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ABSTRACT

A modification of an existing barrier function method is presented. The modified algorithm may
be used to solve semi-infinite minimax problems arising in engineering design. The modification
preserves the global convergence properties, simple structure and numerical robustness of the original
algorithm, while substantially reducing the computational cost
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1. INTRODUCTION

We are currently witnessing a considerable revival of interest in the use of barrier function tech

niques in the construction of both linear and nonlinear programming algorithms (see, e.g., [Kar.l, Gol.l,

Gon.l, Jar.l, Jar.2, Son.l, Son.2, Ye.l]). This revival is due to the the following discoveries. First,

when used as part of a method of centers and combined with an efficient homotopy procedure, barrier

functions do not lead to the severe ill-conditioning previously associated with interior penalty function

methods. Second, they result in algorithms of very simple structure, and third, in many cases, these

algorithms have been found to compete favorably with existing algorithms.

In [Pol.2], we find the first barrier-function-based algorithm for solving semi-infinite minimax

problems. This algorithm offers several advantages over other semi-infinite minimax algorithms: (i) it

converges under weaker assumptions than other semi-infinite minimax algorithms, with the exception of

Algorithm 5.2 in [Poll], (ii) it has a simple structure and it requires small memory (it does not utilize,

for example, linear or quadratic programming subroutines), (iii) its numerical performance is, in most of

the examples studied, superior or comparable to that of the only other first-order algorithm (Algorithm

5.2 in [Poll]) which can solve semi-infinite minimax problems of the same generality, (iv) it is excep

tionally robust and does not fail on ill-conditioned problems on which Algorithm 5.2 in [Pol.l] fails.

These qualities make the barrier-function-based algorithm in [Pol.2] an attractive candidate for solving

semi-infinite minimax problems arising in engineering design (see, e.g„ [Pol.1] for a discussion of these

problems). In these problems, the computation of gradients is expensive, and the computation of Hes

sians is often impractical. Frequently only feasibility is required, in which case higher order methods

may not offer significant advantages over first-order methods. In computer-aided-design applications,

algorithm robustness is very important, because failure to converge, even to a local solution, may cause

the loss of tens, and sometimes of hundreds of hours of computing time. In on-line applications, such

as in moving-horizon control of feedback systems (see e.g., [May.l]) and certainty-equivalent adaptive

control (see, e.g., [Pol.4]), robustness is of paramount importance; furthermore, optimization algorithms

must be implemented using microprocessors or dedicated VLSI chips, and hence there is a premium on

algorithms that are simple and that do not call large subroutines.



The essential features of the barrier function algorithm in [Pol.2] can be explained by considering

the simple minimax problem

min max <b(x»f), n i\

where 4>: R" x R -> IR is continuously differentiable. The barrier function used in [Pol.2] is defined

by

where a >y(x) i maxr6 [0,^ <|>(x, /)• For such a, the function p{-, a) is continuously differentiable

on the set

C(a) £ {xe R* IV(jc) <a }. (1.3)

It is straightforward to show that pQ , a) is a barrier function for the set C(a), i.e., that if

{xt )Zo c C(a) is such that \|/(x;) -» a, then p(x,-, a) -» «>. Furthermore, if {a,} is a monotone

decreasing sequence which converges to minx6 R„ y(x), then the minimizers of p(-, ctf) must converge

to minimizers of \jf(x). The algorithm in [Pol.2], will be described in detail later, essentially, at itera

tion i, it sets at - \6(y(xd + y(xM)), and it computes *,- as an approximate minimizer of p(-, a£.

It is easy to see that we may define many other barrier functions. As an example, let

f: [0 , oo) -» [0 , oo) beany non-decreasing, continuously differentiable function such that (i) x(co) =0 if

and only if co = 0, and (ii) ^(O) > 0. Then

may be shown to be a barrier function. When substituted for p(x, a) in the algorithm in [Pol.2] the

convergence properties remain unaltered. In this paper we exploit the wealth of barrier functions to

construct an efficient, first order semi-infinite minimax algorithm which requires considerably fewer gra

dient evaluations than the algorithm of [Pol.2].

In [Pol.1], we find semi-infinite minimax algorithms, related to the Method of Linearizations

[Psh.l], which mimic methods of feasible directions by using only e-active gradients in the search
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direction calculation1. In one of these minimax algorithms, the value of 8 is driven to zero as a solu

tion point is approached. Other active set type strategies, such as those in [Cha.l, Mur.l,Wom.l], keep

the number of gradient evaluations reasonably small by only considering the e-active gradients at each

step. In this paper we introduce a semi-infinite minimax algorithm which uses a new set of barrier

functions to achieve an e-active strategy, in which e is driven to zero as a solution is approached. This

algorithm converges under the same mild assumptions as the algorithm in [Pol.2], but, as our limited

numerical examples show, it is computationally more efficient because it uses fewer gradient evalua

tions. In the next section we describe the new barrier function method. In Section 3, we show that it is

globally convergent Numerical experience is reported in Section 4, and conclusions are drawn in Sec

tion 5.

2. THE ALGORITHM

In this section we describe a new set of barrier functions, and present a new semi-infinite

minimax algorithm based on these barrier functions, together with an e-update strategy. This algorithm

solves the problem:

MMP: min \y(x), n\\

where the function y: R" -» R is defined by

y(x) ^ max \f\x) , ••• ./"(x) , max ^(x, t). ••• , max 4>'(x, r)l , n.2)
I te [0,1] re [0,1] J v«~/

and the component functions /'; RB-> R and ty: Rn x [0,1] -» R satisfy certain continuity

hypotheses.

To simplify the exposition we note that, without loss of generality, we may assume that all the

functions in (2.2) are max-functions, and that y(0 is givenby:

y(x) ^ maxf max ^(x , /), ••• , max <j>'(x, t)\ n x\
If e [0,1] »G[0,1] J ^'0)

This follows since any ordinary function /: R" -» R may be trivially converted into a max-function by

Given the max-function y(x) A max, e (0>1) ftx. r), a function $(•, /) (and its corresponding gradient V^tf*, 0) is considered
to be e-active at x if $(x, 0 2s y(x) - e.



defining <t>: Rnx [0,1] -» R to be <f»(x , 0 4 fix).

We will make the following mild smoothness hypothesis. For ordinary functions, this hypothesis

is equivalent to requiring continuous differentiability. We use the notation! = { 1 , • • • . / ).

Assumption 2.1: For each £ e £ the function $'; R" x [0,1] -> IR is continuous, and has a continu

ous first derivative V^-, •). In addition, for each compact 5 c R", there exists a finite Ls such that

for each x e 5, the function <|>*(x, -) is Lipschitz continuous on [0,1], with constant Ls. •

We beginby recalling that in [Pol.2], the barrier function usedfor solving Problem MMP was:

p(x,a) A 2 f ±—_A> Q
k7iioJ.i) (ct - 4>*(x. 0) K' }

with a > y(x) (where \|f() is defined by (2.3)). As in [PoL2], we define the sets C(a) and C by

Ck {(x.a)eR'»fllV(x)<a}, (2.5)

C(a) k {xe Rn I\j;(x) <a }, (2.6)

It should be clear that under the above assumptions, the function />(•, a) is continuously differentiable

on C(ct) for any a such that C(a) * p. For any such a, the derivative of/>(•, a), is given by

V^x.a) § 2 I 7 TT—^2*- (2.7)
*6i[o,i] (a-<|)*(x,/))2 v >

The algorithm of [Pol.2] is reproduced here for convenience.

Algorithm 2.1 ([Pol.2]).

Data: x_! , xq e R", A" £0, {tu }£o such that tu >0, and £ tu <*>.
JfcO

Step 0: Set i = 0.

Step 1: Set

Af^(V(^M) +¥&)) if V(xM) *
** = |vi(v(Xi.,) +^(Xi)) +% if \J/(xM) =

Afx,- if y(xw) 2> ^(Xi),
yi = |x« tf K*-i) <VW • (2'9)

Y(*i).

V(xd,
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Step 2: Using y,- as an initial point, use any method to generate a xM e C(ad satisfying

Wj>(xM,ad\£K. (2.10)

Step 3: Replace i by i+l and go to Step 1. •

The following result was established in [Pol.2].

Theorem 2.1: Suppose that Assumption 2.1 holds. If { xt )Z-i is a sequence produced by Algorithm

2.1, when applied to Problem MMP, then any accumulation pointx, of { x,- }£_i, satisfies 0 e <ty(x). •

We will develop the new algorithm in two steps. First we will introduce a new family of barrier

functions that can be used with an e-active set strategy. Then we will extend Algorithm 2.1 by combin

ing this family of functions with an e-update rule.

Dearly, (2.4) may be rewritten as

Pix.a) £ 2 J hr—rdt. (2.n)
keltil) x(a-<|>*(x.O) v '

where x(-) is the function defined by x(<o) £ co. Given this new form (2.11), we may write the deriva

tive of the barrier function as

V^x.aM S J y-^'^V^x,/)^. (2.12)
JkeitO-l] T(a-<|>*(X,/))2 V '

Since in this case t'(cd) = 1, we note that even if for some k and;, the function <>*(•, t) is strongly inac

tive (i.e. <J>*(x, t) «\y(x)), its gradient must beevaluated in order to compute V,p(x, a). To see how

this evaluation may be avoided, let e > 0 be fixed, and let Te: [0 ,«) -» [0 , oo) be the non-decreasing,

continuously differentiable function whose graph is given in Figure 1. Now suppose that the function

x(-) in (2.11) and (2.12) is replaced by xe(-). Then if a - <J>*(x, t) £ e, there is no longer any need to

evaluate the corresponding gradient V.,<|>*(x, t) since x^a - 0*(x , 0) = 0. This can result in consider

able savings in terms of gradient evaluations. Referring to (2.11) and (2.12), we see that to ensure that

the modified function is still a barrier function, the replacement function, xe(*) must retain the critical

properties of both x(-) and the ratio ^(©^(co)2. These properties can be stated as follows:



Assumption 2.2:

(i) xe: [0 , oo) -> [0 , oo) is continuously differentiable, non-decreasing and xe(co) = 0 if and only if

co = 0.

V«o)
taTb ~ xe(co)2

(iDHjn a)2-^>0.

(iii)2 For all co S e, xe'(a>) =0.

A simple example of a function satisfying Assumption 22 (shown in Figure 1) is given by:

xe(co) £A '

CO2 CO .„
CO + —r if (0<£

e 3c2
e • <2-13>

•r if eo£e

Given a function xe(-) satisfying Assumption 2.2, define the new barrier function pt(x, a).

/>e(x,a) i J | — ^—-A (214)
*«i[o.i] xe(a-<t>*(x.O) V'L*>

A straightforward modification of the proof in [Pol.2] shows that the conclusion of Theorem 2.1

remains valid if we replace p(-, •) in Algorithm 2.1 by pe(-, •). However, as mentioned above, using

the new barrier function (2.14) can result in considerable savings in terms of gradient evaluations.

Next we explore the possibility of developing a "greedy" algorithm which reduces e as a solution

is approached. In the e-active scheme described in [Pol.l, pp. 66-79], the e parameter is driven to zero

as a stationary point is approached. The net effect of this scheme is to progressively lighten the com

putational burden as a solution is approached. A consideration affecting the development of a similar

scheme for a barrier function minimax algorithm is the fact that if a - y(x) £ e then Vj)t(x, a)=0.

Figure 2 illustrates this effect in terms of the level sets of \jf(). As e is reduced, the region in which

this gradient is zero grows. A possible consequence of this is that if e is too small when far away from

the solution, the algorithm may make slow progress. In fact, if e is driven to zero too quickly, the

algorithm may jam at a non-stationary point To avoid this, we must ensure that e is small but not too

small. To make any progress, we at least require that e >a - \|f(x). This involves specifying a suitable

Condition (iii) isnecessary tocreate an efficient algorithm, but isnot necessary inorder toprove convergence.



scheme for updating e and the imposition of some uniformity conditions on the family of functions

{ xe(0 )e>o- The conditions we impose are given in the following assumption which may be viewed as

an extension of Assumption 2.2. As will be demonstrated in Lemma 3.1, Condition (ii) ensures that the

new barrier function (2.14) is indeed a barrier function. Condition (iii) ensures that certain multiplier

functions arising in the convergence proof remain sufficiently positive, and Condition (iv) ensures that

inactive functions make sufficiently small contributions to the gradient of (2.14).

Assumption 23: The family { xe() }e>o satisfies the following conditions:

(i) For each e > 0, xe; [0 ,<»)-> [0 , *>) is continuously differentiable, non-decreasing and xe(oo) = 0 if

and only if co= 0.

©TO ei^ffl ~ Xe((0)2
tg IUII

(ii) There exists a Kx >0 such that Hm inf co2 \ 2 >0.

x»'(co)
(iii) For any 8, A such that A £ 8 > 0, sup ——r < «».

(iv)3 For all co £ e, xe'(co) =0. •

Given a family {xeQ }e>0 satisfying Assumption 2.3, we associate with it a family of barrier

functions {/?e(-, •) )e>o» with eachpe(-, •) defined by (2.14).

The main differences between Algorithm 2.1 and the algorithm below are (i) the algorithm below

uses a family of barrier functions, rather than a fixedbarrier function, and (ii) the algorithm below has a

procedure for adjusting e. As we have already mentioned, to prevent a barrier function minimax algo

rithm from jamming at a nonstationary point, the e adjustment rule must not drive e to zero too rapidly,

so that the functions <J>*(x, •) which attain the maximum \p(x) remain "sufficiently active". To simplify

the exposition, we write Step 3 of the algorithm as a separate subprocedure.

Algorithm 2.2 (Greedy algorithm).

Data: x_x , xq e Rn, 80 > 0, K £ 0, { r\k }£<, such that i\k> 0, 2 Ak < °°. ( ^eO) )e>o and
k=0

K'>KT.

As before. Condition (iv) is necessary to create anefficient algorithm, but is not necessary in order to prove convergence.



Step 0: Set i = 0.

Step 1: Set

a, 4 <
V*(Y(*i-i) +¥(*«)) if V(*m) * ¥&).
V4(v(xm) + Vte)) + iii if Wixt-i) = \|/fo),

Xi if v(xw) ^ y(Xi) ,

xw if v(xM) < Vfc) .

Step 2: If i > 0, set 8,- = A^Ow - y(xd).

Step 3: Call Subprocedure 2.3 with parameters p = a,-, z© = y,- and Yo = 8/. Set eM = Y*» **+i = zj^,

where (Y*, z^i) are the returned values.

Step 4: Replace i by i+1 and go to Step 1. •

Note that Step 3 of Algorithm 22 generates a pair (ew , xM) satisfying

Wjf^ixM.adlZK , (2.17)

ew^r(ct,-\|/(xw)). (2.18)

The proof of convergence in Section 3 only requires that Step 3 produce a pair (e^ , x^) satisfying

(2.17)-(2.18). However, as will be shown in Proposition 3.5, using the following subprocedure ensures

that the e parameter is driven to zero as a solution is approached.

Subprocedure 23 (Solves Step 3 of Algorithm 2.2).

Parameters: P e R, z0e C(P),Yo > 0.

Data: { x^) }T>0, K'>KX,K> 0.

Step 0: Set k = 0.

Step 1: Using zk as an initial point, use any method to Compute z^i e C(p) such that

Step 2: If y* <*'(P - V(W). setyM = 2y*h, replace i by i+1 and go to Step 1.

Step 3: Return the pair (y*, z^). •



Note that the constant K* must be strictly greater than the constant Kx of the family { xeQ }e> 0.

This fact is used in the proof of Lemma 3.2. Furthermore, it should be noted that K' depends only on

this family. To show that Algorithm 2.2 is well defined, we must show that Subprocedure 2.3 ter

minates in a finite number of iterations. The proof of this fact requires the following technical lemma.

Lemma 2.2: Suppose that U c R" is open and non-empty, and that /: U -+ R is continuously

differentiable and bounded from below on U. Furthermore, suppose that for any sequence { x,- }£o c U

such that x,- -» x e dU as i -» » (where BU denotes the boundary of U),f(xd -» ~ as i -> «>. Then for

eache > 0 there exists a x e U such that IVftx)l £ e.

Proof: Suppose, for the sake of contradiction, that there exists an F> 0 such that IVflx)l >F for all

xe U. Apply the gradient algorithm of [Arm.l] (or [Pol.5]) to the function/(•) with initial point xo-

The algorithm mustbe modified slightly to ensure that the iterates remain in U. Since U is open, the

algorithm remains well defined, and generates a sequence of non-negative step sizes { \ }~o and

iterates { xt }%q such that

Ax*{)-f(xdZ-\WAxdl2Z0 , (2.19)

XM=Xi-XiVf(xd. (2.20)

Summing both sides of (2.19) yields fa^ -foo)£ -££* ^IVfa)!2£ 0. Since A') is bounded from

below, this implies that JXo Wflto)F <«>. By assumption, Wftxdl >F, from which it follows that

2So^lVy(x^l2>e22oX,IVy(x/)l. It then follows from (2.20) that {x,- }£, is a Cauchy sequence,

which must converge to somex e RB. Since x,- e U we must have that x e U, the closure of U. How

ever, since/(x,)£f(xo) for all i, it follows that, in fact, xe U. As a consequence we have Vflx) =0

(See [Arm.l] or [Pol.5]), which is a contradiction. •

Proposition 23: Suppose that Assumption 2.1 holds, and that the family {x/) }Y>0 satisfies

Assumption 2.3. In addition, suppose that Mx e R(1\|/(x) >-<». Then Subprocedure 2.3 terminates in a

finite number of iterations.

Proof: Suppose that Pe R, z0 e C(P) and Yo>0. Since for any x e C(p), y>0, we have

P-fx, P) >0, it follows from Lemma 2.2 (applied to />/•, p) on the set C(P)) that Step 1 is well

10-



defined. For the sake of contradiction, suppose that the algorithm does not terminate in a finite number

of iterations. From Step 2 we have, for each k > 0, 2*y0 <£'(p - yfan-i))- However, by hypothesis the

right hand side is bounded, which yields a contradiction for Jc sufficiently large. •

As in [Pol.2], the computation in Step 1 of Subprocedure 2.3 may be carried out using either the

Arrnijo gradient algorithm [Arm.l], or a Gauss-Newton type algorithm applied to the function pz{-, a,).

A description of a suitable Gauss-Newton type algorithm is given in the appendix of [Pol.l]. In prac

tice, we have found that Step 2 usually requires only one iteration of the Gauss-Newton type algorithm.

In either case, an appropriate modification of Lemma 2.2 shows that Step 1 of Subprocedure 2.3 will be

computed in a finite number of iterations.

Before presenting the convergence proof for Algorithm 22, we make a few remarks,

(i) It is straightforward to show that the family of functions given by (2.13) satisfies Assumption 2.3

(choose any Kx > 1). However, from a numerical standpoint we have found the following family to

offer superior performance on the problems tested. In our experiments, we have set the parameter

0 = 0.9, however any 0 € (0,1) will do.

Te«o) £ '

2
T+Q® if co<9e,

er4 - 2(1 +8)e¥ +66e¥ +(2 - 66)e4r +(293 - OV .f - (2.21)
(1 - 9)3(1 + 0)e4

if 0)>e

A straightforward, but tedious calculation shows that this family also satisfies Assumption 2.3 (again

choose any Kx > 1).

(ii) A brief examination of the proof of convergence in Section 3 shows that the e requirement (2.18)

may be relaxed to the following:

zM £ min{ eo. AT'ta - \|/(xw)) } , (2.22)

where e0 >0. This may be advantageous in the initial iterations, particularly when significant progress

is made (i.e. when a,- - y(xw) is large).

(iii) From anumerical standpoint, it isuseful to add a few more conditions on the family { xe(-) }e> o-

11-



Assumption 2.4: The family { xe() }e>0 satisfies the following conditions:

(i) For each e > 0, xe: [0,oo) -» [0,«>) is twice continuously differentiable.

(ii) For each e>0, and for each co >0, 2 , { - xe"(co) £0.
xe(to) •

Assumption 2.4 gives sufficient conditions which ensure that if the component functions of (2.3) are

convex, then so is the barrier function pe(-, a). In addition, it allows us to approximate the Hessian of

the barrier function in a reasonable way. To illustrate this, we note that under suitable smoothness

hypotheses, the Hessian is given by:

&P*(x. a)
a*2 A E J

jfvjfo.WJfo.ti xe'(a-<l>*(x,0)2
kti [oJ. u L" *&*-4>V •0)2 f fe(a - §\x, 0)

&(x,t)
Xe(a-<D*(x./)y rxe'(a-(|)*(x.0) dt ,

-xe"(a-4>*(x,0)

(2.23)

To avoid computing Hessians (and making the additional smoothness hypothesis), we approximate

(223) by the positive definite matrix

Hz(x,a) ij f
*ei[0,l]

Vjfo.WJfo.tf
xB(a-<D*(x,/))2

a/

,xe'(tt-<fr*(xtf))2 .
2—"f 7k,—^T " xe (a ~ W*''»

*e(a - r(*. 0)

Xe(a-(t>*(x,0)2
Xe'(a-<|><(xf0) * . (2.24)

where a > 0 is some fixed constant The families of functions (2.13) and (221) both satisfy Assump

tion 2.4. The approximate Hessian may be used either in a Gauss-Newton type algorithm, or in a

homotopy type initialization scheme which computes an alternative initial point (yj) to that computed by

Step 1 of Algorithm 2.2. Details may be found in [Pol.2].

(iv) The slope requirement of Step 2 (2.17) may be relaxed as in [Pol.2, Section 2, Remark (iv)], and

the sequence {i\k J^o may be chosen as in Remark (v) of same.

(v) In Proposition 3.5 we will prove that if the sequence of costs {\j/(x;) }£_! converges to inf RB\j/(x)

(assumed finite), then e is driven to zero. By modifying Subprocedure 2.3, it is possible to ensure that

e is always driven to zero. The resulting modification is given as follows. The essential difference is

that p, instead of y, is varied.

•12-



Subprocedure 2.4 (Solves Step 3 of Algorithm 2.2).

Parameters: p0 6 R, z0 e C(P0), Y > 0.

Data: { x^) )y>0,K'> KX>K> 0.

Step 0: Set k = 0.

Step 1: Using z* as an initial point, use any method to Compute zM e C(p*) such that

Step 2: If y <*'(P*- Vteiw)). set p^ = V*(Pt + y(zM)), replace k by *+l and go to Step 1.

Step 3: Return the pair (y, :w). •

However, limited numerical experience shows that this procedure performs poorly when compared with

Subprocedure 2.3. Furthermore, in all of our experiments (using Subprocedure 23), e was driven to

zero. Consequently, we have used Subprocedure 2.3.

(vi) Finally, we note that the family of functions defined by xe(co) = co satisfies Assumptions 2.3 and

2.4, with the exception of Condition (iv) of Assumption 2.3. This yields the original algorithm

presented in [Pol.2], and so we may view our scheme as a generalization of the original method.

Before concluding this section, we note that we have tacitly assumed that y(-), pz{-, •) and

^xPt(',0 can be evaluated exactly. Consequently, Algorithm 2.2 should be viewed as a conceptual

algorithm. An implementable algorithm may be developed in a manner similar to that presented in

[Kle.l], by adopting a suitable discretization scheme for the interval [0,1].

3. PROOF OF CONVERGENCE

This section contains two main results. The first shows that for a fixed e >0, the function

pz(-, a) is a barrier function for the set C(a). This ensures that if weuse a descent method to compute

the next point (Step 3), the iterates will never stray outside of the set C(a). The second result shows

that any accumulation point x, of a sequence produced by Algorithm 2.2 satisfies 0 e d\|f(x) (where

<fy(x) denotes the Clarke generalized gradient [Cla.l] of \|/() at x). Our proof requires the following

definition of the set valued function G\|/; Rn-» 2RBfl.
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G\y(x) ^ co *
ke l

t e [0,1]

V(x) - $k(x , t)
V^(x , 0 I (3.1)

It is straightforward to show that G\y() is an augmented convergent direction finding (ax.d.f.) map for

\|/(-) (see [Pol.l], Definition 5.1). In particular, we use two properties of G\j/(-): (i) GyO is upper semi-

continuous (See [Ber.l]), and (ii) 0 € Gy(x) if and only if 0 e 3\j/(x). Some additional notation is

necessary at thispoint Let the e-active index setsAj(x) c [0,1], k e I be defined by:

A*(x) k [te [0,l]\$k(x,t)>y(x)-z} , (3.2)

The fact that the function (2.14) is a barrier function follows from the following Theorem.

Theorem 3.1: Suppose that Assumption Zl holds, and that the family { xe() }e>o satisfies Assump

tion 23. Then for each e > 0 and for each bounded set C0 c C there exists a constants X> 0 and

k > 0 such that if (x, a) e C0 and a - y(x) £ X then

Xpt(x, a) £ — log 1 +
a-y(x)

Proof: Let II be the projection of C0 onto R". Since C0 is bounded, so is the projection II. By

Assumption 2.1 there exists a Lipschitz constant, L< «», such that each <|>*(x , •) is uniformly Lipschitz

in t on [0,1], for all x £ n. We may also assume (since C0 is bounded) that L£ a - y(x), for all

(x, a) e C0. Choose any ke I such that A$(x) is nonempty, and let (x. a) e C0. Let tx e Aj(x) and

let t e [0 ,1]. Then we have

<J>*(x,f)2> <j>*(x,g-Llr-g = y(x)-Lk-rxl

(3.3)

(3.4)

Since each member of the family {xe() }e>0 is differentiable at zero, for a given e > 0 there exists a

K> 0 and co > 0 such that xc(co) £ K<o whenever co £ co. Without loss of generality, we may choose

35£4L. Let* A w2. Then ifa - y(x) <, Xand t e [tx - J3I{2L), tx +B5/(2L)]n[0 ,1], we have

a - <J>*(x, t) £ 55. (3.5)

Since we have chosen 55 £ 4L, either fe [/, , tx + 55/(2L)] c [0 , 1] (if tx < Vi), or

f € [fx - WQL), fJ c [0 , 1] (if tx £ V4). In the following analysis we have assumed, for brevity, that

[tx, tx + 55/(2L)] c [0,1]. The analysis remains the same if this interval is replaced by [tx - W(2L), /J.

•14-



/?e(x,a)2> J — -r -dt
td!i] xe(a - <J)*(x , 0)

i> f k dt
[tx.txi<5ivQ] fe(a- r(jc . 0)

± r 1 M
Kitx.tJwoL)] <*-♦*(*. 0

£

** bl. Jam a-vW +̂ -4) *

=lElog 1+ *
a-\j/(x)

Let k ^ AX to obtain the required result •

Consequently, if a e R is such that C(a)* 4> and {x*}£o c C(a) is a bounded sequence such that

Yfe) -> a asi -» oo, then />e(x,-, a) ->«» as i ->», i.e., #,(•, a) is a barrier function for C(a).

The proof of convergence depends on the following technical lemma, which generalizes the fact

that a decreasing sequence either converges or diverges properly to - «>. The proof of the lemma is

identical to that of Lemma 3.1 in [Pol.2] and is omitted.

Lemma 3.2: Suppose that the sequences of real numbers { y )Z-i and { % }£<> satisfy the following

conditions: (i) % £ 0, for all i e N, (ii) 2£o % <~ , and (iii) y*i ^ V4(y, + yw) +% for all

i e IN. Then either { yt )£_, converges, orYi ->-°°as i -><» . •

The following lemma derives an inequality to be used in Theorem 3.4.

Lemma 33: Suppose that Assumption 2.1 holds, and that the family { xeQ }e>0 satisfies Assump

tion 2.3. Let Kx be the constant of Condition (iii) of Assumption 2.3. Then there exist constants 55 >0,

X> 0 such that for each bounded set C0 c C and constant FT > Kx, there exists a constant L >0, such

that if (x , a) € C0 and e >0 are such that JT(a - y(x)) ^ 55 and A*(a - y(x)) £ e, then

Proof: By Condition (iii) of Assumption 2.3, there exists X > 0 and 55 > 0 such that

15-
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lV(M) . , -
^a>0' <3-12>

whenever co £ 55 and e £ K^p.

Since C0 is bounded, so is the projection II of C0 onto RB. Hence by Assumption 2.1 there exists a

Lipschitz constant, L <«>, such that each <>*(* , •) is uniformly Lipschitz in t on [0,1], for all x e II.

Let&e i.be such that Aj(x) is nonempty, let tx e A{(x) begiven and let t e [0 ,1]. Then we have that

<!>*(x,/)£ <J>*(x,g-Llf-/J =y(x)-II/-/xl. (3.13)

Now suppose that K > Kx, (x, a) e C, AT(a - y(x)) £ 55, and K*{a - y(x)) £ e. Without loss of gen

erality, we may assume (since C0 is bounded) that L £ (a - v(x))(JT - K^IK* for all (x, a) e C„. Let

5 4 (a- v(x))(r - iQ//^ Then for any t e A&r),

K^a - <Kx. 0) * ATx(a - y(x) + 5)

£ A,(a - V(x)) + (JT - iQ(a - V(x))

= AT(a-\if(x))^55. (3.16)

Similarly, we have ^(a - <Kx, t)) £ e for any t e Aj(x). Consequently, we may use (3.12) to get the

following estimate:

>61 [o^ i] xe(a - <|/(x ,0)2 Y A4 Te(a - $*(*. 0)2

X^(a-v(x)) J * <ft
X (a-<|>*(x,0)2

(a-v(x))X/n(Afo))
£ r- • (3.i9)(a-v(x) + 8)

where m() denotes the Lebesque measure on R. However, (3.13) implies that m(Aj(x)) £ —, and so

we have

(a-V(x))2 J V(a-fCr.Q) X (a-V(x))S
;7i tot i] te(a - <|/(x, 0)2 *< (a - \|/(x) +5)2
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as required.

X (F-W&c
L (I + (!C - KJ/Kja • (3.2D

The essence of the proof of Theorem 3.4 is to show that, if for some infinite index set S c IN,

s * - s
Xf -> x, then there exist elements ?,- € G\|f(Xf) such that 5 -> 0. It then follows from the upper semi-

continuity of G\j/Q that 0 € Gy(x), which is equivalent to 0 e dy(x).

Theorem 3.4: Suppose that Assumption 2.1 holds, and that the family {xeQ }e>0 satisfies Assump

tion-2.3. Let Kx be the constant of Condition (iii) in Assumption 2.3, and suppose the constant fC of

Algorithm 22 (2.18) is strictly greater than Kx. If {x< }£-i is a sequence produced by Algorithm 2.2,

when applied toProblem MMP, then any accumulation point x,of {x,- }£-!, satisfies 0 e d\|/(x).

s

Proof: Suppose that x,- -> x, as i -» *> for some infinite subset S c N. Byconstruction, x*i e C(ad

for all i e N, and hence it follows that

V(xw) < a, £ V4(\jr(xw) + v(Xf)) + r\i. (3.22)

Therefore the sequence {y(Xj) }£_i satisfies the conditions ofLemma 3.2. Since \jr(-) is continuous, we
s

must have that \|f(x.) -» y(jc), and hence, because of Lemma 3.2, the whole sequence {y(x,) )t^i con

verges to \y(x). As a consequence, the sequence { a,- }£o also converges to y(x). By construction, we

have for all i e N, i > 0,

W*Pz{Xi, at-x)! £K . (323)

Since (a*., - y(xd) -> 0 as i -> oo , it follows that

.fonJOf-i - \|/(x,)) V^fo, O4.1) =0. (3 24)

Foreach j e i, define the multiplier function pj: [0,1] -» R by

PKM^,-^)^,^^. a25)

Note that since x%(0 is non-decreasing, p{(0 £ 0. Clearly {(cim ,x.) },-6 5 is a bounded subset of C
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and K' > Kx by assumption. Furthermore, by construction we have that /T(Of_i - \|/(x/)) < e,-. Conse

quently, we conclude from Lemma 3.3 that there exists a p > 0 such that for all i € 5 sufficiendy large

(so that /T(aM - \f(xd) ^ 55)

vi A
ye I [0.1]

It follows from (2.12), (3.24) and (3.26) that

^"Z J ptoV^(rfOA -i 0.
V«'/€i[0,l]

(3.26)

(3.27)

Furthermore, since { xf},- 6 $ is bounded, there exists some constant A such that yfo) - ^(xt ,t)£A,

for all te [0,1], for all i e 5 and for all j e j, Consequently, for any 8 e (0, A), and i e 5

sufficiendy large,

2 | pfcOM*i)-<fe,f))A
/Gi[0.1]

= 2
ye I

J ptoC¥W>-^fe.0)*+ J pfc) OK*) - +fa .0) dt

^aVf + ^i-^x^AZ, (3.30)

where Z §* sup r
A2 00 2 8 Xc((0)2

e>0 ev '

(3.28)-(3.30) that

. Condition (iv) of Assumption 2.3 ensures that Z is finite. It follows from

7Z I pfe) Mxd- (j/(x£, 0) dt i 0.

Since pfc) £ 0 for all i,y, /, convexity of Gy() implies

Ae Gy(x,).
V'/'6i[0,l]

\|/(x<) - (J/(X,- , /)
V^(x,-, 0

(3.31)

(3.32)

Since (3.27) and (3.31) imply £, -» 0 as i -» «>, if follows from the upper semi-continuity of G\|/(-) that

0 e Gy(x). This completes the proof. •

The following proposition shows that under suitable assumptions, e is driven to zero.
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Proposition 3.5: Suppose that Assumption 2.1 holds, and that the family {xe(-)}e>o satisfies

Assumption 2.3. Let Kx be the constant in Assumption 2.3 (iii), and suppose the constant K' of Algo

rithm 2.2 (2.18) is stricdy greater than Kx. Suppose that { xt }£_! is a sequence produced by Algorithm

22, when applied to Problem MMP, and that v(xj) -»infj6 ^(x) >-<». Then e,- -> 0 as i -» «,.

Proof: Let v = infx€ R<M*). Since we have assumed that y(xj) -» \p, it follows that a,- -» $.

Suppose that at iteration i, Subprocedure 2.3 requires a single iteration. Then eM = KXa^i - y(Xj)).

Otherwise, the subprocedure iterates until it satisfies the test in Step 2. However, by assumption we

have K(cti - y(x)) £ ^(o;- - \p)) for all x e R". Since e is doubled at each iteration, we have

Ef+i £ 2/T(Oi - \j/)). Consequently, wehave

zMZK'max{ai.l-yV(xd.2(ai-$)) , (3.33)

from which it follows that e,- -» 0 as i -> «>. •

4. NUMERICAL RESULTS

We now present some numerical examples which illustrate the reduction in gradient evaluations

obtained by using Algorithm 2.2 instead of the method in [Pol.2]. We have used the same set of test

problems used in [Pol.2]. Briefly, we have (i) constructed three semi-infinite minimax problems by

converting three constrained problems in [Tan.l] into semi-infinite minimax problems using L exact

penalty functions, and (ii) wehave taken from the control literature two semi-infinite minimax problems

which correspond to the very important task of constructing a stabilizing compensator for a multivari-

able linear feedback system. Finally, to determine if our algorithm has any advantages in solving finite

dimensional minimax problems, we have applied it to a few problems of varying degree of difficulty

and compared its performance to existing algorithms. Since the number of component functions of

these finite problems is small, and the starting points are reasonably close to the solution, the reduction

in the number of gradient evaluations will notbe as significant as in the semi-infinite case.

In our experiments, the computations in Step 2 of Algorithm 2.2 were carried out using a Gauss-

Newton type algorithm described in [Pol.2]. To improve performance, we used the homotopy type ini

tialization mentioned in Remark (iv) of Section 2. All the computations were performed in double pre-
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cision on a Sun 3 microcomputer with a floating point accelerator. All of the parameters of Algorithm

2.2 (except fC) were chosen in the same manner as in [Pol.2]. The parameter K' was selected in an

ad-hoc manner, typically between 3 and 10. In all of our experiments, Subprocedure 2.3 drove the e

parameter to zero.

A potential numerical problem with Algorithm 2.2 arises from the fact that if the sequence

{ Xi JiLi which it constructs converges, then lim,- _>.p(xM , a,) = «>. In practice however, this did not

create any difficulties.

For semi-infinite problems, we compared Algorithm 2.2 with the method of [Pol.2] and a

modified version of Algorithm 5.2 in [Pol.l] (see Example 5.1 and Corollary 5.1 in [Pol.l] for details).

These appear to be the only other minimax algorithms in the literature which can be proved to be glo

bally convergent under equally weak assumptions. To obtain a quantity comparable to the number of

gradient evaluations in [Pol.2], we define NG to be the total number of gradient evaluations divided by

the number of functions (/)• For the semi-infinite problems, we have used a fine discretization of the

interval [0,1] to evaluate pe(-, •). and computed NG in the manner described previously. Our test

problems were as follows:

Problem TFI1: This is a modification of Problem 1 of [Tan.l]. In this problem, and in Problems

TFI2, TFI3, the exact penalty has been adjusted so that the minimax problem has the same solution as

the original problem. Here y(x) =max{fl(x), maxre [0,n ^(x, 0 }, where fl(-), g(-, •) (defined in

[Tan.l]) and tf(-, •) are given by:

fix) £ (x1)2 +(x2)2+(x3)2, (4.1)

g(x , t) A j4 +xV3' +e2* - 2sin(4*), (4.2)

(rtx.O A f\x) +ioogfcc, t) , (4.3)

Initial points: x_x =x0 = (l,l,l)r, solution: (-0.213313 -1.361450,1.853547)r. •

Problem TFI2: In this problem y(x) =max{ f\x), maxf6 I0.u VC* . 0 ). where <j>J(x, 0 is defined

as above (4.3), butusing the functions/^), and g(-, •) of Problem 2(a) [Tan.l] defined by:

f\x) 4 ^1 +x2/2 +x3/3, (4.4)
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gix.t) £ tan(0-x1-(x2)r-(x3)rz (4.5)

Initial points: x_j =xq =(0,0,0)T, solution: (0.089096,0.423052,1.045260)7. •

Problem TFI3: In this problem y(x)=max( fix), max,e [0, x] tfix , t) }, where <{>l(x, 0 is defined

as above (4.3), butusing the functions fi'), and gi-. •) of Problem 3 [Tan.l] defined by:

fix) £ e* + e* + e*,

gix.t) i
1+r2

-x1-(x2)/-(x3)fz

(4.6)

(4.7)

Initial points: x_! =xb = (1 , 0.5 ,0)r, solution: (1.006605,-0.126880,-0.379725)r. •

In [Pol.3], we find a method for designing stabilizing compensators for linear multi-variable feed

back systems via semi-infinite optimization. We use this method here to compute a parameter vector

x e IR13 (with components denoted by superscripts) which results in all the eigenvalues of the following

matrix4 having stricdy negative real parts:

Mx) &

0 0 -x1 -2j?-4xx -3x2-3x1
0 0 -x3 -2xA-Ax3 -USx3
x5 x6 -3 -A -2
0 0 1 0 0

Xs 0 -2

(4.8)

As is shown in [Pol.3], the eigenvalues of the matrix A(x) have stricdy negative real parts if \|/(x) ^ 0,

where \|f(x) =max{ max>c 5/'(x), maxme m] tf(x, ©) },with

fix) 4 -x** +0.001, ye 5- (4.9)

and

det0(60(0)/-A(x))tfix,G)) £ 0.001-Re
((/60a>)2 +x90,60(o) +x10)((/60a>)2 +jc1^^©) +x^XOoXko) +x13) (4.10)

Note that in this problem we do not need to find a minimizer, only a point x which makes \|/(x) nega

tive. We used two different initial points, as stated below:

4For the purpose oftesting our algorithm, we deliberately overspecified the number ofdesign variables tomake the result
ing minimization problemill-conditioned.
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Problem MODNYQ1: Determine x e R13 such that y(x) £ 0.

Initial points: x_, =xo = (10,9.9,9.8,9.7,-9.6,-9.5 -9.4,-9.3,l,l,3.7341,3.4561,37.642)T,

our solution: (3.58466,6.38621,2.19436,6.11969,-5.21685,-5.59284,5.30464,4.03995,0.21026,1.5782,

10.0921,6.74129,38.0014)T. •

Problem MODNYQ2: Determine x € 1R13 such that y(x) £ 0.

Initial points: x.l=x0 = (-l,0,0,-l,l,0,0,U,l,6.2055,9.1530,2)r,

our solution: (-0.540925,-0.629175,0.874202,-0.577278,0.358501,0.87108,-0.757704,0.674695,

1.03326,1.63313,3.56932,9.40067,0.831283)7'. •

Table 1, below, summarizes the results in terms of the number of function evaluations (NF) and

gradient evaluations (NG) required to achieve the specified accuracy. For the Problems TFI1-TFI3, we

terminated computation at the first iterate x, which satisfies the test lx,- xl2 < 10^, where x is the

corresponding solution. We compared the performance of Algorithm 2.2 with that of the barrier

method of [Pol.2] and the linearization method in [Pol.1] (Algoridun 5.2). On Problem TFI1, all algo

rithms performed similarly. The linearization method [Pol.1] failed to achieve the required accuracy on

Problem TFI2. A significant reduction in the number of gradient evaluations (over the method of

[Pol.2]) was obtained on Problems TFI2, TFI3 and MODNYQ1. The linearization method [Pol.1] failed

to obtain a solution to Problem MODNYQ1 in 200 iterations (and over 5 hours !). The difference in

performance of the two barrier algorithms on Problem MODNYQ2 is not as dramatic.

Problem Aleorithm 2.2 fNF/NG> rPol.21 (NF/NG} rPol.ll (NF/NG)
TFI1 141/10 70/37 147/27
TFI2 78/42 122/74 FAILS

TFI3 33/7 34/25 63/13
MODNYQ1 43/9 63/42 FAILS

MODNYQ2 5/5 676 55/14

Table 1. Performance on semi-infinite problems.

. Next we applied Algorithm 2.2 to the finite minimax problems below.

Problem WF: This is the example in [Wom.l] (p. 512) on which the algorithm of [Wom.l] fails to

converge. Herey(x) £ max; e ifix), where
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fix) A\

fix) A1

fix) A1

(xV+ai) Ajr)

lQx1

(x1 + 0.1)

lOx1

-xl + + 2(x2)2

x1-
(x1 + 0.1)

-2&V

Initial Points: x_! = xo = (3 , l)r, solution: (0,0)r.

Problem M: This is the second problem of[Mad.l]. Herey(x) A max, Qfi/'(x), where

Ax) A (xi)2 + tfft +Jf f f(x) A ^iw §

/3(x) A sin^) , f{x) A _/3(jc) §

/5(x) ^ ^(x2), fix) A -/5(x).

Initial Points: x_! = xo = (3 . l)r, solution: (0.453296 , -0.906592)7".

Problem RB: This is Example 1from [Hal.l]. Here y(x) 4 max, 64/'(x), where

fix) A ^(x2 - (x1)2), /2(x) A -A*),

/3(x) ^ 1-x1. A*) A -A*).

Initial Points: x^ = xo = (-1.2, l)r, solution: (1, l)r.

Problem CB2: This isProblem CB2 of [Wom.l], Here y(x) = maxy6 a/'(x), where

fix) A (x1)2 + (x2)4.

fix) A (2-x1)2+(2-x2)2,

A*) = 2e"*1+*2.

Initial Points: x_, = xq = (2 ,2)T, solution: (1.139037652 ,0.89955384)7".

Problem CB3: This is Problem CB3 of[Worn.1]. Here\|/(x) A max,-6 a/'(x), where

Ax) A ixV + ix2)2,

fix) A (2-x1)2 + (2-x2)2,

Ax) A 2e"Jtl+Jt2.
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Initial Points: x_i = xo = (2 ,2)T, solution: (1, l)r. •

The results obtained (and comparable results from the literature) are presented in Table 2. It

should be pointed out that each algorithm has a different stopping criterion, and so care must be taken

when interpreting the results. We executed both Algorithm 2.2, the barrier method of [Pol.2] and Algo

rithm 5.2of (Pol.1] until the first iteration which satisfied the test lx,- xt2 < 10"4, where x is the solu

tion. As in previous tables, NF refers to the number of function evaluations, and NG to the number of

gradient evaluations. If these numbers are not explicitly given in the literature, we indicate this by (-).

As expected, the difference in performance between Algorithm 2.2 and that of [Pol.2] is not significant.

On Problems RB, WF and M, a slight reduction in NG is achieved. However, the cost of computing a

solution increases on Problems CB2 and CB3. This increase can by mitigated somewhat by replacing

the initialization of Step 2 (Algorithm 22) by

Step 2: If i > 0, set 5| = FlT(<%_i - y(xi)).

where F is some number larger than 1. The effect of this change would be to essentially reduce the

modified algorithm to the original method.

Problem

Algorithm 22 [Pol.2] [Pol.1] [Mur.l] [Wom.l] [Cha.l] [Hal.l]

NF/NG NF/NG NF/NG NF/NG NF/NG NF/NG NF/NG

WF 27/18 25/25 FAILS FAILS FAILS

M 43/16 42/25 58/11 19/- 22/22
RB 50/32 87/41 56/10 37/29 21/21

CB2 35/25 24/14 150/25 6/- 12/7 21/- 11/11
CB3 36730 33/21 40/8 6/10 8/- 9/9

Table 2. Evaluation count for finite minimax problems.

It is clear from our experimental results that Algorithm 22 is robust and that it is quite effective

on semi-infinite minimax problems for which it was primarily intended. When applied to finite

minimax problems, its performance is only fair on easy to moderately difficult problems.

5. CONCLUSION
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We have presented a modification of a first-order minimax algorithm based on barrier functions

[Pol.2]. The modification reduces the number of gradient evaluations required to solve a problem by

adopting an e-active technique. The technique used is new and has not appeared in the literature. Lim

ited numerical results indicate that a substantial reduction in the number of gradient evaluations is pos

sible, especially in the semi-infinite case.

In addition, ourmodification preserves two advantages of the original method [Pol.2]. The first is

that no special purpose search direction routine is required (such as a quadratic program solver) which

makes it particularly suitable for dedicated VLSI implementation in on-line applications where comput

ing speed and component reliability are essential. The second advantage is that of robustness combined

with reasonable speed: limited numerical experiments indicate that our algorithm does not fail when

others do, that it converges linearly (with respect to the outer iterations), and that its computing times

arecomparable to those of other first-order minimax algorithms.

Theoretically, our algorithm can be generalized to solve problems where the "max-parameter" is

an element of [0,1]* (for some integer k>1) rather than [0,1]. This generalization requires raising the

denominators of (2.14) to a suitable power. However, the problem of implementation of this new algo

rithm, as well as of any other currently known semi-infinite minimax algorithm, is bound to become

more severe.
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Figure 1. Graph of xe(-).
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Figure 2. Illustration of the effect of a small e.
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