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Abstract

Research in the control and stabilization of large, flexible space structures has pro

gressed rapidly in the last decade. It is the purpose of this thesis to investigate sev

eral control system issues arising from the use of distributed parameter formulations

in the modelling of these flexible space structures.

The organization of this thesis is as follows. After a brief introduction in chapter

one, chapter two focuses on flexible beam dynamics and control. Standard distribut

ed parameter beam models are introduced This is followed by the main result of the

chapter, which gives sufficient conditions for a single collocated sensor/actuator pair

touniformly exponentially stabilize an undamped, Euler-Bernoulli beam.

In chapter three, a simple spacecraft consisting of a flexible beam attached to a rigid

body is introduced. The kinematics and dynamics for this structure are derived This

is followed by several control laws which uniformly exponentially stabilize the pro-



posed spacecraft. The obtained results extend well-known results for modally trun

cated spacecraft models to the infinite dimensional models used here.

In chapter four, the attitude control problem is considered for the spacecraft configu

rations of chapter three. Attitude control laws are derived using Lyapunov techniques

under various assumptions on the nonlinear, infinite dimensional spacecraft models.

The control laws bear striking resemblance to well-known results obtained from finite

dimensional, linearized spacecraft models.

In chapter five, the attitude control problem is again considered. Attitude control

laws are again obtained for several spacecraft models derived in chapter three, but

the control methodology differs from chapter four in that the methods of exact lin

earization are employed The approach is novel because the methods of exact lin

earization are normally reserved for finite dimensional nonlinear systems, whereas

the systems under consideration here are infinite dimensional, nonlinear systems.

Implementation issues for thecontrol laws are also discussed.



ill

List of Symbols

c distance from center of mass of the rigid body to the point of attachment
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u(x, t) Transverse displacement of the beam atpoint x attime t
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To the Reader

The numbering system contained in this thesis should be easy to follow. Theorems,

Lemmas, Remarks, and Comments are all numbered by three digits: the first number

indicates the chapter, the second number the section, and the third gives the number

of the Theorem, Remark, etc. in that section. For example, Theorem 4.3.1 refers to

the first Theorem, Remark, Lemma, or Comment to appear in Chapter 4, section 3.

Similarly, equations are numbered by three digits. (2.1.2) refers to the second equa

tion of Chapter 2, section 1. Finally, Figures are numbered by two digits: the first

number indicates the chapter, and the second the number of the figure in that chapter.

For example, Figure 2.5 is the fifth figure in Chapter 2.
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Chapter 1

Introduction

Research on the control and stabilization of large, flexible space structures has pro

gressed rapidly in the last decade. This has been motivated by the many planned

space missions over the next generation, e.g., space station, space telescope, SDI,

etc.

Candidate designs for large space structures generally exhibit a high degree of flexi

bility. This is because the structural loads to be supported in space are generally not

large, while there is a very high cost at lift-off for using materials heavier than neces

sary. Using state-of-the-art materials technology, the structures which meet these

requirements are generally quite flexible. Unfortunately, elastic vibrations due to the

flexible nature of the structure are highly undesirable for a number of missions: they

affect telescope pointing accuracy, antenna beamwidths, delicate onboard instrumen

tation, etc. In addition, the lowest natural frequency of vibration often falls within the

bandwidth of the attitude control system, thus reducing stability margins. Further,

even environmental disturbances (gravity gradient, solar heating, etc.) are considered

sufficient to excite structural bending for various missions.

Based on these considerations, designers are led to the concept of actively con

trolled large space structures. This is achieved by using a variety of sensors and



actuators located about the structure, and operating through on-line computer con

trollers to tailor the performance and behavior of the system. One of the chiefdifficul

ties in designing these systems is that they are, in theory, distributed parameter sys

tems, which means that the system model is infinite dimensional in nature. Combined

with the coupling of these flexibilities with nonlinear dynamics, this means that the

resulting system model is both nonlinear and infinite dimensional.

Not suprisingly, the design of nonlinear, infinite dimensional control systems is a

difficult task. Because of the difficulties, most authors attempt to simplify the dynami

cal equations so that simpler control methods may be applied. Perhaps the most com

mon design method in this vein for flexible structures is the reduced-order model

approach. In this approach, the infinite dimensional model of the flexibility is approxi

mated by a finite dimensional model. This is most commonly accomplished in practice

by using a finite element technique. Once this reduced order model is obtained, a

large body of finite dimensional control theory is available to the designer. One disad

vantage of such a design technique is the difficulty in choosing the appropriate order

for the reduced-order model In fact, the unmodelled dynamics corresponding to the

truncated modes (termed "spillover" by Balas in [Balas 1]) can actually cause insta

bilities in the closed loop system designed from the reduced order model. A great

deal of research attention has been devoted to this problem. The interested reader

can find many of the important references in this area in [Joh. 1], [Balas 1].

An alternate approach to this design procedure is to actually consider a distributed

parameter model of the structure, and to design the control law based on this model.

This of course has the advantage that the spillover problem is eliminated, but it has

the disadvantage that the mathematical complexities are far greater. Nevertheless,

in this thesis, a distributed parameter model of a particular flexible space structure

will be employed, and the control laws will be derived from this framework.

The thesis is organized as follows:



In Chapter 2, we will consider the control of a flexible, cantilevered, beam modelled

by the Euler-Bernoulli partial differential equations. The most common form of control

employed for this beam is distributed control, with distributed sensing. This means

that forces and moments are applied at every point of the beam (or intervals of the

beam), with the readouts being the deflections or deflection velocities at every point

of the beam (or intervals of the beam). In practice, however, distributed control and

sensing is difficult to do. Motivated by these engineering consideration, many ana

lysts have been studying the point sensing/actuation control of distributed parameter

systems. In Chapter 2, we will consider some of the control theoretic implications of

point sensing/actuation versus distributed control, and then consider the

point/sensing actuation problem of an undamped beam. Sufficient conditions are

developed to uniformly exponentially stabilize an undamped beam using a single sen

sor/actuator pair located in the interior of the beam. This extends a result in [Che. 2]

which employs a single sensor/actuator pair at the tip of the beam to uniformly expo

nentially stabilize the undamped Euler-Bernoulli beam.

In Chapter 3, we first derive the equations of motion for a flexible satellite consist

ing of a rigid hub with an attached flexible appendage. The appendage will be mod

elled as an Euler-Bernoulli beam. Next, we will consider the stabilization, or detum-

bling, problem for this spacecraft. The stabilization problem consists of using the con

trol actuators to stop the spacecraft from spinning, and to have the beam vibrations

damp out Two problems will be considered. First, it will be assumed that the flexi

ble beam contains sufficient internal damping that no beam control is needed. For this

particular problem, the control actuators mounted on the rigid portion of the spacecraft

are sufficient to perform the stabilization maneuver. The second problem to be consid

ered is when the flexible beam is regarded as having insufficient internal damping,

assumed zero. In this case, actuators on the beam (which will be of the boundary

variety) as well as actuators on the rigid hub will be needed to perform the maneu-



ver. The validity of these control strategies is demonstrated by Lyapunov tech

niques. The obtained results show that many well-known stabilization schemes for

finite dimensional (modally truncated) spacecraft can also be successfully applied to

spacecraft modelledin an infinite dimensional way.

In Chapter 4, we consider the attitude control problem for the spacecraft model

derived in Chapter 3. The attitude control problem consists of using the control actua

tors on the spacecraft to not only de-spin the spacecraft, but also to move the space

craft into a specific orientation relative to another frame of reference. As in Chapter

3, we will first consider the problem when the beam damping is assumed significant,

followed by the problem when the beam damping is assumed zero. The methods

again employed are Lyapunov based, using a generalization of LaSalle's Invariance

principle. The obtained results again show that many well-known attitude control

schemes for finite dimensional (modally truncated) spacecraft can also be successful

ly applied to spacecraft modelledin aninfinitedimensional way.

In Chapter 5, the attitude control problem for a flexible spacecraft is again consid

ered This chapter differs from Chapter 4 in that the techniques employed to derive

the control laws are based on the methods of exact linearization. This means we

seek to find nonlinear feedback and a nonlinear change of coordinates to transform the

nonlinear system to an equivalent linear system. The approach employed here is nov

el in that the methods of exact linearization are normally applied to finite dimensional

nonlinear systems, while the satellite dynamical equations here are infinite dimen

sional. Using the methods of exact linearization, attitude control laws for several

satellite configurations are derived. Finally, implementation issues for these control

laws are discussed.



Chapter 2

Flexible Beam Dynamics and Control

2.1 Introduction

In this chapter we will first derive the partial differential equations governing the

motion of a uniform, flexible, beam. Two derivations are required in this thesis. In

section 2.2, we derive the equations for the axial motions of a flexible beam which

yields the well-known wave equation. In section 2.3 we derive the equations for

transverse motions of a uniform beam. This gives the famous Euler-Bernoulli partial

differential equations. The effect of beam damping on these models is discussed in

both sections.

In section 2.4, the transverse control of a cantilevered, damped beam modelled by

the Euler-Bernoulli partial differential equations is considered. It will be shown that

if the control sensors and actuators are modelled as bounded linear operators (which

is usually the case if the sensors and actuators are distributed elements), then the

resulting transfer functions lie in the algebra B(0). This means that standard control

factorization theory may be applied to obtain controllers for this distributed system.

In section 2.5, we consider the control of cantilevered, damped beam modelled by

the Euler-Bernoulli partial differential equations, except we now remove the restric

tion that the beam is damped and that the control sensor/actuator models are bounded

linear operators. In particular, we assume beam damping is zero, and that the control



elements are point sensing/actuation. Theorem 2.5.2 gives sufficient conditions for a

single sensor/actuator pair to uniformly exponentially stabilize the beam. This

answers conclusively a conjecture of Chen in [Che. 2]. Finally, Lemma 2.5.10 inves

tigates the structure of the modes of the undriven beam, in order to glean some gener

al conclusions regarding sensor and actuator placement

22 Models for Axial Motion of a Uniform Beam

Standard references for the material in this section and the following one are [Pop.

1], [Lan. 1]. Particular page locations of pertinent material for these references can

be found in the text below.

Consider the axial motion of a uniform cantilevered (one end clamped, one end free)

beamdepicted in Figure2.1. Assume thatall motion takes placealong the x axis.

Figure 2.1

Let L denote the length of the beam, let x denote the position of the cross-section of

the unstressed beam at point x e [0, L]. Let e(x, t) denote the strain at cross-sec

tion x at time t, a(x, t) denote the stress at cross-section x at time t, and let u(x, t)

denote the axial displacement of the cross section x at time t . Finally, let A denote

the cross sectional area of the beam (assumed constant for simplicity), let p denote

the mass per unit length of the beam (again assumed constant), and let p(x, t) denote

the external body force per unit length applied along the x-axis.

Consider a differential element of the beam shown in Figure 2.2 Let P(x, t) denote



the axial force at cross section x at time t, which is numerically equal to the algebraic

sum of all x-axis directed external forces acting on the isolated segment, but opposite

in direction. Then balancing the forces on the differential element yields

0 p L^rimm P + dP

X

dx

Figure 2.2

X

ZFx =0->+, P+HP +prfx,t)dx-P-p a2u<x* *>rix =0. (2.2.1)

Dividing through by dx and taking limits as dx -» 0 yields

ax at2
(2.2.2)

Note that P(x, t) and o~(x, t) are related by P(x, t)A = a(x, t). Since A is assumed

constant, (2.2.2) yields

A^ O+̂ rt-p^O
dx dt2

(2.2.3)

We now consider material properties. Assume that the beam material is isotropic,

homogeneous, and further assume that the strains are small. (For a very brief intro

duction to properties of materials, see Appendix A. The reader is otherwise referred

to [Pop. 1, Chapters 2-4], or [Lan. 1, Chapter 1].) If we further ignore damping and

Poisson's effect, the stress a(x, t) and the strain e(x, t) are simply related by the

Hooke's Law relation a(x, t) = Ee(x, t), where E is the Young's modulus of the



material. Recall that by definition e(x, t) := du(x» 0 Inserting these expressions in
dx

(2.2.3) yields

AE a2u<x; *> +p(x, t) =p^ *> (2.2.4)
dxz dr

which the reader will recognize as the familiar wave equation, with p(x, t) acting as a

source.

Finally, it is necessary to specify the boundary conditions for this beam configura

tion. Since the beam is clamped at x = 0, no axial displacement occurs there; hence,

u(0, t) = 0, for all t > 0. If we assume that there is an applied force p(t) at the free

end of the beam (x =L), this means p(t) =P(L, t) =Ee(L, t)/A =E9"^ ^/A. Thus
dx

the differential equation and boundary conditions for axial motion of a uniform beam

with constant cross-section and no damping is given by

AE a2u<x» *> +p(x, t) =p &** *> (2.2.5)

u(0,t) =0, _E^b_9 =p(t) (2.2.6)
A dx

Suppose now that the beam possess Kelvin-Voight type damping. This means that

each differential element can be considered to be connected to its neighbors by a par

allel combination of a linear elastic spring, and a linear viscous dashpot ([Pop. 1, p.

116]). These assumptions yield a stress-strain relationship of the form

a(x, t) =Ee(x, t) +T] dE(*> l) (2.2.7)
dt



where T| is the damping coefficient, assumed constant. Inserting this expression into

the differential equation (2.2.3) andassuming p(x, t) = 0, then yields

AE a^x, o^A^aVx, o=rt aVx, o
dx2 ax^dt K~5?—

(2.2.8)

Theboundary conditions for thispartial differential equation areeasilyseento be

u(0, t) =0, _M 3u^ *> +ti^CU t) =p(t)
A 8x A 3x3t

(2.2.9)

23 Models for Transverse Motion of a Uniform Beam

Now consider transverse motions of the uniform beam depicted in Figure 2.1.

Assume all motion takes place in the x-y plane. Consider now an infinitesimal sec

tion of the beam at point x as shown in Figure 2.3.

M

e

a a a n

iiiiiitiil

dx

Figure 2.3

P(x, t)

V + dV

M + dM

9

Let V(x, t) be the shear force at beam cross section x in the direction y. The shear

force is numerically equal to the algebraic sum of all vertical extemal forces acting on

the isolated segment, but is opposite in direction. Let M(x, t) denote the internal
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resisting moment acting on the beam cross section at x. The internal resisting

moment is numerically equal to the algebraic sum of all vertical external moments act

ing on the isolated segment, but is opposite in direction. Let p(x, t) the distributed

force acting on the beam in the y axis direction. Let p be the mass per unit length of

the beam (assumed constant for simplicity) and let u(x, t) denote the displacement of

the beam section from its neutral axis at point x. (Recall the neutral surface is the

portion of the material free from stress and thus strain. The neutral axis is the inter

section of the neutral surface with a right section of the beam. It will be shown in

(2.3.8) that the neutral axis passes through the centroid of the cross-section area

during pure bending.)

From the condition of equilibrium of vertical forces one obtains

ZF =0 T+, V+dV +p(x,t)dx-V-p^u^lJ^dx =0. (2.3.1)
dt2

Dividing the expressionby dx and taking limits asdx -> 0 yields

av<x' *) +p(x, t) =pa2u<x' *> (2.3.2)
ax a?

For equilibrium, the sum of the moments about point A also must be zero. So, upon

noting that from point A the armof the distributed force is dx/2, one has

ZMA =0 *D+, M+dM +Vdx-M +(p(x,t)dx-p ^^1^0^)0^2=0
at2

Divide the expression by dx, and take limits as dx -» 0 to obtain

aM(x, t)=_Wx t^ (2.3.3)
dx

Note that the contribution due to the distributed forces is zero. Inserting (2.3.3) into

(2.3.2) yields



-^XL^+p(x,t) =p **j- °
ax2 a?

11

(2.3.4)

It thus remains to establish a relationship between the material properties and M(x,

t). Todo this, wenow make the following kinematic assumption:

Assumption 2.3.1 - Plane sections through the beam taken normal to the x-axis

remain plane during bending.

This assumption neglects shear deformation of the beam, but fortunately the deflec

tions due to shear are small for a beam whose length is 2-3 times longer than the

span. .

So now consider the deformation of the beam in more detail. Suppose point A desig

nates a point on the beam neutral axis, and the beam is deformed so that A -» A'.

(See Figure 2.4.)

Initial plane of section

u = -

Deformed Plane

Figure 2.4

Let v(x, t) denote the deformation of point A to point A' in the y direction. Let yr

denote the distance from A' to the point of the beam under consideration along the

direction of the deformed plane. The kinematic assumption shows that the plane
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through A in Figure 2.4 is transformed to a plane through A'. Note that the angle of

rotation of the plane is simply the slope ^Xl x\ Furthermore, since dy(x» *) is
3x dx

small, cos(^xJ_L)) s 1. Therefore, u(x, t) =-y ^x' l\ By definition of strain,
3x ax

Therefore,

e(x, t) := 9u(x' Q (2.3.5)
dx

e(x,t) =-y^iLi> (2.3.6)
ax2

Finally, we must relate the stress a(x, t) to the moment M(x, t). Since this relation

ship depends on the modelled material properties, we will need to examine two cas

es. First we will consider the beam without damping, and afterward we will consider

the beam modelled as having dampingof the Kelvin-Voight type.

No Damping Present

First consider the case when damping is neglected. The kinematic assumption 2.3.1

implies that the strains in the beam vary linearly as their respective distances from

the neutral axis. Thus

G(x,t) = B(x)y (2.3.7)

where y is the distance from the neutral surface, and B is a constant to be deter

mined. If we assume that the beam is in simple bending due to an applied moment,
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then there are no forces acting in the x-direction. This implies that the net force in the

x-direction on each cross-section must be zero. Hence,

Jo(x,t)dA =0 =>JydA =0=>yA =0 (2.3.8)
A A

where y is the distance from the neutral axis to the centroid of the cross-sectional

area A of the beam. This equation shows that y is actually zero (since A is not

zero), which means that the neutral axis passes through the centroid of the cross-

sectional area. Next, balancing momentson the cross-section yields

M(x, t) +J g(x, t)ydA =0 => M=-BJy2dA =: -BI (2.3.9)
A A

where I is the moment of inertia of the cross-section about the z axis. Combining

(2.3.9) with (2.3.7) then yields

o(x,t) =-My/I (2.3.10)

Thus, the differential equation for the transverse motion of a uniformbeamis givenby

_Ey a2y(x; *> =E£(x, t) =o(x, t) =-My/I, or
ax2

Pya^x t) =Mrx rt (2.3.11)
axz

This is the standard relationship between moment and curvature. Inserting (2.3.11)

into (2.3.4) then yields
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EI d4^; *> +p(x, t) =p **** *> (2.3.12)
^5? a?

which is the famous Euler-Bernoulli model for transverse displacements of a uniform

beam. As in the case of axial displacements, it is necessary to specify boundary con

ditions. The clamped conditions at x = 0 mean zero displacement and zero slope at x

=0; therefore, v(0, t) =0, and ^0> ^ =0for all t >0. At the free-end of the beam
3x

(x = L), suppose there is an applied force F(t) and an applied moment M(t). Then,

observing (2.3.11) we see that EI^^lJ =M(t). (2.3.3) then shows -EI 3^(^ t}
ax2 axj

= F(t). Therefore, the standard Euler-Bemoulli beam model for transverse displace

ments is given by

EI d4^; *> +p(x, t) =p d2^?' l) (2.3.13)
ax4 a?

Hfd2 '̂ 0=M(t) -EI a3y<^ *> =F(t) (2.3.14)
dx1 dx*

Damping Present

Assume now that beam damping is present, and assume that it can be satisfactorily

modelled as being of the Voight-Kelvin type as before. Then

o(x, t) =Ee(x, t)y +ti 3e(x' l)y (2.3.15)
dt

First, note that equations (2.3.3), (2.3.4), and (2.3.6) are unaffected if damping is

added. Therefore, e(x, t) = -y dMx» *). To determine a(x, t), note that the only
ax2
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change in (2.3.7) when damping is added is that a(x, t) = B(x, t)y. Therefore, we can

perform the same calculations as before (the balance of forces and moments on the

cross-section) to obtain

J a(x, t)dA =0 =»JydA =0=»yA =0=>y =0 (2.3.16)
A A

, t) +J a(x, t)ydA =0 =» M(x, t)= -B(x, t)Jy2dA =: -B(x, t)I(2.3.17)M(x

which are of exacdy the same form as before. Using the relation e(x, t) = -y 'x' *'
3x2

we then obtain

M(X,t) =Ei%l+i!l|^ (2.3.18)
Inserting this expression in (2.3.4) then yields

EI d4^ *> +ill ^ l) +P(x, t) =p ^ 0 (2.3.19)
ax4 ax4at ^?

with the easily derivable boundary conditions

m2rML, t) +̂ a3v(L, t) =M(t) (2.3.20)
dx2 axzat

.FI^v(L, t) Ta3v(L, t) =Rn
dx* dx'dt

2.4 Control of a Flexible Beam - Damping Present

Consider the cantilevered beam of Figure 2.5.
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gj(x, xi)

xi

hi(x, Xj)

Figure 2.5

Consider the control of transverse beam motions. Let f:(t) be the control input force

for the jth actuator whose influence function gi(x, xi) is determined by the location xi

and the physical characteristics of the actuator. For example, gi(x, xi) could be 5(x -

xi), where 8(x) is the dirac delta. This situation is called point actuation. More gen

erally, gi(x, xi) could be an L2 function that approximates 8(x - xi) in some sense.

The corresponding differential equation is

n a^x, t)+FT aVx, t) +TlT asu(x, t)
K—a? ~^? ax4at

Assumethen0 output sensors can bemodelled by

Z fj(t)gi(x, xi) (2.4.1)
i=i

Yi(t) =Jhj(x, Xi)u(x, t)dx +Jm^x, Xi) |_u(x, t)dx i=l, ...nQ. (2.4.2)

where Xj is the location of the ith sensor. This sensor essentially takes a weighted

average of u(x, t) and du(x> t) over ^ mtervai containing x{. Note that choosing
at

h4(x, Xj) =8(x- Xj) means that we have point sensing, i.e., y4(t) =u(xj,t).
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(At this point, the reader should be somewhat familiar with the theory of linear

state-space systems in infinite dimensional space (see, for example, [Bal. 1]). In

particular, the reader is expected to have a brief understanding as to how the notion of

a strongly continuous semigroup generalizes the notion of the state-transition matrix

from finite dimensional spaces to infinite dimensional space. The reader unfamiliar

with these concepts is referred to any number of excellent sources, including [Bal. 1],

[Mac. 1], or [Paz. 1].

These input and output models can be used to write (2.4.1) and (2.4.2) in a state

space form evolving on the Hilbert space X =Hq2xL2, (see Appendix B for the defini

tion of the Sobolev space H02[0, L]) The inner product on X is given by the "energy"

inner product

ft g]x=[ff* f2>T> fci. g2)Tix=rfi"' *i") + rf2> sJ

where [•, •] denotes the ordinary inner product in L2[c, c+L]. The state space sys

tem on the space X is given by

z = Az + Bf (2.4.3)

y = Cz

where A: D(A) C X -» X, B: IR"1 -> X, C: X -> Rno , are the linear operators defined

by

A:=

0 1

-Eia4^) -riia^.)
. "a?" "a^J

(2.4.4)



A:(is, u) -> (u, m*!£±+Tlli^L^)1-
ax4 ax^at

D(A) := {(Xl x2)Tl xx € Hq4, x2 g Hq4,

xf(c+L)=x2"(c+L) =0,x1"/(c+L)=x2"'(c+L)=0,}

18

(2.4.5)

B:=

0

gHx, x1)... gm(x, xm)
,B :(fp f2, ...fL) -> g^Wg^x, xi)(2.4.6)

C.:= (f hi(x, XjXOdx, Jm^x, Xj)(.)dx)T, i=i,... n0 (2.4.7)
0 0

r Lq: (Zl,Z2) -> J h.(x, x^ZjCx, t)dx, +J mi(x, x^x, t)dx .i=l. »*o
0 0

Note that although A is defined on D(A), it is not defined on all of X. Furthermore,

using the standard operator norm, A is an unbounded operator on X. B and C, howev

er, are linear, bounded operators on X.

We next show that by defining the space, inner product and domain of A as above,

the state space system is well-posed. (Recall that a linear partial differential equa

tion need not admit a solution. See [John 1, Chapter 8] for an example.) To make

precise the notion of well-posedness, we opt for the following definition which will be

used throughout this thesis.

Definition 2.4.1 - Consider the following differential equation evolving on a Banach

space X:

z = Az z(0) = Zq (2.4.8)

where A: D(A) cX-^X, is a (possibly) nonlinear unbounded operator and D(A) is
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the domain ofthe operator A. The system (2.4.8) issaid to be well-posed if

(i) D(A) is dense in X;

(ii) For each Zq e D(A), there exists a unique, continuously differen-

tiable function z on [0, «») (where the derivative is two-sided for t

> 0, andon therightfor t = 0) satisfying (2.4.8).

Comment 2.4.2 - Condition (i) of Definition 2.4.1 is required to insure that "nearly

all" initial conditions are acceptable, while condition (ii) insures that unique solutions

existto thedifferential equation (2.4.8) for these initial conditions.

If A is a linear operator with non-empty resolvent in definition 2.4.1, then the sys

tem is well-posed if and only if A generates a strongly continuous semigroup [Paz. 1,

Chapter 4, Thm. 1.3].

To show that the state-space system (2.4.3) is well-posed, we need one other

standard result in the semi-group literature.

Theorem 2.4.3 - Suppose that A generates a strongly continuous semigroup on X.

Suppose B: X -> X is a bounded linear operator. Then A + B generates a strongly

continuous semigroup on X.

Proof ofTheorem 2.4.3 - See [Paz. 1, Theorem 1.1, p. 76]. •

Comment 2.4.4 - This theorem merely states that if the system z = Az is well-

posed, then the system z = (A + B)z is also well-posed if B is a bounded linear oper

ator.

Using Theorem 5.A.2 of Chapter 5, the operator A of (2.4.4)generates a strongly
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continuous semigroup on X. Since we assume that h^x, xj) i=l, 2... nQ, nij(x, Xj) j=l,

... n0, and g^x, xk) k=l, ... n0 are L2[0, L] functions, it is easy to show that B and C

are bounded linear operators on X. Since B and C are bounded linear operators, and

A generates a strongly continuous semigroup, Theorem 2.4.2 insures that the closed

loop system

z =(A +BFQz (2.4.9)

with F e m?*™0 is well-posed.

The assumptions on B and C guarantee other properties as well. We first need the

following result from Appendix5.A. (Theorem 5.A.2)

Theorem 2.4.4- For the operator A defined in (2.4.4), the differential equation

z =Az z0eD(A) (2.4.10)

has an exponentially stable solution z(t) = T(t)zQ. Moreover, the eigenvalues of the

system are given in Figure 2.6.
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Figure 2.6 - Spectrum of the operator A given by (2.4.4)

Comment 2.4.5 - This result merely says that a beam with Voight-Kelvin damping is

exponentially stable, and that the poles of the system (2.4.10) lie in the open left half

plane as shown in Figure 2.6.

Since T(t) is exponentially stable, there isaM>0anda5>0 such that IIT(t)ll <

Me"51 for all t >0. Since B and C are bounded linear operators, this means that

IICr(t)BII£llCIIIIBIIMe-St (2.4.11)

so that the state space system (2.4.3) is input-output stable. (If the boundedness

conditions on C and B are removed, then examples exist which show that systems

which are state-space stable are not necessarily I/O stable - a very unappealing

result.) Note that the norm condition (2.4.11) implies that the Laplace transform of

CT(t)B is analytic on the half-plane Re(s) > -8. This observation leads us to the fol

lowing important result
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Theorem 2.4.6 - For the state-space system (2.4.3) with beam damping present

(i.e., Tt > 0), the zerostate input-output map u -> y given by

t

y(t)= J CT(t-i:)Bu(T)dT (2.4.12)

/v a.

has its transfer function in the algebra B(0) [Vid. 1, p. 246]. A function f € B(a0) if

for some g<Gq

(i) f (s) has a finite number of poles in thehalfplane (2.4.13)

<Ca={se <ClRe(s)£a};

(ii) The inverse transform includes - in addition to the exponentials due

to the poles in <Ca -

f(t) =i
0 t<0

(2.4.14)
llfeoXt-^ +yt) t;>o

i=0

where tj are non-negative constants, fa(t) is a Lj[0, <*>) function, and

further,

oo

S IfJ e"011 < oo and
i=0 *

f (2.4.15)
Je-^Wdt <«.
0

In fact, from Figure 2.6, we see that the state-space system has its transfer func

tion in B(-T|/E + e), e > 0, because there exists a a < -r\/E + e such there is a finite

number of eigenvalues in <CC. An interesting point to note is that the transfer tunc-
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tion is not in B(c^ for a £ -r|/E because -rtfE is an accumulation point of eigenval

ues.

The importance of the algebra B(0) is that every function f e B(0) has a coprime fac

torization [Vid. 2, p. 361], so one can then apply the very rich literature in algebraic

control theory (see [Vid. 2], [Cal. 1]). It would take us too far afield to discuss the

numerous aspects of algebraic control theory. Suffice it to say that the existence of

coprime factorizations allows the determination of all stabilizing compensators, the

determination of all compensators for tracking, disturbance rejection, the determina

tion of robust stabilizing compensators, etc. We thus see that the fact that the trans

fer functions lie in B(0) is a very powerfulconditionindeed.

Before proceeding to the next section, it should also be noted that the fact that the

transfer function lies in B(a0) insures that a finite dimensional stabilizing compen

sator exists ([Nett 1], [Vid. 1, p. 367]). This is perhaps not surprising since there

are only a finite number of unstable poles that need to be stabilized, but the result is

very important for engineering purposes. An example of a finite dimensional stabiliz

ing compensator for the beam equations (2.4.1) is given in [Bon. 1], The main difficul

ty is not in obtaining a finite dimensional compensator, but obtaining a compensator of

reasonably loworder. Thisis an areaof current research interest.

2.5 Control of a Flexible Beam - No Damping Present

2.5.1 - Control Theoretic Implications of an Undamped Modelled Beam

Consider again the control of a cantilevered beam as shown in Figure 2.6. Suppose

it is known that the beam damping is small, but the actual value is unknown. Since

the beam damping is small, but unknown, it might be reasonable to model the beam
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as having no damping, i.e. r\ = 0 in (2.4.1).

Unfortunately, by modelling the beam in such a way we see that the transfer func

tions obtained from the state-space model (2.4.3) are not in the algebra B(0). This

is because the undamped beam system is conservative, which means that the result

ing transfer functions will have an infinite number ofpoles on the jco-axis, which vio

lates condition (2.4.13) in the definition of B(0). It is currendy unknown whether

coprime factorizations exist for such systems. Thus, in order to control a beam mod

elled in such a way means we will have to find a stabilizing compensator based on dif

ferent methods.

The first question is whether an exponentially stabilizing feedback compensator

even exists for the system (2.4.1)-(2.4.2) when x\ = 0. (In this thesis, only exponen

tial stabilizability will be considered. Other authors consider the strong stabilizability

problem: find a control law so that the desired quantity goes to zero, but not necessar

ily exponentially.) If it is assumed that hj(x, x^ i=l, 2... nj, nij(x, Xj) j=l, ... n0, and

gk(x, xk) k=l, ... n0 are L2[0, L] functions, then as before B and C defined by (2.4.6)

and (2.4.7) are bounded linear operators on X. In addition note that C{: HftcL2 -> L2

is a compact map since it is an integral map. Since B is a bounded linear map, and C

is a compact linear map, this implies that BFC, for F € IRnixno, is a compact linear

map [Die. 1, p. 317]. Because of these properties, there is no exponentially stabiliz

ingstatic feedback compensator as the following theorem shows:

Theorem 2.5.1 [Gib. 2, Thm. 1,p. 312] Consider thedifferential equation

x +AqxW =BlX(t) +B2x(t) x(0) =Xq e D^) (2.5.1)
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where x(t) is in a real separable Hilbert space X, Aq is a self-adjoint linear operator

(see Definition B.3) from D(Aq) (which is dense in X) to X, and Bx and B2 are com

pact linear operators mapping X to X. Then the solution to the differential equation

(2.5.1), denoted T(t)x0, is not uniformly exponentially stable, i.e., there is no M>0

and 5 > 0 such that

IIT(t)ll £ Me"81 for t £0. (2.5.2)

(These conclusions were first pointed outin [Del. 1].)

One major reason for this negative result is that B and C are bounded operators,

which restricts the feedback. To have any hope of obtaining an exponentially stabiliz

ing compensator for an undamped beam, it is necessary to remove the restriction that

hi(x, xj) i=l, 2... nj, mj(x, Xj) j=l,... n0, and g^x, x*) k=l,... n0are L2[0, L] functions.

Perhaps the simplest choice of unbounded linear operators for this problem is choos

ing a single sensor/actuator pair by h(x, L) =5(x - L) and m(x, L) =8(x - L), i.e., a

point force at the tip of the beam of the beam, combined with point velocity sensing at

the tip of the beam. (When the sensor and actuator are located at the same point, the

sensor/actuator pair is commonly referred to in the literature as collocated. Thus, in

this case the sensor/actuator pair is collocated at L.) It is easy to verify for this

choice of hj(x, xt) and nij(x, Xj) that Cof (2.4.7) is an unbounded linear operator, while

B of (2.4.6) is an unbounded linear operator by inspection (it is adelta function).

In fact, Chen et al [Che. 2] showed that by using this type of boundary control i.e„

x- = L, the resulting system is uniformly exponentially stable, in the sense that the

beam deflections go to zero uniformly exponentially. The method of proof was by con

struction of an appropriate Lyapunov functional.

In the Chen paper, an open question was reported. Suppose a single collocated
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velocity sensor/force actuator pair is located interior to the beam, rather than at the

tip. Is the system (2.4.1) also exponentially stabilized? In this section, Theorem

2.5.2, this question is partially answered. It will be seen in Theorem 2.5.2 that the

system is uniformly exponentially stable if the position of the collocated pair, denoted

xv is not located at a node of the original undriven beam, and if xx/L is a rational num

ber. The method of proof will be by careful eigenvalue and eigenfunction analysis.

Using a theorem of Huang, [Hua. 2], these conditions for exponential stability will be

derived. Afterwards, Lemma 2.5.10 will investigate the structure of these undesir

able sensor/actuator locations, in order to glean some general conclusions regarding

sensor and actuator placement.

The reader will undoubtedly feel that much simpler methods can be applied to prove

Theorem 2.5.2. Therefore, in Section 2.5.3 we will briefly comment on the inadequa

cies of classical system theoretic approaches (passivity, etc.) in conjunction with this

particular problem.

2.5.2 Uniform Exponential Stabilization of an Undamped Beam

Consider the cantilevered beam of Figure 2.7, with an applied point force at x = xv

Figure 2.7

Assume for simplicity that p, E, and I are all unity. Also assume that no damping is

present, i.e. T| = 0 in (2.4.4). Let h(x, xx) = 6(x - xx) and m(x, xx) = K5(x - xx)
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where xx e [0, L]; hence we have a single collocated velocity sensor/force actuator

pair located at the interior point xlf with acontrol gain of K. The goal is to derive

conditions on xx to insure that the beam deflections go to zero uniformly exponentially.

Since a point force is applied at x = xlt there will be a "kink" in the shear force at

that point, which implies that the solution to this problem must be broken into two

parts. One differential equation will consider x e [0, x{\, and the other x € [xlt L].

Proceeding along these lines, let yx(x, t) denote the transverse deflection of the beam

at time t for x e [0, xx), and let y2(x, t) denote the transverse deflection of the beam

at time t for x e (xlf L]. Using the formulation for the beam given in section 2.3, the

differential equations for this configuration is given by

Yl(x, t) +yi""(x, t) =0 xe (0, Xl) (2.5.3)

y2(x,t)+y2'"'(x,t) =0 xe(x1,L) (2.5.4)

where * denotes the partial derivative with respect to time, and ' denotes the partial

derivative with respect to the spatial variable x. The initial conditions for this configu-

ration are

y1(x,0) =<|)1(x) y1(x,0)=^1(x) xe[0,Xl]. (2.5.5)

y2(x, 0) =<|>2(x) y2(x, 0) =¥2(x) xe [xlf L]. (2.5.6)

Assume for simplicity that the initial conditions are C°° functions of x. The resulting

boundary conditions are

vifrv o=y2(xi> o yi'(*i> l>=y^ o (2-5J)

yi"(Xl, t) =y2"(Xl, t) yi% t) =y2'"(Xl, t) +Kyx(Xl, t) (2.5.8)

y2"(L,t) =0 y2"'(L,t) =0 (2.5.9)



yi<ftt)-o yi'(0,t) =o.
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(2.5.10)

for all t > 0. The boundary conditions (2.5.7) indicate that at the location of the sen

sor/actuator pair the displacement and slope are unchanged. The first boundary condi

tion of (2.5.8) indicates that the moments are unchanged, while the second shows

that the shear force has a jump discontinuity occurring since the actuator is a point

force actuator. Finally, the boundary conditions (2.5.9) and (2.5.10) are simply the

boundary conditions for the cantilevered beam configuration. (See (2.3.14).)

The unbounded operator associated withsystem (2.5.3)-(2.5.4) is given by

A :=

0 1 0 0

-^w 0 0 0

3z4
0 0 0 1

0 0 -*<•> 0

w

(2.5.11)

Let the underlying state space for this operator be definedas

X := {(yi, y2, y3, y4)T e Hq2 xL2 xH2 xL2 |

yi(*i)=y3(xi)> y/(xi)=v3'(xi)> <2-5-12)

(Thus, (2.5.3)-(2.5.4) can be written in compact state space form as y = Ay, where y

=(yi» yi» v2» J^7-) Let me inner P10**1"* on X be [f, g]E defined as

[f, g]E := [fa", g{% +[f2, g2]a +[f3", g3"]2 +[f4, g4l2 (2.5.13)

where [•, ^ is the complex L2[0, Xj] inner product, and [•, «]2 is the complex L2[xv
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L] inner product Finally, let the domain of the unbounded linear operator A in

(2.5.11) be defined as

D(A) := {(yv y2, y3, yj* e Hq4 x Hq2 x H4 x H2 | yi(Xl) =y3(xa), y^) =y3'(Xl),

yr<xi> = y^i)' yr<xi> - y3'"(xi> + Kv2<xi)' v3"(L> = v3"'(L) = °>v2(xi) =

y4(Xi), y2'(xi) =y4'(xi))-(2-5.i4)

This leads us to the main theorem of the Chapter.

Theorem 2.5.2 - Consider the cantilevered beam equations (2.5.3) and (2.5.4)

together with.initial conditions (2.5.5)-(2.5.6) and the boundary conditions (2.5.7)-

(2.5.10). Let K of (2.5.8) satisfy K > 0. Then the system is uniformly exponentially

stable if xx is not located at a node of the original, undriven beam system (2.3.13),

(2.3.14) (where E=I=p=l and p(x, t) = M(t) = F(t) = 0), and xx/L is a rational num

ber.

Comment 2.5.3 - If we choose xx = L, we obtain beam boundary control as in [Che.

2]. Since it is easy to show that L is not a node of the undriven system, Theorem

2.5.5 shows that for such a placement of the sensor actuator pair, uniform exponential

stabilityresults. This agrees with [Che. 2].

The proof of Theorem 2.5.2 is very similar to a proof of a result given in [Che. 3].

The interested reader can find similar calculations to those below if difficulties arise in

following the rather complexderivations givenhere.

To determine the exponential stability of the system, we need the following theorem

due to Huang [Hua. 2, Thm. 3, p. 51]:
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Theorem 2.5.4 - Let T(t) be a strongly continuous (linear) semigroup in a Hilbert

space satisfying

||T(t)||<SC (2.5.15)

for all t £ 0 andfor some C > 0. ThenT(t) is exponentially stable if and onlyif

{i<*> | co e 1R }c p(A), the resolvent set ofA; and, (2.5.16)

B:= sup{||(icoI -A)"1!!) <~ (2.5.17)

are satisfied.

Thus, to prove Theorem 2.5.2 we only need to show that the conditions of Theorem

2.5.4 are satisfied. This is done by straightforward, although extremely tedious, cal

culation below. Toperform this task, we will need several preliminary lemmas.

The first condition which must be shown is (2.5.15), which states that the semigroup

generated by the operator A is a contraction semigroup (see Appendix B, Definition

B.l). Because the proof of this result is unrelated to the remainder of the proof, the

details are left to Appendix 2.A. The method of proof is by use of the Lumer-Phillips

Theorem [Paz. 1, Chapter 1, Thm. 4.3 ].

Thus, to apply Theorem 2.5.4 to Theorem 2.5.2, it remains to show that the resolvent

conditions (2.5.16) and (2.5.17) in Theorem 2.5.4 are satisfied. (The term resolvent

refers to the operator XI - A. This is conventional terminology in the semigroup liter

ature.) Sonow consider theresolvent equation forthe operator A defined in (2.5.11):



XI-

0 1 0

-*<•) 0 0

3z4
0 0 0

0 0 -ftr)
3z4

o~~
0

1

[yi
zi

y2

ss

02
0 l\ w

together with the boundary conditions

yi(x!) =y2(xi) yi/(xi) =y2'(xi)

y/'̂ i)=y2w(xi)+&i<*i> yi//(xi)=yr<*i>
y2"(L) =0, y2"'(L)=0, y^O, y/(0) =0.
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(2.5.18)

(2.5.19)

12.5.20)

(2.5.21)

Ifwe eliminate zx and Zj from the above equations we can thus rewrite (2.5.18) as

-t^x) + yi""(x) =iz\(x) +^(x) 0<x<xx

-T^x) + y2""(x) =vz\(x) +¥2(x) xx <x<L

together with the boundary conditions

yi(x!) =y2(xi) yi'(x1) =y2'(x1)

yf(xi)=y2w(xi)+Ki^i^i)+*i(xi) yi"(xi)=yi"(xi>
y2"(L) =0, y2"'(L) =0, yi(0) =0, yi'(0) =0.

(2.5.22)

(2.5.23)

(2.5.24)

12.5.25)

(2.5.26)

The first thing we will show is that the operator A given by (2.5.18) has no jco-axis

eigenvalues unless xx is located at a node of the undriven beam system. This is the

content of the following theorem.
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Theorem 2.5.5 - The operator A defined by (2.5.11) has a purely imaginary eigenval

ue if and only if Xj is located at a node for some mode for the undriven system

(2.3.13)-(2.3.14) (where E=I=p=l andp(x, t) = M(t) = F(t) = 0).

Proof of Theorem 2.5.5 - ^ Suppose xx is located at a node of the undriven beam

system. By definition, this means that there is some (real) modal frequency i' satis

fying cosx/LcoshT/L = -1 such that

(sinxli - sinht/L)(sinx/x1- sinhT/x1) +(cost'L +coshx/L)(cosx/x1- coshx^) =0.

(2.5.27)

Consider the mode Y(x) associated with x'

Y(x) :=(sinx'L - sinhx/L)(sinT/x- sinhx'x) + (cost/L +coshi;'L)(cosx/x- coshi'x)

(2.5.28)

Note that Y(x) satisfies the boundary conditions

Y"(L)=0 Y"'(L) = 0 (2.5.29)

Y(0) = 0 Y'(0) =0. (2.5.30)

Since Y(x) is also a C°° function of x, it satisfies

Y(xr) =Y(x1+) Y'(xr) =Y'(x1+) (2.5.31)

Y"(xr) =Y"(x1+) Y'"(xr) =Y'"^) (2.5.32)
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In addition, since xx is anode for the modal frequency x', this implies that Y(xx) =0,

which also means that iV2Y(x1) =0. Therefore,

Y'"(xr) =Y'"(x1+) +ix/2Y(x1) (2.5.33)

Using Y(x), define the functions y10(x), z10(x), y20(x), Z20(x) by

y10(x) := Y(x) z10(x) := ix/2Y(x) for xe [0, xj

y20(x) := Y(x) z20(x) := ix/2Y(x) for x€ [xlf L]

By computation, A(y10(x), z10(x), y20(x), z20(x))T = (it^y10(x), -x'4y10(x),

fttyzfiQ* -^4y2o(x))T = toftyufib zioW' y2o(x>» ^oW)7- since (yio(x)» zio(x)»

y20(x), z20(x))T satisfies all the boundary conditions, it is thus an eigenfunction of the

operator A corresponding to the eigenvalue it/2. Thus W2 is an imaginary eigenvalue

of the operator A.

=» - Suppose A has an eigenvalue Xq =ix02 for some x0 € IR, x0 * 0 with correspon

ding eigenfunction (y10(x), z10(x), y20(x), z20(x))T e D(A)/{(0, 0, 0, 0)}. Then, by

definition, there is a x0 € IR such that A(y10(x), z10(x), y20(x), Z20(x))T =

ix02(y10(x), z10(x), y20(x), Z20(x))T. Further, by definition, we know that (y10(x),

z10(x), y^x), z20(x))T satisfies the boundary conditions contained in D(A),

(2.5.14). Nowdefine yx(x, t) and y2(x, t) by

yi(x, t) := exp(ix02t)y10(x) (2.5.34)
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y2(x, t) := expGXo^y^x) (2.5.35)

Differentiating (2.5.34) and (2.5.35) twice with respect to time and using the relation

ships from the eigenfunction equation we see that

yx(x, t) +yi""(x, t) =0 xe (0, xx) (2.5.36)

y2(x, t) +y2""(x, t) =0 x€ (xlf L) (2.5.37)

where ' denotes the partial derivative with respect to time, and ' denotes the partial

derivative with respect to the spatial variable x. Alsonote that the energy

"i ii

E(t) := \ /(I yi(x- t)l2+ lyi'U t)|2) dx +1J(| y2(x, t)|2+| y2"(x, t)|2) dx (2.5.38)
0 xi

is constant. The term energy is used because the terms involving time derivatives

represent the total kinetic energy of the system, while the two terms having ' in them

represent the potential energy of the beam configuration. Next, differentiate E(t) with

respect to time to yield

5i l

E(t) =J(yx y! +yi" yf) dx +J( y2 y2 +y2" y2') dx (2.5.39)
0

Use the differential equation (2.5.36) and (2.5.37), and integrate by parts toobtain
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E(t)

L

}l L

=J(- hyi""+yi" h" )<*+/<- hy2""+ y2" h"> * (2.5.40)
0 X,

=- y! yrfi -y2 y2'"|L +J<*' yr+yry1" ><*+J"(*2' y2"+ y2" y2") <*
" xi 0 Xl

(2.5.41)

Use the boundary conditions in (2.5.14) and integrate byparts again to obtain
xl

- -yi(*i) yi'"(*i) -yi' y1T1 +J(" yi"Yl" +y1"yx"} ^ +
0 0

L

+y2(*i> y2'"(xi> •h' y2"f»+ J<- h" y2"+ y2" y2") <*
0 xi

=-yi("i) yr<"i)+WW yi'fri* y2<xi> y2"'(xi> - y2'(xi> y2"(xi>
or,

E(t) =-y^x yi"'(xi) - y2'"(xi)) <2-5-42>

Use theboundary condition in (2.5.14) atxt toobtain

=-(Kyi(x1>t))2=0. (2-5.43)

where the last "= 0" term comes from the fact that energy is constant. Thus,

y^, t) =0. Since y^xj, t) =it^ex^ii^y^x^, this imP1"* that y10(xj) =0.

The system of equations (2.5.36) - (2.5.37) and (2.5.14) thus becomes

Vyio«+yio""w=° *«<ft*i> (2-544)

Vy2oW +y2o""(x) =° "e(x1(L) (2.5.45)
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yio(xi>=v2o(xi) yio'(xi)=y2o'(xi> (2-5-46)

yio"(xi)=y2o"(xi) yio'̂ i)=y20//'(xi) <2-5-47>
y20"(L) =0, y20"/(L) =0, y10(0) =0, y10'(0) =0. (2.5.48)

y10(xi) =0 (2.5.49)

Think of this problem as being the conditions (2.5.44) - (2.5.48), with the additional

constraint y^x) =0. The equations (2.5.44) - (2.5.48) are simply the eigenfunction

equations for an undriven Euler - Bernoulli beam of length L split into two parts. The

solutions to these equations are therefore (see [Mei. 2, p. 162])

Yx(x) := (suiXqL - sinhx0L)(sinXoX- sinhXQx) +

(cosx0L +coshx0L)(cosXQX- coshXQx) for x e [0, xx] and

Y2(x) := (sinx0L - sinhx0L)(sinx0x- sinhXQx) +

(cosXqL +coshx0L)(cosXQX- coshx^) for x € [xv L]

where x0 satisfies the equation cosx0Lcoshx0L = -1. The additional constraint

y10(Xl) =0 implies that Y^Xj) =0. This implies by definition that xx is anode corre

sponding to the modal frequency Xq. This proves the Theorem. •

Recall that we are trying to show that conditions (2.5.16) and (2.5.17) in Theorem

2.5.4 are satisfied. Theorem 2.5.5 shows that {ioo | © e IR) is not in the point spec

trum of A provided that xx is not located at anode for any mode of the undriven beam
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system. However, {i© | ©e IR) may lie in the continuous spectrum ofA. In other

words, although (i©I - A)"1 exists for all ©e IR if xx is not located at a node for any

mode of the undriven beam system, (i©I - A)"1 may not be a bounded linear opera

tor.

The next step in the proof is to show that the eigenvalues of A are isolated in the

complex plane, with implies that there are no points of accumulation in the finite part

of the complex plane. This step is necessary for the asymptotic analysis that will fol

low.

Lemma 2.5.6 - A"1 exists and is a compact operator on X. Furthermore, a(A) con

sists entirely of isolated eigenvalues.

Proof of Lemma 2.5.6 - To show that A'1 exists we must show that equation

(2.5.18) has a solution for each (c^, y¥v (|>2, *F2) in Xwhen X= 0. Therefore, set X=

0 in equation (2.5.18). Note that the differential equation formulation (2.5.22)-

(2.5.26) is an ordinary differential equation in x. These equations can be explicidy

solved (using a statespace method, for example) to yield

yl(x) =yi"(0)x2/2! +yi'"(0)x3/3! + Jix_r^.V^Oda (2.5.50)
0

y2(x) =y2(Xl) +y2'(x1)(x -xx) +y2"(x1)(x -Xl)2/2!

+y2'"(x1)(x -Xl)3/3! + J (x"Xl"q)3 ¥2(a)da (2.5.51)
xi *'

To determine the constants y^O), y^O), y2(xx), y2'(x1), y^Xj), and y2"'(x1)> we



38

use the boundary conditions (2.5.24) - (2.5.26):

yx(x1) =y2(x1): y1"(0)x12/2!+y1/"(0)x13/3!+ J *^Vx(o)da -y2C*i)
0

yi/(x1)=y2'(x1): y1//(0)x1 +y1"/(0)x12/2+ )J^l.\(c)dG =y2'(xx)
0

(xx) =y^): y^O) +yr(0)Xl + J(x - a) ^(Oda =y2"(Xl)yr
0

+ J *1<yffri)=yr(xi)+K(Wxi): yr<ro + J ^i(a)da =v2'"(xi)+K<i>i(xi)
0

xx) +y2w(x!XL -xx) + J (L -xr a)¥2(a)da =0y2"(L) =0: y2"(

y2~<*i>+ Jy2"'(L) =0: y2"(x!)+ J ¥2(a)da =0 (2.5.52)

Note these equations can be easily solved by back substitution, starting with the last

equation, (2.5.52). Thus, using these coefficients in (2.5.50) - (2.5.51) we have

obtained yx(x) and y2(x). Furthermore, from the resolvent equation we see that

Zj(x) =(fr^x), and z2(x) =<|>2(x). Thus, A"1 exists. Note that A"1 by definition

maps X into D(A) cHq4xHq2xH4x H2. By the Sobolev embedding theorem [Paz.

1. p. 208] we thus see that A"1 is acompact map. Finally, since A'1 is compact it has

countably many eigenvalues, with zero being the only accumulation point of these

eigenvalues [Hut. 1, p. 188]. Thus, A has only countably many eigenvalues with no

accumulation points in the finite part of the complex plane. This proves the lem

ma. •
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We are now ready to proceed to the most difficult (and most tedious) part of the

proof, which shows that the resolvent estimate (2.5.17) holds for X= i© sufficiendy

large, provided that the assumptions on xx aremet

Lemma 2.5.7 - Suppose xx is not located at a node of the original, undriven beam

system (2.3.13), (2.3.14), and xx/L is rational. Then the resolvent estimate (2.5.17)

holds for X= i©, ©e IR, provided that©is sufficiendy large.

Proofof Lemma 2.5.7 - Let X, = i© =: ix2, ©e R, x e IR. Without loss of generali

ty, assume that © is positive and that the defined variable x is also positive. Note

that the differential equation formulation (2.5.22)-(2.5.26) is an ordinary differential

equation in x. Using a state space formulation, equations (2.5.22)-(2.5.26) can be

rewritten as

'yi'^
yf
yf

v yi'"V

0 1 0

0 0 1

0 0 0

.X4 0 0

or, y^Ayj+b

0

0

1

0 J

V yi

yi'
yi"

vy/'y

o

o

0

I (iX2*! + Y^
(2.5.53)

(2.5.54)

where xi(x, x) := (yx(x), yx'(x), yi"(x), y^x))7, and the definition of A and j* are

obvious from (2.5.53). Note that
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A2 =

(° 0 1 0>l f° 0 0 1^
0

X4

0

0

0

0

1

0
'A3 =

X4

0

0

X4

0

0

0

0

.0 X4 0 0> .0 0 X4 0>

.A^x4!

Bytaking the power series e^ isobtained by

(eAx)n =l+x4x4/4!+x8x8/8! +... =\ (cos(xx) +cosh(xx))

All other terms ofe^ canbe obtained similarly:

(eAx)12 = _(sin(xx) + sinh(tx))
4JX1

•ir(-sin(xx) +sinh(xx))
2xJ

2x
(cos(xx) + cosh(xx))

(eAx)11= |(cos(xx) +cosh(xx))

(eAx)13 =-i-2(-cos(xx) +cosh(xx))

i^x)2\= | (-sin(xx) +sinh(xx))

(eAx)23 = —(^(^x) +sinh(xx))

a t2(er*)3l = _L(-cos(xx) +cosh(xx))

(e**^ =^(cos(xx) +cosh(xx))
3

(e**)^3 ^-(sin(xx) +sinh(xx))

(0^)43= JL(-sin(xx) +sinh(tx))

(6^)14 =

Axi _(tAX)2A= i2(cosh(xx)-cos(xx)) (2.5.55)

(eAx)32 =

(^34

(^44

JL(-sin(xx) +sinh(xx))

2x
(sin(xx) + sinh(xx))

= _(-cos(xx) + cosh(xx))

= « (cos(xx) + cosh(xx))

The general solution for y_i(x, x) is

y.1(x) =eAxy_1(0)+ J eA(x"°>b(a)da 0<x<xx
0

:=y_ih(x)+y.lp(x)

(2.5.56)
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where y.lh(x) refers to the homogeneous solution, while y.lp(x) refers to the particular

solution. The cantilevered boundary conditions (see (2.5.10)) imply that yx(0) = (0,

0,y!"(0), y1///(0))T.

Similarly, the solution fory.2(x) := (y2(x), y2'(x), y2"(x), y2'"(x)T can be written

X2(x)=eA(x-xi)y2(x1)+ J eA^b^da x1<X<L (2.5.57)
Xl

:=y-2h(x) +v-2p(x)

where, as in the case of y.i(x) above, y^x) refers to the homogeneous solution,

while y.2p(x) refers to the particular solution. (Alternatively, the solution for y_2(x)

could be written in terms of boundary conditions at x = L, which would take explicit

advantage of the form of the boundary conditions there. Unfortunately, the resulting

computations seem to be equally difficult.) Unfortunately, none of the terms of yL2(xx)

are known. We therefore have six unknown quantities: the four unknown quantities

of y.^), together with the two unknowns yj"(0), y/'̂ O). We also have the 6

boundary conditions given in (2.5.24) - (2.5.26). Writing out these terms explicidy,

and combining them in matrix form yields



(e^Da (6^1)24

(^1)33 (e^

(^1)43- (6^1)44-

KiT^eAxi)^ Kix2(eAxi)13

0 0 (eA^l^j! (eAa-*i>)32 (eA^l^j (eA^i))^

0 0 (eAa-*i>)41 (eA(Mi))42 (eA(^i))43 (eAO-xi))^

1 0 0 0

0 -1 0 0

0 0 -1 0

3 0 0 -1

1 J (-sinx(xra)) + sinhx(x1-a))(ix2(|)1(a) +^(a^da
2?„

1 J(-cosx(xra)) + coshx(x1-a))(ix2<|)1(a) +^(a^da

-1 J (sinx(xra)) + sinhx(x1-a))(ix2(|)1(o) +^(a^da
2x 0

-1 J (cosx(xra)) +coshx(x1-a))(ix2<|)1(a) +^x(a))da - Kix2^
2 0 - ^(xj)

2X xi
(sinx(L-a)) + sinhx(L-a))(ix2(t)2(a) + *F2(a))da

-1 J (cosx(L-a)) + coshx(L-a))(ix2<|>21(a) +¥2(a))da

42

yf(O)

yf(0)

y2(xi)

y2'(*i)

y2"(xi)

y/^x)
JL

(2.5.58)

where (eA^^l^y refers to the ijth element of the matrix (eA<L"xl)) defined in

(2.5.55), and bx is the first row of the right hand side of the equation. Write this equa

tion as A*y0 =b*, where the definitions of A*, y0 and b* are obvious from (2.5.58).
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We now have the following lemma which explicidy gives the determinant of the

matrix A*.

Lemma 2.5.8 - For the matrix A* defined in (2.5.58), det(A*) is given by

det(A*) =\ (1 +cos(xL)cosh(xL)) -

"(cosxLsinhxL + coshxLsinxL)[(sinxx1- sinnxxi)]2 +

(-cosxLsinhxL + coshxLsinxLXcosxxj- coshxxj)2 +

-2sinxLsinhxL[(sinxx1- sinhxx^^osxxj- cosing)
Ki

8x

+ (1 + cos(xL)cosh(xL))(-sinhxx1cosxx1+ coshxx1sinxx1)

(2.5.59)

Proof of Lemma 2.5.8 - (2.5.59) results from tedious calculation of the determinant

of A*. The details are omitted. •

Comment 2.5.9 - Note that for K = 0 (no feedback) the equation det(A*) = 0 reduces

to that obtained for the undamped cantilevered beam (see [Mei. 2, p. 162]), as

expected. In addition, if xx = L, the equation reduces to that of beam tip boundary con

trol, also as expected.

We now proceed to show that the resolvent estimate (2.5.17) is attained for X= i©

sufficiendy large. In other words, we must find a constant B > 0, independent of X,

such that

"i ij

J (|Zl(x)|2+ |yi"(x)P) dx +JdzjCx)!2* |y2"(x)|2) dx <.
0



*1 ii

B( J (^(x)!2* IVMI2) dx +J(|^2(x)|2+ |*2"(x)|2) dx )
0
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for X= i© sufficiendy large. The main observation is that ylp(x) and ylh(x) do not

satisfy the bounds

xx xx L

J |ylp"(x)|2dx £C{ j (|yl(x)|2+ ^"(x)!2) dx +J(l^2(x)l2+ l4>2"(x)|2)dx }(2.5.60)
0 o Xl
xx xx L

J |ylh"(x)|2dx £C{ J* (|̂ l(x)|2+ ^"(x)!2) dx +J(l^2(x)|2+ |(t>2"(x)|2) dx 1(2.5.61)
0 0 Xl
for X = i© sufficiendy large. However, the dominant terms cancel, leaving terms

which do satisfy the bounds.

Estimation of ||ylp"(x)|| and ||y2p"(x)||

We will give the estimates of ||ylp"(x)|| in detail, and the estimates of ||y2p"(x)||

can be done in a similar manner. Let X= i© = ix2 for xreal, and x >0. From (2.5.55)-

(2.5.56) we see that

y''(x) =± J (sinx(x-a)) + sinhx(x-a))(ix2<|)1(a) + ^(aflda
P 2* o

If we integrate the portion of the expression containing ixfy^a) by parts twice, we

obtain
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2x
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x

ylp"(x) =J- J(sinx(x-o)) + sinhx(x-a))(^1(a))da +
2x 0

-1 J (-sinx(x-a)) + sinhx(x-a))(i<t>1"(a))da
2x 0

x

J(sinhx(x-<T))(i(|)1"(o) + ^(oMdo +(XT-KHVIIl +\pfj\j)) (2.5.62)

Simiarily, the expression for y2p"(x) becomes

(x)= -ieTxJ (e^a)(i<t>2"(a) +¥2(a))da +
xl

-Let^-xl)(-^2(x1) + t^) )+0(x-1(ll<t>2/1l2 +ll^2ll2)) (2-5-63>
4x

Next, we must compute ylh"(x) and y2h"(x). These expressions are given by

(2.5.56)-(2.5.57), where the unknown coefficients are determined by the relation

A*y0 =b*. It is necessary to compute this inverse to then yield, by Cramer's Rule,

y0 = (det(A*))"1(adj(A*))b*. Before reaching any conclusions about y0, we must

first investigate the structure of det(A*), in order to give conditions on xx to guaran

tee that det(A*) * 0, and to give conditions to guarantee that det(A*) is bounded

away from zero as x —» «».

Estimation of det(A*)
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Consider again det(A*), explicidy calculated in Lemma 2.5.8. It can be verified, by

brute force calculation, that det(A*) = 0 if and only if xx is located at a node for some

mode of the original beam system. So now assume that xx is a not located at a node

for any mode of the undriven beam system. Under this assumption we desire to give

conditions onxx which insures that det(A*) isbounded away from zero as x -> °°.

For x very large det(A*) becomes

det(A*) =IeTLcosxL - i^eTL[sin2xx1cosxL +sin^tXiSinxL - icosxL - isinxL-
2 I6x * 2 2

1 cosxL + I sinxL - cos2xxtCOSXL +cos^tSinxL - 2sinxx1cosxx1sinxL ]
2 2 x

= 1 eTLcosxL - ~ eXL[sinxL - cos2xx1cosxL - sutfxxjSinxL] (2.5.64)
2 8x

Note from (2.5.64) that det(A*) is bounded away from zero as x -> ©° if cosxL and

[sinxL - cos2xx1cosxL - sii^xxjSinxL] are simultaneously bounded away from zero

as x -> oo. This is equivalent to having cosxL and [1 - sMxxJ are simultaneously

bounded away from zero as x —> <».

Consider next the set S := {(x, y) | x = cosxL, y = 1 - siitfxx^ x € R}. Note that

although S does not contain the origin, if L/xx is irrational then S is dense in [-1,

l]x[0, -2]. (It is a space filling curve.) Thus, there is an infinite sequence {sn} c S

such that sn -» 0. This means that there may be an infinite sequence {xn} such that

det(A*) goes to zero as x -» <». However, if L/xx is rational, then the set S is clearly

not dense, and furthermore it is a closed set. Since 0 e S, this means that there is no

sequence {xn} suchthatdet(A*) goes to zero asxn -» «».
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We have thus reached the following conclusions. First, det(A*) = 0 if and only if xx

is located at a node for some mode of the original beam system. Secondly, if xx is not

located at a node for some mode of the original beam system, and if Uxx is rational,

then det(A*) is bounded away from zero as x -» ©°.

Estimate of y^x) and y2"(x)

Assume now that the assumptions of the Lemma 2.5.7 are satisfied, i.e., xx is not

located at a node of the original, undriven beam system (2.3.13), (2.3.14), and xx/L is

a rational number. From (2.5.58), y0 = (det(A*))"1(adj(A*))b*. Because A* is a

6x6 matrix, we will not give the inverse of A* explicidy (to write the matrix down

term by term requires about 4 typed pages), but instead we will give the conclusions

of these tedious operations.

From y0 = (det(A*))"1(adj(A*))b*, we see that y^O) and y^O) depend on

(^(x), ^(x), and <t>2(x), ¥2(x) (namely, in the integral terms involving b*). How

ever, if the terms involving <|>2(x), *F2(x) are explicidy calculated, and inserted into

the equation for ylh"(x), one finds that the higher order terms drop out, leaving terms

of order (XrHlkfotolb2 + l|¥2(x)||2)). (It should be pointed out that we have

explicidy used the fact that det(A*) is bounded away from zero as x -» «>. if det(A*)

is not bounded away from zero as x -* <», i.e., if xx/L is irrational, then we cannot con

clude that the residual terms are 0(x-1(||<t>2(x)||22 + ||¥2(x)||2)). This is where the

proof breaks down for arbitrary xv) Furthermore, if the leading terms involving (^(x)

and ^(x) are explicidy calculated, one finds that these terms precisely cancel the
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terms given by (2.5.62). Inother words, ylh"(x) is given by

x

ylh"(x) =--ie^Jce-^OtfW +̂ (aMdc +0(r1(ll<l>i1li +ll^illi))
4x _

xl

+0(X-I(ll*2//Il2 +Il^2ll2))

Similarly, y2h"(x) contains terms involving $x(x\ *¥x(x\ and <|>2(x), ¥2(x) (namely,

in the integral terms involving b*). Analogous to yih"(x) above, the higher order

terms involving (^(x), *¥x(x) drop out, leaving an expression of order 0(x"1(||<>1"||1 +

II^jHj)). Also, the leading terms of y^'to again precisely cancel the leading terms

ofy2p"(x). In other words, y2h"(x) is given by

y2h"(x) =- _LeTxJ(e^a)(i(|)2"(a) +*F2(c))da -
4x

xl

±?(*'HX-xfy(xx) + $2'(xx) )+0(rH||(t)2'1|2 +||^2||2))
4x

The conclusion of this work is that y^x) =ylh"(x) +yip"(x) and y2"(x) =y2h"(x)

+ y2 "(x) does satisfy the resolvent bound (2.5.17). In other words, there exists a

constant B, independent of

"l L

j |yi"(x)|2dx+J|y2"(x)|2dx
0 xi



49

B( J (|^i(x)|2+ |<t>i"(x)|2) dx +J(l^2(x)l2+ l<l>2"(x)|2)dx (2.5.65)
0 Xl

Finally, in order to prove Lemma 2.5.7, we need to give estimates on the terms zx(x)

and Zj(x) in (2.5.18).

Estimates of zx(x) and Zj(x)

From (2.5.18) we see that zx(x) and Zj(x) are given by

z1(x) =ix2y1(x) +(|)1(x) (2.5.66)

Zl(x) =ix^x) +$x(x) (2.5.67)

To get an estimate on zx(x) and Zj(x) it is necessary to first get an estimate on yx(x)

and y2(x). This is done by taking the inner product of both sides of (2.5.22) with

yx(x) toobtain

MfyM. yiMli + [yi""W, yi(x)li =r«fyi«+*iM. yx(x)]x (2.5.68)

Integrate the left hand side of this equation by parts twice, and use the boundary

conditions (2.5.24) - (2.5.26), to obtain

yr^iWxi) -yr(xi)yi'(x!) + [yi"(x), yx"(x)]x -x4^), y^

=[ix2<t>!(x) +^(x), yx(x)]x (2.5.69)



50

Perform the same operations on the y2(x) equation, (2.5.23), toobtain

-y^x^y^x!)+y^x^'frx) +[y2"(x), y2"(x)]2 -x^x), y2(x)]2
=[ix2^) +¥2(x), y2(x)]2 (2.5.70)

If we add these twoequations, (2.5.69) and (2.5.70), weobtain

[yi"(x), yfto]! -^[y^x), y1(x)]1 +[y2"(x), y2"(x)]2 -t*[y2», y2(x)]2

-y2//,(xi)y2(x1)+ y1"'(x1)y1(x1)+ y^y^) -y^y^) +

=[ix2<t>!(x) +^(x), y^x)]! +[ix2<|>2(x) +¥2(x), y2(x)]2 (2.5.71)

Using the boundary conditions (2.5.24-(2.5.26), this expression simplifies to

[yi"(x), yfOOl! -t%i(x), yx(x)]x + [y2"(x), y2"(x)]2 -t*[y2<x). y2(x)]2

-Kix2[y1(x),y1(x)]1+ K(|)1(x1)y1*(x1)

=[i^lto +^(x), yi(x)]! +[ix\(x)+¥2(x), y2(x)]2 (2.5.72)

Rearrange this expression to yield

^[yiW, y^x)]! +x^x), y2(x)]2 =Re{-[ix2<|>2(x) +¥2(x), y2(x)]2 +

[yi"(x), yftoli +ty2"(x), y2"(x)]2 +Kix2[yi(x), y^ +K<t>1(x1)y1*(x1)}

=Re{-[ix2<()2(x) +¥2(x), y2(x)]2+[yi"(x), yx"(x)]x +

[y2"(x), y2"(x)]2 + K^x^*^)} (2.5.73)
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Next, use the inequality [a, b] <[a, a]/52 +c2[b, b] for any 8e R/{0). This yields

£[yi"(x), yrWlx +[y2"(x), y2"(x)]2 +[<|>2(x), <|>2(x)]2 +x^x), y2(x)]2/4 +

[(^(x), $x(x)]x +x4[y1(x), y^/4 +Re{K<|)1(x1)y1*(x1)} (2.5.74)

Finally, note that Re{K<|)(x1)y1*(x1)} £ Kx^Ufy, ^x]x + \yv y^}. (The reader

should consult Proposition 3.4.5 if there is difficulty in seeing this.) Inserting this, and

simplifying the expression shows that there is some constant C > 0 such that

[y^x), yi(x)]! +[y2(x), y2(x)]2< T^Uy/'W, y^W^ +[y2"(x), y2"(x)]2 +
|A,|

[<()2(x),<t)2(x)]2 + [(t>1(x),(|)1(x)]1}

Finally use this inequality in (2.5.66) and(2.5.67) to obtain

llz^lli^l^lly^^H^ +II^Cx)!!^

*ClUy^x)!!,2 +||y2(x)||22 + ||<fe(x)||22 + ||<|.1(x)||12}+ H^MlIx2 (2.5.75)

Similarly,

l^x)!!^ <CfHy^x)!!!2 +||y2(x)||22 + ||(t>2(x)||22 + ||̂ 1(x)||12}+ ||(|)2(x)||22 (2.5.76)

Proof of Lemma 2.5.7 - If we combine (2.5.65), (2.5.75), and (2.5.76) we see that

for |3l| = |co| sufficiendy large, there is a constant B, independent of Xsufficiendy large

such that
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xl

/ |yi"(x)|2dx +J |y2"(x)|2dx+ J Iz!(x)|2dx +Jlz^pdx £
0 x, o X1

xl L

B(J (|̂ i(x)|2+ IVMl2) dx +J(^22(x)+ «>22"(x)) dx (2.5.77)
0

This completes the proof of the lemma.

Proof ofTheorem 2.5.2

^ To prove the result, we use the converse of the Theorem 2.5.4. Assume xx is not

located at a node of the original, undriven beam system (2.3.13), (2.3.14) (where

E=I=p=l and p(x, t) = M(t) = F(t) = 0), and xx/L is a rational number. Condition

(2.5.15) has been shown in Appendix 2A. Lemma 2.5.7 shows that there is a 0 < ©0

< oo such that suP{IKiG) " A>~ '"< oo. Theorem 2.5.5 and Lemma 2.5.6 show that for
co> ©Q

any ©o <oo, {i© | ©<©0} c p(A) and ^^ " A) "* <°° • Combining these

two results show that {i© | ©e IR } c p(A) and sup{||(i© - A)"1!!} < oo . This

proves the theorem. •

Although this theorem proves conclusively that exponential stability does not result

for arbitrary sensor/actuator placement in the interior of the beam, there are interest

ing properties associated with this problem. This is the content of the following lem

ma.
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Lemma 2.5.10 - The set of nodes of the undriven beam, given by

N={xx e [0, L] | (sinxL -sinhxL)(sinxx1- sinhxx!) +(cosxL +coshxL)(cosxx1

- coshxxj) =0,for some XL satisfying cosxLcoshxL =-1 } (2.5.78)

are dense in the beam, i.e., N = [0, L]. In addition, m(N) = 0, where m(N) is the

Lebesgue measure of N.

Proof of Lemma 2.5.10 - Consider any closed interval [a, b] with 0 £ a < b < L. It

will be shown that there is at least one node contained in this interval. Rewrite the

node equation (2.5.78) as

(sinxL - sinhxLjsinxxj + (cosxL + coshxL)cosxx1

= (sinxL - sinhxL)sinhxx1+(cosxL +coshxL)coshxx1 (2.5.79)

Using a standard trigonometric formula on thefirst two terms yields

Kcos(xx1 + <|>) = (sinxL - sinhxLjsinhxxj+fcosxL +coshxiOcoshxxj (2.5.80)

where K2 = (sinxL - sinhxL)2 + (cosxL + coshxL)2 and <|> = tan"1 {(sinxL - sinhxL) /

(cosxL + coshxL) }. Using cosxLcoshxL = -1 and further trigonometric simplifica

tions, K2 canbesimplified to

K2 = (sinxL - sinhxL)2 +cos^cl +cosh^L - 2

= (sinxL - sinhxL)2 - sin^L+sinh^L

= (sinxL - sinhxL)2 - sinhh+cosh^Lsin^L
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=(sinxL - sinhxL)2 +sin^tLsinh^L (2.5.81)

Now we simplify theright hand side of (2.5.80):

RHS =(sinxL - sinhxL)sinhxx1-sin2xL coshxxj/cosxL

=(sinxL -coshxLsinxLjsinhxxj-sinh^L cosxLcoshxxj

=(1 - coshxL)smxLsinhxx1+ sinhxLsinxLcoshxxj

=smxL[-coshxLsinhxx1+ sinhxLcoshxx! +sinhxxj

=sinxL[sinhx(L-x1)+ sinhxxj

Finally, a few more straightforward calculations gives

=2sinxLsinh(xL/2)coshx(x1 - L/2) (2.5.82)

To verify that the equation (2.5.80) has solutions, we note that coshx(xrL/2) <

coshx(L/2) for xx e [0, L]. Multiplying both sides by 2sinxLsinh(xL/2) yields suc

cessively

2sinxLsinh(xL/2)coshx(x1 - L/2) £ 2sinxLsinh(xL/2)coshx(L/2)

< sinxLsinh(xL) forx^ [0, L] (2.5.83)

bythe "double angle formula" for sinhx. Using (2.5.81) and (2.5.82) in (2.5.80) yields

{(sinxL - sinhxL)2 +sin2xLsinh2XL}a5cos(xx1 +<|>)

=2sinxLsinh(xL/2)coshx(x1 - L/2) (2.5.84)
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Inequality (2.5.83) shows that, for all \x e [0, L], the RHS of (2.5.84) has magnitude

less than or equal to the coefficient on the cosCtXj + <|>) term. Therefore, solutions do

exist It is easy to see (see Figure 2.8) that there are at least LxL/rcJ solutions in [0,

L], where W denotes the integer floor function.

2sinxLsinh(xL/2)coshx(x1 - L/2)

KcosCrxj + <|>)

Figure 2.8 - Graph of equation (2.5.84)

In addition, for any interval [c, d] c [0, L]there is at least one solution in this interval

as long as d - c £ 2/ Lx/rcJ. Therefore, for the given interval [a, b], choose x large

enough so that 2/ Lx/rcJ £ e =a-b. This concludes the proof of the first part of the lem

ma.

To show that m(N)=0, note that the number of zeros of the mode equation (contained

in (2.5.78)) for each modal frequency (i.e., for each value of x) is finite, and the num

ber of modal frequencies is countable (with an obvious 1-1 correspondence with the

integers). Therefore N is the union of a countable number of finite sets, hence N is

countable. This implies m(N) =0. •
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Since m(N) = 0, this means that the probability ofplacing the actuator on a node of

any mode is zero! This means that the system is exponentially stabilized by a veloci

tyfeedback placed in the interior of the beam, with probability one.

Of course from an engineering viewpoint it is probably hopeless to attempt to uni

formly stabilize the beam using velocity feedback in the interior of the beam. The fact

the nodes are dense in the beam means that the uniform exponential decay constant

is most likely very small. However, it is very easy to place the actuator so that a

specified finite number of modes would be exponentially stabilized. Given a finite

number of nodes, one would place the sensor/actuator pair at a position where the

modes of interest have relatively large deflections. This is the common intuitive

method used by engineers in placing actuators when the beam model is modally trun

cated (see [ Joh.l, 508-509]).

2.5.3 Relationship to Passivity

The knowledgeable reader will probably feel that the Theorem 2.5.5 is somehow

related topassivity concepts. It is the goal of this section toexhibit this relationship.

Using (2.5.42) we see that if y/"^) - y2"'(x1) = F(t), the applied force at point

Xj, then

fF(t) y(x,, t)dt = Jd E(t)dt (2.5.85)
j •'at
-oo -oo

= E(t) - E(-~) = E(t) (2.5.86)

if we assume the energy at t = -•© is zero. Thus
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/ (mTl+ ETTi)dz >0 (2.5.87)

This shows that our beam plant is passive [Des. 2, p. 173]. Furthermore, our feed

back law is strictly passive [Des. 2, p. 173]. (It is simply the gain K.) By the passiv

ity theorem, [Des. 2, p. 181] we can conclude that themap

F(t)->y(x!,t) (2.5.88)

is L2 stable. Since the system is linear, one can easily show that this implies the

map (2.5.88) is exponentially stable.

Unfortunately, these passivity arguments do not yield the same results as Theorem

2.5.2. The main problem is that the above result only says that y(xi> t) goes to zero

exponentially, but says nothing about y(x, t) for x * xv One could probably use the

above results, coupled with arguments involving continuity of solutions of differential

equations, to obtain the results of Theorem 2.5.2, but unfortunately it doesn't seem

easy.

There is one final comment that should be made regarding Theorem 2.5.2. The pas

sivity theorem above shows that the closed loop system is input/output stable. What

we really desire is that the closed loop system be state space stable. Is there any

way to show that input/output stability implies that the system is state space sta

ble? From the study of finite dimensional linear systems, we know that if a system is

I/O stable, and the state space representation is minimal (i.e., controllable and

observable) then the system is also state space stable. In [Jac. 1] and [Cur. 1], this

concept is extended to a broad class of infinite dimensional systems. Unfortunately,

the class does not include the example of Theorem 2.5.2. The primary reason for this
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is that the operators B and C of (2.4.6) and (2.4.7) are unbounded operators. Unfortu

nately, there is no obvious extension of the above mentioned papers to include such

operators.

2.6 Conclusions and Future Research

In terms of future research, much still remains to be done. When beam damping is

included in the Euler-Bernoulli model, it was pointed out in section 2.4 that finite

dimensional compensators exist. The current method for obtaining such compen

sators is to approximate the infinite dimensional compensators, which usually leads

to a controller of high order. From a practical viewpoint, it is desirable that compen

sators be of low-dimension, so that the current method is unsatisfactory. A method

ology for obtaining controllers of reasonably low order would be of great practical

importance, not only for flexible structure control but also for other distributed parame

ter systems. An example of an optimization based approach for such design consider

ations can be found in [Har. 1].

In section 2.5, the stabilization problem for the Euler-Bernoulli beam with no damp

ing was considered. A uniform exponential stabilization scheme was proposed for a

collocated sensor/actuator pair located at an interior point of the beam. The obtained

conditions were sufficient. The natural extension of the result given here would be to

find conditions under which the system is uniformly exponentially stabilized when

xx/L is irrational. Another important unresolved problem is to obtain the exponential

decay rate as a function of beam parameters, especially the position of the sen

sor/actuator pair. This has been done for a beam with an applied moment at the tip in

[Reb. 1], but the methods do not easily extend to general sensor/actuator pair loca

tions. Another very important research topic would be to extend Theorem 2.5.2 to a

beam modelled by the Timoshenko beam model (see [Russ. 1]). The Timoshenko
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beam model is apparently becoming something of an industry favorite, combining rela

tively simple formulation with reasonably accurate prediction of beam behavior. In

[Kim 1], the beam tip boundary control was used to uniformly exponentially stabilize

such a model, just as Chen et al [Che. 2] used this scheme to stabilize the Euler-

Bemoulli model. Thus, such an extension would be a natural complement to the

result obtained here.

Finally, there is still considerable work to be done in the area of multiple, perhaps

non-collocated sensors and actuators for flexible structure control. A first step would

be to evaluate the affects of multiple sensors and actuators on simple beam models,

and then attempt to apply such methods for more complicated structures. Perhaps the

greatest drawback to a distributed parameter formulation of such flexible structures is

the resulting mathematical complexity (see the proof of Theorem 2.5.2!), which is

probably the main reason finite dimensional approximations are used in practice. It is

still an open question as to whether large scale distributed parameter system formu

lations applied to future large space structures will be analytically tractable at both

the conceptual level and the computational levelor not

Appendix 2.A - Proof of Condition (2.5.15)

Consider again the differential operator A defined by (2.5.11). Let the space X, the

energy inner product [•, -]E, and the domain of A, D(A) be defined as in (2.5.12)-

(2.5.168).

A simple calculation shows that the norm induced by the inner product (2.5.13) is

equivalent to the Sobolev type norm induced by H2 x L2 x H2 x L2. Therefore, the
space X, along with the inner product (2.5.137) is a well-defined Hilbert space. Also,

note that D(A) is dense in X.

To show existence and uniqueness of solutions to the differential equation (2.5.3)-
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(2.5.4), it suffices to show that A generates acontraction semigroup. To prove that A

generates a contraction semigroup, we will use the Lumer-Phillips Theorem [Paz. 1,

Chapter 1, Theorem 4.3]. To apply this Theorem, we must show that (i) A is dissipa-

tive (see Def. B.l), and (ii) for some X> 0 the range of XI - A is all of X. To show

(i) first note

[Af, f]E =[f2''. fl'll +W"> fJ1+tf4"' f3% +[-f3""> f4l2

Integrate by parts, and theinsert the boundary conditions toobtain

[Af, f]E =[f2", fx'1 +[f!'", f21 - frWfr!)

[f4", f3"] +[f3'", f41 - f3'"(xl)f4(xi)

Integrating by parts again, and inserting the boundary conditions yields

[Af,f]E =-Kf22(Xl)

Therefore, A is dissipative.

To show (ii), and thus complete the proof, we need only show that for some X, > 0

the range of XI - A is all of X. This is done in two steps: (a) For X. =1, the range of

I - A is dense in X, and (b) the range of I - A is closed.

Proofof (a) - Take X, =1, and suppose 3 y € X such that [(I - A)z, y]E= 0 for all z e

D(A). If z=(z! Zj z3 z4)Tandy=(y1 y2 y3 y^then [(I - A)z, y]E= 0implies

[Zl" - zj", yx"] x+[zf" +Z2, y2]1 + U3" - z4", y3'12 +[z3"" +z4, y4]2= 0 (2.A. 1)

Set Z2 = Z3 = z4 =0. Integrate (2.A.1) by parts to obtain \z{'"> yx + y2] =0. Now
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let zx be an arbitrary C°° function satisfying the boundary conditions z^O)^,

z^O)^, z{Xxx)^Ot and z{fXx{)=0 . Then clearly (zlf 0, 0, 0 )T e D(A), and the

class of such elements is dense in Hq4x{0}x{0}x{0}. Hence, the equation (2.A.1)

implies yx +y2 =0. The only way that this is possible is if yx(x) =-y2(x), for all x e

[0,xj. Next, choose zx =Z3 =z4 =0. The equations then become

[-^.yiii +feyJi-0 (2-A-2)

Next, choose z2 to be an approximation of y2, where ^ = y2 except for arbitrarily

small neighborhoods of the initial conditions, which may unfortunately differ. Then

(2.A.2) yields [y2", y^ = [y2, y^, or [y2", -y2"]x = [y2, y2]v The only way that

this can occur is if y^x) =-y2(x) =0, for all x e [0, xj. By a similar calculation, it

can be shown that y3(x) =-y4(x) = 0, for all x e [xlt 1]. Hence y=0, and thus the

range of I - A is dense in X.

Proof of(b) - Let yn =(I - A^ converge to y e X. We must .show that 3 x e D(A)

suchthat y = (I - A)x. Since A is dissipative, we have

II y„ll2 =lia -A)xn||2 =|| xj|2 -2( x„, Axn) +|| AxJ|2 (2.A.3)

^ II xj|2 + || Ax,,!!2 (2.A.4)

^IKII2 (2.A.5)

Since yn converges, this implies x„ converges to some value x e X. (Consider a

Cauchy sequence yn - ym). Hence, by (2.A.4), A^ converges. If ^= (xnl x^ x^

x^ and x=(xx x2 x3 x^then
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Axn=(xn2 -x^""^ - '̂"O7 <2A-6>

which shows that xx e H4, x2 € H2, x3 e H4, x4 e H2. This implies that x e D(A),

from which it follows that y = (I - A)x. •
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CHAPTER 3

SPACECRAFT DYNAMICS AND STABILIZATION

3.1 Kinematics and Dynamics of a Flexible Spacecraft

In this section the kinematics and dynamics of a flexible spacecraft model will be

developed. The structure consists of a flexible, cantilevered beam attached to a rigid

body. This particular configuration is becoming popular in the literature (see [Bai. 1],

[Mon. 1], [Bis. 1], [Kwa. 1]) because it reflects in many ways the hybrid rigid/flexible

structures envisioned in future spacecraft. Indeed, structures such as deformable mir

rors, solar panels, or radar/laser arrays attached to rigid spacecraft yield equations

similar to those of the proposed model. In this thesis an infinite dimensional model of

the flexible beam will be used, instead of the finite dimensional approximation that

most authors prefer.

The derivation of the kinematics and dynamics of the structure will be done from an

entirely classical approach: the derivations use Newton's third law of motion, and the

conservation of angular momentum. Surprisingly, the method does not seem to be the

norm of the literature. For example, in [Bai. 1], the equations of motion are derived

from a Lagrangian viewpoint. This approach of course has the advantage that the

equations of motion can be derived in the same way regardless of the generalized

coordinates used. However, the resulting Frechet (Banach space) derivatives must

be tediously calculated.
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In a classical approach, the main disadvantage is that particular generalized coordi

nates are chosen, but in most applications the choice is clear. In addition, the

approach is ideal for systems with external forces acting on them, which of course is

the case for control system design. Finally, the computations of the equations of

motion are simpler, because noFrechet derivatives are required.

With this classical approach in mind, this section is ordered as follows. Section

3.1.1 discusses change of coordinates between coordinate frames, and section 3.1.2

derives the resulting kinematics. In section 3.1.3, Gibbs parameters for attitude

determination arc presented, along with the resulting kinematics. In section 3.1.4, the

spacecraft model is precisely defined, and the resulting dynamical equations are

derived. In section 3.1.5, the beam model is introduced and the dynamics of the rotat

ing beam are derived. Finally, in section 3.1.6, the equations are combined to give the

spacecraft models usedin this thesis.

3.1.1 Change of Basis

Vectors, Frames, and Triples

Consider a three dimensional Euclidean space E, which includes the notion of points,

lines, distance, angle, etc. A vector is a magnitude and a direction. For example,

given two points in the space E, O and P, the vector OP is the line segment going

from O to P (hence an arrow at P). The concept of a vector is quite different than the

position ofa point in space. Having chosen an "origin" O, the position of the point P

is uniquely specified by the vector OP . Note, however, that P may be specified by

different origins and different vectors.

We next introduce the concept of a frame. A frame is a set {Ob , J^i, ^2» i&l

where Ob is a point in E and t^, ^2, h$ are a family of orthonormal, dextral (right-
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handed) vectors inE The point Ob is the origin ofa coordinate system determined by

the axes j^i, Jj2, J^, where the j^'s are attached to Ob.

Clearly, a vector may be expressed in terms of the basis vectors in any frame of

interest. For example, a unit vector ^ may be resolved in terms of the vectors j^,

^2, b$ ofthe frame {Ob, _^lf ^2, ^3} by

w> =w1^1 +w2^2 +w3^3 (3.1.1)

where Wj is the cosine of the angle between v^ and b±. Using this resolution, we

can define the triple w= (wlt w2, w3)T. The symbol ^ refers to a vector in E, which

is independent of any frame, while w is a triple which presupposes a vector and a

frame.

Multiple Frames

Suppose now we fix a frame {O],, 41, 42, ^3}, which we shall refer to as the iner-

tial frame, and choose another frame {0B, J^, ^2, ^3}, which will be referred to as

the body frame. The basic problem is to specify the position and orientation of the

body frame with respect to the inertial frame. The position of the origin of the body

frame, 0B, with respect to the inertial frame is specified by avector j£ defined by

Ob =0E + %, that is, %= OpOq (3.1.2)

One way to specify the orientation of the body frame is to resolve each t^, i = 1, 2, 3,

along the inertial vectors fy, $q, ^3, exacdy as in (3.1.1):
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J*2 =y2l 4l+ v22^2 +V23 -^3 (3*L4)

^3=y3i 4i+y32^2+y33-^3 (3-L5)

Let y ={yy}, so that [£i ^ _y =[$1 £2 ^3lY- <n« matrix Y is caUed Ae

direction cosine matrix because the ij element of Y, (Y)y is the cosine of the angle

between ^ and £:. Note that orthonormality of ^1 ^2 ^3 ^d 4l» -^2' -^3 imPty tnat

Y is an orthogonal matrix, i.e., YTY = I. Since both frames are dextral, this means

thatdet(Y)=l.

Note also that Y is a coordinate transformation that maps triples determined by the

body vectors Jji b$ ^3 to triples determined by the inertial vectors ^1, e^» ^3-

That is, if j| =RX j^i + R2 J& + R3 i& then the components of YRB are the compo

nents of the vector J| resolved along the vectors e^, $$, ^3, i.e. YRB =Be*

To summarize, consider a point P which is specified by the vector r^ = QFP with

respect to the inertial frame. P can also be specified by a vector § = OgPwith

respect to the body frame. Thus, P can also be specified by a vector y> + § with

respectto the inertial frame i.e.,

r> = ^ + *> CU.«

If R refers to the triple of jj with respect to the body frame, x the triple of j; with

respect to the inertial frame, and r the triple of ^ with respect to the inertial frame,

then
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I=y+YE (3.1.7)

For further details on this material, the reader is referred to the excellent exposition

of [Wer. 1,Chapter 12]. [Hug. 1], [Mort 1] or [Kane. 1] are also good sources.

3.1.2 Kinematics

Angular Velocity

We now consider the time derivative of Y defined by (?). Since all elements of Y

are scalar functions of time, the time derivativeof Y, denoted Y, is simply

Y:=

yn vi2 yi3
• • •

v21 y22 V23
• • •

, v31 y32 V33 j

(3.1.8)

where the overdot can be applied without fear of ambiguity. In a slight abuse of nota

tion, we now define the matrix ffl* e R3x3 by £*:= YTY. (This notation is used in

[Hug. 1].) First, note that ©* is skew-symmetric. This follows since ©x + (co*)7 =

YTY +(YTY)T =YTY + YTY = iL(YTY) =1=0. Hence, ©_x has the representation

<a*:=
0 -©3 ©2
©3 0 -©!

-©2 ©j 0.

(3.1.9)

for some ©x, ©2, ©3 e IR. We then define the triple ©:= (©j, ©2, ©3)T. Although

© is not the triple of a particular vector (it is simply the components of an algebraic
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relation between Y and Y), following tradition we nevertheless define a vector ©> by

G£ := ©i ^i + co2 ^2 +©3 ^3, which we shall call the angular velocity vector of the

body frame withrespectto the inertial frame.

Kinematics ofVectors and Triples

Consider again the point P of the previous section specified by the vector r^ = OpP

with respect to the inertial frame. If the point P is moving in space, then an observer

in the inertial frame and an observer in the body frame see different motions for P due

to the relative motions of the frames. We denote vector time-derivatives with

respect to the inertial frame by an overdot, ('), and a subscript t, ()t for time deriva

tives with respect to the body frame. Note that ^j =0, and h^t =0, for i=l, 2,3.

Let ^ = OgP be specified by the triple w=(wp w2, w3)T. Differentiating ^

with respect to the inertial frame yields

i> =tii izijlr+t^i 32 33li =[41 32 $$i (3.1.10)

since the rate of change of the inertial frame with respect to itself is zero, i.e., ^ =

0. Note also that the time derivative of a triple, unlike the time derivative of a vector,

can have only one meaning, so the simple overdot can be applied without ambiguity to

the triple r. Similarly, let § =[ b^ ^2 .^Rthen

?» =[^l ^2 &]£ o-1-11)

Therefore, differentiating (3.1.6), j; = ^ + £, yields
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• • •

=i+tiii2 43iR+2f C3.i.i2)

• • •

To determine [J^ *& ^a). differentiate (3.1.3)-(3.1.5), [t^ _^ $d =t 3l 32

^3]Y, with respect tothe inertial frame:

Ul J^.kl= t3l 32 33lY +t3l 32 33lY (3.1.13)

Inserting ^ =0, Y =Y©\ and [^ J^ -fel = t 3l 32 33lY mt0 me expression

(3.1.13) yields in succession

• • •

Ui ^2^31= [31 32 33^

= [^1^2^31^ or,

• •

[4i ]£2 Jj3l = %x[^ ^ ^ (3-1.14)

where x denotes the usual vector cross product Thus, using (3.1.14)) in (3.1.12))

yields

r> =^ +tt>x[£1 ^2^3lR+ R>, or

*>=£ +©, x§+R> (3.1.15)

Equation (3.1.15) is a coordinate free expression that gives the relates the velocity

of a point as seen by an observer in the inertial frame (r^), to the velocity of the point

as seen by the observer in the body frame (^t). 1° inertial coordinates, this calcula

tion is similar. From (3.1.7), r =y.+YR, we obtain by time differentiation
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" £=i +YR + YR

r=i +Y©_xR +YR (3.1.16)

where we have again used Y =Y©\ As stated previously, there is no ambiguity with

differentiation of triples with respect totime since they are not vectorial functions.

Suppose now that the point P is accelerated with respect to either frame. Then, by

computation in coordinates

r = x+ YfiX*R +Y©*R +Y©XR+YR +YR

= £+ Y£*(©*R) +Yia*R +2Y£*R+YR

=X+Y(fi2x(o^R) +a**R +2©.x R+ R) (3.1.17)

As was the case with ©>, define o^ to be ^ := ©!_^i+ g>2^2+ ®3^3» which we

shall call the angular acceleration vector of the body frame with respect to the inertial

frame. Using this definition, one can derive the vector analog of (3.1.17):

£ =% +5* +^xR +2©>xRt+ ^x(^xR) (3.1.18)

The physical interpretation of the terms in equation (3.1.18) is as follows. The first

term is the acceleration of the origin of the body frame with respect to the inertial

frame, the second term is the acceleration of P with respect to the body frame, the

third term gives the acceleration due to the angular acceleration (^, the fourth term is

the Coriolis acceleration, and the last term is the centripetalacceleration.
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3.1.3 Gibbs Parameters

Since Y defined by (3.1.3)-(3.1.5) is an orthogonal matrix, it has redundant parame

ters. Indeed, YTY =I implies that yn, y21, and y31 are related by yn2 + y212 +y312

= 1, etc. Thus, to completely specify the orientation we do not need all 9 parame

ters. It can easily be shown that if Y is a real orthogonal matrix, with det(Y) = 1,

then Y has 1 as an eigenvalue. This means there is a real triple &such that Yb = h.

This gives Euler's Theorem [Kane 1, p. 14]: The most general displacement of a rigid

body with one point fixed is equivalent to a rotation of the body about some axis.

Thus, to completely specify the orientation, only three parameters are needed: two

parameters specifying an axis of rotation, and a third parameter specifying the angle

of rotation about the axis. One way of doing this is to define a triple (called the

"Gibbs Parameters", or the "Rodrigues parameters") [Kane 1, p. 16] £ e IR3 by

£=tan(<|>/2)e_ $e (-«,«) (3.1.19)

where $ is the angle of rotation (in radians) of the body frame about the axis of rota

tion e. e IR3. As in the case of ©^ £ is not the triple of a particular vector, but is sim

ply a description of the rotation that must be applied to {Ob, _^i, ]^2, ^3} to orient

{0B, ^1, ^2, ^3} with {Oe, 4b ^2, ^3}.

Since £ and Y both specify the orientation of the body frame with respect to the iner

tial frame, they must be related. In fact, Y can be parametrized in terms of £ by [Kane

l.p.17]

Y© =2(l+£r§)-1[l +UT+£x]-i (3.1.20)
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where I is the 3x3 identity matrix, T denotes transpose and £x is the matrix represen

tationof the cross-product with£ as in (3.1.9).

Gibbs Parameters Kinematics

From Y =Y©_X and the definition of £ given above, along with the equation relating

Yand £, (3.1.20), one can obtain the following differential equation for £: [Kane 1, p.

62]

£=lp+ffiT+£x]ffl. (3-L21>

If t -» &(t) is known, then this differential equation can be solved, (starting from

some initial attitude £,(%)), yielding £(t) for all t^,, and hence by (3.1.20) Y© for all

One comment should be made at this point regarding solution of the differential

equation (3.1.21). If the initial orientation of the body frame is a %rotation about

some axis with respect to the inertial frame, then from (3.1.19) we see that UXq) =

oo. For such a case, one needs to redefine the inertial frame (say by rotation about an

appropriate axis) so that ^(tg) * ~. Such a procedure will also be necessary if one

desires to drive the attitude to an orientation which is a n rotation about some axis

with respect to the inertial frame.

There are, of course, other parametrizations of Y by attitude variables. In fact, most

authors use either Euler quaternions or Euler angles for the parametrization [Dwy. 1,

3], [Mon. 1], [Vad. 1]. However, as discussed in [Dwy. 2], the Gibbs parameters

are probably the best choice of kinematic variable for control synthesis in that it

avoids state constraints and/or feedback singularities that are usually present when
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other variables are used. These problems occur because more than three parameters

are used to specify the attitude, which means that the resulting control problems have

constraints due to parameter redundancy. (Only three parameters are required to

specify orientation.)

3.1.4Spacecraft and ReactionWheel Dynamics

The physical model is depicted in Figure 3.1. The structure consists of a rigid body

in which a thin, flexible, cantilevered beam-like appendage of length L is attached.

Assume the beam is uniform and of constant cross-section.

Flexible Beam

Figure 3.1 - Spacecraft Configuration

Affix the dextral body coordinate frame, denoted {Ob, J^, _t^, J^}, to the rigid

body center of mass Ob. {J^, ^2, ^3} are orthonormal vectors which coincide with

the rigid body principal axes of inertia; in addition, assume the b$ axis coincides with

the centroidal axis of the undeflected beam, and that the beam is attached at cj^.
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Control inputs mounted on the rigid body (not shown in Figure 3.1) consist of three

torque jets, three force thrusters and three momentum wheels. For i=l, 2, 3, the

torque jets J{ produce a pure torque x{ about the ^3 axis, the ith thruster produces a

force FTi' in the direction J^, and the ith momentum wheel spins about an axis paral

lel to JJ3, thus also producing atorque x{ about ^3.

First, some notation will be needed. Let Iq be the rigid body inertia tensor (including

torque jets and locked wheels) calculated with respect to the body frame {Ob, J^i, ^2

, hrf. Let IA= diagfl^, 1^, ^3) eR3x3 where 1^ is the rotary inertia of wheel i.

Let Q^ =(Q^, Q^, G**)7 eR3 where ^wi denotes the angular velocity of wheel i

about its axle (in body coordinates), and let mB be the mass of the rigid body. Let x

3 T^ =£xt h± denote the torque due to the torque jets, with 1 = (xx, x2, x3) denoting
1=1

3

the triple of ^ with respect to the body frame. Finally, ^bg = £FbBi ^i is ^ force

the beam exerts on the body at 0^3, with corresponding triple F^B = (FbB1, FbB2,

3

FbB3)T with respect to the body frame, while M^b =£MbBi-^i is me moment the

beam exerts on the body at cj^ with corresponding triple MbB = (MbBl» MbB2»

MbB3)T with respect to the body frame.

Rigid Body

For simplicity, all calculations will be performed in coordinates, rather than vectors.

It should be stressed that nearly all the calculations can be performed using vectors.

The reader is encouraged to try these calculations, using methods identical to that of

section 3.1.1.
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Now consider a free-body diagram drawn around the rigid body portion (excluding

thrusters) of the spacecraft Note that the triple of the angular momentum of the rigid

body with respect to the body frame, calculated about Ob and, denoted by h, is IqO) +

Ia&w* Therefore, the triple of the angular momentum with respect to the inertial

frame is Yh. Therefore,computing the time derivative Yh yields

Iq©+ IAaw +wxI0ffi +©xIAaw =x+cxFbB +MbB- (3.1.22)

where c = (0, 0, c)T. The right-hand side of (3.1.22) is the net torque (calculated

about Ob) applied to the rigid body. It is composed of the torque due to the torque

jets, and the net moment that the beam applies to the rigid body. Next, apply New

ton's third law of motion to the free-body with respect to Og, an inertial frame.

Assume that the torque jets apply no net force on the rigid body. Since y_ gives the

coordinates of Obwith respect tothe inertial frame,

mBi=Y©FbB +FT (3.1.23)

where FT is the triple of Fj of the force thrusters with respect to the inertial frame.

(Hence, FT= YFT'.)

Momentum Wheels

Now draw a free-body diagram about the momentum wheels alone. Compute the

rate of change of the angular momentum associated with the momentum wheels with

respect to the inertial frame, and write out the components associated with the wheel

axles, to obtain, in matrix form,
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IA(6+Ow) =x; (3.1.24)

where t =(V , v£» x3 )T» Ti' is ^ tor^ue exerted bv ** ith motor on me rotor of

the ith wheel. Complete details for this calculation, and the others above, can be

found in many sources, for example (Hug. 1,p. 67].

Finally, substituting (3.1.24) into(3.1.22) yields

(Iq- lJA+OP<flk +£*/&*=*• S +^EbB +MbB- (3.1.25)

3.1.5 Beam Dynamics

Consider now a free-body diagram drawn around an infinitesimal section of the

beam located between z^3 and (z+dz)^. (See Figure 2.2 and Figure 2.3 in Chapter

2.) Let u = (ulf u2, u3+z)T denote the triple of ^ with respect to the body frame ofa

point p whose undeformed position is z]^, and let u^ denote the triple with respect to

the body frame of the rate of change of ^ with respect to the body frame. Let F(z£ =

3

yF: b: denote the shear force acting on the section of the beam at z t^, and
i=l "*

F(z + dz) the force acting on the section of the beam at (z+dz) ^3. Then, since the

acceleration of P with respect to the inertial frame is given by (3.1.9), writing New

ton's third law with respect to the inertial frame yields

1^+ mx u+2©" ^ +fflWu) -dF(z) +Y"1* =0. (3.1.26)

Note that it is assumed the beam mass per unit length is unity, and
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lim Hz + dz) - F(z)
-v > dz->0 jfc

Up to this point no beam model has been employed. The term dF(z) is the only

term in (3.1.26) which is model dependent *We will model the beam as an Euler-

Bernoulli type beam, with Voight-Kelvin damping [Pop. 1, p.116] (often referred to as

viscous damping), and for simplicity we will ignore torsion. Let \ii( = E^ in Chapter

2) denote the flexural rigidity of the beam in the ith direction, and let kj ( = \ifo in

Chapter 2) be a positive constant reflecting the rate of energy dissipation of the beam

in the ith direction, i=l, 2, 3. Assume for simplicity that the beam has its principal

axes of inertia parallel to the principal axes of the rigid body, so that the expression

for F(z) for anEuler-Bernoulli beam becomes (see (2.2.4) and (2.3.13))

F(z)=-n3'(u)-k3/(ut) (3.1.28)

/ ^(Oi a3(')2 d(')3 \T
where ^=diag(^lf ^, \ij), k=diag(k1, k2, k3) and d(«):=V 3z3 » dz3 »" dz ) •

Hence, for such a beam dF(z) becomes

where _v, . _ „ , _ ,
dz* dz

dF(z)= -\id(u) - kdtej (3.1.29)

aw=(-4 •—j2,- 4?^)T-lnsen o-1-29)mt0 (3'L26) t0 obtain

u^+ & u+2^+fflWu) +^3(u) +kaOit) +Y-Xy =0 (3.1.30)

Suppose force thrusters Fj, i=l, 2, 3 are present at the end of the beam with the

direction of Fj parallel to J^. The force due to thruster Fj is positive if the force exert-
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ed is in the direction ^. Then the boundary conditions for this configuration become

(see Chapter 2, and [Pop. 1, pp. 385-386,124,128])

ux(c) =u2(c) =u3(c) =0, ^'(c) =u2'(c) =0

Ul"(c +L) =u2"(c +L) =0 (3.1.31)

^'"(c +L) +kjU/Xc +L) =-Fj, i= 1,2.

^3u3'(c +L) +k3u3t'(c +L) =-F3

The first set of boundary conditions indicate that no deflections occur at the point of

attachment and that there is no slope in the transverse directions at the point of

attachment The second set indicates that there is no moment at the free end of the

beam, while the third and fourth set indicates that the force at the point of attachment

is Fi(t).

To complete the derivation of the spacecraft model, we must determine the relation

ship between F^ in equations (3.1.23) and (3.1.25) and the beam, and between MbB

in equation (3.1.25) and the beam. From (3.1.28)

FbB =F(c) =-n3'(u)lc-ka'(sit)lc. (3.1.32)

As for the moment at the point of attachment M^, note that there is no moment due

to axial effects. Further, we ignore torsion. Therefore, (M^sh = 0. The transverse

moments are, as in Chapter 2,

M(z) =(^iu1"(z) +k1ult"(z), ^i2u2"(z) +k2u2t/'(z), 0)T (3.1.33)

Therefore,
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MbB=M(c)=aiiU1//(c) +k1ult"(c), |i2U2"(c) +k2«2t"(c), 0)T (3.1.34)

In this thesis, other formulations of F^ and MbB wm be useful- UsinS me boundary

conditions for a free-end beam (which occurs when F = 0 at z= L in (3.1.31)) we also

obtain

C+L

^ =j [M3(u) +k3(Ht) ]dz (3.1.35)

C+L L

MbB =J(Jcol[0i3(B) +k3(ut))u, 0]dxjdz (3.1.36)
c z

where col(a, W is the column vector (aT, l2T)T, and (a)12 = (ax, aj)7. These equa

tions are obtained by direct integration.

There is one more formulation that will occasionally be used in this thesis. Recall

that u. =(ux, u2, z +u3)T where the Uj are the deflections in the direction J^. Then,

using (3.1.34), (3.1.28) and the boundary conditions for the free-end beam, fixed end

beam (which occurs when F is zero)

C+L

c^jj +MbB3 J ux &id(u) +kd(^) ]dz (3.1.37)
c

as a simple integration will show. (The right hand side is simply the summation of

the infinitesimal moments about Oe.)

In this paper, all these formulations will be used extensively. It should be noted that

we know of no other author that uses the formulation (3.1.20) - (3.1.21). In fact, one
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author [Bai. 1, p.52, Remark 4.5] claims that there is no relationship of the form

(3.1.35) and (3.1.37)!

3.1.6 Spacecraft Models

Flexible Space Structure With Momentum Wheels (FSSMW)

Sections 3.1.1-3.1.5 gave the kinematics and dynamics for the flexible spacecraft

illustrated in Figure 3.1. Combining (3.1.21), (3.1.25), (3.1.24), (3.1.23), (3.1.20),

(3.1.32), (3.1.34), (3.1.30) and (3.1.31), we obtain the model of the flexible spacecraft

used in this paper

£=±[i+&T+£xte.
(Iq- IA)m +ffiXI0ffl +^XlA^-w =i- tf+^EbB +MbB-

iA(ia + S.w) =£

mBs=Y©EbB+£T

(FSSMW) Y© =2(l+£r£)-1[I +££T+£x]-I

FbB =F(c) =- '̂(u)lc-k3'(sit)lc.

MbB =(Hiuf(c) +klUlt"(c), H2U2"(c) +k2u2t"(c), 0)T

1^+ ©* u+2©*^ +©^(ofu) +^(U) +kdiuj +YAy. =0

ux(c) =u2(c) =u3(c) =0, ux'(c) =u2'(c) =0

ux"(c +L)=u2"(c +L)=0

MiUT(c + L) +kjUn^c +L) =-Fj, i= 1, 2.

^u3'(c + L) +k3u3t'(c + L) = -F3

As noted before, equations (3.1.43) and (3.1.44) will be occasionally modified to the

(3.1.38)

(3.1.39)

(3.1.40)

(3.1.41)

(3.1.42)

(3.1.43)

(3.1.44)

(3.1.45)

(3.1.46)
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relations (3.1.35) and (3.1.36). Also, the expression cx F^ + MbB in (3.1.39) will

sometimesbe replaced by (3.1.37).

For simplicity, refer to the set of equations of the flexible space structure with

momentum wheels as (FSSMW).

RigidStructureWith Momentum Wheels (RSMW)

In the case where the beam is absent, we also obtain the equations of motion of a

rigid spacecraft withmomentum wheels:

(RSMW) (Iq - IA)© +o>*IoG> +^IaO^ =i - £ (3-1.48)

iA(m + aw)=i/ (3.1-49)

mBi =FT (3.1.50)

Let this system of equations for the rigid structure with momentum wheels be

denoted as (RSMW).

Flexible Space Structure Without Momentum Wheels (FSS)

We will often be concerned with controlling the spacecraft maneuvers with the

torque jets and beam actuators only. In actual spacecraft, the torque jets are used to

move the spacecraft around (due to their high achievable torque), while the momen

tum wheels are used to precisely cancel the effects of small environmental torques

such as solar torques [Ben. 1], and make fine attitude adjustments. Thus, our stan

dard flexible spacecraft model, denoted (FSS), is (FSSMW) with the momentum

wheels locked:



(FSS)
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£=|[i+£&T+£x]ffi. (3*L51)
IoW +c^Iq© =l+cxFbB +MbB. (3.1.52)

mBi =Y©FbB +FT (3.1.53)

Y© =2(l+£T£)-l[I +££T +£x].I (3.1.54)

FbB =F(c) =-n3/(u)lc-ka'(iit)lc. (3.1.55)

MbB =(M-iUi"(c) +klUlt"(c), ^"(c) +k2u2t"(c), 0)T (3.1.56)

u^ &n+2mx Ht +fflx(©*u) +^(H) +k3(Ut) +Y^J =0 (3.1.57)

ux(c) = u2(c) = u3(c) = 0, ux'(c) = u2'(c) =0

ux"(c + L) =u2"(c + L) =0 (3.1.58)

mUi"'(c + L) + IqUj^c + L) = -Fj, i=l,2.

^u3'(c + L) + k3u3t'(c + L) = -F3

Rigid Structure Without Momentum Wheels (RS)

Our standard rigid spacecraft model, denoted (RS), is (RSMW) with the momentum

wheels locked:

£=±P+&T+£xlffl.

(RS) IqO) + mxioG& =i
mBJL=FT

(3.1.59)

(3.1.60)

(3.1.61)

Note for either rigid spacecraft model (with or without momentum wheels) the rota

tional and translational terms are decoupled. From a control point of view, this means
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we can perform maneuvers on each of the terms separately, and there is never a need

to fire the force thrusters and torque jets simultaneously. For either flexible space

craft model, these terms are coupled. This is because the beam flexes and changes

the center of mass of the spacecraft, and conversely the acceleration of the center of

mass of the rigid body and the rotation of the rigid body causes the beam to flex. In

general, this means that both sets of actuators will be needed for each type of maneu

ver.

Remark 3.1.1 - It is interesting to examine what happens to (FSS) (without the

momentum wheels) as the flexural rigidities m, i= 1» 2» 3, go to infinity, i.e., as the

structure becomes rigid. Intuitively, (3.1.52), (3.1.53), and (3.1.57) should reduce to

(3.1.60) and (3.1.61). Firstconsider (3.1.52). It canberewritten

C+L

Iq^ +w^Iom =1+ jux (%+ d>* u+2cox Uj +̂ (o^u) +Y-1^ )dz (3.1.62)
c

where (3.1.37) and (3.1.57) have been used. Since ^ -> <» , ^ -> 0 and % -> 0

(3.1.62) becomes

Iq<2 + ©xIo© =1- lb© - fiflb©

where Ib is the inertia tensor of the beam calculated in the body frame about 0B.

Thus (3.1.52) indeed becomes (3.1.61) in the limit Next consider (3.1.53). Using the

reformulation (3.1.35)



c

C+L

C+L

=Y© J[^(u) +kdi^) ]dz +E,

=-Y© J(^ &u+2©* u^ +̂(gjxu) +Y"1! )dz +Et
c

C+L

=-Y© J (&u+©x(®*u) +Y-1^ )dz +£t

/- C+L \

^-lY© f udzY©Ju
V c J

+FT

dt2=-TT(Yfflfib) +£T
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where c^ is the center of mass of the beam with respect to the body frame, and where

the derivatives are taken with respect to the inertial frame. Thus, (3.1.53) does

reduce to (3.1.61), except now y. refers to the center of mass of the structure including

the beam. Finally, consider (3.1.57). Since ^ -> ~ for i = 1, 2, 3 there is no material

deformation so that d(u) (= 9^)) = 0. However, what is n3(u) as \i{ -> <« ? In fact,

(3.1.57) - (3.1.58) are meaningless equations in the sense that \id(u) + kd(v£

becomes any value necessary in order that the rigid body equations (3.1.60) and

(3.1.61) hold. So, in general, |i3(u) + kd(uj does not equal zero as one might

expect Thus, (FSS) does become (RS) as the flexural rigidities become infinite, as

expected.

With these ideas in mind, we now develop the last spacecraft model that will be

needed.

Flexible SpaceStructure Ignoring Axial Effects (FSS/A)
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Suppose now we ignore axial effects. Clearly the formulation (3.1.55)-(3.1.56) of

(FSS) is unacceptable since, as shown in Remark 3.1.1, the term \l$—li3 becomes

meaningless as the structure becomes rigid. Therefore, as in Remark 3.1.1, we will

use the formulation

EbB =(-^lV'to " Mif<c>« -^u2'"(c)" k2u2t'"(c)>
C+L

-11 (& U+2^ Ut +of(gfti) +Y"l£ )3dz])T (3.1-64)

£feB

C+L

MbB= (^iur(c) +klUlt"(c), ^u2"(c) +k2u2t"(c), 0)T (3.1.65)

Using this formulation of F^ and MbB* we obtain ^ model for me flexible sPace"

craft without momentum wheels, and ignoringaxialeffects:



(FSS/A)

6- iv+tg+t*)®.

I0d> +ftflI0C2 =l +£xFbB + MbB

mB£ =Y©FbB +FT

5>B = (-M-i«i'"(c) - k,uu'"(c), -H2U2'"(c) - k2U2t'"(c),
C+L

J -(£>* u+lap Uj +̂ (c^u) +Y_1x )3dz)T
MbB =(l^iur(c) +k1ult"(c), ^u2"(c) +k2U2t"(c), o)T
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(3.1.66)

(3.1.67)

(3.1.68)

(3.1.69)

(3.1.70)

(3.1.71)

0^+ ffix u+2©x ^ +£*(ffixu) +|i3(u) +k8( Ut) +Y"!y)u= 0(3.1.72)

ux(c) =u2(c) =0, Uj'(c) =u2'(c) =0

Ul"(c + L) = u2"(c + L) =0 (3.1.73)

_ muj'̂ c + L) + kjUit'"^ + L) =-Fj, i=l,2.

It should also be noted that since axial effects are ignored, u = (uv u2, z)T, where z is

thepointof the beam under consideration.

3.2 Spacecraft Stabilization - Introduction

In this section and the following one, we consider the stabilization, or detumbling,

problem for spacecraft. The problem consists of designing a control law such that the

spacecraft stops spinning, and if there are flexible portions to the structure, the beam

deflections and velocities go to zero.

For a rigid spacecraft, the problem is well known and several schemes exist.

Indeed, a sample control law will be given in Theorem 3.3.1. For a flexible structure,

the problem is fairly straightforward if the beam is modelled by its finite dimensional

approximation. In this case, stricdy passive feedback utilizing torque jets on the rigid
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body, and collocated sensors and actuators on the beam can be used to stabilize the

system.

When the beam is modelled in an infinite dimensional form, the results in the litera

ture are currendy somewhat limited. In [Bis. 1], a stabilization scheme is proposed

using distributed control on the beam, and an asymptotic stability result is obtained.

From an engineering viewpoint, though, the value of such a result is somewhat dubi

ous for two reasons. First, distributed control along a beam is not easy to do, nor is

measuring the velocities along the whole length of the beam. Secondly, asymptotic

stability means that if we start from an initial state sufficiently close to an equilibrium

point, then all trajectories of this system tend to the equilibrium point For a space

craft, our primary interest in a detumbling maneuver is to decrease the angular veloci

ty from a possibly large value to a small value, or zero. Thus, the control goal should

be to obtain a control law that guarantees global asymptotic stability results (i.e.,

starting from any. initial state, the system tends to the rest state), or better yet, an

exponential stabilityresult.

We now address these issues in the next three sections. In Section 3.3, Theorem

3.3.1, we propose a feedback control law for the torque jets to exponentially stabilize

the rigid spacecraft. The method of attack uses Lyapunov techniques.

In section 3.4, we will consider the flexible spacecraft in section 3.1.5, where the

beam damping will be assumed significant. Theorem 3.4.1 gives a control law which

stabilizes this system using the torque jets and the force thrusters mounted on the

rigid body. The method of proof of this result is as follows. First, we will define an

energy functional E, and then a modified functional V. Using V, it will be shown that

E<K/t, for t sufficiendy large. This will give a global asymptotic stability result. By

separating the linear and nonlinear parts of the pertinent differential equation, and

using a Bellman-Gronwall argument, it will then be shown that the system is actually

exponentially stable if the mass of the rigid portion of the spacecraft is much larger



88

than the mass of the flexible beam. In Theorem 3.4.5, a modified control law which

accounts for possible nonlinearities in the sensors and actuators is proposed. Using
methods identical to that of Theorem 3.4.1, a global asymptotic stabiUty result is

obtained.

Finally, in section 3.5, we will consider the flexible spacecraft in section 3.1.5, but

this time the beam damping is assumed zero. For this problem, active beam control

will also be needed to stabilize the system. The beam control will be of the boundary

variety discussed in Chapter 2. Theorem 3.5.1 gives a linear control law, which

results in global asymptotic stabUity. Theorem 3.5.2 gives a similar result but allows

sensors and actuators to contain sector nonlinearities. The method of proof is identi

cal to that of Theorem 3.4.1 in that it uses Lyapunov functionals.

33 Stabilization of Rigid Spacecraft

In this section we consider the problem of spacecraft stabilization described above.

The main reason for discussing the rigid spacecraft first is to elucidate some of the

ideas that will be used in the more general case of a flexible spacecraft. The mathe

matical complexities are far greater in the flexible case, but the ideas behind the con

trol laws are very similar.

Theorem 3.3.1 - Consider the rigid spacecraft (RS) described in section 3.1.5. Since

the rotational and translational motions are decoupled, we need only to consider the

rotational term

Iq© + ©xIqCO =t (3.3.1)

Let the control law be
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1^-gJ©) (3.3.2)

where ^(©J lies in the sector [c^, ~), c^ >0, (i.e., cj| j©_ ||2 <©^(ffi) <-)•

Then ©-> 0 exponentially, i.e., the body stops spinning exponentially.

Comment 33.2 - There is a simple interpretation of this result when gj©) = K^

where K is a positive definite matrix. The - K^ applied torque decreases the mag

nitude of Iq©, and the ©"Iq© term doesn't affect the magnitude of Iq© since Iq© 1

©%©. For small values of ©, ofIq© is negligible. Thus, roughly speaking, (3.3.1)

looks like Iq ©=-K^ , which is exponentially stable since both l0 and K^ are posi

tive definite.

Proof ofTheorem 33.1 - Consider the Lyapunov function candidate

E(©J := 1©tIq©> ^WWUmll2. (3-3-3)

where kmin(Io) is the minimum eigenvalue of IQ. E(©) represents the total rotational

kinetic energy of the system. Note that E(©) is positive definite since Iq is positive

definite, and it is decrescent ([Vid.1 p. 143]) for the same reason. Differentiating

E(©) with respect to time, denoted E(©), along trajectories of the system we obtain

E(©) =©tIq© (3-3-4)

=©T(-mxio©+i) <3-3-5)

= cdtx (3-3-6)
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Inserting the control law i := -g^t©) we obtain

E(©) =-©^(©J ^ -cJ ©||2 <0 (3.3.7)

where the last inequality follows form the sector condition on g^©). Note that E(©)

is negative definite. Since E(©) is positive definite and decrescent, and E(©) is neg

ative definite, from [Vid. 1, p.154] we can conclude that our nonlinear system is glob

ally asymptotically stable, i.e., VcQq e R3, ©-> 0 as t -» ~. This, however, does

not say that ©_ -» 0exponentially. However, combining (3.3.3) with (3.3.7) we obtain

E(©) K -cm (3.3.8)

Integratingform 0 to t we thus obtain

E(©) <; EWexp^c^^do)) (3.3.9)

Since Iq is positive definite and c^ > 0, this shows that E(©) -> 0 exponentially.

Therefore, ±^m^)!! ©||2 < E(©) implies that ©-> 0 exponentially, which proves

the theorem. •

3.4 Stabilization of Flexible Spacecraft - Beam Damping Present

The previous section gave a control law which stabilized the rigid spacecraft. In this

section, the stabilization scheme is expanded to include the flexible spacecraft (FSS)
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described in section 3.1.5. The chief difficulty in showing these results is that the

beam is modelled in an infinite dimensional form, so that most of the standard stabili

ty results in nonlinear system theory (for example, LaSalle's Theorem) do not stricdy

apply.

In this section, we will first consider the spacecraft model with beam damping pre

sent, and then with the damping absent The idea in proving these results is similar

to Theorem 3.3.1 for the rigid spacecraft. First, we will define an energy functional E

which is positive definite, and then a modified functional V. Using V, it will be shown

that E < K/t for some constant K and for t sufficiendy large. For the case where the

mass of the rigid body is much larger than the mass of the beam (a reasonable engi

neering assumption), then it will be shown that the closed loop system is actually

exponentially stable by using a Bellman-Gronwall type argument.

Theorem 3.4.1 - Consider the flexible spacecraft model described in section 3.1.5

and denoted (FSS/A) where axial effects have been ignored. Also assume no active

beam control, i.e., Fj(t) =0, i= 1,2,3in (3.1.60). The equations then become
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4= P+££T+£xte- (3A1)
Jq& +ffl^Ioffi =1+£x EbB +MbB <3A2>

mBl-YffiSa+Er (3.4.3)

Y© =2(l+£r£)-1[I +HT+£x]-I (3A4)
EbB =C+llV<c> " klult'"(c>> -M2«2'"(c) - k2«2t'"(c)'

C+L

J -(ffi* u+2of u^ +©*(©_xu) +YAx )3dz)T (345)
c

MbB =(HlV(c) +klult"(c)» H2U2"(C) +k2u2t"(cz)» °)T (3A6)

0^+ ©* u+2©* Uj +©*(©*u) +|i3(u) +k8( u^ )+Y"1^^ ° (3.4.7)

Ul(c) =u2(c) =0, u/(c) =u2'(c) =0 (3.4.8)

Ul"(c +L) =u2"(c +L) =0 ^'"(c +L) =u2'"(c +L) =0

Assume that damping isexplicidy present, i.e. kj>0, i=l, 2. Let the control law be

ir-K^ (3.4-9)

Er--Kyi (3A1°)
where K and K^ are positive definite matrices. Then for any initial conditions suffi-

cientiy smooth

(i) © and i go to zero as t -» <*>, and_u(x, t), u^x, t) go to zero as

t -» oo in appropriate norms,

(ii) If the mass of the rigid body is much larger than the mass of the

beam, then ia, & u, and Uj all go to zero exponentially as t -» °°.

Before proving Theorem 3.4.1, we first prove the following simple proposition which

will be used extensively in the calculations below. The proposition merely states that
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deflections and deflection velocities can be bounded by the higher order derivative

(energy type) terms.

Proposition 3.4.2 - Let u = (ux, u2, u3+z)T denote the position (in body coordinates)

ofapoint Pwhose undeformed position is z^3, as above. Then usatisfies

C+L

(i) (Ui(z, t) )2 <LJ (Ui'(z, t))2dz i=1,2,3.
c

C+L

(ii) (Uit(z, t) )2 <LJ* (uit'(z, t))2dz i=1,2,3.
c

C+L

(iii) (u/(z, t) )2 < LJ (Ui"(z, t))2dz i=1,2.
c

C+L

(iv) (uit'(z, t) )2 < LJ (uit"(z, t))2dz i=1,2.
c

C+L

(v) (Ui(z, t) )2 <L2 J (Ui"(z, t))2dz i=1,2.

Proof of Proposition 3.4.2 - (i) Using the fundamental theorem of calculus and the

boundary conditions Uj(c, t) =0, for i=1,2,3 and for all t e R+,

A

Ui(z,t)= J u/fo t)dz
c

Therefore, by the Schwarzinequality we have

( x ^ crL(Ui(z, 0)2= MUi'(z, t)dz < LJ (u/(z, t))2dz
V c ) c
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which proves statement (i). Statements (ii), (iii), and (iv) are proved similarly.
Combining (i) and (iii) then yields statement (v). •

Proof of Theorem 3.4.1 - The first step is to verify that our system is well - posed.

That is, we must show that solutions exist and are unique. This is straightforward

and is done in Appendix 3.B. Assuming existence and uniqueness of solutions, we

define the energy functional as

C+L

E(©,£, i,u,u^):=i©TIo©_ +J II (Uj +©* u+Y'1 i )1>2 II dz
c

C+L

+1mBll i II2 +j Oh(ul")2 +H*2? y* (3-4.13)

(For simplicity, let E denote E(©, £, i , u, u^).) The term energy is used because

the first term is the rotational kinetic energy of the rigid body, the second term is the

total kinetic energy of the beam, the third term is the translational kinetic energy of

the rigid body, while the last term is the potential energy of the beam. Thus E repre

sents the total energy of the spacecraft system. Next, we desire to calculate the time

derivative of E, which will be denoted as E. We could calculate the answer term by

term, but a little thoughtmakes thejob infinitely easier. Recall that

^-(Energy) = instantaneous power delivered to system + dissipated power of system
dt

This then implies
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C+L

E=©Ti+ FTTi- {j kx(uxp2 +k2(u2t")2dz } (3.4.14)
c

The first term of (3.4.14) is the instantaneous power delivered by the torque jets,

the second term is the instantaneous power delivered by the external thrusters, and

the last term is the dissipated energy in the system due to beam damping. Inserting

the values of FT andifrom (3.4.9) - (3.4.10) then yields

C+L

E=-mTK(|)«- iTK^ i-{J\(uu")2 +k2(U2t")2 dz } (3.4.15)
c

^ 0

Unfortunately, E can be shown to be only negative semidefinite, rather than negative

definite as was the case for the rigid spacecraft. Using a generalization of LaSalle's

Theorem to infinite dimensional systems (see Chapter 4), we could get a global

asymptotic stability result But that is not our plan of attack here. Instead, we intend

to find a modified Lyapunov type functional and perform calculations to get stronger

convergence results.

So now consider the function

C+L

V^ J" [Ok +m? a+Y^1 i)i^J T( JL )i^dz (3.4.16)
c

C+L

=J [Y(ut +itftJl +Ywli)1|2JT(Ya)lf2dz (3.4.17)

Recall -2aTb <aTa +bTb= II a II2 + II b II 2 Therefore,
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C+L C+L

-2VX <> J II (u^ +mx u+Y"1 i)lf2ll 2dz +JII (u)lt2H dz (3.4.18)

C+L C+L

£Jll ^+fif u+Y"1 ill2 dz +L2/[(V)2 +(u2")2]dz (3.4.19)
c c

where we have used Proposition 3.4.2 to obtain (3.4.19). Therefore, -2VX < mE for

some m >0. Rewritten, this becomes V! £ -mE/2. Next, calculating the time deriva

tive ofV! (use 3.4.17), again denoted Vv we obtain

C+L T

Vx =J ([(1^+ ©x u+2fflx 3^ +̂ (Gfu) +Y"xx )it2 ](U)lf2 )dz
c

C+L

+J IK 31t +H? Jl +Y"1 i )lf2ll dz

C+L

=J (-[(^(uj+kao^))^7^^ +II (Ut +©* u+Y"1 i )ull Iz) (3.4.20)

where (3.4.6) has been used. Integrate the first term twice by parts and use the

boundary conditions (3.4.7)-(3.4.8) to obtain

C+L

=-/ WV)2 +H2(U2")2 +kiufuu" +V2"u2t" )dz
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C?L 2
+J IKHt +JQp U+Y^i)^! dz (3.4.21)

So define the modified Lyapunov functional as V := Et + Vv The statement after

(3.4.18) shows that

V2>Et-mE/2 = (t-m/2)E. (3.4.22)

Next, computing the time derivative ofV, we obtain

C+L

V=Et+E+V! ={-&TKJ*- iTKj i- J*(k^u,,")2 +k2(u2t")2 )dz }t
c

C+L

+IfflTIo!a +1mBll i ||2+I j (n,(Ul'02 +H2(»2")2 )dz
C

C+L C+L

+-J IIUt +̂ u +Y^ill dz +J IKflt +fflfu +Y^i)^! dz (3.4.23)
c

C+L

-{J^i^i")2 +M2(V)2 +klul"ult" +k2u2"u2t" <** )

=(^TI0©-mTKa)©t) +(ImBllill2-^ it)

C+L C+L

+±J llu^ +fifu +Y^ill dz +J IKut +̂ u +Y-1^)^!! dz
c

C+LC+L /C+L >

I J( n,(Ul")2 +Mu2")2 )dz - Jki(V02 +k2(u2t")2 <^ t (3.4.24)
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- J( klUl"ult" +k2U2"u2t" )dz
c

Now note the following facts:

1. II u^ +̂ ^u+Y"1 i II2 <II ij^ II2 +11 w^ ull2+ IIY"1 i II2

^HujlP +llmlPllul^+llill2

Therefore,
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C+L C+L C+L
C 2 f 1 2f 2J Hut +̂ u +Y^ill dz <lLllill2+ J ll^ll dz +II eoII J II ull dz (3.4.25)

2. aTb <82aTa +bTb/82forall5eR/{0},andforalla,beRn. (3.4.26)

C+L C+L

3/ Using Fact 2above, -J (klUl"ult" +k2u2"u2t" )dz <82 Jk^")2 +k2(u2")2 dz
c c

C+L

+1/52 J( k^un")2 +k2(U2t")2 )dz ,for all 8€R/{0}. (3.4.27)
c

Now using Facts 1,2,3, and Proposition 3.4.2 in(3.4.24) above, weobtain

C+L

V<(!©TIo©+l ll©H2Jll ul|2dx-(©TK(fl©)t) +(imBllill2+ iLllill2
c

C+L

iTK^ it) - J[( ji,/2 -52k1)(ui")2 +(H2/2 -82k2)(u2")2 ]dz +
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C+L

+(- \ t+1/82+1M") Jk^un")2 +k2(u2t")2dz (3.4.28)
c

Thus, if we choose 8 small enough and t large enough, V can be made negative. In

other words, there exists aT>0anda8'>0 such that V < 0, for all t > T. Thus,

from (3.4.22), this shows that

E(t)£V(T)/t, foraUt^T. (3.4.29)

Using the definition of energy (3.4.13) we thus see that ©(t) -> 0 as 1/t, i -> 0 as

C+L C*L

1/t, Jll (ut +©* u+Y"1 i )u II dz -* 0as 1/t and J("iK')2 +]&&&** -> 0
c

c.

C+L

as 1/t This in turn implies ©(t) -> 0as 1/t, y_ -» 0as 1/t, J|| (ut)i;2ll dz -> 0as 1/t

C+L

and J (M-i^i'O2 +^(u^dz -> 0 as 1/t. Using Proposition 3.4.2 (v), the latter
c

terms shows that u^x, t) -> 0 as 1/t uniformly in x, and u2(x, t) -» 0 as 1/t uniformly

in x. Thus ©(t) and i go to zero as 1/t, ult(x, t) and u2t(x, t) go to zero in L2, and

ux(x, t) and u2(x, t) go to zero as 1/t uniformly in x. This proves (i)

Proof of (ii) - First, separate the linear and nonlinear parts of the differential equa

tion (FSS). It will be shown that the linear part generates an exponentially stable

semigroup. From the first part of the Theorem, we will bound the nonlinear terms by

terms that go to zero as 1/t. Using a Bellman-Gronwall type argument will then com

plete the proof. The details are left to Appendix 3.A. •
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Remark 3.4.3 - It is instructive to consider this nonlinear system from an

input/output point ofview. Ifequation (3.4.14) is integrated from -oo to t, we obtain

J (©Tl +ETTi) dz -{J (Jkfatf +k2(u2t")2 dz) dt} = Jd. E(t)dt(3.4.38)
-oo -oo C -oo

= E(t)-E(-oo) = E(t)

if we assume the energy at t = -<» is zero. Thus

j (©Ti+ FTTi)dz 2>0 (3.4.39)

This shows that our spacecraft system is passive [Des. 2, p. 173]. Furthermore,

our feedback law (3.4.9) - (3.4.10) is stricdy passive [Des. 2, p. 173]. By the passiv

ity theorem, [Des. 2, p. 181] wecanconclude that themap

V£t;

r \
© (3.4.40)

is L2 stable. Since the feedback law (3.4.6) - (3.4.7) is linear, one can show using

arguments similar to Theorem 6.4.14 of [Vid. 1] that this implies the map (3.4.40) is

globally asymptotically stable.

Despite these positive outcomes, passivity arguments are unfortunately unsuitable

to complete the proof. Note that the passivity result above says nothing about the

beam. Indeed, one needs to make other complicated arguments to reason that u and
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u. go to zero asymptotically. In addition, passivity theorems do not yield exponential

stability results such as those obtained in Theorem 3.4.1. Again, other arguments

unrelated to passivity would be needed to complete theresult.

Remark 3.4.4 - To implement the control law (3.4.9)-(3.4.10) one must be able to

determine fii and i by measurement. To measure £& one simply uses rate integrating

gyros mounted on the rigid body [Wer. 1, p. 199]. To determine i one can use accel-

rometers attached to the rigid body.

From an engineering viewpoint, the control scheme in Theorem 3.4.3 has the draw

back that the control sensors and actuators are assumed linear. Unfortunately, all

sensors and actuators have some residual nonlinearities. The following theorem

takes into account a class of such nonlinearities.

Theorem3.4.5 - Consider the system ofTheorem 3.4.3. Let the control law be

i:=-g(D(©) (3A41)

FT:=-gJr(i) (3A42)

where gjl<ti) is a nonlinear function lying in the sector [cw, oo), Cfi) > 0, (i.e.,

c2ll ©II2 £ ©T£(©) <°°) and &,(y) is a nonlinear function lying in the sector [c^, oo),

c- > 0. Assume that the system is well-posed, i.e., the closed loop system has a

unique, continuously differentiable solution for all initial conditions sufficiendy

smooth. Then the system is globally asymptotically stable, i.e., ©, i, u, and u^ all go

to zero as t -> oo.



102

Proof of Theorem 3.4.5 - The proof is almost identical to that of Theorem 3.4.3, and

will thus only be sketched. Define E exacdy as in (3.4.13), and compute E to obtain

(3.4.14). Inserting the control law (3.4.41)-(3.4.42) then yields

C+L

e=*Fij& -iTg^ (i)- {J MV)2 +MVO2 <k J
c

C+L

£-cJl ©II2- cy II i II2- {Jk^t")2 +k2(u2t")2 dz )
y

c

< 0

We next choose Vx exacdy as in (3.4.16). Defining V = Et + Vlf one can repeat the

same calculations to obtain (3.4.22), i.e., V £ (t-m/2)E for all t > 0. Next, computing

V, note that the modified control law only affects the terms involving E. Therefore, V

is given by

C+L

VsafflTIoSa+| 1lfflH2Jll ui|2dx-C(Bllffill2t) +(ImBllill2+ |LHill2
c

C+L

9II i II21) - J[( Hi/2 -S^Xu,")2 +(H^2 -52k2)(u2")2 ]dz +cy

C+L

+(- \ t+1/82 +1M") /k^u '̂)2 +k2(u2t")2dz

Note that this expression is almost identical to that of (3.4.28), with the difference

that the cjl ©II2 term has replaced the w1^© term, and the c^ II i II2 term has
•

replaced the iTK^ i term. Thus, ifwe choose 8 small enough and t large enough, V

can be made negative. In other words, there exists a T > 0 and a 8' > 0 such that V <
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0, for all t £ T. Thus, this shows that E(t) £ V(T) / t, for all t > T, which proves the

Theorem. •

3.5 Stabilization of Flexible Spacecraft With Beam Control

The previous section gave explicit stabilization schemes for the flexible spacecraft

system (FSS) when beam damping is present. However, if damping is small, the

exponential decay rate guaranteed by the theorems is undoubtedly quite small. This

means that the beam oscillations may occur for an undesirably long time. Since future

space structures will contain flexible portions with small damping [Joh. 1], many ana

lysts have studied the problem where beam damping is assumed zero. If the damping

is zero, then Theorem 3.4.1 is probably not true, so some sort of beam control will be

needed to guarantee that beam deflections go to zero. As remarked previously, in

[Bis. 1], an asymptotic stability result was obtained using distributed control along

the beam. From an engineering perspective, this is unfortunately unimplementable.

(It should also be noted that using the methods of this section, or the passivity meth

ods mentioned in the above remark, the [Bis. 1] can be shown to not only guarantee

asymptotic stability, but exponential stability - a far stronger result.) A more reason

able engineering approach is to consider boundary control of the type discussed in

Chapter 2, since only limited additional hardware isrequired.

This was done for the planar case in Pes. 1], and extended to the 3 - dimensional

case in [Mor. 2]. Theorem 3.5.1 differs from the [Des. 1] and [Mor. 2] in that effects

due to the coupling of the translational term is taken in account, whereas it is ignored

in the these two papers. The price to be paid is that exponential stability is not readi

ly apparent.

Theorem 3.5.1 - Consider the flexible spacecraft model where axial effects are

ignored, described in section 3.1.5 and denoted (FSS/A). Also assume that no beam
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damping is present, i.e. k=0in (3.1.57)-(3.1.60). Then the equations become

£= P+̂ +^l©. (3*5,1)

iom+^ioca =l+cxFbB +MbB (3-5-1)

mB£=Y©FbB +FT (3.5.2)

Y(£) =2(1 +ffQ'H I+£lT+£x ]-1 (3-5.3)

EbB =(-^lV'W " kiult"'(c)> -^u2'"(c) " k2u2t"'(c)'
C+L

J -(^ u+2©* u^ +©*(©*u) +Y^y. )3dz)T (3.5.4)
c T^3 =ftijUfCc) +klUlt"(c), ^"(c) +k2U2t"(c), 0)T (3.5.5)

0^+ ffi* u+2©* Uj +©"(ofu) +ud(u) +Y_1x )1>2= 0 (3.5.6)

uj(c) = u2(c) =0, Ul'(c) =u2'(c) =0

ux"(c +L)=u2"(c +L)=0 (3.5.7)

^'"(c + L) = -Ft, i= 1, 2.

Let the control law be

i:=-K© (3.5.8)
or*

FT:=-K^i

(F)u:=-A((ut(c+ L) +©xu(c+ L) +Y'ly))x:z (3.5.10)

where K^e R3x3 is apositive definite matrix, K^ e R3x3 is apositive definite matrix,

a >0, P>0, and A e R2*2 is a positive definite matiix. Then the system is globally

asymptotically stable, i.e., ©, & u, and Uj all go to zero as t -» °°. In fact, ©, i, u,

and u. all go to zero as 1/t as t -> «>.

(3.5.9)
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Proof of Theorem 3.5.1 - The proof is very similar to that of Theorem 3.4.1 and will

only be sketched. Of course existence and uniqueness of solutions must be estab

lished, and this can be done similar to the proof in Appendix 3.B. Next, choose an

energy functional E exacdy as in (3.1.13). Compute E to obtain E = -m1^© -

(u^c +L) +j^ u(c +L) +Y"1 y)uT A(u^c +L)+ of u(c +L) +Y"1 y)u - iT]Ky &

which, as before, is the instantaneous power delivered to the system. Let the modi

fied functional be

C+L

V:= 2(1 -e)tE + J 2(z-c) [(u^ +©x u+Y"1 y)^] (u' )i,2dz (3.5.11)
c

Again, we can find a mv m2, and m3 > 0 such that V > (n^t- m2)E - m3, for all t >

0. By tedious calculation, using methods very similar to the proof ofTheorem 3.4.1, it

can be shown that there exists T > 0 such that V < 0, for all t > T. Thus, E(t) goes

to zero as 1/t. •

Finally, we have a theorem, analogous to Theorem 3.4.5, which allows for a class of

nonlinearities in both sensors and actuators.

Theorem 3.5.2 - Consider the system described in Theorem 3.5.1, and given by

equations (3.5.1)-(3.5.7). Let the control law be

i:=-g(D(©J (3.5.12)

FT:=-g^(i) (3.5.13)
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(F)u:=-gF((ut(c+ L) +©xu(c+ L) +Y-1i))u (3-5.14)

where gjs& is a nonlinear function lying in the sector [c^, °°), c^ >0, £y(i) is a

nonlinear function lying in the sector [c^, ~), c^ >0, and gp(( u^c + L) +©x u(c +

L) + Y_1 y) )lj2 is a nonlinear function lying in the sector [cF, °°), cF >0. Assume

that the system is well-posed, i.e., the closed loop system has a unique, continuously

differentiable solution for all initial conditions sufficiendy smooth. Then the system is

globally asymptotically stable, i.e., ©, y, u, and u^ allgo to zero as t -» °°.

Proof of Theorem 3.5.2 - Identical to that of Theorem 3.5.1. The reader should also

consult the proof ofTheorem 3.4.5 if there are any difficulties. •

Remark 3.5.3 - To implement this control law, ©, y, u(c + L), and u^c + L) must be

measured. Remark 3.4.4 discusses the measurement of © and y. To measure u(c +

L), and u^c + L), i.e., the position and velocity of the tip of the beam, one can use

optical methods.

3.6 Concluding Remarks and Future Research

Some rather encouraging trends can be gleaned from the stabilization results of sec

tions 3.4 and 3.5, as well as the thesis of Morgul. In Morgul's thesis, he extends the

stabilization result to the structure of section 3.1, where the flexible beam is modelled

by the Timoshenko beam model. The control law is very similar to those obtained

here. Thus it appears that the beam model employed is not crucial in the stabilizabili-

ty of the rigid body/beam system. As long as the beam is exponentially stable, or can

be exponentially stabilized by beam control methods, it appears that the overall struc-
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turecan be stabilized by a linearcontrol lawof theform (3.5.8)-(3.5.10).

Unfortunately, this conjecture has not been proved rigorously. The way to proceed

would be to consider the most complete beam model currendy available, the so-called

geometrically exact beam models of Naghdi et al (see [Gre. 1], [Gre. 2]), Simo (see

[Sim. 1]), etc. which reduce to the other models when appropriate terms are ignored.

The main difficulty is the complicated nature of the model, which would make it very

difficult to establish existence and uniqueness of solutions for the resulting differential

equations. In addition, one would have to dream up the appropriate modified Lya

punov functional to establish the exponential stability results. As we have seen

above, the energy functional is generally not sufficient to establish the exponential

stability of the system. If one were to establish such a result, it would encompass all

the results in this chapter, and provide a broad generalization to the attitude control

laws presented in the succeeding chapters.

3. A Appendix

We first need a preliminary theorem which will figure prominendy in theproofbelow.

Theorem 3.A.1 - Consider the following differential equation evolving on a Banach

space X

x = Ax + f(x) (3.A.1)

where A: X -> X is a linear map, possibly unbounded, and where f: X -» X is a C1

function satisfying lim ™ =0. Suppose it is known that (i) A generates an expo

nentially stable semigroup and (ii) the differential equation (3.A.1) is globally asymp

totically stable, i.e., for any initial condition xq e D(A), the solution to the differential

equation (3.A.1), denoted x(t) = S(t)x0, satisfies llx(t)ll -» 0. Then llx(t)ll -» 0 expo-
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nentiallv.

Proof of Theorem 3.A.1 - Let T(t) denote the semigroup generated by A. Using

the "variation of constants" formula yields for Xq€ D(A)

x(t) =Tft-t^xo +JT(t-x)f(x(x))dx

Take norms on both sides to obtain

t

llx(t)ll < IIT(t-to)ll llx0ll +fllT(t-x)ll llf(x(x)ll dx (3.A-2)

By assumption, IIT(t-tQ)ll £ Mexp(-8(t-t0)) for some M > 0 and some 8 > 0. Also,

with the assumption on f(x), there is a p > 0 such that llf(x(t))ll £ 8llx(t)ll/2 for all

llx(t)ll £ p. Since the system (3A.1) is globally asymptotically stable by assump

tion, there is a t* > tQ such that llx(t)ll £ p for all t > t*. Inserting these expressions

into (3.A.2) yields

t

llx(t)ll £ Me-^-^llx*!! +f8 e"5(t-x)|lx(x)lldx (3.A.3)
j.2

t*

Define u(t) by u(t) := llxCOIIe6^1*). Then (3.A.3) becomes

t

u(t) <Mu(t*) +J-|- u(x)dx
t*

Using the Bellman-Gronwall lemma [Vid. 1,p. 292] on thisexpression then gives

uto^Me^VVt*), or
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llxftjIISMe^^lxft*)!!

which proves the Theorem. •

Proof ofTheorem 3.4.1 - part (ii)

To show that the decay rate is exponential, we will first show that the linearized

part of (3.4.1)-(3.4.10) is exponentially stable if the mass of the rigid body is much

larger than the mass of the beam (Lemma 3.A.3). Using the results of part (i) of

Theorem 3.4.1 and the Bellman - Gronwall type result Theorem 3.A.1 above will then

yield the result

For notational simplicity, axial effects will first be considered. At the end of the

proof, we will show that ignoring the axial terms does not affect the proof of Theorem

3.4.1.

Consider a new differential equation x = Ax where A is the linearized portion of

(3.4.1) - (3.4.10):

A:=

C+L C+L

I^JV u3(-)dz + V1/^ ^('^ +
VKfi) ° C+LLC <*LW

Iq-1 f(f col[(ud(-))1>2, 0]dx)dz VJO col[(k3(-))u, 0]dx)d2
n , c z
c z

C+L C+L

0 -KJmB _I f u3(.)dz -I j k3(.)dzmB^ mB^
0 0 0 I

C+L C+L

0 Y^KJniR -u9(.) - _L I ud(-)dz -k3(.) - _L k3(.)dz
' ni«^ mR^

Bc a c
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(3.A.4)

(Refer to section 2.1 for the definition of the various terms in A.) Note that Yis the

direction cosine matrix evaluated at the rest state of the spacecraft. Let the space A

operates on be X:= IR3xIR3xH02xH02xH01xL2xL2xL2, and let the domain of A, D(A),

be defined as

D(A) := {(xx x2 x3 x4 x5 x6 x7 x8)Tl xx € R3, x2 € IR3, x3 e Hq4, x4 e Hq4, x5 e
H2, x6 e Hq4, x7 e Ho4, x8 g H2, x5(c)=x8(c)=0, x3"(c+L) = x4"(c+L) =
X6"(C+L) = x7"(c+L) = 0, X3'"(c+L)=X4'"(c+L)=X6nc+L)=x7'"(c+L)=0,
x5/(c+L)=x8'(c+L)=0} (3.A.5)

Let the inner product on X be

[a,b]x := [a^b^ mB[a2,b2]IR+ [33,03] +[a4,b4] +[35,05] + [a6,b6] +[37,^]

+ [38,^1(3^6)

where [a, b]R is the ordinary inner product in IR3, and [a, b] is the ordinary L2 inner

product

Lemma 3.A2 - Consider A of (3.A.4). Suppose the mass of the rigid body is much

greater than the mass of the beam. Then A, the closure of A, generates an analytic

semigroup on X.

Proof of Lemma 3.A.2 - Define A' as follows



A':=

Vk* o 0 0

0 -Ky/mB 0 0

0 0 0 I

0 0 -ud(-) -k3(-)

Ill

(3.A.7)

Using Theorem 5.B.2, X', the smallest extension of A', generates an analytic semi

group on X. Now, let D(A') denote the domain of this closed extension.

(Unfortiurately, A' is not closed on D(A'). We must enlsrge the domsin to make A'

closed.) Define the operator B by B := C A', where C: X -» X is the operator defined

by

*3

C+L C+LL

0-1j£xv4dz +vyU^K^u. 0]dx)d:
c z

C+L

1 fy^dz

0

C+L

1v2 + -£ J V4^z
2 mB

(3.A.8)

(where vx e IR3, v2 e IR3, v3 gU^U^Hq1 , v4 eL^L^L2.) Let the domain of Bbe

D(B) := D(A0- With this definition of B, we see that it is simply A - A', when A and

A' are restricted to D(A) given by (3.A.5). (Recall A' restricted to D(A0 is simply

A' from the definition of closure.) The ide3 behind the proof is to try to use Theorem

B.10, the perturbation theorem on anslytic semigroups. To use Theorem B.10, the
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first thing which must be done is to show that B is aclosed operator. Unfortunately,

B is probably not aclosed operator on D(B). However, the next best thing would be

that B is actually closable, so that we csn define sui extension of B which sgrees with

BonDQB).

Therefore, we will first show thst Bisclossble. Note that for f e D(B) =D(A0

2

2_l|Bf||x' =

C+L C*LL

V^Ji *'©4dz+J(Jcol[(( ^w0]dx)dz]
c z

C+L

_I f(A'f)4dz

0

C+L

4Y-lKy(^2+4/(A'f)4dz

(3.A.9)

where we have used the notation (a)t = 3j. Using the definition of norm (3.A.6) this

expression becomes

l|Bf||x2 =l|Io
C+L c+LL

2 -iif^VjcX^dz+JJcolWX'f)^, 0]dx)dz]||^
c c z

C+LC+L 2C+L C+L

mBll^B/(A/f)4dz ||2R +(^j/llY-^A'f), +J (A'f)4dz ||2Rdz

Using the Cauchy-Schwarz inequslity 3nd the trisngle inequslity repestedly, this

expression becomes
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C+L C+L L

(WW1 fc lJ1|( A'f)4||R2dz +J(||J"col[(( A'f)4)u, 0]dx||R2)dz]
c c z

C+L o C£L

if IK S'f)4llVz +(4 JL HY-iKyC A'f)2 +J (A'f)4dz ||2R

<; __i_[cjKS'OJI^dz +l J||col[(( 5'f)4)i,2. 0]||E2dx ]
'max

c

C+L 9 C+L

_L

C

-J IK 5'f)4||2Rdz +fi-Jid^ a'OJIr2 +Jl (X'f)4dz ||2Rj

^5-[cJll(S'f)4||R2dz +lJ||( A'f)4 ||2Rdx] +
C+L

L
**max

c c

C+L o C+L

if n( A'fyiivz+(4KGmax2(Ky)ll( Af)2"2+^ll( Sf)4 l|2Rdz J

Finally, since Iq - mB this means

|| Bf ||x2 ^ ^- K|l A'f ||2X (3.A.10)

for some appropriate K. To show that B is closable, take any sequence xn -> 0, xn e

D(B) = DCSO- We must show that Bx„ -» 0. (See [Bai. 1, p. 221].) From (3.A.10)

we see that

i***h? *£***'***
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Since is A' closed by definition, x„ e D(A0-> 0 implies 5'x„ -* 0. Thus, Bxn -> 0,

so it is indeed closable. Let B denote this closed operator, and let D(B) denote the

new domain of this operator.

We now need to show that the conditions ofTheorem B.10 are satisfied for A' and B.

This means we must show that (i) F is a closed operator (ii) D(A0 c D(B) and (iii)

there exists a sufficiendy small and p > 0 such that for x e D(A') |fBx|| < ct|| A'x|| +

p||x||. We have just shown (i). As for (ii), note that D(B) z> D(B) = D(A0. Thus it

only remains to check the norm condition on Bx. From (3.A.10) we see that there is

a C > 0 such that || Bx||2 £ C|| A'x ||2. In particulsr, inspection of the (3.A.10) shows

di3t C ~ L/mB. Thus, if the mass of the rigid body is sufficiendy greater than the

mass of the beam, the conditions on Theorem B.10 are met so we can conclude that A

= X' + B generates an analytic semigroup on X. •

In an abuse of notation, but for the sake of simplicity, let A denote the closed opera

tor A.

Lemma 3.AJ - Consider the operator A of (3.A.4). Suppose the mass of the rigid

body is much larger than the mass of the besm. Then the operator A generates an

exponentially stable semigroup T(t) on X.

Proof of Lemma 3.A.3 - Since A generates an snslytic semigroup by Lemm3 3.A.2,

then by Proposition B.9 of Appendix B, we know thst T(t) S3tisfies IIT(t)ll <

Mexp(co0(t)), where co0 = sup{Re(A.)| Xeo(A)}. It thus suffices to verify that the
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spectrum of A is stricdy negstive 3nd bounded 3W3y from zero. To compute the spec

trum of A we first sdd Y"1(row2) to row 4, snd we know this does not chsnge the

spectrum. Performing this operation we obtsin

C+L C+L

kx n3(-)dz + c^ k3(.)dz +
-V** 0

j

c+ll c C+LL c

J"(J* col[(n3(.))li2, 0]dx)dz J(J col[(k3(.))u, 0]dx)dz
c z c z

C+L C+L

0 -Ky/mB •Z f ^(')dz
mBJc

JL k3(.)dz

0 0 0 I

0 0 -H3(0 -k3W

Since thematrix is blockupper triangulsr, the spectrum is essily seen to be

{^(-V^c^-V^a
0 I

-M*.) -k3(.)

Since Iq, K , K^ are all positive definite, the eigenvalues of the first two terms in the

curly brackets are stricdy negstive. As for the lsst term, using Lemma 5.B.2, we

know that the spectrum of this operator is stricdy negative, and bounded 3W3y from

the j(D-3xis. Thus, the spectrum of A is stricdy neg3tive, 3nd bounded 3wsy from the

jco-3xis. From Proposition B.9, we thus conclude timt A generates an exponentislly

stable semigroup on X. •
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To conclude the proof that ©, & u, and ^ go to zero exponentially, we now separate

(3.4.1M3.4.10) into its linear and nonlinesr terms. The linesr term is very similar to

A, but not quite. In A, axisl effects were considered, wheress in Theorem 3.4.1, sxisl

effects were ignored. However, the linesr p3rt of (3.4.1)-(3.4.10), denoted A", does

generate an analytic, exponentially stable semigroup. This can be seen 3S follows.

Choose the state variable to be (©, i Ul, u2, ult, u2t)T. Then A" is explicidy given

by

C+L

v«. °

o

0

0

mB

0

0
mjc 0

< 0
^mB(mB +L)J

0

0

Iq"1^ col[fti3(0 +k8(.))lt2» 0])<*z +
CC+LL

V^f col[(^W +k3(.))u, 0]dx)d
c z

J^W^dZ yjk^.)

0

0

mEc o

. 0

0

0

-""dz C+L

\H'"""m LB )""dz

Vc 0

0

-k9(.)"" +
C+L

mi

0
C+L

)""dz

Vc 0

0

0

-H2(.)"" +
C+L

1 J* ^(./'"dz 0 )""dziff J"*
0

-<r%(-))12
m B

0 0
C+L

)""dz
B

0

-kjC-)"" +
C+L

1 fk^""
B _

)""dz
m

(3.A.11)
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To show that this linear operator generates an analytic semigroup can be done in

exacdy the same way as before, using the perturbstion theorem on anslytic semi

groups. In fact, conceptually the proof is simpler because there sre no u" terms due to

axial displacements present. (Notationally, however, the proof is much tougher!)

The only thing that remains to be checked is whether the semigroup is exponentially

stable. If we multiply the second row of this matrix by Y'1, and then add the upper

2x2 block to the last two rows, we obtain an upper tri3ngul3r mstrix 3S before. The

spectrum is therefore the union of the individusl blocks. Since the mstrix is block

upper triangular, the spectrum is easily seen to be

{a(-In 1KL)uo(-Kv/mB +Y. 3 (Y" Ky)^\)^*U g>' *y * ^mn(mn + L)B(mB + L>

0 I
ua

0 I
ua }. (3.A.12)

where, in anotation specific tothis proof, Y. 3is the third column of Y, whereas

-li(Y_1K )3. denotes the third row ofthe matrix Y"1!^.

Since IQ, K^, Ky sre aU positive definite, G(-Io"1^ Ues in me °Pen left half"

plsne. From Theorem 5.B.2, the spectrum of the lsst two terms 3lso lie in the open

left hslf pl3ne, since by assumption, kj >0 and 1^ >0. Thus, it only remains to show

that all eigenvalues of the matrix

-KJmB +Y.3 (Y"lKY)3/
J D »J m_ftri_ J- T.mB(mB + L)

lie in the open left half-plane.

(3.A.13)
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By assumption, Ky is positive definite, and the mass of the rigid body is much larger

than the mass of the beam L. Therefore, the eigenvalues of (3.A.13) are all stricdy

negative. ((3.A.13) essentially looks like A + eB, where A is neg3tive definite, e

arbitrarily small, andB arbitrary.)

Hence, the spectrum of A" given by (3.A.12) is negative 3nd bounded away from

the jco-axis. Using the fact that A" generates an anslytic semigroup, combined with

Proposition B.9, shows that A" generates an exponentially semigroup on X. Next,

we want to show that the remaining terms can be bounded by K||(co, y_ , u, u^) ||x ,

for some K >0, so thatTheorem3.A.1C3n be spplied. The nonlinesrities 3re

f(m> i,u,u»):=

C+L (

-v^^+v1/**

m B

(uxm - 2&* Uj - ©* &ax u) )3

0

0

J (ux© -2©x u^ - fi^ (^ u) )3dz
c

(ux{B - 2©x Uj - of (of u) )lf2

dz

(3.A.14)

(3A. 14) also contains terms in d>. However, using (3.4.1) d> can be replaced by

terms involving X9, i, u, and Uj. The motivation here is simplicity of notation.) There

is no difficulty in establishing such 3 bound for all terms not involving co, since they

are clearly at lesst qusdratic in co, u, snd Uj. So it only rem3ins to show that the

terms involving a> are slso 3t lesst qusdratic in the state vsrisbles. An inspection of

(3.A.14) shows di3t it sufficesto showthat HffllljR can be bounded above by



C||(co, i, u,Uj) ||x for some C>0. Soconsider the equation for fi>:

ffl =

C+L nlUl""+ klUl""
^02""+ klU2""

(ux ffl - 2fi2* Uj - &* Ga" u) )3

C+L.

mB +L c V(2©xUt +

0

0

of (e^u)
2Y"1I*yl

mB hJ
dz

119

dz (3.A.15)

where we have used the formulation (3.1.24) for &¥$& + MbB» and me term

(Y_1y)3 hss been explicitiy C3lcul3ted. (See the discussion in the psragraph sbove

equation (4.3.16) if there is any difficulty in estsblishing this.) An inspection of

(3.A.15) shows di3t only the terms inside the integral pose anydifficulty, since

||-IQ-1CaixI0ffi)|| £ C|lffi||R2 for sn 3ppropri3te C. If we integrate by psrts twice on

the terms involving \lxux"" snd ^2U2"", these terms C3n be bounded by potential

C+L C+L

energy type terms, i.e., terms of the form J^(u^dz and J ji^u/O^ . (This is
c c

primarily why we chose this formulation of Q*E#q + MbB-) Using similsr means, the

other terms in the integral csn 3lso be bounded by energy type terms. Hence, insert

ing these bounds on© into (3.A.14), shows tii3t the nonlinesrity f(co, i , u, Uj) csn be

bounded as

l|f(©, i,u,Ut)llx^ K||(co, i.u.^Hx2

for sn 3ppropriate K > 0.

We have thus shown the following facts: (i) The linesr psrt of (3.4.1)-(3.4.10) gen-
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erates sn exponentislly stable semigroup, (ii) the nonlinear part f(©, i , u, u^) satis

fies lim.11^11 =Q (where x=(©, i , uv u2, ult, u2t)T), and (using the first part of
x->0 llxll

Theorem 3.4.1) (iii) the differential equation is globally ssymptoticslly stsble. Thus,

Theorem 3.A.1 applies so we conclude that ©, i, u, and u^ go to zero exponentially.

Appendix 3.B

Proof of Existence and Uniqueness of solutions to the equations of Theorem

3.4.1

To verify that the coupled nonlinear partisl differentisl equstions given by (3.4.1)-

(3.4.10) hsve 3 unique, continuously differentisble solution, we use st3nd3rd semi

group theory. The ides is to first sep3rate the differentisl equstion into its linesr snd

nonlinear terms. It is easily verified that the linear portion has s unique, continuously

differentisble solution. Thinking of the nonlinesr term ss s perturbation, it remains to

show that the "perturbed" system has s unique, continuously differentisble solution.

This will follow from s result of Segsl if, very roughly speaking, the perturbation is

"less unbounded" then the linear portion.

First, separate the differentisl equstion into its linesr snd nonlinesr psrts. The lin

esr psrt, denoted A", is given by (3.A.11), while the nonlinear part is given by

(3.A.14).

Let the space A'' operates on be X?= ^x^xHq^Hq^L^L2, and let the domain of

A", D(A"), be defined as

D(A") := [(xx x2 x3 x4 x5 x6)Tl xx e IR3, x2 e IR3, x3 e Hq4, x4 e Hq4, x5 € Hq4,
x6 € Hq4, x3"(c+L) = x4"(c+L) = x5"(c+L) = x6"(c+L) = 0,
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X3/"(C+L)=X4'"(C+L)=X5"/(C+L)=X6'"(C+L)=0}

Let the inner product on X be

[a,b]x := [a^b^ +mB[a2,b2]R+ [af,VI +[a4",b4"] +[a5,b5] + [a6,b6]

where [a, b]R is the ordinary inner product in R3, and [a, b] is the ordinary L2 inner

product.

It is easy to verify that D(A') is actually a Banach space when equipped with the

graph norm

llxllG2:=llxll2 +IIAxll2

where llxll is the L2 norm. Let [D(A')] denote this Banach space. Further note that

the nonlinear term f is a compact operator on [D(A0]. Indeed, f is actually C°° on

[D(A')L Using [Seg. 1, Theorem 4.1], we can thus conclude local existence and

uniqueness of thedifferential equations of 3.4.1.

From the proof of Theorem 3.4.1, we see that solutions are exponentially stable if

they exist, so the local existence and uniqueness result can be extended globally, i.e.

forallt>0. This concludes the proof. •
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CHAPTER 4

ATTITUDE CONTROL VIA LYAPUNOV TECH

NIQUES

4.1 - Introduction

In the remainder of this thesis, we consider the problem of satellite attitude control.

In its simplest form, the problem consists of trying to move the satellite to a specified

orientation with respect to the earth. This might be desirable, for instance, if the

spacecraftwere to be pointed at an earth stationor target.

As might be suspected, this problem has been studied extensively, especially when

the spacecraft is a rigid body. The standard approach to rigid body attitude control is

to linearize the spacecraft equations of motion about a nominal orbit and design a lin

ear control law for the linearized equations. (For example, see [Mork 1], [Hir.l], and

[Dou. 1].) This approach is perfectly valid for small spacecraft adjustments, such as

those needed to compensate for solar torque effects, gravity gradients, and other

small external disturbances. For flexible spacecraft, the approach is similar: Model

the flexible portions of the spacecraft by a suitable finite dimensional approximation,

linearize the resulting equations of motion around a nominal orbit, and design a suit

able linear control law. This design methodology assumes small perturbations,

including small deflections in the elastic components of the structure. Again, these

assumptions are perfectly valid and even desirable for spacecraft such as communica

tions satellites, where large deflections of solar panels, for example, are undesirable.

Future generations of space vehicles will have entirely different requirements. For
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applications such as the Strategic Defense Initiative (SDI), spacecraft will be

required to slew over large angles, at fast angular rates. It is easy to see that either

of these two requirements completely invalidate the linear analysis of traditional

spacecraft control system design, which assumed small perturbations of current

orbital position. Motivated by such requirements, a myriad of nonlinear attitude con

trol laws have been proposed for both rigid and flexible structures. (See, for example,

[Dwy. 1], [Dwy. 4], [Mei. 1], [Vad. 1] and [Mon. 1].)

Almost without exception, however, the methods of these papers assume that the

flexible portion of the structure (which is possibly infinite dimensional) can be suit

ably modelled by a finite dimensional approximation. The resulting equations are then

ordinary, nonlinear differential equations, from which the attitude control law is then

designed. The difficulty is choosing an appropriate finite dimensional approximation

to the system. Currently, there is no systematic way of choosing such an order, and

each author has his own method of verifying whether the unmodelled modes (the

"spillover" effects) affect the systemperformance.

This thesis will dispense with such issues by considering the flexible portion of the

spacecraft modelled as being of infinite dimensional form. The main disadvantage of

such an approach is the corresponding mathematical difficulties, which tend to obscure

the physical principles behindthe control laws.

In section 4.2 attitude control laws for a rigid spacecraft are proposed. In Theorem

4.2.1, a linear attitude control law for a rigid spacecraft is proposed. The proof is by

Lyapunov methods; a Lyapunov functional is constructed, and its derivative is com

puted to be nonpositive. From LaSalle's Invariance principle, we will conclude that

the system is globally asymptotically stable. Observing that the linearization about

the origin yields a linear system with strictly negative eigenvalues, combined with a

theorem from Appendix B will give an exponential stability result.

In Theorem 4.2.3, another attitude control law is proposed for a rigid spacecraft.



124

The control law is a nonlinear control law, which would take into account possible

nonlinearities in sensors and actuators. The method of proof is again by Lyapunov

methods, and a global asymptotic stability result isobtained.

In section 4.3, an attitude control law for a flexible spacecraft with significant beam

damping is proposed. The method is proof is identical to that of the rigid spacecraft,

with the exception that we must use an infinite dimensional version of LaSalle's The

orem. Thecontrol lawis linear, andanexponential stability result is obtained.

Finally, in section 4.5, we consider the attitude control of a flexible spacecraft

where the beam damping of the spacecraft is assumed zero. This assumption neces

sitates the use of beam control, which will be boundary control of the type used in

Chapter 2 and Chapter 3. The method of proof is similar to that of sections 4.2 and

4.3, where again the infinite dimensional version of LaSalle's Theorem will be used.

Using the linear control law, exponential stability is once again obtained.

42 Lyapunov BasedAttitude Control Law for a RigidSpacecraft

To help illustrate the ideas for the following sections, we will first consider the atti

tude control of a rigid body. The equationsof motionfor the structure are

£=! [I+ ££T+ £*]©. (4.2.1)

loQ +gfltfO. =x (4.2.2)

where as in Chapter 3, section 3.1.4, © is the angular velocity of the spacecraft with

respect to the inertial frame, Iq is the spacecraft moment of inertia with respect to the

body frame, x is the torque due to the torque jets, and £ is the Gibb's vector repre

senting the spacecraft attitude with respect to the inertial frame. Since the rigid struc-
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ture rotational and translational terms are decoupled, we can assume y = 0.

In this chapter, the attitude control problem will to be to design a control law so that

£ -> 0, co -> 0, and, when appropriate, have the beam displacements and velocities go

to zero. This insures that the attitude is corrected, and stays that way for ever after.

Lyapunov type control laws for rigid spacecraft have been obtained before ([Mort.

1] is the first reference known to the author), but the implementations have required

nonlinear feedback. The Lyapunov control law given below will be similar in style to

the above papers, but it will be implemented using linear feedback.

Theorem 4.2.1 - Consider the system described by (4.2.1) and (4.2.2) above. Let

the control law be

1^-k^-K^ (4.2.3)

where K^ e R3x3 is positive definite and kt e R, k^ >0. Then the system is exponen

tially stable, i.e., a> and £ go to zero exponentially. (Physically, this means that the

body stops spinning, and theattitude is corrected.)

Proof of Theorem 4.2.1 - Consider the Lyapunov functional

V(co,£) := 1cdJIqCO +k£n(l +£T£) (4.2.4)

The first term represents the energy of the body (recall that the velocity of the center

of mass of the rigid body is assumed zero), while the second term is a measure of the

attitude "energy". It is easy to see that V is a positive definite function ([Vid. 1, p.

141]). Also note that



126

v(fi>,£)=mTioca+a +£T£)-\%?l <4-2-5>

=mT( -mxiofi*+D +d+£T£)-y£T( £P+&T+4X1^) <4-2-6)

=wTT +k^TG> (4.2.7)

^©JK^O (4.2.8)

where (4.2.7) has been obtained by noting that co 1 flfIqCO and £ J- £x© , and (4.2.8)

is obtained by insertion of thecontrol law(4.2.3) into(4.2.7).

Note that V(c& £) =0 if and only if ©. =0, which in turn implies that ©=0. Using

(4.2.2), x =0, and (4.2.3) implies that J; =0. Thus the largest invariant set [Vid. 1, p.

156] of system (4.2.1)-(4.2.2) containing {£*©. Iffi =0} is {(0, 0)}. Thus the condi

tions of LaSalle's Invariance principle [Vid. 1, p. 157] are met and we conclude that

for all initial conditions ©^ and ^o the trajectories of the system (4.2.1)-(4.2.2)

approach zero.

To show that © and © both go to zero exponentially, note that the linearization of

the system (4.2.1), (4.2.2), and(4.2.3) about zero is

£=!©. (4.2.9)
* 2 —

I0ffl =-k^-K(D© (4.2.10)

Since, Iq and Kw are positive definite, and k* >0, this means that the eigenvalues of

this linear system are all strictly negative. Thus, the conditions of Theorem 3.A.1 of

Chapter 3, Appendix A are satisfied, and we therefore conclude that the nonlinear
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system(4.2.1), (4.2.2) and (4.2.3) is exponentially stable. •

From an engineering perspective, it would be nice if the control law (4.2.3) allowed

some nonlinear terms. This is because sensors and actuators, no matter how careful

ly constructed, contain some residual nonlinearities. The following theorem allows a

class of such nonlinearities.

Theorem 4.2.2 - Consider the system described by (4.2.1) and (4.2.2) above. Let

the control law be

i:=-k(£T^-£(©) (4-2.11)

where k(£T£) is an arbitrary nonlinear function satisfying °° > k(£T£) ^ cx > 0, and

g(©J is a nonlinear function lying in the sector [c2, °°), i.e., for some c2 > 0,

c2H Q II2 ^ coT£(ffl) < °°. Then the system (4.2.1)-(4.2.3) is globally asymptotically

stable, i.e., © and £ go to zero.

Proof ofTheorem 4.2.2 - Consider the Lyapunovfunction candidate

J 14
V(fc £) := ±mV + N^- dx (4-2-12>

2 "^ J 1+x
0

First note that V(cq, £) is a positive definite function. This follows since
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4£

VCttfi)^ Iflflott +l^te =̂VW1*1 H1*) <4-2'13)
0

which isclearly a positive definite function. Next, by computation

*(©,£=©%©+ ^j^2?i (4-2-14)

= mTi+k(£Wm (4.2.16)

=-©Tg(©) £ -c2ll©ll2 (4.2.17)

where (4.2.17) is obtained by insertion of (4.2.11) into (4.2.16), and the last inequali

ty results from the sector condition on g(©).

Note that V(©, §) = 0 if and only if © = 0, which in turn implies that © = 0. Using

(4.2.2) and (4.2.3) we obtain k(£T£)l; = 0 which implies that £ = 0. Thus the largest

invariant set of system (4.2.1)-(4.2.2) containing {£x© I©= 0} is {(0, 0)}. Thus the

conditions of LaSalle's Invariance principle are met and we conclude that for all initial

conditions G)q and £o the trajectories of the system (4.2.1)-(4.2.2) approach zero.

Remark 4.2J - To implement the control law (4.2.3)-(4.2.11) one must be able to

determine £ and ©.. As stated in Remark 3.4.4, one can determine © by use of rate

integrating gyros mounted on the rigid body. To determine the attitude £, a variety of

methods can be used. Utilizing star sensors, horizon sensors, sun sensors, etc., one

can estimate the direction cosine matrix Y of (3.1.3)-(3.1.5) directly. For example, if
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the direction of a star in body coordinates is measured as n (a unit vector), and the

direction of the star in inertial coordinates is determined from a star catalog to be U,

then ji and H are related by U = Yu. By using several measurements, a least squares

estimate of the direction cosine matrix can be obtained [Wer. 1, p. 457]. Once the

direction cosine matrix is obtained, the Gibb's vector £ can be algebraically solved for

by using equation (3.1.20), which relates Y and £.

Alternatively, one could estimate £ directly. The difficulty here is that the resulting

estimation problem is nonlinear, and thus requires nonlinear filtering. An example of

this type of procedure for estimating the quaternion attitude vector can be found in

[Gai. 1].

4.3 Lyapunov Based Control Laws for a Flexible Spacecraft - Beam Damping

Present

In this section we propose an attitude control law for a flexible spacecraft in much

the same way as the rigid structure. Unfortunately, the proof of the result will be far

more difficult since LaSalle's Invariance principle does not hold for infinite dimension

al systems. (Its proof relies on the compactness of the unit ball in Rn.) We will first

need to introduce a generalization of LaSalle's Invariance principle, based on the the

ory of gradient systems [Hale 1]. It should we stressed, however, that the intuition

is exactly the same as that in the rigid case.

Definition 4.3.1 - If T(t): X -> X is a strongly continuous (possibly nonlinear) semi

group on a Banach space X, an equilibrium point of T(t) is a point x of X such that

T(t)x = x,Vt £0.
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Definition 4.3.2 [Hale 1, p. 20] - Let X be a Banach space, T(t) : X -> X be a strong

ly continuous (nonlinear) semigroup. The semigroup is said to be agradient system if

(i) Each bounded orbit is precompact (Recall a set E in a metric space is precompact

if thereis a finitecovering of E by sets of diameter < e)

(ii) There exists a Lyapunov functional for T(t); that is, there exists a continuous

function V : X -» R with the following properties

(iia) V(x) is bounded below;

(iib) V(x) -» «> as Ix I -» «>;

(iic) V(T(t)x) is nonincreasing in t for all x e X;

(iid) If x is such that V(T(t)x) = V(x) for all t £ 0, then x is an equilib

rium point of T(t).

Comment 43.3: It is easy to see that condition (i) is trivially satisfied for ordinary

nonlinear differential equations since in Rn, a set is precompact <* the set is bound

ed. The conditions contained in (ii) are exactiy the same conditions required for

LaSalle's Invarianceprinciple to hold in finite dimensions.

Gradient systems yield the following generalization ofLaSalle's Invariance Principle.

[Hale 1, p. 20]

Theorem 43.4 - If T(t) is a gradient system, then the ©-limit set ©(x)

(:= n u T(t)x, Vx g X)belongs to the setof equilibrium pointsof T(t).
t£0t>x

Proof of Theorem 4.3.4 - (See [Hale 1, p. 20].) Since V satisfies (iib) and (iic), it

follows that the positive orbit through x is bounded. Thus, by hypothesis, it is pre

compact. Also, V(T(t)x) has a definite limit as t -» ~ since it is a nonincreasing func-
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tion that is bounded below by (iia): let c denote this limit. Since the positive orbit is

precompact, ©(x) is compact and invariant The fact that V is continuous implies that

V(T(t)y) = c for all y e©(x) and for all t e R+. Hypothesis (iid) implies that y is an

equilibrium point •

Theorem 43.5 - Consider the flexible spacecraft model where axial effects are

ignored, described in section 3.1.6 and denoted (FSS/A). Also assume no active

beam control i.e., Fj(t) =0, i= 1,2,3 in (3.1.73). The equations then become

£=^[i+&T+£x]m. (4-3-1}
I^+GfloGi =l+cxFbB +MbB. (4.3.2)

mBy =Y©FbB +FT (4-3-3)

Y(£) =2(1+£T£)-1[I +UT +£X]-I (43*4)

EbB = (-^iui"'(c) " kiuit'"(c>> -^u2"'(c) " k2u2t'"(c)>
?L i vr (43'5)J -(<& u+2©^ Ut +©.x(ffi*u) +Y"xy ^dzj1
c

MbB =0*1V'(c> +klV(C)» ^U2 '(C) +k2u2t"(C)> °)T (4*3*6)
(Utt+ ©x u+2©x Ut +©^(©^u) +\id(u) +kdiuj +Y'1®^ 0 (4.3.7)

u^c) = u2(c) =0, ^'(c) =u2'(c) =0

uf(c +L) =u2"(c +L) =0 uf'fc +L) =u2"'(c +L) =0 (4.3.8)

Assume that damping is explicitly present, i.e. kj >0, i=l, 2. Let the control law be

1^-k^-K^ (4.3.9)
Fr^-K^i (4.3.10)

where K^ e R3x3 is apositive definite matrix, kt e R with k^ >0, and K^ is apositive

definite matrix. Then the system is globally asymptotically stable, i.e„ © -» 0, £ -> 0,
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u -» 0, u* -> 0, y -» 0 in appropriate norms. Furthermore, if the mass of the rigid

body is much greater than that of the beam, then ©->0, £ -» 0, u -» 0, Uj -» 0, y ->

0 exponentially.

Proof of Theorem 43.5 - The method of proof will be to first show that our space

craft system is a gradient system, and then use Theorem 4.3.4. This will give an glob

al asymptotic stability result Then applying Theorem 3.A.1 will show that the decay

rate is actually exponential.

First, consider the Lyapunov function candidate

C+Ij

E(©,£, i,u,Ut):= |©TIo0Ct +J lluj +©xu +Y"1 yll dx

+1mBll i II2 +J [^OV')2 +H2(u2")2] dx +kjjn(l +£T£) (4.3.11)
c

(For simplicity, letE denote E(©, £, y , u, u^), and let E denote the time derivative of

E(©, £, i , u, i^).) Note that E > 0 and the similarity between this Lyapunov func

tional and the one obtained for the rigid body in Theorem 4.2.1 and the flexible struc

ture in section 3.4: The first three terms represent the total kinetic energy of the sys

tem, the fourth term the potential energy of the system, and the last term the measure

of attitude "energy". Note that this functional satisfies requirements (iia) and (iib) in

the definition 4.3.2 of the gradient system. We need to verify the rest of condition (ii),

and then afterward we will show that condition (i) is achieved.

We can compute E exactly as in Theorem 4.2.1, but reasoning similar to that of Theo

rem 3.4.1 allows us to write the answer down by inspection. As before, recall that

the rate of change of energy is the instantaneous power delivered to the system.
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Since the external forces acting on the system are the torque jets, external thrusters

andthe forces applied to the beam, we must have

C+L

E=jaTl+FTTi .(Jk1<ult">2 +k2(U2t")2 dz }+(l +£TS)-1k^T£
c

C+L

=eFl -{j EkjOht")2 +k2(u2t")2] dz }+FTTi +k^Tffl (4.3.12)
c

The first term of (4.3.12) is the instantaneous power delivered by the torque jets,

the second term is the instantaneous power delivered by the force thrusters (recall

that the instantaneous power must be calculated with respect to the inertial frame),

the third term is the dissipated power due to the beam damping, and the last term is

simply the rate of change of the attitude energy which has no simple physical interpre

tation. Inserting the control law giving Fand x from (4.3.9)-(4.3.10) then yields

C+L

E=-^K^-{j kjOV)2 +k2(u2t")2 dz }- j?Kf i (4.3.13)
c

<> 0

Thus, condition (iic) in the definition 4.3.2 of gradient systems is verified. To show

(iid), we need to show that if E(T(t)x) = E(x) for all t > 0, then x is an equilibrium

point of (FSS). From (4.3.13), E(T(t)x) =E(x) for all t >0 implies that ©=0, y =0,

and ( ^"(z) )x 2=0 in L2. This in turn shows that ©=0, y =0, ©=0, y =0, and (

^"(z) )x 2=0 in L2. From Proposition 3.4.2, (ii) and (iv), the latter term implies that

Ujt(z) =0, i=l, 2. Equations (4.3.7) and (4.3.8) then reduce to
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(%+m3Cu»i,2 =0 (43-14)
Ul(c)=u2(c)=0, Ul'(c)=u2'(c)=0 ufte +L) =0 u2"(c +L) =0 (4.3.15)

Ul'"(c +L) =0, u2'"(c +L) =0, uit(z) =0, i=l, 2.

It is easy to show that the only solution satisfying this linear differential equation,

the given boundary conditions and the conditions u^z) = 0, i=l, 2 is the zero solu

tion. Therefore, vlx =0, u2 =0, ult =0and u2t =0. Finally, combining these results in

(4.3.12) and (4.3.9) shows that £ = 0. Thus, E(T(t)x) = E(x) for all t > 0, implies

that x = 0, i.e., x is an equilibrium point of (FSS). Thus (iid) ofdefinition 4.3.2 is sat

isfied.

Thus, it only remains to show that bounded orbits are precompact. To show this, we

first need a lemma, followed by a lemma, again due toHale ([Hale 1, p. 14]):

Definition 43.6 - A family of mappings T(t), t £ 0, on a Banach space X is said to be

conditionallv completelv continuous for t > tx if, for each t £ tx and each bounded set B

in X for which {T(s)B, 0 < s <, t] is bounded, thesetT(t)B is precompact.

Lemma 43.7 [Hale 1 p. 14] - Let S(t), t > 0, be a strongly continuous (nonlinear)

semigroup on a Banach spaceX satisfying

t

S(t)x =T(t)x +JT(t-s)BS(s)xds
0

for t > 0 and all x € X where T(t) is a C° (nonlinear) semigroup on X and B is a

mapping from X to X satisfying
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(i) B is compact (i.e., B is continuous and for any bounded subset E of

X,B(E) is compact);

(ii) I |T(t)I I £ c(t), c:R+-» R+, c(t) continuous with limc(t) = 0.
t—+°°

Then S(t) =T(t) +U(t), where U(t) is conditionally completely continuous.

The reason for introducing Definition 4.3.6 and Lemma 4.3.7 is contained in the fol

lowing lemma. This lemma will allow us to verify that our system satisfies condition

(i) in Definition 4.3.2 for gradient systems. (Incidentally, the proof of the following

result does not seem to be anywhere in the literature, although Hale says that it is

"clear". For completeness the proof isperformed, with no claim toitsoriginality.)

Lemma 43.8 - Suppose that S(t) satisfies the conditions of Lemma 4.3.7. Then

bounded orbits of S(t) are precompact.

Proof of Lemma 43.8 - Suppose the positive orbit through Xq e X is bounded. To

show that the bounded orbit is precompact, we must show M = {S(s)x0: 0 < s < ~}

is precompact By definition, M is precompact if, given e > 0, there exists a finite

subset MF <= Msuch that for each x e Mthere is a xF e MF satisfying || x - xF || < e.

By assumption Mis bounded, say || x || < K, for all x e M. Note that M= M0 u M^,

where Mq = {S^Xq: 0 < s < Iq), and MM = {S^: ^ < s < ~). Note also MM =

S(to)M. Thus, M = MqU S(to)M = M0 u (T(to) + U(to))M c N^ u T^M u

U(to)M.

Since T(t) satisfies || T(t) || < c(t), c: R+-» R+, c(t) continuous with lim c(t) = 0,
t—>°°

then for any x e M, || T(t)x || < || T(t) || || x || < c(t) K. Thus, there is a Iq > 0 such

that || T(t)x || < £, for all t > fy Fix this value of t^
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Next, since S(t) is strongly continuous, there exists a finite set {t^ t2, ...tj) such that

for each te [0, t^ there exists ^ e [tv t^... tj) such that || S(t)xQ - S(tk)x01| <e.

Finally, consider U(to)M. Since U(tQ) is conditionally completely continuous by

hypothesis, and since {U^Xq: 0 < s <•Xq] is bounded, this implies that U^M is

precompact, and hence there is a finite subset My c U(tQ)M such that for each x e

U(to)M there isaxve My satisfying || Xy - x || <e.
n

So now define MF =Mv u U S(tk)xQ , finite by construction. Now, take any y e

M. Then, ye Mq, or y e T(to)M, or y e S(to)M. For any of these situations, the

above construction shows that there is a yF e MF satisfying || y - yF || < e. This

shows that M is precompact •

With these results in hand, we are finally able to complete the proof of Theorem

4.3.5. We wish to write the closed loop system as the sum of an exponentially sta

ble system plus a compact function so that Lemmas 4.3.7 and 4.3.8 apply. Before pro

ceeding,we need the the following facts.

1. Using (4.3.3) and (4.3.5), (FbB)3 can be explicitly calculated to be

C+L

m \ IL (fifu +2©xut +©*(©.* u) - Yli^)3 dz
Wr mB +L J "* mB

(ii) Note that (F^ does not affect (4.3.2) since sHE^k =0. It only affects (4.3.3)

in a significant way.

Using these two facts the closed loop system (4.3.1)-(4.3.10) can be written in the

suggestive form



£—fi+ Ifi+iB +flF +Pto

I^ +cf!()©. =- K(Dffl +cx ^ +Mjjg -

v=^,+y©Lb):
v 0

+I©5bJ 0 y-lKi 1
mB +Lc 1, (2mxut +fflx(©^u)- -^p)3 J

U
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(4.3.16)

(4.3.17)

dz (4.3.18)

C+L/

+Y©mBf 0
mB +L c l,(u* Po'H -mxIoQ2 - Kfl)©f c* ^ +MbB)])3.

Y© =2(i+£r§r1[i+££r+£x]-i

EbB =("M-iUi'lc) - k^^c), -^u2'"(c) - k2u2t'"(c),
C+L

mB J(©xu +2mxu» +©*(©.xu)- Y"lKv^)3 dz)T
mB + L nig

MbB =(^iUi/'(c) +k1ult"(c), ^"(cj +k^-'tc), 0)'

(% +V1!"^1^ -Vi +cx ^ +MbBlx H+2©xUt

dz

(4.3.19)

(4.3.20)

(4.3.21)

+©^(©^u) +na(u) +kaOij) +Y^y )12= ([ -k^o'1^ u| >i,2 <43-22)
Ul'(c)=u2'(c)=0, ufW^UjXcH) U!"(c +L) =0 u2"(c +L) =0 (4.3.23)

uffc + L) =0, u2"'(c +L)=0

Think of the three encircled terms in the equations above as the perturbation, while
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the remainder generates an exponentially stable semigroup by Theorem 3.4.1. To

apply Lemma 4.3.8 and Lemma 4.3.9, it thus remains to show that the perturbation

term is a compact map.

Lemma 43.9 -The perturbation term f: R3 x R3 xHq2 xH02 x R -> R3 x R3 xR3

x L2 x L2 defined by

f(£,i&ulv u2,z)=

is compact

C+L, 0

0
•ltx

Y(£)mR f
mD + L JlB +Lc Wkh'l?*h)

dz

(4.3.24)

Proof of Lemma 4.3.9 - Recall that a compact function [Hut. 1, p. 207] is a continu

ous function that maps bounded sets to relatively compact ones. Clearly, the first

two components of f are compact, since these terms are finite dimensional, continuous

functions. First consider the last component of f, -k^Io_1ix u» denoted f5, which maps

R3xH02xHq2xR-> L2 x L2. (Recall u=(ux, u2, z)T when axial displacements

areignored.) If we write f5 =f'° g, where g: R3 xHq2xHq2x R -» R3xL2xL2x

R is the embedding map, and f: R3xL2xL2xR -> L2xL2 is defined by f'(^,

©, u2, u2, z) = (-kJo"1]^ u )x 2. Clearly, f ' is a continuous function, and by the

Sobolev embedding theorem [Paz. 1, p. 208], g is a compact map. Moreover, f' is a
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bounded map since itisaprojection ofabilinear function [Die. 1, Thm. 5.5.1]. Thus

fog maps bounded sets to relatively compact ones. Finally, since f'° g is continu

ous, this implies that f5= f' ° g is compact.

Finally, consider the third component of f

cth 0 >

IdzWe* 1
mn + L J

0
•ljsx!B +Lc ^W^W

denoted f3, which maps R3 xH02 -* R3. Note that f3 can be written as f3 =g^ g'

where gl is theintegral operator

dz

(h)3J

c*L/0
gl(h):= WEB) 0

mB +Lc l(h]

mapping L2 -> R3 and g' is the operator (k^-1!;* uj3 mapping R3 xH02 xH02 x R

-^ L2 . By arguments exactiy the same as the above paragraph it can be established

that g' is compact. Clearly, gj is a bounded linear functional. Therefore, f3 = gj° g' is

also compact. Thus, all components of f( £, ©, uv u2, z) are compact, which proves

the lemma. •

With thisfinal lemma, wearefinally able tocomplete the proofof Theorem 4.3.5.

Completion of the proof of Theorem 43.5

By combining Lemma 4.3.9 and Theorem 3.4.1, we see that the conditions of Lemma

4.3.8 are satisfied. Thus, for the given control law (4.3.9) - (4.3.10), bounded orbits
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of (FSS) are precompact, so that (i) of Definition 4.3.2 is satisfied. Since we have

previously verified condition (ii) of Definition 4.3.2, this shows that the system (FSS)

is a gradient system. Using Theorem 4.3.4, all trajectories evolve toward the set of

equilibrium points of T(t), which is clearly {0}. Thus (FSS) with the control law

(4.3.9)-(4.3.10) is globally asymptotically stable.

To show that the decay rate is actually exponential if the mass of the rigid body is

much larger than the mass of the beam, consider the linearization of the system

(4.3.1)-(4.3.10) about zero:

i=i©

iQffl =-k£- K^© +CX Fyj +Mfcg.

mgy^B-Ky X

C+L C+L

F^ =(Jo^V +klUlt"")dz, J0l2U2"" +k '̂-'Odz,
c c

-L(y)3)T
C+L L

Mbfi =J(J col[(n9(u) +kd(^))h2t 0]dx\iz
c z

(%+ nd(u)+k9( Uj) +y)12 =0

Ul(c)=u2(c)=0, Ul'(c)=u2'(c)=0

Ul"(c +L) =0 u2"(c +L) =0, n{'\c+L) =0, u2'"(c +L) =0

Note that £ is connected to the dynamics only through ©. Therefore, the state space

form of these equations is in block upper triangular form, consisting of the £-© block

and the block of the terms in i, u, and u^. This means that the spectrum of this linear

system is the union of the spectrum of the £-co block
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-kfeV1 - K

co

and the spectrum of the rernaining terms. The spectrum of the remainder of the

dynamics arc shown to be exponentially stable in the proof of Theorem 3.4.1, part(ii)

(see Lemma 3.A.3) if the mass of the rigid body is much greater than the mass of the

beam. Therefore, the linearization of the system (4.3.1)-(4.3.10) is exponentially sta

ble. It is also easy to verify that the remaining nonlinear terms, denoted f(£, ©, y, \iv

u2, ult, u2t) satisfy Km ^ =0, where x=(£, ffl, y, u^ u2, ult, u2t)T. (See the
proof of Lemma 3.A.3 if there is difficulty in establishing this.) We have therefore

obtained the following information: (i) the linear part of (4.3.1)-(4.3.10) is exponen

tially stable, (ii) the nonlinear portion of (4.3.1)-(4.3.10) satisfies Km ||x|| =0,

and (iii) (4.3.1)-(4.3.10) is globally saymptotically stable. Thus, Theorem 3.A.1

applies we conclude that ©. ->0,£ ->0,u -» 0,u^ ->0, y -» 0 exponentially. •

Analogous to Theorem 4.2.2, we have the following theorem, which allows for a

class of nonlinearities in the sensors and actuators.

Theorem 43.10 - Consider the system described in Theorem 4.3.5. Let the control

law be

i:=-k(gr&l-gj®) (4.3.25)

Br:—ty© <4-3-26>

where k(^T£) is an arbitrary continuous nonlinear function satisfying ©o > k(£T£) > cx
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> 0, gJ(£) is a continuous nonlinear function lying in the sector [c^, <»), c^ > 0, and

&,(£) is a continuous nonlinear function lying in the sector [c^, «»), c^, > 0. Assume

that the system is well-posed, i.e., there exists a unique, continuously differentiable

solution to (4.3.1)-(4.3.8) with control law (4.3.25)-(4.3.26) for all initial conditions

sufficiently smooth. Then the system is globally asymptotically stable, i.e., ©-» 0, £

-> 0, u. -» 0, u^ -> 0, y -* 0 in appropriate norms.

Proof of Theorem 4.3.10 - The method of proof will be again to verify that the sys

tem is a gradient system, and then apply Theorem 2.3.4. Consider the Lyapunov func

tion candidate

C+L

©TIa© +
2

c

:Tt

C+L

E(©,£, i, u,^ := ^coJIqCO +J llu^ +i^ii +Y^yll dx

c+l 4 £

+ImBllill2+ JVxOh")2 +̂ (u2")2] dx +JM^Ldx
1+x

0

(For simplicity, let E denote E(©, £, y , u, u^), and let E denote the time derivative of

E(©, £, y , u, u^).) As in Theorem 4.2.2, E is a positive definite function. Therefore

this functional satisfies requirements (iia) and (iib) in the definition 4.3.2 of the gradi

ent system. By using exactiy the same methods as in Theorem 4.3.5, one can verify

that conditions (iic) and (iid) of definition 4.3.2 are also satisfied. Thus, the remaining

task is to show that condition (i) holds, i.e., bounded orbits of the system are precom

pact

If we insert the control law (4.3.25)-(4.3.26), we can separate the resulting differen

tial equation into two parts. One part will be the globally asymptotically stable sys-
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tem whose equations are described in Theorem 3.4.5. This system will be perturbed,

much like(4.3.16)-(4.3.23). It canbeverified that the resulting perturbation is

S+i[I +^T +^x]©

fC&^Up u2,z)= C+L/

Y©EbT[ 0 fe
mn + LlB

-(Wt^V1? B)u

This perturbation can be shown to be compact, exactiy as in Lemma 4.3.9. (The

only difference in the proof is the k(£T£) term, which by hypothesis is continuous.

Otherwise the proof is exactiy the same as Lemma 4.3.9.)

Using Theorem 3.4.5, this last compactness result, and Lemma 4.3.7, we thus con

clude that bounded orbits of (4.3.1)-(4.3.8) together with the control law (4.3.25)-

(4.3.26) are precompact. Combining the previous results, we thus conclude that

(4.3.1)-(4.3.8) together with the control law (4.3.25)-(4.3.26) is a gradient system.

Using Theorem 4.3.4, all trajectories evolve toward the set of equilibrium points of

T(t), which is {0}. Thus (FSS) with the control law (4.3.25)-(4.3.26) is globally

asymptotically stable. •

4.4 Lyapunov Based Attitude Control for a Flexible Spacecraft - Beam Damping

Absent

Theorem 4.4.1 - Consider the flexible spacecraft model where axial effects are

ignored, described in section 3.1.6 and denoted (FSS/A). Also assume that no beam

damping is present, i.e. k = 0. Thenthe equations become
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4= i P+££T +£x]fii (4A1)

Iq© +fiflQ©. =1+Cx Fjjb +̂ (44-2)

mBy=Y©FbB +FT (4A3)

Y© =2(1 +£T£)-i[ I+££T +£x ]-1 (4A4)

EbB =(-^lul'"(c), -^2U2"(C)»
C+L

J (fi> xu+2©x Uj +©_x(©xu) +Y_1i )3dz])T (4.4.5)
Mbs =tf i"f(c), ^u2"(c), 0)T (4-4.6)
(1^+ ©* u+2©^ u^ +©Wu) +ud(u) +Y"1©! 2= 0 (4.4.7)

ux(c) =u2(c) =0, u/(c) =u2'(c) =0

Ul"(c +L) =u2"(c +L) =0 mu/"(c +L) =-Ft, i= 1, 2.

(4.4.8)

Let the control law be

T^-k^-K^ (4A9)
(F)12:=-A((ut(c+ L) +©xu(c+ iO +Y^y))^ (4.4.10)

FT:=-K. y (4.4.11)

where K^ is apositive definite matrix, kt eRwith k^ >0, Ae R2x2 is apositive defi

nite matrix, and K^ is a positive definite matrix. Then the system is globally asymp

totically stable, i.e., ©-> 0,£ -> 0, u ->0,^ -> 0, y -> 0 in appropriate norms.

Proof of Theorem 4.4.1 - The method of proof will be exactiy the same as before:

we will show that our spacecraft system is a gradient system, and then use Theorem

4.3.4. Again,consider the Lyapunov function candidate



C+L

E(ffl,£, i,u,Ut):=kV+ J Hflt +tfJl+Y^ill dx
c

C+L

1 o
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C+L

ImBll i II2 +J" DijGifJ2 +̂i(u2")2] dx +k^ln(l +£T£) (4.4.11)

(For simplicity, let E denote E(ffl, £, y , u, u^), and let E denote the time derivative of

E(ffi, £, y , u, Uj).) This functional is exactiy the same one that was used in the proof

of Theorem 4.3.5. Note again that this functional satisfies requirements (iia) and (iib)

in the definition of the gradient system. We need to verify the rest of condition (ii),

and then afterward we will show that condition (i) is achieved.

As has become habit, we can write down E by inspection. For a mechanical sys

tem, recall that the rate of change of energy is the instantaneous power delivered to

the system. Since the external forces acting on the system are the torque jets, exter

nal thrusters and the forces appliedto the beam, we must have

E=©Tx + FT(ut(c+ L) +©xu(c+ L) +Y_1y) +

FTTi+ (l+Z?£)-lkglTi (4.4.12)
=©T!+FT(ut(c+ L) +©xu(c+ L) +Y-l<0 +ETTi +k^T©

The first term of (4.4.12) is the instantaneous power delivered by the torque jets,

the second term is the instantaneous power delivered by the force actuators on the

beam (recall that the instantaneous power must be calculated with respect to the

inertial frame), the third term is the instantaneous power delivered by the external

thrusters, and the last term is simply the rate of change of the attitude energy which
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has no simple physical interpretation. Inserting the values of F, FT, and 1 from

(4.4.9)-(4.4.11) then yields

E =-^K^© -(^(c +L) +©* u(c +L) +Y"1 y)1>2T A(u^c +L)

+£fu(c+L) +Y-1y)u- iTKy y (4.4.13)

< 0

Thus (iic) is verified in the definition of gradient systems. To show (iid), we need to

show that if E(T(t)x) = E(x) for all t > 0, then x is an equilibrium points of (FSS).

From (4.4.13), E(T(t)x) = E(x) for all t £ 0 implies that © = 0, y =0, and (u^c +L) +

©" u(c +L) +Y"1 y)i,2 =0. Equivalent^, (4.4.13) implies that ©=0, y =0, and

(u^c +L))X 2=0. This in turn shows that ffi =0, y =0, u^c +L) =0, (£ =0, and y =0.

Equations (4.4.7) and (4.4.8) then reduce to

(% +li3(u))lt2=0 (4.4.14)

Ul(c)=u2(c)=0, ^'(cHij'frH) uf(c +L) =0 u2"(c +L) =0 (4.4.15)

Ul"'(c +L) =0, u2'"(c +L) =0, u^c+L) =0.

It is easy to show that the only solution satisfying this linear differential equation

and the given boundary conditions is the zero solution. Therefore, ux = u2 =0 and ult

=u^ =0. Finally, combining these results in (4.4.2) and (4.4.9) shows that £ =0.

Thus, E(T(t)x) = E(x) for all t £ 0, implies that x = 0, i.e., x is an equilibrium point of

(FSS). Thus (iid) is satisfied.

Again, we must show that bounded orbits are precompact. Let us write the closed

loop system in the suggestive form



£--&+ fi +jB +ST +STffl

Ioffl +^10©=- K^© +cx^ +Myj -

(EbB>lm^-K^y+Y©!^^
0 J
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U

c+V 0

+X©Eb(| 0 Y-l^i dz (4.3.18)
c

C+L

+X®5bT[ 0
fflB +Lc I, (# no->( -ffiXIofii - K^Jftf C* ^ +MbB)])3

Y© =2(1+4T§)-,[I +54T+SX]-I

EbB =(-Ml'"*0)- -^TW.
C+L

mB f (of u+2#ut +©^(©xu)- Y'lKv^)?dz )T
mB +LJ mB '

MbB =(M.iU1"(c), ^u2"(c), 0)'

(% +a0_1[-mxioffi -k^+£x ^+MbBl)x ii+2mx at

+©^(©^ +̂(u3 +Y-1y)1,2=(j-^I0"1^x u|)i,2
Ul(c)=u2(c)=0, Ul'(c)=u2'(c)=0 uf(c +L) =0 u2"(c +L) =0

^lUl'"(c +L) =4^(0, \i2U2'"(c +L) =-F2(t)

dz
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where (Fx(t), F2(t))T =-A( ^(c + L) +fflx u(c + L) +Y"1 y)1>2. The encircled por

tion of the equation can be thought of as the perturbation, while the remainder is glob

ally stable by Theorem 3.5.1. Note that the perturbation is of the same form as the

Theorem 4.3.5, so it is a compact map, by Lemma 4.3.9. Then, applying Lemma 4.3.6,

followed by Lemma 4.3.7, we conclude that bounded orbits are precompact Thus,

conditions (i) and (ii) are verified in the Definition 4.3.2. We therefore have a gradi

ent system, so that Theorem 4.3.4 applies. From this, we conclude that all trajecto

ries of (4.4.1)-(4.4.11) evolve toward equilibrium points of the system, which is clear

ly {0}. This proves that the system is globally asymptotically stable. •

Finally, we have the analogous result to Theorems 4.2.2, 4.3.10, which allows for a

class of nonlinearities in the sensors and actuators. The proof is exactiy the same as

those of Theorems 4.4.1,4.3.5 and 4.3.10, and thus will be omitted.

Theorem 4.4.2 - Consider the system described in Theorem 4.4.1. Let the control

law be

x:=-g(0(©)-k^T^

ET:= -gy(i)

©u:=-5F((ut(c+ L) +©^u(c+ L) +Y-l<d)ia

where k(£T£) is an arbitrary continuous nonlinear function satisfying <» > k(£.T£) > cl

> 0, gj&b is a nonlinear function lying in the sector [c^, oo), C(a > 0, gy(y) is a non

linear function lying in the sector [c^, oo), c^ >0, and gF(( u^c + L) +©x u(c + L) +

Y'1 y) )j 2 is a nonlinear function lying in the sector [cF, oo), cF > 0. Assume that the
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system is well-posed, i.e., the closed loop system has a unique, continuously differen

tiable solution for all initial conditions sufficiently smooth. Then the system is globally

asymptotically stable, i.e., ©, y, u, and u^ allgoto zero as t -» oo.

4.5 Conclusions and Future Research

This chapter has developed an attitude control law for a variety of spacecraft sys

tems: a rigid spacecraft, a flexible spacecraft with significant beam damping, and a

flexible spacecraft with zero beam damping. The laws were seen to be implementable

by linear or nonlinear static state feedback, and global asymptotic stability was

obtained for each configuration.

As for future research, most of the questions remaining have to do with practical

implementation. From a theoretical viewpoint, if a stabilization result could be

obtained for the so-called geometrically exact beam model (see the end of Chapter 3),

then it is easy to see that a feedback law similar to those of Theorem 4.3.5 and 4.4.1

would yield similar results. The major practical problems would implementation of

these feedback laws with torque thrusters which are usually only full on - full off

thrusters, rather than proportional thrusters. Another practical problem would be to

determine the effects of limited obtainable force and torque from the actuators.

The major disadvantage of these Lyapunov based laws is that they are essentially

"infinite horizon". Exponential stability is guaranteed in the above theorems, but

there is no straightforward relationship between the control parameters and the expo

nential time constant. This makes it difficult for the engineer to design for an a priori

decay rate. In addition, one would ideally like an attitude control law that would steer

from one attitude to another in a fixed time interval. Unfortunately, Lyapunov based

control laws as they are known at present are not suitable for such a design goal. It
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is withthese engineering ideas that we turn to thenextchapter.
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Chapter 5

ATTITUDE CONTROL USING THE METHODS

OF EXACT LINEARIZATION

5.1 Introduction

It is now well known that a number of nonlinear control systems of engineering inter

est can be transformed by a static state feedback and a nonlinear change of coordi

nates into an equivalent linear system [De L. 1], [De L. 2], [Mey. 1]. In particular, in

the area of attitude control, the method has proved to be quite useful. Dwyer [Dwy.

1] used this method of linearizing transformations to obtain exact nonlinear continu

ous time control laws for large angle rotational maneuvers for a rigid body by use of

external thrusters. Similar methods are employed in [Dwy. 3] to design control laws

fora rigid body controlled byboth external thrusters and momentum wheels.

This method has also been successfully been used for designing a nonlinear attitude

control law for a satellite with flexible appendages. In [Mon. 1], the control law was

derived for a satellite with its flexible appendages modelled by their finite dimensional

modal approximation. However, implementation of the control scheme required infor

mation about the beam velocities and displacements at several points of the beam. In

practice, these are difficultmeasurements to make.

The purpose of this chapter is to outline the design and implementation of a nonlin

ear feedback control law for a satellite with flexible appendages without the restric

tions of [Mon. 1]. The spacecraft to be considered will be a rigid body with a single
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flexible appendage attached to the rigid body. The appendage will be modelled as an

Euler-Bernoulli type beam, rather than its finite dimensional approximation. The con

trol law will be derived using linearizing transformations in the spirit of the above

papers, but the implementation will be considerably different than [Mon. 1] in that it

will not depend on the beam displacements and velocities, but rather on the forces

and moments at the point of attachment. These quantities can easily be determined

by the use of strain rosettes.

5.2 Exact Nonlinear Attitude Control Law for a Rigid Spacecraft

As in the previous chapter, we will first examine the rigid body to help elucidate the

ideas for studying the flexible structure. The control law will be obtained by methods

of exact linearization. (For a thorough explanation of this procedure, see [De L. 1],

[Sas. 1], and, in particular, [Isi. 1].) More precisely, we desire to find a static state

feedback and a nonlinear change of coordinates to transform the nonlinear differential

equations of the rigid spacecraft (RS) into a "normal form" [Isi. 1, p. 8], i.e. a system

with linear input-output dynamics, and a corresponding unobservable, possibly nonlin

ear subsytem. The use of exact linearization for obtaining attitude control laws for a

rigid spacecraft was first obtained in [Dwy. 1] and expanded in [Dwy. 2] and [Dwy.

3]. The derivation given below is a slightly more modern method, and will serve as

the basisfor the designof the flexible spacecraft control law.

Theorem 5.2.1 - Consider the rigid body spacecraft model without momentum

wheels described in section 3.1.6 and denoted (RS):

i=-i[i+ST+^x]m. (5-2-1)

!<&+ <£>xltf&=l (5.2.2)
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Let the control law be

1=0*10©.+ 2(1 +Z?£)-%(L -£*)<-»-*) -h&T®>® (5.2.3)

where p > 0 and y> 0 then

(i)Theattitude £(t)-»0 exponentially, and £(t)-»0 exponentially;

(ii) The angular velocity ©.(t)-»0 exponentially, and ©(t)->0 exponen

tially.

Proof of Theorem 5.2.1 - We follow the linearization procedure given in [Isi. 1,

sec. 2.3, 3.3]. Usually, an output is present in our state space formulation, and we

would then "differentiate the output until an input appears". Since no output is speci

fied, we are free to choose it. Since we are attempting to control£, a logical choice is

to choose £ =(5i» ^2» ^3)T t0 ^ *e "dummy" output function. Differentiating £ yields

(5.2.1), which will be repeated here for convenience.

£=i(I +&T +£x)a> (5.2.4)

Since no input appears in this expression differentiate again

i= iaa+&T+£x))fii+ la+flF+ff^jP • (5.2.5)
dt 2 2 ai

The calculation of the derivative in the first term is rather tedious; after computation

we plug its value in and obtain

£= l(&T©)(© +^T© +^xm)+la+S&T +£x)»
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= ±(i+££T+£x)K£Ti2)i» +M- (5-2.6)

Insert (5.2.2) and use the fact that Iq is invertible toobtain

I =1 (I +§£T +£X)[&TG))© +V1{-®XIo^ +til- (5-2-7)

Note the term outside the square brackets is nonsingular with inverse 2(1 +£T£)"1

(I -£x): using properties of cross-product and the fact that £x£ =0 yields

ia+^T+£x)-2(i+^T£)-1a-ix)=(i+lT£)-1[i-£x+^T

-&T(£X)+£X-£X(£X)] (5.2.8)
=(1 +£TQ-lrj[ +gT. gi^x)] (5.2.9)

=(i+£T£)-1[i+^T+ £Ta-^T] (5.2.10)
= 1 (5.2.11)

Then, choose the following control law (by setting the RHS of (5.2.7) equal to some

new exogenous input w and solving for x)

i= «axi0©+io[^a+^T+£x)r1w-io(&T®)m

=©.xIo©_+2(1 +lTS)-%(l -£x)w - Io£T©)© (5.2.12)

where wis a vector of real valued functions, and again can be thought of as a new

exogenous input. Applying(5.2.12) to (5.2.7) then yields the linear system

£ =w. (5.2.13)

On this controllable linear system, the poles can be placed as desired. For example,

let
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w= -(£-£. (5-2.14)

where P > 0 and y > 0. Inserting (5.2.14) into (5.2.13) and writing (5.2.13) in state

space form yields

SH-J
I

pi -yi
"ft" (5.2.15)

which implies (since p > 0 and y > 0) that £(t)-»0 exponentially, and £(t)->0 expo

nentially. In turn, (5.2.1) shows ©(t)->0 exponentially. Finally, using (5.2.3) in

(5.2.2) shows that <a(t)->0 exponentially. Since a combination of (5.2.14) and

(5.2.12)yields (5.2.3), (i) and (ii) are proved.

Comment 5.2.2 - The reader familiar with the exact linearization literature will note

from (5.2.11) and (5.2.7) that the nonlinear system (RS) with dummy output y=Je

1R3 has (vector) relative degree (2, 2, 2) [Isi. 1, p. 76], so the linearizing feedback

(5.2.12) is as expected. Because the original system is of order 6 (state variables £

and ©) and the linearized system is also of order 6 (state variables £ and §), there

are no zerodynamics. In otherwords, the linearization is a global linearization.

Comment 5.2.3 - The design using the linearized system (5.2.13) can be done in

many ways other than the simple pole placement done here. One desirable form of

the controller on the linearized system (5.2.13) would be to use a fixed end linear

optimal control law. This would yield a controller which would steer from one attitude

to another in a fixed time interval. This is a major improvement over the Lyapunov

based control laws obtained in Chapter 4.
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53 Exact Nonlinear Attitude Control Laws for a Flexible Spacecraft - Beam

Damping Present

For simplicity, we will control the satellite by using the torque jets only. (See

Remark 5.3.3 at the end of Theorem 5.3.1 for further comments). As noted in section

3.1.6, attitude control for a flexible spacecraft differs from that of a rigid spacecraft in

that the rotational and translational terms are coupled. This means that in contrast to

Theorem 5.2.1, the force thrusters on the rigid body as well as the torque jets on the

rigid body will be needed to perform the maneuver. Most authors ignore the transla

tional term entirely ([Mon. 1],), arguing that the mass of the rigid body is much larger

than the mass of the beam. In Theorem 5.3.4, this assumption is rigorously justi

fied. To this author's knowledge, this is the first direct proof that the assumption is

correct to appear in the literature.

To design the control law, the method of linearizing transformations will again be

used. Strictly speaking, since the flexible spacecraft model (FSS) contains partial dif

ferential equations, the methods mentioned above do not necessarily apply. Howev

er, wewill proceed blindly along these lines and investigate what happens.

Theorem 5.3.1 - Consider the flexible spacecraft without momentum wheels

described in section 3.1.6, and denoted (FSS). Assume explicitly that damping is pre

sent Also assume no active control on the beam, so that Fj(t) = 0, i=l, 2, 3. The

equations then become

i=I[I +&T +£x]a>. (5-3.1)
J*

Iq&+&y& =i+£x Ew+MbB (5-3-2)

mBx=Y(£)FbB +FT (53.3)

Y© =2(1+£T£)-1[I +££T+ £"]-! (5.3.4)



FbB=F(c)=-na'(u)lc-ka'6it)l

\TMbB =(^1u1"(c) +k1ult"(c), ^''(cHk^'Xc), 0)J

1^+ & u+2©^ +©^u) +n9(u) +kdi^) +Y"ly =0 (5.3.5)

Ul(c) = u2(c) = u3(c) =0, ux'(c) =u2'(c) =0

Ul"(c +L) =u2"(c +L) =0 (5.3.6)

Ul"'(c +L) =0 u2'"(c +L) =0 u3'(c +L) =0

Suppose now that we can determine F,,B(t) and MbB^ DV on-board measurements.

(See Appendix Afor an example ofhow this might be done). Apply the control law

x=©^I0©+2(l +iT§)-1I0a-lxX-P^-'̂ -Io(&T^)^-^£bB-MbB (5.3.7)
ET=-Y©FbB-mBAy (5.3.8)

where p>0,y>0 and Ae IR3x3 is aHurwitz matrix. Then

(i) The attitude £(t)->0 exponentially, and £(t)->0 exponentially;

(ii) The angular velocity ©(t) -> 0 exponentially, and ©(t) -> 0 expo

nentially;

(iii) The velocity of the center of mass of the rigid body i(t) -> 0 expo

nentially, andy(t) -» 0 exponentially;

(iv) The beam deflections u(x, t) and beam velocities u^x, t) both go to

zero exponentially.

Proof of Theorem 5.3.1 - As in the proof of the rigid body case, we attempt to lin

earize the equations using an appropriate feedback and change of coordinates. It is

convenient to choose the dummy output function to be z = col( £ , y). Following the

157
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linearization procedure we first differentiate £. This yields (5.3.1), as before. Since

no input appears, differentiate again. This yields (5.2.6) as obtained previously:

£ = 1 (I +&T+£x)[(£Tco)© +©]. (5.3.9)
J*

Insert (5.3.2) and use the fact that Iq is invertible toobtain

\m l(I +^T+^)[aTffl)ffl+I0-1{-JfixIo£a +c!'FbB +MbB+l}]- (5-3.10)

Now set,

l-I-c^g-MbB (5.3.U)

where, again, F^ and MbB nave been measured, vn\%. is a vector of real valued func

tions. &can be thought of as the new exogenous input.) Insert (5.3.11) into (5.3.10)

to obtain

£= ia+^T+^x)[(&Ts)w+v1{-^Io^+^- (5312)
JL

But this is exactiy the form of the equation one gets for a rigid body without flexible

appendages (see (5.2.7)). Since the term outside the square brackets is nonsingular

(see 5.2.8), we can apply the following control law

I := fflxIo©.+ Iq[^ (I +££T +£x)]_1w -locate

=&!<£>+ 2(1 +^_1Ioa -ix)w -Io(&T©)© (5.3.13)

where w is a vector of real valued functions, and again can be thought of as a new
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exogenous input Applying (5.3.13) to(5.3.12) then yields the linear system

£=w. (5.3.14)

We now consider the other dummy output variable, y . Differentiating y yields

from (5.3.3)

y=[Y©FbB +FT]/mB. (5.3.15)

Therefore, choosing thecontrol law for the force thrusters to be

ET:=-Y(S)IbB +mB^T (5*3'16)

where FT is the new exogenous input. Inserting this control law into (5.3.15) yields

£= ?T. (5.3.17)

The equations (5.3.14) and (5.3.17) thus comprise decoupled, controllable linear sys

tems which can bedesigned using methods of the engineers choice. For example, let

w:= -p£-li (5.3.18)

FT:=-Ay. (5.3.19)

where p > 0, y > 0, and A is a Hurwitz matrix. Insert the control law (5.3.18) and

(5.3.19) into (5.3.14) and (5.3.17). Then the nonlinear, infinite dimensional system
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given by (5.3.1)-(5.3.6) reduces to a set of linear, ordinary differential equations, cou

pled to a nonlineardifferential equation:

• —

0 I 0 £

I -pi -^ 0
•

y_ 0 0 -A _ _ i

\^L+ \id(\£ +kd(\ii) +&(£,£, in, u^) =0

(5.3.20)

(5.3.21)

where &(£, £, i, u, 1^) is obtained from equation (5.3.5), and the various relationships

between ©,© and £, £.

The first two components of (5.3.20) imply (since p > 0 and y > 0) that £(t)-»0

exponentially, and £(t)-»0 exponentially. From (5.3.1), ©= 2(1 + £T£)_1a - £x&

whence it follows that ©(t)->0 exponentially. From (5.3.18), (5.3.14) and (5.3.9) we

also have thatia(t)->0 exponentially. The last component of (5.3.20) shows that

y(t) and £(t) -K) exponentially. Since a combination of (53.19) and (5.3.16) yield

(5.3.8), and (5.3.18), (5.3.13) and (5.3.11) yield(5.3.7), (i), (ii) and (iii) are proved.

To show part (iv), we must verify that the solution to the partial differential equa

tion (5.3.21) is exponentially stable. Note we are simply verifying that the "zero

dynamics" are exponentially stable. Since the proof of the result requires tedious,

although straightforward, arguments from semigroup theory, the details are left to the

Appendix to this chapter, Appendix 5.A. It should be intuitively clear, however, that

as the rigid body stops rotating and translating, the beam vibrations damp out due to

internal beam damping. Thisis intuition behind theproofin the Appendix. •

Comment 53.2 - The interpretation of the control law is simple. First, the effect of

the flexible body on the rigid body is removed by (5.3.11) and (5.3.16). We are left
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with decoupled translational and rotational dynamics, exactly as in the rigid space

craft. This rigid structure is the controlled by (5.3.19), (5.3.13) and (5.3.18) which is

exactiy the same form ofcontrol obtained in Theorem 5.2.1 (see (5.2.12) and (5.2.14)).

Remark 5.33 - In the case where momentum wheels alone are used to control the

structure, the control law is very similar to the one in Theorem 5.3.1. The equations

of motion and kinematics for this structure are given in section 3.1.6, and denoted

(FSSMW). In thiscase,let thecontrol lawbedefined by

I:=0 (5.3.21)

*:--flfl^-jff^-2(l+£^
do - IAX£T<9te +£XEbB +MbB (5-3.22)

FT:=-Y©FbB-mBAy (53.23)

where p>0, y>0» and A e R3x3 is a Hurwitz matrix. For this choice of control law it

is easy to verify, using exactiy the same methods as in the proof of Theorem 5.3.1,

thattheconditions (i), (ii), (iii), and(iv) of Theorem 53.1 are satisfied.

One undesirable feature of the proposed control law in Theorem 53.1 is its complexi

ty. In contrast to Theorem 5.2.1 for the rigid space structure, both sets of actuators

are needed for the attitude maneuver. This is because, as stated previously, the rota

tional and translational terms are coupled. It would be very nice from a practical point

of view if an attitude control law could be obtained using only one set of actuators.

This is the content of the following Theorem.

Theorem 53.4 - Consider the flexible spacecraft without momentum wheels

described in section 3.1.5, and denoted (FSS). Assume explicitly that damping is pre-
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sent. Also assume no active control on the beam, so that F^t) = 0, i=l, 2, 3. The

equations then become

4=I[I +̂ T +̂ X]©. (5-3.24)

IqS +QfltfQ. =1+cx F^ +MbB- (53.25)

mBy=Y©FbB +FT (53.26)

Y© =2(1 +£T£)-l[ I+£ £T +£x ]-1 (53.27)

FbB=-n3'(u)lc-ka'(iit)lc

MbB =(^1u1"(c) +k1ult"(c), ^''(cHV^c), 0)T

%+ ©* u+2©*^ +©Wu)+\Ld(u) +kaOit) +Y"!y =0 (53.28)

ua(c) =u2(c) =u3(c) =0, Uj'(c) =u2'(c) =0

u1"(c +L) =u2"(c +L) =0 (53.29)

^'"(c +L^O u2"'(c +L) =0 u3'(c +L) =0

Suppose again that we can determine F^t) and MbflW by on-board measure

ments. Apply the control law

i^^Ioffi+^l+^-%(I-£x)(-P£-'i)-Io(&T^)^-^EbB-MbB (5330)

where P> 0, and y > 0. Assume that the mass of the rigid body is much larger than

the mass of the beam. Then

(i)The attitude £(t)-»0 exponentially, and £(t)->0 exponentially;

(ii) The angular velocity ©-K) exponentially, and ©-»0exponentially;
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(iii) The beam deflections u_ and beam velocities u^ both go to zero

exponentially.

Proof of Theorem 53.4 - The bulk of the proof is almost identical to that of Theo

rem 5.3.1. Choose the dummy output function to be £. Differentiating £ twice with

respect to time yields exactiy the same linear system as Theorem 5.3.1. Inserting the

control law yields

£= -R-& (5-3.32)

which shows (i). Observing (53.24) and using the fact that £ and£ go to zero expo

nentially gives ©->0 exponentially. Using (5.3.9) and (5.3.32) also shows that ©->0

exponentially. This proves (ii).

Thus, the only difference in the proof is in showing that the beam velocities and

deflections go to zero exponentially. The proofis similar to that of Theorem 5.3.1, and

the details can be found in Appendix 5.A.. •

Remark 5.3.5 - As remarked previously, this result gives a rigorous justification of

an assumption used widely in the literature; namely, to design an attitude control law,

one can ignore the translational term if the mass of the rigid body is much larger than

the mass of the beam.

5.4 Exact Nonlinear Attitude Control Law for a Flexible Spacecraft - Beam

Damping Absent

In the previous section, attitude control was obtained by decoupling the rigid body

from the beam, and applying a rigid body control law. By decoupling the two compo-
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nents we are then left with an uncontrolled, damped beam. However, if the damping

is small, or essentially negligible, then oscillations in the beam can continue for an

undesirably long time. In this section we will consider the problem when the beam

damping is assumed to be zero. Since there is no damping in the beam, it is easy to

see that the control laws of section 5.3 will not work because the beam oscillations

will notdieoff. Thus, if we are to employ a decoupling linearization law in the spirit of

Theorem 53.1 or Theorem 5.3.4, beam control will be needed to stabilize the beam.

The type of beam control to be employed will be of the boundary variety discussed in

Chapter 2. As stated in Chapter 2, the main reason for using boundary control is that

it is far easier to implement then distributed control. The specific form of boundary

control to be used are force thrusters at the tip of the beam, combined with velocity

sensors also located at the tip of the beam.

With these ideas in mind, we now have the following Theorem:

Theorem 5.4.1 - Consider the flexible spacecraft without momentum wheels

described in section 3.1.6, and denoted (FSS). Assume beam damping is zero, i.e. k

= 0 in (3.1.57). Then the equations of (FSS) become

£=l[I +&T +£x]ffl, (5.4.1)

Iq© +©xIq© =1+cx Fhj +MbB- (5A2)

mBy=Y©FbB +FT (5.43)

Y© = 2(1 +g£rl[ I +5 £T +£x ] -1 (5A4)

MfeB =Oi^-Cc), H2U2"(c), 0)T

u^H ^ u+2©^ +©"(©^u) +\id(u) +Y"ly =0 (5.4.5)

u^c) = u2(c) = u3(c) =0, u/W = u2'(c) =0
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Ul"(c +L) =u2"(c +L) =0 (5.4.6)

^'"(c +L) =-Fj, i= 1,2. ^u3'(c +L) =-F3

where Ft(t), i=l, 2, 3, is the the point force actuator associated with the ith axis.

Let the control law be

t:=©^0©+2(1 +^-1I0a-ix)(-P£-^)-I0(&TS)^£XEbB-MbB (5-4-7)
FT := -Y©^ -mBAy (5.4.8)

Fi(t) := -aj uit(c+L) i=l, 2,3. (5.4.9)

where p>0, y>0,Ag 1R3x3 is aHurwitz matrix, and o^O, i=l, 2,3. Then

(i) The attitude £(t) -» 0 exponentially, and £(t) -» 0 exponentially;

(ii) The angular velocity ©(t)-»0 exponentially, and ©(t) -» 0 exponen

tially;

(iii) The velocity of the center of mass of the rigid body i(t) ->0 expo

nentially, andy(t) -» 0 exponentially;

(iv) The beam deflections u(x, t) and beam velocities u^x, t) both go to

zero uniformly exponentially.

Proof ofTheorem 5.4.1 - See Appendix 5.A.. •

Comment 5.4.2 - The interpretation of the control law is again simple. The rigid body

torque law (5.4.7)-(5.4.8) decouples the rigid body from the beam, and then stabilizes

the rigid body. The beam boundary control law (5.4.9) exponentially stabilizes the

beam. Thus we are again left with two decoupled exponentially stable systems, as in

Theorem 5.3.1.
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•Remark 5.4.3 - From the proofs of Theorem 5.3.1, 5.3.4 and 5.4.1, we see that it is

only crucial for the beam configuration to be exponentially stable. In particular, the

Euler-Bernoulli beam model employed was not crucial in the proofs of the Theorems.

This means that any exponentially stable beam model can replace the Euler-Bernoulli

model, and the conclusions of the theorems are still true. For example, a damped

Timoshenko beam model would suffice, or an undamped Timoshenko beam model with

beam boundary control would also work (see [Kim 1]). From an engineering view

point, the only difference is in the calculation ofthe forces and moments at the point of

attachment, and the calculation of beam response during maneuvers, quantities which

clearly depend on the beammodel employed.

53 Conclusions and Future Research

This chapter has considered the attitude control problem for a flexible satellite con

sisting of a elastic beam clamped to a rigid hub; the former is modelled as an Euler-

Bemoulli beam. Two improvements were seen over previous exact linearization

based attitude control laws. First, the laws were seen to be easily implementable

using strain rosettes. Second, the laws took into account an infinite dimensional

beam model, rather than a finite dimensional approximation. The latter improvement

means that there is no need to worry about "spillover" problems associted with finite

dimensional approximations.

In terms of future research, there is still quite a bit of work to do. The main problem

with these exact linearization based control laws is that they are not robust. For the

stabilization problem considered here, robustness comes for free, but for general

tracking problems this is not the case. This is well-known in robotics, where the

"computed torque methods", also based on exact linearization, are known to exhibit
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tracking errors due to the inherent non-robustness of these laws (see [Sas. 1]).

Thus, it would be very desirable to find ways to enhance the robusmess properties of

these controllers.

Other problems are still worth investigating, among them shaping of beam response,

sensor and actuator placement, and implementation issues dealing with limitations on

achievable torque in thecontrol jets and onenergy expenditures.

5.A Proofs of Exponential Decay

We first need the following result which will be used in all of the proofs of this

appendix.

Theorem 5.A.1 - Consider the following differential equation evolving on a Banach

space X:

x=Ax +f(t) x+g(t) xq € D(A) (5.A.1)

where A: X -> X is a linear map, possible unbounded, and where f: 1R x X -» X and g:

1R -» X are C1 functions. Suppose it is known that (i) The system is well-posed, i.e.,

there is a (strong) unique solution to (5.A.1) (ii) A generates an exponentially stable

semigroup (iii) llf(t)ll -> 0, and (iv) llg(t)ll -> 0 exponentially. Then, for any initial

condition Xq e D(A), the solution to the differential equation (5.A.1), denoted x(t) =

S(t)xQ, satisfies llx(t)ll -» 0 exponentially.

Proof of Theorem 5.A.1 - Let T(t) denote the semigroup generated by A. Using

the "variation of constants" formula yields
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x(t) =TH-x^Xq +jT(t-x)[f(x)x(x) +g(x)]dx
to

Take norms on both sides to obtain

t

llx(t)ll <, IITa-t^llllxoll +JllT(t-x)ll [ ll[f(x)l lllx(x)ll +llg(x)ll]dx
to

Now use the fact that IIT(t-to)ll <Mexp(-8(t-tQ)) for some M >0 and some 8 > 0,

and llg(t)ll <, Mgexp(-8g(t)) for some Mg >0and some 8g >0to obtain

t

llx(t)ll <; Mexp^Sa-tQ))!^!! +jMexp(-8(t-x))[ll[f(x)llllx(x)ll+Mgexp(-8g(x))]dx
to

Directly integrate theterms involving theexponentials toobtain
t

llx(t)ll <; Me^t-MixoH +MM [e-^t-H))- e-*("0>] + jMe-6(t-t)|l[f(x)llllx(x)lldx
8^?g ^

(5.A.2)

Note next that since llf(t)ll -> 0, there is a t* such that llf(t)ll < 8/2M, for all t > t*.

Inserting this expressioninto (5.A.2) yields

t

llx(t)ll <Me-^-t^llxoll +MMJe-Sgfrt*)- e^"*)] + JA e"5(t-x)|lx(x)lldx
8-8g

for all t £ t*. Now set u(t) = e5(t't*^llx(t)ll. Inserting this then yields
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u(t) <; MuftpH MMJe^X"*)- 1] +4-J u(x)dx
8-6? l t*
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Now apply the generalized Bellman-Gronwall Lemma [Des. 2, Appendix E] toobtain

t

<Mu(t*)+ MMJe^gXt-t*). X] + f[Mu(t*)+ MNUe*6"5^"*)- 1)1 » e^^dx
*=Z t* ^?g 2

Evaluate the integrals bydirect integration to finally obtain

u(t)£ Mu(t*H MMJe^sKt-t*). y + Mu(t*)(l - t****2}*- (5A3)
5" 5g MMJe^g)^*)- e*"*)'2)

8^g

To recover llx(t)ll, multiply both sides of (5.A.3) by e"6^1*). Note that every term

is then exponentially decaying. Thus, there issome M" >0,8" >0 such that

llx(t)ll<M"e-8"<w*>

for all t > t*, whichproves the Theorem. •

Proof ofTheorem 5.3.1

To show that the beam deflections and velocities go to zero exponentially, we will

first show that the linear portion of the beam dynamical equations (53.5)-(53.6) gen

erate an analytic, exponentially stable semigroup (Theorem 5.A.2). Using the results

of part (i) of the Theorem and the Bellman - Gronwall type result above (Theorem

5.A.1) will then yield the result.

Consider a newdifferential equation x = Ax where A is the linearportionof (5.3.5):
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L-MdO -k9(.)_
(5.A.4)

(Refer to section 2.1 for the definition of the various terms in A.) Let the space A

operates on be X=^x^xHo^Hq^j/xL^L2^2, and let the domain of A, D(A),

be defined as

D(A) ={(Xl x2 x3 x4 x5 x6 x7 x8)Tl xx e R3, x2 e IR3, x3 e Hq4, x4 g Hq4, x5 e

H2, x6 g Ho4, x7 e Hq4, x8 € H2, x5(c)=x8(c)=0, x3"(c+L) = x4"(c+L) =

x6"(c+L) = x7"(c+L) = 0, x3"'(c+L)=x4w(c+L)=x6///(c+L)=x7w(c+L)=0,

x5'(c+L)=Xg'(c+L)=0} (5.A.5)

Let the inner product on X be

[a,b]x =[aphj^ mB[a2,b2]IR+ [83,^] +[a4,b4] + [35,05] + [a6,b6] +[a^fy]

+ [ag,b8](5.A.6)

where [a, b]R is the ordinary inner product in IR3, and [a, b] is the ordinary L2 inner

product

Theorem 5.A.1 - Consider the differential equation

y +pAy + Ay = 0
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where A is a positive definite, self-adjoint unbounded linear operator operating on a

Hilbert space X, and p e IR, p>0. Write this differential equation in state space form

as

4° '1lrA ~PA-
x=:Lx

where x:=(y, y)T. Let the domain of the operator L be D(A)0D(A). Then the clo

sure of L, denoted L, generates an analytic, exponentially stable semigroup on W =

D(A°-5)eX.

Proof ofTheorem 5.A.1 - See [Hua. 1, Theorem 4.1], or [Mas. 1,Theorem 1.1].

Using this result, we immediately have the following theorem.

Theorem 5.A.2 The closure of the operator A defined in (5.A.4) generates an analyt

ic, exponentially stable semigroup T(t).

Proof of Theorem 5.A.2 - The operator consists of 3 decoupled components. Two

components are due to transverse components, and one is due to axial deflections. It

thus suffices to show that the operators

*-T «—

0 1

-*(.) -ktf{-)
and LA :=

0 1

-#(.) -k^-)
_"§?• dz2 .

for some k > 0,corresponding to transverse and axial deflections, respectively, satisfy

the conditions of Theorem 5.A.I. We will consider Lj, and LA will follow similarly.
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Consider the differential operator §-W Using a simple integration by parts, it is
3z4

easy to verify that for g, he {xe Hq4 | x"(c+L) =0, x'"(c+L) =0),

[^g] =[g,^-]and
dz4 dz4

r^f « ^ 9^1

(5.A.7)

(5.A.8)

where [•, •] is the ordinary L2 inner product (5.A.7) shows that -Q- is a self-
dz^

adjoint operator on L2 with the domain {x e Hq4 | x"(c+L) =0, x'"(c+L) =0}. Equa

tion (5.A.8) combined with Proposition 3.4.2 shows that it is also a positive definite

operator. Therefore, using X=L2, D(A) = {x € Hq4 | x"(c+L) =0, x"'(c+L) =0), and

Theorem 5.A.1 shows that the closure of Lq. generates an analytic, exponentially sta

ble semigroup. By identical reasoning, the closure of LA generates an exponentially

stable semigroup. Hence we conclude that the closure of A of (5.A.4) generates an

exponentially stable semigroup. •

Proofof Theorem 5.3.1, part(iii) - Rewrite (5.3.5) in state space form as

u,

%

0 I u

+

-ti3M -kd(-)\ IaJ
0 I u 0

-©*(©*) - & -2o/ -\ _Y"ly

or,

2t
=: A

u

+ Btf
u

_% w L^J
+ f(t)

(5.A.9)

(5.A.10)
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A, B(t), f(t) are obvious from (5.A.9). From Theorem 5.A.2, the closure of A gener

ates an exponentially stable, analytic semigroup. Since <& and G)->0 exponentially by

design, IIB(t)ll goes to zero exponentially, where II II denotes the norm induced by the

inner product (5.A.6). Finally, since y->0 exponentially by design, llf(t)ll goes to zero

exponentially. Thus, the conditions ofTheorem 5.A.1 are met, and we conclude that u

and u^ go to zero inthe X(energy) norm. •

Proof of Theorem 53.4, part(iii) - To show that the decay rate is exponential, we

will first show that the linear part of (ii) is exponentially stable (Lemma 5.A.6).

Using the results of part (i) of the Theorem and a Bellman - Gronwall type proof will

then yield the result

Consider a new differential equation x = Ax where A is the linearization of (5.3.28)

at the origin:

A:=

0 I
C+L C+L

-M3(-) - i- f ^(-)dz -k9(.) - _L J k3(.)dz
mB J mBJ

c

(5.A.11)

(Refer to section 2.1 for the definition of the various terms in A.) Let the space A

operates on be H02xH02xH01xL2xL2xL2, together with the corresponding "energy"

inner product

[*\ glx =KfI* f2> f3» f4> f5' f6>T> tef h? «3' *4' %> ^ =£fl"' ^ + fy"' ^ +

[f3", g3'1 + [f4, g4l +[fy *J+$6' ^ (5-A*12)
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where [•, •] denotes the ordinary inner product in L2[c, c+L]. The term energy is

used since the first three terms of the inner product (5.A.12) represent the potential

energy of the beam, while the latter 3 terms represent the kinetic energy of the beam.

Let the domain of A, D(A), be defined as

D(A) = l(xx x2 x3 x4 x5 x6 x7 x8)Tl X! e Ho4, x2 € Ho4, x3 e H2, x4 e Hq4, x5 €

Hq4, x6 e H2, x3(c)=x6(c)=0, xx"(c+L) = x2"(c+L) = x4"(c+L) = x5"(c+L)

=0, x1/"(c+L)=x2"/(c+L)=x4"/(c+L)=x5"'(c+L)=0, x3'(c+L)=x6'(c+L)=0}

(5.A.13)

One should note the strong similarity between this operator, and the operator A'

(defined by (3.A.4)) used in the proof of Theorem 3.4.1, part (ii). In fact, Lemma

3.A.2 immediately yields

Lemma 5.A3 - Consider A of (5.A.11). Suppose the mass of the rigid body is much

greater than the mass of the beam. Then X, the closure of A, generates an analytic

semigroup on X.

Proof of Lemma 5.A3 - For simplicity, but in a abuse of notation, let A denote the

closure of the operator A of (5.A.11). Note that A of (5.A.11) is simply A' of (1.2)

restricted to the last two components. Thus, since A' of (1.2) generates an analytic

semigroup, then so doesA of (5.A.11). •

Before proceeding, we need to compute the spectrum of the operator A of (5.A.11).

This is the content of the following Proposition.
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Proposition 5.A.4 - Consider the linear operator A given by equation (5.A.11).

Consider the eigenvalue problem

Ax = ?lx (5.A.14)

Then A has eigenvalues

= 1,2 (5.A.15)
^±^.8.•4Hivi4

2

^3Z±W4 -413V32 (5.A.16)

wheretheVj satisfy

coshv:Lcosv:L + (cosv:Lsinhv:L +coshViLsinvjL) =-1 i = l,2 (5.A. 17)

cosv3L =(sinv3L) /v^. (5.A. 18)

The eigenvectors corresponding to these eigenvalues are

x1±=([]1,0,0,A.1±[]1,0,0)T

x2±=(0,[]2,0,0,a2±[]2,0)t

x3±=(0,0,[]3,0,0,A3±[]3)T

where [\ =(2ci2/(vjmB) - c^cosv^z-c) -c^sinv^z-c) +l/(vjmB)) +

Cjjcoshv^z-c) + c^sinhv^z-c) - lAVjhig)), i=l,2, and
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[ ]3 =(sinv3(z-c) - l/(v3mB)) + coshv3(z-c)l/(v3mB). Also, the Cy satisfy

EiosvjL + coshvjL sinvjL + sinhvjL - 2cosviL/(vimB)
jinhvjL - sinvjL cosvtL + coshvjL +2sinviL/(vimB)

cil

ci2
= 0,i=l,2 (5.A.19)

Comment 5.A.5 - As mB -* ~, inspection of (5.A.17)-(5A.18) show that the eigen

values, modal frequencies, and eigenvectors approach that of a clamped-free beam

([Mei. 1, p. ?]). This is certainly to be expected, since as mB -> °°, the rigid body is

becoming an "infinite wall".

Proof of Proposition 5.A.4: Direct computation shows that Ax^ = Xfxf. The con

ditions that the vi and Cy satisfy come from the beam boundary conditions

^^ = 0,^(^ = 0

u"i(c+L) =0,u'"i(c+L) =0

which correspond to zero deflection and velocity at the fixed end, and zero moment

and force at the free end.

To obtain the c^, write an arbitrary eigenvector as a linear combination of coshvj (z-

c), cosv^z-c), sinhv^z-c) and sinv^z-c), i = 1, 2, and similarly for the v3 term.

These combinations must satisfy the boundary conditions if they are to be eigenvec

tors. Since there are 4 boundary conditions and four unknown coefficients, we get a

homogeneous system of 4 equations and 4 unknowns. If the coefficients are to be

nonzero, the determinant of the corresponding matrix must be zero. The determinant

of the system is precisely the conditions (5.A.17) and (5.A.18). Partially solving the
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resulting system, and inserting the partial solution results in the system (5.A.19).

Analogous to Theorem 5.A.2, we have the following Lemma which shows that A of

(5.A.11) generates an exponentially stable semigroup.

Lemma 5.A.6 - Consider the operator A of (5A.11). Suppose the mass of the rigid

body is much larger than the mass of the beam. Then the operator A generates an

exponentially stable semigroup.

Proof of Lemma 5.A.6 - Since A generates an analytic semigroup, then by Proposi

tion B.9 of Appendix B, we know that T(t) satisfies IIT(t)ll £ Mexp(co0(t)), where 0)0

= sup{Re(5l)| teo(A)}. It thus suffices to verify that the spectrum of A is strictly

negative and bounded away from zero. From Proposition 5.A.4, examining (5.A.15)-

(5A. 16) wesee that this indeed the case. This proves Lemma 5.A.6. •

Proof of Theorem 5.3.4 part(iii) - Rewrite (5.3.5) in statespaceform as

%

0

C+L C+L

-u3(-)- _L f ud(.)dz -ka«- J. Jk8(.
mB-> mB^

)dz

or,

0 I

£•ox(©x) - <& -2(8?

=: A
u

+ bo:
u

St

u

u*

(5.A.20)

(5.A.21)
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where A and B(t) are obvious from (5.A.20). From Lemma 5.A.6, the closure of A

generates an exponentially stable, analytic semigroup. Since ffi and fi)-»0 exponen

tially by design, IIB(t)ll goes to zero exponentially, where II II denotes the norm

induced by (5.A.12). Finally, since y->0 exponentially by design, llf(t)ll goes to zero

exponentially. Thus, the conditions ofTheorem 5A.1 are met, and we conclude that u

and Uj go to zero exponentially in the X(energy) norm. •

Proof ofTheorem 5.4.1, part (iv)

The idea of this proof is identical to the others in this appendix: separate the linear

and nonlinear portions of the differential equation, verify that the linear portion gener

ates an exponentially stable semigroup, and then apply Theorem 5.A.2.

Consider now the linear portion of (5.4.5):

(5.A.22)

Let the spaceA operates on, X, be defined as

X:= Hq2 xH^x HQlx L2 xL2 xL2 (5.A.23)

where the Hk are defined in Appendix B, and let the corresponding "energy" inner
product be

[f, g]E := [(*!> 1*2' f3» f4' f5' f6)T- (gi, g* g3> g4« g* g^E = tfl" ^ + U2"> %"] +

[f3", g3"] + [f4, g4l +Vy g5l +tf6' «6>- (5A-24)

Let the domain of A, D(A), be defined as

D(A) =((X! x2 x3 x4 x5 x6)Tl xx € Hq4, x2 € Ho4, x3 € H2, x4 € Hq4, x5 e Ho4, x6
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€ H2, x3(c)=x6(c)=0, Xl'(c)=x2'(c)=x4'(c)=x5'(c)=0, xf(c+L) = x2"(c+L)
=x5"(c+L) = x6"(c+L) = 0, x1'"(c+L)=ax4(c+L), x2'"(c+L)=px5(c+L),
x3'(c+L)=^yx6(c+L)} (5.A.25)

where a>0, P>0, and 7>0.

Theorem 5.A.7 Consider the operator A of (5.A.22) together with the corresponding

space (5.A.23) and inner product (5.A.24). Then A generates an exponentially stable

semigroup.

Proof of Theorem 5.A.7 - This follows from Theorem 2.5.2 of Chapter 2, when x{ is

chosen to be L. •

Using this result, the proofofTheorem 5.4.1 follows easily.

Proof of Theorem 5.4.1 - The rigid body control law (5.4.7) forces £(t)->0 expo

nentially exactiy as in the proof of Theorem 5.3.1. To show that the beam velocities

and deflections go to zero, use exactiy the methods of the proof of Theorem 53.4.

More explicitly, rewrite (5.4.5)-(5.4.6) in state space formas

V 0 I u

+
0 i u 0

% -u3W 0 A -^(of) - ©* -2o/ _\ _Y-Xy

or,
%

=: A
u

u,
+ B(t;

u

U,
+ f(t)

(5.A.26)

(5.A.27)

A, B(t), f(t) are obvious from (5.A.26). Theorem 5.A.7 shows that A generates an

exponentially stable semigroup. Since © and G)-+0 exponentially by design, IIB(t)ll

goes to zero exponentially, where II II denotes the norm induced by (5.A.24). Finally,
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since £-»0 exponentially by design, llf(t)ll goes to zero exponentially. Thus, the con

ditions of Theorem 5.A.1 are met, and we conclude that u and Uj go to zero exponen

tially in the X (energy) norm. •

Appendix 5.B - Proof of Existence andUniqueness of Solutions

The proof of existence and uniqueness of solutions to the closed loop systems in

Theorems 5.3.1, 53.2, and 53.4 is presented below. The proofs are of a somewhat

different flavor than the proofs of finite dimensional nonlinear differential equations.

Technical difficulties occur because there are unbounded operators present, which are

not present in most finite dimensional nonlinear differential equations. The proofs

below use standard perturbation theorems in semigroup theory [Paz. 1]. The intu

ition behind these results is that if solutions exist to the unperturbed equations, then

equations exist to the rxirturbed equations as long as the perturbations are sufficient

ly "nice", in a sense to made precise.

Existence and uniqueness of solutions to Theorem 53.1

Upon substitution of the control law (5.3.7) and (5.3.8), note that (5.3.1), (5.3.2),

(5.3.3), (53.4) become ordinary differential equations. The existence and uniqueness

of these differential equations is easy to verify. For, observing (5.3.20), we see that

£(t), i(t), 0), a> and y satisfy linear differential equations. Thus, the only difficulty is

the partial differential equation (5.3.5) and boundary conditions (53.6).



uHt+ffixu +2o)xut +mx(coxu) +^3(u)+k3(ut) +Y"ly=0

Ul(c) =u2(c) =u3(c) =0, ^'(c) =u2'(c) =0

u1"(c + L)=u2//(c + L) =0

Ul"'(c +L) =0 u2"'(c +L) =0 u3'(c +L) =0

Rewrite (5.B.5) in state space form as

u*

%

0 I

-u3(.) -k9(.)•)|UJ+b^x
0 I u 0

(©*)- d)x -2©* A yl$-

or,

.3*B<(3=: A + f(t)
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(5.B.5)

(5.B.6)

(5.B.7)

A, B(t), f(t) are obvious from (5.B.7). From Theorem 5.A.2, A generates an expo

nentially stable, analytic semigroup. Since co and co-»0 exponentially by design,

IIB(t)ll goes to zero exponentially, where II II denotes the norm induced by the inner

product 5.A.6. Hence B(t) is a bounded linear operator. Finally, since £->0 exponen

tially bydesign, llf(t)ll goes to zero exponentially.

Using [Paz. 1, Chapter 4, Corollary 2.10], A + f(t) generates a strongly continuous

semigroup. It is easy to verify, using a Bellman-Gronwall type argument, that A +

f(t) generates an exponentially stable semigroup. Finally, using [Paz. 1, Chapter 5,

Theorem 2.3] (5.B.7) has a (strong) continuously differentiable solution, for all Uq g

D(A). •

Proof of Existence and Uniquenessof Solutions to Theorem 53.4
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The proof of global existence and uniqueness is almost identical to that of Theorem

5.3.1. Upon substitution of the control law (53.30), note that (53.24), (5.3.25),

(5.3.26), (5.3.27) become ordinary differential equations. The existence and unique

ness of these differential equations is easy to verify, since, as in the proof of Theorem

5.3.1, £(t), i(*)> co, ii and y satisfy linear differential equations. Thus, the only diffi

culty is the partial differential equation (5.3.28) and boundary conditions (5.3.29).

1^+ oix u+2coxut +co*(co*u) +u3(u) +kd(vQ +Y-1£ =0
ux(c) =u2(c) =u3(c) =0, Ul'(c) =u2'(c) =0

u1"(c +L)=u2"(c +L)=0

U!^(C +L) =0 U2"'(C +L) =0 U3'(C +L) =0

Rewrite this in state space form as

%

0 I
C+L C+L

.)- ^J^Wdz -k3(.) -±J M3(-)dz-u3(-

or,

0 I u

+
-^(cp^) - <& -20/ -*

^

%
=: A

u

Ik
+ B(t;

u

U

U,

(5.B.8)

A, B(t) are obvious from (5.B.8). From Lemma 3.A.2, A generates an exponentially

stable, analytic semigroup. Since co and 6-K) exponentially by design, IIB(t)ll goes

to zeroexponentially. Hence B(t) is a bounded linear operator.

Using [Paz. 1, Chapter 5, Theorem 23], A + B(t) generates a strongly continuous
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semigroup. (In fact, it generates an exponentially stable semigroup.) This shows

that there is a unique, continuously differentiable solution, for allUq e D(A).

Existence and uniqueness of solutions to Theorem 5.4.1

Upon substitution of the control law (5.4.7)-(5.4.9), note that (5.4.1), (5.4.2),

(5.43), (5.4.4) become ordinary differential equations. The existence and uniqueness

of these differential equations is easy to verify, since £(t), £(t), go, © and y satisfy

linear differential equations. Thus, the only difficulty is the partial differential equation

(5.4.5) and boundary conditions (5.4.6).

u^ ©x u+2©^ +©^(o/u) +u3(u) +Y-!y =0

Ul(c) =u2(c) =u3(c) =0, Ul'(c) =^'(c) =0

u1"(c + L)= u2"(c + L) = 0

mui~(c + L) = -^%(c+L), i=l,2.

p.3u3'(c + L) = -a3u3t(c+L)

Rewrite (5.4.5)-(5.4.6) in state space form as

*k

%

or,

0 I

-u3(.) 0

u

u,

0

\x-cox(©x) - ©

2t u u

_%
=: A + B(t;

A A
+ f(t)

I

-2(&

0

Y-1y

(5.B.9)

A, B(t), f(t) ate obvious from (5.B.9). From Theorem 2.5.5, A generates an exponen-
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tially stable semigroup. Since & and ja-»0 exponentially by design, IIB(t)ll goes to

zero exponentially. Hence B(t) is a bounded linear operator. Finally, since £->0

exponentially bydesign, llf(t)ll goes to zero exponentially.

Using [Paz. 1, Chapter 4, Corollary 2.10], A + f(t) generates a strongly continuous

semigroup. It is easy to verify, using a Bellman-Gronwall type argument, that A +

f(t) generates an exponentially stable semigroup. Finally, using [Paz. 1, Chapter 5,

Theorem 2.3] (5.B.9) has a (strong) continuously differentiable solution, for all Uq e

D(A).
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APPENDIX A - DETERMINATION OF SHEAR FORCES AND MOMENTS

Determination of beam forces and moments is highly problem specific. In this

appendix, we will consider the determination of forces and moments due to a rectan

gularbeam attachedto a rigid body. See FigureA.1.

The problem with detennining these quantities is they cannot be directly measured,

but rather must be determined through some other quantity which can be measured.

The simplest way of doing this is by use of strain gauges and rosettes. The reader

unfamiliar with these devices can find a simple discussion in [Pop. 1, p. 311] or a

more complete discussionin [Het. 1, chapt 5-9].

A.1 Stress and Strain Tensors

Only a very brief discussion of material properties will be given here, mainly to fix

notation. Readers interested in a more detailed exposition are referred to [Pop. 1,

Chapters3,4] or [Lan. 1, Chapter 1].

Let the position of a particle P in the beam be rxi + r^ + r^ (where i, i k refer to

the unit vectors along some x, y, z coordinate axes). Upon application of forces to

the beam, deformation occurs and the point P moves to (rj + Uj)i + (r2 + u2)j. + (r3 +

u3)k.

Let ex.x. denote the ij-th component of the strain tensor defined as

e* i(*3 +*i ***!i) (A.U)
AiAj 2V 9x: 3xj 3xj 3xk' v 7

with summation over k, where Xj:=x, x2:=y, x3:=z.

Now consider an infinitesimal cubic volume element centered about a point P of the

beam, with faces of area AA. Let °VX. denote the ij-th member of the stress tensor

defined as
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VrJSo^u-1*3 (A12)
where AFx. j is me xjth component of the force acting on face j of the cube. (Faces

1 and 4 have outward normals parallel to the x and -x axes, respectively, faces 2 and

5refer similarly to y and -y, and 3 and 6 refer to z and -z.)

By assuming homogeneous, isotropic material, and also assuming small strains, we

getHooke's Law relations between stress and strain

exx =cxx/E-vCTyyE-vaZ2^ (A.1.3)

eyy =oy/E-vo„/E-vaZ2flE (A.1.4)

ezz =oZ2^E-voxx/E-voy/E (A.1.5)

e*y =VG (A16)
e^cyG (A.1.7)

exz =aX2/G (A.1.8)

where E is the Young's modulus for the material, v is Poisson's ratio, and G is the

shear modulus.

In general, the contributions to Poisson's ratio is small and hence for simplicity it

will be ignored. Thenequations (A.1.3) - (A.1.5) simplify to

e« =<WE CA.1.9)

£yy =VE (A.1.10)

^aJE (A.1.11)

A.2 Forces and Moments Affecting Beam
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Considerarectangular beam as shown in Figure A.l.

Rosette #2

Rosette #3 ill

Rosette #1

Figure A.l - Rectangular Beam under consideration

Recall that the neutral surface (or elastic line) is the portion of the beam which does

not change length during deformation. In the case shown here, it is simply the z-

axis. In determining stresses due to bending moments, the fundamental assumption

is that the strains vary linearly as their respective distances from the neutral surface.

With such an assumption, and using equiUbrium conditions for an arbitrary beam seg

ment, it is easy to show that the bending moment about the x-axis =: Mx is [Pop. 1,

p. 182]

Mx=Ixaz2/x (A.2.1)
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where Ix=Jx2dA =ab3/12. Similarly,

My =Iyazz/y (A.2.2)

where My is the bending moment about the y-axis and Iy= Jy2dA =ba3/12.

If the bar undergoes a moment ^ about the z-axis, the torsional shear distribution

is somewhat difficult to compute. However, it turns out that the distribution (see Fig

ure A.2) has a maximum occurring at the midpoint of the longest side (in this case,

the side parallel to the y-axis).

'^zG'max

Figure A.2 - Shear Stress Distribution

The maximum shear stress turns out to be [Pop.l, p. 167]

«yzx)max =Mz^a2a

where it is assumed that a>b, and a is a parameter depending on the b/a ratio, and

M^ is themoment about thez-axis. Hence,

MT =(a„)maxba2<x
'z ^zx'max'

By symmetry, it is also clear that (o~zy)max =Mza/b2a, which occurs at the midpoint

(A.2.3)
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of the shorter side(the sideof length b). Hence we must alsohave

^ =(°zyWa/b2a (A-2>4)

To determine the shear stresses in the beam, recall that the shear distribution for a

rectangular bar subjected to a shear force in the x-direction Vx is parabolic in nature

andgiven by [Pop. 1, p. 232]

i. * l * *

ttttt

ttttt

ttttt
ttttt
* * *»»

Neutral Axis

\
'^zy'max

•I
•Ml/ (azy)max

S^vi'iV^ij^S^jl

Figure A3 - Shear Stress Distributrion
due to vertical shear

Vxi)=2^((t)2"xi2) xi e[0'b/21
(See Figure A3) This shows that the shear stress is zero at the boundary (xx=b/2)

and has amaximum at x1=0 of value (o^)^ =Vxb2 /81,,. Solving for Vx,

vx ~~—5" Ix(°zy)max ""^5 'Gzrma* (A.2.5)

Similarly,

Vy _"T2 ^^zx^max ~""^ ^zx^max (A.2.6)

where V is the shear force in the y-direction.
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Finally, to determine the axial stress induced by a tensile or compressive force,

note that the average stress over a cross-section is simply Fz/A = -azz since the

cross-section is constant over the length of the beam (when considering axial forces

alone). Hence, Fz, the axial force inthe z-direction, is

Fz=-Aazz (A.2.7)

In the following, only small deflections will be considered, so that the principle of

superposition holds. That is, the resultant strain in the system is the algebraic sum

of the individual strains when applied separately. Superposition of stresses as well

as strains also follows from the previous assumption of Hooke's Law.

A3 Force and Moment Determination from Strain Rosettes

In order to determine the forces and moments affecting the beam, strain rosettes

are mounted on the beam as shown in Figure A.l. With the rosettes placed as

shown, the following information is obtained:

Rosette 1:

Rosette 2:

Rosette 3:

eyy S2

_^zy ezz_ x= b/2, y=0, z=c

^xn exz

_ ezx ezz _ x= 0, y=a/2, z=c

£yy £y2

_ ^zy ^zz x= -b/2, y=0, z=

^xx exz

_ ezx ezz _ x= 0, y=-a/2, z=

(A3.1)

(A3.2)

(A33)

Rosette 4: [~e^. e__"I (A.3.4)

From these measurements, the forces and moments affecting the beam can be

determined by use of equations (A.2.1)-(A.2.6), superposition, and the Hooke's Law
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relationships. Specifically, at rosettes 1 and 3 equations (A.2.1), (A.2.2), and

(A.2.6) shows that (y=0 at both 1and 3 so that there isno contribution due to MJ

Ozz^z/A +My*71*

azzll + azz'3 = "2IVA
<yzzll-^zzl3 =2Myb/2Ix =Myb/Ix

Fz =- A(aJ1 +aj3)

Similar arguments show that

Mx=Va(azzl2-<yZzl4)

Bythe Hooke's Law relationships, 0^= Ee^. Hence,

Fz^eJi +eJs) <A'3'5)
My =Ix/bE(ezzl1-ezzl3) (A3.6)

M^Iy/EateJj-eJ^ (A3.7)

Since the rosettes at each of these positions determine the strains in the parenthe

ses, Fz, My, M^ are determinable from the experimental data.

Finally, to determine Mz, Vx, and Vy consider Figure A.2. Since the stresses are

additive at one side of the cross-section, but subtract from one another on the other

side, it is easy to solve for the quantities Mz, Vx, and Vy. Proceeding along these

lines, use Figure A.2 and equations (A.2.3), (A.2.4) and (A.2.5) to obtain
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ezyl1G =azyl1= +Mza/b2a +3Vy/2ab (A.3.8)

ezy 13G =azy 13 ="M^a+3Vy^ab (A*3'9)

ezxl2G =Gzxl2= +Mz/ba2a +3Vx/2ab (A.3.10)

ezxUG =°zxU = -M^*2** +3V^ab (A.3.11)

Since e^l v e^^, e^l^ ezxU are ]aioym DV measurement, and since b, a, and a are

known, equations (A3.8)-(A3-11) is a system of 4 equations in 3 unknowns. From

this system, aleast-squares solution for M^ Vx, and Vycan be found.

Note that if c is small, the moments and forces acting on the body by the beam are

close to the corresponding values atthe point of attachment. Thus,

M^'=Mx* +Myj+ Mzk (A3.12)

^sy+̂ i+ftk (A3.13)

If i, j, k are parallel to the bv b2, b3 axes, respectively, then N^b' =MbB and ^W

= ^3. Otherwise there is a (fixed) rotation matrix Q, as in the discussion of kine

matics in section 3.1.1, such that \bx b2 b3]Q = [i i k]. Then the components of

Mjjb and Fjjg are Q[components of M^' ]and Q[components ofF^L respectively.

Remark A.3.1 - If we add Kelvin-Voight damping to our model of the form, i.e. we

add damping of the form

°ii=EeJJ+1lii^i

<Jjk=Gejk+1ljk^Jk J"k-
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then the formulas change very simply:

Fz ="^(eJl +eJ3) ~-^i*Ji+*J*>-
My =Ix(ezzll-ezzl3)/Eb+Ix(^zzll-^zzl3VTlzzb

Mx= I/eJ2- e^l^/Ea +y$J2 Az UVHzza

For the torsion and shear calculations, just rewrite the LHS of (A3.8)-(A3.11) to

obtain

ezyl iG +Vzy11 =°zyl 1=+Mz«^2a+3vy^b

«*I*Q+V^S"0^- -Mz^2a+3V^ab

ezxl2G +nzxezxl2 =ozxl2= +Nyba2a +3Vx/2ab

^140 +̂ 6^14 =0^14= -M^a+SV^b

and again compute aleast-squares solution for Mz, Vy and Vx.

All of these computations presuppose that the strain derivatives can be deter

mined. Of course, one could get an approximation of these quantities by on-line finite

differences, i.e.

e^t) . *& -y -*>

where T is the time between strain samples.
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Appendix B

Useful Facts From Semigroup Theory

Notation: Let Hk[c, c+L],k=0,1,... be defined as

H°[c, c+L] := {fe L2[c, c+L] }

Hk[c, c+L] := {f e L2[c, c+L] If, f... f*€ L2[c, c+L]}
Also, define

HqHc, c+L] := (fe L2[c, c+L] If, fe L2[c, c+L] and f(c) =0}

Ho2[c, c+L]:= {f e L2[c, c+L] If, f, f'e L2[c, c+L] and f(c) =f (c) =0}

Ho4[c, c+L]:= {fg L2[c, c+L] If, f, f, f", re L2[c, c+L] and

f(c) = f(c) = 0}

For simplicity of notation Hk will denote Hk[c, c+L], HQk will denote H0k[c, c+L],

andL2willdenote L2[c, c+L].

Before proceeding, we need to introduce some definitions and notation from the

semigroup literature. The interested reader can find excellent expositions on this sub

ject in many texts, e.g. [Paz. 1], [Kat. 1], [Bal. 1].

Definition B.l - A linear operator A on a Hilbert space X, A: X => D(A) -» X is said

to be dissipative if for any x e D(A), [Ax, x] < 0.

Definition B.2 - A linear operator A on a Hilbert space X is said to be closed if its
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graph is closed.

Definition B.3 - A linear operator A: X z> D(A) -» X on a Hilbert space X with dense

domain D(A) is said to be self-adioint if A=A*, where A* denotes the adjoint opera

tor of A.

Definition B.4 Let T(t) for all t e [0, oo) be a bounded linear operator in a Banach

space X. {T(t)J is said tobea strongly continuous semigroup if

(i) T(t+s) = T(t)T(s) = T(s)T(t), for any £>0, any s£0.

(ii) T(0) = I

(iii) IIT(t)x - xll -> 0, as t-»0+, for anyx € X.

Definition B.5 - Suppose T(t) is a strongly continuous semigroup on a Banach space

X. The linear operator defined by

D(A):={xeXI limT(t)x "x exists}
t->0 x

and Ax:= limT(t)x " x forx€ D(A)
t-»0 x

is called the infinitesimal generator of the semigroup T(t), and D(A) is called the

domain of A.

Comment B.6 - We see from the the definition that the infinitesimal generator is the

generalization of the matrix Afor the matrix exponential e*1 in finite dimensional sys
tem theory. If Ais a matrix in IR1""1 the domain of Ais all of X since A is a continu

ous operator.
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Definition B.7 Astrongly continuous semigroup {T(t)} satisfying IIT(t)ll <1for all

t € [0, oo) is called a contraction semigroup. If there exists K>0, 5>0 such that the

semigroup satisfies IIT(t)ll £ Ke"^, then T(t) is termed an exponentially stable semi

group.

Definition B.8 A semigroup {T(t)} is said to be analvtic if there exists a sector Aof

the form

A= {z e C: ()>! < arg(z) < <t>2» 4>i <0 < <|>2 }

containing the real axis with

(i) z -» T(z) is analytic in A.

(ii) T(0) = I, lim T(z)x = x, for any x e X.
z->0
z e A

(iii) T(zx+z2) =T^yiXz^) =T^T^), for any zxe A, and any z^ A.

In the proofs in this thesis, we will often be interested in establishing that a semi

group is exponentially stable. Analogous to the finite dimensional case, one would

hope that if the eigenvalues of the operator are all negative and bounded away from

the jo-axis, then the semigroup is exponentially stable. Unfortunately, this is not

true in general. (See [Hua. 2] for a counterexample.) Further, there are very few

easy methods to determine whether a semigroup is exponentially stable. However, if

A generates an analvtic semigroup, then we have the following result [Tri. 1, p. 387].

Proposition B.9 - Suppose a linear operator A generates an analytic semigroup T(t)

on the space X. Then T(t) satisfies IIT(t)ll < Mexp^t)), where co0 = sup{Re(X)
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Xe a(A)}.

Proposition B.9 shows that if is often advantageous to know if one has an analytic

semigroup. One way of obtaining analytic semigroups is by perturbing an analytic

semigroup. One perturbation theorem for analytic semigroups is the following:

Theorem B.IO [Paz. 1, p. 80, Thm. 2.1] - Let A be the infinitesimal generator of an

analytic semigroup. LetB be aclosed linear operator satisfying D(B) z> D(A) and

IIBxIl <, allAxll + bllxll for x e D(A).

There exists 8 > 0 such that if a € [0, 5], then A + B is the infinitesimal generator of

an analytic semigroup.
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