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Abstract

A technique of indirect adaptive control based on certainty equiva
lence for input output linearization ofnonlinear systems isproven con
vergent. It does not suffer from the overparameterization drawbacks
of the direct adaptive control techniques on the same plant. This pa
per also contains a semi-indirect adaptive controller which has several
attractive features of both the direct and indirect schemes.
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1 Introduction

There has been much recent research in the use of adaptive control tech
niques for improving the input output linearization by state feedback of
nonlinear systems with parametric uncertainty. Techniques of direct adap
tive control (with no explicit identification) were proposed and developed in
Taylor et al. (1989), Kanellakopoulos et al. (1989), Georgiou and Normand-
Cyrot (1989), Sastry and Isidori (1987), (see also Sastry and Bodson (1989)).
Nonlinear indirect adaptive control was initiated in Bastin and Campion
(1989), Campion and Bastin (1989), Pomet and Praly (1988). It is moti
vated by the fact that, with exact knowledge of the plant parameters, a
nonlinear state feedback law and a suitable set of coordinates can be chosen
to produce linear input-output behavior. In the case of parameter uncer
tainty, intuition suggests that parameter estimates which are converging to
their true values can be used to asymptotically linearize the system. This
heuristic is known as the certainty equivalence principle. Indirect adaptive
control differs from direct adaptive control in that it relies on an observa
tion error to update the plant parameters rather than relying on an output
error. Indirect adaptive control can be broken down into two parts. First, a
parameter identifier is attached to the plant and adjusts the parameter esti
mates on line. These estimated parameters are then used in the linearizing
control law.

In this paper we continue a program of investigating indirect adaptive
control of nonlinear systems. We extend the results of Campion and Bastin
(1989) and Pomet and Praly (1988) to input-output linearizable systems
and adaptive tracking.

In section 2, we review two identifier structures for nonlinear systems,
(they have appeared in Bastin and Campion (1989), Kreisselmeier (1977),
Kudva and Narendra (1973), Luders and Narendra (1973)). Simulation re
sults for these are given in section 3. Section 4 gives an outline of an indirect
adaptive controller based on certainty equivalence along with a proofof con
vergence. We also present a semi-indirect adaptive controller which contains
attractive features of the direct and indirect schemes. Section 5 contains a
simulation comparison of a direct, indirect adaptive, semi-indirect adaptive,
and non-adaptive controller methodology. Section 6 gives some conclusions.



2 Identifier Structures

Consider the system
x = f(x,0m) + g(x,0')u (1)

with x € Rn,« G R,0* € Rp and /, g are assumed to be smooth vector fields
on Rn. Further let f(x,0") and g(x,0*) have the form

Here 0*, i = 1,.. .,p, are unknown parameters, which appear linearly, and
the smoothvector fields /t(x), gi(x) are known. If we formulate the regressor

wT(x, u) = [A(*) + <7i(x)u,..., fp(x) -I- tfp(z)u] (3)

so that wT(x, u) e Rnxp contains all ofthe nonlinearities ofthe system, then
(1) can be written as

x = xuT{x, u)0* (4)
For a system with multiple inputs, the regressor is formed in an analogous
manner and (4) holds except that the notation used to define w is more
involved.

2.1 Observer-based Identifier

To estimate the unknown parameters, we will use the identifier system

x = A(x - x) + wT(x, u)9
(5)

0 = -w{x,u)P(x-x) . )

Here A 6 RnXn is a Hurwitz matrix and P € Rnxn > 0 is a solution to the
Lyapunov equation

ATP + PA = -Q, Q>0 (6)

This identifier is reminiscent ofone proposed in Kudva and Narendra (1973),
Kreisselmeier (1977). Note that A = -al is a special case of the identifier. If
we define e\ = x-x, the observer state error, and 4> = 0-0", the parameter
error, and assume 0" to be constant but unknown then we have the error
system

ei = Ae\ + wT(x, u)<t>
4> = -iv{x,u)Pex ('*



One should note the similarity of the error equation above with that of the
error equation of a full order observer, although all the states are available
by assumption.

Theorem 2.1 Stability of Observer-based Identifier
Consider the observer-based identifier of equation (7),

then 1. <(>€ Loo,

& ei e Xoon£2,

3. If w(x, u) is bounded,
then ei € Loo and lim*-^ e\(t) = 0.

Remarks:

1. The proof is a standard Lyapunov argument on the function

V(eu4>) = e'(Pel+4>T<f> (8)

2. The condition on the boundedness of w is a stability condition. In
particular, if the system is bounded-input bounded-state (bibs) stable
with bounded input, then w is bounded, (see Sastry and Bodson
(1989))

3. Theorem 2.1 makes no statement about parameter convergence. As is
standard in the literature onecan conclude from (7) that e\ and <f> both
converge exponentially to zero if w is sufficiently rich, ie., 3c*i,oj2, S > 0
such that

f3+sail > / wwTdt > a2I (9)

This condition is impossible to verify explicitly ahead of time since
w is a function of x. If we assume that the regressor is bounded it
is clearly not necessary to have the upper bound in (9). Henceforth,
when we use this result we will assume that the regressor is bounded.

2.2 Filtered Regressor Identifier

Consider filtered forms of w,x given by \V,W0 and defined by

cW = -W + eivT(x,u)
€\Vq = -W0 + x (10)



The state can be reconstructed from the filtered regressor and filtered state
as

x = W0* + W0 + [ar(0) - W(O)0* - Wb(0)]e"* (11)
The equivalence is shown by observing that

x = W9m + Wo-\[x(O)-W(Q)0*-Wo(O)]e-i
= \[-W + €wT(x, u)}0* + \[-WQ + x] - J[x(0) - W(Q)0* - Wb(0)]c-{
= \[-W + ewT(x, u)]P + \{-WQ + W0' + Wq + [x(0) - W(O)0* - Wb(0)]c"f}

-i[*(0)-W(0)^-Wb(0)]c"i

(12)
We can form the estimated state as

x = W0 + W0 (13)

and then, if we define e2 = x —a;, we have

e2 = W<£ - [x(0) - W(O)0m - Wb(0)]c"«. (14)

This form of the identifier was proposed in Pomet and Praly (1988), Bastin
and Campion (1989).

2.2.1 Gradient Algorithm

To estimate the unknown parameters, we can use the gradient algorithm
which yields the following error system:

4> = -9WTe2 g>0 (15)

Theorem 2.2 Stability of Filtered Regressor Identifier Using the
Gradient Method

Consider the filtered regressor identifier and the gradient algorithm of equa
tion (15),

then 1. <f>e Loo,

2. e2 e L2,

3. If w{x, u) is bounded,
then e2, e2 £ L^ and lim^*, e2(t) = 0.



Remarks:

1. The proof is a standard Lyapunov argument on the function

VW=^4> (16)
2. The condition on the boundedness of w.is a stability condition. In

particular, if the system is bounded-input bounded-state (bibs) stable
with bounded input, then w is bounded, (see Sastry and Bodson
(1989))

3. Theorem 2.2 makes no statement about parameter convergence. Pa
rameter convergence is implied by w being sufficiently rich (cf. equa
tion (9).)

2.2.2 Least-Squares Identifier

Another approach for estimating the parameters is the least-squares algo
rithm which can be used with the filtered regressor identifier but not with
the observer-based identifier. This algorithm produces the following error
system:

4> = -1YWTe2
f = -7rwrwr 7>o r(o)>o { }

Theorem 2.3 Stability of Filtered Regressor Identifier Using the
Least-Squares Method
Consider the filtered regressor identifier and the least-squares algorithm of
equation (17),

then 1. <f>€ Loo,

2. e2 € L2,

3. If w{x,u) is bounded,
then e2, e2 € L^ and lim*..^ e2(t) = 0.

Remarks:

1. The proof is a standard Lyapunov argument on the function

v(<f>) = <j>Tr-l<t> (is)

2. The same remarks as those after Theorem 2.2 concerning parameter
convergence hold.
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3 Identifier Examples

3.1 The Induction Motor

This model for the induction motor was presented in Luca and Ulivi (1987)
for demonstrating a non-adaptive linearizing control scheme. This particular
model for the motorwas selected because it lends itselfnicely to linearization
through static state feedback thus keeping the nonlinear theory relatively
simple and allowing us to focus on the implementation of the adaptive por
tion of the controller. This example was used for a direct adaptive controller
application in Georgiou and Normand-Cyrot (1989).

The state equations for this system may be written in the familiar form
of:

= /(*) + £#(*)«.• Vi = hi(x) (19)
«=i

where the states are chosen to be the components of the stator current
and stator flux, x = [ids iqa <j>ds (f>qs]T. The inputs are the projections of
the supply voltage onto the stator direct and quadrature axes and the slip
frequency, u = [vda vqs ua]T.

With these choices made, we have:

/(*) =

9(x) =

where a =

l

0

1

0

Ax

0
i

<xL.

x2

-Xi

£4

-*3

resistances are Ra and Rr, respectively. La and LT represent the stator and
rotor self-inductances and M is the mutual inductance.

We further partitioned the function f(x) to break apart the dependence
on the parameters to be identified, 0 = [a /?]T, so that

-(* + /?)
0

—acrLa
0

0 0

•acri, —u) 0

= bi{x) g2{x) g3{x)]

(20)

M2
LaLr The stator and rotor

MX)0*1 +f2{*)0*2 +h(x) +£>(*)tit- (21)
«'=1



where

AW =

-Xi -Xi + -fcx3
~X2 -X2 + £jl4

-oLax\ 0
. -oLax2 0

f2(x) = A2x =

.00 -w 0
(22)

We chose a and (3 as our adaptation parameters since they depend on the
stator and rotor resistances, which tend to vary during operation.

"00

00

00

0
_ U)

crLa
0

u> -

"oLs
0

Loo —u 0 J

3.2 Filtered Regressor Identifier

In the following there will be a slight abuse of notation as we mix time
and frequency domain functions with the understanding that a time domain
function preceded by a frequency domain function represents the filtering
of the time domain signal by the frequency domain function. Thus, the
equations of the induction motor cast into the filtered regressor identifier
scheme (10) are:

x =

sx

h{x)0\ + f2(x)0'2 + h(x) + g(x)u

~J lfi(x)0mi + f2(x)0"2 + f3(x) +g(x)u]
sx

€3 + 1 €5 + 1

€5 + 1

[fz(x) + g(x)u]

€S

1

€3 + 1
[fl(x)0'i-rf2(x)0'2]

^j[fi(x)9i +f2(x)02
[fi(x)O*i+f2(x)0"2

e =

€3

€S+ 1

'* = -0lfi(x)f2(x)]e
The constant € determines the cut-off frequency of the filters. The smaller
€is the higher the cut-off frequency. It is clear that as €tends to zero, j^
approaches sx. In the Laplace domain sx is equivalent to the differentia
tion of x in the time domain. The above filter is sometimes called a dirty
derivative since it approximates the derivative for small €.

3.3 Observer Based Identifier

The observer based equations for the induction motor may be written as
(see (4) - (7)):

x = Mx)0\+f2(x)0'2^Mx)g(x)u

(23)



Figure 1: Open Loop Identification - Observer Based

* = -«7f + flrar+ /!(*)*!+ /2(*)^ + /3(*) +^(*)tt
e = -ee + h(x)(0l-0*x) + f2(x){02-0*2)

<\> = —w(x,u)e
(24)

3.4 Simulation Results

The two identifiers for the motor were simulated with a = 0.064, L3 = 0.179
H, and nominal values of a = 27.232 sec. and (3 = 17.697 sec. The inputs
were chosen as a series of step inputs. More specifically, magnitude two
(peak to peak) square waves of 1 Hz, 3 Hz, and 5 Hz were used for vds, vqs,
and u3, respectively. The parameters, a and /?, varied sinusoidally according
to:

a = 27.232(1 +0.1 sin(0.27rt))
P = 17.697(1 +0.1 sin(0.27r*)) (25)

The update gain g in the gradient algorithm (15) was chosen by looking
at the error terms for a modest gain of 0.5 and then scaling g to achieve
a good response, but not to make it so large to cause the parameter to
move excessively for small errors or noise. In general, the maximum error
multiplied by the gain should be less than one. With this in mind we picked
0 = 5.

Both the observer based identifier scheme and filtered regressor identifier
scheme were quite tolerant of the choice offilter gains, a and e, respectively.



(Note that the bandwidth of the filtered regressor filter is inversely propor
tional to e). However, too small of a gain for the observer based and too
large for the filtered regressor would cause excessive lag in the tracking of
the parameters. One should make sure € is small enough to avoid filtering
out the excitation from the input.

We found that o —10 and € = 0.1 provided good response without any
ill effects from noise. These gains both result in a time constant of 0.1,
which may seem large in comparison with the time constant of the motor,
about jjy. This seems to be in conflict with the choice of gains for a state
estimator, where a general rule of thumb is to choose the gains so that the
estimator is twiceas fast as the plant, but weare assuming full knowledge of
the states. The identifier gains determine howfast our parameters converge.

The results were quite similar for the two identifiers. They both, how
ever, exhibited a slight lag from the true estimates (see figures 1 and 2).
The inputs could have been made richer to improve this, but overall the
observer based identifier had a better response than the filtered regressor
- note the difference in time scales for the two plots. The observer based
scheme's response was faster (given the same transient behavior). The fil
tered regressor scheme could be made to be as quick as the observer, but
the resulting transient response suffered (larger overshoot and ringing).

The observer based method also has the advantage of using fewer states
than the filtered regressor. The latter method must filter each component
of the regressor (in this case there are two zero entries), then it must filter x
to create a dirty derivative, and finally filter the system using the parameter
estimate. The observer based adds only n integrators, where n is the order
of the system, to the standard p, number of parameters, integrators for the
update law. For the induction motor example the filtered regressor has ten
more states.

4 Indirect Adaptive Control

Nonlinear indirect adaptive control is motivated by the fact that, with ex
act knowledge of the plant parameters, a nonlinear state feedback law and
a suitable set of coordinates can be chosen to produce linear input-output
behavior. Linear system theory can then be applied to control the linearized
portion of the system. In the case of parameter uncertainty, intuition sug
gests that parameter estimates which are converging to their true values can
be used to asymptotically linearize the system. This heuristic is known as

10



Figure 2: Open Loop Identification - Filtered Regressor

the certainty equivalence principle.
To fix notation, we review, following Isidori (1989), the basic linearizing

theory. Consider a single-input single-output system

x = f(x) + g(x)u
V = h{x)

with x € Rn,w € R and /, g, h smooth. Differentiating y with respect to
time, one obtains

y = L/h + Lghu (27)
Here L/h, Lgh stand for the Lie derivatives ofh with respect to /, g respec
tively. If L3h(x) £ 0 Var € Rn then the control law

"=TJ{-L'h +"'
yields the linear system

y = v.

(26)

(28)

(29)
If Lgh(x) = 0, one continues to differentiate obtaining

yM = L)h+ LgL)-lhu t = 1,2,... (30)
If there is a fixed integer 7 such that \fx e Rn LgL{jh = 0for i = 0,..., 7- 2
and LaLy~lh{x) ^ 0 then the control law

"= r n-ht S-L)h(x) + v)LgLj li(x) J

11
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yields

yh) = v. (32)
We stress that the linearization conditions hold in all of Rn. Some com

pleteness conditions on vector fields involving f,g are sufficient for this (for
details see Isidori (1989) chapter 2).

The integer 7 is called the strong relative degree of system (26). We will
not consider the case where the relative degree is not defined; namely, where
LgLJ" h(x) = 0 for some values ofx.

For a system with a strong relative degree 7, it is easy to verify that at
each s° € Rn there exists a neighborhood U° of x° such that the mapping

$ : no __> Rn

defined as

with

*i(x) = £1 = h(x)
$2(x) = & = Lfh(x)

_ n-i%(x) = £7 = L)-lh{x)

(33)

d$i(x)g(x) = 0 for i = 7 + 1,..., n '
is a diffeomorphism onto its image.

If we set n = (&y+i,..., $n)T it follows that the system may be written
in the normal form (Isidori (1989)) as

ii = £2

£7-1 = 6y (34)
£y = &(fi7) + a(f,77)tt
>? = <7(^7)
V = fc.

In equation (34), b(^,n) represents the quantity L'jh(x) and a(^,n) repre
sents LgL'j' h(x). We assume that x = 0 is an equilibrium point of the
system (ie. /(0) = 0) and we assume that /?(0) = 0. Then the dynamics

*7 = <7(0,*7) (35)

are referred to as the zero-dynamics (see Isidori (1989) section 4.3 for de
tails). The nonlinear system (26) is said to be minimum phase if the zero-
dynamics are asymptotically stable.
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4.1 Non-Adaptive Tracking

We now apply the normal form and the minimum phase property to the
tracking problem. We desire to have y(t) track a given yM(<)• We start by
choosing v in (31) as

v=y$ +a!(yjj_1) - »(7-1)) +•. •+a-yfow - y) (36)
with ai,..., cty chosen so that

a1 + Otis*'1 + ... + a^ (37)
is a Hurwitz polynomial. Note that yf*-1) = &. If we define et- = yt«'-i) _
yj£~ ' then we have

e = Ae

V = ?({,>?) (38)
ft = « + y&-1)

where A is the companion matrix associated with (37), and hence is a Hur
witz matrix.

It is easy to see that this control results in asymptotic tracking and
bounded states f provided yM, yM,..., y^_1) are bounded.

It can be also be shown that n remains bounded as well, assuming ex
ponentially stable zero-dynamics and q(£, n) is Lipschitz in f, 77, by using a
converse Lyapunov approach. Thus, this control yields bounded tracking,
(see Sastry and Isidori (1987)).

4.2 Indirect Adaptive Tracking

In the case of parameter uncertainty, we have the system

x = /(M-J + jrtM")" „ft,
y = h(x,0') W

with 0" e Rp the vector of unknown parameters. We will make the following
assumptions:

Assumption 1 Linear Parameter Dependence
The vector fields f(x, 0"), g(x, 0') and the output function h(x, 0") in the

system (39) depend linearly on the unknown parameters as

g(x,0") = EU^i9i(x)
h(x,F) = £?=10-/it(x)

13
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e

Figure 3: Block Diagram of an Indirect Adaptive Controller

where fi(x),gi(x) are known smooth vector fields on Rn and hi(x) are known
smooth scalar functions.

Assumption 2 Relative Degree
The relative degree of the true system (39) is 7, and for all 0 in a ball

around 0* and all x in a neighborhood of x°

•7—1

L^MLn:Mh^e)
is bounded away from zero.

In the discussion that follows we will be using the implicit summation
notation (ie. there is a summation over repeated indices) to keep the ex
pressions manageable. For example, we will write f{x,0~) as 0~fj{x). Now

14



if we pick the following diffeomorphism

<!>(x,0*) =

with

h(x,0*)

LfW)KxiQ*)
^jo(x)

L)llnh(x,0-)
%+i(x,0*)

= el-r
*T+i(x,r)

$n(x,0*)
*t(x,F) z

*n(x,P)

$„0M") T)

(40)

Lg*i = dQig(xJ0m) = 0 2 = 7 + !,...,n

and ^+i(x,0m),. ..,$n(x,0m) chosen so that $(x,0m) has a nonsingular ja-
cobian matrix at x°, then we have, in the normal form,

ii = fc

y = h
(41)

where

<lio*(Z,-n) = LjwfiiixJ") 7 + l<z'<n. (42)

We assume that x = 0 is an equilibrium point of the system (39) (ie.
f(O,0*) = 0) and we assume h{O,0m) = 0. Then the dynamics

77 = </0.(O,?/; (43)

are referred to as the zero-dynamics. The nonlinear system (39) is said to
be minimum phase if the zero-dynamics are asymptotically stable. We will
now impose the following assumption:

Assumption 3 Exponentially Stable Zero Dynamics
The equilibrium point rj = 0 of the zero-dynamics of the true system (39)

is exponentially stable.

15



Now let us consider our choice for the control law. The certainty equiva
lence principle suggests that we pick the appropriate linearizing control law
but with the unknown parameters replaced by their estimates. We choose

"}•,••• "hLsn£/,,_, •••Llhhk(x)

n, .• (44)To achieve tracking we pick v in the form of (36). However, we do not have
exact expressions for the derivatives of y which involve unknown parame
ters. Instead we will use estimates of the derivatives of y obtained from the
parameter estimates:

v=ytf +arifoSr1* - yh'1]) +•••+oc^jm - y) (45)
where

iP = lii—li.Llil—l,ilKk{x) (46)
Now let us return to the normal form. Observe that f, can be written as

- [«*, •••<>h L/h •••L,H hi0(x) +#,,...4 L3h Lllyi •••Lih hk («)«]
+ \'h—'»Llh—Llhl*i.(*) +lh—ljtLthL,h , •••£/J,,fcA(*)iiJ

(47)
If we define the (large dimensional) vector of all multilinear parameter prod
uct errors,

* =(*;, •••** >-(«*, •••**,) (48)
then

+zT(x,u)\
(49)

Note that if0-0"=0 — Oas*-»oo then \ -• 0 as * — oo.
Substituting the certainty equivalence control law, we have

£-r = v + zT(x,u)x (50)

Now notice that v can be written as

* = »S,+ai(yfi"1,)-^-l,) + oi(^-1)-^-1))
+ . . . + a^(?/A/ - tf) + <*-,(# ~ </)

16
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which can be seen as the exact tracking law plus an offset which is a function
of the parameter error. Therefore, in the closed loop we have

e = Ae + zT(x, u)x
V = 9(£.if) (52)
a = «.-+»£r1)

where A is a Hurwitz matrix.

Wewill now state the following bounded tracking result under parameter
uncertainty:

Theorem 4.1 Convergence of Indirect Adaptive Controller When
Identifier Input Is Sufficiently Rich

Consider the plant of equation (39) and the control objective of tracking
the trajectory y\f.

If (Al) Assumption 1 holds (Linear Parameter Dependence),
(A2) Assumption 2 holds (Relative Degree),
(A3) Assumption 3 holds (Exponentially Stable Zero Dynamics),
(A4) |x| -• 0 as t -h. oo,

(A5) zT(x, u) is "cone bounded" in x and uniform in u,
ie. \zT(x,u)\ <l$\x\ Vu€R,

(A6) A is a Hurwitz matrix,

(A7) q(£, n) is globally Lipschitz in £,n,

(A8) yM, yM, •••, U\fX) are bounded
then the control law given by (44) and (45) results in bounded tracking for

the system (39). (ie., x € Rn is bounded and y[t) —yiuW-)

Remarks:

1. The drawback with this result is that it needs the convergence of the
identifier for its proof of asymptotic tracking. In turn, this requires
the presence of sufficient richness which is not explicit in terms of
conditions on the input. This is in contrast to the direct adaptive
controller (Sastry and Isidori (1987)) where parameter convergence is
not needed for stability and asymptotic tracking.

2. We reiterate that we are assuming the boundedness of the regressor,
w, as stated in section 2. Thus we explicitly disallow the possibility of
finite escape time.



Proof: Define bd to be a bound on y\f and its derivatives. Then from (A8)
and the definition of e,

K\ < M + bd (53)
From (A6) 3P > 0 such that

ATP + PA = -I (54)
Because a; is a local diffeomorphism of (f, 7?)

1*1 < 4(K| + M) (55)

From (A5) and P defined in (54)

\2PzT(x,u)\<Qx\ (56)

From (A3) 3v2(n) and positive constants oi,o2,o3,a4 satisfying

°i\v\2 < v2(n) < o2\n\2
%q{^) < -<t3M2 (57)

From (A7)

toK,i?)-«(0,»?)|<gfl (58)
From these bounds

^Q(^V) = ^q(0^)+^(qU,r))-q(0,n))
< -^M2 + o4eq\V\(\e\ + bd)

With these preliminaries, we will show that e and n are bounded. Consider
a Lyapunov function for the system (52)

V{e,7]) = eTPe + iiv2{i1) /* > 0. (60)

Taking the derivative of V{-, •) along the trajectories of (52) yields

V = eT(ATP +PA)e +'2eTPzT(x.u)X +H^q{Z,v)
< ~\e\2 + 44|e|(|e| + bd + I^DUv] + /*(-^|i?|2 + *4*,M(|e| + 6,/))
< -(f-44Mxl)2 + (44Mxl)2

-(¥ - (441x1 +/^«4)M)2 + (441x1 +^.i4)2l^l2
'*a3V 2 «T3 + 0-3

-(i-|xMx)W2-J|l(73H2
< -{\ - |xl44)|e|2 - [f/t<73 - (441x1 +/i^4)2]^l2

+(44Mxl)2 +i£i£^
(61)
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Figure 4: Block Diagram of a Semi-Indirect Adaptive Controller

Define

V <-
4

<^3
Ho =

4(44 + o4eqy

Then, for p. < p.Q and \x\ < min(ii, 47^), we have

\e\2
Z G3

(62)

(63)

We can assume that |x| < min(fi, ^) for all t > T from (A4). Also, the
only previous restriction on fi was p. > 0. Thus, for all t > T,V < 0 when
|7?| or \e\ is large which implies that \n\ and |e|, and hence |̂ | and |x| are
bounded. If q(£, n) is locally Lipschitz in (f, 7/) only on a set U and not all of
Rn then the preceding analysis would hold so long as |x(0)| is chosen small
enough to guarantee that (£,77) lies in U. Consequently,

e = Ae + zT{x,u)x (64)

is an exponentially stable linear system driven by an input that approaches
zero asymptotically. Thus, we conclude that the tracking error converges
asymptotically to zero. D

4.3 Semi-Indirect Adaptive Tracking

In this section we give a modified scheme which combines attractive features
of the direct and indirect schemes; as in direct adaptive control, parameter
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convergence is not necessary to achieve asymptotic tracking; as in indirect
adaptive control, it is not necessary to overparameterize the system. The
scheme uses an observer-based identifier that is similar to the one described
in section 2.1 but here the states are estimated in the coordinates of the
diffeomorphism. Consequently, exact knowledge of the diffeomorphism is
necessary. This is made possible by using an estimated diffeomorphism that
is a function of the time-varying parameter estimate (see figure 4). These
results are an extension of those found in Campion and Bastin (1989).

Consider the system (39) and allow assumption 3 to hold. We will modify
assumption 1 so that h(x) is no longer permitted to be a function of the
parameters.

Assumption 1 A Linear Parameter Dependence in / and g
The vector fields f{x,9*) and g(x,0") in the system (39) depend linearly

on the unknown parameters as

f(*,n = e?=1 *?/.(*)
9(x,0*) = ELi *?</,(*)

where /,(s), <7,(x) are known smooth vector fields onRn. The output function
h(x) is not permitted to be a function of the parameters.

We will also modify assumption 2 as follows:

Assumption 2 A Constant Relative Degree
For all 0 in a ball around 0m and for all x in a neighborhood of x°,

and

L , hL^-hlx)

is bounded away from zero.

This assumption is reasonable in the adaptive case because the structure
of the system is known. The relative degree will drop only in very special
cases. This assumption can be relaxed if parameter convergence is assumed.
This trade-off will be discussed in more detail later.

For the development that follows, also consider the parametrized model

x = f(x,0)-rg(x,0)u
y = h(x) (65>
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where 0 € Rp is fixed and known. From linearization theory, if we pick the
following diffeomorphism for the system (65)

*(*,*) =

with

h{x)
Lf(x,B)Kx)

$y+l(X,0)

. *n(M)

Lg$i = d*t-flf(ar, 0) = 0 i = 7 + 1,..., n

(66)

and $7+1(x,^),.. .,$n(x,0) chosen so that $(z,0) has a nonsingular jaco-
bian matrix at x°, and if we choose the following control law

u = •=r^T-:[-L]{x,e)Kx) + v)
Lg(x.Q)LJ{xe)h{x)

then we have the resulting closed loop system

£1 = 6

£7-1 = £7
£7 = V

i = qoitii)
y = Si •

(67)

(68)

where

Kelt, V) = £/(x,0)$»(z, 0) 7 + 1 < i < n

We can achieve bounded tracking {y(t) -> yM(t)) for the system (65) in
the same way as described in section 4.1.

Now consider the actual plant given in (39). We will choose, for this
system, the diffeomorphism given in (66) but now x is the actual state of
the plant. We will replace 0 by 0" in each of the $i(x,0) 7 + 1 < i < n.
For $i(x,0) 1 < i < 7, 0 will be replaced by 0, the time varying parameter
estimate. Observe that, under these conditions, the f states are no longer
related simply by a chain of integrators. The chain of integrators structure
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is perturbed by the time varying nature of 0 and the fact that the time
derivatives of f are taken along the trajectories of the plant states which are
a function of 0*. Consider the following two functions of x:

£ = *<M) ,fiQx

This transformation is the same functional form as (66)but different in that
£ is evaluated along the estimates of0. Taking the time derivative along the
trajectories of (39) we have

£ = dx X+ 00 9
d*t{xj)

£^[/(M* )+</(*, *>] +d*&*j)i0

77 =

LfW)LHxj)hW
•7—1

Lg(x,$*)h(x)

•7—1. L9(x^)Lf{xJ)h(x) _

Ox

LfW)$i+i(x,0*)

00

"+-§*'

LS(x,O*)$n{x,0~)

= qe*(C,r})

where

r = **(*, n.
The vector of tracking errors is defined as

* = £i - V{Ml) 1<'<7
and thus, the derivative of the tracking error is

Lg(x,e*)h(x)
e =

Lj{xft*)Hx)

. LfW)L]^§)h(x)
+

L9(x,e*)L'1}{^)h{x)

22
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Lf{x,9*)Kx)

. Ln^)L]-l9)h{x) _

0-

yM

Lrf?

I '/(*,*)

7M) h(x)

+

+ 00 e
LVm

+

^(z,«')A(l)

h(x)Jg(x,9)

+

L9(xte)L]{^0)h(x)
§Mx)Jg{x,9)

+

LL9(xALHx\0)h^

Observe that, from the structure of f(x, -),g(x, •),

(72)

u

(73)

Also recall that u defined in equation (67) produces an exponentially stable
tracking system for 9 fixed. Therefore, we pick u according to (67) with
the expressions for the derivatives of y in the tracking law (36) determined
assuming 6 fixed, (ie. y''-1' = f;). Then, using assumption 2A and simpli-

23



fying we have

e =

£J=1(0J - l,-)i/iWft(«)

Ej=J(«;-«i)i/j(x)i}->w
r £?=i(0; - »i)Lg,(x)h(x)

. ej=,(»; - *i)i«wi}^*(*).
Define a new variable f € W with dynamics given by

i = ^(/MHsMM +^^+ntf-l)
1(0) = 1(0)

Then

u+Ae +2*^£)^

£ = fi£ +

Ej-,(^-»7)£„wM*) "

Define

M(x,0,u) =

+

We now specify the parameter update law

w

9 = g{x,u,0,t).

Lfl{x)h{x)

LM*)L^x\d)h(x) ••
I5l(x)/i(a;)w

+

24

LM*)LH*j)h(x) .
L9P{x)Kx)u

Vj9P(x)L)(l§)h{x)u _

(74)

(75)

where ft is a Hurwitz matrix. This equation resembles (70) with two dif
ferences: (1) x is replaced by f(x,§) +g(x,0)u and (2) the additional term
fl(f - £) appears. Define

« =!-{• (76)

EJ=1(^-»;)£/,<*)>*(*)

(77)

(78)

(79)



and

<j> = 0-0*. (80)
Then we have

£ = Sle + M<f>
4> = g(x,u,0,t). (81)

Using the Lyapunov function candidate

V{e, <f>) = eTP0e + <f>T<f> QTP0 +P0Sl = -I (82)

and taking the time derivative along the trajectories of (81) leads to choosing

g{x,u,0,t) = -MTPO£ (83)

for the parameter update law. In this case, since

V = -£T£ (84)

we can conclude that, \ft > 0,

k(0l < P\4<0)\ P=y/K)n(Po)
W)\ < 1^(0)1

(85)

and hence £ is a bounded L2 function.
To study the stability of the tracking error system (74) we will define

C= e + e (86)

Then the tracking error e can be seen as the output ofalinear, time-varying
filter given by

i = M+[(n-A)-d-^MTP0]e (8?)

We will now state the following bounded tracking result under parametric
uncertainty:

Theorem 4.2 Convergence of Semi-Indirect Adaptive Controller
Consider the plant ofequation (39) and the control objective of tracking the
trajectory y^.

If (Al) Assumption 1A holds (Linear parameter dependence in f,g),
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(A2) Assumption 2A holds (Constant relative degree),
(A3) Assumption 3 holds (Exponentially stable zero dynamics),
(A4) qe^iVil) *5 globally Lipschitz in £*,n,

(A5) $z(x, 0) is globally Lipschitz in 0 and uniform in x,

ie. |*€(M*) - $«M)| < t+\<f>\ Var € Rn,
(A6) A is a Hurwitz matrix,

(A7) —yp-^-MT is "cone bounded" in x and uniform in u,0,
ie. |2**M)MT| < |̂X| Vu €R> V(9 6RP>

(A8) yM, £m,•••, Vm are bounded,
(A9) |0(O)| bounded as a function of specified Lipschitz constants

then the control law u given in (67) results in bounded tracking for the
system (39). (ie. x 6 Rn is bounded and y(t) -+ j/a/M as t -+ oo^.

Proof: Define bd to be a bound on yM and its derivatives. From (A8) and
the definition of e,

Kl < M + bd (88)
From the definition of £,

M < ICI + |e| (89)
From (A6) 3P > 0 such that

/iTP + iM = -/ (90)

Because x is a local diffeomorphism of (£, //),

W<^(KI + M) (91)

From (A7) and P defined above

|2P[(ft -A) - ™^lMTPa)\ <In\x\ +c (92)
For simplification purposes, define a new constant bd = bd-rc which will be
used later. From (A3) 3v2(n) and positive constants ei,o2,o3,a4 satisfying

viW2 < V2{V) < cr2\7)\2
^^•(0,7/) < -<r3|7?|2 (93)
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From (A4)

Mr,i?)-W'(0,i?)|<*,|ri (94)
From (A5),

in < Kl+ !**(*,*•)-*<M)I („.
< KI +^W (95}

From these bounds

^*-to*) = fe»-(o, 17)+^(».(r, i?)-»-(0,17)) _.
< -<r3|i?|2 +^,M(W +^ +^W) ( J

With these preliminaries we can show that £ and n are bounded. Consider a
Lyapunov function candidate for the system (87) and the t? dynamics which
are driven by (87):

V(C,ri) = <;TP<; + liv2(7)) n>0. (97)

Taking the time derivative along (87) and the n dynamics yields

V = CT(ATP +PAK +2^P[(a-A)-d-^M^P0}e +^q(^
< -ICI2 +4v4|CI(lCI + kl +irf +c+ \n\)\e\

M-°3\V\2 + <r4eq\r)\(\C\ + |e| + bd +c+4^1))
< -(ifl - £Nlx(\e\ +6d)|£|)2 +(£N4(k| +bd)\e\)2

-(i§l - (^4kl +ficr4eq)\n\)2 +(£;V4kl +/^A)2|77|2

-(J-^,W)|CI2-}/^3W2
< "(J " ^4/>|<P(0)|)|C|2 - [fA*^3 - (^V<W#(0)| +^4tq)2}\n\2

HWx(p\W)\+ M/>l<?(0)|)2 + ^<MpI*(Q)I+M*H))2
<T3

Define
(98)

°z
M0"4(£A^x/> +(T44)2 (")

Then, for /z </i0 and |<£(0)| <m?'n(/f, 47^), we have

+(^vMH0(O)| +6rfW^(0)|)a (100)
Therefore V < 0 when |C| or |t?| is large which implies that \(\ and \n\
are bounded. This implies |e| is bounded, which implies |f| is bounded.
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Figure 5: Indirect Adaptive Controller - Observer Based

This, together with |t?| bounded implies \x\ is bounded. This implies \M\ is
bounded and consequently i is bounded. Therefore, since e € L2l e -> 0 as
t -»• oo. We have then that (87) is an exponentially stable linear filter driven
by an input that approaches zero asymptotically. Thus wecan conclude that
the tracking error, which is theoutput ofthis filter, converges asymptotically
to zero. D

5 Closed Loop Simulations

5.1 Comparison of Methods

We will qualitatively compare five nonlinear control schemes, namely direct,
indirect, and semi-indirect adaptive control, non-adaptive nonlinear control
and sliding mode control. The system we choose to simulate is:

ii = x2 + 0ij;(xi,x2)
x2 = u

y = xi

*P{xi,x2) = xJlO + sii^X!)]

This plant is easily linearized with

Orb r ou=-^[0x2 +02iP(Xl,x2)] +v
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Figure 9: Sliding Mode Controller
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and output tracking is achieved by

v = yM + oti(yM - 'y) + a2(yM - y) (103)

except in the case of sliding mode, where the a2(yM - y) term is replaced
by ksgn(yM - y). We picked ax - 30, a2 = 200, and k = 2000 to provide
good nominal tracking.

The equation for the semi-indirect parameter update is:

0=i?(xux2)gulii - ti) +1>(xi,x2)-^g12(£2 - £>) (104)
with

(i = x2 + 1>(xuX2)0-g2i((i-£i)
& = %&H*2 + 1>(xuX2)§) +1,(xUX2)§-g22(t2-t2) + U '

where the constants gij are gains and from equation (69)

62 = x2 +§i)(xi,x2) ^ '

The true value was 0* = 1 and 0 was initially at 2. For the direct adaptive
controller a second parameter had to be added, 02 = 02, with an initial value
of4. The reference signal was picked to be lQsin(irt) + 5sin(2irt) to provide
adequate excitation.

Using the same criterion for the observer based identifier from 3 we
picked g = 500 and 0 - 50. We similarly set g^ = 50, but the update gain
was scaled back to 1since our error in the transformed space was smaller for
the semi-indirect scheme. The update gains for the direct controller were
again determined by looking at the errors and scaling them accordingly. The
gains were set to 1000 and 2000 for the first and second components of the
regressor.

5.2 Simulation Results

The indirect scheme, with the observer based identifier, and the semi-indirect
controller performed quite well compared with the other methods, as can
be seen in figure 5 and figure 6. The parameter 0 converged to the correct
value in less the one second and the output error, y - yM was driven to
zero. The identifier was quite robust to choices ofupdategains andestimator
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gains, o. Virtually all reasonable values yielded convergence in less than one
second. The indirect scheme was also able to handle larger perturbations
in ii, such as tp(xi,x2) = xx2 for large values of x\. With this ip(xi,x2),
the non-adaptive controller became unstable, but for the indirect scheme
the identifier was able to converge quickly enough to stabilize the system. It
does seem that in most cases the excitation provided by system instability
drives the parameters to their true values, thus allowing the controller to
stabilize the plant. In fact tj)(xi,x2) is the regressor for this system, thus

d0
— = -grp(xux2)(xi - x\) (107)

so the estimation error, xx- xi, is driven to zero.
The direct scheme did not converge nearly as fast as the indirect, as

shown in figure 7 - note the different time scale. The parameters were
approaching their true values around six seconds, and the output error was
driven to zero, which is what the direct method guarantees without any
claims on excitation. Any hopes of speeding up the convergence would be
by increasing the updategain or by increasing the amplitude of the reference
signal. This would increase the elements in the regressor, and would cause
the identifier to beill-conditioned. In fact the update gain had to be reduced
by a factor proportional to the square ofthe increase in the reference signal
amplitude. The identifier in the direct scheme also has more states than the
observer based identifier for the indirect. These extra states, six in all, come
from filtering the regressor for the generation ofthe augmented output error
used todrive the parameter updates and also from the additional parameter,
02, which needs to be identified. The adaptive schemes are compared in
figure 10.

The non-adaptive scheme, figure 8, performed as well as could.be ex
pected. The tracking gains could have been increased in hopes of swamping
out the perturbation caused by ip(xi,x2), but in anything other than a
noiseless environment this would be ill advised.

The sliding mode method steered the output error to zero, but when
the perturbation was large, ip{xux2) was at its maximum, the system could
not swamp it out as quickly. The gain k was set at 2000. Larger gains
caused considerable chattering in the regions were t/>(xi,x2) was not at its
maximum and would also send the numerical integrator into fits. The results
are shown in figure 9.
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Comparison of Adaptive Methods
Criterion Scheme

Indirect Semi Indirect Direct

Parameter Convergence Fastest Fast Slow

Sensitivity to Adaptation Gains Not Very Slightly Very
Ease of Implementation Easy Moderate Difficult

Needs Overparametrization No No Yes

Needs Constant Relative

Degree to ProveTracking No Yes No

Needs Parameter Convergence
to Prove Tracking Yes No No

Figure 10: Method Comparison

5.3 Non-Constant Relative Degree

We investigated the semi-indirect control scheme further by simulating a
system which does not have a constant relative degree. Clearly the constant
relative degree assumption is sufficient for asymptotic tracking, but, as will
be seen, it is not a necessary condition.

The system we picked was a simple third order plant described by

Xi = x2 + 0x3
x2 = X3

xz = u

y = Xl

(108)

We let the initial 0 be 0.1, and had 0* = 0. Hence, the relative degree
would decrease for non-zero 0, and the actual relative degree would be differ
ent from the initial relative degree of the estimated system. The linearizing
control law was applied to the system with the same type of tracking law to
close the loop as above, namely

- ,,.,(3)v = yM( ' + aiiiiM -y) + a2{yxr -y) + <*z(yM - y) (109)

where ax = 9, a2 = 26, a3 = 24, and the input was picked to be6[sin(2Tt) +
S27i(0.257r*)]. The results, shown in figure 11, reveals that the closed loop
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Figure 11: Semi-indirect Adaptive Controller with a Non-Constant Relative
Degree Plant

system was able to track the input, thus showing it is not necessary to have
the relative degree fixed. In fact, it turns out, as previously stated, that if
the relative degree were changing then we must have parameter convergence
for the semi-indirect method to asymptotically track an input. Thus, if
we assume constant relative degree for the semi-indirect method, then we
do not need to have parameter convergence to achieve asymptotic tracking,
but if we did not want to assume constant relative degree then we would
need to have the parameters converge. The later is, interestingly enough,
the same assumption necessary to show tracking in the indirect case. The
semi-indirect scheme thus allows us two scenarios. If we are certain of the
structure of our plant and can guarantee that the relative degree will not
change in the neighborhood of interest, then we do not need to have strict
requirements on the richness of the input. On the other hand, if we are
not sure of the structure of our plant or have parasitic effects which may
easily change the relative degree, then we must have a rich input to assure
parameter convergence,thus giving us asymptotic tracking. It should be
noted that in all the simulations that have been run (numerous but certainly
not exhaustive) a system has yet to be seen where the parameters do not
converge in the closed loop with just about any non-zero input.
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5.4 Induction Motor

The induction motor from section 3 was linearized and had its loop closed
by a simple proportional-derivative controller used to servo the rotor flux
(kp = 235, kv = 22) and proportional controllers for the motor torque
(km = 10) and q-component of the stator flux (kq = 180), see Luca and
Ulivi (1987). The commanded torque was a step input of 1000 Nm while
the rotor flux was a step input of 6.88 V/sec.

The indirect scheme was employed with the observer based identifier
with the same gains as used previously. The system worked extremely well,
as seen in figure 12. The initial estimates for the sinusoidally varying pa
rameters (25) were about half of their true values (a0 = 10, /30 = 8). After
the initial transients died out, the identifier was able to converge within one
second and track the parameters. In fact if we look at the conditioning of
wwT over an integration window, as in (9), then we can see the inputs to
the identifier are quite rich. This seems surprising since the reference sig
nals were simplestep inputs. This would imply that the parameter variation
alone was enough to cause adequate excitation as shown in the lower plot
of figure 12. The linearizing control law was also decoupling. This was ver
ified by changing the individual gains for the input channels separately and
noticing their effects solely on the corresponding outputs.

6 Conclusion

In this paper, we have presented convergence results for two nonlinear adap
tive control schemes. We presented an output tracking result using indirect
adaptive control. This approach was based on certainty equivalence for in
put output linearization of nonlinear systems. Examples of identification
schemes based on observation errors were also presented. The form of the
identifier did not need to be specified for the convergence result and over
parameterization was not necessary. However, the result was based on an
assumption of identifier convergence. Simulation results were presented for
this indirect adaptive control scheme using a familiar induction motor model.
Simulation results were also presented on another system to compare this
scheme with a direct adaptive scheme, semi-indirect adaptive controller, a
non-adaptive control scheme and a sliding mode scheme.

We also presented an output tracking result using a semi-indirect adap
tive control scheme.
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Figure 12: Closed Loop Induction Motor
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