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I. Decision Making Logic

As was pointed out already, an FLC may be regarded as a means of emulating a skilled

human operator. More generally, the use of an FLC may be viewed as still another step in the

direction of modeling human decision making within the conceptual framework of fuzzy logic

and approximate reasoning. In this context, the forward data-driven inference (generalized

modus ponens) plays an especially important role. In what follows, we shall investigate fuzzy

implication functions, the sentence connectives and and also, compositional operators, infer

ence mechanisms and other concepts which are closely related to the decision making logic of

an FLC.

A. Fuzzy Implication Functions

In general, a fuzzy control rule is a fuzzy relation which is expressed as a fuzzy implica

tion. In fuzzy logic, there are many ways in which a fuzzy implication may be defined. The

definition of a fuzzy implication may be expressed as a fuzzy implication function. The choice

of a fuzzy implication function reflects not only the intuitive criteria for implication but also

the effect of connective also.

1. Basic Properties of a Fuzzy Implication Function

The choice of a fuzzy implication function involves a number of criteria, which are dis

cussed in [3,24,2,71,18,52,19,116,85,72,96]. In particular, Baldwin and Pilsworth [3] con

sidered the following basic characteristics of a fuzzy implication function: fundamental pro

perty, smoothness property, unrestricted inference, symmetry of generalized modus ponens and

generalized modus tollens, and a measure of propagation of fuzziness. All of these properties

are justified on purely intuitive grounds. We prefer to say that the inference (consequence)

should be as close to the input truth function value as possible, rather than be equal to it. This



gives us a more flexible criterion for choosing a fuzzy implication function. Furthermore, in a

chain of implications, it is necessary to consider the fuzzy syllogism [147] associated with each

fuzzy implication function before we can talk about the propagation of fuzziness.

Fukami, Mizumoto, and Tanaka [24] have proposed a set of intuitive criteria for choosing

a fuzzy implication function which constrains the relations between the antecedents and conse

quents of a conditional proposition, with the latter playing the role of a premise in approximate

reasoning. As is well-known, there are two important fuzzy implication inference rules in

approximate reasoning. They are the generalized modus ponens (GMP) and the generalized

modus tollens (GMT). Specifically,

premise 1 : x is A' (GMP)

premise 2: if x is A then v is B

consequence: y is B'

premise 1 : y is B' (GMT)

premise 2: if x is A then v is B

consequence: x is A'

in which A, A\ B and B' are fuzzy predicates; the propositions above the line are the premises;
and the proposition below the line is the consequence. The proposed criteria are summarized

in Table I and Table II. We note that if a causal relation between x is A and y is B is not

strong in a fuzzy implication, the satisfaction of criterion 2-2 and criterion 3-2 is allowed. Cri

terion 4-2 is interpreted as if x is A then y is B, else y is not B. Although this relation is not

valid in formal logic, we often make such an interpretation in everyday reasoning. The same
applies to criterion 8.

2. Families of Fuzzy Implication Functions

Following Zadeh's [146] introduction of the compositional rule of inference in approxi

mate reasoning, a number of researchers have proposed various implication functions in which

the antecedents and consequents contain fuzzy variables. Indeed, nearly forty distinct fuzzy

implication functions have been described in the literature. In general, they can be classified

into three main categories: the fuzzy conjunction, the fuzzy disjunction, and the fuzzy implica

tion. The former two bear a close relation to a fuzzy Cartesian product The latter is a
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generalization of implication in multiple-valued logic, and relates to the extension of material

implication, implication in propositional calculus, modus ponens, and modus tollens [18]. In

what follows, after a short review of triangular norms and triangular co-norms, we shall give

the definitions of fuzzy conjunction, fuzzy disjunction, and fuzzy implication. Some fuzzy

implication functions, which are often employed in an FLC and are commonly found in the

literature, will be derived.

Definition 1: Triangular Norms. The triangular norm * is a two-place function from

[0,l]x[0,l] to [0,1], i.e., * : [0,l]x[0,l] -» [0,1], which includes intersection, algebraic pro
duct, bounded product, and drastic product. The greatest triangular norm is the intersection

and the least one is the drastic product The operations associated with triangular norms are

defined for all x, y € [0,1]:

intersection xty = min [x,y}

algebraic product x • y -xy

bounded product xQy = max {0, x+y-1}

x y=l

drastic product xmy = ' y x=\
0 x,y < 1

Definition 2: Triangular Co-Norms. The triangular co-norms + is a two-place function
from [0,l]x[0,l] to [0,1], i.e., + : [0,l]x[0,l] to [0,1], which includes union, algebraic sum,
bounded sum, drastic sum, and disjoint sum. The operations associated with triangular co-
norms are defined for all x, y e [0,1]:

union x^y = max [x,y]

algebraic sum jc4y =x + y - xy

bounded sum xQy = min {1, x +y}

drastic sum xwy =

disjoint sum xAy = max {min (x,\-y), min (l-x ,y)}

The triangular norms are employed for defining conjunctions in approximate reasoning, while

x y=0

y x=0

1 x,y >0



the triangular co-norms serve the same role for disjunctions. A fuzzy control rule,

if x is A then y is B, is represented by a fuzzy implication function and is denoted by A -» B,

where A and B are fuzzy sets in universes U and V with membership functions ]iA and \iB,

respectively.

Definition 3: Fuzzy Conjunction. Thefuzzy conjunction is defined for all weU and ve V by

A -»B -A xB

=l/xv Mk)*Mv)/(m,v)

where * is an operator representing a triangular norm.

Definition 4: Fuzzy Disjunction. Thefuzzy disjunction is defined for all ueU and veV by

A ->fl = A xfl

=Lv M*0 +M*(v)/(k,v)

where + is an operator representing a triangular co-norm.

Definition 5: Fuzzy Implication. The fuzzy implication is associated with five families of

fuzzy implication functions in use. As before, * denotes a triangular norm and + is a triangular

co-norm.

4.1) material implication

A ->B =(not A) + B

4.2) propositional calculus

A -»£ =(not A) + (A * B)

4.3) extended propositional calculus

A -» B = (not A x not B) + B

4.4) generalization of modus ponens

A -> B =sup { c e [0,1], A *c < fl }

4.5) generalization of modus tollens

A -> fl =inf[t € [0,1], B+f < A }
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Based on these definitions, many fuzzy implication functions may be generated by employing

the triangular norms and co-norms. For example, by using the definition of the fuzzy conjunc

tion, Mamdani's mini fuzzy implication, Rc, is obtained if the intersection operator is used.

Larsen's product fuzzy implication, Rpt is obtained if the algebraic product is used. Further

more, Rbp and R^ are obtained if the bounded product and the drastic product are used, respec

tively. The following fuzzy implications, which are often adopted in an FLC, will be dis

cussed more at a later point

Mini operation rule of fuzzy implication [Mamdani]

Re=A x B

=l/xv M")AMv)/(u,v)

Product operation rule of fuzzy implication [Larsen]

RP=A xB

=lxV Ma(k)Mv)/(k,v)

Arithmetic rule of fuzzy implication [Zadeh]

Ra=(not AxV)Q(UxB)

=Lv 1a(1-M"HMv))/(k,v)

Maxmin rule of fuzzy implication [Zadeh]

Rn=(AxB)v (not AxV)

=Lv <V*(" >A»*(v»V(1~u* <" » '<" 'v >

Standard sequence fuzzy implication

Rs=AxV -» UxB

=Lv (Mk)>Mv))/(h,v)

Jl \iA(u)<[iB(v)
where ua(u)>ub(v)=|0 ^(u)>^(v)



Boolean fuzzy implication

Rb=(not AxV)u (UxB)

^ O-MA0«))V0i«(v))/(utv)

Goguen's fuzzy implication

R&=AxV -» UxB

=Lxv <Mv*(«)>U«(v))/(ttfv)

-6

where u*(u)>Mv)= ,
1 |iA(«)<uB(v)

M«Q M")>M*(v)

Mv)

We note that Zadeh's arithmetic rule follows from Definition 5.1 by using the bounded

sum operator, Zadeh's maxmin rule follows from Definition 5.2 by using the intersection and

union operators; the standard sequence implication follows from Definition 5.4 by using the

bounded product; Boolean fuzzy implication follows from Definition 5.1 by using the union;

and Goguen's fuzzy implication follows from Definition 5.4 by using the algebraic product.

3. Choice of a Fuzzy Implication Function

First, we investigate the consequences resulting from applying the above forms of fuzzy

implication in fuzzy inference and, in particular, the GMP and GMT. The inference is based on

the sup-min compositional rule of inference. In the GMP, we examine the consequence of the

following compositional equation:

B' = A'oR

where R: fuzzy implication (relation)

o : sup-min compositional operator

A': a fuzzy set which has the form

A=£u-a(ii)/i«

very A= A2= L[La(u)/u

more or less A=Aa5= f jLiJf"5(w )/u

not A=|/l-n/l(„)/u



Similarly, in the GMT, we examine the consequence of the following equation:

A' =/?ofi'

where R: fuzzy implication (relation)

B': a fuzzy set which has the form

not B=^l-\iBiu>/u

not very B- f 1- \ii(u)fu

not more or less B= f 1- \iBs(u)/u

B=[vlb(u)Iu

The Case ofRp : Larsen's Product Rule

A method for computing the generalized modus ponens and the generalized modus tollens laws

of inference is described in [3]. The graphs corresponding to Larsen's fuzzy implication Rp
are given in Figure 1. The graph with parameter \xA is used for the GMP and the graph with
\iB is used for the GMT.

Larsen's Product Rule in GMP:

Suppose that A' =Aa (coO); then the consequence Bp is inferred as follows:

B/ = AaoRp

=1 u£(u)/u o[xy \iA(u)\iB(v)/(u,v).

The membership function \iB >of the fuzzy set Bp is pointwise defined for all ve V by

%<v) =sug min [u£(u), M")Mv)}

=sugS,0i,ftiO)

where

Spiiiftu)) Amin M&O, \iA(u)\iB(v)l

{A'=A}:

The values of SP(M")) with a parameter ufl(v), say uB(v)=0.3 and 0.8, are indicated in

Figure 2 by a broken line and dotted line, respectively. The membership function aB >is
p

obtained by



\iBAv) = sup min {[iA(u), liA(u)iiB(v))
P U6U

= sup\iA(u)\iB(v)
ueu

= Mv), M")=l.

{A'=A2}:

The values of Sp(siA(u)) with a parameter \lb(v), say \iB(v)=0.3 and 0.8, are indicated in

Figure 3 by a broken line and dotted line, respectively. The membership function \iB >

may be expressed as

M*Av) = sup min [\i^(u), \iA(u)\iB(v))
p ueu

= M*(v).

{A*=A0-5}:

The values of SpOiA5^)) with a parameter u.B(v), say u*(v)=0.3 and 0.8, arc indicated in

Figure 4 by a broken line and dotted line, respectively. The membership function |iB • is
p

given by

\iBp<y) =su£ min {n*5(u), \iA(u)\iB(v)}

= M*(v).

{A'=notA}:

The values of ^(l-u^OO) with a parameter jifl(v), say u.B(v)=0.3 and 0.8, are indicated

in Figure 5 by a broken line and dotted line, respectively. The membership function \iB >

is given by

VbAv) = sup min [l-\iA(u), \iA(u)\iB(v))
p ueu

Mv)
1+Mv)*

Larsen's Product Rule in GMT:

Suppose that B'=notfl° (coO); then the consequence A/ is inferred as follows:
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At'=Rp o (not Ba)

=Lv M")Mv)/(u,v)o J, (l-UB»)/v.

The membership function u* #of the fuzzy set A/ is pointwise defined for all ue U by

\lAi>(u) = suo min [\iA(u)\iB(v), l-\l$(v)}

=su$St(yLB*(v))

where

S,(l-HBa(v» imin {nA(u)uB(v), l-uB°(v)}.

{B'=notB}:

The values of 5,(1-0* 00) with a parameter \xA(u), say uA(u)=0.3 and 0.8, are indicated in

Figure 6 by a broken line and dotted line, respectively. The membership function [iA >is

given by

Uv(u) =sup min {\iA(u)\iB(v), l-UB(v)}

M")

l+\iA(u)'

[W=not B2}:

The values of S,(l-u|(v)) with a parameter \iA(u), say \iA(u)=0.3 and 0.8, are indicated in

Figure 7 by a broken line and dotted line, respectively. The membership function \xA >is

given by

M-v(") =Ju£ min {^a(")Ub(v), l-\ii(v)}

^(«)W")+4-^(w)

{B'=not B05}:

The values of Sf(l-u£5(v)) with a parameter uA(«), say uA(w)=0.3 and 0.8, are indicated

in Figure 8 by a broken line and dotted line, respectively. The membership function \iAt>
is given by

,0.5/M-vOO = sup min {\ia(u)\3lb(v), l-u£5(v)}
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2|iA(tf)+l-V4|iA +4

2Ua(«)

{B'=B}:

The values of S,(p.B(v)) with a parameter \iA(u), say uA(«)=0.3 and 0.8, are indicated in

Figure 9 by a broken line and dotted line, respectively. The membership function uA/- is

given by

uv(u) = sup (uaOOMv),Ufl(v)}

= ua(m).

The remaining consequences [24] inferred by Ra,Re,Rn,Rs,Rb,RA can be obtained by

the same method as described above. The results are summarized in Table III and Table IV.

By employing the intuitive criteria in Table I and Table II in Table III and Table IV, we

can determine how well a fuzzy implication function satisfies them. This information is sum

marized in Table V.

In FLC applications, a control action is determined by the observed inputs and the control

rules, without the consequent of one rule serving as the antecedent of another. In effect, the

FLC functions as a one-level forward data-driven inference (GMP). Thus, the backward goal-

driven inference (GMT), chaining inference mechanisms (syllogisms), and contraposition do

not play a role in the FLC, since there is no neeed to infer a fuzzy control action through the

use of these inference mechanisms.

Although Rc and Rp do not have a well-defined logical structure, the results tabulated in

Table V indicate that they are well-suited for approximate reasoning, especially for the gen

eralized modus ponens.

Rn has a logical structure which is similar to Rb. Ra is based on the implication rule in

Lukasiewicz's logic LAUph. However, Rm and Ra are not well-suited for approximate reasoning

since the inferred consequences do not always fit our intuition. Furthermore, for multiple-

valued logical systems, Rb and /?A have significant shortcomings. Overall, Rs yields reasonable

results and thus constitutes an appropriate choice for use in approximate reasoning.

B. Interpretation of Sentence Connectives and, also

In most of the existing FLCs, the sentence connective and is usually implemented as a

fuzzy conjunction in a Cartesian product space in which the underlying variables take values in
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different universes of discourse. As an illustration, in if (A and B) then C, the antecedent is

interpreted as a fuzzy set in the product space UxV, with the membership function given by

UAxB(M,v) = min [\iA(u),[iB(v)}

or

Uaxb(".v) = ua(«)ub(v)

where U and V are the universes of discourse associated with A and B, respectively.

When a fuzzy system is characterized by a set of fuzzy control rules, the ordering of the

rules is immaterial. This necessitates that the sentence connective also should have the proper

ties of commutativity and associativity (See A and C in Section III in Part I and D in this Sec

tion). In this connection, it should be noted that the operators in triangular norms and co-norms

possess these properties and thus qualify as the candidates for the interpretation of the connec

tive also. In general, we use the triangular co-norms in association with fuzzy conjunction and

disjunction, and the triangular norms in association with fuzzy implication. The experimental

results [52,53,54,96,73] and the theoretical studies [18,85,116,19] relate to this issue.

Kiszka et al. [52] described a preliminary investigation of the fuzzy implication functions

and the sentence connective also in the context of the fuzzy model of a DC series motor. In

later work, they presented additional results for fuzzy implication functions and the connective

also in terms of the union and intersection operators [53,54].

Our investigation leads to some preliminary conclusions. First, the connective also has a

substantial influence on the quality of a fuzzy model, as we might expect. Fuzzy implication

functions such as RS1 R&, and Ra with the connective also defined as the union operator, and

Rc> RP> Rbp> and R^ defined as the intersection, yield satisfactory results. These fuzzy implica

tion functions differ in the number of mathematical operations which are needed for computer

implementation.

Recently, Stachowicz and Kochanska [96] studied the characteristics of thirty eight types

of fuzzy implication along with nine different interpretations (in terms of triangular norms and

co-norms) of the connective also, based on various forms of the operational curve of a series

motor. Based on their results, we tabulate in Table VI a summary of the most appropriate

pairs for the FLC of the fuzzy implication function and the connective also.

Additional results relating to the interpretation of the connective also as the union and the

intersection are reported in [73]. The investigation in question is based on a plant model with

first order delay. It is established that the fuzzy implication functions Rc,Rp, Rbp, R^ with the
connective also as the union operator yield the best control results. Furthermore, the fuzzy

implications Rs and Rg are not well-suited for control applications even though they yield
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reasonably good results in approximate reasoning.

From a practical point of view, the computational aspects of an FLC require a

simplification of the fuzzy control algorithm. In this perspective, Mamdani's Rc and Larsen's

Rp with the connective also as the union operator appear to be better suited for constructing

fuzzy models than the other methods in FLC applications. We will have more to say about

these methods at a later point.

C. Compositional Operators

In a general form, a compositional operators may be expressed as the sup-star composi

tion, where "star" denotes an operator, e.g., min, product, etc., which is chosen to fit a specific

application. In the literature, four kinds of compositional operators can be used in the compo

sitional rule of inference, namely:

sup-min operation [Zadeh,1973],

sup-product operation [Kaufmann,1975],

sup-bounded-product operation [Mizumoto,1981],

sup-drastic-product operation [Mizumoto, 1981].

In FLC applications, the sup-min and sup-product compositional operators are the most

frequently used. The reason is obvious when the computational aspects of an FLC are con

sidered. However, interesting results can be obtained if we apply the sup-product, sup-

bounded-product and sup-drastic-product operations with different fuzzy implication functions

in approximate reasoning [70,72]. The inferred results employing these compositional opera

tors are better than those employing the sup-min operator. Further investigation of these issues

in the context of the accuracy of fuzzy models may provide interesting results.

D. Inference Mechanisms

The inference mechanisms employed in an FLC are generally much simpler than those

used in a typical expert system since in an FLC the consequent of a rule is not applied to the

antecedent of another. In other words, in FLC we do not employ the chaining inference

mechanism since the control actions are based on an one-level forward data-driven inference

(GMP).
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The rule base of an FLC is usually derived from expert knowledge. Typically, the rule

base has the form of a MIMO system1

R = {RmimO'Rmimo* " '' >Rmimo)

where RlMIM0 represents the rule: if (x is A,- and •••, and y is Bt) then (zx is Ct,, ••• , zq is D,).
The antecedent of RlMIM0 forms a fuzzy set A,x • • • xfl, in the product space Ux • • xV. The

consequent is the union of q independent control actions. Thus, the irt rule RmIM0 may be

represented as a fuzzy implication

Rmimo ' (4»x • • • xBi) -» (Zl+ • • •+zq)

from which it follows that the rule base R may be represented as the union

n

R = { y Rmimo )
1=1

n

= { y [ (A{x • • • xBi) -> (z,+ • • •+zq)) )

n n

= { y [(A,x • • • xB^ -» z,)], u [(A,x • • • xfi.) -» Z2)],
1=1 i=l

n

y [(AiX-.-x^.O^z,)]}
1=1

= { u y [(A,x • • • xB,) -> z4)] }
*=i «=i

= [RBMiS0, RBmso, • - • , RBgfiSO}.

In effect, the rule base R of an FLC is composed of a set of sub-rule-bases RB^o, with each

sub-rule-base RBlmso consisting of n fuzzy control rules with multiple process state variables

and a single control variable. The general rule structure of a MIMO fuzzy system can there

fore be represented as a collection of MISO fuzzy systems:

R - [RBmiso* RBmiso* " *»RBfaso)

where RBlilS0 represents the rule: */ (x is A, and • • •, and y is £,) then (zk is Dt), i-1,2, ... ,n.

Let us consider the following general form of MISO fuzzy control rules in the case of

two-input-single-output fuzzy systems:

Input : x is A and y is B

R\\ if x is A\ and y is B\ then z is C\

1 See Section III of Part I in Fuzzy Conditional Statements and Fuzzy Control Rules.
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also R2: if x is A2 and y is B2 then z is C2

also RH : if x is An and y is Bn then z is Cn

z is C'

where x, y, and z are linguistic variables representing the process state variables and the con

trol variable, respectively; A,-, Bit and C, are linguistic values of the linguistic variables x, y,

and z in the universes of discourse U, V, and W, respectively, with z=l,2, • • • ,n.

The fuzzy control rule, // (x is At and y is Bt) then (z is C, ) is implemented as a fuzzy

implication (relation) /?, and is defined as:

M*{ = \i<a. andb{ -*c,)("» v, w) = [u.A.(w) and \xB.(v)] -» Uc.(w)

where A, and B{ is a fuzzy set A.xfl, in UxV, /?l=> (A,- and Bt) -» C, is a fuzzy implication

(relation) in UxVxW and -» denotes a fuzzy implication function.

The consequence C' is deduced from the sup-star compositional rule of inference employ
ing the definitions of a fuzzy implication function and the connectives and and also.

In what follows, we shall consider some useful properties of the FLC inference mechan

ism. First, we would like to show that the sup-min operator denoted by o and the connective

also as the union operator are commutative. Thus, the fuzzy control action inferred from the

complete set of fuzzy control rules is equivalent to the aggregated result derived from indivi

dual control rules. Furthermore, as will be shown later, the same properties are possessed by

the sup-product operator. However, the conclusion in question does not apply when the fuzzy

implication is used in its traditional logicalsense [18,19]. More specifically, we have

Lemma 1: (A'.fl'^u/?, = u (A'£'>>/?,.
i=l i=l

Proof:

C'=(A'JB')o uRi
i=i

= (A'&) o u(A,- and 5,-^Q).
i=l

The membership function u^ of the fuzzy set C is pointwise defined for all we W by

Uc(w)= (M.A'(u),ufl.(v))o max (\iR.(u,v,w), \iR(u,v,w), • • , \iR (u,v,w))
u ,v ,vv l *• n

= sup min { (U-a-OO, U*'(v)), max diR(u,v,w), \iR (u,v,w), • • • , u* (u,v,w)) )
u.v u.v.w ' * *
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= sup max { min [()iA>(u), \iB-(v)), \iR(u,v,w)], •• • , min [(liA>(u),\iB>(v)), \iR (u,v,w)] }
u,v u,v,w l "

= max { [(yiA>(u),\LB>(v))o \iR (u,v,w)], • • •, [(\ia>(u),\lb>(v))o [iR (u,v,w)) }.
u,v,w l "

Therefore,

C'= [(A'ft') o RJ u [(A'ft') o/IJu • • • u[(A'ft') o Rn]

= u (A'ft')oRi
i=l

= u (A'ft')o (Ai andBi^Ci)
«=i

iuC/. QED

Lemma 2: For the fuzzy conjunctions RC,RP, Rbp and R^, we have:

(A'ft')o(Ai andB^d) = [A'o04,->C,)] n [5'o(5,->C,)] ifu^. = \iA. Au*.

(A'̂ XA,- mABi-tCi) = [A'oO^C,)] • [S'otf,-^)] if |iAfXB. = u.A. • u*.

Proof:

C, = (A' ft') o (Af and 5, ->C,)

Uc^ (M-A'̂ fl-) o OXa.-xb.-^Hc.)

= (^a'^b-) o (min (ua,,Ub.)-HIc,.)

= (Ha-.IV) o min [(u^-Hi^.), (0*.-^.)]

= sup min { [(]iA-,\iB-)> min [(|iA.->Hc.), (Ua.-Hk:.)] )

= sup min ( min fnAS (uA ->Uc)], min [u^, (m*,->Uc,)] }

= min { [p.A, o (Ma.-^.)], tHa- o (M*,->Uc,)] )•

Hence, we obtain

C/= [A'oCAi-^C,)] ^> [5'o(5t-»Ct)]. QED

Let us consider two special cases which follow from the above lemma, and which play

an important role in FLC applications.

Lemma 3: If the inputs are fuzzy singletons, namely, A'=u0, B'=v0, then the consequences

employing Mamdani's minimum operation rule Rc and Larsen's product operation rule Rp,
respectively, may be expressed simply as
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Re: cc/" a Mc^w) Re: a,- a^.(w)
(0 ^:afncf(W) ("} /?p:a,- nc.^)

where a/" =m.a.(m0) a^(vo) and a/ =u.a{(kq) •^(vq).

Proof:

(i):

C/= [A' o (A,-*;,)] n [£' o (*,->£)]

Hc.<= min { [uoo OiA,(")-Hic,(w))], [v0o ^(vJ-Hic/w))] }

= min { [Ma.(u0)-»u<:.(w)], Qib/v^jic^w)] }.

(ii):

C/= [A' o (A,->C,)] • [BT o (B,->Cf)]

Uc.^ [Uoo ^.(u^uc^w))] • [v0o (SiBi(v)^\ic.(w))]

= [Ha{(woHUc,.(vv)] • [M^M-hi^w)]. QED

As will be seen in following section, the last lemma not only simplifies the process of

computation, but also provides a graphic interpretation of the fuzzy inference mechanism in the

FLC. Turning to the sup-product operator, which is denoted as •, we have

Lemma 1': (A'ft') • uR{ = u (A'ft') • /?,.
i=l i=l

Lemma 2': For the fuzzy conjunctions Re,Rp, Rbp and R^, we have:

(A'ft'y(Ai and£,->C,) = [A'<A£-*C,)] n [fi'.(fi,->C,)] if a*,**. = nA. Atej

(A'ft'XAi andfi,->C,) = [A'-O^C,)] • [£'•(*,->£)] if ji*,*, = \iA. •U*.

Lemma 3': If the inputs are fuzzy singletons, namely, A'=u0> 5'=v0, then the consequences

employing Mamdani's minimum operation rule Rc and Larsen's product operation rule Rp,

respectively, may be expressed simply as

Rc'-af^VcS") Rc-ol: auc.()v)

(l) Rp:a?-\ict{w) (ii) Rp: at'• \ict(w)

where a* =^.("o)A M.b.(v0) and a- = \iA{(u0) •U*,(v0).

Therefore, we can assert that
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Re: Uc=y a, Au<,
1=1 '

n

Rp: Hc= u a,- • uc.,

where the weighting factor (firing strength) ct,- is a measure of the contribution of the i* rule

to the fuzzy control action. The weighting factor in question may be determined by two

methods. The first uses the minimum operation in the Cartesian product, which is widely used

in FLC applications. The second employs the algebraic product in the Cartesian product, thus

preserving the contribution of each input variable rather than the dominant one only. In this

respect, it appears to be a reasonable choice in many FLC applications.

For simplicity, assume that we have two fuzzy control rules, as follows:

R\ : if x is Ai and y is B\ then z is C\,

R2: if x is A2 and y is B2 then z is C2.

Figure 10 illustrates a graphic interpretation of lemma 2 under Rc and a/\ Figure 11

shows a graphic interpretation of lemma 2 under Rp and a/\

In on-line processes, the states of a control system play an essential role in control

actions. The inputs are usually measured by sensors and are crisp. In some cases, it may be

expedient to convert the input data into fuzzy sets2. In general, however, a crisp value may be

treated as a fuzzy singleton. Then the firing strengths ax and <% of the first and second rules

may be expressed as

^i=\^Al(xo)K^Bl(yo)

a2 =uA2WAUs2()'o),

where \iA.(x0) and \iBl(y0) play the role of the degrees of partial match between the user-

supplied data and the data in the rule base. These relations play a central role in the four types

of fuzzy reasoning which are currently employed in FLC applications and are described in the

following.

I. Fuzzy Reasoning of the First Type: Mamdani's minimum operation rule as a fuzzy implica
tion function

Fuzzy reasoning of the first type is associated with the use of Mamdani's minimum

operation rule Re as a fuzzy implication function. In this mode of reasoning, the i* rule leads

2 See Section IV of Part I in Fuzzification Strategies.
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to the control decision

|lC|<w) =Oi Ap^w)

which implies that the membership function pc of the inferred consequence C is pointwise

given by

Mc 0*0 = Hc; v M-cI

= to AMci(w)lv [a2a Mc2(w)].

To obtain a deterministic control action, a denazification strategy is required, as will be

discussed at a later point. The fuzzy reasoning process is illustrated in Figure 12, which shows

a graphic interpretation of Lemma 3 in terms of Mamdani's method Re.

2. Fuzzy Reasoning of the Second Type: Larsen's product operation rule as a fuzzy implica

tion function

Fuzzy reasoning of the second type is based on the use Larsen's product operation rule

Rp as a fuzzy implication function. In this case,, the i* rule leads to the control decision

pc<w) = a,- \xc.(w).

Consequently, the membership function pc of the inferred consequence C is pointwise given

by

MhO =uc;VhC2

= [a1-MCi(w)]v[a2-uC2(w)].

From C, a crisp control action can be deduced through the use of a denazification opera

tor. The fuzzy reasoning process is illustrated in Figure 13, which shows a graphic interpreta

tion of Lemma 3 in terms of Larsen's method Rp.

3. Fuzzy Reasoning of the Third Type: Tsukamoto's method with linguistic terms as monotonic

membership functions

This method was proposed by Tsukamoto [117]. It is a simplified method based on the

fuzzy reasoning of the first type in which the membership functions of fuzzy sets A,, B, and C,

are monotonic. However, in our derivation, A, and #, are not required to be monotonic but C,

is.
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In Tsukamoto's method, the result inferred from the first rule is <Xi such that a.x=Cx(yx).

The result inferred from the second rule is c^ such that a^C^^. Correspondingly, a crisp

control action may be expressed as the weighted combination (Figure 14)

atfi + a^
zo= •

^ + a2

4. Fuzzy Reasoning of the Fourth Type: The consequence of a rule is a function of input

linguistic variables

Fuzzy reasoning of the fourth type employs a modified version of states evaluation func

tion3. In this mode of reasoning, the i* fuzzy control rule is of the form

Ri : if (x is At, • • • and y is Bt) then z=fi(x, • • •y),

where x, • • • ,y, and z are linguistic variables representing process state variables and the con

trol variable, respectively; A,, • •, Bt are linguistic values of the linguistic variables x, • • • , y

in the universes of discourse U, • • •, V, respectively with i=l,2, • • • ,«; and /,- is a function

of the process state variables x, • • • ,y defined in the input subspaces.

For simplicity, assume that we have two fuzzy control rules as follows:

Rx : if x is Ax and y is Bx then z =f\(x>y),

R2: if x is A2 and y is B2 then z =f2(x, y).

The inferred value of the control action from the first rule is a.ifi(x0, y0).

The inferred value of the control action from the second rule is o.2f2(x0, y0).

Correspondingly, a crisp control action is given by

<*-if\(xo, y0) + OL2f2(x0, y0)
z0 =

a! + a2

This method was proposed by Takagi and Sugeno [103] and has been applied to guide a

model car smoothly along a crank-shaped track [98] and to park a car in a garage [97,99].

3 See Section V of Part I in Types of Fuzzy Control Rules.
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H. Defuzzification Strategies

Basically, defuzzification is a mapping from a space of fuzzy control actions defined over

an output universe of discourse into a space of nonfuzzy (crisp) control actions. It is employed

because in many practical applications a crisp control action is required.

A defuzzification strategy is aimed at producing a nonfuzzy control action that best

represents the possibility distribution of an inferred fuzzy control action. Unfortunately, there

is no systematic procedure for choosing a defuzzification strategy. Zadeh [142] first pointed

out this problem and made tentative suggestions for dealing with it. At present, the commonly

used strategies may be described as the Max criterion, the Mean of Maximum, and the Center

of Area.

A. The Max Criterion Method

The Max Criterion produces the point at which the possibility distribution of the control action

reaches a maximum value.

B. The Mean ofMaximum Method (MOM)

The MOM strategy generates a control action which represents the mean value of all local con

trol actions whose membership functions reach the maximum. More specifically, in the case of

a discrete universe, the control action may be expressed as

W:

7=1 «

where w; is the support value at which the membership function reaches the maximum value

m(w;), and / is the number of such support values.

C. The Center ofArea Method (COA)

The widely used COA strategy generates the center of gravity of the possibility distribution of

a control action. In the case of a discrete universe, this method yields

z0 =

Y, \l,(Wj) • Wj
M

n

£ u,0*v>
7=1

where n is the number of quantization levels of the output.
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Figure 15 shows a graphical interpretation of various defuzzification strategies. Braae

and Rutherford [5] presented a detailed analysis of various defuzzification strategies (COA,

MOM) and concluded that the COA strategy yields superior results (also see [58]). However,

the MOM strategy yields a better transient performance while the COA strategy yields a better

steady-state performance [94]. It should be noted that when the MOM strategy is used, the

performance of an FLC is similar to that of a multi-level relay system [48], while the COA

strategy yields results which are similar to those obtainable with a conventional PI controller

[46]. An FLC based on the COA generally yields a lower mean square error than that based

on the MOM [111]. Furthermore, the MOM strategy yields a better performance than the Max

criterion strategy [52].

in. Applications and Recent Developments

A. Applications

During the past several years, fuzzy logic has found numerous applications in fields rang

ing from finance to earthquake engineering [62]. In particular, fuzzy control has emerged as

one of the most active and fruitful areas for research in the application of fuzzy set theory. In

many applications, the FLC based systems have proved to be superior in performance to con

ventional systems.

Notable applications of FLC include the heat exchange [80], warm water process [47],

activated sludge process [113,35], traffic junction [82], cement kiln [59,118], aircraft flight con

trol [58], turning process [92], robot control [119,94,106,8,34], model-car parking and turning

[97,98,99], automobile speed control [74,75], water purification process [127], elevator control

[23], automobile transmission control [40], power systems and nuclear reactor control [4,51],

fuzzy memory devices [107,108,120,128,129,133], and fuzzy computer [132]. In this connec

tion, it should be noted that the first successful industrial application of the FLC was the

cement kiln control system developed by the Danish cement plant manufacturer F. L. Smidth

in 1979. An ingenious application is Sugeno's fuzzy car which has the capability of learning

from examples. More recently, predictive fuzzy control systems have been proposed and suc

cessfully applied to automatic train operation systems and automatic container crane operation

systems [135,136,137,138,139]. In parallel with these developments, a great deal of progress

has been made in the design of fuzzy hardware and its use in so-called fuzzy computers [132].
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B. Recent Developments

1. Sugeno's Fuzzy Car

One of the most interesting applications of the FLC is thefuzzy car designed by Sugeno.

Sugeno's car has successfully followed a crank-shaped track and parked itself in a garage

[98,97,99].

The control policy incorporated in Sugeno's car is represented by a set of fuzzy control

rules which have the form:

Ri : if x is A,- , • • • and y is Bt then z = a'0+axx+ • • •+alny

where x, • ••, andy are linguistic variables representing the distances and orientation in rela

tion to the boundaries of the track; A,, • • •, and Bt are linguistic values of x, • • •, and y. z is

the value of the control variable of the i* control rule; and a0, ..., and a'H are the parameters

entering in the identification algorithm [103,99].

The inference mechanism of Sugeno's fuzzy car is based on fuzzy reasoning of the fourth

type, with the parameters al0, • • •, and aln identified by training. The training process involves a

skilled operator who guides the fuzzy model car under different conditions. In this way,

Sugeno's car has the capability of learning from examples.

2. FLC Hardware Systems

A high speed FLC hardware system employing fuzzy reasoning of the first type has been

proposed by Yamakawa [130,131]. It is composed of 15 control rule boards and an action

interface (i.e, a defuzzifier based on the COA). It can handle fuzzy linguistic rules labeled as

NL, NM, NS, ZR, PS, PM, PL. The operational speed is approximately 10 mega fuzzy logical

inferences per second (FLIPS).

The FLC hardware system has been tested by an application to the stabilization of

inverted pendulum mounted on a vehicle. Two pendulums with different parameters were con

trolled by the same set of fuzzy control rules (Table VII). It is worthy of note that only seven

fuzzy control rules achieve this result Each control rule board and action interface has been

integrated to a 40-pin chip.

3. Fuzzy Automatic Train Operation (ATO) Systems

Hitachi Ltd. has developed a Fuzzy Automatic Train Operation System (ATO) which has

been in use in the Sendai-city subway system in Japan since July, 1987. In this system, an

object evaluation fuzzy controller predicts the performance of each candidate control command
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and selects the most likely control command based on skilled human operator's experience.

More specifically, fuzzy ATO comprises two rule bases which evaluate two major func

tions of a skilled operator based on the criteria of safety, riding comfort, stop gap accuracy,

traceability of target velocity, energy consumption and running time. One is constant speed

control (CSC) which starts a train and maintains a prescribed speed. The other is the train

automatic stop control (TASC) which regulates a train speed in order to stop at the target posi

tion at a station. Each rule base consists of twelve object evaluation fuzzy control rules. The

antecedent of every control rule performs the evaluation of train operation based on safety, rid

ing comfort stop gap accuracy, etc.. The consequent determines the control action to be taken

based on the degree of satisfaction of each criterion. The control action is the value of the train

control notch which is evaluated every 100 milliseconds from the maximal evaluation of each

candidate control action and it takes as a value a discrete number: positive value means "power

notch"; negative value means "break notch".

The Sendai-city subsway system has been demonstrated to be superior in performance to

the conventional PID ATO in riding comfort, stop gap accuracy, energy consumption, running

time and robustness [135,136,139].

4. Fuzzy Automatic Container Crane Operation (ACO) Systems

In the application of FLC to the automatic operation of container-ship loading cranes, the

principal performance criteria are safety, stop gap accuracy, container sway, and carrying time.

Fuzzy ACO involves two major operations: the trolley operation and the wire rope opera

tion. Each operation comprises two function levels: a decision level and an activation level.

Field tests of fuzzy ACO systems with real container cranes have been performed at the port of

Kitakyusyu in Japan. The experimental results show that cargo handling ability of Fuzzy ACO

by an unskilled operator is more than 30 containers per hour, which is comparable to the per

formance of a veteran operator. The tests have established that Fuzzy ACO controller has the

capability of operating a crane as safely, accurately and skillfully as a highly experienced

human operator [137,138,139].

5. Fuzzy Logic Chips and Fuzzy Computers

The first fuzzy logic chip was designed by Togai and Watanabe at AT&T Bell Labora

tories in 1985 [107]. The fuzzy inference chip, which can process sixteen rules in parallel,

consists of four major parts: a rule-set memory, an inference-processing unit, a controller, and

an input-output circuitry. Recendy, the rule-set memory has been implemented by a static ran

dom access memory (SRAM) to realize a capability for dynamic changes in the rule set. The
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inference-processing unit is based on the sup-min compositional rule of inference. Preliminary

timing tests indicate that the chip can perform approximately 250,000 FLIPS at 16 mega HZ

clock. A Fuzzy Logic Accelerator (FLA) based on this chip is currently under development

[108,120]. Furthermore, in March 1989, the Microelectronics Center of North Carolina suc

cessfully completed the fabrication of the world's fastest fuzzy logic chip designed by

Watanabe. The full-custom chip comprises 688,000 transistors and is capable of making

580,000 FLIPS.

In Japan, Yamakawa and Miki realized nine basic fuzzy logic functions by the standard

CMOS process in current-mode circuit systems [128]. Later, a rudimentary concept of a fuzzy

computer was proposed by Yamakawa and built by OMRON Tateishi Electric Co. Ltd [132].

The Yamakawa-OMRON computer comprises a fuzzy memory, a set of inference engines, a

MAX block, a defuzzifier, and a control unit. The fuzzy memory stores linguistic fuzzy infor

mation in the form of membership functions. It has a binary RAM, a register, and a member

ship function generator [128]. A membership function generator (MFG) consists of a PROM, a

pass transistor array, and a decoder. Every term in a term set is represented by a binary code

and stored in a binary RAM. The corresponding membership functions are generated by the

MFG via these binary codes. The inference engine employs MAX and MIN operations which

are implemented by the Emitter Coupled Fuzzy Logic Gates (ECFL Gates) in voltage-mode

circuit systems. The linguistic inputs which are represented by analog voltages distributed on

data buses are fed into each inference engine in parallel. The results inferred from the rules

are aggregated by a MAX block which implements the function of the connective also as a

union operation, yielding a consequence which is a set of analog voltages distributed on output

lines. In the FLC applications, a crisp control command necessitates an auxiliary defuzzifier. In

this implementation, a fuzzy computer is capable of processing fuzzy information at the very

high speed of approximately 10 mega FLIPS. It is indeed an important step not only in indus

trial applications but also in commonsense knowledge processing.

IV. Future Studies and Problems

In many of its applications, FLC is either designed by domain experts or in close colla

boration with domain experts. Knowledge acquisition in FLC applications plays an important

role in determining the level of performance of a fuzzy control system. However, domain

experts and skilled operators do not structure their decision making in any formal way. As a

result, the process of transferring expert knowledge into a usable knowledge base of an FLC is

time-consuming and non-trivial. Although fuzzy logic provides an effective tool for linguistic
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knowledge representation and Zadeh's compositional rule of inference serves as a useful guide

line, we are still in need of more efficient and more systematic methods for knowledge acquisi

tion.

An FLC based on the fuzzy model of a process is needed when higher accuracy and reli

ability are required. However, the fuzzy modeling of a process is still not well understood due

to difficulties in modeling the linguistic structure of a process and obtaining operating data in

industrial process control [13,84,111,125,104,101].

Classical control theory has been well developed and provides an effective tool for

mathematical system analysis and design when a precise model of a system is available. In a

complementary way, FLC has found many practical applications as a means of replacing a

skilled human operator. For further advances, what is needed at this juncture are well-founded

procedures for system design. In response to this need, many researchers are engaged in the

development of a theory of fuzzy dynamic systems which extends the fundamental notions of

state [6], controllability [31], and stability [77,44,89,55].

Another direction that is beginning to be explored is that of the conception and design of

fuzzy systems which have the capability to learn from experience. In this area, a combination

of techniques drawn from both fuzzy logic and neural network theory may provide a powerful

tool for the design of systems which can emulate the remarkable human ability to learn and

adapt to changes in environment



Acknowledgment

I am greatly indebted to Professor Lotfi A. Zadeh of the University of California, Berkeley for
his encouragement of this research. The assistance of Professor Zadeh is gratefully ack
nowledged. The author would like to thank Professor M. Tomizuka of the University of Cali
fornia, Berkeley, and the reviewers for their helpful comments and suggestions.



References and Related Publications

[Please refer to Part I of this paper].



Figure Captions

Fig. 1. Diagrams for the calculation ofmembership functions, (a) \lR vs. \iA with the

parameter \lB. (b) [lR vs. \iB withthe parameter \iA.

Fig. 2-5 Approximate reasoning: Generalized Modus Ponens with Larsen's product operation
rule.

Fig. 6-9 Approximate reasoning: Generalized Modus Tollens with Larsen's product operation
rule.

Fig. 10. Graphical interpretation of lemma 2 under a* and Rc.

Fig. 11. Graphical interpretation oflemma 2under a" and Rp.

Fig. 12. Diagrammatic representation of fuzzy reasoning 1.

Fig. 13. Diagrammatic representation of fuzzy reasoning 2.

Fig. 14. Diagrammatic representation of fuzzy reasoning 3.

Fig. 15. Diagrammatic representation ofvarious defuzzification strategies.
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Table Captions

TABLE I Intuitive Criteria relating Prel and Cons for Given Pre2 in GMP

TABLE II Intuitive Criteria relating Prel and Cons for Given Pre2 in GMT

TABLE III Summary of Inference Results for Generalized Modus Ponens

TABLE IV Summary of Inference Results for Generalized Modus Tollens

TABLE V Satisfaction of Various Fuzzy Implication Functions under Intuitive Criteria

TABLE VI Suitable Pairs of a Fuzzy Implication Function and Connective also

TABLE VII Fuzzy Control Rules for Inverted Pendulum Balancing



TABLE I

Intuitive Criteria relating Prel and Cons for Given Pre2 in GMP

criterion 1

criterion 2-1

criterion 2-2

criterion 3-1

criterion 3-2

criterion 4-1

criterion 4-2

x is A'(Prel)

x is A

x is very A
x is very A

x is more or less A

x is more or less A

x is not A

x is not A

yisB'(Cons)

y is B

y is very B
y is B

y is more or less B
y is B

y is unknown
y is not B



TABLE II

Intuitive Criteria relating Prel and Cons for Given Pre2 in GMT

criterion 5

criterion 6

criterion 7

criterion 8-1

criterion 8-2

y is B'(Prel)

y is not B

y is not very B

y is not more or less B

y is B

yis B

x is A'(Cons)

x is not A

x is not very A

x is not more or less A

is unknown

is A



TABLE IE

Summary of Inference Results for Generalized Modus Ponens

A very A more or less A not A

Re M* Vb H* 0.5 ^ u*

Rf n* M* Ub
1 + u*

Ra
l + uB

2

3 + 2\iB - V5 + 4ufl

2

V5 + 4^-1

2

RM 0.5 v^ 3-V5 ,,2 vu, V5-1 v2 vUfl

Rb 0.5 v hj 3-V5 v2 vUfl 2 vu.

Rs V-b Hi Vii7

Ra VS7 mT 10°



Re

Rb

Rs

Ha

TABLE IV

Summary of Inference Results for Generalized Modus Tollens

notB

0.5 A uA

Ha

1 + Ha

1-
Ha

0.5V(l-nA)

0-5V(l-nA)

1-H*

1

1 + Ha

not very B

V5-1
aHa

HaVhT+T-u^

1 - 2uA + VI + 4\iA

(1-Ha)V(-^-Aua)

^V(1-,a)
1-Ha2

Vl + 4^-1

2Ha2

not more or less B

3-V5
aHa

2ua + 1 - yJ4\lA + 1

2Ha

3-vT+Ti7

3-V5
v(1-Ha)

3-V5
vO-Ha)

1-VHa"

2+Ha - VhT+4^

B

VLa

Va

Ha Ml-u*)

1

1



TABLE V

Satisfaction of Various Fuzzy Implication Functions under Intuitive Criteria

Re R, Ra Rm Rs Ra *h
criteria 1 o o X X o X X

criteria 2-1

criteria 2-2

X

O

X

o

X

X

X

X

o

X

X

X

X

X

criteria 3-1

criteria 3-2

X

o

X

o

X

X

X

X

o

X

X

X

X

X

criteria 4-1

criteria 4-2

X

X

X

X

o

X

o

X

o

X

O

X

o

X

criteria 5 X X X X O X X

criteria 6 X X X X O X X

criteria 7 X X X X O X X

criteria 8-1

criteria 8-2

X

o

X

o

o

X

X

X

O

X

O

X

O

X



TABLE VI

Suitable Pairs of a Fuzzy Implication Function and Connective also

IMPLICATION RULE

Rc Rp Rf,p Rjp

Ra

Rs RARg

CONNECTIVE ALSO

U+Q Km/ A

n • Q g\

(n • O ay

Om

*itdepends on the shape ofreproduced curve which forms the set of fuzzy control rules.



TABLE Vn

Fuzzy Control Rules for Inverted Pendulum Balancing

Angle

NL NM NS ZR PS PM PL

NL

NM

Change
of

Angle

NS

ZR

PS

PM

PL

NS

NM

ZR

ZR

ZR

PS

PM
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