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ABSTRACT

This paper introduces two new techniques for the analysis and construction of semi-infinite
optimization algorithms. The first is a very simple technique for establishing the superlinear rate of
convergence of semi-infinite optimization algorithms. The second technique enables one to specify
discretization rules which preserve the superlinear convergence of conceptual superlinearly converg-
ing semi-infinite optimization algorithms.

We use natural extensions of Newton's methed to semi-infinite optimization, as a vehicle for
presenting our techniques. In particular, we show that both local and global versions of the concep-
tual extension of Newton’s method converge Q-superlinearly, with rate at least 3/2, and that their
implementations, based on our discretization rules, retain this rate of convergence.
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1. INTRODUCTION

This is a dual purpose paper. The first purpose of this paper is to introduce a novel technique
for establishing the superlinear of convergence of a class of semi-infinite optimization algorithms; the
second is to demonstrate the degree to which various discretization effects, associated with semi-
infinite optimization problems can be taken into account. In particular, this paper introduces discreti-
zation rules which preserve the superlinear convergence of conceptual superlinearly converging
semi-infinite optimization algorithms.

In his pioneering paper [27], dealing with perturbed Kuhn-Tucker points, Robinson showed that
by applying the Implicit Function Theorem to the first order optimality conditions of a finitely con-
strained optimization problem and then relating the result to the search direction finding problem of a
particular algorithm, one can sometimes establish the superlinear convergence of this algorithm. The
same technique can also be used for establishing the superlinear convergence of finite minimax algo-
rithms, see e.g., [25].

Unfortunately, Robinson’s technique cannot be used in conjunction with semi-infinite optimiza-
tion algorithms because the assumptions of the Implicit Function Theorem cannot be met in the
semi-infinite case. The technique in this paper is based on function approximations and is therefore
not restricted by the by the linear independence requirements associated with Implicit Function
Theorem based techniques.

To illustrate both our new technique for establishing the superlinear convergence of a semi-
infinite optimization algorithm and the manner in which discretization effects can be taken into
account, we chose an extension of Newton’s method for the solution of semi-infinite optimization
problems. Our choice was motivated partly by the fact that Newton’s method is the simplest method
method in the class that can be considered, and partly because Newton’s method is one of the best
understood, most studied, variously modified, adapted, and approximated algorithms in the literature
(see,e.g., [S, 18, 8, 15, 16, 19, 24, 27, 28)).

In the area of nonlinear programming, it was at first used as a local method for unconstrained
optimization of twice locally Lipschitz continuously differentiable, strongly convex functions on IR".
Then, it was shown by Goldstein [7] that, for such functions, the local Newton method can be glo-
bally stabilized, i.e., it can be made globally convergent by the addition of the Armijo-Goldstein step
size rule [1, 7). Since this step size rule retums a step size of of unity near a solution (see [7]), the
Goldstein version of the globally stabilized Newton method converges quadratically. Finally, refer-
ring to [20], we see that it is possible to construct globally stabilized versions of Newton’s method
which converge quadratically in minimizing twice locally Lipschitz continuously differentiable, but
not necessarily convex, functions on R”, whose local minimizers satisfy second order sufficiency

.1-



conditions’.
The extension of Newton’s method (largely in the form of sequential quadratic programming) to
semi-infinite optimization problems appears to have been confined to constrained problems which can

be converted to ordinary nonlinear programming problems by means of the Implicit Function
Theorem (see, e.g. [10, 23, 4]). For example, a problem of the form

min {f (x) 1 §(x ,£)<0, YVt e [0,1]}, ' (1.1a)
can be converted to the standard nonlinear programming form
min ( f (x) 1 ¢(x ,/(x))<0,j =1,2,... .9}, (1.1b)

when it is known that for all x near a local solution x*, ¢(x , -) has exactly ¢ local maximizers, and
that ¢, (x , ¢/ (x)) <0 for each j. It should be noted that some of these extensions are conceptual
algorithms because in their analysis it was not taken into account the fact that the local maximizers
t/ (x) cannot be computed exactly.

One can convert an unconstrained minimax problem of the form

mi m , 2
x elll{" te [%Tt] o, 1) (1.2a)

into a constrained problem of the form
min{w 1 ¢(x ,2)sw , vVt e [0,t]}, (1.2b)

and, assuming that the required assumptions are satisfied, apply one of the above mentioned algo-
rithms (i.e., [10, 23, 4]). Such an approach suffers from both aesthetic and practical drawbacks. First,
it is displeasing to convert an unconstrained optimization problem into a constrained one. Second, to
avoid the Maratos effect [14], one must use a curvilinear step size rule or other modifications, such as
the use of the modified Lagrangian merit function of Shittkowski and Powell, which are more com-
plex than the simple Ammijo-Goldstein rule mentioned earlier. Third, unlike Newton’s method, the
methods in [10, 23, 4] do not exhibit invariance under linear transformations. Last, but not least, we
have observed that constrained semi-infinite optimization algorithms (such as Algorithm 5.7 in [21])
do not perform on (1.2b) as well as semi-infinite minimax algorithms (such as the version of Algo-
rithm 5.2, based on (5.52) in [21]) do on (1.2a).

In this paper, we present natural extensions of both the local version of Newton’s method and of
the Goldstein globally stabilized version of Newton’s method, for the solution of a class of convex
semi-infinite minimax problems. The notable aspects of our work are (i) we do not impose the above

! Such globally converging methods are obtained by using the Goldstein method if certain conditions are satisfied, and reverting to
the Amijo Gradient Method (1) otherwise (see, e.g., [17] for an example).
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mentioned restrictive assumption that all the local maximizers are strict and that their number is
finite, (ii) we take into account the most obvious approximations required to produce implementable
algorithms, and (iii) we use a new and very simple technique for establishing superlinear convergence
of our extensions of Newton’s method. Since our technique is not based on the Implicit Function

Theorem (as in [27, 25]), it does not require the imposition of a strict complementarity condition®. In
Section 2 we show that a conceptual local Newton’s method for semi-infinite minimax problems con-
verges superlinearly with Q -rate 3/2, under assumptions analogous to those needed in the minimiza-
tion of twice locally Lipschitz continuously differentiable, strongly convex functions on IR®. In Sec-
tion 3 we present a conceptual globally stabilized Newton method and show that it retains the Q -rate
of 3/2. In Section 4 we present two implementable versions of the local Newton method for semi-
infinite minimax problems and show that they converge locally with Q -rate 3/2; a superlinearly con-
verging (with Q-rate 3/2) implementable version of our globally stabilized Newton method is
presented in Section 5. We present numerical results in Section 6 and our concluding comments and
final observations in Section 7.

2. THE LOCAL NEWTON METHOD

We will consider the problem
P: ,‘L'iﬁ- y(x), @.12)
where
Ve = I Y0 @.1)

whereq’é {1,2,...,9}.

In keeping with standard assumptions for Newton’s method (see [7]), we make the following
hypotheses:

Assumption 2.1:

(i) For all j € q, the functions ¢/ : R* x R are twice Lipschitz continuously differentiable in the
first argument (uniformly in the second).

(ii) Forall j € q, ¢/ (-, ), V,¢(, -) and ¢Z (-, ) are all continuous.

(iii) There exist constants 0 <m <M such that forall x e R”,

2 Referring to problem (1.2a), we note that an assumption of strict complementary slackness is highly restrictive for seri-infinite
minimax problems, because it implies that, at a solution x* , the active gradients V,6(x* , 1) are affinely independent, which in tum, implies
that $(z* , ) has at most # + 1 maximizers. However, d(x* , -) may well have a continuum of maximizers.



miB<{h 0k, 0)R)SMIRR, Vi e[0,1], Vjieq. @2

Proposition 2.1:  Suppose that Assumption 2.1 holds and that x* is the minimizer of y(-). Then
forallx e R”,

Wix) — yixk) > %u —x*|2, (2.32)

Proof: Foranyx e R",and forany j e q, let
*x)4 (j | = .
Q*x) = {j e ql yix) . ;n[g{tuwx 1)} | (2.3b)
T*@)8 (te[0,111¢/x,)=y(x)} . 2.30)
Then, making use of the second order expansion formula [6, p.185] and of (2.2), we obtain that

W) - W+ 2 max. m[%xuq)j(x* L) =Yk ) + (VY (% 1), x —x*) +%Fx —x*[?
JEQqQtE 2 )

. ’ - * V . » » A ) ﬂ - 2
zjeu;g:(tﬂ)‘el?‘ajxw)q)’(x* ) —yx*)+ (V. ¢/ (x* ,1),x x*,+2ﬂx x*{

= dy(* ,x —x*)+ %ux —x*2, (2.3d)

where dy(x* ,x —x*) denotes the directional derivative of y(-) at x*, in the direction (x —x*).

Since x* is the minimizer of W(-), d y(x* , x — x*) 20, and hence (2.3a) follows. a

By analogy with Newton’s method for differentiable functions, we define a quadratic approxi-
mation Y (- | y) to y(*), around the point y, by

P '”é?ﬁ’:,ﬁ%"n VO .0+ (V0 0,0, x -y +% (=), 040, 0)x -y)). (242

Algorithm 2.1 (Local Newton Method).
Data: xpe R".
Step 0: Seti =0.
Step 1: Compute

¥;y = arg min P 1x). : (2.4b)

Step 2: Replace i by i+1 and go to Step 1. a
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Proceeding as in the proof of Proposition 2.1, it can be shown that
P& | %)= P(xiyy | x;) 2 Yomlx —x;,412. Hence we conclude that X;,1 is uniquely defined by (2.4b).

To establish the local convergence and rate of convergence of the above algorithm, we shall
need the following lemmas.

Lemma 2.1:  Suppose that Assumption 2.1 holds. Then there exists a K < o such that for any
x,y eR"

lyx) =Pk 1y)l sRix -y, 2.5

Proof: Let L <o be a common Lipschitz constant for the Hessians oL, ). Then, making use of
second order expansions, we obtain that

W(x) =max max Y. )+ V0.0, x =y +% (& -y), 0L . ) —y))

+ [ A=) (& -2), 040 +5( =y), ) =040 , DIx ~y))ds

sefo,n
L 3
S y(x Iy)+glx—yl . (2.6)
The other half of the inequality in (2.5) follows similarly (with R = L /6). O

Lemma 2.2: Suppose that Assumption 2.1 is satisfied. Let 2 :IR* > R” and 6 : R* - R be
defined by

h(x)=arg hlgi%_ PY&x +h 1 x), (2.72)
6(x) = hn;jlg' P& +h 1x)-yx). (2.7b)

Then (a) both A (") and 6(-) are continuous. (b) Forall x € R”, dy(x , h(x)) S6(x). (c) If x* is a
solution of (2.1a), then both & (x*) = 0 and 8(x*) = 0. (d) Forall x #x*, 6(x) <O0.

Proof:  (a) Continuity of 6(-) and 4 (-) follows from the Maximum Theorem in [2], strengthened by
Assumption 2.1 (iii). The continuity of & (-) again follows from the Maximum Theorem in [2], which
states that it is an upper-semicontinuous set valued map, and the fact that 4 (x) is always a singleton.
(b) Clearly, with g* (x), T*J (x) defined as in (2.3b, ¢), we must have that

G(x)zjgaqagzx)‘ emﬁgc(x)@’(x =YX+ AV (x,0) Ry =dyx (). (2.70)

Hence dy(x , h(x)) £08(x). (c) Since 0 < dy(x* , h (x*)) < 6(x*) <0, must hold, it follows that both
h(x*)=0and 6(x*) = 0. (d) In view of Assumption 2.1 (iii), x* is the only point satisfying the first
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order necessary and sufficient condition 0 € dy(x*), where dy(x) denotes the Clarke generalized
gradient of y(-) at x (for a definition, see page 27 in [3]). Hence this part is a simple generalization of
Proposition 5.5 in [21], from which we see that 6(x) < 0 for all x € R” and that 6(x) = 0 if and only

if 0 € Jy(x). a
Lemma 2.3: Supposethat KX e€ (0, <), and that ¢ , s = 0 are such that
t2<K[(s +1)*+5%, (2.82)
0sr<—> , 0Ss<—. (2.8b)
9K 9K
Thent <s and |
t <3VK §32. (2.8¢)

Furthermore, if s <y9K, withye (0, 1), then

t<Vys. (2.8d)

Proof: Let\ 4 1/9K. Then, from (2.8a, b),

12 S K[25% + 352t + 3512 + 3]

SK2As?+ 352+ 302+ As?] . (2.9a)
Hence,
(1-4AK)t2< 5K As?. : (2.9b)

Since (1-4AK) = 5K\ =5/9, it follows that ¢t <s. Hence, replacing ¢ by s in (2.8a), we obtain
(2.8c¢).

Now, if s SY/9K, then Vs <Vy3VK . Substituting for Vs in (2.8c) we obtain (2.8d), which
completes our proof. a

Corollary 2.1:  Suppose that K e (0, ), Ye (0, 1), and that { o; } 2 is a real sequence such that

o SK U0 +0300)° + 0] (2.10a)
<Xy
05““91(' VieN. (2.10b)

Then 0; — 0 as i —» oo superlinearly, with O -rate 3/2.

Proof: It follows from Lemma 2.3 that o, < V'—ya,-, foralli € IN. Hence o; = 0 asi — o. The
3/2 Q -rate follows from (2.8c). a



We are finally ready to establish the convergence properties of Algorithm 2.1.

Theorem 2.1:  There exists a p > 0 such that if kg —x* 1 <p, where x* is the solution of (2.1a),
and {x; } 2o is a sequence constructed by Algorithm 2.1, then, x; = x*, as i — oo, 0 -superlinearly,
with rate at least 3/2.

Proof: Let a.= m/2, then, making use of (2.3a) and (2.4b), we obtain, fori =0,1,2, ..., that
oty 41 = 2% 12 < W(x;41) — Wx*)

SYOGLD) = P 1) + Py | X)) — Wix*)

SYE) =P LX)+ PE* 1 x) —yix+), (2.11a)

because §(x;41 | x;) S P(x* | x;), by construction of x;,,. It now follows from (2.11a) and Lemma
2.1 that

i —x*P S K[lx;, —x P +Ix; —x*P)
SK[M = x*) = (x; = x*)P + Ix; = x*P)
SK (e —x* 1+ b = x* 1) + 1x; —x* 03], (2.11b)

where K = R /ocand R is as in Lemma 2.1.

Next, since by Lemma 2.2, 4 () is continuous and A (x* ) = 0, it follows that giveny* € (0, 1),
there exists a p>0 such that if Iy —x*1<p, then Ih(x)l =lx; —x0<Y*/18K. Let
p* = min{E,y*/lSK }. Then, if Ix; ~ x* 1 < p*, we must have that

lx,.+,—x*|5|x,-+l-x,-||+|x,.-x*lsT's%w* s%. @.12)

Letting ¢ 4 Ix;,; —x*land s & Ix; — x* 1, and making use of Lemma 2.3 (see (2.8b)), we obtain that
x;, —x* 1SV Ix; —x*1. (2.13)

Hence, if Ixo—x*1<p*, then Ix; —x*0<p* for all i =1,2,3,..., and therefore, by (2.13),
Ix; —x*1—0asi — . It now follows from (2.11b) and Corollary 2.1 (via (2.8c)) that

b -x*1<S3VK Iy —x*1%2, vieN, (2.14)

which completes our proof. 0
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3. THE GLOBAL NEWTON METHOD

We will now present an extension of the globally stabilized Newton method, proposed by Gold-
stein in [7] (see also [22, p. 33]). Stabilization is achieved by adding an Armijo type step size rule to
the Local Newton Method. The rate of convergence of the Local Newton Method is preserved,
because, as we will show, near the solution of (2.1a), under Assumption 2.1, the step size becomes
unity, i.e., the Global Newton Method reverts to the Local Newton Method.

Algorithm 3.1 (Global Newton Method).

Data: xpe R*,0,fe (0,1),S2 {1,B,.p%....}.

Step 0: Seti=0.

Step 1: Compute 6(x;), and h; = h(x;), according to (2.7b), (2.7a).

Step 2: Compute the step size \; @max (A e S | y(x; +Ah;) — yix;) SA0B(;) } .

Step 3: Setx;y =x; +A;h;. Replace i by i+1 and go to Step 1. a
First we show that Algorithm 3.1 is globally convergent.

Theorem 3.1:  Suppose that Assumption 2.1 holds and that x* is the solution of (2.1a). Then any
sequence {x; } 2o, constructed by Algorithm 3.1, converges to x*.

Proof:  First, because of Assumption 2.1 (iii), the level sets of y(-) are bounded and, by construc-
tion in Step 2, W(x;,1) < ¥(x;). Hence any sequence {x; }';2o, constructed by Algorithm 3.1, must
have accumulation points. For the sake of contradiction, suppose that the sequence {x; } 72, does not
converge to x*. Then it must have an accumulation point x** #x*. By Lemma 2.2, we then have
that O(x**)<0 and A(x**)#0. Since by Lemma 22, the directional derivative
dyx** |, h(x**)) < 0(x**) <0, it follows that there is a s** € § such that

YOR* + g0kR (x4 )) — Y(x**) < s%% oB(x** ) . (3.1a)
Hence, making use of the continuity of 6()) and & ("), for all x; sufficiently near x**, the stepsize
A; 25** and 6(x;) < O(x** )/2. Therefore, for all such x;,
WO + A h(x;)) — Wix;) S A 08(x;) S s** 0B (xk*) . (3.1b)
Since the sequence {y(x;)} ;2o is monotone decreasing, (3.1b) implies that y(x;) = —oo as i — oo,
which is a contradiction. Hence the theorem must be true. a
Next we establish superlinear convergence.

Theorem 3.2:  Suppose that Assumption 2.1 holds and that x* is the solution of problem (2.1a).
Then any sequence {x; } ;2, constructed by Algorithm 3.1, converges to x* , superlinearly, with Q -
rate at least 3/2.



Proof:  Since {x; } 2o converges to x* by Theorem 3.1, we only need to show that there exists an
igsuchthat A; = 1 forall i 2 iy, so that Algorithm 3.1 reduces to Algorithm 2.1 and invoke Theorem
2.1.

Now, it follows from (2.5) that

00x;) = Q0 +h(x;) | ;) = wix; + A () +W(x; +h (%)) - y(x;)

2 Yx; +h () - wix) - Rk ()P (3.22)

Hence
WO + b (x;)) — W) < aB(x;) + [(1 - 0)8(x;) + R 1 (x,)P] . (3.2b)

Next we establish a relationship between 6(x) and Ik (x)I. Since x + A (x) is the minimizer of
¥ | x), it follows that it satisfies the first order condition:

Oe aP(x +h(x) | x). | ' (3.3a)

For any integer p 2 1, let I, a {(neRP lZ};luf =1, w20, VYj e q}. Then it follows from

(3.3a), the definition of the generalized gradient 0§(x + A (x) | x) (see [3]), and the Caratheodory
Theorem [29], that there exists a multiplier u e Z,, multipliers v; € X, ,;, and t}‘e [0, 1], with
J € qand k € n+1, such that

. n+l N .
0= Zq: W X VAV (x,th+0Ltx . thr(x) , (3.3b)
j=l k=l
which implies that?
g o g o an .
h@)==| YW T VL, H| T W I vV, ih. (3.3¢)
j=1 k=l Jj=l k=1

Furthermore the following complementary slackness condition (see (5.12a, b) in [21]) is satisfied:

j=l k=l

. n+l A . : .
=3 W'y V}‘{W(x D= WE]+ (V¢ (x .t*).h(x)‘/+% (h(x).04 (x ,t})h(x»} (3.3d)

Substituting for 4 (x) from (3.3c) into (3.3d), we obtain, in view of Assumption 2.1 (iii), that

n+l

1 .
* Since the j/ 20 and the v} 2 0 in (3.3c), if follows from (2.2) that the matrix | 3 p/ T violie, x})] is invertible,
jat kat



-1

. n+l . , n+l .
o) = 3 W f:V}‘W(x,t}‘)—\v(x)]-% (hey, | 3 W > viehex . tH| he)

Jj=1 k=1 Jj=1 k=1

1 2
S-St (3.4)

with the last line following from the fact that ¢/ (x , £f) — y(x) < 0 for all ¢,
Substituting for 6(x) from (3.4) into (3.2b), we obtain that

Wx; +h(x;)) = Wix;) < 0B(x;) — [(1 = a)2M — K 1h ()] Wh (x; 12 . (3.53)
Since h(x;) = 0 as i — oo, it follows that there exists an i such that forall i 2 i,
W(x; +h(x;)) = wix;) < 08(x;) , (3.5b)

i.e., that A; = 1. This completes our proof. O

4. IMPLEMENTATIONS OF THE LOCAL ALGORITHM

Note that numerical evaluations of y(x) and 6(x), and hence of 4 (x), are only aproximate: for
Y(x) because intervals must be discretized, and for 8(x) and 4 (x), because they are defined by a con-
vex optimization problem which can only be solved approximately. Hence both the local and the glo-
bal Newton methods that we have presented (Algorithms 2.1 and 3.1, respectively) must be viewed as
conceptual. This brings us to the question as to whether it is possible to construct implementable
algorithms, using some form of discretization of the interval [0, 1], appearing in (2.1b), as well as
some truncation rule for the algorithm used in computing approximations to 6(x), which retain the
basic properties of Algorithms 2.1 and 3.1.

We need to strengthen Assumption 2.1, by adding the following hypothesis:

Assumption 4.1:  There exists a Lipschitz constant L < %, such that for all x € R”,

¢/ (x, )=/ (x,eN SLIt=¢1, vi, 7 €[0,1], Vjeq. (4.1a)
IV.¢/(x, )=V, ¢/ (x e NSLIt =71, Vi, 7 e[0,1], Vjeq. (4.1b)
OL(x ,8)—0h(x ,tNSLIt =71, Ve, 7 €[0,1], Vjeq. 4.1c)

]

* At the expense of some complication, it is possible to carry out the following analysis using local, rather than global Lipschitz con-
stants.
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We begin with the following observations. For any integer N > 0, let®

TNé{tlt=-lkv, k=0,1,2,...,N}, (4.29)
w8 max max ¢/(x 1), (4.2b)
v 1Y) Qmax max /0, )+ (Ve/0 0, x-y)+ % (@ -0). 050X =), @20
hy(x) Sarg min QG +h |x), 4.2d)
OyC) & min Qy(x +h | x)-yy (). 4.2¢)

The relationships between the quantities associated with the original problem P in'(2.1a) and
the approximating problems

Py. min yn(x) @3)

are as follows:

Proposition 4.1:  Suppose that Assumptions 2.1 and 4.1 hold. Let x* denote the solution of (2.1),
and, for any positive integer N, let xy* denote the solution of the discretized problem Py . Then

Y = Wy o)1 S 55 442)
* _p k2 2L
e* —xy*l°< v (4.4b)

and, for every bounded set B < R”, there exists a L’ < o such that

LI
18(x) = Oy (x)| S oy VxeB (4.4c)
W (x) = hy (X2 < L VxeB (4.4d)
N mN ' :

Proof:  First, let x € R" be arbitrary. Then, because Ty < [0, 1],

¥ Note that there is nothing special about the discretization (4.2a). Any family of discrete sets Ty € T, where T 2 [0, 1) can be used
provided that (i) d(Ty , T) — 0 as N — eo, and (ii) for any sequence of integers (N; } 2, such that N;,, 22N;, Sd(Tyi . T) < 0o, where
d(-, ) denotes the Hausdorff distance.
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S <OSYE) - Yy ().

(4.52)

Next, let? € [0, 1] and J € q be such that y(x) = q>7(x ,7). Then there exist points ¢’ € Ty, such

that 1#’~7? | < 1/2N and hence, making use of (4.1),
w2 ¢ @, 2¢ e, -2 =y - L.
’ ! 2N 2N
Thus we have shown that
o) =y ()| S =
‘VN 2N .
As a result, we have

w(ﬂ)sw(x~*)sw~<x~*)-+%.

and
YN Gov*) S v (%) S Wk,
which gives us (4.4a).
Next, making use of (2.3a) and (4.5c), we obtain

S =2 P S Yl *) - W) S Y () + s — Yk S

which establishes (4.4b).

’

L L
N N

(4.5b)

“4.5¢)

4.5d)

4.5¢)

(4.6a)

Now suppose B C R” is bounded, and let x € B. Let the functions{ : R* xR > R, j € q,

be defined by
| N, 080G+ (V¥ L0, k) + L (e on).

Let G #max max max 1V,¢/(x , £)l. Then it follows from the inequality
xeBjeqre[0l]

max max ni(k,t)>max max ¢’(x t)—Glhi+ Zip12
jeqte(0,1] jeqre(0,1 2

= \y(x)-Glh[l+%lhllz ,

(4.6b)

(4.6¢0)

that if 121> 2G/m, then the left hand side of (4.6¢c) is greater than y(x). Since 8(x) <0, we must
have Ih(x)I<2G/m. A similar analysis shows that My (x)I <2G/m also. Now suppose that

1h1<2G/m,and let Ly 8 L(1 +2G/m +2G%m?). Then
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Ind(h ,8)=ni(h ,¢) I SLgle—71 , Vt,7 €[0,1], Vjeq. (4.6d)
It now follows from (2.7b), (4.2e) and (4.5c), and an argument similar to that used to establish (4.4a),
(4.4b) that (4.4c), (4.4d) hold, with L’ & Lg +L. 0
Comment 4.1:  Note that it follows from duality theory [13] that because (4.2¢) is a convex prob-
lem, the dual of (4.2¢) is given by

Oy (x) = maxJ, (), (4.7a)
where
Ln®A- T W@ -0 01+ 51 T WIYE 0P S wi=1, wizo).

jegq Jjeq jeq
teTy teTy teTy

(4.7b)
Hence, given any set of admissible multipliers p/#, we have that 8y (x) 2 J 5 ().

Now an algorithm such as the barrier function method in [26], applied to (4.2¢), produces not

only approximations % to hy (x), but also associated multipliers p/#, while an algorithm such as the
Levitin-Polyak method [12), applied to (4.7a) produces multipliers p/# which, via (3.3c) can be used

to obtain an approximation £ to hy (x). Ineither event, we have that

Ton @) A nGx + )=y () 20y (1) 2T, () - - (4.70)

Therefore, given any e > 0, to determine when such an algorithm has constructed an approximation
hy , ¢(x) such that A

0<Pn(x +hy o) 1 X)) ~-yy(x)-Oy(x)<E, 4.79)
we need only to check whether J, y(hy ,¢(x) —J; y() S€. Hence we see that the construction of
such hy ¢(x) is a finite process. Furthermore, it follows from Proposition 2.1, applied to the function
h > @n(x +h | x) and (4.7d) that

e2Py(x +hy (x) 1 x)=Py(x +hy(x) 1 x)2 %IhN ,e(x) — by (x)8% . 4.7e)
(]

We can now follow one of two alternatives. The first is to decide on an acceptable level of error
and then to use (4.4a) or (4.4b) to determine the required level of discretization, i.e., the parameter N .
In that case, one proposes to solve Py and one only needs to invent a scheme for truncating the com-
putation of Ay (x). Such a scheme is incorporated in the following implementation of the local New-
ton Method for solving problems Py. The second alternative involves increasing the discretization
mesh progressively, rather than using a fixed discretization. This second alternative will be discussed
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subsequently.
Algorithm 4.1 (Implementable Finite Minimax Local Newton Method for Py).

Data: xpe R*,2e (0,1).
Step 0: Seti =0.
Step1: Sete=%2.

Step 2: Compute a vector hy ,¢(x;) € R* such that®

0<Pn(x; +hy, o(x) | %)Yy () - Oy (x;) S€. (4.8a)
Step3: If
e +hy o) 1 %) -y (x;) S2¢, (4.8b)
and '
e<lhy x)P, (4.8c)

setx;, =X; +hy (%), (& =€)" and go to step 4. Else replace & by &/2 and go to Step 2.

Step4: Replace i by i+1 and go to Step 1. m|
Comment 4.2: The structure of the tests (4,8a-c) is dictated by the proofs to follow, which establish
the 3/2 rate of convergence of the algorithm. Note that (4.8b) ensures that

g < -_0%@ . (4.8d)
Hence, since Oy (x;) — 0 as x; — xy*, it follows that Algorithm 4.1 computes approximates Ay (x;)
more and more accurately as the solution of Py is approached. Also, if Algorithm 4.1 is initialized
with x = x*, it cycles indefinitely up in the loop defined by Step 2 and Step 3, reducing € to zero. [

Theorem 4.1:  There exists a p > 0 such that if lxg—xy * I < p, where xy * is the solution of (4.3),
and {x; };o is a sequence constructed by Algorithm 4.1, then, x; > xy*, as i >, Q-
superlinearly, with rate at least 3/2.

Proof:  First we note that (2.5) holds with y(-), §(- | -) replaced by yy (), ¢y (- | ), respectively,
that we may assume that X 21 in (2.5), and that Theorem 2.1 equally applies to the obvious
simplification of the local Newton Method for problem Py .

¢ Note that 8y (x;) is not evaluated. See the paragraph preceding (4.7d).
7 Note that the computation of €; need not always begin with®. Rather, it is more efficient to start with €1
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Next, forany i, let X;,, a x; +hy(x;). Then, by (2.11b),
Iy —xy* <k [ll/,'.,,l -X; P+ Ix; —xy* |3] . (4.93)
Since by (4.7d) and (4.8c), we have that

iy — Xl = Uiy o (5) — By ()2

28 2 2
S —- s~y P = Wi - x; i, (4.9b)
we obtain, using (4.9a) and the fact that Ix + y¥ <2P~Ix¥ +1lyW],p =2, 3, that, withK > 1,

;i1 — 2 * P S 2[5 — xy * P+ By — Xl
S2K Wi =% P 41 =y * P+ by = 217

< 8K [ty — ;P 4 iy = Xy Pt by — iy * B+ Uy = 710 "(4.9¢)

Assuming that x; —xy* is sufficiently small, we must have, in view of the fact that by Lemma 2.1
Oy (x;) =0 as x; - xy* and (4.8d), that 2¢;/m <1 and hence, by (4.9b), that ;g =%l < 1.
Therefore, making use of (4.9b), (4.9c) leads to the conclusion that there exists a K’ € [16K , o),
depending on m, such that (4.9¢) reduces to

i1 — X * P S 16K [y =2 P+ by — iy * P+ 1, — X340

SK (M =513+, —xy*P]. (4.10a)

The proof can now be completed by using arguments similar to those following (2.11b) in the proof .
of Theorem 2.1. This requires that we show that given any 8 > 0, there exists a p > 0 such that if
Ix; —xy*1<p, then Ix;;; —x;1< 8. Making use of the triangle inequality, (4.7d) and (4.8d), we
obtain that

;g = x; 0 = hy o ()l

< “hN , &(xi) - hN(x,-)l + IhN(xi)l

=20, Xi
< \/ —% + By (eI . (4.10b)
The desired continuity result now follows from Lemma 2.2, and one can now proceed as in the proof
of Theorem 2.1, following (2.11b), to complete this proof. O

There is evidence in the literature (see, e.g., [11, 9]) that one can reduce computing times con-
siderably by increasing the discretization mesh size progressively, rather than using the finest mesh
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from the very start. This idea is incorporated in the following implementation of the Local Newton
Method which adjust both the precision with which successive iterates are computed as well as the
mesh size.

Algorithm 4.2 (Implementable Finite Minimax Local Newton. Method for P).
Data: x9e R*,2e (0,1),K<1,Nye N.

Step0: Seti =0,

Step1: Sete=%,N =N,%

Step 2: Compute a vector hy (x;) € IR* such that (see Comment 4.1 )

0SNG +hy, ) | x;)=Yn(x) - Oy (x;) SE. 4.11a)
Step3: If
On G +hy ) | %) —yy (%) S 2, | (4.11b)
and
e<lhy o(x)P, (4.11c)

setX’;;; = x; +hy  ¢(x;) and go to step 4. Else replace € by €/2 and go to Step 2.
Step4: If

KW=zl @.11d)

setx;4; = X1, (€ =€, N; = N)and go to Step 5. Else replace N by 2N and go to Step 1.

Step 5: Replace i by i+1 and go to Step 1. a
Comment 4.3: The function of the coefficient X in (4.11d) is to limit the growth of the discretiza-
tion parameter N. Thus, suppose that we are willing to accept a solution corresponding to N*
discretization points, and that our stopping criterion is Iy« (x;)Il € ®, with ® << 1. Then we would set
K SN*o. a

Note that Algorithm 4.2 solves problem Py,  until the test (4.11d) fails. In view of Theorem
4.1, this will happen after a finite number of iterations provided that Ixq —xy,* § < p, where p > 0 is as

in Theorem 4.1. Now, suppose that N is such that \2L/mN 0 < p/2. Then, from (4.4b) we have that
if lxg — x* 1 < p/2, with x* the solution of P, then, ixy— v *1<p.

8 Although it is reasonable to key &, which controls the precision with which 8y, (x;) is approximated, to the actual value of Oy, (x;),
so that §; may or may not decrease monotonically, it makes better sense to increase the discretization parameter N; monotonically.
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Theorem4.2: There exists a p > 0 and a integer N < oo, such that if lixg— x* 1 < P, where x* is the
solution of (2.1a), and {x; } ;2 is a sequence constructed by Algorithm 4.2, then, x; — x*, asi — oo
Q -superlinearly, with rate at least 3/2.

,

Proof:  First, assuming that kx; —xy,*1< 1, it follows from (4.10) that for some K’ < o, indepen-
dent of N;,

i =30 * P S K [y —x; 3 + Iy —xy* %], (4.12a)

Hence, assuming, without loss of generality, that X" 2 1 and that N, is sufficiently large to ensure that
forall N; 2N, Ley,* —x*1< 1, we get h

L = x* P < 2 = 20, * 12 + Loy * — 2% 1]
S 2K [Ix;y — ;P + g =y * P+ Ly * — 2% 1]
S 8K [y — % B+ Iy =% Bt oy * =% BB+ gy * —x* 2]

S 16K [Ix;yy —x; B + Iy —x% P+ gy * —x*1P] . ' (4.12b)
Now, it follows from (4.4b) and (4.11d) that

L 2L
by * —x* P s —- S m o L L (4.12¢)

Substituting into (4.12b), we obtain that there exists a K < o, independent of N;, such that
Lx; . —x* P<k” (Ix; 41 = x; P+ bx; —x* B. (4.124d)

To continue, let B 2 (re R" | Ix —x*01<1}. It follows from Proposition 4.1 that there exists a
L’ <o such that (4.4c), (4.4d) hold. As in the proof of Theorem 4.1, we will show that if N o is
sufficiently large, then given any &> 0 there exists a p > 0 (where p < 1 without loss of generality)
such that for all N; 2 Ng and lx; —x*1<p, Ix;,; — x;11< 8. Using the triangle inequality, (4.7d) and
(4.4d), we obtain

'.X;.H —x,~l = th‘ .&(X,’)"

SOhy, ¢, () = iy G )0+ 1 Ay, () = I Gep ) + B ()i

vy
\/2i+\/-‘-"~—+nh(x,)u. (4.13a)

Furthermore, analogously to (4.8d), we have that

-17.



IGN‘(x-)I 4L
lx.-+1—x:ls\/ m‘ +\/mN,- +l(x)! 1. (4.13b)

Applying the triangle inequality once more and utilizing (4.4c), we obtain

T0G )T + 105 = O, 0|
|xi+1-xi|s‘\/[ Gra)1 + 19Gs) N(x)]+\/%+ﬂh(x;)l

m
'\/ [16x:)! +'1£\;’-— I (4.13¢)
< — -*+'\/mNi+Ih(x,-)I.

It now follows from the continuity of 6(-) and 4 (*) and the fact that 6(x*)=0,A(x*) =0, thatif Nyis
chosen sufficiently large and p sufficiently small, then the desired conﬁnuity result holds. One can
now proceed as in the proof of Theorem 2.1, following (2.11b), to complete the proof. O

$.IMPLEMENTATION OF THE GLOBAL ALGORITHM

To produce an implementation of Algorithm 3.1 (the Global Newton Method), we propose to
use two mechanisms for controlling the precision of the approximations used. The first one will be
taken from Algorithm 4.2, and will ensure superlinear rate of convergence, while the second one,
which we will allow to dominate the first one, will be an extension of the mechanism described in
Appendix A of [22]. For our case, this extension can be described abstractly as follows. Suppose that
for every integer N 2 No> 0, Ay : IR™ — 2 XN i5 3 (possibly) set-valued iteration map. The reason
for introducing a second integer N is that given an integer N, the algorithm may have to increase it
to a new value N’ 2N before it can satisfy all the internal tests. Now consider the following algo-
rithm model form solving the problem P in (2.1a).

Algorithm Model 5.1

Data: x9e€e R*,Nye IN.
Step 0: Seti =0.

Step 1: SetN =N;.

Step 2: Compute a pair

0,.N)eAyx). (5.1a)

Step3: If

Y () — W () <— Ni , (5.1b)
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go to Step 4; else replace N by 2N’ and go to Step 2.
Step4: Setx; . =y,N;,=N.
Step 5: Replacei byi +1 and goto Step 1. : O
Our proof of convergence requires the following technical result:

Lemma 5.1: Supposé that the sequences of real numbers { B; } ;2 and {n; } 2, satisfy the follow-
ing conditions: (i) m; 20foralli e N, (ii) Y 7Z2,m; <o ,and, (iii) PB;41 <PB; +7;, forall

i € IN. Then either the sequence {B; } ;2o converges, orf; > —ccasi = oo,

Proof:  lItis clear from the assumptions that the following holds:

n-1

By —Bo= % Brr~BIS T M. (5.23)
i=0 i=0

Hence, PB; is bounded from above, and therefore 'ﬁ A fim; —uP; <o Obviously, if P = —ce, then
B; > —ccasi 5o,

Now suppose that 3 >—oo, To prove convergence of the sequence {[; } 2o, we will show by
contradiction that lim; _, .; 2B. Thus, let £>0 be arbitrary, and suppose that there is no iy such
that B; >B —e forall i > ig. Clearly, there exists an i, such that 3>, M, <€/ 2 forall i 2i,. It fol-

lows from our hypothesis that there exists an i 2 iy, such that B;, <B —e. It follows from (5.2a) that
fori >i,,

i-1 o« e '

Bi=Bi= X Ben-PIS T M= (5.2b)
k=i, k=ia

Hence B; SB—% for all i sufficiently large, which contradicts the definition of '[3 It follows that

lim; _, .B; =B. O

Theorem 5.1:  Suppose that Assumptions 2.1 and 4.1 hold, so that (4.4a) is valid, and that for every
x € IR" such that 0 €0y(x) there exist ap, >0, a 8, > 0 and an integer N, > O such that

YO )=y (X')s-38; (5.3)
forall N 2N,,and allx ,y’ € R” suchthat ¥ —x1<p,,(y ,N') e Ay(X).

Under these assumptions, if {x; } 29 {N; } 2o are a pair of sequences constructed by Algo-
rithm Model 5.1, then x; — x* and N; — o, as i — oo, where x* is the solution of (2.1a).

Proof: First we use Lemma 5.1 to show that the sequence {wy,(x;)} 2 converges. Let
14 (i e NIN;#N;}, and let the sequence {1); } 72 be defined by
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A{L’N" iel (5.4a)

N =30 otherwise ,
where L is the Lipschitz constant in Assumption 2.1(i). Now suppose that i e 7, and let
i,8min{j e/ 1j>i}. Since by construction, we have that N; 22N;, it follows that

o0, L
n. = n < —_— & 00, 5.4b
E’o ‘ ‘El ' IEOZkNO v (5.4b)

Hence the sequence {1; } ;29 is summable. From (4.5c), we have that forall i € 7,

L L _L
s 4
N, 2N, © N, (.4c)

W (i) — W () | S Ty, 06 ) = W) |+ 1) = yiy, ()| <

Clearly, forall i € IN\ 7, i.e. such that N;,; = N;, lyy, (x;) — WYy, (x;)1 = 0. Henceforalli € N,

TN, () — W () T S T () — W) |+ Tyg) =y, () | <

Consequently, using (5.1b) we obtain

YN i) = W, (6:) S Wi, (1) = W, (6 + W, () — Wy, )

<_

+M; <n; . (5.4d)

i+l
Furthermore, it follows from Proposition 2.1, (4.5c) and the fact that N;,; = N; that

m L
WYy, (x) 2 yix*) + ?lx —x*[? - m - . (5.4e)

Hence the sequence {wy,(x;)} 2 satisfies the hypotheses of Lemma 5.1, and in addition, it is
bounded below. We therefore conclude that it converges.

Next, we show that N; — o, If this is not true, then since N;,; 2N; we must have N; = N*
for i sufficiently large. For such i, (5.1b) implies that

Wn- (1) — Wy () < - Nl , (5.4

which contradicts the fact that the sequence { yy, (x;) } ;2 converges.

As a consequence of (5.4¢), the sequence {x; } /2 is bounded, and hence it must have accumu-
lation points. For the sake of contradiction, suppose that the sequence {x; } 52y does not converge to
x*. Then it must have an accumulation point x** #x*. Let K < IN be the set of indices of the
subsequence converging to x** .
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Since x** #x*, we have 0 £dy(x**), from which it follows, by assumption, that there exists a § > 0
such that fori € K sufficiently large

WN, (Xie1) = W, (i) S =8 (54g)
Referring to (5.4d), we see that fori e X sufficiently large,

YN i) — W, (X2) S W, (Ki 1) — YN, ) + Wi, (6) — Wi, ()

<-30+nm;. (5.4h)
However, since ; — 0, (5.4h) contradicts the fact that the sequence { yy,(x;) } 72 converges. Hence
0 € dy(x*). O

The above Algorithm Model and our desire to retain the superlinear rate of convergence of the
implementation of the local Newton method, Algorithm 4.2, leads us to the following algorithm.

Algorithm 5.2 (Implementable Global Newton Method for P ).

Data: xge R",Nge N,a,Be (0,1),6>0,K<<1,5 2 (1,B,p%,...}.
Step 0:  Seti =0.

Step1: SetN =Nj,.

Step2: Sete =g,

Step 3: Compute a vector iy  ¢(x;) € IR" such that (see Comment 4.1)

0SPn(x; +hy, () 1 ) =Wy (x;)—By(x;) Se. (5.32)
Step4: If |

On O +hy o)) -y (x;) S —2€, (5.3b)

and

e<lhy ()P, (5.3¢c)

go to step 5. Else replace € by €/2 and go to Step 3.
Step 5: If

%sm LGP, (5.3)

set h; = hy  ¢(x;), and go to Step 6. Else replace N by 2N and go to Step 2.

Step 6: Compute the step size
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A dmax (he S [ yvCn +M) =y (6) SAdPn G+ | 3) - wn ()l ) (5.3¢)
Step7: 1If

W G+ M) = W ) S - 1 539

setx;4y =X; +A;h;, Niyy =N and go to Step 8; else replace N by 2N and go to step 2.
Step 8: Replace i by i+1 and go to Step 1. O

Theorem 5.1 can now be used to show that sequences constructed by Algorithm 5.2 converge to
the solution x*, while Theorem 4.2 leads to the conclusion that these sequences converge super-
linearly.

Theorem 5.2:  Suppose that Assumptions 2.1 and 4.1 hold and that x* is the solution of problem
(2.1a). Then any sequence {x; } 2o, constructed by Algorithm 5.2, converges to x*, superlinearly,
with Q -rate at least 3/2.

Proof:  The proof consists of two parts. The first part shows that the Algorithm map Ay (-) satisfies
the hypotheses of Theorem 5.1, from which we conclude that x; — x* as i — . The second part
shows that for i sufficiently large, the step size A; is one. In this case Algorithm 5.2 reduces to the
local algorithm, Algorithm 4.2, and we may apply Theorem 4.2 (along with the fact that N; — <o) to
conclude that the interates converge superlinearly.

(a) To show that Ay (") satisfies the hypotheses of Theorem 5.1, suppose that x € R" is such that
0 ¢0y(x). Then Lemma 2.2 (d) implies that 8(x) < 0. By continuity, there exist p >0, § > 0 such
that for all x’ € B(x , p) A (¥ eR" W -x1<p}, 6(x')S-8<0. Furthermore, since B (x , p)
is bounded, (4.4c) implies that there exists a N e IN such that for all N 2N and ¥’ € B(x , p)
Oy (x') < -0/2.

Suppose that X’ € B (x , p) and that the algorithm map Ay (-) produces a pair (Y , N’) € Ay(¥’)
(with N’ 2 N), and an ¢ satisfying the tests in Steps 3 and 4. Then from (5.3b) we have

ONX)SPn( +hy ()1 X))y (K)<-2¢, 54
which yields — 6y (' )/2 2 €. Furthermore, using (5.3a) we obtain that

OnE +hy (X)) X)—Yp(X)<eE+0y(X)

< Oy ()

> (5.5)

It follows from the convexity of the function A b §p (¥’ + Ay (X') | X') -y (¥') that for all
Ae[0,1],
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v + My () 1))=Y X)) SMINE +hy , X) 1 X)) -yy )] (5.6)

By Lemma 2.1, applied to the functions - , {¥y-, we have the estimate

1On & + My o) 1 )=y (€ + My (XN SR Ny 3. 5.7
Combining (5.6) and (5.7) yields
Y & + My () =Y ) SRy (OB + MO (O +hy (X)) 1X) =y ()). G.8)

Using (5.5) and (5.8), we obtain that forall A € [0, 1],

Y ( + My (X)) =Y () = M Qp ( +hy oX) 1 X)) =y ()]
SRV Uy (WP +(1 - MO (¢ +hy (&) 1 X) =y ()]

- x[(l ~ OO & + e o) 1) =Y @]+ R Ntk (0]

<A - 2(’{) +R N2y ,5(1)13]
( 5 ,
A -(1- Oy + R %hy (& )|3] . (5.9)

Combining the fact that 4 (") is continuous and B (x , p) is bounded, with (4.4d) and (4.7d), we con-
clude that there exists a constant A < e such that forallx’ € B(x ,p) and all N’ 2N, Iy (XN <A,
Thus (5.9) yields

YN My () - ) = MO (X +hy () | 1’)-%1(1')]SX[—(I—OO%H??\?A:’] ,

(5.10)
from which we conclude that there exists a 0 <A < 1 such that for all ¥’ € B (x , p), the step size A’

produced by Step 6 satisfies A'2Ay Consequently, using (5.3e), (5.5) and the fact that
Oy (') < —8/2, we obtain that forall ¥ € B(x ,p)and al N’ 2N 2N,

Y O +Nhye (X)) =Y () S Q[ Pp (O + iy, () 1 X)) = ypr (X))

<_ “’;0 3 ' (5.11)

Ifwelet N, = N,p, = pand 3, = alAyd/4, we see that the map Ay () satisfies the conditions of
Theorem 5.1. Hence x; — x*, and as a consequence of Step 7, we see that N; — oo,
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(b) To complete the proof, we must show that for i sufficiently large the step size A; is one. If we set
A = 1inthe second last line of (5.9) we obtain

YN O + 1) = W, () = ol @y, G + B 1 x) =y, Gl S | (1 - 0)——— ”“‘( i) +RwmB| , (512

where h; is as defined in Step 5 of Algorithm 5.2. Using a result similar to (3.4) we obtain that
Oy, (%) S ~(112M)ihy, (x )12 Using (4.7d), (5.3c) and the fact that Lx1?>YlyI% - Ix — y 2, we
obtain that

1
Ve, ()P 2 U P = Wy — by, ()P
1, o2&
L
2 S Wh;
sime-Zpp. | (5.13)
2 m
Hence we obtain the bound
-1 1
O, (%) S 22 -l 12+ — B, (5.14)

Substituting this bound into (5.12) we obtain

Ui Oz + B) = Wy, O) = ol @y, O + B 1 x;) = iy, ()] (.13)

<(1-0) 2, 1 o0 P
2[ ;12 + mMuh,l]+k|h,|.

From (4.13b) we note that #; — 0 as i — o, and hence the right hand side of (5.15) is negative for i
sufficiently large. Hence A; = 1 fori sufficiently large. This completes the proof. 0O

6. ANUMERICAL EXAMPLE

We will present the solution of a semi-infinite minimax problem which was constructed by con-
verting an optimal control problem with control and state space constraints, by means of an exact
penalty function, into an unconstrained minimax problem.

The original optimal control problem is as follows:
mi]g“{l/z[llz(x ,1)|2+1o-6|xn2] I z%(x ,£)-015<0, vt € [0,20],x?-1<0, Vjep} ,(6.1)
X €

wherep& {0,...,20),and z : R?x[0, 20] — IR solves the differential equation
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%z(x t)= [8 (1)] z(z, t)+[] u(x,t), 6.2)

where x(z , 0) = (2.5, 0)", and the control u : R®!x[0, 20] - R is defined by the 21 dimensional
parameter vector x, through linear interpolation, as follows: for any j=0,1,...,19, and
t=Aj+(1-0G +1), u(x,j)=Ax; +(1-Ax;,;. Note that the dynamics in (6.1) are so simple
that we can integrate them exactly, for the resulting piecewise linear control.

To convert the above optimal control problem into unconstrained form, we use a parameter of
100 in the exact penalty function, and obtain a problem of the form (2.1a), (2.1b), with ¢ = 23, and
the functions ¢/ (-, ), j € q defined by

olx 1) l/z[lz(x L DR+ 10'Glxl2J , (6.32)
*(x , 1) 2 0'(x , 1)+ 100(x(x , £/20)—0.15), | (6.3b)
Yx,)80'x,1)+100x2, -1, Vje (3,...,23}, | (6.3¢)

with te[0,1] The algorithm was started from the initial point
xXo=(41,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1).

Figures 1 and 2 present our computational resuits. Figure 1 presents plots of the control
sequence x’ versus i, while Figure 2 presents phase-plane plots, i.e., plots of x(¢) versus x2(¢), tradi-
tional in the control literature. We see from these plots that the problem (6.1) is solved in 2 itera-
tions, at the end of which the original semi-infinite constraint, z2(u , t)-0.15<0forall ¢ € [0, 20]
has been satisfied. The initial value of the cost was ys(xo) = 3.12501, the final value of the cost was
V25(2) = 2.09003 x 1077; the final value of the optimality function was 6,3(x,) = —2.01827x10"7.
To limit the growth of the discretization index, we set K = 102 in (5.3d) so as to be able to satisfy
(5.3d) with N = 100 when by I 2 107'%. We set Ny = 5, and the algorithm set N, , N, = 28.

To reduce the looping in the computation of the discretization parameter N, instead of simply
doubling it whenever the test (5.3d) failed to be satisfied, we set the next value to the integer part of
max (6.5x10°%/hy 11N }.

We computed the search direction, hy , (x), satisfying (5.3a), by applying to the dual of prob-
lem (4.2¢) the rapidly converging Levitin-Polyak constrained Newton method [12].

To illustrate how the inequality (5.3a) is solved, consider the primal problem (4.2¢). When
expanded, it assumes the form

OAhnenﬁ_ingxf’hg Jhy+%{h HiRY (6.42)

The dual of this problem is
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0=- m Ja(w) , (6.4b)

where J,) 8 -3 0, Wi+ (Tl we; ,(TL WHIY'T L, we;), and T is the unit simplex
in R". The formula for the second derivative matrix of the dual cost function, required by the
Levitin-Polyak methed, is given in an appendix in [25].

When applied to the dual problem, the Levitin-Polyak method computes a sequence (L; } 2
which converges quadratically to £, a solution of the dual problem (6.4b). Furthermore, if we define
h:Z—>R" by

hWA L WHIYITL, We;, (65)

it is straightforward to show that the corresponding sequence { z(y;) } 22 converges to %, the unique
solution of the primal problem (6.4a). Noting that the iterations of the Levitin-Polyak algorithm gen-
erate both upper and lower bounds on 0, as given by

() 202-J,1;), y (6.6a)

where
Jp(u.-)égnea:;f" + {8 R+ %R H R ()), (6.6b)

and making use of the fact that J, (;) —J,(1;) = 0, we see that a point, & (;) satisfying (5.3a) can
be computed in a finite number of iterations of the Levitin-Polyak method.

7. CONCLUSION

We have used a new and very simple proof technique to show that natural conceptual exten-
sions of Newton’s method converge superlinearly on a class of semi-infinite minimax problems. This
technique has also enabled us to construct rate preserving implementations of these extensions. Our
implementations are interesting for two reasons: first, they account for all the significant approxima-
tions involved, and second, they do not require the knowledge of the Lipschitz constants or eigen-
value bounds associated with the problem functions and their first and second order derivatives.

Apart from the intrinsic interest that a theoretical extension of Newton’s method to semi-infinite
optimization possesses, our numerical results show that it is a viable procedure for the solution of
such classical problems as state and control constrained optimal control problems with linear dynam-
ics.
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Fig. 1. Plots of Control Sequence at Iterations 0, 1, 2.
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Fig. 2. Phase-Plane Plots at Iterations 0, 1, 2.
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