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ON THE EXTENSION OF NEWTON'S METHOD TO

SEMI-INFINITE MINIMAX PROBLEMS*

E. Polak*, D. Q. Mayne**andJ. E. Higgins*

ABSTRACT

This paper introduces two new techniques for the analysis and construction of semi-infinite

optimization algorithms. The first is avery simple technique for establishing the superlinear rate of
convergence of semi-infinite optimization algorithms. The second technique enables one to specify
discretization rules which preserve the superlinear convergence of conceptual superlinearly converg
ing semi-infinite optimization algorithms.

We use natural extensions of Newton's method to semi-infinite optimization, as a vehicle for

presenting our techniques. In particular, we show that both local and global versions of the concep
tual extension of Newton's method converge Q-superlineaiiy, with rate at least 3/2, and that their

implementations, based onour discretization rules, retain this rate of convergence.
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1. INTRODUCTION

This is adual purpose paper. The first purpose of this paper is to introduce anovel technique
for establishing thesuperlinear of convergence of aclass of semi-infinite optimization algorithms; the

second is to demonstrate the degree to which various discretization effects, associated with semi-

infinite optimization problems can be taken into account. Inparticular, thispaper introduces discreti

zation rules which preserve the superlinear convergence of conceptual superlineaiiy converging
semi-infinite optimization algorithms.

In his pioneering paper [27], dealing with perturbed Kuhn-Tucker points, Robinson showed that

by applying the Implicit Function Theorem to the first order optimality conditions of a finitely con

strained optimization problem and thenrelating theresult to the search direction finding problem of a

particular algorithm, onecan sometimes establish thesuperlinear convergence of this algorithm. The

same technique can also be used for establishing the superlinear convergence of finite minimax algo
rithms, see e.g., [25].

Unfortunately, Robinson's technique cannot beused in conjunction withsemi-infinite optimiza

tion algorithms because the assumptions of the Implicit Function Theorem cannot be met in the

semi-infinite case. The technique in this paper is based on function approximations and is therefore

not restricted by the by the linear independence requirements associated with Implicit Function

Theorem based techniques.

To illustrate both our new technique for establishing the superlinear convergence of a semi-

infinite optimization algorithm and the manner in which discretization effects can be taken into

account, we chose an extension of Newton's method for the solution of semi-infinite optimization

problems. Our choice was motivated partly by the fact that Newton's method is the simplest method
method in the class that can be considered, and partly because Newton's method is one of the best

understood, most studied, variously modified, adapted, and approximated algorithms in the literature
(see, e.g., [5,18, 8,15,16,19,24,27,28]).

In the area of nonlinear programming, it was at first used as a local method for unconstrained

optimization of twicelocally Lipschitz continuously differentiable, strongly convex functions on R".

Then, it was shown by Goldstein [7] that, for such functions, the local Newton method can be glo
bally stabilized, i.e., it can be made globally convergent bythe addition of the Armijo-Goldstein step
size rule [1, 7]. Since this step size rule returns a step size of of unity near a solution (see [7]), the

Goldstein version of the globally stabilized Newton method converges quadratically. Finally, refer
ring to [20], we see that it is possible to construct globally stabilized versions of Newton's method

which converge quadratically in minimizing twice locally Lipschitz continuously differentiable, but
not necessarily convex, functions on Rrt, whose local minimizers satisfy second order sufficiency



conditions1.

The extension ofNewton's method Qargely in the form of sequential quadratic programming) to

semi-infinite optimization problems appears to have beenconfined to constrained problems whichcan

be converted to ordinary nonlinear programming problems by means of the Implicit Function

Theorem (see, e.g. [10,23,4]). Forexample, a problem of the form

mm{f(x)\$(x ,t)£0, V*g [0,1]} , (1.1a)

canbe converted to the standard nonlinear programming form

mm{/(x)l<K*,r'(jc))«S0,j' =1,2,... ,q) , (1.1b)

whenit is knownthat for allx near a local solution x*, <K* , ) has exactly q local maximizers, and

that <|>tf (x , tJ(x)) <0 for each ;. It should be noted that some of these extensions arc conceptual
algorithms because in their analysis it was not taken into account the fact that the local maximizers

fy (x) cannot be computed exactly.

Onecanconvert anunconstrained minimax problem of the form

m& max *(*,*) (12,
ieR"(e[0,i] U.za;

into a constrained problem ofthe form

min{w \$(x ,t)£w , Vf g [0,t]} , (1.2b)

and, assuming that the required assumptions are satisfied, apply one of the above mentioned algo
rithms (i.e., [10,23,4]). Such an approach suffers from both aesthetic and practical drawbacks. First,
it is displeasing to convert an unconstrained optimization problem into aconstrained one. Second, to

avoid theMaratos effect [14], onemustuseacurvilinear step sizerule orother modifications, such as

the use of the modified Lagrangian merit function of Shittkowski and Powell, which are more com

plex than the simple Armijo-Goldstein rule mentioned earlier. Third, unlike Newton's method, the

methods in [10,23,4] do notexhibit invariance under linear transformations. Last, butnotleast, we
have observed that constrained semi-infinite optimization algorithms (such as Algorithm 5.7 in [21])
do not perform on (1.2b) as well as semi-infinite minimax algorithms (such as the version of Algo
rithm 5.2, based on (5.52) in [21]) do on (1.2a).

In this paper, we presentnatural extensions of both the localversionof Newton's method andof

the Goldstein globally stabilized version of Newton's method, for the solution of a class of convex

semi-infinite minimax problems. The notable aspects ofour work are (i) we do not impose the above

' Such globally converging methods are obtained by using the Goldstein method ifcertain conditions are satisfied, and reverting to
theArmijo Gradient Method [1] otherwise (see, e.g., [17] for anexample).



mentioned restrictive assumption that all the local maximizers are strict and that their number is

finite, (ii) we take into account the most obvious approximations required to produce implementable

algorithms, and (Hi) weuse anew and very simple technique for establishing superlinear convergence
of our extensions of Newton's method. Since our technique is not based on the Implicit Function

Theorem (as in [27,25]), it does notrequire the imposition of astrict complementarity condition2. Li

Section 2 weshow that aconceptual local Newton's method for semi-infinite minimax problems con
verges superlineaiiy with g-rate 3/2, underassumptions analogous to those needed in the minimiza

tion of twice locally Lipschitz continuously differentiable, strongly convex functions on 1R". In Sec

tion3 we presents conceptual globally stabilized Newton method and show thatit retains the Q-rate

of 3/2. In Section 4 we present two implementable versions of the local Newton method for semi-

infinite minimax problems and show that they converge locally with Q-rate 3/2; a superlinearly con

verging (with g-rate 3/2) implementable version of our globally stabilized Newton method is

presented in Section 5. We present numerical results in Section 6 and ourconcluding comments and
final observations in Section 7.

2. THE LOCAL NEWTON METHOD

We will consider the problem

P: mmW). (zla)

where

\|<*) =max max 6^(x ,t) , (2m
ye q/e [0,1] \*»Lv)

whereq^ {1,2 q }.

hi keeping with standard assumptions for Newton's method (see [7]), we make the following
hypotheses:

Assumption 2.1:

(i) For all j e q, the functions ty'' :Rn x IR are twice Lipschitz continuously differentiable in the
first argument (uniformly in the second).

(ii) For all; e q, ty(-, •), Vz(j)(-, •) and $£(•,) are all continuous.

(Hi) There exist constants 0 < m £ M such that for all x e IRn,

Referring to problem (1.2a), wenote that an assumption of strict complementary slackness is highly restrictive for semi-infinite
minimax problems, because itimplies that, at asolution x*, the active gradients Vx$(r* ,/) are affinely independent, which in turn, implies
that$(r* , •)hasa mostn + 1maximizers. However, Wx* . )maywellhave acontinuum of maximizers.



mM2£{h ,$Ux ,t)h)<MMf, Vre=[0,l], Vyeq. (2-2)

Proposition 2.1: Suppose that Assumption 2.1 holds and that x* is the minimizer of y(-). Then
for all* e IRn,

y(*)- y(**) >y\x -x* f. (2.3a)

Proof: For anyx e R*, and for any j e q, let

q*(x) £ {j e q Iy(*) = max f'c* ,0} (2 3b)
/6[0,ij \l.dv)

T*J(x)£ {te [0,1] I^Of ,0 =H<«)} • (2.3c)

Then, makinguse of the secondorderexpansion formula [6, p.185]and of (2.2),we obtain that

y(jc)-y(jc*)2:max max VQc* ,r)-y(**) + {VxV(x* , t),x -x* ) +-^-Bx -x*f
j e q t e [0,1] 2

2> max max $>(x* ,t)-y(x*)+ {Vxtf(x* ,t) ,x -x* ) +^x -x*f

=<*y(** ,X-JC*) +-^-Ibc-JC*l2, (2.3d)

where dy(x* ,* -a:*) denotes the directional derivative of y() at **, in the direction (x -**).

Sincea* is the minimizerof y(), dy(x* tx - x*) > 0, andhence (2.3a)follows. •

By analogy with Newton's method fordifferentiable functions, we define a quadratic approxi

mation $(• Iy) to yO, around the pointy, by

tftr ly^mjix^max^Cy ,t)+(VxV(y ,t) ,x-y)+K{(x-y) ^^(y ,t)(x-y)). (2.4a)

Algorithm 2.1 (Local Newton Method).

Data: x0eTR.n.

Step 0: Set i = 0.

Step 1: Compute

xi+l = arg min fy(x I*,). (2.4b)
x e R" v '

Step2: Replace i by i+1 and go to Step 1. Q

-4-



Proceeding as in the proof of Proposition 2.1, it can be shown that

<jK* \xi)- <jK*»+i Ix,-) ^ VSm Bx -xI+1!l2. Hence we conclude thatx/+1 isuniquely defined by (2.4b).

To establish the local convergence and rate of convergence of the above algorithm, we shall
need the following lemmas.

Lemma 2.1: Suppose that Assumption 2.1 holds. Then there exists a ft <~ such that for any
x , y e R",

ly(x)-$(x ly)l s£lx-yl3. (2.5)

Proof: Let L <oo bea common Lipschitz constant for the Hessians <>£(•, •). Then, making use of
second order expansions, we obtain that

y(x) =max max 6>(y ,t)+{VxV(y ,t) ,x-y)+K{(x-y) .^(y ,t)(x-y))
j e qr e [0,1]

+ J (1 -s) {(x -y) , ft4(y +s(x -y) , f)-<l>i(y .OK* -y))ds
se [0,1]

<Jy(x ly) +-|lx-yl3. (26)

The other halfofthe inequality in (2.5) follows similarly (with ft = L/6). •

Lemma 2.2: Suppose that Assumption 2.1 is satisfied. Let h : RB -» R" and 0 : Rrt -> R be

defined by

h(x) =arg min^ ty(x +h Ix), (2<7a)

0(*) =Amm <j>(x +h Ix) - y(x). (2.7b)

Then (a) both /t(•) and 8() are continuous, (b) For allx e R", dy(x , h(x)) < 8(x). (c) If x* is a

solution of (2.1a), then bothh(x*) = 0 and8(x*) = 0. (d) Forallx *x*, 8(x) < 0.

Proof: (a) Continuity of6(0and h(•) follows from the Maximum Theorem in [2], strengthened by
Assumption 2.1 (Hi). The continuity of h() again follows from theMaximum Theorem in [2], which

states that it is an upper-semicontinuous setvalued map, and the fact that h(x) is always a singleton.
(b) Clearly, with q* (x),T*J(x) defined asin(2.3b, c), we must have that

6(x)£ max max tf(x ,t)-y(x)+ <Vx*>(jc ,t) ,h(x)) =dy(x ,h(x)) . ,27c)
j e q*(x) / e T*'(x) v6, /w'

Hence dy(x , h (x)) £ 9(x). (c; Since 0 < dy(x* , h (x*)) < 8(x*) < 0, must hold, it follows that both

h(x*) = 0 and 8(x*) = 0. (d) In view of Assumption 2.1 (Hi), x* is the onlypointsatisfying the first



order necessary and sufficient condition Og 9y(x*), where 3y(x) denotes the Clarke generalized

gradient of y() atx (for a definition, see page 27 in [3]). Hence this part is a simple generalization of

Proposition 5.5 in [21], from which we see that 8(x) £ 0 for all x g R" and that 6(x) =0 if and only
ifOG9y(x). •

Lemma 23: Suppose that K g (0, oo), and that t, s £ 0 are such that

t2<K[(s+t)3+s3], (2.8a)

°*'*«' °*g*9K' (28b)
Then* <s and

t<3<Ksm. (2.8c)

Furthermore, if s £ y/9Kt with y g (0,1), then

t<^ys. (2.8d)

Proof: Let X4 V9K. Then, from (2.8a, b),

t2ZK[2s3+ 3s2t+3st2+ t3]

ZK[2'Xs2 +31s2 +3Xt2 +Xt2]. (2.9a)

Hence,

(l-4\K)t2Z5K\s2. (2.9b)

Since (1 -4\K) = 5KX = 5/9, it follows that t £ s. Hence, replacing t by s in (2.8a), we obtain
(2.8c).

Now, if s £y/9K, then ^s £^3^. Substituting for "G in (2.8c) we obtain (2.8d), which
completes our proof. •

Corollary 2.1: Suppose that K g (0, oo), ye (0,1), and that {af} £oisareal sequence such that

a?+1<K[(ai +<x£+1)3 +cc3] (2.10a)

°-ai--^' VigN. (2.10b)
Then a,- -> 0 as / -> oo superlinearly, with Q -rate 3/2.

Pro*?/; It follows from Lemma 2.3 that aI+1 £ Vy a,-, for all i g N. Hence a* -»0 as *-> «>. The
3/2 fi -rate follows from (2.8c). •



We are finally ready to establish the convergence properties of Algorithm 2.1.

Theorem 2.1: There exists a p>0 such that if lx0 -x* I<p, where x* is the solution of (2.1a),
and {*i }£o is a sequence constructed by Algorithm 2.1, then, x, -»x*, as / -» «», Q-superlinearly,
with rate at least 3/2.

Proof: Let a =ro/2, then,makinguse of (2.3a) and (2.4b), we obtain, for i = 0,1,2,..., that

<xllx,.+1-x*l2^y(xl+1)-y(x*)

£ Wm) -<i>(*,+i Ix{) + tjKxI+11 x.)-y(x*)

ZV(xi+i)-$(xi+11 x.O +^x* Ix,)-y(x*), (2.11a)

because <j>(xf+11 *,-) £ $(x* Ixx), by construction of x,+1. It now follows from (2.11a) and Lemma
2.1 that

lxl+1 - jc* I2 ^ A- [lbcl+1 - jcf-13 +Ixi - jc* I3]

£K[Kxi+1 -x*)-(x,- -x*)l3 +Ix, -x* I3]

<iA:[(lx,+1-x*ll +lx,— x*l)3 +lx,-x*l3], (2.11b)

where K = ft la and k is as in Lemma 2.1.

Next, since by Lemma 2.2, h() is continuous and h(x*) =0, it follows that given y* g (0,1),
there exists a p>0 such that if Ix,—x*l£p, then D/i(x,)l =lx,+1-x,l<7*/18*:. Let
p* =min{p,y*/18AT}. Then,if Ix, -x*l£p*, wemusthavethat

ix,+1 -x*i<;ixl+1 -xtn+ix,. -x*i<;-^+p* <;-^. (2.i2)
Letting t £ lx,+1 -x*0and s £ Ix, - x* I, and making use ofLemma 2.3 (see (2.8b)), we obtain that

Ix^-x^sV^lXf-x*!. (2.13)

Hence, if lxo-x*0£p*, then I* -x*0£p* for all / =1,2,3,..., and therefore, by (2.13),
Ix,- -x* I -» 0 as i ->oo. it now follows from (2.1 lb) and Corollary 2.1 (via (2.8c)) that

lx,+1 -x*I <;3<K Ix,- -x*I3/2 , Vi€N, (2.14)

whichcompletes ourproof. •

-7-



3. THE GLOBAL NEWTON METHOD

We will now present anextension of the globally stabilized Newtonmethod, proposed by Gold

stein in [7] (see also [22, p. 33]). Stabilization is achieved by adding an Armijo type step size rule to

the Local Newton Method. The rate of convergence of the Local Newton Method is preserved,

because, as we will show, nearthe solution of (2.1a), under Assumption 2.1, the step size becomes

unity, i.e., the Global Newton Method reverts to the Local Newton Method.

Algorithm 3.1 (Global Newton Method).

Data: x0g R",o,Pg (0,1),5 ^ {1 ,p,p2,....}.

Step 0: Set i = 0.

Step 1: Compute 6(x,), andht = h(x,), according to (2.7b), (2.7a).

Step 2: Compute the step size Xt 4 max {X g S Iy(x,- +M,) - y(x,-) <A,a8(x,-)}.

Step 3: Set x,+i = x,- + X( A,-. Replace i by i+1 and goto Step 1. •

First we show that Algorithm 3.1 is globally convergent

Theorem 3.1: Suppose that Assumption 2.1 holds and that x* is the solution of (2.1a). Then any
sequence {x,-} £& constructed by Algorithm 3.1,converges to x*.

Proof: First, because of Assumption 2.1 (Hi), the level sets of y() are bounded and, by construc

tion in Step 2, y(x,+1) <y(x,). Hence any sequence {x,- }*£o» constructed by Algorithm 3.1, must

have accumulation points. For the sake of contradiction, suppose that the sequence {x,-} -Zq does not

converge to x*. Then it must have an accumulation point x** *x*. By Lemma2.2, we then have

that 6(x**)<0 and A(x**)*0. Since by Lemma 2.2, the directional derivative

dy(x** , h(x**)) £ 6(x**) < 0, it follows that there is as** e 5 such that

y(x** +s**h (x**))- y(x**) <s** a6(x**). (3. la)

Hence, making use of the continuity of 6(0 and A(), for all x,- sufficiently near x**, the stepsize
Xi >s** and8(x,)<6(x**)/2. Therefore, for all suchx,-,

y(x,« +Xih(xi))-y(xi)ZXiaB(xi)<s**aQ(x**). (3.1b)

Since the sequence {y(x,)} £o is monotone decreasing, (3.1b) implies that y(x,) -» -<» as j -» oo,

which is a contradiction. Hence the theorem must be true. •

Next we establish superlinear convergence.

Theorem 32: Suppose that Assumption 2.1 holds and that x* is the solution of problem (2.1a).

Then any sequence {x,- },^o, constructed by Algorithm 3.1, converges to x*, superlinearly, withQ-
rate at least 3/2.



Proof: Since {x,-} £o converges to x* by Theorem 3.1,we only needto showthatthere exists an

i'o such that Xt = 1 for all i £ i0, so that Algorithm 3.1 reduces to Algorithm 2.1 and invoke Theorem
2.1.

Now, it follows from (2.5) that

0(x,) =<j>(x,- +h(x,) Ix,).-y(x,-+h(x,)) +y(x,- +h(x,))-y(x,)

£y(x,. +/t(x,))-y(x,)-/?l/i(x,)l3 (3.2a)

Hence

y(x,- +h(x,)) - y(x,) <* a6(x,) +[(1 - a)8(x,) +g lh (x,)!3] (3.2b)

Next we establish a relationship between 8(x) and IA(x)l. Since x +h(x) is the minimizerof

$(• Ix), it follows that it satisfies the first order condition:

0g3<j>(x+A(x)Ix). (3.3a)

For any integer /> £1, let !>, £ {u.gR' l^p/al, u/>0, Vj€q}. Then it follows from
(3.3a), the definition of the generalized gradient d$(x +h(x) Ix) (see [3]), and the Caratheodory
Theorem [29], that there exists a multiplier \iel,q, multipliers vy- g Zb+1, and f/e [0,1], with
j g q and k g n+1, such that

0=£ \ij "£ v/[ Vx(^(x .tf) +<fc4(x ,tf)h (x)] ,
7=1 *=1

which implies that3

q . n+1
h(x)=-

>=i *=i

-i

7=1 *=1

(3.3b)

(3.3c)

Furthermore the following complementary slackness condition (see (5.12a, b) in [21]) is satisfied:

e<*) =£Vf Zv/| W(x ,f/)-y(x)]+{VxV(x ,tf),h(x)) +1 {h(x)$Ux ,tf)h(x))\ <3.3d)
Substituting for A(x) from (3.3c) into (3.3d), weobtain, inviewof Assumption 2.1 (Hi), that

3Since the yJ *0and the vfi 0in (3.3c), if follows from (2.2) that the matrix
4 n+1

5>;5>;<i>i.cr.//) is invertible.



n+1

6(x)=£u/ Ev/[(|>/(x,r/)-y(x)]-|(A(x),
7=1 *=1

Z-^ih(x)l2 ,

7=1 *=1

-1

h(x))

with the last line following from the fact that ty (x , tf) - y(x) £0 for all tf.

Substituting for 8(x) from (3.4) into (3.2b), we obtain that

y(x,+/t(x,))-y(x,)^a8(x,)-[(l--a)/2Af-^l/i(x,)l]l/i(x,)l2.

Since A(x,) -» 0 asi -»«>, it follows thatthere exists ani0 such that for all i > iQ,

y(x,- + h (x,)) - y(x,) £ a6(x,),

i.e., that a-,- = 1. This completes our proof.

(3.4)

(3.5a)

(3.5b)

•

4. IMPLEMENTATIONS OF THE LOCAL ALGORITHM

Note that numerical evaluations of y(x) and 8(x), and hence of h(x), are only aproximate: for

y(x) because intervals mustbe discretized, and for 6(x) and h(x), because theyare defined by acon

vex optimization problem which can onlybesolved approximately. Hence both thelocal and theglo

balNewton methods that we have presented (Algorithms 2.1 and 3.1, respectively) mustbeviewed as

conceptual. This brings us to the question as to whether it is possible to construct implementable
algorithms, using some form of discretization of the interval [0,1], appearing in (2.1b), as well as

some truncation rule for the algorithm used in computing approximations to 6(x), which retain the

basic properties of Algorithms 2.1 and 3.1.

We needto strengthen Assumption 2.1, by adding the following hypothesis:

Assumption4.1: There exists aLipschitz constant L < oo4, such that for all x g Rn,

\$(x ,t)-${x ,t')\<>L\t-f\ , \/t,fe[0,l], Vjeq. (4.1a)

WxV{x ,t)-Vx${x ,t')\<>L\t -< \ , Vr, f-G[0,l], Vycq

!<|>£(x,o-<i>£(*.Oii^u-r'i, Vf,r-G[0,i], vycq.

(4.1b)

(4.1c)

•

4Atthe expense ofsome complication, itis possible to cany out the following analysis using local, rather than global Lipschitz con-
stants.

•10-



We begin with thefollowing observations. Forany integer N > 0, let5

TN={t\t =jf, *=0,1,2 A/}, (4.2a)

yN(x) £max max V(x ,t), r4 2W

%(x Iy) £max max ^(y ,t) +{Vxtf(y ,t) ,x-y)+l/i ((x -y), <J>i(y)(x -y)) , (4.2c)

Aw(x) £arg mm <fo,(x +h Ix), (4#2d)

6N(x)£ mm $N(x+h lx)-yN(x). (4<2e)

The relationships between the quantities associated with the original problem P in (2.1a) and

the approximating problems

PNt mm^Oc), (43)

are as follows:

Proposition 4.1: Suppose that Assumptions 2.1 and4.1 hold. Let x* denote the solution of (2.1),

and, for anypositive integer N, let xN * denote thesolution of thediscretized problem PN. Then

ly(x*)-yN(x„*)l<;^:, (4.4a)

and, for every bounded set B c R", there exists a V < oo such that

l6(x)-8N(x)l^^-, VxgB . (4.4c)

\h(x)-hN(x)ll<> — , Vx g B . (4.4d)

Proof: First, letx g Rrt be arbitrary. Then,because TN a [0,1],

5Note that there isnothing special about the discretization (4.2a). Any family ofdiscrete sets TN c 7, where T &[0,1] can beused
provided that (i) d (TN ,T) -»0 as N -> oo, and (ii) for any sequence of integers {N;}^ such that Ns+l S 2N{, ^ji (TN i, T)<oo, where
d(- ,•) denotes the Hausdorff distance.
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^<0^y(x)-yN(x). (4.5a)

Next, let? g [0,1] and j g q be such that y(x) =ty(x ,f). Then there exist points t'eTN, such

that If' -? I £ 1/2A7 and hence,makinguse of (4.1),

yN(x)^<|;(x,f')><j;(x,?)-^r =y(x)-^r. (4.5b)
Thus we have shown that

ly(x)-yjv(x)l^^r. (4.5c)
As a result, we have

y(x*)^y(xiV*)<yN(xiV*)+̂ -, (4.5d)
and

yN(xN*) £ y„(x*) £y(x*), (4.5e)

which gives us (4.4a).

Next, making use of(2.3a) and (4.5c), we obtain

^lxN*-x*l2^y(xN*)-y(x*)^yN(x*^)+^-y(x*)^^:<|:, (4.6a)
which establishes (4.4b).

Now suppose B c Rn isbounded, and let x g B. Let the functions ni :R" x R -> R, j g q,
be defined by

ni(A ,t)±V(x ,t)+ {VxV(x ,t),h)+j {h ,«J>i(x ,t)h). (4.6b)

Let G 4 max max max IVx(^"(x , r)l. Then it follows from the inequality
xeBjeqte [0,1] ^ J

max max r\i(h ,r)^max max ty(x ,t)-Gl/tI +^-toB2
jeqte[0.1] jeqte[0.l] 2

=y(x)-Gm +jlhf , (4.6c)

that if fl/i I>2Glm, then the left hand side of (4.6c) is greater than y(x). Since 8(x) <0, we must

have D/i(x)l£2G/m. A similar analysis shows that lhN(x)l<2Gtm also. Now suppose that
B/zll^2G/m,andletLB ±L(l+2G/m +2G2/m2). Then
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\m,(h,t)-rti(h,f)\<LB\t-t'\ , Vr,r-G[0,l], Vy'Gq. (4-6d)

Itnow follows from (2.7b), (4.2e) and (4.5c), and an argument similar to that used to establish (4.4a),
(4.4b) that (4.4c), (4.4d) hold, with V k LB +L. •

Comment 4.1: Note that it follows from duality theory [13] that because (4.2e) is aconvex prob
lem, the dual of (4.2e) is given by

6N(x) =max/d(u.), (4ja)

where

4**00A- 2 \LjJ[VN(x)-V(x,t)]+U £ ji^V '̂Cr.OI2! X M-yV=l, M/'aO}.

(4.7b)

Hence, given any set of admissible multipliers u/«r, we have that 8^(x)>/dfW(u.).

Now an algorithm such as the barrier function method in [26], applied to (4.2e), produces not

only approximations £ to hN(x), but also associated multipliers \ijJ, while an algorithm such as the
Levitin-Polyak method [12], applied to (4.7a) produces multipliers u/*' which, via (3.3c) can beused

to obtain an approximation fi tohN (x). In either event, we have that

/PfW(X)^yJV(x+J)-yw(x)^8JV(x)^/^0t). (4.7c)

Therefore, given any e>0, to determine when such an algorithm has constructed an approximation
hN it(x) such that

0£%(x+hNtf,(x)\x))-yN(x)-QN(x)Ze, (4.7d)

we need only to check whether JPiN(hN ,e(x)-./^(u.) £ e. Hence we see that the construction of

such hN fe(x) is a finite process. Furthermore, it follows from Proposition 2.1, applied to the function

h \-»$N(x+h lx)and(4.7d)that

e^yw(x +hN tE(x) Ix)-<fo,(x +AN(x) Ix)>^lhN ,e(x)-hN(x)f. (4.7e)
•

We can now follow one of two alternatives. The first is to decide onan acceptable level of error
and then to use (4.4a) or(4.4b) todetermine the required level of discretization, i.e., the parameter N.
In that case, one proposes to solve PN and one only needs to invent ascheme for truncating the com
putation of hN(x). Such a scheme is incorporated in the following implementation of the local New

ton Method for solving problems PN. The second alternative involves increasing the discretization

mesh progressively, rather than using a fixed discretizatioa This second alternative will be discussed
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subsequently.

Algorithm4.1 (Implementable Finite Minimax Local Newton Method forPN).

Data: x0g R*,fc g (0 ,1).

Step 0: Set i = 0.

Stepl: Sete = t.

Step 2: Compute avector hN tE(r,-) g R" such that6

0^N(xi+hNtZ(xi)\xi)-\/N{xi)-%{xi)<iz. (4.8a)

Step 3: If

<toC*i + hNtt{x{) Ix.) -yN(xt) £-2e, (4.8b)

and

e<S%,£(Xi)l3, (4.8c)

setxM =Xi +Atf fgfxi), (e* =e)7 and go to step 4. Else replace eby e/2 and go to Step 2.

Step 4: Replace i by i+1 and go to Step 1. •

Comment 42: The structure of the tests (4t8a-c) isdictated bythe proofs to follow, which establish
the 3/2 rate of convergenceof the algorithm. Note that (4.8b)ensures that

e«£—^—' <4-8d)

Hence, since 6w(x() -> 0 as xf ->x#*, it follows that Algorithm 4.1 computes approximates hN(xt)
more and more accurately as the solution of PN is approached. Also, if i\lgorithm 4.1 is initialized

with x0= x*, it cycles indefinitely upinthe loop defined byStep 2 and Step 3, reducing e tozero. •

Theorem 4.1: There exists a p > 0 such that if lx0 - xN *I< p, where xN * is the solution of (4.3),

and {x,-}£o is a sequence constructed by Algorithm 4.1, then, xi-±xN*, as /->«>, Q-
superlinearly, with rate at least 3/2.

Proof: First we note that (2.5) holds with y(), $(• I •) replaced by yN(), <prN(- I •), respectively,

that we may assume that K £ 1 in (2.5), and that Theorem 2.1 equally applies to the obvious
simplification of thelocalNewton Method forproblem PN.

6Note that QN (x{) isnot evaluated. See the paragraph preceding (4.7d).

7Note that the computation of £,- need not always begin with%. Rather, itis more efficient to start with £,•_!•
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Next, for any i, let x/l+1 ^ x, +hN (xt-). Then, by(2.1 lb),

VM-XiitPzKl&M-Xif + IXi -x*,*!3] . (4.9a)

Since by (4.7d) and (4.8c), we have that

k«+i-*W2 =IVe,(*«)-M*«)l2

*~^T *"^ .eA')»3 =•£••*+! "^»3 . (4.9b)
mm m

weobtain, using (4.9a) and the fact that Ix +yP £ 2/,"1[lxB'' +ly IP],/? =2,3, that, with*: >1,

lx/+1 -xN* l2<S 2[Wi+l -xN*02+lxi+1 -x-l+1l2]

<S2K[Wi+1 -x, I3 +0* -x„* I3 +lxJ+1 -x-^B2]

<; 8*T[lxi+1 -%iI3 +lxl+1 -x^l3 +lxt -xN*i3+ lxl+1 -x'<+1l2]. (4.9c)

Assuming that x, -x#* is sufficiently small, we must have, in view of the fact that by Lemma 2.1

fyv(*i)->0 as j,- ->xN* and (4.8d), that 26,/m <1 and hence, by (4.9b), that Hxl+1-x'l+1D< 1.
Therefore, making use of (4.9b), (4.9c) leads to the conclusion that there exists a I? g [16K ,«»),

depending on m, such that (4.9c) reduces to

l*;+i -%*I2* 16*[lx1+1 -x, I3 +Ix, -xjv*I3 +lxl+1 -x-|+1l2]

«SIC[lx|+1 -XfB3 +Hxf -xN*I3]. (4.10a)

The proof can now be completed by using arguments similar to those following (2.11b) in the proof

of Theorem 2.1. This requires that we show that given any 8 >0, there exists a p >0 such that if

Ox,- -x#*l£p, then lxl+1-x,ll^8. Making use of the triangle inequality, (4.7d) and (4.8d), we

obtain that

•*i+i-*»•• = Mn.jA)'

^ %, ,,(*,) - hN(Xi)l + %(x,)l

/-26N(x,-)
<, -\J ^-^- +mN(Xi)\\. (4.10b)

1 m

The desired continuity result now follows from Lemma 2.2, and one cannow proceed as in the proof

ofTheorem 2.1, following (2.1lb), to complete this proof. •

There is evidence in the literature (see, e.g., [11, 9]) that one can reduce computing times con

siderably by increasing the discretization mesh size progressively, ratherthan using the finest mesh
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from the very start. This idea is incorporated in the following implementation of the Local Newton

Method which adjust both the precision with which successive iterates are computed as well as the

mesh size.

Algorithm 42 (Implementable Finite Minimax Local Newton Method for P).

Data: x0gR\£g (0, l),tf«l,W0G N.

Step 0: Set i = 0.

Stepl: Sete=t,N =ty8.

Step 2: Compute a vectorhN te(xf) g Rn suchthat (seeComment 4.1)

0^^(xl+/rN,E(xl)lx,)-yiV(x,)-ew(xl)^e. (4.11a)

Step 3: If

%(xt +hNit(Xi) Ixl)-y7V(xI)<-2e, (4.11b)

and

e£IAA,,£(xl)l3, (4.11c)

setx^.+i =x, + hN te(x,) and go tostep 4. Else replace e bye/2 and gotoStep 2.

Step 4: If

—SlxV^-Xfl3, (4.1ld)

set xi+i =x'm, (e,- = e,Nt =N) and go to Step 5. Else replace N by 2N and go tbStep 1.

Step 5: Replace i by i+1 and go to Step 1. •

Comment43: Thefunction of the coefficient K in (4.1 Id) is to limit the growth of the discretiza
tion parameter N. Thus, suppose that we are willing to accept a solution corresponding to N*
discretization points, and that our stopping criterion is Ih^ (x,)ll < <o, with oo « 1. Then we wouldset

K£N*(Q. •

Note that Algorithm 4.2 solves problem PNt_t until the test (4.lid) fails. In view of Theorem

4.1, this will happen after a finite number ofiterations provided that Bx0 - xNi* B< p,where p >0 is as

in Theorem 4.1. Now, suppose that N0 is such that V2L/mAT0 <p/2. Then, from (4.4b) we have that
if lx0- x*I £ p/2, withx* the solution ofP, then, lx0- xN*I < p.

8Although itis reasonable to key Sj, which controls the precision with which 9Wj(x,) is approximated, to the actual value ofBN C*j),
sothat £,may ormay not decrease monotonically, itmakes better sense toincrease the discretization parameterTV,- monotonically.
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Theorem 42: There exists a p>0 and ainteger N0 < oo, such that if Dx0 - x*I<p,where x* is the

solution of (2.1a), and {xf} £q is asequence constructed by Algorithm 4.2, then, x,- ->x*, as i -> «>,
Q -superlinearly, with rate at least 3/2.

Proof: First, assuming that Ix,- -xM* I£ 1, it follows from (4.10) that for some K < oo, indepen

dent ofNit

IX|+i-^l*D2^Ar[bl+,-xl-l3 +Ui -xN*l3]. (4.12a)

Hence, assuming, without lossof generality, that K! k 1and that NQ is sufficiently large to ensure that

forallAr,- ZN0,ixN* -x*l£l,weget

lxM-x*l2Z2[txi+l-xN*fi+ ixN* -x*l2]

<;2Jt[lx,.+1 -x,l3+Ix,. -xjy,*I3 +ixN* -x*I2]

£ 8/T[lx/+1 -x, I3 +Ix,- -x*I3 +llxM* -x*I3 +lxM* -x*II2]

<; 16JT[lx/+1 -x,l3+Ix,- -x*I3 +llx^* -x*I2]. (4.12b)

Now, it follows from (4.4b) and (4.1 Id) that

2L 2L

mNi m"*M* -^»2^^-^^+l-^B3. (4.12c)

Substituting into (4.12b), we obtain thatthere existsaK" < «>, independent ofNt, suchthat

lx,-+1 -x* I2<;K'[lxi+1 -x,.I3 +Ix, -x* I3 (4.12d)

To continue, let B k {xg Rn Ilx-x*D^l). It follows from Proposition 4.1 that there exists a
V < oo such that (4.4c), (4.4d) hold. As in the proof of Theorem 4.1, we will show that if NQ is
sufficiently large, then given any 5>0 there exists a p>0 (where p£ 1 without loss of generality)
such that for all N{ £N0 and flx,- -x*I £p, lx,+1 -x,ll £ 8. Using the triangle inequality, (4.7d) and

(4.4d), we obtain

ki+i-*il = Mto.*te)0

* %,, Jx,) - AN,(x,)l +0/ty.(x,-) - A(x,)D + Ih (x,)B

W^W^r+^>M- <4'13a>
Furthermore, analogously to (4.8d), we have that
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^uV-^W^»w... ««*
Applying the triangle inequality once more and utilizing (4.4c), we obtain

lx,+1-x<.^ +̂ HL+lfcW,

d
[ie(x,-)i+^]

Ni ^/"^r,,,, ,. (4.13c)

It nowfollows from thecontinuity of 9() and h(•) and thefact that6(x*) = 0, h(x* ) = 0, thatif N0 is

chosen sufficiently large and p sufficiently small, then the desired continuity result holds. One can

nowproceedas in the proofof Theorem 2.1, following (2.1 lb), to complete the proof. •

5. IMPLEMENTATION OF THE GLOBAL ALGORITHM

To produce an implementation of Algorithm 3.1 (the Global Newton Method), we propose to

use two mechanisms for controlling the precision of the approximations used. The first one will be

taken from Algorithm 4.2, and will ensure superlinear rate of convergence, while the second one,

which we will allow to dominate the first one, will be an extension of the mechanism described in

Appendix A of [22]. Forourcase, thisextension canbedescribed abstractly asfollows. Suppose that

for every integer N>N0>0,AN :R" -» 2R"xN isa(possibly) set-valued iteration map. The reason
forintroducing a second integer N' is that given aninteger N, the algorithm may have to increase it

to a new value N' £ N before it can satisfy all the internal tests. Now consider the following algo
rithm model form solving the problem P in (2.1a).

Algorithm Model 5.1

Data: x0g R",jV0g IN.

Step 0: Set i = 0.

Stepl: SetW=W,-.

Step 2: Compute a pair

<y ,N')eAN(Xi). (5.1a)

Step 3: If

WW-Vn-WZ- — , (5.1b)

-18-



go to Step 4; else replace N by 2N' and go to Step 2.

Step 4: Set xl+1 = y, Ni+l = N.

Step5: Replace i by i +1 and go to Step 1. D

Our proof ofconvergence requires the following technical result:

Lemma 5.1: Suppose that the sequences of realnumbers {p,-},^o and {r\t} ,%> satisfythe follow

ing conditions: (i) Tt,- 2:0 for all i g N, (ii) ££, r\. < oo , and, Cm; P,+1 £ p,- + i\t, for all

i g N. Then either the sequence {p,-} £o converges, or p,- -> - oo as i -» oo.

Proof: It is clear from the assumptions that the following holds:

ft - ft =Z (fc+i ~ft) *£ Hi • (5.2a)

Hence, p,- is bounded from above, and therefore ft =* lim,-_»«$,• <<» Obviously, if ft =-«>, then
p. ->-©oasi ->oo.

Now suppose that ft >-oo. To prove convergence ofthe sequence {p,« },%), we will show by

contradiction that Urn,- ^^p,- ^ft. Thus, let e>0 be arbitrary, and suppose that there is no z0 such

that p,- >ft -e for all i >iQ. Clearly, there exists an it such that ££»; r\k <e/ 2for all i >ih It fol

lows from our hypothesis that there exists an i2 ^ ii,such that ft2 ^ft - e. Itfollows from (5.2a) that
fori >i2,

ft - ft, =E (ft+i - ft) *£ r\k< |. (5 2b)
*=l2 *=»2

Hence p,- ^ft— —for all i sufficiently large, which contradicts the definition offt. It follows that

lim.-^ft =ft. n

Theorem5.1: Suppose that Assumptions 2.1 and 4.1 hold, so that (4.4a) is valid, and thatforevery

x g R" suchthat0 e9y(x) there exista px > 0, a 8, > 0 and an integer Nx > 0 suchthat

¥Ar(y')-yiv'(^)^-8x (5.3)

foraliAf >JVx,andallx/ ,y' g R" suchthatBx' -xl<px,(y' ,N')e AN(/).

Under these assumptions, if {x,-} -Zq {Ni} -Zq are a pair of sequences constructed by Algo

rithm Model 5.1, then x,- -» x* and NL -» «>, as i -» «>, wherex* is the solution of (2.la).

Proof: First we use Lemma 5.1 to show that the sequence {y^fo)} £o converges. Let

I £ [i g N INi+l*Ni}, and let the sequence {T|,-} [Zq be defined by
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'LINi i € /

0 otherwise ,*!/ -\ n mfum.riM (5,4a)

where L is the Lipschitz constant in Assumption 2.1^. Now suppose that i g /, and let

i+ =* min {; g / \ j >i}. Since byconstruction, we have that Nu >2N{, it follows that
OO. OO r

Eti« = Xn^E7nr<o°- (5.4b)
i=o 16/ *=o 2*iv0 v '

Hence the sequence {% } £<, is summable. From (4.5c), we have that for all i g /,

'Vn«C*)- WnM)I ^ IVnwC««)-V&)" +IY(*«)-¥*,(*/)I ^-£-+-|- <±- . (5 4c)
Z/Vj+1 Z/V,. /V/

Clearly, for alii g IN\ /,i.e. such that Ni+l =Nit ly^x^-y^x,-)! =0. Hence for alii g N,

IWnJ*) ~VjvA)I ^ IHfojfc) -y(x,)I +Iy(x,) -y^x,)I <; -f-+JL <; A- f

Consequently, using (5.1b) we obtain

W*«+i) - VNfri) £ yNM(xi+1) - yjyjx,) +yM+1(x,) - yN,(x,)

Z-j^+T\i£T\i. (5M)

Furthermore, it follows from Proposition 2.1, (4.5c) and the fact that Ni+i £ Nt that

yN<(x)>y(x*)+f-lx-x*D2-^. (5>4e)
Hence the sequence {yjv,(x,-)} £o satisfies the hypotheses of Lemma 5.1, and in addition, it is

bounded below. We therefore conclude that it converges.

Next, we show that Nt -» oo. if this is nottrue, then since Ni+i £N,- we must have Nt = N*
for i sufficiently large. For suchi, (5.1b) implies that

Vn-C*£+i) " Vn'W£ —•, (5i4f)

which contradicts the fact that the sequence {y^fo)} £oconverges.

As a consequence of (5.4e), the sequence {x,-} -Zq is bounded, and hence it must have accumu

lation points. For the sake of contradiction, suppose that the sequence {x,-} £odoes not converge to
x*. Then it must have an accumulation point x** *x*. Let K c: n be the set of indices of the

subsequence converging to x**.
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Since x** *x*, we have0 edy(x**), from which it follows, by assumption, that thereexists a 8 > 0
such that for i g K sufficiently large

VnM+i)~WnJ&) * -8 • (5.4g)

Referringto (5.4d), we see that for i g K sufficiently large,

VNM(xi+l) - yv/x,-) <; yM+1(xI+1) - yM+I(x,) + yjvj+1(x,) - yM(x,)

S-5 +ili. (5.4h)

However, since T|,. -» 0, (5.4h) contradicts the fact that the sequence {y^x,)} -Zq converges. Hence

0 g dy(x*). •

The above Algorithm Model and our desire to retain the superlinear rate of convergence of the

implementation of thelocalNewton method, Algorithm 4.2,leads us to the following algorithm.

Algorithm 52 (Implementable Global Newton Method for P).

Data: x0g R",A^0g 1N,o,Pg (0, l),eo>0,^«l,5 => {1 ,p, P2,...}.

Step 0: Set i = 0.

Step 1: SetN=Ni.

Step2: Set e = Cq.

Step 3: Compute a vectorhN (E(x,-) c R" suchthat (seeComment 4.1)

0£<M*» +"n.tM IXi)-yN(Xi)-QN(Xi)Ze. (5.3a)

Step 4: If

%(Xi + hN g£(x,)) - yN(x,-) £ -2e, (5.3b)

and

e£BAN,e(x,.)l3f (5.3c)

go to step 5. Else replace e by e/2 and go to Step 3.

Step 5: If

K—<lhNi&(Xi)l3, (5.3d)

set hi = hN te(x,), andgo to Step6. Elsereplace N by 2N and go to Step 2.

Step6: Compute the step size
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X,.£max{*,GS /yN(x,.+U,.)-yA,(x,-)^Xa[<iyN(x,.+A,. l*)-yNta)]}. (53e)

Step 7: If

yN(x,- +U,) - yv(x,) £- -^-, (5.3f)
setx,+1 =X,- +A,,-A,-, Ni+l = AT and goto Step 8; elsereplaceNbylN and goto step 2.

Step 8: Replace i by i+1 and go to Step 1. •

Theorem 5.1 cannow be used to showthatsequences constructed by Algorithm5.2 converge to

the solution x*, while Theorem 4.2 leads to the conclusion that these sequences converge super

lineaiiy.

Theorem 52: Suppose that Assumptions 2.1 and 4.1 hold and thatx* is the solution of problem

(2.1a). Then any sequence {x,-} £o, constructed by Algorithm 5.2, converges to x*, superlinearly,

with Q -rate at least 3/2.

Proof: The proofconsists of two parts. The first part shows that the Algorithm mapAN (•) satisfies

the hypotheses of Theorem 5.1, from which we conclude that x,- -* x* as i -» oo. The second part

shows that for i sufficiently large, the step size Xi is one. hi this case Algorithm 5.2 reduces to the

local algorithm, Algorithm 4.2, and we may apply Theorem 4.2 (along with the fact thatAT,- -» «>) to

conclude that the interatesconverge superlinearly.

(a) To show that AN() satisfies the hypotheses of Theorem 5.1, suppose that x g Rn is such that

0 e9y(x). Then Lemma 2.2 (d) implies that 8(x)<0. By continuity, there exist p>0, 8>0 such
that for allx/G5(x,p)^ {x' g RB IBx/ -xl£p }, 9(x/)^-8<0. Furthermore, since B(x ,p)
is bounded, (4.4c) implies that there exists a N g IN such that for all N > N and xf g B(x , p)
9iV(x')^-8/2.

Supposethatx' eB(x ,p) and that the algorithm map AN(;) produces a pair (/ ,N,)^AN{xf)
(withIf £ N), and ane satisfying the testsin Steps3 and 4. Then from (5.3b) we have

eJyr(x/)^$Ar(x/+/iAr,e(x')lx')-y^(x')<-2e, (5.4)

which yields - 8^ (xf )/2 £ e. Furthermore, using (5.3a) we obtainthat

$N'(x'+hN>tZ(x')\xJ)-vN>(x')<e + eN>(x')

Oat CO^-^2—- (5-5)

It follows from the convexity of the function Xk» tfor(x' +Xh^ J/) Ix')-yAr(x/) that for all
Xg[0,1],
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tMx' +Xhfr>e(xf) I jO-VjrGO^WM* + hNtZ{x*) lx')-yv(x/)]. (5.6)

By Lemma 2.1, applied to the functions yy , <py,we have the estimate

KMx' +AV..CO IjO-Vjv<* +^r,*'))l S^tflV.eCOl3. (5.7)

Combining (5.6) and (5.7) yields

yAr(x' +MAr ^a-y^CO^X-Xr ,e(^)"3 +WAr(^+AAr.e(^)i^)-VN'(^)]. <5.8)

Using (5.5) and (5.8), we obtain that for all X g [0,1],

zWtor tg(/)l3 +(l-a)X[tyN>(x' +/^.e(x') ijO-yjvCO]

=x[(l -<x)[<M*' +̂ ,e(x-) Ix^-y^-CO]+£X.2%, ..OOI3]

£J(l -a)-^^-+Jttfl^r ^(x-)!3

<SX. -(l-a)|+^X2I!%ie(x')l- (5.9)

Combining the fact that h (•) is continuous and B(x , p) is bounded, with (4.4d) and (4.7d), we con

clude that there exists aconstant A<oo such that for all x/ g B(x ,p)andallA// ^NJh^ #e(x/)B^A.
Thus (5.9) yields

yv(x' +UNt£(x'))-yw(x')-cd(^jV(/ +/iN<e(x/) Ix')-yN(x/)]<^ -(l-a)4 +̂ ^2A3
4

(5.10)

from which we conclude that there exists a0<Xo <1 such that for all xf g B(x , p), the step size X'

produced by Step 6 satisfies X">Xq. Consequently, using (5.3e), (5.5) and the fact that

QN(/)£ -8/2, we obtain that for all X* gB(x ,p)andalliV >.N>N,

yAr(x/ +V%ie(x/))-yAr(x/)^c00[^(x' +^.e(x/) lx')-y^(x/)]

c&qS
£ — (5.11)

If we let A/, = N,px = p and 8X = aXo8/4, we see that the map AN() satisfies the conditions of

Theorem 5.1. Hencex,- -> x*, andas a consequence of Step 7, we see that N{ -> oo.
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(b) To complete the proof, we must showthat for i sufficiently large the step size X,- is one. If we set

X. = 1 in the second last line of (5.9) we obtain

WnJ* +fH)-yM+1(x,)-<x[<j>Nl+l(x,- +hi Ix.)-yjvJ+I(x,)] £ (1 - a)—-— +K \hiv (5.12)

where hi is as defined in Step 5 of Algorithm 5.2. Using a result similar to (3.4) we obtain that

W*«)^-<l/2M)IWx,-)l2. UsmS (4-7d>. (5.3c) and the fact that lx\2>Wyl2-lx-y\2, we
obtain that

\hNM(Xi)l2 £±1*I2-\hi -hNJXi)i2

1...2 2e«
2 m

tUhil2-^-\hil3.
2 m '

Hence we obtain the bound

-1

4M
fc^s^iM2*^!*,*8

Substituting this bound into (5.12) we obtain

Hfojft +hi) -yWw(x,)-a[tjyW|+l(x,- +^ Ix,)-yw<+1(x,.)]

(1-a) -1

w""02^'3
1

(5.13)

(5.14)

(5.15)

+£l/t,la

From (4.13b) wenote that ht -» 0 as i -» oo, and hence the right hand side of (5.15) is negative for i
sufficiently large. Hence X,- = 1 for i sufficientiy large. This completes theproof. •

6. A NUMERICAL EXAMPLE

We will present thesolution of asemi-infinite minimax problem which was constructed by con

verting an optimal control problem with control and state space constraints, by means of an exact
penalty function, into anunconstrained minimax problem.

The originaloptimal control problem is as follows:

xr^J^[h(x ,l)f+10^m2^ Iz2(x,f)- 0.15 <0, Vf €[0,20] ,x/-1<0, V;gP} ,(6.1)
where p^ {0,..., 20}, and z :R21x[0,20] -» R2 solves the differential equation

-24-



|̂z(*'') =[o o] z<z'<>+[?] "(^.0, (6.2)
where x(z ,0) =(-2.5,0)T, and the control u :R21x[0,20] -»R is defined bytiie 21 dimensional
parameter vector x, through linear interpolation, as follows: for any j =0,1,..., 19, and

t =X,; +(1 - X)(J + l),u(x,j) = Xxj + (1 - X)xy+1. Note that the dynamics in (6.1) arc so simple
that we canintegrate them exactly, forthe resulting piecewise linearcontrol.

To convert the above optimal control problem into unconstrained form, we use a parameter of

100 in the exact penalty function, and obtain a problem of the form (2.1a), (2.1b), with q =23, and
the functions #(•, •), j g q defined by

§\x ,t)£ V*[lz(x ,l)l2+ lO^lxl2] , (6.3a)

<|>2(x ,t)k^(x ,t)+100(x2(x . t/20) - 0.15), (6.3b)

V(x ,t)±$l(x ,t) +lOO(xjL2-l), V;g {3,...,23}, (6.3c)

with t g [0,1]. The algorithm was started from the initial point
x0 = (1 ,-1,1 ,-1,1 ,-1,1 ,-1,1 ,-1,1 ,-1,1 ,-1,1 ,-1,1 ,-l, l ,-i, l).

Figures 1 and 2 present our computational results. Figure 1 presents plots of the control

sequence x' versus i, while Figure 2 presents phase-plane plots, i.e., plots of x \t) versus x2(f), tradi

tional in the control literature. We see from these plots that the problem (6.1) is solved in 2 itera

tions, at the end of which the original semi-infinite constraint, z\u , t) - 0.15 £ 0 for all t g [0,20]
hasbeen satisfied. The initial value of the cost was y^Xo) = 3.12501, the final value of the cost was

y28(2) =2.09003 x 1(T7; the final value of the optimality function was Q^xq) =-2.01827 x 10"7.
To limit the growth of the discretization index, we set K =10"20 in(5.3d) so as to be able to satisfy
(5.3d) with N =100 when lhN tel £ 1(T10. We set N0 =5, and the algorithm setNlt N2 = 28.

To reduce the looping in the computation of the discretization parameter N, instead of simply
doubling it whenever the test (5.3d) failed to be satisfied, we setthenextvalue to the integer part of
max {6.5 x l(Tl9/lhN tel3 ,1.1N }.

We computed the search direction, hN >e(x), satisfying (5.3a), by applying to the dual of prob

lem (4.2e) the rapidly converging Levitin-Polyak constrained Newtonmethod [12].

To illustrate how the inequality (5.3a) is solved, consider the primal problem (4.2e). When

expanded, it assumes the form

6^ min max/''+ (sy ,h)+V4U. Wh) , (64^

The dual of this problem is
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e=-™%JdW), (6.4b)

where Jd(\L) &-£/oi \ijfj+V* {£/=1 \itgj ,(£/=1 \JW)~X S/=i \ijgj>, and Zis the unit simplex
in Rn. The formula for the second derivative matrix of the dual cost function, required by the

Levitin-Polyak method, is given in an appendix in [25].

When applied to the dual problem, the Levitin-Polyak method computes a sequence {u,,-} £©

which converges quadratically to ft, a solutionof the dual problem (6.4b). Furthermore, if we define

h :Z->Rnby

*00 A(S/=i M^r'Z/oi Vfgj , (6.5)

it is straightforward to show that the corresponding sequence {h(u,,)} £oconverges to fl, the unique
solution of the primal problem (6.4a). Noting that the iterations of the Levitin-Polyak algorithm gen

erate both upper and lower bounds on 9, as given by

Sj,Qfti)2 0 2-/rfCj<), (6.6a)

where

Jpfa)4tvuxfJ +{gj ,h(sii))+lA{hQii),HJh(}ii)), (6<6b)

and making useof the fact that /p0i,) -Jd(\Li) -> 0, we see that a point, h(u,,) satisfying (5.3a) can

be computed in a finite number of iterations ofthe Levitin-Polyak method.

7. CONCLUSION

We have used a new and very simple proof technique to show that natural conceptual exten

sionsof Newton's method converge superlinearly on a class of semi-infinite minimax problems. This

technique has also enabled us to construct rate preserving implementations of these extensions. Our

implementations are interesting for two reasons: first, they account for all the significant approxima

tions involved, and second, they do not require the knowledge of the Lipschitz constants or eigen

value bounds associated with the problem functions and their first and second order derivatives.

Apart from the intrinsic interest that a theoretical extension ofNewton's method to semi-infinite

optimization possesses, our numerical results show that it is a viable procedure for the solution of

such classical problems as state and controlconstrained optimal control problems with lineardynam

ics.
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Fig. 1. Plots of Control Sequence at Iterations 0,1,2.
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