ing data [97,98,99].

3. Based on the Fuzzy Model of a Process

In the linguistic approach, the linguistic description of the dynamic characteristics of a

controlled process may be viewed as a fiizzy model of the process. Based on the fiizzy model,

we can generate a set of fuzzy control rules for attaining optimal performance of a dynamic

system. The set of fuzzy control rules forms the rule base of an FLC. Although this approach

is somewhat more complicated, it yields better performance and reliability, and provides a

more tractable structure for dealing theoretically with the FLC. However, this approach to the

design of an FLC has not as yet been fully developed.

4. Based on Learning

Many FLCs have been built to emulate human decision-making behavior, but few are

focused on human learning, namely, the ability to create fiizzy control rules and to modify

them based on experience. Procyk and Mamdani [87] described the first self-organizing con

troller (SOQ. The SOC has a hierarchical structure which consists of two rule bases. The first

one is the general rule base of an FLC. The second one is constructed by meta-rules which

exhibit human-like learning ability to create and modify the general rule base based on the

desired overall performance of the system. Recently, further studies relating to the SOC have

been carried out at Queen Mary College and elsewhere [60,94,102,95,106]. A very interesting

example of a fiizzy rule-based system which has a learning capability is Sugeno's fuzzy car

[97,99]. Sugeno's fuzzy car can be trained to park by itself.

C. Justification of Fuzzy Control Rules

There are two principal approaches to the derivation of fuzzy control rules. The first is a

heuristic method in which a collection of fuzzy control rules is formed by analyzing the
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behavior of a controlled process. The control rules are derived in such a way that the devia

tion from a desired state can be corrected and the control objective can be achieved. The

derivation is purely heuristic in nature and relies on the qualitative knowledge of process

behavior. Several methods of adjustment of rule selection have been studied [1,49,7,6]. A

brief review of these results is given below. The second approach is basically a deterministic

method which can systematically determine the linguistic structure and/or parameters of the

fiizzy control rules which satisfy the control objectives and constraints [111,103,104,101].

Mamdani [1] proposed a prescriptive algorithm for deriving the "best" control rules by

restricting system responses to a prescriptive fuzzy band which is specified by fuzzy control

rules. However, the convergence of the prescriptive method requires a careful analysis.

King and Mamdani [49] introduced another useful method for rule justification. So-

called scale mappings should be adjusted first so that the system trajectory can terminate on a

desired state. The rule justification is done by referring to a closed system trajectory in a

phase plane. A knowledge of parameter-adjusting based on phase plane analysis (e.g„

overshoot, rise time) and an intuitive feel for the behavior of the closed loop system are

required. The principle of global rule modification in symmetry and monotonicity is also

employed.

For example, Figure 5 shows the system response of a process to be controlled, where

the input variables of the FLC are the error (E) and error derivative (DE). The output is the

change of the process input (CI). We assume that the term sets of input/output variables have

the same cardinality, 3, with a common term set [negative, zero, positive). The prototype of

fuzzy control rules is tabulated in Table III and a justification of fuzzy control rules is added in

Table IV. The corresponding rule of region i can be formulated as rule /?j and has the effect

of shortening the rise time. Rule R^ for region ii decreases the overshoot of the system's

response. More specifically,

/?i: if (E is positive and DE is negative) then CI is positive,

/?u : if (E is negative and DE is negative) then CI is negative.

Better control performance can be obtained by using finer fiizzy partitioned subspaces, for

example, with the term set [NB, NM, NS, ZE, PS, PM, PB). The prototype and the

justification of fuzzy control rules are also given in Table V and Table VI.

A slightly modified method was suggested in [7]. It tracked the linguistic trajectory of a

closed loop system in a linguistic phase plane. The main idea is that scale mappings should be

adjusted first to yield approximately a desired trajectory behavior. This can be inferred from

the linguistic trajectories. Then, rule modification can be accomplished by using the linguistic

trajectory behavior to optimize the system response in the linguistic phase plane. An additional
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advantage of this approach is that the measurement noise appearing in the linguistic phase

plane is less of a problem than that in the non-linguistic phase plane. An example is shown in

Figure 6.

An approach to generating the rule base of an FLC, which is analogous to the conven

tional controller design by pole placement, is described in [6]. Braae and Rutherford assumed

that the fiizzy control rules of an open system (process) and a desired closed loop system were

initially given. The purpose is to synthesize a linguistic control element (FLQ based on the

fiizzy models described above. The main idea is to invert the low order linguistic model of a

certain open loop system. However, linguistic inversion mappings are usually incomplete or

multivalued. So, an approximate strategy, which is somewhat heuristic and subjective, is neces

sary to complete the inverse mapping which has a reasonable singled-valued solution. This

approximation has substantial effect on linguistic substitution which further determines a fuzzy

controller. This method is restricted to relative low order systems but it provides an explicit

solution for rule generation of the FLC, assuming that fuzzy models of the open and closed

systems are available.

The systematic rule justification has recently been proposed and studied by means of

fiizzy relational equations [13,15,84,125] and linguistic control rules [111,103,104,101]. The

basic notion of these two approaches is so-called fuzzy identification. As in conventional

identification, the fiizzy identification comprises two phases, namely, structure identification

and parameter estimation. The studies in question deal with one, or both.

Tong [111] introduced the concept of logical examination (LE) for converting process

input-output data into a set of fiizzy control rules. Tong tackled both identification problems

simultaneously, and used a correlation analysis of the LE to determine the linguistic structure.

However, it is still somewhat heuristic and subjective, and encounters difficulties in the

identification of multivariable fuzzy systems.

Takagi and Sugeno [103] proposed a fuzzy identification algorithm for modeling human

operator's control actions. In this case, a suitable linguistic structure is easy to find since one

can observe and/or ask for the kind of information which the operator needs, such as process

state variables. The fuzzy control rules to be identified have the form of

Ri : if x is At, • • • , and y is Bt then z=/,(x, • • • y),

where x, • •, y, and z are linguistic variables representing the process state variables and the

control variable; Ait • • •, BL are linguistic terms of the linguistic variables x, • •, y, and z in

the universes of discourse U, • • •, V, and W, respectively, with i=l,2, • • • ,n; and z is a logical

function of the process state variables such as a linear function of x, • • • ,y. In this way, the

problem is reduced to parameter estimation, which is done by optimizing a least-square
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performance index via a weighted linear regression method. The inference mechanism of this

FLC will be discussed later2.

Sugeno has successfully applied this method to the design of an FLC for navigating a

model car through a crank-shaped curve [98] and for parking a model car in a garage [97,99].

Sugeno's method provides a more systematic approach to the design of an FLC, and the exper

imental results are quite remarkable. However, some steps of this algorithm, such as the

choice of process state variables, the fuzzy partition of input spaces, and the choice of the

membership functions of primary fuzzy sets, depend on trial-and-errpr.

Recently, Takagi and Sugeno [104] improved their algorithm so that parameter estimation

can be fully implemented. At issue is the problem of structure identification, which is partly

addressed in this paper. Further research on this problem has been reported by Sugeno and

Kang in [101].

Another approach based on fiizzy relational equations is directed at the same problems.

The structure identification requires the determination of the system order and time delays of

discrete-time fiizzy models, while the parameter estimation reduces to the determination of the

overall fuzzy relation matrix from the input-output data of the system. The reader is referred

to [13,15,84,125] for further details.

D. Types ofFuzzy Control Rules

Depending on their nature, two types of fiizzy control rules, state evaluationfiizzy control

rules and object evaluation fuzzy control rules, are currently in use in the design of the FLC.

I. State Evaluation Fuzzy Control Rules

Most FLCs have state evaluation fuzzy control rules which, in the case of MISO systems,

are characterized as a collection of rules of the form

Rx : if x is Ax,- • • and y is Bx then z is Cx,

R2: if x is A2, • • • and y is B2 then z is C2,

Rn : if x is An,- • • and y is Bn then z is Cn,

2 See Section I of Part II in Fuzzy Reasoning of the Third Type.
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where X,- —,y, and z are linguistic variables representing the process state variables and the

control variable; At, • • .fl,, and C, are the linguistic values of the linguistic variables x,

y and z in the universes of discourse £/,•••, V, and W, respectively, i-\X • • - ji.

In a more general version, the consequent is represented as a function of the process state

variables x, • ,y, i.e.,

Ri : if x is Ait • • • and y is £,- then z-fL(x, • • • y).

Fuzzy control rules of this type, which are referred to as state evaluation fuzzy control

rules, evaluate the process states (e.g., state, state error, state integral) at time t and compute a

fuzzy control action at time t as a function of (x, • • • y) and the control rules in the rule set.

2. Object Evaluation Fuzzy Control Rules

Yasunobu, Miyamoto and Diara [135] proposed another algorithm which predicts present

and future control actions and evaluates control objectives. It is called object evaluation fuzzy

control, or predictive fuzzy control. The rules in question, which are derived from skilled

operator's experience, are referred to as objectevaluation fuzzy control rules. A typical rule is

described as

Rt : if (u is C,-» (x is Ai and y is Z?,)) then u is C,.

A control command is inferred from an objective evaluation of a fiizzy control result that

satisfies the desired states and objectives. A control command u takes a crisp set as a value,

and x, y are performance indices for the evaluation of the irt rule, taking values such as

"good" or "bad". The most likely control rule is selected through predicting the results (xj)

corresponding to every control command C,-.

In linguistic terms, the rule is interpreted as: "if the performance index x is Ai and index

y is Bi when a control command u is chosen to be C,, then this rule is selected and the control

command C, is taken to be the output of the controller."

In automatic train operation, a typical control rule is: // the control notch is not changed

and if the train stops in the predetermined allowance zone, then the control notch is not

changed.

It is well known that systems control encounters difficulties in satisfying multiple perfor

mance indices simultaneously and in achieving accurate control in the presence of disturbances.

In such circumstances, fuzzy control provides an effective framework for solution. However,

the state evaluation fuzzy control does not evaluate the computed control actions as human

operators do. By contrast, the predictive fuzzy control provides a mechanism for evaluation so

that the desired states and control objectives can be achieved more easily. It should be noted
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that predictive control has been successfully applied to automatic train operation [135,136,139]

as well as to automatic container crane operation systems [137,138,139]. Tests have shown

that this type of control is capable of operating trains and cranes as skillfully as an experienced
operator.

E. Properties cf Consistency, Interactivity, and Completeness

1. Completeness: please refer to Section V of this paper.

2. Number of Fuzzy Control Rules

There is no general procedure for deciding on the optimal number of fuzzy control rules

since a number of factors are involved in the decision, e.g., performance of the controller,

efficiency of computation, human operator behavior, and the choice of linguistic variables.

3. Consistency ofFuzzy Control Rules

If the derivation of fuzzy control rules is based to on the human operator experience, the

rules may be subjected to different performance criteria. In practice, it is important to check

on the consistency of fuzzy control rules in order to minimize the possibility of contradiction.
[64,12].

4. Interactivity ofFuzzy Control Rules

Assuming that a collection of fuzzy control rules has the form

Ri : if x is A,- then z is Ct, i = l,...,n,

if an input x0 is Ait we would expect that the control action z is C,. In fact, the control action

z may be a subset or a superset of C, [12,26,85,18,19], depending on the definition of fuzzy

implication and sup-star composition. This may happen as a consequence of interaction
between the rules.

The problem of interaction is complex and not as yet well understood. The reported

research in [12,26,85,18,19] indicates that interactivity of rules can be controlled by the choice

of fiizzy implication and sup-star composition. The consistency of rules may be improved
through the use of the concept of a fiizzy clustering of fuzzy control rules. In this connection,

it should be noted that Sugeno's reasoning and identification algorithm provides an alternative
solution to these problems [104,101].
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Figure Captions

Fig. 1. Diagrammatic representation of fiizzy speeds. Speed isalinguistic variable with

three terms: slow,medium andhigh.

Fig. 2. Basic configuration of aFuzzy LogicController (FLQ.

Fig. 3. Diagrammatic representation of afuzzy partition, (a) A coarse fuzzy partition with three

terms: N, negative; ZE, zero; and P, positive, (b) A finer fuzzy partition with seven terms:

NB, negative big; NM, negative medium; NS, negative small; ZE, zero; PS, positive small;
PM,positivemedium; and PB, positive big.

Fig. 4. Anexample of a functional definition of primary fuzzy sets.

Fig. 5. Rule justification by using aphase plane, (a) A phase-plane trajectory, (b) A system step
response.

Fig. 6. Rule justification byusing alinguistic phase plane, (a) A linguistic trajectory with initial

rules, (b) A linguistic trajectory with modified rules. (From Braae and Rutherford [7])
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Table Captions

TABLE I Quantization and Primary Fuzzy Sets Using a Numerical Definition

TABLE II Normalization and Primary Fuzzy Sets Using a Functional Definition

TABLE in Prototype of Fuzzy Control Rules with Term Sets [negative, zero, positive]

TABLE IV Rule Justification withTerm Sets [negative, zero, positive]

TABLE V Prototype of Fuzzy Control Rules with Term Sets [NB, NM, NS, ZE, PS, PM, PB]

TABLE VI Rule Justification with Term Sets [NB, NM, NS, ZE, PS, PM, PB]



TABLE I

Quantization and Primary Fuzzy Sets Using a Numerical Definition

Level No Range NB NM NS ZE PS PM PB

-6 jcoS-3.2 1.0 0.3 0.0 0.0 0.0 0.0 0.0
-5 -3.2<*o£-1.6 0.7 0.7 0.0 0.0 0.0 0.0 0.0
•4 -1.6<xtf£-0.8 0.3 1.0 0.3 0.0 0.0 0.0 0.0
-3 -0.8<Xtf<-0.4 0.0 0.7 0.7 0.0 0.0 0.0 0.0
-2 -0.4<*o<-0.2 0.0 0.3 1.0 0.3 0.0 0.0 0.0
-1 -0.2<xo£-0.1 0.0 0.0 0.7 0.7 0.0 0.0 0.0
0 -0.1<*o<+0.1 0.0 0.0 0.3 1.0 0.3 0.0 0.0
1 40.1<Xo^40.2 0.0 0.0 0.0 0.7 0.7 0.0 0.0
2 +0.2<xo£+0.4 0.0 0.0 0.0 0.3 1.0 0.3 0.0
3 +0.4<X(^40.8 0.0 0.0 0.0 0.0 0.7 0.7 0.0
4 +0.8<Xo<+1.6 0.0 0.0 0.0 0.0 0.3 1.0 0.3
5 +1.6<r<£+3.2 0.0 0.0 0.0 0.0 0.0 0.7 0.7
6 3.2<r0 0.0 0.0 0.0 0.0 0.0 0.3 1.0



TABLE II

Normalization and Primary Fuzzy Sets Using a Functional Definition

Normalized Normalized Range "/ °f Primary Fuzzy Sets
Universe Segments

[-1.0,-0.5] [-6.9,-^.1] -1.0 0.4 NB

[-0.5,-0.3] [-4.1,-12] -0.5 0.2 NM

[-0.3,-0.0] [-22,-0.0] -0.2 0.2 NS
[-1.0.+1.0] [-0.0,40.2] [-0.0.+1.0] 0.0 02 ZE

[+0.2,40.6] [4-1.0.+2.5] 0.2 02 PS

[+0.6.+1.0] [+2.5,44.5] 0.5 02 PM

1.0 0.4 PB



TABLE HI

Prototype of Fuzzy Control Rules with Term Sets
[negative, zero, positive ]

Rule No E DE CI Reference Point

1 P Z p a,e,i

2 Z N N b,fj

3 N Z N c,g,k

4 Z P P dJU

5 Z z Z set point



TABLE IV

Rule Justification with Term Sets

[negative, zero,positive ]

Rule No E DE a Reference Range

6 P N p i (rise time), v

7 N N N ii (overshoot), vi

8 N P N iii, vii

9 P P P iv, viii

10 P N Z ix

11 N P Z xi



TABLE V

Prototype of Fuzzy Control Rules with Term Sets
[NB, NM, NS,ZE,PS, PM, PB ]

Rule No E DE CI Reference Point

1 PB ZE PB a

2 PM ZE PM e

3 PS ZE PS i

4 ZE NB NB b

5 ZE NM NM f

6 ZE NS NS J
7 NB ZE NB c

8 NM ZE NM g
9 NS ZE NS k

10 ZE PB PB d

11 ZE PM PM h

12 ZE PS PS 1

13 ZE ZE ZE set point



TABLE VI

Rule Justification with Term Sets

[NB,NM,NS,ZE,PS,PM,PB]

Rule No E DE CI Reference Range

14

15

PB

PS

NS

NB

PM

NM

i (rise time)
i (overshoot)

16

17

NB

NS

PS

PB

NM

PM

iii

iii

18 PS NS ZE ix

19 NS PS ZE xi
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