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Abstract

This memoranduminvestigates the application of boundary control techniques to a

rotating flexible spacecraft. More precisely, we consider a rigid body whose center of

mass is fixed in an inertial frame with a flexible beam clamped to the rigid body at one

end and free at the other end. We investigate this configuration under various assump

tions, depending on whether the motion takes place on a plane, or in the three-

dimensional space, as well as the model we choose for the beam. In each case, we pose a

stabilization problem, propose a feedback law and show that under the proposed control

law, the stability of the configuration is obtained.

The memorandum is organized as follows:

In Chapter 2, we review some basic toolsof Newtonian Dynamics and some recent

developments in the nonlinear beam theories, namely the director theory of beams and

the geometrically exact beam theory. Then, as an example, we derive the equations of

motion for the configuration mentioned above.

In Chapter 3, we study the basic configuration under the planar motion assumption

and we use Euler-Bernoulli beam model. We propose two control laws, each consisting

of a torque applied to the rigid body and a force and a torque applied to the free end of

the beam. We show that under the proposed control law, exponential stabilization is

obtained.

In Chapter 4, we generalize the results of Chapter 3 to the motion of the same



configuration in three dimensions.

In Chapter 5, we first prove a stabilization result for the basic configuration using

the geometrically exact beam model, without any linearization. Using this result, we

generalize the results obtained in Chapter 2 to the case of planar motion of the basic

configuration using the Timoshenko beam model.
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Chapter 1

Introduction

Many mechanical systems, such as spacecrafts with flexible appendages or robot

arms with flexible links, can be modeled as coupled rigid and elastic parts. Such models

are basic to the controlof systems which have flexible parts, their stabilization, high pre

cision pointing, etc., and the control of such systems are becoming increasingly impor

tant in the design of lightweight, high performance systems. Thus, over the last decade

there has been a growing interest in obtaining new methods for the design, dynamics and

control of the systems which has flexible parts. An excellent review of research in this

area can be found in [Bal.l]; also for a literature survey, see [Tza.l], and for the recent

history of the subject and for additional references, see [Nur.l] and [Lik.l].

Consider a system which has coupled rigid and flexible parts. The motion of the

flexible parts is usually described by a set of partial differential equations with appropri

ate boundary conditions. Since the motion of the rigid parts are described by a set of non

linearordinary differential equations, andsince the rigid parts arecoupled with the



flexible parts, the overall equations of motion are generally a set of coupled nonlinear

partial and ordinary equations. These equations can be obtained by using the standard

methods of Mechanics, see, e.g., [Gol.l], [Par.l]. Although the equations of motion

obtained by using different methods, such as using Lagrangians, Hamiltonians, free-body

diagrams, etc., are equivalent, the form of these equations and the complexity they offer

depend on a particular method used in obtaining them. For a comparison of different

methods to obtain the equations of motion for mechanical systems, see [Kan.l] and

[Pau.l].

In the analysis of flexible structures, particularly in engineering applications, the

common practice is to resort to the finite element modeling, see [Bal.l]. In effect, one

approximates the continuous structure of flexible parts by a finite number of intercon

nected rigid elements with well-defined structural dynamics. This approach reduces the

original equations, which are coupled nonlinear partial and ordinary differential equa

tions, to a set of coupled, nonlinear and finite, although often very large, numberof ordi

nary differential equations. As a consequence , the infinite number of modes, in theory,

associated with the original set of equations is reduced to a finite, although often very

large, number of modes. However, having established a control law for this reduced set

of equations does not always guarantee that the same control law will work on the origi

nal set of equations, e.g. one might encounter so-called "spillover" problems, see [Bal.2].

Also note that the actual number of modes of a flexible system, in theory, is infinite and

the number of modes that should be retained is not known a priori.

Stability of systems with flexible parts, particularly flexible space structures, has



been studied in the past. In [Mei.3], the Hamiltonian of the whole structure was used as a

Lyapunov fuction to study the stability of a damped flexible spacecraft A comparison of

control techniques based on finite element modeling can be found in [Mei.4]. More

recently, [Bai.l] and [Kri.l] studied the dynamics and stability of a rotating flexible

structure from Lagrangian and Hamiltonian point of view, respectively. Both of these

works do not resort to a finite element approximation, but they do not offer a control

scheme.

Recently, [Bis.l] used a Lyapunov type approach which uses the total energy of a

flexible spacecraft as a Lyapunov function candidate to prove the stability of the system

under appropriate forces and torques applied to the flexible spacecraft Their proposed

control laws contain distributed forces applied to the flexible parts, (i.e., forces which are

distributed over the flexible parts), which are proportional to the deflection velocities.

Implementations of suchcontrol lawsmight not be easy and practical.

In recent years, boundary control of flexible systems, (i.e., controls applied to the

boundaries of the flexible parts as opposed to the controls distributed over the flexible

parts), has become an important research area. This idea was first applied to the systems

described by wave equation, (e.g. strings) [Che.l], and recently extended to the Euler-

Bernoulli beam equation [Che.2,3], and the Timoshenko beam equation [Kim.l]. In par

ticular, in [Che.2,3], it has been proven that, in a cantilever beam, a single actuator

applied at the free end of the beam is sufficient to uniformly stabilize the beam

deflections, and in [Del.l] the case where the actuator is "concentrated" to an area, as

opposed to a single point actuator, is investigated. Recently, the boundary control tech-



niques has been applied to the stabilization of a flexible spacecraft performing planar

motion in [Des.2].

The purpose of this thesis is to investigate the application of boundary control tech

niques to rotating flexible structures. As a case model, we study the motion of a rigid

body whose center of mass is fixed in an inertial frame, with a flexible beam clamped to

the rigid body atone end and free at the other end. This basic configuration captures the

essential properties of a flexible spacecraft, (see, e.g., [Bis. 1,2], [Bai.2], [Kri.l], [Pos.l]),

such as a flexible spacecraft in a geosynchronous orbit We consider various cases,

depending on whether the motion takes place in a plane, or in the three-dimensional

space R3, as well as the model we choose for the flexible beam. In each case we pose a

stabilization problem , propose a feedback control law and then show that under the pro

posed control law, the exponential stability of the whole structure is obtained.

The thesis is organized as follows :

In Chapter 2, we first review some basic tools of Newtonian Mechanics and some

recent developments on the nonlinear beam theories, such as geometrically exact beam

models. Then, as an example, we derive the equations of motion for the basic

configuration mentioned above.

In Chapter 3, we study the planar motion of the basicconfiguration using the Euler-

Bernoulli beam model. We first derive the equations of motion, define the rest stateof the

system and propose two control laws to stabilize this system. Each law consists of a

torque applied to the rigid body, a force and a torque applied to the free end of the beam.



Then we show that under the proposed control laws, exponentially stabilization is

obtained.

In Chapter 4, we generalize the results obtained in chapter 2, to the case of 3 dimen

sional motion, (i.e. motionin R3).

In Chapter 5, we first prove a stabilization result for the motion of the basic

configuration mentioned above using the geometrically exact beam model without any

linearization. Then usingthis result, we generalize the results obtained in chapter 2 to the

case of the planar motionof the basic configuration usingthe Timoshenko beammodel.

The contribution of this thesis is the application of boundary control techniques to

the stabilization of rotating flexible structures. The results obtained here indicate that

these techniques can be used in the various problems arising from the control of flexible

structures; an area which needs futher investigation.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we review some basic results of Newtonian Mechanics and Elastic

Beam Theories which will be used in the subsequent chapters.

In Section 2, we outline the basic equations of Newtonian particle dynamics and

rotational dynamics of rigid bodies. In Section 3, we will review some recent develop

ments on nonlinear beam theories, namely the director theories of beams as developed by

Green and Naghdi [Gre.1,2], geometrically exact beam theory as developed by Simo

[Sim.l], and show that the latter can be treated as a special case of the former theory. In

Section 4, we obtain the equations of motion of a beam clamped to a rigid body at one

end and free at the other using the formulations introduced in the previous sections. The

rigid body-elastic beam configuration introduced in this section is the basic configuration

we study thoroughout this thesis.



2.2 Fundamentals of Newtonian Mechanics

In this Section, we summarize and derive some of the basic equations of Newtonian

Mechanics which will be used in this thesis. There are many excellent textbooks on this

subject For detailed analysis, the reader is referred to, e.g., Goldstein [Gol.l], or Pars

[Par.l].

2.2.1 Particle Dynamics

It is customary to give the basic equations of Newtonian Mechanics for a particle,

these equations then can be extended to the equations of more complex physical objects,

such as rigid bodies. A particle is a model for a physical object whose dimensions can be

neglected to describe its motion, i.e., it is represented as a point in R3, which is the stan

dard 3-dimensional Euclidean space.

Let N be a frame in R3, which is specified by an origin O, and following the usual

convention, 3 orthonormal, dextral (i.e., right-handed) vectors fixed in N, say e!, e2, e3;

the frame N is given by the quadruple N = ex, e2, e3.

Let r = OP be the position vector of a particle P in the frame N = (O,e\, e2, e3). Let

m be the mass of the particle P. Of fundamental importance in Newtonian Mechanics is

the (linear) momentum p of the particle P in the frame N, which is defined as :

p=m^ . (2.2.1)

Let f be the net force acting upon the particle P. Then Newton's second law asserts

that there exist a frame in which the net force f and the momentum p are related as



follows:

f=^E. (2.2.2)
dt

A frame in which (2.2.2) holds is called an inertialframe. It is easy to show that N

and M are two inertial frames if and only if M is in uniform translation with respect to N,

see, e.g., [Gol.l].

Let N be an inertial frame, P be a particle in N, r be the position vector of P in N,

and f be the net force acting upon P. Then the torque T, or the moment of the force

applied to the particle P in N withrespect to the origin O of the frame N is defined as :

T = rxf , (2.2.3)

whereas angular momentum L, or moment of momentum, of the particle P in N with

respect to the origin O of N is defined as :

L =rxp , (2.2.4)

where x denotes the standard cross- product in R3

Assuming that the mass of the particle P is constant, by differentiating (2.2.4) with

respect to time t, we obtain :

dh dr dp
—— = —- x p + r x -~f-
dt dt dt

= T (2.2.5)



Equations (2.2.2) and (2.2.5) are the

basic equations of Newtonian Particle Mechanics. We note that the equations of

Mechanics can also be obtained by using other formulations, such as Lagrangian or Ham

iltonian formulation. This approach will not be taken here. Interestedreader is referred to

any textbook on Mechanics, see, e.g., [Lan.l], [Mei.l], [Gol.l], [Par.l].

2.2.2 Rotational Dynamics of Rigid Bodies

Kinematics

Let N be an inertial frame specifiedby the quadruple (O ,e\, e2, e3). Let BR be a rigid

body in N. To specify the equations of motion of BR in N, we define another frame fixed

in the rigid body BR. Let B be such a frame specifiedby the quadruple (0 lfb1( b2, b3); the

vectors bj, 1^, b3) are called the body axes. We will choose O{to be the center of mass of

BR.

The most general motion of BR in N is the combined effect of the translation of the

center of mass of BR in N and the rotation of B in N. We know that if F is the net force

applied to BR, and if O\ is the center of mass of BR, then with R = OOb we have

AfR = F

For this reason we will neglect the translational motion of BR in N and consider the

center of mass of the rigid body fixed in N. Hence the motion of BR in N reduces to rota

tion of B in N.
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We will also assume without loss of generality that the origin of N and the center of

mass of the rigid body and the origin of the body frame B, coincide at all times.

Let r be a vector in N, andlet rN and rB be its components (i.e., triplets) in N andB,

respectively. Then there exists an ortogonal matrix R with det R =1 (i.e., Ke SO(3)),

such that the following holds:

rX^Rr* , (2.2.6)

or equivalently, we have :

ey = E*</b,. 7 =1,2,3 , (2.2.7)
i=i

where Ry denotes the elements of the matrix R. By (2.2.7), the jth column of the matrix

R consists of thecomponents of e, withrespect to the basis blfb2, b3.

As a result of the assumptions above, the motion of BR in N is completely described

by the matrix function R(r) (defined by (2.2.6)). It is well known that:

-^•+n*=0 , (2.2.8)
dt

where £2 e R3*3 is defined by

n=-^-/?r , (2.2.9)
dt

where the superscript T denotes a transposition; for details, see, e.g., [Par.l, p.106].
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Differentiating theidentity RRT =I withrespect to r, we obtain :

*RT+R&TmQ ,
dt v dt

orequivalently CI=-ClT, i.e. CI is skew-symmetric; thus

Q =

0 -©s o^

<% 0 -0)!

-0^ CO! 0

(2.2.10)

Since Q is skew symmetric, we can define an axialvector co as follows :

co=2o>1bI. , (2.2.11)
i=i

where ©is called the angular velocity of BR in N.

Upon differentiating (2.2.6) with respect to time, we obtain :

dRl.=(dR)TrB+Rrdr!_ (2212)
dt dt dt

Equation (2.2.12), with the aid of (2.2.8) defines the transformation of velocities

between the frames B and N : More precisely, let rN =(rN xrN2 rN3)T and

rB =(rfl! rB2 rB3)T . Using (2.2.7) and (2.2.8) in (2.2.12), weobtain :

3 drN: 3 drB:
Z-r^E—^-b.+ooxr . (2.2.13)
,=i at ,=i ai

If one defines
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dr 3 drNi dr 3 drB ,

then (2.2.13) can be rewritten as follows :

<-£>„=<4r>,,+<Bxr • (2-2-14)ar jv dt b
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Dynamics

We now define the angular momentum of the rigid body BR with respect to the ori

gin O of the B. Recall thataccording to ourconvention, the pointO is also the origin of

the inertial frame N and the center of mass of the rigid body BR.

Let dm be an infinitesimal mass element of the rigid body, r be its position vector in

N.Then L0, the angular momentum of BR with respect to O, is defined by the integral:

L0:=JJrx(^*n

=Jrx(©xr)dw , (2.2.15)
BK

where the second equation follows from (2.2.14) ; we consider m in (2.2.15) as a real

valued measure in R3 which defines the mass distribution of the rigid body BR .

From vector algebra, we have the relation

rx(©xr) = <r,r>©-<©,r>r

where <.,.> denotes the standard inner product in R3. Hence (2.2.15) reduces to

L0 =(J[<r,r>/-r.r]dm )® . (2.2.16)
bk

where (r.r) ©:= r < r, ©>, the first parenthesis is the outer product of r with r : the

"column vector r " times the " row vector r ", sometimes called the dyad r.r. In (2.2.16),

/ is the unit matrix in R3.
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The inertia tensor of BR with respect to 0 is defined by

IR:= j(<r,r>I-rx)dm . (2.2.17)

Hence (2.2.16) takes the form:

L0=/* © . (2.2.18)

The inertia tensor IR defined by (2.2.17) is symmetric, therefore one can always find

an orthonormal set of axes such that when referred to those axes, the matrix form of IR

becomes diagonal. Such a set of axes is called principal axes of inertia : then the matrix

IR readsdiag(/lt/2,/3).

Let dm be a fixed infinitesimal mass element of the rigid body, r be its position vec

tor. Then the kinetic energy T of BR in N is given by :

=—J<©xr,©xr>d>n
2«.

=—J<©,rx(©xr)>d>n
2B.

•i< ©,//?©> . (2.2.19)

Let the body axes b{, b2, b3 coincide with the principal axes of inertia of the rigid

body, then (2.2.19) takes the following form :
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3

r-|zW . (2.2.20)
21=1

where /,- is the principalmoment of inertiaof the rigid body about the axis bf, i = 1,2,3.

Let T0 denote the net torque applied to the rigid body BR with respect to O. Then

using (2.2.5) we obtain the following :

(^=T0 . (2.2.21)

Using (2.2.14) and (2.2.18) in (2.2.21), the latter becomes :

/i?-^- +©x/«©=To . (2.2.22)
dt

The above equation is called Euler's equation of motion for a rigid body. With

3 3

©= £Q>jb;, IR =diag(Jx, /2,73), and T0= YJofa >me component form of (2.2.22) along
i=i i=i

the body axes become :

/i©i +(/2-/3)«)2<03 =7,oi . (2.2.23)

/2©2 + (h ~ 11)®3 ©i= 7*02 . (2.2.24)

/3®3 +(/l-/2)<»3Gh =7'Q3 • (2.2.25)
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2.3 Nonlinear Beam Models

In this section, we present 2 nonlinear beam models based on a 1-dimensional con

tinuum model called a Cosserat (or a directed) curve, see, e.g., [Ant.l]. A Cosserat curve

comprises amaterial curve embedded in R3, together with anumber of deformable vector

fields, called directors, attached to every point of the curve. There are different versions

of this approach, depending on the numbers of directors used and the constraints which

are imposed on the directors.

The idea of describing a body as not only a collectionsof points but alsoof directors

attached to the pointsof the body first proposed by Duhem [Duh.l]. The Cosserat broth

ers then used this idea in the representation of the twisting and the bending of rods and

shells [Cos.l]. Recent interest in this approach began with the work of Ericksen and

Truesdell [Eri.l], who presented a generalized version of Cosserat's work.

A nonlinear beam model which uses a Cosserat curve with two directors is first

given by Green and Laws [Gre.l], and later developed by Green, Laws and Naghdi

[Gre.2]. Related developments of a Cosserat curve with three directors are given by

Cohen [Coh.l], and DeSilva [DeS.l]. More recently Simo [Sim.l], extending a generali

zation of the classical Kirchoff-Love rod model due to Antman [Ant.2], obtained the so

called geometrically exact beam model, which proved to be suitable for numerical simu

lation [Quo.l]. For the classical Kirchoff-Love rod model, see [Lov.l].

In this section, we first give some basic results on elasticity. Then we summarize the
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rod theory developed by Green, Laws and Naghdi [Gre.2]. As a special case of this

theory, following Green and Laws [Gre.3], we obtain the geometrically exact beam

model developed by Simo [Sim.l].

23.1 Preliminaries

Let the material points ofa 3-dimensional body BE embedded in R3 be identified by

a connected coordinate system 8f, i = 1,2,3. ( For the definition of a convected coordi

nate system, see, e.g., [Mar.l, p.41] ). Let Nbe an inertial frame and let r* denote the

position vectorof a material element of BE in N. Let gt- and g* denote the covariant and

contravariant base vectors at points ofBE at time t, respectively; and let gy and gij be the

corresponding metric tensors, for i, J = 1,2,3. By definition we have :

3r*
38;

<g«.g/>=8y-
*tf-<&.g./>

£=det(&/)

(2.3.1)

Let me BE be a material point and u be a unit vector. Let AS <zBE be an element of

surface containing m. Let the unit normal to AS be u, measured from one side of AS

which is called the negative side, to the other side of AS which is called the positive side.

We assume that the effect of the positive side of the body on the negative side of the

body is equivalent to a force AF and a moment AG applied to the surface AS. We also



assume

that the vector —— has a limit as AS goes to zero and the vector t defined as
AS

18

t=lim^- (2.3.2)

is called the stress vector at me BE in the direction of u (see, e.g., [Gre.4]).

The stress vector t defined by (2.3.2) depends on the point m, the unit vector u and

the time t. In the sequel we assume that t does not depend on t. Using the conservation of

the energy of BE and some symmetry arguments, it can be proven that t must be linear in

u (see, e.g., [Mar.l, p.134]). Thus, at m e BE, there exists a tensor, called the stress ten

sor T such that the following holds :

t(m ,u) =7(m)u (2.3.3)

Let V be an arbitrary volume in the body BE and let S be the boundary of V. Then

neglecting the thermal effects, the conservation of energy equation is :

dtij T 2 dt dt l dt i dt
dS , (2.3.4)

where p* is the mass density, \y* is the internal potential energy per unit mass, f is the

body force per unit mass (such as the gravitational force), t is the stress vector at me BE

and <.,.> is the standard inner product in R3.

By using the base vectors defined in (2.3.1), we define the component form of T
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defined in (2.3.3) as follows:

rtf-i^gy i=1.2,3 (2.3.5)
7=1

Correspondingly, we define three components of the stress vector, namely the vectors

T^i^'g; «=1,2,3 (2.3.6)

i=3

Hence, if the unit normal u is given as u = 2>,g', then (2.3.3) reduces to :
j=i

<=i!><T< • (2-3-7)

By assuming the invariance under superposed motions, one can deduce from the

energy equation (2.3.4) the balance of momentum and angular momentum equations

(see, e.g., [Gre.4]).

For our purpose, the balance of momentumequation is :

3 BTi ... , dV
Z^+p*^=p*Vtt • <2-3-8>

whereas the balance of angular momentum equation is :

£&xT,.=0 (2.3.9)
i=i

Note that (2.3.9) is equivalent to the symmetry of the matrix form of 7\ which is

called the symmetric contravariant stress tensor [Gre.2].
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23.2 Director Theory of Beams

In this section, we outline a theory of beams based on a Cosserat curve with two

(deformable) directors, as developedby Green,Naghdi and Laws [Gre.2].

Let the material points of a body BE embedded in R3 be identified by a convected

coordinate system, 0ifi=l, 2,3. Let Nbe an inertial frame and r* be the position vector

of a material pointof BE in N. We define the covariant andcontravariant base vectors &-

and g',/=l,2,3, respectively, and their corresponding metric tensors

8ij*8ij* iJ = !> 2» 3, respectively, as in (2.3.1).

To specify the configuration of the beam, we introduce the following objects :

(i) a curve c defined in an open interval /cRas:

_ c := {62 e / I 9i = 93 = 0} , (2.3.10)

(ii) a family of surfaces which are parametrized by 92 = £ e t as :

^:={91,93e R I 9, eBE,i =1,2,3,92 =£) (2.3.11)

We make the following basic assumptions :

Assumption 1: Let the surface S^ bedefined as in (2.3.11). Foreach £e/, S^ is a planar

surface and will be referred to as the cross section of the beam at £. Moreover, S^ is

spanned by 2 vectors da, a= 1,3, called the directors , which satisfy the following equa

tion :
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da: =ga(0,S.0,O <x=l,3 ,reR ,$€/• (2.3.12)

Assumption 2 : Let the curve c and the cross-sections S^ be defined as in (2.3.10) and

(2.3.11), respectively; in addition, we require that the curve c pass through the centroids

of the cross-sections, i.e.,

Jj9oP*V9id93 =0 a=l,3 ,£e/ (2.3.13)

Hence, the curve c will be referred to as the curve of centroids •

Let r ft, t) denote the position vectorof c at£, at time t, then

rfi,O: =r*(Q.§.0.O , (2-3.14)

and apoint in the cross-section S^ is represented by r* (9!, £, 93, r), where

- r* (8t. 5,03,0 =rft . 0 +e^ft, 0 +93d3ft, r) , (2.3.15)

sinceS^ is planar.

Next, we define the contact force n ft, r) and the contact moment m ft , t) over the

beam cross-sections S^ as follows :

nft,0:=JjT2^9^93 , (2.3.16)

mft, t): =JJ(r*- r) xT2 dQxdQ3 , (2.3.17)

where T2 is given by (2.3.6). To give an interpretation of the contact force n ft, r) and
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the contact moment m ft, t), let the line of centroids c given by (2.3.10) be defined in an

interval l=[ajb] and let £ e I. Then, the effect of the part of the beam which lies on the

ft,6] segment of the beam to the part which lies on the [0£] segment of the beam is

equivalent to the contact force n ft, t) and the contact moment m ft, t) applied to the

beam cross-section S^.

Using (2.3.15) in (2.3.17), we obtain :

mft. 0 =JJftidift, 0 +93d3ft, 0 ]xT2 dBidfy

=djft, t) x mift, 0 +d3ft , 0 x m3ft , t) , (2.3.18)

where mj and m3 arecalled the contact director force and aredefined by :

ma:= Jj9aT2rf9^93 a=l,3 (2.3.19)
s%

We derive the equations of motion for a beam by using the momentum equation

(2.3.8) and the assumptions 1 and 2.

By integrating (2.3.8) over the cross-section S^ we obtain the following equation of

balance of linear momentum :

i!L +f=pjfr (2.3.20)
dt> P dtz

where f is the resultant force per unit length at £, due to the surface loads and to the body

forces; p is the mass density per unit length at § . They are given by :
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J(T3d91-T1<*93)+ JJpNg t rf9^93 , (2.3.21)
as* sK

P=P©= JpNgd9^93 , (2.3.22)

where 9Sp denotes the boundary of the cross-section S^. In calculating f, we use the

Stake's theorem (see, e.g., [Spi.l]). We note that by the conservation of mass, p defined

by (2.3.22) is only a function of £ (see, e.g., [Gre.2].

By first cross-multiplying (2.3.8) with (r* -r) on the left, then integrating over the

cross-section S^, using the Stake's theorem and (2.3.9), we obtain the following equation

of balance of the angular momentum :

a»+JL„+,_ 2 z,^,4 • <2-3-23)

where 1is the resultant moment per unit length at £ due to the surface loads and to the

body forces; for a, p=1,3, y<$ are the inertia coefficients of the beam cross-sections.

They are defined as follows:

I: = J(r* - r) x(T3 dBx -T{ rf93) +JJ(r* - r) xpN* f dQxdS3 , (2.3.24)
ds< s%

yafi-.^HW&^dQidQi a,p=l,3 , (2.3.25)
Si

where 9S^ denotes the boundary of the cross-section S^. In calculating I, we use the

Stake's theorem. Using (2.3.15) in (2.3.24) we obtain :

l=diX l^djx^ , (2.3.26)
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where lj and I3 , the assigned director forces per unit length at £, are defined as :

Ia:= |9a(T3rf91-T1J93)+Jj9apNgf*rf9lrf93 a=l,3 (2.3.27)
tt< Si

By multiplying (2.3.8) with 9a,a= 1,3, then integrating over the cross-section S^,

and using the Stake's theorem, we obtain :

V"+I«-k«= xyct-TT • a=1'3 • (2-3-28)dS p=i3 dt

where the contact director forces ma are given in (2.3.19), the assigned director forces \a

are given by (2.3.27), the inertia coefficients y^ are given by (2.3.25), and the intrinsic

directorforces ka are defined as :

ka: =JjTadQxdQ3 , a= 1,3 (2.3.29)
Si

Equations (2.3.20), (2.3.23) and (2.3.28) are the basic equations of motion for a

beam modeled by a Cosserat curve with two directors, as developed by Green, Laws and

Naghdi [Gre.3].

We note that by using (2.3.18),(2.3.26) and (2.3.28) in (2.3.23), the latter becomes :

2 -^-xma+ £ daxka+|£-xn =0 (2.3.30)
a=l,3 dS a=U d^

Thus, (2.3.23) and (2.3.28) become equivalent to (2.3.28) and (2.3.30).

To obtain the constitutive equations, we first reduce the conservation of energy
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equation (2.3.4) to a line integral by integrating (2.3.4) over the cross-section S^. Then,

(2.3.4) can be written as:

>4*S»Ua«£-'«*"«

+[<».-^>+ Z<ma,%>Ll , . (2-3.31)
dt a=U dt ?=5l.?2

where c is the curve of the centroids, \y is given by :

V:=\\y p* V* 49^93 , (2.3.32)
Si

[u]\ :=u(b) - u(a) forany function u : R-» R and the curve of centroids is assumed
a ,b

to be bounded by ^ <£ <£2, namely, / = [0, L]. Using (2.3.20) and the fact that p defined

in (2.3.22) only depends on £, (2.3.31) become :

dw 32r , _ . ^da , „ d da w /0 a aox
-f=<n-aP7>+0=V-,_^ .?«<m",**> • ( }
By assuming a special form on \y, (2.3.33) gives the desired constitutive equations. In the

following section, we give an example for this approach, for details see, e.g., [Gre.2],

[Ant.l].

2.3.3 Geometrically Exact Beam Model
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In this section, we obtain the equations of motion of the geometrically exact beam

modeldeveloped by Simoand Vu-Quoc [Sim.1,2], as a special case of the director beam

model presented in the previous section.

We define the curve of the centroids c and the beam crosssections S^ as defined by

(2.3.10) and (2.3.11), respectively. For simplicity, we assume that the unstressed

configuration of the beam, which is taken as the reference configuration, is such that the

curve of the centroids c is a straight line segment in R3. We also regard £ as the arc-

length of c in thereference configuration. Since in this configuration c is assumed to be a

straigt line, without loss of generality it may be assumed that the directors dx, d3 defined

in (2.3.12) are orthonormal in the reference configuration. Let Dj, D3 denote such an

orthonormal pair.

The basic kinematic assumption in addition to Assumptions 1 and 2 given in the

previous section, is the following :

Assumption 3 : the directors dx,d3 , which are taken as an orthonormal pair in the refer

ence configuration, remain orthonormal at all times. D

Remark : The Assumption 3 precludes any deformation in the cros-sections S^. In other

words, in the geometrically exact beam model, beam cross-sections can only perform

rigid motions (see [Sim.l]). •

Let the beam be initially in the reference configuration and let Dj, D3 be the direc

tors in the reference configuration. By Assumption 3 it follows that there exists a rotation
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matrix A ft, t) e SO(3), such that:

da=Aft,ODa a=l,3 ,5e/,feR , (2.3.34)

where / is the interval in which £ varies. For convenience we define the vectors d2 and

D2 as follows:

d2: = d3 x di D2:=D3xD! (2.3.35)

From (2.3.34) it follows that:

d2 =(Aft,OD3)x(Aft,r)D1)

= Aft,r)D2 (2.3.36)

Upondifferentiating A ft, r), similar to (2.2.8), we obtain

-|-Aft,0=Wft,r)Aft,0 (2.3.37)

where W is a3x3 matrix. Note that, since Aft, t) e SO (3), hence AAT =/, we have

W+WT =(4~ A)Ar +A(^-A7)
dt dt

Hence W is skew-symmetric. Let the parametrization of W be given as

W =

0 -H>3 W2

VV3 0 -Wj

—w2 W\ 0

(2.3.38)



and define the corresponding axialvector w as follows

w: = 2>tdt
i=i

It follows that Ww = 0 and

W u = w x u for all u e R3 ,

andw is the angular velocity of the planar cross-section S^.

Similarly, upondifferentiating A ft, t) withrespect to £, we obtain

^A(5,0=O(S,0A(5,0
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(2.3.39)

(2.3.40)

(2.3.41)

where CI ft, r), similar to W given in (2.3.37), is a 3x3 skew-symmetric matrix. Let the

parametrization of CI be given as :

nft.O =

0 -d>3 G>2

G>3 0 -©!

-{^ (*>! 0

and define the corresponding axial vector © as

i=i

It follows that Cl(o = 0 and similar to (2.3.40), we have

Qu = (0xu for all u<=R

(2.3.42)

(2.3.43)

(2.3.44)
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Following Simo, [Sim.l], we define the pull-backk of ©by A as follows :

K=Ar© . (2.3.45)

A straightforward calculation shows that k is the axial vectorof the skew-symmetric

matrix K defined as :

K: = ATCIA , (2.3.46)

and a comparison of (2.3.46) and (2.3.41) yields :

•^-=AA: (2.3.47)

Using (2.3.47) and (2.3.37), we obtain the following relation between the axial vec

tors © and k :

|£=AT!£- , (2.3.48)
at ac,

For the sake of clarity, we note that the quantities defined, such as the contact force

n, the contact moment m, etc., and the equations derived in the previous section remain

the same in this section. In particular, let the contact force n and the contact moment m

be defined as in ( 2.3.16) and (2.3.17), respectively, and let r be the position vector of the

curve of centroids with respect to an inertial frame N. Then the basic equations of motion

are given by (2.3.20) and (2.3.23). For convenience, we repeat them here :

an-i.f na2r•^- +f=p-^4 , (2.3.20)
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^L +|Lxn+1= Z j^y^A , (2.3.23)
°S OS a= 1,30= 1.3 dt

where the resultant force f perunit length is given by (2.3.21), the mass perunit length p

is given by (2.3.22), the resultant moment per unit length 1is given by (2.3.24) and the

inertia coefficients yap.ccj^l.Sare given by (2.3.25).

The energy equation (2.3.33), which is used to obtain the constitutive equations,

remains valid. In director theory of beams, the intrinsic director forces kx, k3 cannot be

eliminated from the energy equation (2.3.33). Hence they must appear in the constitutive

equations and a setof dynamical equations involving kx, k3 , whichare (2.3.28), must be

added to the equations (2.3.20) and (2.3.23). However, we show next that, in geometri

cally exactbeam model, due to the orthonormality of thedirectors d^, d3, the form of the

energy equation (2.3.33) may be changed so that kt, k3 no longer appear in (2.3.33).

Hence one need not introduce the intrinsic director forces kx ,k3 in geometrically exact

beam model.

Using (2.3.30) in the energy equation (2.3.33), we obtain :

dw 32r ^ . oda d2da ^

d2T d<n,^^-> + Z <ka,wxda>+ £ <ma,T7(wxda)>
dS<" a=U a=1,3 °S

d2!* 3w dda
<n'^T->+ £ <w,kaxda>+ £ <mat —xda +wx^->

MP* a=1.3 a=1,3 dS °S



32r 9r dda

<n^>-<w-3rn+0=Varx,no>

dw dda—-,daxma>+ £ <w,-^+ £ <3=-,daxma>+ £ <w,-r£-xma>

3^ dr ^ dw ^
=<n'ald7-wx3C>+<m*'9r>

where we also used that
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(2.3.49)

-r^ =wxda a=l,3
dt

and

<a,bxc> =<c,axb> for all a ,b, c e R3

We define the following strain measure :

r=Ar|r D2 . (2.3.50)
dS

Following Simo [Sim.l], we propose the following form for the internal energy

function \j/:

y=\j/(r,K) . (2.3.51)

where k is defined in (2.3.45).

Differentiating (2.3.51) with respect to t and using (2.3.50) and (2.3.48), we obtain :

dt ar ' dt a* ' dt
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3\£ d^dr^ T^r_ d^_ Ariw>
-< ar * dt dt. d&t + 3k ,a d%

=<A|^,^_WX|L>+<A|^,|5L> . (2.3.52)
ar 3^3* 3£ 3k a^

Comparing the righthand sideof (2.3.49) and (2.3.52), since the contact force n and

the contact moment m are independent vectors, we obtain the following constitutive

equations:

n=A-^- , m=A-|^ . (2.3.53)
3T 3k

The right hand side of (2.3.23) deserves a special attention. Since

-r^- =w x d„, a = 1,3, and since the inertia coefficients y&, a, p= 1,3 given by (2.3.25)
dt

are symmetric, we obtain :

a2d ^E E daXy«pT^- =̂ : E E d^y^wxdp) . (2.3.54)
a=l,3P=U at °'a=Up =U

Similar to the rigid body angular momentum equation, we define the beam inertia

tensor lB as follows :

/fla= E E ^xy^axdp)
a=Up=l,3

=( E E yop[5ap/-da.dp])a aeR3 , (2.3.55)
a=l,3p=U

where S^ =1if a= pand 0 otherwise; the dyadic product (or the outer product) da. dp is

defined as (da. dp) (a) =<dp, a>da for all aeR3.
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Differentiating (2.3.55) with respect to f, we obtain :

-j-[/flW]=- E E Vop(wxda)<dp,w>+/B w
d* a=UP=l,3

=wx( E E yap[8ap/-da.dp])w+/B w
a» 1,30° 13

=/„w+wx/Bw (2.3.56)

Using (2.3.55) and (2.3.56) in the moment equation (2.3.23), the latter becomes :

iHL +|Lx+l=/fiW +wx/BW . (2.3.57)
dq, d£

Equations (2.3.20), (2.3.53) and (2.3.57) are the equations of motion in the geometr

ically exactbeam model developed by Simoand Vu-Quoc [Sim.l].

Summary :

Starting from basic equations of 3-dimensional elasticity, (i.e., (2.3.8) and (2.3.9)),

we obtained thebasic equation of motion for an elastic beam ,(i.e., (2.3.20) and (2.3.23)).

Modeling the beam as aCosserat curve with two directors requires one more set of equa

tions (i.e., (2.3.28) ). By using the energy equation (2.3.33), once the form of theinternal

energy y is specified, the constitutive equations can also be found and then together with

the equations mentioned above, these equations form a complete set of equations of

motion for a beam modeled as a Cosserat curve with two directors. By constraining the

motion of directors, (see Assumption 3), these equations reduces to (2.3.20), (2.3.57), and
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(2.3.53), which are the equations of motion for a geometrically exact beam.

2.3.4 An Example: Planar Motion

In this section we give the equations of motion for a beam modeled as a geometri

cally exact beam described in the previous section. We assume that the beam is clamped

at one end, free at the other and the motion is constrainedto take place in a plane.

We consider the following configuration :

Figure 2.1: A flexible beam

In Figure 2.1, the quadruple (0 , e!, e2, e3) denotes the inertial frame N, which cin-

cides with the frame D formed by the initial values of the directors, the quadruple

(O , Di, D2, D3). In the reference configuration, the beam is assumed to be straight along
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the D2 axis. In Figure 2.1, P isa point on the curve of the centroids and r is the position

vector of P, the quadruple (P , d!, d2, d3) is the frame E associated with the directors at

P, <|> is the angle between the axes d2 and D2 and x is the distance between O and the ini

tial position of P along the D2 axis. The motion takes place in the plane normal to the Dx

axis.

The orthogonal transformation A between the frames Dand E admits the following

representation:

A =

1 0 0

0 cos(t> -sin<|>

0 sin<{> cos<t>

(2.3.58)

that is, we have the following :

d! = D! ,

d2= cos<$) D2+ sin<{> D3 ,

d3= - sin<|> D2+ cos<|> D3

For simplicity, in the sequel we set £=x. By substituting A in (2.3.37), (2.3.41) and

(2.3.45), we obtain:

w-ftd! , k=(d=|U . (2.3.59)
3r 3*

Let u2 and u3 denote the deflection of the point P from the reference configuration

along the axes D2 andD3, respectively. Then we have :

r=(x + M2)I>2 +"3 D3 (2.3.60)
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Let the components of the strain measure r defined in (2.3.50) in the frame D be

(0,r2,r3),i.e.,

r=r2D2+r3D3 . (2.3.61)

Then using (2.3.58), (2.3.60), (2.3.61) and (2.3.34) in (2.3.50), we obtain :

r2=(l +-^)cos<H-^sin<i>-l . (2.3.62)

r3=-(l +^)sin(|>+-^-cos<t> (2.3.63)
J dx ox

Using the following component form for the contact force n andthe contact moment

m, (note that the motion takes place in the plane normal to the axis e{= Dx =dj):

n=n2D2 +n3D3 , m=/n1D1 , (2.3.64)

and assuming that the cross-sectional inertia coefficients with different index are zero,

i.e., y13 =y31 =0, we obtain the following component forms of the equations (2.3.20) and

(2.3.23):

3n2 3n3 36 N , d u2 _ _ ,„
-r—cos(b-^—sin<b--r:iL(/i2sin(}) + rt3cos(t))+/2 = p-—5- , (Z.xod)
dx dx dx dr

dn2 dn3 3<t> d u3
-r— sin<b + ^r— cosA + -^!:-(n2cos(|)-/i3sin(J))+/3 = p—-7- , (Z.i.oo)
dx dx ox dt

dmi du2
—— + ( 1 + -r— ) ( n2 sin<J> + n3 cos<|>)

dx dx

-^-2-(n2cosfy-n3smty) +lx=y33—?- , (2.3.67)
dx dr
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where f=/2D2+/3D3 and1=/^ (see (2.3.20) and (2.3.23)). Finally, assuming the fol

lowing quadratic form for the internal energy y:

2v =E2T22 +E3r32 +E4Kx2 , (2.3.68)

where £2,£3,E4 are elastic coefficients, r2,T3 are given by (2.3.62), (2.3.63) and

Ki =4?-; the constitutive equations (2.3.53) become :
dx

n2 = E2T2 , n3 = E3T3 , ot1=£4k1 . (2.3.69)

As for the boundary conditions, we have the following :

u2(0,r) =u3(0,O =0 , <K0,r) =0, for all t eR , (2.3.70)

n(L , t) =0 , m(L , t) =0, for all t e R , (2.3.71)

whereL is the length of the undeformed beam : the equations in (2.3.70) are the clamped

end conditions, whereas the equations (2.3.71) are the free end conditions.

Equations (2.3.62)-(2.3.69) are the equations of motion of a beam modeled as a

geometrically exact beam performing planar motion. Together with the boundary condi

tions (2.3.70) and (2.3.71), they form a complete set of equations.

Special case 1: linear inextensible beam

Let the beam be inextensible, i.e., u2=0. Assuming that the deflections u2, u3 and <j>

are small and then neglegting the higher order terms, (2.3.62)-(2.3.69) become :
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3tt ar2=o , r3=-^--<j> , (2.3.72)

n = n2D2 + n3D3 , m =m1D1 , (2.3.73)

dn3 d Ui ..._..^+/3=P1/ , (2.3.74)

dm +n3 +h=y3M • (2-3-75)
Sx J ' J"dt2

,P.iin3=£3r3 . m, =£4^ (2.3.76)
dx

We note that since the beam is assumed to be inexensible, i.e., u2= 0, the axial com

ponent n2 of the contact force n becomes indeterminable through the constitutive equa

tions. Once the deflection u3 and the angle <|> are found n2can be found using (2.3.65).

Equations (2.3.72)-(2.3.76) are the Timoshenko beam equations [Tim.l]. By using

(2.3.72), (2.3.73) and (2.3.76) in (2.3.74) and (2.3.75), the equations of motion become :

£<B+£<(^r-*)=H^ • (Z3J8)
where we assumed that the elastic coefficients E3, E4 do not depend on x .In the litera

ture, E3= GA3 is called the shear stiffness along the axis d3, and E4= EI{ is called the

principal bending stiffness relative to the axis d, (see [Mei.2]).
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Boundary conditions (2.3.70) and (2.3.71) now become :

u3(0,O =0 , <K0,O =0, forallteR , (2.3.79)

U3x(L,t)-$(Ltt) =0 , 4>(L./) =0 forallteR , (2.3.80)

where/x =-^-.

Special case 2 : inextensible Euler-Bernoulli beam

Assuming that the beam is inextensible and the transverse deflection u3 is small, we can

du3
approximate the angle $ as$ = -r—. Using thisapproximation in (2.3.76), we obtain :

ox

mi=E4^- (2.3.81)
dx*

Using (2.3.81) in (2.3.74) and (2.3.75), neglegting the body forces and moments ( i.e.

f2 = o, /! =0), the former equation becomes :

•&"£"•& •
This is the Euler-Bernoulli beam equation with the rotatory inertia. Neglegting the

rotatory inertia, i.e., setting y33 =0, yields the Euler-Bemoulli beam equation [Mei.2]:

34m3 32«3

dx* dr

where we assumed that the principal bending stiffness E4= EIX does not depend on x.
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The boundary conditions (2.3.70) and (2.3.71) now become:

«3(0 ,O =0 , m3z(0 , t) =0, for all t e R , (2.3.84)

u3xx(Ltt) = 0 , M3xcc(L,r) =0, forallteR . (2.3.85)
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2.4 An Elastic Beam Clamped to a Rigid Body

In this section we consider the motion of an elastic beam clamped at one end to a

rigid body and free at the other end. We derive the equations of motion by considering

free body diagrams.

We consider the following configuration :

Figure2.2 : Rigid body with a flexible beam

In Figure 2.2, the quadruple (0 , e!, e2, e3) denotes an inertialframe N, the box and

the curved line represent the rigid body BR and the beam in the deformed configuration,

respectively, C is the center of mass of the rigid body, the quadruple (C , l)x, D2, D3) is

the body frame B whose axes are also the principal axes of inertia for the rigid body, Q is

the point at which the beam is clamped to the rigid body, P is a material point of the

beam, the quadruple (P , di, d2, d3) denotes the frame of directors at P. The reference

configuration of the beam, which is also assumed to be the initial configuration of the
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beam, is a straight line along the D2 axis, x is the distance between the point Q and the

point P in thereference configuration: hence x =0 specifies the point Q.

Let IR =diag (/1, /2, /3) be the inertia tensor for therigid body and <oR be the angu

lar velocity of the body frame B with respect to the inertial frame N. Then the Euler

equation (2.2.22) for the rigid body becomes :

IR ©k+co/j x//?co/?=r(0,r)xn(0,r) +m(0,r) +Nc(r) , (2.4.1)

where r (x , t) =CP, i.e. the position vector of the material point P in the body frame B,

r (0, t) =CQ, Nc (0 is the control torque applied to the rigid body, n (0, t) and m (0, t)

denote the contact force and the contact moment of the beam at Q, respectively. The first

two terms on the right hand side of the equation (2.4.1) represent the torque applied by

the beam to the rigid body.

The balanceof linearmomentum, (2.2.2), applied to the rigid body becomes :

MR =n(0,r) +ffr+F(r) , (2.4.2)

where M is the mass of the rigid body, R =OC, (i.e., the position vector of the center of

mass of the rigid body C in the inertial frame N), fgr is the force due to the gravity acting

on the rigid body BR due to some mass located at O and F(r) is the control force applied

to the rigid body.

Assuming that the beam is modeled as a geometrically exact beam, the beam equa

tions (2.3.20) and (2.3.57) become :
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Be, dr n

32R 3r

3m 3r . . aCw +afc)—+ —x+l =/B( ^—,n+4£-x +1 =/B ( ^ )„+(w+%)x/fl(w+(Dfi) (2.4.4)

The constitutiveequations for the beamretain their form given by (2.3.53):

n=A^ , m=A|t , (2.3.53)
3r 3k

where A is the orthogonal transformation between the body axes D,-, i = 1,2,3 and the

directors d, , i = 1,2,3, y is the internal energy function for the beam, the strain measure

vectors T and k are defined by (2.3.50) and (2.3.45), respectively.

The boundary conditions for the beam are :

r(0,r) =CQ , r(0,O =/, forallteR3 , (2.4.5)

n(L,O =0 , m(L,r) =0, for all t e R3 , (2.4.6)

where L is the length of the beam in the undeformed configuration. As before, the equa

tions (2.4.5) are the clamped end conditions and the equations (2.4.6) are the free end

conditions.

Equations (2.4.1)-(2.4.6) together with (2.3.37), (2.3.41), (2.3.45), (2.3.50) and

(2.3.53) form a complete set of equations that describe the motion of a flexible beam-

rigid body configuration described in this section.



Chapter 3

Control of a Flexible Beam Attached to a

Rigid Body : Motion in Plane

3.1 Introduction

In this chapter, we study a special case of the rigid body-clamped beam configuration

introduced in the Section 2.4. We assume that the center of mass of the rigid body is

fixed in an inertial frame and the whole configuration performs planar motion. The first

assumption can be justified if one considers a satellite which consist of a rigid body and a

flexible beam attached to it in a geosynchronous orbit; neglecting the effect of the rota

tion of the Earth, the center of mass of the rigid body is fixed with respect to the Earth.

The second assumption simlifies the analysis presented in this chapter, but the results

obtained in this chapter will be extended to the 3-dimensional motion in the Chapter4.

In Section 2, using the Euler-Bernoulli beam model introduced in the previous

44
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chapter, (see (2.3.83)), we obtain the equations of motion and define the rest state of the

system. Then we pose our control problem which is: if the system is perturbed from the

rest state, find a control law which guarantees that the system is driven to the rest state.

In Section 3 we propose 2 control laws and in the remaining sections we prove that

these control laws solve the control problem posed in Section 2. Moreover, we prove that

the decay to the rest state is exponential.
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3.2 Equations of Motion

We consider the configuration shown in the Figure 3.1

axis of rotation

Figure 3.1: Rigid body with flexible beam : planarcase

In Figure 3.1, the quadruple (Ofeue2,e3) denotes a dextral orthonormal inertial frame,

which will be referred to as N, (O, D^ D2, D3) denotes a dextral orthonormal frame fixed in the

rigid body, which will be referred as B, where O is also the center of mass of the rigid body and

Dlt D2, D3 are along the principal axes of inertia of the rigid body. The beam is clamped to the

rigid body at the point Q at one end along the D2 axis and is free at the other end. We assume

that the rigid body may rotate only about the ej axis and that at all times the axes e\ and Dj coin

cide. Let L be the length of the beam. We assume that the mass of the rigid body is much larger

than the mass of the beam, so the center of mass of the rigid body is approximately the center of

mass of the whole configuration. So wc assume that the point O is fixed in the inertial space

throughout the motion of the whole configuration. We also assume that the beam is inextcnsible,
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(i.e., no deformation along the axis D2), and homogeneous with uniform cross-sections.

The beam is initially straight along the D2 axis. This initial configuration for the beam is

also referred to as the reference configuration for the beam. Let P be a beam element whose dis

tance from the point Q in the reference configuration is x, let u be the displacement of P along

the D3 axis. Let r (x , t) = OP be the position vector of P.

Neglecting gravitation, surface loads and the rotatory inertia of the beamcross-sections, the

equations of motion (2.4.1), (2.4.3) and (2.4.4) now reduce to :

|l=p(|t) • (3-2-1>ox at2 n

^ +̂ xn=0 , (3.2.2)
ox ox

IR (QR +®R x//?(0/?=r(0,r)xn(0,r) +m(0,r) +Nc (r) , (3.2.3)

where n and m denote the contact force and the contact moment of the beam, respectively, p is

the mass per unit length of the beam, which isaconstant by assumption, IR is the inertia tensor of

the beam, which is diagonal, ®R is the angular velocity of the body frame B with respect to the

inertial frame N, thevector Nc (t) is the control torque applied to the rigid body, r (x , t) =OP,

i.e., the position vector of the material point P in the body frame B, and at the clamped end we

have r (0, t) =OQ. The first two terms on the right hand side of the equation (3.2.3) represent

the moment effect of the beam to the rigid body.

Since the motion takes place in the plane normal to the D! axis, we have the following com
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ponent forms of the contact force n , the contact moment m and the position vector r of the

point P :

n=n2D2 +n3D3 , m^miDj , (3.2.4)

„3=-H0 . «.-»§ • (3.2.5)

r =(&+x)D2 +uD3 , (3.2.6)

where EI is the flexural rigidity of the beam, b =| OQ \. Note that in (3.2.5) we assumed the

Euler-Bernoulli beam model for the beam.

Since the beam is assumed to be inextensible, the axial deflection is identically zero, hence

the axial component n2 of the contact force n becomes indeterminable through the constitutive

equations, (see [Pos.l]). The axial component of the equation (3.2.1) then determines n2. Since

this equation plays no role in the sequel, the axial component of (3.2.1) will beomitted.

Using (3.2.4)-(3.2.6) in (3.2.1)-(3.2.3), we obtain the following component forms of the

equation of motion:

o2u . „. d4up^+EI ^j + p(o(b+x)-p®2u=0 , (3.2.7)
dr dx*

IR(o = EI (-b «x«(0,r) + Mxx (0,t)) + Nc (0 , (3.2.8)

u (0,0 = 0 , ux (0,0 = 0, forallteR , (3.2.9)

where we used co = 0) D! and Nc (r) = Nc (0 Dj. Equation (3.2.7) is the component of the cqua-
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tion (3.2.1) along the D3 axis, and the equations (3.2.9) are the the boundary conditions at the

clamped end.

The rest state of the system given by (3.2.7) and (3.2.8) is defined as follows :

o = 0

u(x) = 0 0<x<L

ut(x) = 0 OZxZL

(3.2.10)

Ourcontrol problem is to find an appropriate control law Nc (t), control force and control

torque at the free end of the beam such that if the system given by (3.2.7)-(3.2.9) is perturbed

from the rest state, the control law will drive the system to the rest state.
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3.3 Stabilizing Control Laws

In this section we propose two stabilizing control laws to solve the control problem

posed in the previous section. Each law consist of appropriate control force and torque

applied at thefree endof thebeam and a control torque applied to therigidbody.

33.1 Control Law Based on Cancellation

This control law applies a force n (L , 0 and a torque m (L , t) at the free end of the

beam and a torque Nc (0 to the rigid body. They are specified as follows : we choose

a > 0, p > 0 and k > 0; then for all t > 0, we require the following equations:

-EI uxxx (L , t) + aut (L , t) = 0 , (3.3.1)

£/uxx(L,O + P«xr(^.O = 0 , (3.3.2)

Nc (t) = EI (b um (0,0-"« (0,0)-* © . (3-3.3)

where m(L,t) = EIuxx(L,t)Dh and Nc(r)= yvc(r)D1. Because of the boundary condition

(2.4.6) at the free end, n2(L , t) = 0 and since n3= - EI u^ (see (2.3.75) and (2.3.81)), it

follows that n (L , t) = - EI um (L , t) D3

Equation (3.3.1), {(3.3.2), resp.,} represents a transversal force, {torque, resp.,}

applied at the free end of the beam in the direction of, {around, resp.,} the axis D3, {the

axis Db resp.,} whose magnitude is proportional to and whose sign is opposite to the end

point deflection velocity ut(L,t), {end-point deflection angular velocity u^iL^t), resp.,} of
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the beam. To apply the control laws given by (3.3.1)-(3.3.3), the end point deflection

velocity k, (L, 0, the end point deflection angular velocity k* (L, 0, the rigid body angu

lar velocity ©(t) and the moment applied by the beam to the rigid body must be meas

ured. This moment consist of the effect of the contact force n (0, r) and the contact

moment m (0, t) at the clamped end. Both can be measured by using strain rosettes and

strain gauges, respectively, [Ana.l].

The control law (3.3.3) is reminiscent of a " computed torque " type control law in

Robotics , [Pau.l]. When substituted in (3.2.8), it cancels the effect of the beam on the

rigid body. This type of control law has been applied to the attitute control of a satellite

with a flexible beam clamped to it [Ana.l].

33.2 Natural Control Law

This control law applies to the free end of the beam the same boundary force

n (L , 0 and the boundary torque m(L , 0 asspecified by the equations (3.3.1) and (3.3.2)

, respectively; but the torque applied to the rigid body is now given by :

Nc(0=-r(L ,t)xn(L,t)-m(L,t)-k a<0 , (3.3.4)

or equivalently in component form :

Nc(t) =EI {b+L)umiL ,t)-EI Uxx(L ,t)-k(*(t) (3.3.5)

This control law is "natural" in the sense that it enables one to choose the total

energy of the whole configuration as a Lyapunov function to study the stability of the
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system.

The control law given by (3.3.1), (3.3.2) and (3.3.5) requires that the end point

deflection velocity ut(L ,0, the end point deflection angular velocity uM{L ,0 and the

rigid body angular velocity ©(f) bemeasured. The first twocould be measured by optical

means and the latter by the gyros.

In the following sections, we show that the two control laws proposed in section

3.4.1 and Section 3.4.2 stabilize the system given by (3.2.1)- (3.2.3), i.e., when this sys

tem is perturbed from its rest state given by (3.2.10), these control laws drive the system

to the rest state.
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3.4 Stability Results for the Control Law

Based on Cancellation

Consider the systemgiven by theequations (3.2.7)-(3.2.8) and the control law given

by theequations (3.3.1)-(3.3.3). After substituting (3.3.3) in (3.2.8), we get:

/*© +*© = 0 for all t e R+

Therefore we have the following solution for ©(0

©(0 =©(0) e<-^-)t for all t e R+
Ir

(3.4.1)

(3.4.2)

The remaining equation (3.2.7) can beputinto the following state space form :

d_
dt

0 1

EI 34 „

p ax

u

+

"o o"

©2 0

u

+

0

-©(& +x)
(3.4.3)

where ©(0 is given by (3.4.2). We define the following function space H in which the

solutions of (3.4.3) evolve :

//: ={(« utf I «eH02,K,eL2}.

where the function spaces L2, H* and H*0 are as defined below

x=L

L2:={/ :[0,L]^R I jf2dx<~>) ,
x=0

H*:=(/e L2l/'eL2,/=l k ) ,

(3.4.4)

(3.4.5)

(3.4.6)
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U(\\ —H*0: = {/eH* I/(0)=/1(0) = 0} (3.4.7)

In tf, we define the following inner product, which is called "energy" inner product

x=L

J
x=0

x=L

Ji
x=0

<z,z>E := $ EI UnUja + J pk, ut dx, for all z ,£ e H. (3.4.8)

where z =(« ut)T , f = (il tfr)r.

Note that, (3.4.8) induces a norm on //, which is called "energy norm". This norm is

equivalent to a standard "Sobolev" type norm which makesH an Hilbert space (for more

details, see [Paz.l] and [Che.2]).

To put (3.4.3) into an abstract equation form, (see (3.4.12) below), we define the

following operators A :#-*#,BiR+x//-*//and function/ : R+ -> H,

A =

5(0 =

/(0 =

0 1

p dx4

0 0

©2(0 0

0

(3.4.9)

(3.4.10)

(3.4.11)

where the dependence on x is supressed as is usually done in abstract formulation.

3.4.1 Remark : The operator A is an unbounded linear operator on H, i.e., it is not con

tinuous as a map on H. The operator B(.) is bounded on /?+. Since ©(t) and ©(t) are



55

exponentially decaying functions of f, (see (3.4.2)), sois 11 B(t)\|, where the norm used

here is the norm induced by the energy innerproduct given by (3.4.8). •

Using the above definitions, (3.4.3) can be putinto the following abstract form :

^-=Az+B(t)z+f(t) z(0) =z0e/f , (3.4.12)
dx

where z =(u ut)T. The domain D(A) of the operator A is defined as follows :

D(A)={(u utf : u e¥LQ\ut eH02, -EI uxxx(L) +aut(L)=0, (3.4.13)

£/«ax(L) + p«x/(L) = 0} ,

where a > 0 and p > 0.

It is well known that the operator A :D(A)<zH -+H defined in (3.4.9), with its

domain D(A) and H defined as in (3.4.13) and (3.4.4), respectively, generates an

exponentially decaying semigroup T(t), (see [Che.l, Thm.3.1]). That is, the solutions of

z=Az , z(O) =zO€0(A) , (3.4.14)

which are equivalent to the following equation and boundary conditions : for all t e R+

P"«+£/"xxxx=0, *e(0,L) , (3.4.14.1)

u (0,0 =0 , ux (0,0 =0 , (3.4.14.2)

-EI um(L)+ aut(L) =0 , (3.4.14.3)

E/mxx(L) + Pux/(L) =0 , (3.4.14.4)

are given by z(r)=T(t)z0and there exist positive constants M >0 and 8 >0 such that:
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|| T(0|| £M<T* , (3.4.15)

where the norm is the norm induced by the energy inner product defined by (3.4.8).

We give some definitions andresults from the semigroup theory which will be fre-

quentiy used in the sequel. Fordetails, the reader is referred to, e.g., [Paz.l], [Gol.2].

3.4.2 Definition : (Semigroup, strongly continuous semigroup)

Let X be a Banach space. A one parameter family T(t):X -»X ,0<f <<», of

bounded linearoperators is a semigroup ofbounded linear operators onX if:

(i): 7(0) = /, (/ is the identity operator on X),

(ii): Tit + s) = T(t) T(s) for every t, s > 0.

A semigroup T(t), 0<t <«>, of bounded linear operators on X is a strongly continuous

semigroup of bounded linear operators if:

limr(r)x =x for every x e X
l-»0

A strongly continuous semigroup of bounded linear operators on X will be called a C0

semigroup. Let T(t) be a C0 semigroup. If 11 T(t)\ \ < 1, then T(t) is called a C0 semi

group ofcontractions. •

3.4.3 Theorem (Hille-Yosida). A linear operator A is the infinitesimal generator of a C0

semigroup of contractions T(t) if and only if:

(i) A is closed and D (A), the domain of A, is dense in X,

(ii) the resolvent set p 04) of A contains R+ and for every X> 0,
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iia./-Ariii <i .

Proof: See [Paz.l, p.8]. •

3.4.4 Theorem (Lumer-Phillips). Let A be a linear operator with a dense domain D(A)

in a Hilbert spaceX . If A is dissipative, i.e., <x ,At> <0 for all x e D(A), and there is a

Xo> 0 such that the range of the operator (faI -A) is X, then A is the infinitesimal gen

erator of a C0 semigroups of contractions on X.

Proof: See [Paz.l,p.l4]. D

3.4.5 Theorem (Pazy). Let A be the infinitesimal generator of a C0 semigroup T(t). If

for some/?, l<p <*»

CO

JllrCOxlI'df <~ forallxeX
o

then there are constants M > 1 and 8 > 0 such that

||r(Oll ^Af e~& .

Proof: See [Paz.l,p.l 16]. •

Consider the equation (3.4.14). Next we prove that the operator A defined by (3.4.9)

generates an exponentially decaying C0semigroup, this result was first given in [Che.l].

3.4.6 Lemma. Consider the spaces D(A) defined by (3.4.13) and H defined by (3.4.4)

with the inner product given by (3.4.8). Then, D(A) is dense in //.
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Proof: Suppose notThen D(A)is a proper subspace of//, and since H is a Hilbert space

and D (A) is closed, there exists a z *0,z e H such that <z ,*> = 0 for all x e D(A). Let

z =(z i Z2>T Then for all x =(x i x^7 eD(A), the following holds :

L l

JEI zlxxxlxxdx+lpz2x2dx=0 (3.4.16)
0 0

Choosing x2-0 and noting that the class of C°° functions are dense in D(A), it fol

lows that zlxx = 0 almost everywhere in [0, L]. By the boundary condition zj (0) = 0 it fol

lows that z i = 0 almost everywhere on [0, L ].

Similarly putting x\ =0 in (3.4.16) and repeating the same argument, we conclude

that z2 =0 almost everywhere in [0,L]. Hence z=(zx z^7 =0, which is a contradiction.

•

3.4.7 Theorem : (Existence, Uniqueness). Consider the abstract differential equation

(3.4.14), where the operator A, its domain D(A\ and the space H are given by (3.4.9),

(3.4.13), and (3.4.4), respectively. Then theoperator A generates a C0 semigroup 7(0 on

//, (i.e., existence and uniquenessof the solutions of (3.4.14)).

Proof: We use the Lumer-Phillips theorem (e.g. theorem 3.4.4) to prove theorem 3.4.7.

Note that by Lemma 3.4.6, A is a densely defined operator on //. So, to prove the

theorem, we need to show that:

(a) A is dissipative, i.e.,

<z ,Az><0 for all z e D(A) , (3.4.17)
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(b) for some X>0, the range of the operator (X / - A)"*is H. That is, there exist a X>0

such that for any y eH, the following equation has a solution zeD(A):

(Xl-A)x=y . (3.4.18)

To prove the assertion (a), we first note that since z=Az, showing that (3.4.18)

holds is equivalent to showing the following :

!<z.Z>=-f(|M|>)S0 .

where the norm is the norm induced by the energy inner product (3.4.8).

Consider the system defined by (3.4.14); call Ex (t) its energy, then

Ex(t)=-<z ,z>

^^JEIuJdx+lpu^dx , (3.4.19)
2

o

where z =(u u,)7. Upon differentiating (3.4.19) withrespect to time t and noting that the

coefficients EI and p are constants, we obtain :

dEx(t) L. Lr
—— = )EI uxxuxxtdx +JpK, uu dx

L L

\EI Un Ujx dx - \EI u, u^ax dx

L L

=\EI u„ Mjo, dx- EI u,(L, 0 "xxt(^» 0 +\EI Uja u^ dx
o o



L L

= \EI M« Ujrt dx-EI Kr(L,0"xxx(^»0 +^/ "x/(^»0 «xx(^. t)-\EI Un u^ dx
0 o

60

=-cu/r2(L,r)-pMxr2(L,0 . (3.4.20)

where, in the second equation we used (3.4.14.1), in the third and fourth equations we

used integration by parts and the boundary conditions (3.4.14.2). Then, by using the

boundary controls (3.4.14.3), (3.4.14.4) we obtain (3.4.20), which proves that the opera

tor A defined by (3.4.9) is dissipative in H.

To prove assertion (b), i.e., that the range of the operator (XI -A) is H for some

X> 0, we show that for any y e H there exists a z e D(A) such that the equation (3.4.18)

holds, i.e. we have the following:

(Xl-A)z=y

Let y =(f g)7 e H be given. We put z =(u w)7. Using (3.4.9) and without loss of

EIgenerality putting — =1, (3.4.18) becomes equivalent to the following equations :
P

Xu-w=f /(0)=/,(0) =0 , (3.4.21)

uOT+Xw=g , (3.4.22)

"(0) = «,(0) =0 , w(0) = wx(0)= 0 , (3.4.23)

-Uxxx(L)+ Xw(L) = 0 , (3.4.24)

«xz(L) + pwi(L) =0 , (3.4.25)
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where (3.4.23)-(3.4.25) are the boundary conditions.

By using (3.4.21) in (3.4.22), we get:

uxxxx+X2u=Xf +g (3.4.26)

Putting X2=-x4, a general solution of (3.4.26) which also satisfies the first two boundary

conditions in (3.4.23), (i.e., u(0) = ux(0)=0), is given as :

u(x,%) = Cj (coshxx -cosix) + C2 (sinhtx -sinxx)

+-4"f[ sinhT(x -o) -sinx(;c -o) ][ A/(a) +g(o) ]da
2t o

(3.4.27)

where C j and C2 are the constants of integration which will be determined by theremain

ing boundary conditions (3.4.24) and (3.4.25), sinh (.), cosh (.): C -» C are the hyperbolic

sine and the hyperbolic cosine functions, respectively.

Using (3.4.27) and (3.4.21) in the boundary conditions (3.4.24) and (3.4.25), we

obtain the following matrix equation :

'an an

a2\ ^22 c2
=

Yi"

fi

where

an= T^sinhxL -sinxL) +iai^coshxL -cosxL)

a 12 =^(coshcL +cosxL) +iax2(sinhxL - sinxL)

(3.4.28)

(3.4.29)

(3.4.30)
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02i =x2(coshxL +cosxL) - / px3(sinhxL +sinxL) , (3.4.31)

a22 =^(sinhxL +sinxL) - i px3(coshxL - cosxL) , (3.4.32)

fi =-zLJ[coshx(L-o) +cosx(L-a)][-/x2/(o) +̂ (o)]rfo
2 o

-la

2x
J[sinhx(L-o)-sinx(L-o)][-ix2/(a) +g(a)]rfo -of(L) , (3.4.33)

/2=^-LJ[sinhx(L -a) +sinx(L -o)][-i x2/(a)+g(a) ]rfa
2x o

2
•J[coshx(L-a)-cosx(L-a)][-/x2/(a) +g(a)]rfa +p/x(L) , (3.4.34)

o

where i is the imaginary unitV-l.

Claim : For all A.>0,a>0,and p>0, the matrix M = foy] ,if(/ = 1,2, where

fli;. , /, j =1,2 are given by(3.4.29)-(3.4.32), isnonsingular.

Proof : Suppose not. Then, for some choice of X>0,a>0,and p>0, the matrix M

defined above becomes singular. Since X>0 and X2 =-x4, we have x*0, hence by

choosing/ =g =0, (3.4.33) and (3.4.34) implies thatfx=f2 = Q. Then , since the matrix

M defined above is singular, it follows that (3.4.28) will have a nontrivial solution

(Cx Ci)7 9*0. Putting this solution in (3.4.27) and using (3.4.21) one obtains a nontrivial

solution z=(u w)t*0 of the equation (A,/-A)z=0. This implies that

X<z a > =<Az j > =0, but since X> 0, z * 0 and A is dissipative, this is a contradiction. •
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Therefore for all X, > 0, a > 0, and p > 0, the equation (3.4.28) has a unique solution

(Cx Cj)7'. Putting this solution in (3.4.27) and (3.4.21), we obtain the solution z = (u w)7

of the equations (3.4.21)-(3.4.25). This proves that for all X> 0, the range of the operator

(X,/ -A) is //. Hence by the Lumer-Phillips theorem, (see Theorem 3.4.4), the operator

A defined in (3.4.9) defines a C0 semigroup of contractions T(t) on //; that is the equa

tion (3.4.11) has a solution z(0, this solution is unique and is given by :

z(t) = T(t)z0 ,z0eD(A) ,

(see [Paz.l, p.102, Thm.3.1]). •

3.4.8 Theorem (Exponential Decay). Consider the abstract differential equation

(3.4.14), or equivalently the equations (3.4.14.1)-(3.4.14.4), where the operator A, its

domain D(A), and the space H are given by (3.4.9), (3.4.13), and (3.4.4), respectively.

Let T(t) be the C0 semigroup generatedby the operatorA. Then there exist positive con

stants M > 0 and 8 > 0 such that the following holds :

11 7(011 £M <T* for all t e R+ . (3.4.35)

Proof: To prove (3.4.35), we first define the following function Vx(t):

L

Vx(t) =2(\-e)t Ex(t) +2jpx utuxdx , (3.4.36)

where ee(0,l) is an arbitrary constant and the energy Ex(t) is defined by (3.4.19).
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We prove the theorem in two steps. First we show that there exist a constant C > 0

such that the following estimate holds for all reR+:

(2(l-e)t-C)Ex(t)<vx(t)<(2(\-e)t+C)Ex(t) . (3.4.37)

then differentiating Vx(t) with respect to time, we showthatthere exist a T > 0 suchthat:

^^-<0 forallt>T . (3.4.38)
dx

Combining (3.4.37) and (3.4.38), it follows that

«*>«0(l-'ff-C) foraUt>T' • (3A39)

where Tx =max {T, ^£) }.

Since by (3.4.20), Ex(t) is bounded, from (3.4.37) it follows that VX(T)<<*>. Using

(3.4.39), from Pazy's theorem (Theorem 3.4.5), (3.4.35) follows.

To prove (3.4.35), we first need the following simple estimates . Since

u(0) = ux (0) = 0, we have :

s s

u(s) =\uxdx , ux(s) =]uxxdx s e [QJL] (3.4.40)
o o

Using (3.4.40) and the Jensen's inequality, (see e.g., [Roy.l, p. 110]), we obtain the fol

lowing estimates :

l l

u(s)2<L \ux2dx <L2jUxx2dx ,s s [0/.] (3.4.41)
o o
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In the sequel, we frequently use the following simple inequality :

ab£(&a2+-\b2) for all a ,b .aeR+.S^O (3.4.42)
82

For simplicity, we define the quantity A xas follows :

L

A1: =2\pxutuxdx (3.4.43)

Using (3.4.42) in (3.4.43), we obtain the following estimate :

L L

\ut2dx+ji
o o

\Ax\ <2pL(\ut2dx+\uxx2dx)

<C Ex(t) , (3.4.44)

where C=—2pL .Using (3.4.44) in (3.4.36), we obtain (3.4.37).
min(-|-,T)

To prove (3.4.38), we first differentiate Axdefined by (3.4.43) with respect to time :

oAx . f
—— = 2 p \x uu ux dx + 2 p \x ut u* dx

dt J0 b

L L

=- 2EI jx u^ ux dx +2pjx ut u^dx , (3.4.45)
o o

where in the second equation we used (3.4.14.1). Using integration by parts, we obtain :

L

2EI jx u^ ux dx =2EI Lux(L,t)uxxx(L,t)-2EI ux(L, t) u^L,t)
o

L

- EI Lu^iL ,t) +3EI ju^2 dx , (3.4.46)
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2p]xutuxtdx=pLu2(L,t)-jpu2dx (3.4.47)
o o

Using (3.4.45)-(3.4.47) in (3.4.36) andcollectinglikewise terms , we get:

dVx dEx v dAx
^f- =2(l-e)r^+2(l-e)£l+—

=-2(l-e)ar «,2(L,0-2(l-e)pf ^(L.O-eJpu,2^

L

-(2 +e)\EI uxx2dx-2EILux(L,t)uxxx(L,t) +2EIux(Lj)uxx(L,t)

+£/Lmxx2(L,0 +P^"/2(^.0 . (3.4.48)

where we have used (3.4.20).

Using the boundary controls (3.4.14.3), (3.4.14.4) and the inequality (3.4.42), we

obtain the following estimates on some terms which appear in (3.4.48):

-2EI Lux(L,t)uxxx(L1t) = -2aL ux(L,0ut(L,0

<2aL5x2ux2(Ltt) +^fu2(L,t) , (3.4.49)
5i

2 EI ux(L,t) tt„(L, r) =-2 p«x(L, t) uM(L,t)

<2p522«x2(L,0+4f «*<2(L,0 * (3A50)
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Using (3.4.49), (3.4.50) in (3.4.48) andcollecting likewise terms, the latterequation

becomes:

—± =-[2(l-e)at-?^T- -pL ]u2(L,t)-e\pu2dx
dx hx o

[2(l-e)p*-|J---^K,2(L,0

-[(2 +e)JEI uxx2dx-(2aLSx2 +2p522)Kz2(L,01 , (3.4.51)
o

where hx, 82 are arbitrary nonzero numbers. By choosing bx and 82 sufficiendy small and

using (3.4.40) and (3.4.41), the last line in (3.4.51) can be made negative. Hence we con

clude that there exists a T > 0 such that:

dVx(t)
—— <0 forallt>T

dx

hence (3.4.35) follows from (3.4.39) and Pazy's theorem (Theorem 3.4.5). •

Now we are ready to prove that the solutions of the original equation (3.4.12) also

decay exponentially. First due to the exponential decay of the angular velocity co(r), (see

(3.4.2)), there exist positive constants cx>Q,c2>0,dx> 0,82 >0, such that for all t > 0

11 5(011 <c^" (3.4.52)

||/(0|| *c*** (3.4.53)

where 5(0 and/(0 are given by (3.4.10) and (3.4.11), respectively.
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3.4.9 Theorem : (Exponential decay) Consider (3.4.12), where theoperators A,B(.) and

thefunction/(.) are defined in (3.4.9), (3.4.10), and(3.4.11) respectively. Then :

(i) for allz0eD(A)y (3.4.12) has a unique solution z(.), which is given by :

/ t

z(t) =T(t)z0 +\T(t-s)B(s)z(s)ds+\T(t-s)f(s)ds, for all t£0 , (3.4.54)
0 0

where T(t) is the semigroup generated by the operator A,

(ii) forallz0eD(A)y the solution z(.), given by (3.4.54), decays exponentially to0.

proof:

(i) Since B(.) is globally Lipschitz onH and 11B (t)\| is exponentially decaying to0, (see

(3.4.38)), and since the operator A generates a C0semigroup by theorem 3.4.7, it follows

that A+B(.) generates a unique, globally defined (i.e., defined for all feR+), semigroup

on H, (seee.g., [Paz.l, pp.185-188], [Mar.l, pp. 389-389]).

Since/eL^R,//] and is a C°° function oft, ( see (3.4.11) and (3.4.2)), by standard

theorems on nonhomogeneous partial differential equations, (see, e.g., [Paz.l, pp.105-

110]), it follows that for all z0€ D(A), (3.4.12) hasunique solution defined for all te R+.

That the solution may be given as (3.4.54) can beverified by substitution of (3.4.54)

in (3.4.12) and using —- = AT.
dx

(ii) By taking norms in (3.4.54) and using (3.4.17), (3.4.52), and (3.4.53), we obtain :



69

||z(0|| £M<r*||z0|| +]Mcxe^se-*'-s)\\z(s)\\ ds
o

+\M c2e-** e-*^ ds . (3.4.55)
o

Evaluating the last integral and multiplying each side of (3.4.55) by e8*, we get:

|z(O,&||^M||z0||+^(e^-l)

+\Mcxe-*lS\\z(s)eSs\\ ds . (3.4.56)
o

Applying a general form of the Bellman-Gronwall lemma, (see, e.g., [Des.l, p.39]),

we obtain the following :

||zftV*|| SJtfl I*oll +-^(£<8"8*-1)

+'\M c, e 6' [M 11 ,0| |+£-£• (e'8-8* -1)] «"*• *

SMlUoM +̂ (,»-«* _i)+̂p./*' dli.ll -g^)0- '̂)
2 Wc,

^1^ e * (l-^5-61-^) . (3.4.57)

Multiplying each side with e-8', we conclude that z(.) decays exponentially to zero.

•
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3.5 Stability Results for the Natural Control Law

In this section we show that the natural control law given by the equations (3.3.1),

(3.3.2), and (3.3.5) stabilize the system given by the equations (3.2.1)-(3.2.3).

We define the energy E2(t) of the system given by the equations (3.2.1)-(3.2.3) as

follows:

L L

E2(t) =\<®R ,/*©/?>+\\p <rt,rt>dx +-\EI m«2dx , (3.5.1)
l Z0 L 0

where the first term is the rotational kinetic energy of the rigid body, the second term is

the kinetic energyof the beamand the thirdtermis the potential energyof the beam, see,

e.g., [Mei.2].

3.5.1 Proposition : Consider the system of equations given by (3.2.1)-(3.2.3) and the

control law given by (3.3.1), (3.3.2), and(3.3.5). Then, theenergy E2(t) defined in (3.5.1)

is a nonincreasing function of time.

Proof: Upon differentiating (3.5.1) and using (3.2.1), we obtain : (here we note that the

vector IR (oR is the angular momentum of the rigid body with respect to O in the body

frame B, hence (—(IR ®R)) = IR <aR + <oR x IR &R)
dx N

dE2 e r
-— = <©/? ,IR®R+(0R xIR(0R >+lp<r, ,r„ >dx + \EI u^Ujat dx

dt oo
L L

=<co/j ,IR<nR +<oR xIR(HR >+J<(rt)B +cox r, nx >dx +JEI «„««, dx



L

<toR , IR (0R +(0R xIR <aR >+<co, Jr xnx dx>
o

L L

- JEI ut Ujaaa dx +\EI u^u^ dx
0 0

L

<<aR ,IR<oR+<QR xIR(0R +rxn I -\rxxndx>
x=QJL o

L L

- JEI u, u^j dx +JEI u^Ujat dx

=<©/? ,IR(0R +<oR xIR©A +[rxn +m] I >
x=Q,L
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L L

-\EI ut u^ dx+JEI itxxUxx dx , (3.5.2)
o o

where [u(*)] I =u(b)-u(a) for any vector valued function u : [OX] ->R3. In the
x=a,b

first equation we used the vector differentiation rule (2.2.14); in the second equation we

used (2.2.14) and the balanceof linearmomentum equation (3.2.1); in the third equation

we used (3.2.5) and (3.2.6); in the fourth equation we used integration by parts. Then, by

using the balance of angular momentumequation (3.2.3) andintegration by parts, (3.5.2)

follows.

Using integration by parts and the boundary controls (3.2.1), (3.2.2), we obtain the

following:

L L

& J"/ "rax dx =EI M/(L,f)«xrx(L,r)-j£/ Ux um dx

L

=EI u,(L,t) uxxx(Ltt)-EI u*^* 0 ««(/,,/)+/£/ u„ u^ dx

L

=cxwl2(L,0 +P"xi2(^.0 +|^/ u^u^dx , (3.5.3)
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L

=au2(L,t) +$uxt2(L,t) +\EI UnU^dx , (3.5.3)

where in the first and second equations we used integration by parts and the boundary

conditions (3.2.9). Then, using the boundary controls (3.3.1) and (3.3.2), we obtain

(3.5.3).

By using (3.5.3) in (3.5.2) and by using the remaining torque control (3.3.4) and the

rigid body angular momentum equation (3.2.3), weobtain the following :

^-=-k af\O-0W|\L,O-Pm*2^.*) <3-5-4)
dx

Since E2(t) <0, it follows that E2(t) is a nonicreasing function of time. •

Note that proposition 3.5.1 does not imply that the energy E2(t) actually decays to

0. In the next theorem we prove that the decay of E2(t) is as 0( —) for sufficiendy

large t.

3.5.2 Theorem : (Asymptotic Decay of Energy)

Consider the system of equations given by (3.2.1)-(3.2.6), (orequivalently consider equa

tions (3.2.7)-(3.2.8)), the boundary conditions (3.2.9) and the control law given by equa

tions (3.3.1), (3.3.2), and (3.3.5). Then there exists a T >0 such that the energy E2(t)

given by (3.5.1) decays as 0(—) for all t > T.
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Proof: The proof is analogous to the proofof Theorem 3.4.8. We first define the follow

ing function V2(t) •

L

V2(0 =2(l-e)f £2(0 +2Jpjc (ut +<o(b +x))ux dx , (3.5.5)

where ee (0,1) is an arbitrary constant.

We prove the theorem in two steps. Firstwe show that for some constant Cx> 0, the

following estimate holds:

(2(1 -e)t -Cx)E2(t)< V2(t)<(2(1-e) f +Cx)E2(t) . (3.5.6)

Then, differentiating V2(t) with respect to time, we show that there exists a T > 0 such

that

—— < 0 for all t > T . (3.5.7)
dx

Then, combining (3.5.6) and (3.5.7), it follows that:

E2(t)< „ N forallt>T1 , (3.5.8)
2W (2(l-e)f-C1) l

C\
where Tx = max { T , }.

Since by (3.5.4), £2(0 is bounded, from (3.5.6) it follows that V2(T)<oo. Hence,

(3.5.8) proves that the energyE2(t) decays as 0(—) for sufficiently large t.
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For simplicity, we define the quantity Jx as follows :

L

Jx =2\px(ut+to(b+x))uxdx (3.5.9)

We need the following component form for r, which follows from (3.2.6) and

(2.2.14):

rt=-&uD2 +(ut +G)(b+x))D3 (3.5.10)

We first note the following simple inequalities :

(a+b)2<2(a2 + b2) a ,b sR , (3.5.11)

ab£&a2+±b2 a,*,5eR,8*0 . (3.5.12)
52

To obtain (3.5.6), we need the following estimate :

l l

| Jx\ £2pL \ux2dx+2pL \(ut +®(b +x))2dx
o o

L L

<2pL2\itxx2dx +2pL J<r, ,r, >dx
o o

^Ci£2(0 . (3.5.13)

where Ci =4L +i£^-. The first inequality follows from (3.5.11); the second inequality
1 EI

follows from (3.4.41) and (3.5.10) and then (3.5.13) follows from the definition of E2(t)

given in (3.5.1). Using (3.5.13) in (3.5.5), we obtain (3.5.6).



Differentiating Jx with respect to time, we obtain :

dJ L—- =2 fp jc [«„ +<a(b +x)]ux dx+2Jpx [ut +(o(b +x)]uxt dx
dt n n

=-2EI jx ux u^oa dx +2 pjx co2u Ux dx +2 pjx U* ut dx

L

+2p Jx (0(b +x)uxt dx
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=-2EI jx ux Uxxa dx+p [Lut2(L,t)-ju2dx] 0)2 +pL ut2(L,t)
o o

L L

-jput2dx +2p[L(b +L)ut(L,t)-j(b +2x)ut dx ]<o , (3.5.14)
o o

where in the second equation we used (3.2.7). Then, using integration by parts (3.5.14)

follows.

Using (3.5.14) in (3.5.5), we obtain :

dV2 dE2 <UX_A =2(1_e)r_ +2(1_e)E2+_

= -k ©2(0-otw/2(L,r)-Pux/2(L.r)

L L

+(\-e)IR<£>2 +(l-e)jpGi2u2dx+(\-E)jp(ut +to(b+x))2dx
o o

L L

-Kl - E)JEI Uxx2 dx- 2EI jx ux Uxxxx dx



L L

+p[Lul2(L$t)-ju2dx](Q2 +pLut2(L,t)-jput2dx
o o
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L

+2p [L(b +L)ut(L,t)-j(b +2x)ut dx ]© (3.5.15)

To obtain a bound on some of the terms which appear in (3.5.15), we need the fol

lowing estimate which follows from (3.4.40), (3.4.41), (3.5.1) and (3.5.4):

u(s)2<L jux2dx <>L2jUxx2dx <̂ f-E2(f) <̂ *2(0) • (3.5.16)

Using (3.5.11), (3.5.12), and (3.5.16), weobtain the following estimates for some of

the terms which appear in (3.5.15):

L L L L

fp (u, +<o(b+x))2dx=jp ut2 dx+jp (02(b +x)2dx +2 jp <o (b +x) ut dx
o oo o

L L L

<jp ut2 dx +p <o2j(b +x)2dx +2 5x2 jp ut2dx
oo o

+2prf.j0+jcj2^ § (3.5.17)
5i o

where 8X * 0 is an arbitrary real number,

L

2EI jx Uxxa ux dx =-2EI Lux(Lj) uxxx(L,t) +2EI ux(L J) u„(L, t)

L

+EI Luxx2(Ltt)-3EI ju^dx
o

= 2 aL ux(L, O ut(L, t) -2 p ux(L, t) u^L, t)
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+̂ uxt2(L,t)-3EIjuxx2dx

<2La62V(L,0+̂ 7TL"r2(^,0 +2p53V(L,0
82

2 L
+^uxt2(L,t)+±gruxt2(L,t)-3EI jUxx2dx , (3.5.18)

83 EI 5

where the first equation follows from integration by parts and the boundary conditions

(3.4.14.2), the second equation follows from the boundary control laws (3.3.1) and

(3.3.2), and then (3.5.18) follows from (3.5.12), 8j * 0,83 * 0 are arbitrary real numbers;

p[L^2(L,O-fr2^]a)2<4pL'f2(0) (D2 , (3.5.19)
0 EI

where we used (3.5.16), (3.5.1) and (3.5.16);

2 pL(b +L)ut(L, t)(d<2p L(b +L)u2(L, t) +2p L(b +L)©2 , (3.5.20)

L

L L 2pj(b+2x)2dx
-2p<aj(b+2x)utdx <2542Jpu2dx+ —5—_ o>2 , (3.5.21)

0 0 84

where 84 * 0 is an arbitrary real number.

Using (3.5.17)-(3.5.21) in (3.5.15), we obtain the following :

2 <-[2(l-E)kt-Dl](a2 +-[2(\-E)ax-D2]ut2(Ltt)
dt

L

-[2(\-E)$t-D3}uxt2(L,t)-(E-D4)jpu2dx
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-[(E +2)JEI Uxx2dx -(2L a&22 +2$S32)ux2(L,t)} . (3.5.22)

where

3i7 /n\ a ~ r 3i2p(l-e)LJE2(0) 4pLJ£2(0)
/?! = (!-£)/« + +

EI EI

L L

L 2pj(b+2x)2dx 2pj(b+2x)2dx
+9jib+X?dx+^—2 +-^^-2 • (3'5'23)

0 S,2 84

D2=^ +pL+2pL(b+L) , (3.5.24)
§2

D4 =2812 +2842 , (3-5.26)

and 8,-, i = 1,...,4 arearbitrary nonzeroreal numbers.

Let e e (0,1) be fixed. Using (3.5.16), we can obtain the following inequality :

±-Ux2(L,t)<LjUxx2dx . (3.5.27)
L o

Hence, by choosing 82 and83 sufficiently small so thatthe following inequality holds :

(2Z,a822 +2p832) J_
(E +2)EI KT

the last line in (3.5.22) can be made negative. Also by choosing 8, and 84 sufficiently

small, we can have D4< e. Then from (3.5.22) the inequality (3.5.7) follows, i.e.,



dV2(t)
—^^O forallt>T

dx

Dx D2 Dx
where T = max{——— , ———, ——-r-} .

2(1 - E)k 2(1 - e)a 2(1 - e)p

Combining (3.5.7) and (3.5.6), we obtain (3.5.8), that is

V2(T) Cx
''W^O-^-CJ forallt>max(T,^^) ,

which proves that for sufficiently large t, E2(t) decays as 0 (—). •
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Remark : If one chooses p = 0, i.e., no torque control at the free end of the beam, (see

(3.3.2)), then the conclusion of Theorem 3.5.2 still holds, that is for sufficiendy large r,

the energy E2(t) decays as 0(—). This can be concluded by observing that p =0 implies

D3 =0, (see (3.5.25)). Therefore in (3.5.22) the term multiplying ux2(L,t) becomes

identically zero. But since the remaining terms are all negative, it still follows that

<0 for sufficiendy large r, hence (3.5.8) follows. On the other hand, if one puts
dV2

dt

it =0 and/or a=0, this conclusion does not follow from (3.5.22), due to the strictly posi

tive terms D xand/or D2. In other words, Theorem 3.5.2 holds for k > 0, a > 0 , and p > 0

•

3.5.3 Existence, Uniqueness and Exponential Decay of Solutions

In the previous section, we proved that the solutions of equations (3.2.7) and (3.2.8)
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together with the control law (3.3.1), (3.3.2) and (3.3.5) decay as 0(—) for sufficiendy

large t. In this section, we prove that the solution of the equations mentioned above

exists, is unique, and decays exponentially to zero.

Without loss of generality, in the sequel we put

p=l , £/=l , /* =1 (3.5.28)

Using (3.3.5) in (3.2.8), we obtain :

L

i) =j(b +x) Una* dx -k G) (3.5.29)
o

We can put (3.5.29), and (3.2.7) into the following abtract form:

*£P-=Az+g(£) , z(0)eD(A) , (3.5.30)
dx

where£ =(u u, co)T e //:=// xR, where// is defined by (3.4.4) and D(A):=D G4)xR,

where D(A) is defined in (3.4.13). A :D(A)cH -»// is a linear unbounded operator

whose matrix form is specified as follows :

A={ai} I/,; =1,2,3} , (3.5.31)

where all ati are zero except:

tfi2=l

a2x =- ttt - (* +*) h +x)4ldx ,
djc4 o a*



a2z = k(b+x)

L a4a3X=j(b+x)—^dx
n OX
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a&=-k

The nonlinear operatorg ://->// is defined as follows :

g(z) = (gi g2gi)T . (3.5.32)

where

g2 = a2u

In H we define the following inner product:

l l

<z tz>L=i-j[ut +(0(6 +*)] [tf, +<h(b +jO] <fc +—ju„ m« dx +—©go , (3.5.33)
2 J 2 0 z

where z =(u ut ©)T and zA =(ti ut co)7". The corresponding "energy" norm EL(t) induced

by (3.5.33) is:

1 L \L 1EL(t)=±j[ut+<»(b+x)]2dx +±juxx2dx +±<d2 . (3.5.34)
^ 0 Z 0 z

In view of the energy Ex(t) defined by (3.4.19), which is an appropropriate energy

for the plane vibration of an Euler-Bemoulli beam without rotation, a natural extention
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which includes the effect of rotation is the following :

4(0=jJ%2*+7K2<fc+7«>2 • (3-5-35)
*• 0 L 0 L

We note that (3.5.35) is equivalent to a standard Sobolev norm which makes H a

Hilbert space, see [Che.2]. Next weprove that thenorms defined by (3.5.34) and (3.5.35)

are equivalent

3.5.4 Lemma : (Equivalence of Norms). Let the space H be defined as in (3.4.4) and

thespace H be defined as H =H xR.Then thenorms defined by (3.5.34) and (3.5.35) are

equivalent.

Proof: By using (3.5.11) it follows that:

EL(t)<MxEL(t) , (3.5.36)

L

whereMx =max{2 ,1+2 j(b +x)2dx).

To prove the inequality in theotherdirection, first using(3.5.12) we obtain :

L L

)j(b+x)ut dx <2 82J
o o

L

2J(b+x)2dx
-2 (aj(b +x)ut dx <2 82Ju2dx +——-= ©2 , (3.5.37)

where 8 * 0 is an arbitrary real number. Using (3.5.37) in (3.5.34) we obtain the follow

ing :



L L L L

2EL(t) =jut2dx +j(b +x)2dx ©2 +2j(a(b +x)u, dx+juxx2dx +
0 0 0 0

CO2
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L L

>(1 -&)ju2dx +jujdx +(1 +C-±)co2 , (3.5.38)
oo 5

L

where C=2J(b+x)2dx.

c c
Choosing 8e ( , I), we have 1- 82 >0 and (1 +C - -r) >0. Therefore com-

paring (3.5.38) and (3.5.35), we obtain :

£L(0>min{(l -82), (1+ C- •%?)) EL(t) (3.5.39)
8Z

By using (3.5.39) and (3.5.36), we conclude that the norms defined by (3.5.34) and

(3.5.35) are equivalent. •

Next, we consider the linearpart of the equation (3.5.30):

^T=Azl , zl(0)<=D(A) , (3.5.40)
at

where A is defined by (3.5.31) and zL =(u ut <o)7. Note that (3.5.40) is equivalent to the

following system of equations : for all f >0,

uu+uxxxx+(&(b+x) = 0 , *e(0,ZO , (3.5.40.1)

L

(a =j(b+x)uxxxxdx k® , (3.5.40.2)
o
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k(0,O = Mx(0,0 = 0 , (3.5.40.3)

-Mxec(L,r) + aM,(L,r) = 0 , (3.5.40.4)

k«(L,0 + PM*<.0 = 0 (3.5.40.5)

3.5.5 Theorem : Consider the equation (3.5.26) where zL =(u u, <o)7 , A is given by

(3.5.31),D(A)=D(A) x R, andD(A) is given by (3.4.13). Then we have :

(i) The operator A generates a C0 semigroup f (0,

(ii) The semigroup f(t) decays exponentially, i.e., there exist constants M >0 and 8>0

such that

|| f(0|| <Me_& for all t e R (3.5.41)

where the norm is given by (3.5.34).

Proof:

(i) By lemma(3.4.2), D(A) is dense in H. Hence D(A) c H =// x R is densein //.

We use the Lumer-Phillips theorem to prove the assertion (i), see Theorem 3.4.4.

Hence, we have to show that

(a): A is dissipative,

(b): for some X> 0, the range of the operator (XI -A ) is H.

To prove assertion (a), we differentiate the energy EL(t)y use (3.5.40), and the con

trol law (3.3.1), (3.3.2), and (3.3.5). Then, we obtain :



—- =j[ua +©(& +x)] [itf +<a(b +x)]dx+juxx u^dx+wo
dt b o

L L

=-juxrrr [u, +(0(b +x)] dx +juxx Uxxtdx+Gi®
0 0
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=-Jt©2-aM,2(L,0-P^2(^.0 ^0 , (3.5.42)

which proves that A is dissipative.

To prove assertion (b), we first define the following linear operator

A AAA

TD :D(A)<zH ->//:

fD = {tij:i, y=l,2,3 ,} (3.5.43)

where all fy are zeroexcept:

t2X=-(b+x)j(b+x)-?-jdx ,
o ax

L d4tzx=j(b+x)—1dx
o djr

and we define the operator Ax:D(A)<zH -»//:

Ax=A-fD (3.5.44)

We first note the following remarks :

1) Ai :D(A)c //-»// is a linear unbounded operator . Its domain D(AX) is equal to

D(i4). By using Theorem 3.4.3 and noting the block diagonal form of Ax, it follows that

Ai generates an exponentially decaying C0 semigroup. Hence, (XI -AX):H —»H is an
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invertible operator for all X> 0. In fact the range of (A/ -A {f1 is equal to D(A) and by

Hille-Yosida theorem, (see Theorem 3.4.3), we have :

IIOz-aVii^ *>o •

2) The operator fD :D(A)<zH ->H is a degenerate linear operator relative to the Ax

(see, e.g. [Kat.l, p. 245]). By definition, the range space of fD is finite dimensional and

thereexist positive constants a andb suchthat:

||rDf|| £<i||f|| +*|l^i*ll forallfeD(A) . (3.5.45)

That the operator fD has a finite dimensional range follows from (3.5.43).

By using (3.5.43), (3.5.44), and (3.5.30) in (3.5.33), we obtain the inequality

(3.5.45) for some a > 0 and b > 0.

From the remarks 1and 2 above it follows that fD(7J -Ax)~l: //->// is abounded

linear operator with finite dimensional range ;hence \\TD(XI -Ax)~\ \ ZM for some M>

0 and fD(7J -Ax)~l isacompact operator, (see, e.g., [Kat.1, p. 245]).

Next we need the following fact:

Fact : for all X> 0, the real number 1 is not an eigenvalue of the compact operator

fDQJ -Axyl.

Proof: Suppose not Then there exists aA,>0andaye//,y*0 such that the following

holds:
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y=fDQJ-AxTly. . (3.5.46)

Define xe £>(/£) as

x^QJ-A^y .

Then (3.5.46) implies that the following equation also holds :

(7J-Ax-fD)x =0

But since A =AX +fD is dissipative and X> 0, it follows that x =0, which implies

y =0, which is a contradiction. •

From the above fact it follows that the operator / -fD(XI -Ax)~l is invertible for all

X> 0. Hence we conclude that (XI -A)://-»// is invertible for all X> 0 and its inverse

is given by:

QJ -AT1 =QJ -AxTl(I -TD(XI -AxylTl .

This shows that (XI - A)://-»// is onto for all X> 0. From this and the fact that A

is dissipative it follows that A generates a C0 semigroup, see Theorem 3.4.4 (Lumer-

Phillips theorem).

(ii) To prove theexponential decay of the semigroup f(t) generated by A, asin the proof

of Theorem 3.4.8, we define the following function VL(t):

L

VL(O =2(1 - E)tEL(t) +2jx [ut +ca(b+x)]uxdx , (3.5.49)

where e e (0,1) is a constant.
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Using the inequalities (3.5.16) and(3.5.12), we obtain the following estimate :

L L L

\2Jx[ut+(Q(b +x)] ux dx | <2LJux2dx +2Z,J[u, +©(& +x)]2dx
o oo

L L

<2L2ju2 dx +2LJ[ut +(0(b+x)]2dx
0 0

<>KEL(t) , (3.5.50)

where K =max(2L2, 2L). Hence we have the following estimate for VL(t):

[2(1 -E)t -K) EL(t)<, VL(t) <> [2(1 -E)t +K] EL(t) for all t >0 . (3.5.51)

Differentiating (3.5.49) andusing(3.5.40), we obtain the following :

dVL(t) _ v dEL(t) L-^ =2(1-E)t , +2(1 -e)£L(0 +2fjc [uu +(a(b +x)]ux dx
dt dx o

+2 jx [ut +(0(b +x)]uxt dx

dEL(t) Lf2(1 -E)t—±— +2(1 -E)EL(t)-2Jx Uxxxx ux dx
dt ho

+2 jx ut Ux dx +2©jx (b +x)uM dx (3.5.52)
o o

For the last two terms, using integration by parts and (3.5.12) we obtain the following

estimates:

L L

2jx ut u* dx =Lut2(L,t)-ju2dx , (3.5.53)



2©Jjc (b +x)uxt dx £Ar®2 +&( jx (b +x)uxt dx )
o 8Z b

4 L 2
£-\®2 +&[L(b +L)ut(L,t)-j(b +2x)ut dx]

8 o
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zAr(02 +2b2L2(b +L)2ut2(L,t) +2Lb2(b +2L)2k2^ , (3.5.54)
82 o

where we used Jensen's inequality in the last step, (see, e.g., [Roy.l, p. 110]). Using

(3.4.46), (3.5.53), (3.5.34), (3.5.42), and (3.5.54) in (3.5.53) and using the argument we

used in the proof of Theorem 3.4.8, we conclude that there exists a T > 0 such that

dVL
—^ < 0, for all t £ T. Combining this with (3.5.52) and (3.5.42), we conclude that

dt

VL(T)
EL(t)<

2(\-e)-K

oo

for all t >max [T , — }. Hence , JEL2(t)dx <<*» , therefore by Pazy's theorem
2(1 ~ E) q

(Theorem 3.4.5), (3.5.41) follows, i.e. the semigroup 7(0 generated by A decays

exponentially. •

From Theorem 3.5.5 it follows that the linear part of the equation (3.5.30) generates

an exponentially decaying semigroup f (t). Using this fact we can prove the following

theorem:

3.5.6 Theorem : (Existence, Uniqueness and Exponential Decay).

Consider the equation (3.5.30), where z=(u,ii, ©)r, the operator A is given by (3.5.31)
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and g is given by (3.5.32). Let7(0 be the semigroup generated by A. Then :

(i) For all z(0)e D(A), equation (3.5.30) has unique solution z(t),

(ii) In terms of the semigroup 7(0 generated by A, this solution may be given as :

f(0 =7(Oz(0) +j7(f -s)g(z*(s))ds , (3.5.55)
o

(iii) this solution z(t) decays exponentially.

Proof:

(i) Since A generates a C0 semigroup 7(0 and g :H -* H is a C°° function, by the stan

dard theorems on partial differential equations (see, e.g., [Paz.l, pp. 183-191]), it follows

that (3.5.16) has a unique solution for all zA(0) e D(A)y which is defined locally in time,

i.e., in a time interval (0,7) for some 7 >0 . But since the solutions are bounded and

asymptotically decaying as 0 (—), this local solution can be extended to a global solu

tion, i.e., defined for all t > 0.

(ii) This assertion may be proven by back substitution of (3.5.55) in (3.5.30) and using

df(t)
dt

= AT(t).

(iii) Using (3.5.32) in (3.5.34), we obtain :

|U(z)|| =j(o4u2dx <L2<&4jUxx2dx <L2©4||s(f)||2 , (3.5.56)
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where in deriving the first inequality we used (3.5.16).

Bytaking norms in (3.5.55), using (3.5.41) and multiplying bye* we obtain :

111(0**1 \*M\\ i(0)|| +JM L2©4|| z (s)e5'|| ds . (3.5.57)

Since zA(0 is asyptotically decaying at least as 0(—) by Theorem (3.5.2), it follows

that for any v> 0 which satisfies y< —, thereexists a 7 >0 such that
M

ML2©4(0 ^Y< 4" for all t >T . (3.5.58)
M

Applying the Bellman-Gronwall lemma to (3.5.58) we obtain :

||£(Oll <M||z(0)|| e-<8-W forallt>T . (3.5.59)

•



Chapter 4

Control of a Flexible Beam Attached to a

Rigid Body : Motion in Space

4.1 Introduction

In Chapter 2 we introduced a rigid body-flexible beam configuration and derived the

equations of motion for this configuration, (see Section 4, Chapter 2). In chapter 3 we

studied a special case of this configuration; we assumed that the rigid body center of

mass is fixed in an inertial frame and that the motion of the whole configuration is res

tricted to be a planar motion in that frame.

In this chapter we continue to study the configuration mentioned above. We assume

that the center of mass of the rigid body is fixed in an inertial frame, but the motion of the

whole configuration is not restricted otherwise.

92
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In Section 2 we give the equations of motion and define the rest state of the system.

Then we state the control problem, namely if the system is perturbed from the rest state

to find appropriate control laws which drives the system to the rest state. We then extend

the control laws proposed in Chapter 3 to solve this problem,(see Section 3, Chapter 3).

In the remaining sections we show that the proposed control laws solve the control prob

lem posed above.
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4.2 Equations of Motion

We consider the following configuration : Figure 4.1 shows the rigid body (drawn

as a square) and the beam; P is a point on the beam.

Figure 4.1: Rigid body with flexible beam.

In Figure 4.1, the quadruple (O.e^e^e3) denotes a dextral orthonormal inertial

frame, which will be referred to as N, the quadruple (O, D!f D2, D3) denotes a dextral

orthonormal frame fixed in the rigid body, which will be referred as B, where O is also

the center of mass of the rigid body and Dx, D2, D3 are along the principal axes of inertia

of the rigid body. One end of the beam is clamped to the rigid body at the point Q along

the D2 axis and the other end is free. Let L be the length of the beam. We assume that

the mass of the rigid body is much larger than the mass of the beam, so the center of



95

mass of the rigid body is approximately the center of mass of the whole configuration.

So we take it that the point 0 is fixed in the inertial space throughout the motion of the

whole configuration and the rigid body may rotate arbitrarily in the inertial space.

The beam is initially straight, along the D2 axis. Let P be a typical beam element

whose distance from Q in the undeformed configuration is x, let ux and u3 be the dis

placement of P along the Dx and D3 axes, respectively. We assume thatthe beam is inex-

tensible, that is the beam deflection u2 along the D2 axis is identically zero. Let

r(x,r) =OP be the position vector of P. Let the beam be homogeneous with uniform

cross-sections.

Neglecting gravitation, surface loads and rotatory inertia of thebeam cross-sections,

equations (2.4.1), (2.4.3) and (2.4.4) which are the equations of motion of the whole

configuration, are now reduced to: for all t >0

3n=p£r ,0<X<L , (4.2.1)

^ +!^xn=0 ,0<x<L . (4.2.2)
dx ax

IR<o + (nxIR® = r(0,t)xn(0,t) +m(Ott) +Nc(t) , (4.2.3)

where n (jc, t) and m(;t, t) are the contact force and the contact moment , respectively,

(see Section 3, Chapter 2), p is the mass per unit length of the beam, which is a constant

by assumption, L is the length of the beam, IR is the inertia tensor of the rigid body,

3

which is diagonal, ©= Egd.D, is the angular velocity of the rigid body with respect to the



96

inertial frame N and Nc (t) is the control torque applied to the rigid body, (see, e.g.,

[Antl]).

Equation (4.2.1) and (4.2.2) state the balance of forces and the balance of moments

at the beam cross sections and equation (4.2.3) is the rigid body angular momentum

equation. Note that the first two terms in the right hand side of (4.2.3) represent the

torque appliedby the beam to the rigid body.

We use the Euler-Bernoulli beam model to give the component form of the contact

force n and the contact moment m in terms of the beam deflections ux,u3. Assuming

that the beam is inextensible, neglecting the torsion and neglecting the higher order

terms, we express the contact force n, the contact moment m, and the position vector r in

terms of ux and m3 as follows: for 0<x <L ,t >0,

m= mxDx+m2D2 +m3D3 , n= nxDx + n2D2 +n3D3 • (4.2.4)

mX=EI3U2xx » n3 = -EI3U3xxx » (4.2.5)

m3 = -EIxuXxx , nx = -EIxuXxxx , (4.2.6)

r =uXDX + ( b +x )D2 +w3D3 , (4.2.7)

where EIX and E/3 are the flexural rigidity of the beam deflections along the axes Dx and

D3, respectively, and b is the distance between the points O and Q. For more details on

the constitutive equations, see [Mei.l].

Since we have neglected the axial and the torsional vibrations of the beam, the axial
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component n2of the contact force n and the torsion component m2of the contact moment

m become indeterminable by the constitutive equations, (see [Pos.l]). Once the beam

deflections ux and u3 are found, the D2 components of the equations (4.2.1) and (4.2.2)

can be used to find n2 and m2.

Since the beam is clamped to the rigid body at the point Q , we have (see Figure

4.1):

ui(Ott) = uix(0,t) = 0 , f>0 , i=l,3 (4.2.8)

The rest state of the system is by definition :

q = 0

ux(x) = u3(x) = Q 0<x<L

uu(x) = u3t(x) = 0 0<xZL

(4.2.9)

We now state our

Stabilization Problem:

If the system given by the equations (4.2.1)-(4.2.8) is perturbed from the rest state

defined by (4.2.9), find an appropriate control law that drives the system to the rest

state.D
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4.3 Proposed Control Laws :

We propose two stabilizing control laws. Each law consist of appropriate forces

and torques applied to the beam at the free end and a torque applied to the rigid body.

We note that these two control laws differ in the torque applied to the rigid body.

4.3.1 Control Law Based on Cancellation

This control scheme applies a force n (L,t) and a torque m(L,t) at the free end of the

beam and a torque Nc (t) applied to the rigid body. They are specified as follows : we

choose

a,- > 0, ft > 0, and a 3x3 symmetric positive definite constant matrix K, (which can be

chosendiagonal); then for all tZ 0, / = 1,3, we require the following equations :

-EIiuxxx(Lft) + aiuit(Lft)= 0 , (4.3.1)

£/|.«jer(L,0+ Pi"£«(^»0 = 0 , (4.3.2)

Nc (0 = -r(0,0xn(0,0-m(0,0-*<o(0 • <4-3-3)

Equation (4.3.1), {(4.3.2), resp.} represents a transversal force, {torque, resp.)

applied at the free end of the beam in the direction of, {around, resp.) the axis D, whose

magnitude is proportional to and whose sign is opposite to the end point deflection velo

city uit(L, 0,{end-point deflection angular velocity ^(L, 0> resp.} of the beam along the

direction of D, axis, for i = 1,3. Also note that to apply the control laws given by

(4.3.1)-(4.3.3), the end point deflection velocities uu (L, r), the end point deflection angu

lar velocities ua (L,t), the rigid body angular velocity vector oo(0 and the moment
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applied by the beam to the rigid body must be measured. This moment consist of the

effect of the contact force n (0, t) and the contact moment m(0, t) at the clamped end.

Both can be measured by using strain rosettes and strain gauges, respectively [Ana.l].

The control law (4.3.3) cancels the effect of the beam on the rigid body. To see this,

substitute (4.3.3) into (4.2.3), then equation (4.2.3) becomes a set of nonlinear ordinary

differential equations. Then substitute the solution co(0 of (4.2.3) into the beam equation

(4.2.1). Now the latter becomes a set of linear partial differential equations.

Equation (4.3.3) is reminiscent of a "computed torque" type control law in robotics,

[Pau.l]. When substituted in (4.2.3), (4.3.3) cancels the effect of the beam on the rigid

body. This type of control law recendy has been applied to the attitude control of the

flexible spacecraft [Ana.l].Q

4.3.2 Natural Control Law

This control law applies the same boundary force n (L, t) and the moment m (L, t)

as specified by the equations (4.3.1) and (4.3.2), respectively, but the torque applied to

the rigid body is given by :

Nc(0 =-r(L,Oxn(L,0-m(L, t)-K(a(t) , (4.3.4)

where K is a 3x3 positive definiteconstant matrix.

This control scheme is "natural" in the sense that it enables one to choose the total

energy of the whole configuration as a Lyapunov function to study the stability of the
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system.

Unlike the control law (4.3.3), when (4.3.4) is substituted in (4.2.3), it does not can

cel the effect of the beam on the rigid body. As a result of this, the equations (4.2.1)-

(4.2.8), together with the control laws (4.3.1), (4.3.2), and (4.3.4) form a setof nonlinear

ordinary and partial differential equations. This control law requires that the end-point

deflections «,• (L,0, the end-point deflection velocities uit (L, t), the end-point deflection

angular velocities u^ (L,t) and the rigid body angular velocity vector oo(0 be measured.

The first three could be measured by optical means and the latter by gyros.

4.3.3 Assumption:

Throughout our analysis, the initial conditions k,- (jc, 0) and ua (jc, 0) are assumed to be

sufficiendy differentiable (i.e., C2 in t and C4 in x ) and compatible with the boundary

conditions (4.2.8), (4.3.1), and(4.3.2), for i = 1,3.
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4.4 Stability Results for the Control Law Based on Cancella

tion :

After substituting (4.3.3) in (4.2.3), weobtain the following rigid bodyequation :

IRi) +(axIR(a=-K co (4.4.1)

4.4.1 Proposition : Consider the equation (4.4.1). There exist ac>0andancc>0 such

that for all initial conditions ©(0) e fl3, the solution co (t) of (4.4.1) satisfies

|| oXOll^ce-" II ©(0)||2 foraUt^O . (4.4.2)

Proof: Consider the following "energy function" for the rigid body:

ER(t) =±<(o(t),IR®(t)> . (4-4-3>

ER(t) is the rotational kinetic energy of the rigid body with respect to the inertial

frame N. Also note that since IR = diag (Ix, I2, /3), we have

/min||co||2<2^</inax||a)||2 forallaeR3 , (4.4.4)

where /^ = min(/ h I2f I3) and /max = max(/,,/2,h).

Differentiating (4.4.3) and using (4.4.1) weobtain :

ER(t) = <a,IR(i»

= -<©, (DX//?(0>-<(0, K (0>

=-<<o,K<o> (4.4.5)

But, since K is symmetric and positive definite, there exist positive, nonzero con-
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stants Xx and A^, which may be taken as the minimum and the maximum eigenvalues of

—(K +K7), respectively , suchthat the following holds:
J*

X1||©||2^<(0,/i:©><X2||©||2 for all ©e R3 (4.4.6)

max(/1(/2t/3) ,
Using (4.4.4)-(4.4.6), we obtain (4.4.2) where c = — . and

2XX
cc = • .D

max(/i,/2,/3)

Next, we obtain the component form of equation (4.2.1). After applying (2.2.14)

twice, we obtain the following :

(-^f)w=(-^-)B+coxr+2©x(-^)B+©x(©xr) (4.4.7)

Using (4.4.7) in (4.2.1)-(4.2.8), we obtain the following equations which govern the

motion of transverse beam deflections in Dx and D3 directions, including the boundary

conditions : for all t > 0

EIxuXxxxx+puXa +2p©2«3/ +p(©2 + ©1©3)«3

-p(©22 +©32)Mi-p(©3-©i©2)(^ +x )=0 0<*<L , (4.4.8)

^3"3xxxr+P"3tt-2p©2"l/-p(©2-©lC53)"l

-p(©12 +©22)K3 +p(©i +©2©3)(& +x )=0 0<x<L , (4.4.9)

ux(L, r) = u3(L,r) =0 , uXx(Ltt) = u3x(L,t) = 0 , (4.4.10)
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-EIxuXxxx(L,t) + axuXt(L,t) = 0 , -EI3u3xxx(L%t)^<x3u3t(L,t) = 0 (4.4.11)

£/1u1«(L,O + Mbrf(^.O =0 , £:/3«3„(L,O + P3«3*r(^.O =0 . (4.4.12)

Equations (4.4.8) and (4.4.9) can berewritten in the following state space form :

"l

d

dt

"1/

u3

U3t

=

0 1

Eh d

p a*4
0 0 0 1

Eh a4
o

0

o —
P dx'

0

"l

"1/

"3

U3t

0 0 0 0

©22 +©32 0 -(©2 +a)!©^ -2©2
0 0 0 0

©^-©^ 2©2 ©!2 +©22 0

"1

"1/

"3

U3t

0

((^-^(^(b+x)

0

-(©1 + ©2©3)(^+x)

whose solutions evolve in the following function space H :

H= {(ux uXt u3 u3t)7 I«ieH02, u3<=U02,uXleL2 ,u3teL2 }

where the function spaces L2, H* and H*0 are as defined below :

. (4.4.13)

(4.4.14)

L2={/:[0,L]->RI jf2dx«*>) ,
x=0

H* ={/eL2l/»6L2,/=l k) ,

H*0={/eH* l/(0)=/1(0) =0}

In //, we define the following innerproduct, which is called"energy" inner product

<z,z>E: =j(EIxuXxx uXxx +EI3u3xx u2xx)dx
o
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+J9(uu*u+u-it*3t)dx forallz,£eH . (4.4.15)
o

Note that, (4.4.15) induces a norm on H, which is called "energy norm". This norm

is equivalent to a standard "Sobolev" type norm which makes H an Hilbert space.( for

more details, see [Paz.l] and [Che.2]).

To put (4.4.13) into an abstract equation form, we define the following operators

A :H -*H ,B :R+xi/ ->/f and function/ :R+-»//,

A =

0 1

Eh d4

p a*4
0 0 0 1

Eh a4
0

0

0 —
p a*'

o

B(t) =

0 0 0 0 "

©22+©32 0 -(©2 + ©!©^ -2©2
0 0 0 0

©2-Wiffls 2©2 ©i2 +©32 0

/(0 =

0

(©3-©1©2)(&+j:)

0

-(©1 + ©2©3)(&+.x)

(4.4.16)

(4.4.17)

(4.4.18)

4.4.2 Remark : The operator A is an unbounded linear operator on //, i.e., it is not con

tinuous as a map on H. The operator B(.) is bounded on R+. Since ©(O and ©(f) are

exponentially decaying functions of t, (see proposition 4.4.1 and equation (4.4.1)), so is

|| B(ti\, where the norm used here is the norm induced by the energy inner product

given by (4.4.15). D
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Using the above definitions, equation (4.4.13) can be put into the following abstract

form:

^=Az+B(r)z+/(0 , z(0) =z0e// ,f£0 , (4.4.19)
at

where z =(u x uu u3 u3l )T. Thedomain D(A) of the operator A is defined as follows:

D(A)={(m uu u3 u3t)T : ul€Ho4,M1/eHo4,U3€Ho2,M3/eHo2, (4.4.20)

-EIluhax(L) + aluu(L)=0,

£/1ulxx(L) + p1«lzt(L) = 0f

-£/3M3xix(L) + a2«3/(^) = 0,

£/3«3XX(L)+ p2tt3xr(L) =0}

From lemma 3.4.2 it follows that D(A) given by (4.4.20) is dense in H given by

(4.4.14).

Next, we state the existence and uniqueness theoremof the solutionsof (4.4.19).

4.4.3 Theorem : Consider equation (4.4.19) with A,BJ defined in (4.4.16)-(4.4.18),

respectively; or equivalently consider equations (4.4.8)-(4.4.12). Then :

(i) The operator A generates an exponentially decaying C0 semigroup T(t) in H: that is,

there exist positive constants M > 0 and 8 > 0 such that

||r(r)|| <Af e"*1 forallt>0 , (4.4.21)

where for all t >0, T(t) are bounded linear maps in H\

(ii) for all z0eD(A), the differential equation given by (4.4.19) has unique classical solu

tion , defined for all t > 0 ;
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(in) in terms of T(t), that solution z(t) of (4.4.19) may be written as :

t i

z(t) =T(t)zQ +JT(t-s)B(s)z(s)ds+\T(t-s)f(s)ds, for all t£0 . (4.4.22)
0 0

Proof:

(i) Due to the block diagonal form of A, Assertion (i) is an easy extension of theorem

3.4.7.

(ii) Since BQ is globally lipschitz on H and 11 B(t} | is exponentially decaying due to

Proposition 4.4.1, (also see remark 4.4.2), it follows that A+BQ defines a unique, glo

bally defined semigroup on //, (see, e.g., [Mar.l, pp. 388-390] , [Paz.l, pp. 185,190]).

Since / eL^R,//] and is a C~ function of f, (see (4.4.18)), by standard theorems on

nonhomogeneous linear partial differential equations (see, e.g., [Paz.l, pp. 105-110]), it

follows that (4.4.19) has unique solution in H defined for all t £ 0.

(iii) That the solution may be given as (4.4.22) can be verified by substitution, using

^-=A Tandr(0) =/. •
at

Next, we prove the exponential decay of the solutions of (4.4.19).

4.4.4 Theorem : Consider equation (4.4.19), where the operators A, B(.) and the func

tion /(.) are defined in (4.4.16),(4.4.17) and (4.4.18) respectively; or equivalently con

sider (4.4.8)-(4.4.12). Then for all z0eDG4), the solution z(.) of (4.4.19) decays

exponentially to 0.

Proof: By taking norms in (4.4.22) and using (4.4.21), we obtain : for all t > 0
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11 >0)|| SJ#«-*||*oll +\*t *r*~*\\ B(,)\\ \\z(s)\\ ds
0

t

+JM «-*"*>11 / (s) 11 as . (4.4.23)
o

But since ©(f) and ©(t) are decaying exponentially, it follows from (4.4.17) and

(4.4.18) that there exist positive constants cx > 0, c2>0,5! >0, and 62 >0, such that for all

r >0

\\B{t)\\Zcxe** , (4.4.24)

||/(0|| ***-* , (4.4.25)

Using (4.4.24),(4.4.25) in (4.4.23), evaluating the last integral, and multiplying each

side of (4.4.23) by e&, weobtain :

Iz(Oe5< 11 £* 1110II +4nr <>'*** - 1)+JM c> *** 11 z(*)e& '' A • (4A26)0-62 5

Now applying a general form of Bellmann- Gronwall lemma ,(see, e.g., [Des.l]),

and using the following simple estimate

)e^sds<]e^5ds<±- , (4-4.27)
we obtain the following :

11*««* 11**111011+-^ ft*-**-!)

0 5_52
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M2c'Cz e"^i(l-e<s-8'-«') . (4.4.28)
(8-82X8-8,-8^ l

Multiplying each side with e"*,weconclude that z(.) decays exponentially. •
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4.5 Stability Results for the Natural Control Scheme

For simplicity we will take the positive definite matrix K as K = diag(kltk2,k3),

(see (4.3.4)). Then equations (4.2.1)-(4.2.3) together with the boundary conditions (4.2.8)

and the natural control law (4.3.1),(4.3.2), and (4.3.4) become : for all t £ 0

&l u\xxxx +P u\tt +2p ©2"3/ +P (©2 + G>l ©3)«3

-p(©22 + ©32)"i-p(©3-©i©2)(& +* ) = 0 0<x<L , (4.5.1)

^3"3x«x+P"3ir-2p©2"l/-p(®2-©1©3)M1

-p(©12 + ©22)tt3 + p(©i + ©2©3)(6 +x ) = 0 0<x<L , (4.5.2)

L

I!©! +(13 - /2)©2©3 +k!©! =£/3J( ft +x )u3xxxx ax , (4.5.3)

L L

h®! +(/1 - ^^l +*2<»2 =^3/"i"3xx» dx-Elx\u3u ljoooc dx , (4.5.4)
0 0

L

/3©3 +(/2-/1)©1©2 +&3©3 =-£/iJ(& +X frxajndX , (4.5.5)

w1(L,r) = M3(L,r)=0 ,ulx(L,t) = u3x(L,t) = 0 , (4.5.6)

-^i"i«r(^»O + a1«1/(L,r) = 0 , -EI3u3xxx(.Ltt) + a3u3t(L,t) = 0 , (4.5.7)

£/1«ljct(L,r) + plMlj[/(L,O =0 , £/3M3xx(LfO+ P3"3xi(^.O =0 . (4.5.8)

To prove the stability of the system given by (4.5.1)-(4.5.8), we first define the energy of
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the system as follows:

l l

E(t) =±<<oJR(»>+\\p<rnrt>dx +±\(E!lulxx2+EI3u3xx2)dx , (4.5.9)
2 25 ^0

where <.,.> denotes the standard inner product in R3 ; the first term in (4.5.9) is the rota

tional kinetic energy of the rigid body, the second term isthe kinetic energy of the beam,

both with respect to the inertial frame N, and the last term is the potential energy of the

beam.

4.5.1 Proposition : Consider the system given by the equations (4.5.1)-(4.5.8) . Then

theenergy E(t) defined by (4.5.9) is anonincreasing function of t.

Proof: By differentiating E(t)with respect tor, and using (4.2.1), (2.2.14), weobtain

L

4~E(t) =<© ,//j©+©xIR ©> +Jp<rt ,ru>dx
at J0

L

+\(&\U\xx "lxx/ +£'3"3« u3xxt)dx

L

<(a,IR(o +a>xIR ©> +J<r,,n, >dx

+J(£'l"lxx "1** +EhU3xxU3xxt)<b

L L

=<©,//?©+©x//? ©> +J<(r,)B ,nx>dx +J<©xnx>dx
0 0

L

+J(E/ittljct ulxxt +EI3U3xx u3xxt)dx



L L

=<©,//?© +©x/* ©> +J<©xnx>dx-EIijuu wljocot dx
0 o

Ill

L L L

-EI3\u3t ^^dx+EIijUteUirtdx+E^juteU^dx , (4.5.10)
ooo

Usingintegration by parts weobtain the following equation, for i = 1,3

L

Eli fail Ufrrrr & =£/»Wiccc(L, f)«,r(L, 0

-EIiuixx(L1t)uixt(L1t) +EIi\uixx Ute dx (4.5.11)
o

Using (4.5.11) andboundary conditions (4.5.7) and(4.5.8) in (4.5.10), weobtain

£(/) =-<©, AT© > - ^ uu2(L, t) - a3u3t2{L, t)

-Plulxt\L1t)-fi3u3xt\L1t)<0 . (4.5.12)

Since the rate of change of the energy is nonpositive, it follows that the energy is a

nonincreasing function of time, for all ze H. •

4.5.2 Remark : If we set a,- = ft = 0, for i = 1,3, and K = 0 , (i.e no control applied to

the system), we obtain £(0 = 0: as expected, the total energy (given by the equation

(4.5.9)) is conserved. •

4.5.3 Remark : We need an estimate, which states that if the energy given by (4.5.9)

stays bounded, then so does the beam deflections Ui(x,t) and their derivatives

UizQc, 0,(hence so does r(x, 0), for all x e [0, L], for f =1,3. Using the boundary condi
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tions and the fundamental theorem of calculus, for i = 1,3 we conclude that for all

0<x<L , for all r £0:

X

ui(x1t) =\uis{s1t)ds . (4.5.13)
o

Therefore, using Jensen's inequality, (see, e.g., [Roy.l,p.110], [Mit.l]), weobtain

(UiQctrfZLlu^is.Ods . (4.5.14)
o

By using the same arguments,we obtain, for all x e [0,L]

L

fe(;c,r))2<L juteHs.Ods (4.5.15)

hence, combining (4.5.13) and (4.5.14), we obtain :

L L

(ui(xtt))2<L\uis\s1t)ds<L2\uiss\stt)ds . • (4.5.16)
0 0

Next, we will show that the rate of decay of the energy is at least -j for large t.1

4.5.4 Theorem : Consider the system described by the equations (4.5.1)-(4.5.8). Then

there exists a T > 0 such that the energy given by (4.5.9) is bounded above by O(—) for

all t >T.

Proof: As in the proofof Theorem 3.4.8, we first define the following function V(t):

L

V(0 =2(l-e)E(f) +2jp* [«i/ +©2"3-fl>3(^ +*)l"ix dx
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L

+2Jp* [u3t +©i(6 +x)-©2M1]tt3x dx , (4.5.17)

where e e (0,1) is an arbitrary real number.

We prove the theorem in two steps. First we show that for some constant C x> 0, the

following estimate holds:

[2(1 -e)t -C{[E(t)< V(t)<[2(1 -e)r +C{]E(t) t>0 . (4.5.18)

Then differentiating V(r), we show that there exists a T > 0 such that:

-^£!<0 tZT . (4.5.19)
dx

Combining (4.5.18) and (4.5.19), we obtain

E^w^hci '>max<r-2(fe)> • (45-20)
Since by Proposition 4.5.1 the energy E(t) is bounded on R+, it follows that

V(T) < oo, hence (4.5.20) proves that for sufficiently large t, E{t) decays as O (—).

For simplicity, we define the quantities J\ and J2 as follows :

L

JY=2 jpx [uu +©2«3-©3(6 +jc)]u1x dx , (4.5.21)

L

J2 =2Jpx [u3t +(Oi(b +^)-©2Mi]«3x dx (4.5.22)
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Also applying the differentiation rule (2.2.14) to (4.2.7), we obtain :

r, =[uu+ ©2«3-©3(6 + x)) D, + [©3 ux -©! u3] D2

+ [u3t + ®i(b +x) - ©2^ J D3 (4.5.23)

To obtain (4.5.18), we need the following simple inequalities :

(a+b)2<2(a2 + b2) afb<=R , (4.5.24)

h2
ab£d2a2 + £T fl,6,5eR,8^0 . (4.5.25)

Using (4.5.25) in (4.5.21) and (4.5.22), we obtain the following estimates :

L L

\JX\ <,2pL j[uu +©2M3-©3(d +x)]2dx +2pL ju^dx
o o

L L

<2L Jp< r, , r, >dx +2pL2 Ju lxx2 dx

<KxE(t) for all t >0 , (4.5.26)

4oL2where KX=4L+ l, . The second inequality follows from (4.5.16) and (4.5.23), and
EI i

then, (4.5.26) follows from (4.5.9);

L L

\J2\ £2pL j[u3t +<ax(b +x)-&2Ui)2dx +2pL \u3x2dx

L L

£2L Jp< r, , r, >dx +2pL2\u3xx2 dx
o o
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<K2E{t) forallt^O , (4.5.27)

where Ko =4L +^-. The second inequality follows from (4.5.16) and (4.5.23), and
L El3

then (4.5.27) follows from (4.5.9).

Using (4.5.26) and(4.5.27) in (4.5.17) we obtain :

[2(1 -e)t -Kx-KdE(t)<V(t)<[2(1 -e)f +Kl+K2]E(t) t £0 ,

which proves (4.5.18).

To prove (4.5.19), we first differentiate Jx

dJ L
—- =2 fp X[UXu + ©2tt3+©2 U3/ - ©,(& +X) ]Ulx dx
at h

L

+2jpx [uu +(ty2u3-(03(b +x)]uXxt dx

L

2\x [-EIxUlxxxx -p©2M3/ -P©1©3"3

L

+p(©22 +©32)mi - p©i©2(& +x)] uXx dx +2Jp x uu uXxt dx

L L

+2©2 Jp x u3 uXxt dx - 20% Jp x (b +x)uXxt dx

=-2EIx \x uXxuXxxxx dx -2p©2jxulxK3/ dx-2p(ax(^3jxu3uXx dx



+p(to22 +<%2)[Lux2(L,t)-jux2dx]-2p(i)xG>2lx(b +x)uXx dx-pLuXt2(Lj)

L L L

-\uu2dx+2p®2[Lu3(L,t)uXt(L,t)-\xu3xuu dx-\u3uu dx ]
o oo
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L

-2p©3[L(6 +L)uu(.Ltt)-j(b +2x)uu dx] , (4.5.29)

where in the second equation we used (4.5.1). Then, integrating by parts and using the

boundary conditions (4.5.6) we obtain (4.5.29).

Similarly, differentiating J2t we obtain

dJ2 Lu 2 r *— =2jpx [u3a +ax(b +x)-(02ux-<»2uxt]u3x dx
at h

L

+2Jp x [u3t +cax(b +x) - ©2Ux] u3xt dx

=2 jx [- EI3u3xm +p©2« 1/ - p©i©3K 1

L

+p(©!2 +©22)mi -p©2©3(^ +x)] u3x dx +2Jp x u3t u3xt dx

L L

Jp jc ux u3xt dx +2©i Jf
0 0

-2©2jp* uxu3xt dx +2©i Jp jc (b +x)u3xt dx

=-2£73 \x u3xu3xxxx dx +2p©2Jxu3xM1, dx -2p(Olo>3lxuxu3x dx



L L

+p(©j2 +©22)[Lm32(L, t)-\u32dx]-2p©2©3j;t(& +x)M3x dx +pLu3t\L, t)
0 0

L L L

-\u3t2dx-2pto2[Lux(L,t)u3t(L,t)-lxuXxu3t dx -juxu3t dx ]
0 0 0
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L

+2p(Ox[L(b +L)u3/(L,0-J(*> +2x)m3i dx ] , (4.5.30)

where in the second equation we used (4.5.2). Then, integrating by parts, using the boun

dary conditions we obtain (4.5.30).

Differentiating V(t) with respect to time, using (4.5.23) to evaluate the inner pro

duct <rt , r,> and using (4.5.29), (4.5.30) we obtain the following :

M=2(1.£)tM+2(1.£)E(t)+£l4
dt dt dt at

=-2(l-e)r<©,^©>-2(l-e)ra1uh2(L,r)-2(l-e)ra3«3/2(L,r)

-2(l-e)rp1«lx/2(L,r)-2(l-e)rp3u3x/2(L,0

L L

+(1 -e)<©,/fl©> +(l -e)£/i juXxx2dx +(1 -e)E/3 \u3xx2 dx
o o

-2EIxjxuXxuXxxxxdx -2EI3\xu3xu3xxxxdx

-EJpuu2dx -ejpu3t2dx +2(1 -e) Jp^^^-©^ +x)]dx

L L

Jp[C02«3 - ©3(6 +x)]2 dx +(1 - e) Jf
0 0

+(1 - e) Jp[©2"3 - g>3(& +x)]2 dx +(1 - e) Jp[©3w i- ©i«3l2 dx
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L L

+2(1 -e) \pu3t[(»x(b +x)]-<wx]dx +(1 -e) \p[(»x(b +x)-<^ux]2 dx
o o

- 2p©2jrw lx u3t dx - 2p©!©3jxW3M^ dx

L L

+p(&i2 +<o32)[Lu2(L,t)-\ux2dx]-2pG}xG)2lx(b +x)uXx dx
o o

+pLuu\L,t) +2pto2[Lu3(L,t)uu(L,t)-jxu3xuu dx-\u3uXt dx ]

L

-2p©3[L(6 +L)«1/(L,r)-\(b +2x)uXt dx ]

+2p©2jxw3xuXl dx - 2p©!©3jj:M xu3x dx

L L

+p(to2 +(tf)[Lu3\L,t)-\u32dx]-2p<tyS%\x(b +x)u3x dx
o o

+pLu3t\L1t)-2p<^[Ux(L,t)u3t(L,t)-\xuXxu3t dx-juxu3t dx ]

L

+2p&x[L(b +L)u3t(L,t)-j(b +2x)u3l dx ] (4.5.31)
o

We need the following estimates for some of the terms which appear in (4.5.31):

*min«»>l2 +©22 +0)32) ^ <C0 ,A" ©> <*max(©,2 +<*1 +^) • (4.5.32)

3

where we put ©= £ ©, D,, K =diag (kx,k2,k3) and km]n =m\n(k x,k2,k3) and
1=1
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^max = max(£ 1»k2 , £3) J

'min(<»l2 +©22 +0>32) ^ <©,//?©> ^ /max(©l2 +®2+ ®32) , (4.5.33)

where//? =dfag(/1,/2,/3),/inin =min(/l,/2,/3), and/max=max(/1 ,/2,/3);

Z,

2£/,- Jx iWc m* dc =-2£Y, Luix(L,t)uixxx(L,t) +2EIi u-u(L, t) u^L, t)

+Eli Lu-aSiL, r) - 3£/, Jw^2 dx

= 2 a,- L u^L.t) uit(Lt r)-2pt «*(£, r) m^(L, r)

LB-2 L+-^-Uixt\L,t)-3EIijuixx2dx
Z'i 0

<2L a£y,2ii&2(L.O + ~-uu\L,t)

2 3-
+2ft a,-2^2^,0+-^-k«,2(L,0

.2 L
i

£/.:
+̂ - u^iL, t)-3 £/, JW£xx2<£c , (4.5.34)

0

for 1= 1,3, where yf , a,- , / = 1,3 are arbitrary nonzero real numbers; in the first equation

we used integration by parts and the boundary conditions (4.5.6), in the second equation

we used the boundary controls (4.5.7) and (4.5.8). Then using (4.5.24), we obtain

(4.5.34).
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Using (4.5.16), (4.5.9) and the fact that £(r)<£(0), (see proposition 4.5.1), we

obtain the following estimates :

u^isjXLWdx ZL^UiJdx £-|^£(0) , (4.5.35)
0 0 hIi

L L L

Jp«i/[©2"3-©3(& +x)]dx<5x2\puXt2dx +-£j\[(D2u3-<b3(b +x)]2dx
0 0 5i 0

<812Jp«ll2^+^©22J«32^ +|^co32J(6+x)2dtc
0 °1 0 Si o

<812Jpu1/2dbc+-y(©12+©22 +©32) . (4.5.36)
0 O!

3 L
where Sx is an arbitrary nonzero real number, AT! =max { " " ,2p\(b +x)2 dx}. The

ti3 0

first inequality in (4.5.36) follows from (4.5.25), the second inequality follows from

(4.5.24). Then using (4.5.35), we obtain (4.5.36).

Similarly, using (4.5.25) and (4.5.35), we obtain the following estimates :

L L L

Jp[©2M3 - ©3(6 +x)f dx <2p©22 J«32 dx +2p©32 \(b +x)2dx
o oo

<#2(<«>i2 +<»22 +<«>32) . (4.5.37)

3 L
where K2 =max { ^ . ,2pJ(6 +x)2 dx}, the first equation follows from (4.5.24), and

Eh o

then using (4.5.35), we obtain (4.5.37);
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L

Jp[©3M !- ©iM3]2 dx £^3(©!2 +©22 +©32) , (4.5.38)

. „ f4pL3£(0) 4pL3£(0), .
where K3=max { v __ , K };

£-/1 JSi 3

JpM3/[©!(ft+x)-©2«i]dx <522 JpM3/2dx+ -^2 J[©!(6 +X)-©2U1]2dx
0 0 ^2 0

Sfc2 Jp«3/2 dx +̂ (©i2+©22 +©a2) , (4.5.39)
0 02

3 L
where Af4 =max { P_,. »2pJ(6 +x)2 dx} and 82 is an arbitrary nonzero real number,

*"i 0

the first inequality follows from (4.5.24), (4.5.25) and then using (4.5.35) we obtain

(4.5.39);

L

jp[(Ox(b +x)-®2ux]2dx <A-4(©12 +©22 +©32) , (4.5.40)

where K4 is given in (3.5.39).

Similar to the estimates obtained above, using (4.5.25) and (4.5.35), we obtain the

following estimates for some of the terms which appear in (4.5.31):

L L 2oL L-2\pmuu3ldx<2Ltf\pu3t2dx+-£T(i>22juXx2ax
0 0 03 0

L K
<2L^2\pu3t2dx +^(s*x2+ <*? +&?) • (4.5.41)

0 h

where ^5 =ie^M,
EIX



L L L

-2Jpx©^i^u te dx <2pL©j2 ju32dx+ 2pL &32juXx2dx +
o oo
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</5:6(©12 +©22 +©32) , (4.5.42)

U3 Zlx

tp£«I2(L,O-pJ«l2<fe](a)22+«>32)S^^^((0,2+0)22+«)32) , (4.5.43)

-2pjx(6 ^-x)©^"!, dx <> 2p©!2 \x\b +x)2dx +2p©22 Jkix2 dx

</r7(©12 +©22 +©32) , (4.5.44)

where tf7=max{2pjx2(& +x)2dx , 4p*f(0)),

2pLu3(L, r)u u(L, f)©2 ^ 2pLu3\L, r)©22 +2pLu W2(L, 0

^4pLg(0)((o^ +̂ 2+̂ +2pLwu2(L f0 f (4 545)
EI3

L L L-2p\x<w3xuXtdx<2Lh42\pux2dx +^<tf\u3x2dx
0 o o4 o

L 2
<2L 542 Jpu u2 dx +4pL£(20)(©12+©22 +©32) , (4.5.46)

0 E/384

L L 3

-2p)(^u3u udx< 2852 Jp« u2 dx +4pj;f(2Q)(o>i2+a>22 +©32) , (4.5.47)
0 0 EI305
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-2pL(b +L)uu(L,f)®3£2pL(b +L)uu2(L,t) +2pL(b +L)(©l2 +©22 +©32) , (4.5.48)

L

L L 2p\(b+2x)2dx
2p\(.b +2x)uXt(i>2dx<2$62\puu2dx+—2-—i (©i2 +©22 +©32) . (4.5.49)

o o 86

2pJx©2«1,K3* * ^2872Jpu1<2dx-f 2Pl2!(20)(©12+©224-©32) , (4.5.50)
0 o ^3&7

L L L

-2pJx©!©3M xu3xdx£ 2pL ©!2 jux2dx+ 2pL ©32 ju^2 dx
0 0 0

<^8(©l2 +©22 +©32) , (4.5.51)

. „ ,4pL4E(0) 4pL2£(0) ,
where K8= max{ r w , -*1— },

[p£«32(t.O-pf«32*)«+<o22)^^^-((D12+a)22+o)32) . (4.5.52)

2pL(& +L)u3t(Ltt)(Ox<2pL(b +L)u3t2(L,t) +2pL(b +L)(a)12 +©22 +©32) . (4.5.53)

L

L L 2pj(b+2x)2dx
-2p\(b +2x)«3/©! dx <2882 Jp«3/2 dx + ° 2 (©i2 +©22 +©32) . (4.5.54)

o o 88

-2pLu X(L ,t)u3l (L, t)©2 <2pL« ^(L, t)©22 +2pLu3/2(L, f)

<4Pl3£(°)((0i2 +̂ 2 +̂ 2) +29Lu3t\L, 0 , (4.5.55)
EIX

L L L

2pJx©2tflxM3/ dx < 2Lh92\pu32dx+-^<*22\uXx2dx
0 0 <>9 0
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L a 2
<2Ld92\pux2dx+ ^L £(20)(©12+©22 +©32) . (4.5.56)

0 ^A

L L 3
2pJ©2U3M udx< 28102 Jp« u2 dx +4PL^(0)((0l2+G)2 +̂ 2) 9 (4 5>57)

0 0 ^1^10

-2 pjx(fc +x)©2©3M3x dx <2p©22 Jx2(6 +x)2 dx +2p©32 J«3x2 dx

<Ar9(©12 +©22 +©32) , (4.5.58)

where tf9=max{2pjx2(& +x)2d!x , 4P^f(0)}.
£/<

Using (4.5.32)-(4.5.58) in (4.5.31), and collecting likewise terms, we obtain the fol

lowing estimate:

^jp- <- [2(1 -e)*^ -D1](©12+©22 +©32)-[2(1 -e)cv -D2]uu\L,t)
at

-[2(1 -e)<x3f -D3]u3t\L, 0-[2(1 -e)p!r -D4]Ml/2(L, r)

L L

[2(l-E)p3t-D5]u32(L1t)-(e-D6)jpux2dx-(e-D1)jpu32dx
0 0

-[(e+2)E/1J«lxx2^-(2La1y12 +2p1a12)Wlx2(L,/)]

[(e +2)E/3 ju3xx2dx -(2La3y32 +2p3a32)M3x2(L, ;)] , (4.5.59)
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where

Dx^-e)lm^^+K3+K4+̂ +K6+^^

M^ +ie^+ie^+4pL(6+L)
7 EI3 E/3842 E/3852 K

2pJ(6+2x)2dxJ_ +2pL2E^I+
Sg2 EI3tf 8 9

2p](*+2x)2<fr+_i +4pL2EM+4pL^ § (4>5.60)
882 EI x^2 EIxbX02

D2 =—^-+2pL+2pL(fc+L) , (4.5.61)
Yi

D3 =—^-+2pL+2pL(6+L) , (4.5.62)
Y32

0.-^L-f . (4-5.63)

2ft, LB-,2

o3 EI3

D6=8t2 +2L 842 +2852 +2862 +2L 8y2 , (4.5.65)

D7 =822 +2832 +2882 +2L892 +281o2 , (4.5.66)

and 5j ,i = 1,..., 10 and y,,ay; = l,3 are arbitrary nonzero real numbers and
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Ki, i =1,..., 9 are positive numbers defined between theequations (4.5.32) and (4.5.58).

Let ee(0,1) be fixed. Then by choosing 8;,/ = 1,..., 10 sufficiently small one can

have e>D6, 087, (see (4.5.65) and (4.5.66)). Also by choosing yy,0,7= 1,3

sufficiently small, the last two line in (4.5.59) canbe made negative, (see (4.5.15)). Then

(4.5.19) follows from (4.5.59), i.e., we obtain

t^P-lO t>T ,
dt

, __ D\ t>2 *>3 £>4 *>S
wnere axi2(1_e)^ ' 2(l-e)a1 ' 2(l-e)a3 ' 2(1-6)13! ' 2(1-6)^ ]

Using (4.5.19) and (4.5.18) we obtain the following ( see (4.5.20))

£(t)s(i-Tc, • '>w'«&«) •
which proves that for sufficiently large r, E(t) decays as O (—). •

The existence, the uniqueness, and the exponential decay of the solutions of the

equations given by (4.5.1)-(4.5.8) are presented in the following section.
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4.6 Exponential Decay of the Solutions

In this section, first we give an existence and uniqueness theorem for the linear part

of the equations (4.5.1)-(4.5.8), (i.e. the "natural" control scheme ). Then including the

nonlinear terms, we prove theexponential decay of the solutions of the same equations.

For simplicity, as in section 5, we will take the symmetric positive definite matrix K

to be equal to diag(kXt k2, k3). For the sake of clarity, we repeat equations (4.5.1)-(4.5.8)

here: for all t >0

EIxulxxxx+puXa+2p(d2u3t+p((a2 + (iix(03)u3

-p(©22 +©32)tti-p(©3-©i©2)(&+*) =0 0<x<L , (4.6.1)

^3"3xx«+P"3tt -2p©2Ki, -p(©2-ffl1©3)Mi

-p(©12 + ©22)M3 + p(©1 +©2©3)(&+x) = 0 0<x<L , (4.6.2)

L

I!©! +(/3-/2)©2®3 +kx(Ox= E/3J(b+x )u3xxxx dx , (4.6.3)

L L

l2<ib +U\-h)<f>3®\+k2to2 =Eh\uiU3xzzz dx - EI xju3uXxxxx dx , (4.6.4)
0 0

L

/3C83 +(/2 - / i)©i©2 +^3^3 =EI xJ- (b +x )u Xxxxx dx , (4.6.5)

ux(L,t) = u3(L,t) =0 , k,x(L,O = u3x(L,O =0 . (4-6-6)
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-EIxuXxxx(L,t) +OixuXl(L,t) =0 , -E/3a3xxx(L,O +a3tt3/(L,r) =0 , (4.6.7)

E/1ulxx(L,r) +p1uix/(^.O =0 , E/3w3xx(L,O +P3W3xf(^.O =0 . (4.6.8)

Let the function space H be the same as defined in (4.4.14). Define a new function

space H as H :=H x R3 . Then, separating the linear and nonlinear parts, the equations

(4.6.1)-(4.6.8) can be put into the following matrix form:

*L=Az+Tj(z) +g(z) , (4.6.9)
at

where z =[Ui nu u3 u3t ®x ©2 ©3]r.

A:H -» H is a linear operator whose matrix form is specified by the following :

A={my :i =1,..., 7,; =1 7 } , (4.6.10)
whereall m,-, are zeroexcept:

m12 = w,34= 1

EI

*3m21 = --r(b+x)
l3

EIX a* EIX L( a4
P dx4 '3 0 ox

E^j* E/3/_ ^._ a4
p dx

m43 = - j—r^ib+x^b+x^dx
4 h 0 ox4

*1
m45= —(b+x)

'1

^3Lf a4
ms3 = -r-\(b+x)—dx

'1 0 ox4

*i

'1

*2
/w66 = -'7—

'2

e/ L a4



'3

The operatorTt: H-> H is a nonlinearintegraloperatordefined as

T/(z) =

Lt EIX EI3
u3l(—7~u3ulxxxx +—mxm3xxxx )dx

0 72 '2

0

Lt EI3 EIX
UiJ(—T-UiU3xxxx +—U3Ulxxxx )dx

0 l2 '2

0

Lr ^3 EIX
J( —7—U^^ +— M3MXxxxx )^
0 l2 l2

The operator g ://-»// is a nonlinear operator defined as :

*(O = feiG0.....*7<O]T .
where all & (z) are defined as follows :

g\(.2) = g3(z) = Q

h~h h-h
£2(2) = —;—®\®3U3 + —;—^i®2 (*+*)

2 . #A 2n+ -T-©2«3 - 2 ©2 M3/ + (©2 + ©3 )tt1- ©1©3M3 - ©^(6+X)
'2

g4(z) = 3, 'ca^ii1- 2. 3©2Q>3(*+*)

2 , « 2^- —©2" 1+ 2 ©2Uu + (©1 + ©2 )U3 - ©!©3U! - ©2©3(&+x)
'2

h-h
^5(Z) = —} ®2®3

'1

/3-/1
g6b) = —, ©1©3

h-h
8<z) = —; co,©2

129

(4.6.11)

(4.6.12)
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Note that A :H ->H is an unbounded linear operator and its domain D(A) is

defined as D(A):=D(A)x R3, where D(A) is defined in (4.4.20). Since D(A) is dense in

H, it follows that D(A) is dense in H.

In H we define the following "energy" inner product:

< Z , Z >x = / !©!©! + /2©2©2 + h®3®3
L

+jp[uu-&3(b+x)] [du -©3(fc+x)]dx
0

L

+Jp["3/ +<0!(d+JC)] [ii3t +©!(^+x)] dx
0

L

+\(EIxuXxxaXxx +EI3u3xxa3xx) dx
0

This inner product induces a norm on H, which is given below

L

d|z||1)2 =2£(O =/1©12 +/20)22 +/3<032+J(^l"l«2 +^3"3xx2)^

+Jp(["i* -<a3(b+x)]2 +[u3t+<ox(b+x)]2)dx (4.6.13)

Note that the usual "Sobolev" type norm which makes H a Banach space is

given by:

L

||z||2=©12 +©22 +©32 +J(«12 +Mlx2 +«lxx2)cic (4.6.14)
o

L L

+ hu32 +u3x2 +u3xx2)dx+\(uu2 +u32)dx
o o

But, from Lemma 3.5.4 it follows that the norms given by (4.6.13) and (4.6.14) are

equivalent.
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4.6.1 Theorem : Consider the linear operatorA:H-*H given by (4.6.10).Then :

(i) A generates a C0 semigroup f (t);

(ii) there exist positive constants M>0 and 8>0 such that the following holds :

\\f(f)\\ZMe-* . t>0 (4.6.15)

Proof:

(i) We will use the Lumer-Phillips theorem toprove (i),(see thorem 3.4.4). Thus, we have

to show that A isdissipative and the operator (X/ -A):H-*H is onto for some X>0.

Toprove that A is dissipative, consider the following equation :

**-=Az , z(0)eD(A) . (4.6.16)
dt

Then, differentiating (4.6.13) and using (4.6.16) and (4.6.10), we obtain the follow

ing :

L

4r =/!©!©! +1^0% +1^0% +\p[uu -(^(b+xNiuut -(^(b+x^dx
dt o

L

+Jp["3/ +©!(&+*)] t"3« +©l(&+*)] dx
0

L

+\(EIxuXxxuXxxt+EI3u3xxu3xxt)dx
0

=-k!©!2-k2(^i -/:3©32-axuu2(L,t)
-a^u^L, t)-pxuXxt2(L, t)-fou3xl2(L, t) ^0 (4.6.17)

This proves that A is dissipative.
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To prove that the linear operator (XI -A):H->H is onto for some X> 0, we decom

pose the operatorA as follows:

A=AX + TD

where A x: H ->H is defined as

Ai =

0 i 0 0 0 0 0

EIX a4
0 0 0 0 0 0

P ifcc4

0 0 0

EI3 a4

1 0 0 0

0 o -
p 9x4

0 0

*1

0 0

0 0 0 0
~'l

0

*2

0

0 0 0 0 0
h

0

*3.
0 0 0 0 0 0

h

and the operator TD: H->// is defined as :

TD=A-A, .

We first note the following remarks :

(4.6.18)

(4.6.19)

(4.6.20)

1)The operator Ax: //-» H is a linear unbounded operator. Its domain D(A x) is equal to

D(A). By using Theorem 3.4.7 it can be shown that Axgenerates anC0 contraction semi

group. Hence, QJ -AX):H^H has an inverse which is a bounded linear operator on

H. In fact, the range of (XI -A,)"1 is equal to D(Ax), and by Hille-Yosida theorem, (see

Theorem 3.4.3), we have :

KAy-A,)-1!! <i~ , x>o, x<= r
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2) The operator TD : //-> H is a degenerate linear operator relative to the Ab (see [Kat.l,

p. 245]). By definition, the range space of TD is finite dimensional and there exist posi

tive constants a and b such that:

||rDz|| £a||z|| +fr||A1z|| , forallzeD(A1) . (4.6.21)

That the operator TD has a finite dimensional range follows from (4.6.20),(4.6.10)

and (4.6.19).

By using (4.6.20) and (4.6.14), it can be shown that (4.6.21) holds for some positive

a and b, (see Theorem 3.5.5).

From Remarks 1 and 2 above, it follows that TDQJ -A x)~l ://->// is a bounded

linear operator with finite dimensional range; hence 11 TD Qd - Ax)~l \\ <M for some

M >0 andTDQJ -Ax)~l is a compact operator, (see [Kat.l, p. 245]).

Next we need the following fact:

Fact : for all X>0, the real number 1 is not an eigenvalue of the compact operator

TDQJ-Ax)-\

Proof: Suppose not. Then there exists a X> 0 and a y € H, y* 0 such that the following

holds:

y=TDQJ-AxTxy (4.6.22)

Define xe D^^as

x=(Xl-Axyly .
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Then (4.6.22) implies that the following equation also holds :

(Xl-Ax-TD)x =0

But since A =AX+ TD is dissipative and X>0, it follows that x =0, which implies

y =0, which is a contradiction. D

From the above fact it follows that the operator / -TDQJ -Ax)~l is invertible for all

X> 0. Hence we conclude that (7J - A x- TD): //-»H is invertible for all X> 0 and its

inverse is given by :

qj -Ax-TDrl=(xi-Axr\i -tdqj -Axrlrl

This shows that (XI -AX-TD):H->H is onto for all X>0. Then, the assertion (i)

follows from the Lumer-Phillips theorem, (see Theorem 3.4.4).

(ii) To prove that the semigroup f(t) generated by A is exponentially decaying, we first

follow a similar argument we made in proving Theorem 4.5.4, (see theorem 3.5.5). We

first define the following function V(t): for all t >0

L

V(t) =2(\-e)t E(t) +2J7uc(uXl-a>3(b+x))uXxdx
o

L

+2jpx (u3t - ©itfj+x))^ dx , (4.6.23)
o

where e e (0,1) is arbitrary.

Following the arguments made in the proof of Theorem 4.5.4, it can be shown that

there exists a K > 0 such that the following estimate holds :
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(2(l-e)t-K)E(t)<V(t)Z(2(l-e)t +K)E(t)

Differentiating V(t) with respect to r, using (4.6.1)-(4.6.8) and following the line of

the proof of Theorem 4.5.4, we can conclude that there exists a T > 0 such that V(t) is

bounded above for all t > T. Therefore E(t) is bounded above by 0(—), for all t > T .

Hence for some M > 0,

JE2(t)dt£M
o

The assertion (ii) then follows from a theorem due to Pazy, (see Theorem 3.4.5). •

We now establish the existence and uniqueness of the solutions of (4.6). The main

difficulty is the fact that the nonlinear operator 7>(z): //-»# defined by (4.6.11) is also

unbounded, i.e., it is not defined for all z e H. But, with an appropriate norm defined on

D(A), (see (4.6.24) below), 7)(z): £>(A)-> H becomes an C°° operator.

In the sequel, for simplicity we will assume that EIX=EI3 = :EI, this requires that the

beam cross sections have certain symmetry about D2 axis.

4.6.2 Theorem : Consider the system given by (4.6.9), where the operators A,TD, and

g are defined in (4.6.10)-(4.6.12), respectively. Then:

(i) for all initial conditions z(0)e D(A\ (4.6.9) has unique classical solution z(.) defined

for all / > 0;

(ii) in terms of thesemigroup f(t) generated by the linear operator A\ this solution can be

written as:
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t t

z(t) =f(t)z(0) +\f(t-s)TI(z(s))ds+\f(t-s)g(z(s))ds ;
0 0

(iii) the solution of (4.6.9) decays to 0 exponentially.

Proof:

(i) Following [Seg.l], we define the following norm on D(A):

HI z |||=|| Az || , zeD(A) , (4.6.24)

where 11.11 is defined in (4.6.14).

A simple calculation showsthat this normis equivalent to a standard Sobolev norm

for D(A). Hence D(A) with this norm becomes a Banach space. Let us call this space

[D(A)]. Then 7> : [D(A)] ->// becomes an C°° operator, since its components are linear

combinations of products and integrals of thecomponents of z over [0, L], (see (4.6.8)).

Also note that g :H -> H, as defined by (4.6.12), is a C~ map, since its components

are products of the components of z. Therefore it follows from a theorem due to Segal,

[Seg.l, p. 351, Thm. 2], that (4.6.9) has unique classical solution for all initial conditions

z(0)e D(A), defined in [0,8] for some 8>0. (Segal considers this case as a "singular"

case and shows that, as long as the perturbation term 7} in (4.6.9) is a Lipschitz operator

from [D(A)] into //, the standard methods for finding the solution of (4.6.9) still work).

But since Theorem 4.5.4 shows that the solutions are decaying to 0, this local existence

theorem can be extended globally (i.e., for all t > 0).

(ii) This may be proven by substitution in (4.6.9);
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(iii) Since by Theorem 4.5.4 the solutions of (4.6.9) are decaying to 0 in //, it follows

that the positive orbits O0+(t)={z(t)e H I z(0)=z0, / >0) belong to a compact set in

H. Therefore by a generalization of LaSalle's invariance argument to the infinite dimen

sional spaces , (see e.g., [Hal.l]), and by the energy decay estimate (4.5.12) it follows

that asymptotically the rate of change of the energy given in (4.5.12) decays to 0. That

is, uh (L, r), "or(L, r), i = 1,3 and ©(/) decay to 0, as t-> «*>.

Using the norm defined in (4.6.13) and the operator Tt :H->H defined in (4.6.11),

we obtain the following :

L EI EI(| |7,(z)| | x)2 =/2[ \(-f-uxu3xxxx +y-u3uXxxxx )dx ]
0 '2 l2

L 2 L
e EI EI ci+p[J(~rU3Ulxxxx+-rUxU3xxxx)dx] JW3Z dx
0 '2 '2 0

x=L 2 L

+Pt J (—I* l"3rox +T""3" ixxxx )dx ] \u ,2 dx (4.6.25)
*=o h h o

Defining the following quantity as7/ , usingintegration by parts and(4.6.6)-(4.6.8),

we obtain the following:

L

Jj :=J(£/ u3uXxxxx-EIuxu3xxxx)dx
o

L

=EIuXxxx(L, t)u3(L,t)-JEIuXxxxii3x dx
o

L

-£/u3xxx(L,r)M1(L,r) +j£:/M3xxeMlx dx
o

= axuu{Ltt)u3(L, t)-a3u3t(L\ t)ux(L,t)

+ ^xuXxt(Ltt)u3x(Ltt)-\%u3xt(L,t)uXx(Ltt) (4.6.26)

Using the inequality (4.5.19) in (4.6.26) we obtain the following estimate forJ, :
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L 2

J,2 =[J(EI u3ulxxxx -EIuxu3xxxx )dx ]
o

+?i2u3x2(L,t)uXxt2(Ltt) +h2uXx2(L1t)u3xt2(L1t) (4.6.27)

Finally, using (4.6.27), (4.5.6), and (4.5.7) in (4.6.25), we obtain the following esti

mate :

||7}(z(0)|| ^Yi(0lU(0ll . (4-6.28)

where yx(t): R-> R is asymptotically decaying to 0, by the LaSalle's invanance argu

ment, (see above).

Similarly, using the norm given by (4.6.13) and the operator g :H ->// and the ine

qualities (4.5.18), (4.5.19), we obtain the following estimate similar to (4.6.28):

\\g{*{t))\\*Ut)\\*(t)\\ , (4.6.29)

where y2(t): R-» R is asymptotically decaying to zero, by LaSalle's invanance argument.

Using the estimates (4.6.28), (4.6.29) and following the arguments made in the

proof of Theorem 4.4.4, (i.e. using a generalized version of the Bellman-Gronwall

lemma), we conclude that the solutions of (4.6.9) are decaying exponentially to 0. D



Chapter 5

Control of a Timoshenko Beam Attached

to a Rigid Body : Planar Motion

5.1 Introduction

In this chapter we continue to study the motion of the rigid body clamped beam

configuration introduced in chapter 2, section 4. We assume that, as in previous chapters,

the center of mass of the rigid body is fixed in an inertial frame and the flexible beam is

clamped at one end to the rigid body and free at the otherend. In Chapters 2 and 3, we

studied this configuration using the Euler-Bernoulli beam model to obtain the equations

of motion of the flexible beam. In this chapter we use the so called geometrically exact

beam model and its appropriate linearization to study the motion of the flexible beam

rigid body configuration.

In Section 2, we derive the equationsof motion of the whole system and state the

139
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control problem. In Section 3, we propose a "natural" control law to solve the control

problem posed in Section 2. In Section 4,we first show that, without using any lineariza

tion, the proposed control law stabilizes the system introduced in Section 2, though one

cannot easily extend this result to obtain asymptotic orexponential stability. Then using

appropriate linearization of the geometrically exact beam model and assuming that the

whole motion takes place in a plane, we prove that the system is asymptotically stable.

We note that the assumptions stated above yield to aTimoshenko beam, clamped to a ri

gid body at one end and free at the other, (see Chapter 1, Section 3). Then, in Section 5,

we prove the exponential stability of the whole motion.
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5.2 Equations of Motion

In this section, we consider a rigid body whose center of mass is fixed in an inertial

frame and a flexible beam, clamped to the rigid body at one end and free at the other. In

previous chapters we used the Euler-Bernoulli theory to model the flexible beam. In this

section, we use the geometrically exact beam model given in Section 3 of Chapter 2 and

show that under appropriate control laws applied at the free end of the beam and a torque

control applied to the rigid body, the energyof the whole configuration becomes a nonin-

creasing function of time, i.e., the proposed control laws stabilize the system.

We consider the following configuration : Figure 5.1 shows the rigid body (drawn

as a square) and the beam; P is a point on the beam:

Figure 5.1 : Rigid Body with Flexible Beam
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In Figure 5.1, the quadruple (0,el,e2,e3) denotes a dextral orthonormal inertial

frame, which will be referred to as N, the quadruple (O, DIt D2, D3) denotes a dextral

orthonormal frame fixed in the rigid body, which will be referred as B, where O is also

the center of mass of the rigid body and Dlf D2, D3 are along the principal axes of inertia

of therigid body. The beam is clamped to therigid body atthe point Q atoneend along

the D2 axis and is free atthe other end. LetL bethe length of the beam. We assume that

the mass of the rigid body is much larger than the mass of the beam, so that the center of

mass of the rigid body is approximately the center of mass of the whole configuration.

Hence, we assume that the point 0 is fixed in the inertial space throughout the motion of

the whole configuration. We also assume that the beam is inextensible, (i.e. no deforma

tion along the axis D2), and homogeneous with uniform cross-section.

The beam is initially straight along the D2 axis. Let P be a pointon the curve of cen-

troids whose distance from Q in the undeformed configuration is x, (i.e., when the beam

is straight along the D2 axis), let the quadruple (P, d1( d2, d3) denote the frame of directors

located at P, where dt, d2, d3 are the directors at jc, (see Subsection 3.2 of Chapter 2).

Let r(x, t) =OP be the position vector of P. We also assume that Assumptions 1 and 2 of

Subsection 3.2 of Chapter 2 and Assumption 3 of Subsection 3.3 of Chapter 2 hold.

Let, as in Chapter 2, A(x, t) e SO(3) be the orthogonal transformation between the

body frame and the frame of directors; more precisely we have :

dI-0t,O = A(xfODI- , 1=1,2,3 , r>0 , x [0,L] (5.2.1)
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Since A(xvf)e 50(3), it follows that there exist 3x3 skew symmetric matrices

n (jc, t) and W (x, t) such that the following holds (see (2.3.42) and (2.3.38)):

3A '̂*> =Q(x,t)A(x,t) , 3Afr'°=irfr.*)A(*,0 . (5.2.2)
dx at

Let <d(jc,0 and w(*, 0 be the axial vectors corresponding to the skew-symmetric

matrices CI and W, respectively: <d(*,0 determines the rate of change of the rotation

matrix A(jc, t) as a function of x; w (x, r) determines the rate of change of the rotation

matrix A(xt t) as a function of r. The strain measures used in the geometrically exact

beam model are the vectors r and k defined as:

r=AT|^-D2 , k=At(D . (5.2.3)
dx z

For additional information, see [Quo.l], [Sim.l].

Neglecting gravitation, surface loads and assuming that the center of mass of the

rigid body is fixed in the inertial frame N, the equations of motion for the beam, (2.4.1),

(2.4.3), and (2.4.4), the constitutive equation for the beam, (2.3.53), and the boundary

conditions for the beam, (2.4.5), are now reduced to :

|L=P(|t) • <5-2-4>ax dt2 N

^L +i!lxn=/B(^^2) +(w+%)x#t(w+«fc) , (5.2.5)
dx dx dt B

IR ®R +(aR x//?0)/?=r(0,Oxn(0,r) +m(0,f) +Nc (r) , (5.2.6)
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n=A|£ , m=A|£ , (5.2.7)

r(0,r) =OQ , A (0,0 =/ . (5-2-8)

where n(jc,r) and m(x,t) are the contact force and the contact moment of the beam,

respectively; p is the mass per unit length of the beam; IB is the inertia tensor of beam

cross-sections, which is constant by assumption; % is the angular velocity of the rigid

body in the inertial frame N; IR is the inertia tensor of the rigid body, which is a constant

diagonal matrix by assumption; Nc(f) is the control torque applied to the rigid body;

V(T, k) is the internal energy (i.e. potential energy) per unit length of the beam, which at

the moment need not be a quadratic function of its arguments.

We note that, (5.2.4) and (5.2.5) state the balance of forces and the balance of

moments at the beam cross-sections, (5.2.6) is the rigid body angular momentum equa

tion, (5.2.7) is the constitutive equation of the beam and (5.2.8) gives the boundary con

ditions at the clamped end.

We define the rest state of the system given by (5.2.4)-(5.2.8) as follows :

©*=<> , (5.2.9)

9r

dx
^- =D2 , x€[0,L] , (5.2.10)

A(x)=I , xe [0X1 . (5.2.11)

It is easy to see that (5.2.9) holds for all t e R+ if and only if the rigid body does not

spin the inertial frame N.
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Let the curve of centroids be represented by:

r(x,r) = u1D1 + (|OQ| +x+u2)D2 + u3D3 , (5.2.12)

and, by (5.2.8), ux(0tt)= u2(0,t)= u3(0,t)= 0 for all t >0. Then (5.2.10) holds for all

t e R+ if and only if the beam displacements ux, u2, u3 are identically zero.

If (5.2.10) holds for all t e R+, then the beam deflections ux, u2, u3 do not depend

on time, hence by the first boundary condition in (5.2.8) they are identically zero on

[CL1XR+. Conversely, if ux ,u2,u3 are identically zero on [0,L]xR+, then (5.2.10)

trivially follows from (5.2.12).

Also note that, (5.2.11) holds if and only if the strain measure k defined in (5.2.3) is

identically zero on [0, L] x R+. If (5.2.10) holds, then the first equation in (5.2.2) implies

that the skew-symmetric matrix Q(x,t) is identically zero on [0.L1XR+, which then

implies that the corresponding axialvector©and hence the strain measure k are all ident

ically zero on [0,L] x R+. Conversely, if k is identically zero on [0, L] x R+, then so are

the axial vector ©and the conesponding skew-symmetric matrix CI. Then (5.2.2), implies

that A do not depend on x, hence by using the boundary condition (5.2.8), we obtain

(5.2.11). Furthermore, if (5.2.10) holds, (5.2.11) implies that the other strain measure T

defined in (5.2.3) is also identically zero on [0, L] x R+.

Stabilization Problem : Our stabilization problem is stated as before : Let the system

given by (5.2.4)-(5.2.8) be disturbed from the rest state given by (5.2.9)-(5.2.11); find

appropriate control laws which drive the system back to the rest state.
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5.3 Natural Control Law

This control law applies a. force n (L, t) and a torque m (L, t) at the free end of the

beam and a torqueNc(r) to the rigid body. They are specifiedas follows : we choose 3x3

symmetric positive definite matrices K ,L fM (which all can be chosen diagonal); then

for all t £ 0 the "natural control law " requires :

n(L,t)=-L(rt(L,t))B , (5.3.1)

m(L,0 =-Af w(L,0 , (5.3.2)

Nc(t)=-r(L,t)xn(L,t)-m(L,t)-K <oR . (5-3.3)

where r is the position vector of P with respect to O, the subscript B in (5.3.1) denotes

that the time differentiation is carried out in the body frame B, (see Section 2.2), w is the

axial vector associated with the skew-symmetric matrix W introduced in (5.2.2) and (oR

is the angular velocity of the rigid body in the inertial frame N.

The force n(L,r) given in (5.3.1) represents a transversal force acting at the free

end of the beam whose magnitude depends linearly on the end-point deflection velocity :

Using previous notation, let nx, n2, n3 denote the components of the contact force in the

3

body frame B, (i.e., n = J^D,); let ux, u2, u3 denote the beam deflections along the axes
i=i

D), D2, D3. If the symmetric positive definite matrix L is diagonal, L =diag(a!, qt2,03),

the component form of (5.3.1) now reads : for i = 1,2,3, t >0

n,(L,r) +ai^(L,r) =0 , (5.3.4)
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which justifiesthe interpretation of (5.3.1) stated above.

Roughly speaking, (5.3.2) specifies a torque m(L, t) applied at the free end of the

beam whose magnitude depends linearly on the "deflection angular velocity " at the free

end. The relation between (5.3.2) andthe corresponding torque control at the free end of

the beam stated in previous chapters, (see, e.g., (4.3.2)), depends on a particular

parametrization of the orthogonal transformation matrix A (x, f), hence the parametriza-

tion of the vector w(x, t). To see that in special cases (5.3.4) reduces to, say (4.3.2),

which is the corresponding torque control law at the free end of the beam when we use

the Euler-Bernoulli beam model, let us consider the planarmotion introduced in Section

3 of Chapter 2.Then A has a particular parametrization given by the equation (2.3.58):

A =

1 0 0

0 cos<i> -sin<(>

0 sin<(> cos<$>

where <|> is the angle between the director axis d2 and the body axis D2, (see Figure 2.1).

Then (5.2.2) yields w=-|^-D1, (see (2.3.59)). To a first order approximation we have
at

du§=-^=- where to simplify notation we denote here by u the beam deflection along the D3
dx

axis. If m =m! D1? then the component form of (5.3.2) reads, for all t £ 0

mx(L, O + PiML, 0 = 0

Neglecting gravitation, a generalization of this equation leads to (4.3.2).
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5.4 Stability Results for the Natural Control Law

Consider the system given by (5.2.4)-(5.2.8) together with the control law (5.3.1)-

(5.3.3). To study the stability of this system, as we did in the previous chapters, we

define the energy of the system as follows : for all t >0

L

E(t) =\<(*R ,/* <*>/?> +-Jp<r, ,rt>dx

1L \L+4J<(% +w), h (% +w> dx +i-\y(T, k) dx , (5.4.1)
2o zo

where <.,.> denotes the standard inner-product in R3, and r, is the abbreviation for

(rr(x, t))N. The first term in (5.4.1) represents the rotational kinetic energy of the rigid

body, the second term represents the kinetic energy of the beam in the inertial frame N,

the third term represents the rotational kinetic energy of the beam cross-sections and the

last term represents the potential energy of the beam.

5.4.1 Proposition : Consider the system given by (5.2.4)-(5.2.8) and (5.3.1)-(5.3.3).

Then the energy E{t)defined in (5.4.1) is a nonincreasing function of time.

Proof: Differentiating (5.4.1) with respect to time t> we obtain :

dE(t)T^=«»fl >-T-fo<»*)> +W/ .r„>d!x+ [<(©/?+w), —[/B (©/?+w)]>
at at J0 "q at

J0 ar 3( }Q 9k dt

dx
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<©k ,(/*©/?) +©* xIR(oR> +\<rt)B +(oR \r,nx>dx

+ [<(©/?+w),/fl — (©/?+w)B +(©/?+w)x/B (©/?+w)>^
o a'
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i^-tH^-t^ • (5A2)
where in the second equation we use (5.2.4) and the relation between the time derivation

in two frames (see (2.2.14)).

Using integrationby parts, we calculate variousintegrals in (5.4.2) as follows :

L l

\<(rt)B ,nx>dx=<(rt)B ,n> I - f<(r,)B ,n>dx , (5.4.3)
o x=OJL o

L L

j<oaR xr, nx> dx =<©/? ,Jr xnx dx>

L

=<(oR ,rxnx I >-<% .Jrx xndx> , (5.4.4)
X=OyL o

L d[<(©/? +w),/B ^-(©/j +w)fl +(©* +w)x/B (©/? +v?)>dx
o w

L

:!<(©/? +w),mx+rIxn>^ (6y (5.2.5))

L L

•J<w, mx> dx +<©£ ,Jm, dx >

+j<w, rx xn> dx +J<©k ,rx xn> dx (©/? does /wf depend on x)
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=<w,m> I - f<wx ,m>dx+<©/j ,m I >
x=0,L & x=OX
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+J<w xrx ,n> dx +<©/? ,\rx xndx > , (5.4.5)

where u I :=u(b) - u(a) for any u: R -» R3.
x=a,£

Using (5.4.3)-(5.4.5) in (5.4.2), we obtain :

^p-=<(0RJRiiR+G)RxIR(i)R+rxn I +m I >
dt x^U, x=0X

+<(r/)s ,n> I +<w,m> I
x=0X x=0£

-l<(Xxth - wxrx ,n> dtc - J<wx ,m> dx
0 o

L

+

0

U* .£>*+;<!* *><fe . (5.4.6)
J ar ^ J 9k a*

Differentiating (5.2.3) with respect to time t and noting that the internal energy \|/ of

the beamis invariant under the rigid body motions (i.e., y measured in the body frame B

is equal to y measured in the inertial frame N, for details, e.g. see [Mar.l, p. 194],

[Gre.5]), we obtain

.91% 9 /A7\9r . kT, 9 r N
(-^-) = T"v* )"=r"+ A (-x -x )

9r* 9r dx dtdx b

Tu/^L j. a7V 9*r=-A,Wf-+A/(^-)
9x 9f9x b
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=AT[(rJd)B-wxr2] , (5.4.7)

where in the second equation we have used (5.2.2) and the skew-symmetry of W. Then,

using thedefinition of the axial vector w associated withW, we obtain (5.4.7).

Using (2.3.48), which is stated below :

<£) -A'4*
dt B dx

andusing (5.4.7), (5.2.6), and(5.2.7) in (5.4.6), we obtain

^ =<%,rxn I +m I +NC(0>
dt X=L x=L

L L

- J<(rx/)B - wxrx tn> dx - J<wz ,m> dx
0 0

L L

+J<Arn,A7[(rxr)B -wxrx]>dt +J<Arm,ATwx>dx
o o

+<(Xi)b .n> I +<w,m> I (5.4.8)
x=0,L x=0^

Since A is an orthogonal matrix, the second and the third lines cancel each other.

Also by the boundary conditions (5.2.8), upon differentiating with respect to time /, at

the clamped end we have :

(r,(0,0 )B =0 , w (0,r) =0 for all t £ 0 . (5.4.9)

Using (5.4.9) andthe control law (5.3.1)-(5.3.3) in (5.4.8), we obtain :



-^^-=-<©/?,A:©/?>-<(rl(L,/)),L(r/(L,r))>
at
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-<w(L,r),Mw(L,r)> (5.4.10)

Since by our choice the matrices K ,L ,M are positive definite, it follows from

(5.4.10) that theenergy E(t) defined in (5.4.1) is a nonincreasing function of time. •

5.4.2 Remark : In the derivation of (5.4.10) we have used the nonlinear equations

(5.2.4)-(5.2.8) without any linearization. Futhermore, we have not imposed any restric

tion on the internal energy y of the beam, other than the assumption that it depends on

the strain measures T and k, and the assumption that it is invariant under rigid body

motions, which is a standard assumption in theory of elasticity, (see, e.g. [Mar.l, p.194]).

From this assumption it follows that the rate of change of the internal energy y as

observed in the inertial frame N and as observed in the body frame B must be the same,

since these two frames differ only by a rotation which does not depend on the spatial

coordinate x.

Special Case : Let us assume that the internal energy \j/ is an uncoupled quadratic func

tion of T and k, which leads to the standard linear constitutive equation, (see e.g.

[Sim.l]); that is we have the following :

V(r,K) =y<r,c1r>+Y<K,c2K> , (5.4.H)

where Cx and C2 are diagonal constant matrices with positive elements. Upon differen

tiating (5.4.11) we obtain :



-^• =l<(r/)B+©/?xr,clr>+|<r,c1(r,)B+©/?xclr>
at z z

+-J<(**)fl +©/? XK,C2K> +y<K,C2(Kf)fl +<*R xC2K>

=<(Tth *cxr>+<(Kt)B ,C2K>

+-^<©/? xr,c,r>+ —<r,©^xC!r>

+ —<©/? XK,C2K>+-<K,% XC2K>
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By using the following equation

<a,bxc> =<axb,c> foralla.b.ceR3

it follows that the sum of the each of the last two lines in the above equation are zero.

Since ^ =CxTand -^ =C2 k, it follows that
dr ok

•

5.4.3 Remark : Since in deriving (5.4.10) we have not used any particular parametriza

tion of the transformation matrix A and any particular form of the internal energy func

tion \|f, (5.4.10) is a generalization of previously obtained rate of energy equations, such

as (4.5.12). If we use small deformation assumption and the Euler-Bernoulli beam

model, then (5.4.10) reduces to (4.5.12). To see this, let ux,u2,u3 denote the beam

deflections along the axes Dx, D2, D3. Furthermore let us neglect the axial deformation
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(i.e., k2=0 on [0,L] xR+ ), and the torsion of the beam (i.e., no rotation of the beam

cross-sections about D2 axis). Then, small deformation assumption leads to:

W=U3*Dl-KlzlD3 •

Using the above equation, (5.4.10) leads to (5.4.12):

^j^ =-<©/? ,K ©^>-a1tt1/2(L,r)-a3M3/2(L,r)
at

- pxu Xxt\L ,0 - M3xr2(^ .0 (5-4.12)

where, for simplicity, we havechosen L =diag (ax, c&z, ct3)» a*10* M =diag (Pi, P2. P3). O

To prove that the solutions of (5.2.4)-(5.2.8) with the control law (5.3.1)-(5.3.3)

decay to the rest state defined by (5.2.9)-(5.2.11), we need to parametrize the orthogonal

transformation matrixA andspecify the form of the internal energy function \\r.

In the sequel we will assume that the whole motion takes place in a plane whose

unit normal is the inertial axis ex. More precisely, we consider the configuration given in

Figure 5.1 with the following assumptions :

(i) The axes e], D,, dx coincide at all times andrigid body may rotate only about the axis

(ii) The whole motion of the beam takes place in the plane spanned by the axes e2, e3;
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(iii) The axial deflection (i.e., along the D2 axis) and the torsion (i.e., the rotation of the

beam cross-sections about D2 axis) is negligible.

The orthogonal transformation matrix A between the body frame N and the frame of

directors, now admits the following representation :

A =

1 0 0

0 cos<j> sin<J)

0 —sin<J> cos<{>

(5.4.13)

where <j> is the angle between the director d2 andthe body axis D2, (see Figure 2.1).

Using (5.4.13) in (5.2.2), we obtain the following :

w=^D! , k=©=|^D1 . (5.4.14)
at ox

Let u :=u3 denote the beam deflection along the D3 axis and let T2, T3 denote the

components of T given by (5.2.3). Then assuming small deflections for <j> and u and

neglecting higher order terms, (5.2.3) reduces to:

9u

9x
r2 =0 , r3 =-^--4> . (5.4.15)

Following [Sim.l] and the standard linear theory, we assume the following qua

dratic form for the internal energy function for the beam :

2y(T,K) =GAr32 + ElKx2

=GA(ux-$)2 + El$x2 , (5.4.16)
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where G is the shear modulus and A is the cross-sectional area along the axis D3, EI is

the principal bending stiffness relative to the axis D^ and kx is the component of k along

the axis Dlt (see (5.4.14)).

With these assumptions and neglecting the higher order terms, the relevant com

ponent forms of equations (5.2.4)-(5.2.8) now reduce to:

GA (u„ - 0X) =putt +pQ(b +x)-p&u , (5.4.17)

EIQn +GA(ux -$) = IB (<!>„ +8) , (5.4.18)

IRQ = bGA [^(0, f)-<K0, *)]+£/<l>z(0,O +tfc(O • (5.4.19)

u (0,0 =0 , <K0.O =0 forallt>0 , (5.4.20)

where b =| OQ \, 8 is the angle of rotation of the rigid body about the axis eb hence we

have,

©/?=©1D1=8D1 , (5.4.21)

IB is the principal moment of inertia of the beam cross-sections about the axis d! and IR

is the principal moment of inertia of therigid body about the axis Dt.

The component form of the natural control law (5.3.1)-(5.3.3) now become :

GA[ux(L,t)-$(Ltt)] + au(L,t) = 0 , (5.4.22)

£/(|)x(L,O +P(l)/(^,O =0 , (5.4.23)
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^c(0=-(*+^)GA[«x(L,r)-<|)(L,r)]-£/<|>x(L,r)-Ji:8 , (5.4.24)

where a > 0, and p > 0 are arbitrary positive numbers.

The total energy E(t) given by (5.4.1), now becomes :

L L

E{t) =\lR&+ \\p<rt ,rt>dx+±\lB®t+Q)2dx2-k - • /» jr -( ,-r — • rs

1 1+±-\GA (ux -$)2dx +^\EI$2 dx , (5.4.25)

and the rate of change of E(t) given by (5.4.10) now reduces to:

^P-=-k e2-aM/2(L,0-p(|),2(^,0 . (5.4.26)
at

5.4.4 Theorem : Consider the system given by (5.4.17)-(5.4.20) together with the con

trol law (5.4.22)-(5.4.24). Then there exists a T10 such that for t > 7, the energy E(t)

given by (5.4.25) decays as O(—).

5.4.5 Remark : Equations (5.4.17)-(5.4.20) are the component forms of equations

(5.2.4)-(5.2.8) under the assumptions :

(i) the motion takes place in the plane normal to the axis eb the axes ex, Dx, dx coincide

at all times and the rigid body rotates about this common axis,

(ii) the axial deformatin and the torsion are negligible,

(iii) higher order terms are negligible.
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As a result of these assumptions, (5.4.17)-(5.4.20) represent the equations of motion

for the planar motion of a rigid body whose center of mass is fixed in an inertial frame,

with a beam modeled as a Timoshenko beam, clamped to it. •

5.4.6 Remark : If we use the conclusion of Theorem 5.4.4 in the expansion of E(t),

(5.4.25), and ^^-, (5.4.26), then we obtain:
dt

8->0 as t -»~ ,

4,(xvf)->0 , for all x e [0,L] , as t ->°°

<i>,(*»0->0 , forall x e [0,L] , ast-»~

«,(*,*)-»0 , for all x e [0,L] , ast-»~

«x(x,O->0 , for all x e [0,L] , ast-»~

These limiting behaviors imply that the solutions tend as t -> <» to the rest state

defined by (5.2.9)-(5.2.11). •

Proof: We define the following function V(t):

L

V(t) =2(l-e)tE(t) +2\px[u, +Q(b +x)]ux dx

L L

+2flBx$x®t +8) dx +8j/B Wf +8) dx
0 0

L

- 5jpu [ii. +Q(b +x)] dx , (5.4.27)

where e e (0,1) and 5 > 0 are constants yet to be determined.
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To prove the theorem, we first show that there exists a constant C >0 such that the

following estimate holds for all r £ 0:

[2(1 -e)t -C]E{t) <> V(0 * [2(1 -e)t +C]E(t) . (5.4.28)

Then we prove thatthere exists a Tx £ 0 suchthat

W!l<0 for all t^ . (5.4.29)
dt

Combining (5.4.28) and (5.4.29) we obtain :

E^«?Sh •'>* • (5A30)
where T=max {Tx, 2(^g) }.

Since E(t) is nonincreasing by (5.4.26), from (5.4.28) it follows that V(TX) <~, and

(5.4.30) proves that for sufficiently large r, E(t) decays asO(—).

Dueto the boundary conditions m(0, t) =0, <|>(0, O=0 for all t £ 0, similar to (4.5.14)

we obtain the following estimates which follows from the Jensen's inequality (see, e.g.,

[Roy.l,p.ll0]):

$2(xtt)<Lfos2ds xe[0,L] , (5.4.31)
o

L

u\xtt)<LJuss2as xe[0,L] (5.4.32)
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Using (5.4.31), we obtain the following estimate :

L L L l

[u2 dx =\{ux - ++<|>)2 dx <: 2j(ux -®2dx+2 L%2dx (5.4.33)
0 0 0 o

For simplicity, we define the quantities Ax,A2, A3 ,and A4 which appear in (5.4.27)

as follows:

L

Ax: =2jpx [u, +Q(b +x)]ux dx , (5.4.34)

A2: =2j/flx<|>x(<t>, +8) dx , (5.4.35)

A3: =&\lB <K<|>, +8) dx , (5.4.36)

L

A4: =- 8jpa [ur +8(d +x)]dx . (5.4.37)

Since r(*, t) = (b +x)D2 + u D3, using the differentiation rule (2.2.14), we obtain :

(•|^) =-8«D2+[k,+80>+x)]D3 . (5.4.38)

Using (5.4.31)-(5.4.33) and (5.4.38), we obtain the following estimates :

L L

Ax| <pL[ttx2 dx +pL\[ut +Q(b +x)]2dx

L L L

<2pLJ(ux - (J>)2 dx +2pL3J<|>x2 dx +LJp<rt ,rt>dx
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<KxE(t) , (5.4.39)

wtacJCf max{2pL,2PL3,L) ^
. JR 1 GA EI,

mlnlT,T,T,T)

A2| ^/BLj(|)x2dx+/BLj((l)/+e)2dx
0 0

<tf2£(0 , (5A40)

max [IBL ,L }
where K2 =

. /* 1 GA EI.
mm{T'2'T~'T}

A3| <SlBj$2dx+&IBj($t +Q)2dx
o o

<5/B L2J<|>X2 dx +8/B J(<|>, +8)2 dx
o o

<A-3£(r) , (5.4.41)

max {5/BL2,8}
where K3 =

. Ir 1 GA £/,
111111'T-I'T-T1

L L

\A4\ <dpju2dx+Sp\[ut+Q(b+x)]2dx
o o

L L L

<2SpL2j(ux -$)2dx +2SpL4fox2dx+S\p<rt , r,> dtc
o oo

<K4E(t) , (5.4.42)



wherei^^^'2^5) .
. th 1 GA EI.

mm{T'2'~'T}
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Using (5.4.39)-(5.4.42) in (5.4.27), we obtain the following :

[2(1 -e)r -C]E(t)<V(t)<[2(1 -e)t +C]E(t) , (5.4.43)

where C =K x+ K2+K3 +K4. This proves (5.4.28).

To prove (5.4.29), we first differentiate Axwith respectto time:

dA L
--^ =2\px[ut +Q(b +x)]uxt dx +2fpx[tt„ +Q(b +x)]ux dx
dt i n

=2JpxutUxt dx+ 2JPXK*Q(b +x) dx

+2JGAxux(uxx -§x)dx+ 282JpxwMx dx

L l

=pLut2(L,t)-\put2dx+2[pL(b +L)K,(L,0-Jp(& +2x)k, dx ]8
o o

L L

+GA Lux2(Ltt)-GA\ux2dx -2GAfxux<|>x dx
o o

[pLu\L ,0- pj«2 dx ]82 , (5.4.44)

where in the second equation we used (5.4.17). Then, using integration by parts and the

fact that 8 does not depend on xy we obtain (5.4.44).
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Since 8(.) does not depend on jc, A2 is equivalent to the following :

L

A2=2j/Bx(<|> +e)x((|> +e), dx (5.4.45)

Upon differentiating (5.4.45) with respectto time, we obtain :

dA-y . f—2- =2f/Bx(<j) +8)* dx +2]xlB(4>„ +8)(<t> +8)x dx
Clt n n

L L

=IBL($t +8)2 I -\lB(h +Q)2dx+2JEIx$x$xx dx
x=L o o

L

+2JGAxtyx(ux-$)dx

L

=IBL($t+Q)2 I -\lB($t+Q)2dx+EI Ltyx2 I
x=L o x=L

L L L

-JEI$x2dx+2GA\x$xuxdx-GA Lty2 I +GAJQ>2dx , (5.4.46)
o o x=L o

where in the second equation we used integration by parts and (5.4.18). Then, using

integration by parts, we obtain (5.4.46).

Upon differentiating A3i we obtain :

dA3 L L L
—- =oj/s(fc +Q?dx -5j/fl8(<t>, +Q)dx +5j/fl<K<|>„ +8)dx
ut n n n0 0

=5j/fl (4>, +8)2 dx - 5j/B 8(<|>, +8) dx S\$[EI <$>„ +GA (ux -$)]dx



L L L

S\lB (<f>, +0)2dx- $J/B 8^ +8) dx +ZEI^X I - 5E/J<|>X2 dx
a a X=L o
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L L

+SGA$u I -$GAfoxudx-8GAfo2dx , (5.4.47)
x=L o o

where in the first equation we added and subtracted 8, in the second equation we used

(5.4.18). Then, using integration by parts and the boundary conditions (5.4.20), we obtain

(5.4.47).

Similarly, upon differentiating A4, we obtain :

dA L L
—— = -d\put[ut +8(6 +x)] dx -b\pu[utt +Q(b +x)]dx

dt i 6

L L L L

=-h\put2dx -58fp(fc +x)ut dx-bjuiGAQin -$x)]dx -SQ2\pu2dx
0 0 0 0

L L

=-5jpM,2dx -88[p(6 +x)ut dx-SGAwtx I
o o x=L

ILL

+8GAJux2 dx +SGAJu<|>x dx - 582Jp«2 dx , (5.4.48)
0 0 0

where in the second equation we used (5.4.17). Then, integrating by parts and using the

boundary conditions (5.4.20), we obtain (5.4.48).

Differentiating V(t) with respect to time and using (5.4.44)-(5.4.48), we obtain the

following:

<^=2(1_e),<^+2(1_e)£(,)+£^
dt dt i=1 dt
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=-2(1 -e)to82-2(l -e)am,2(L, 0-2(1 -e)pf<|>r2(L, t)

L L

+(l-e)/*82 +(l-e)Jp<r, ,r,>dfc+(l-e)J/B((j>, +8)2dx
o o

L L

+(1 - z)GA\(ux - <j>)2 dx +(1 - z)El\*>2 dx +pLut 2(L, 0
0 o

L L

- \put2dx+2[pL(b+L)ut(L,t)-\p(b +2x)ut dx ]8 +GA Lmx2(L,0
0 o

L L L

-GAJ^dx -2GAfxux<|>x dx +p [Lu2(L, t)-\u2dx ]82

L

+/BL(<|>,+8)2 I -\lB($t+Q)2dx+EI L$x2 I
x=L o x=L

L L L

-\EI$x2dx+2GA\xtyxux dx -GA L<J>2 I +GAJ$2dx
o o x=L o

+6J/B(<l)/+8)2dtc-8j/fle(<()/+8)(ix+8£/(|)<t)x I
o o x=L

L L L

-8£/J(j)x2dx+8GA<j)u I -8GAfa>xKdbc-SGAJ<|>2dx
o x=L o o

L L

-8jpu,2 dx - 88jp(6 +x)ut dx - 8GAw«x
x=L

L L L

+8GAj«x2 dx +SGAJu $xdx-8e2Jpu2 dx , (5.4.49)
0 0 0

where in the first equation we used (5.4.27) and (5.4.34)- (5.4.37). Then, using (5.4.26),
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(5.4.25) and (5.4.44)- (5.4.48), we obtain (5.4.49).

Using (5.4.38), the integral associated with the inner product <r, , rr> canbe written

as:

L
A2|Jp<r, ,r,>dx =82Jpu2dx +\pu2dx +2Q\p(b +x)ut dx+Q2j(b +x)2dx , (5.4.50)

0 0 0 0 0

After cancellations, using (5.4.50) andcollecting likewise terms, (5.4.49) becomes :

L

4r=-[2(l-e)to-(1-e)/* - fp(K2 +(fc+x)2)dx
at 0

l l

- (pLu2(L, t)- jpu2 dx +8jpu2 dx ]82
0 0

L L L

[e +8] Jpu,2dx -[e+8] JEI$x2dx -[e-8] \lB($t +Q)2dx
0 0 0

L L L

+(8 - 1)GA|mx2 dx +(1 - 8)GAj<|>2 dx +(1 - e)GAJ(ux - <|))2 dx
0 0 0

+[2(1 - e) - 8]8jp(6 +x)ut dx - 8j/fl 8(<|>, +8) dx

-[2(l-e)o/-pL]ttf2(L,r)-2(l-e)pr(|>/2(L,0

+2[pL(b +L)ut(L,t)-pfo +2x)u( dx ]8 +GALu2(L, 0

+/flL(<J),(L,0 +e(0)2 +£/(|)I2(L,r)-GAL<l)2(L,r)
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+ 8£/<J)(L, 0<(>X(L, 0- 8GA [(«X(L, 0 - <t>0<. 0]" (L. 0 . (5.4.51)

Using the following simple inequalities

ab<b2a2 +^r av6,5eR,5*0 , (5.4.52)
82

(a+b)2< 2{a2 + b2) a , b e R , (5.4.53)

boundary controls (5.4.22), (5.4.23) and the fact that the energy E(t) stays bounded, we

obtain the following estimates for some of the terms which appear in (5.4.51):

L L

\u2 dx <L2\u2 dx

L L

<2L2j(ux - (|>)2 dx +2L4J<|>X2 dx
0 0

<MXE(Q) , (5.4.54)

max (2L2, 2L4 }
where Mx =

. th 1 GA El'mm{T,y, —,T)

u2(L,t)<M2E(0) , (5.4.55)

where Af2= max (2L ,2L } (§ee (5 432) and (5.4.33)),
. ,4? 1 GA £/,

min{T*2' — 'T}

J<|>2dx<L2J<|>x2dx , (&y (5.4.31)) , (5.4.56)J<|>2dx<L2J
0 0
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f(«x -$)2dx £2lu^dx +2 J(|)2dx
0 0 0
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L L

<2\ux2ax+2^x2dx , (fry (5.4.33)) , (5.4.57)
0 0

L

L L p\b+X)2dX
\p(b+x)ujdx<Zx2\pu2dx +-?— 02 , (fry (5.4.52)) , (5.4.58)
0 0 °l

J/B8((|)/+8)dx<822J/B((|)/+e)2dx+^re2 , (fry (5.4.52)) , (5.4.59)
0 o 82

k,(L,08<S3V(L,0 +̂ 2-82 , (fry (5.4.52)) , (5.4.60)
83

L

L L pj(fr+2x)2dx
fp(fr+2x)dx<842JPK,2dx+ ° 82 , (fry (5.4.52)) , (5.4.61)
0 0 §4

GA Lu^.O^GA L^\Ltt)-2(xL^L$t)ut(Lft) +̂ ut\L,t)

L

<GA L<j>2(L,0 +2aL2852f<i>x2dx

+(^ +-£x)«,2(L,0 , (fry (5.4.22)) , (5.4.62)
S52 GA

lBL($t(L,t) +§)2<2lBL$t\L,t) +2IBLa2 , (fry (5.4.23)) , (5.4.63)
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EI^X\L, 0^|jV(L>0 > (5.4.64)

8£/<!>(L, t)$x(L, 0 = -8p<l)(L, 0<!>i(^. 0

<8p86V(L,r)+||(i)/2(L,0

<8pL862J(|)x2dx+||(|),2(L,r) , (fry (5.4.52), (5.4.31)) , (5.4.65)
o 86

-8GA[mx(L, r)-(j)(L, r)] m,(L, 0 = 8o«r(L, 0"(^, 0

£8aLS72k2dx+-^w,2(L,0 , (fry (5.4.22)55.4.66)
o 67

where 8,-, i = 1 , 7 are any nonzero real numbers.

Using the estimates (5.4.54)-(5.4.64) in (5.4.51), the latter becomes

L

^P- <- [2(1 -e)kt -Dx]Q\t) - [e +8- (2(1 -e))8,2- 2842] \pu,2 dx
dt 5

-[2(1 -e)ccf -Ddufc, 0-[2(1 -e)P* -DjftftL. t)

L

[e +8- (3 - 8- 2e)GAL2 - 2oL2852 - 8pz, 862 ]\$2 dx

L L

)\lB (<j>, +8)2 dx - [(2e - S)GA - 5o&j2]ji
0 0

- [e - 8Sz2]J/fl (<!>, +8)2 dx - [(2e - 6)GA - So^2]jux2 dx , (5.4.67)
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where

D1 =(l-e)//?+(2p +8)M1 +-^+pI^2+2/BL+^|y^-
82 03

L L

L (2(1 - e) - 8)pJ(fr +x)2 dx 2pJ(fr +2x)2 dx
+pj(fr+x)2dx + -£ + ° g2 . (5A68)

0 V 54

D2=pL+2PL(fr+L)832+̂ +-^+-^- . (5.4.69)

D, =2/„L+^+-il . (5.4.70)'3 = *iB
EI 8*2

By choosing e and 8 sufficientiy close to but smaller than 1 and by choosing

8,- ,t=l,...,7 small enough, each term multiplying the integral terms in (5.4.67) can be

made negative. To see this, define e and Sas follows:

e: = l-e , S: = l-8 . (5.4.71)

Then sufficient conditions to make the coefficients of the integral terms in (5.4.67)

negative are:

(l+GAL2)S +(l + 2GAL2)e<2 , (5.4.72)

2e<S<l (5.4.73)
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It is easy to see that one can find e and S sufficiently small which satisfy (5.4.72)

and (5.4.73), (e.g., choose i.—J^^.—J^) . IT™ choosing
8/, i =1,..., 7 small enough, the coefficients of each integral term in (5.4.67) become

negative. Then, from (5.4.67) it follows that:

dt

D.
where 7*i = maxf -— , — , — ttt }, which proves (5.4.29). Then combin-

1 l 2(1 -e)k 2(1 -e)a 2(1 -e)P ,J v

ing (5.4.29) and (5.4.28) we obtain

V(TX)

£(t)S(l-e)t-C 't>T •

where T=max [Tx, C }, which proves that for large t, the energy £(r) decays as
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5.5 Existence, Uniqueness and Exponential Decay of Solutions

In previous section, we proved that the solutions of the equations of motion, i.e.,

(5.4.17)-(5.4.24), decay at least as 0(—) for large t. In this section we establish an

existence and uniqueness theorem for the solutions of the equations mentioned above,

and then prove that solutions actually decay exponentially. We use the same techniques

used in the proofs of relevant theorems in previous chapters, such as Theorem 3.5.5 or

Theorem 4.6.1; hence here without giving detailed calculations, we give brief sketches of

proofs and refer to therelevant equations ortheorems, when appropriate.

We repeat the equations of motion we studied in previous section, namely (5.4.17)-

(5.4.24): for all t > 0, x e (0, L)

««=—<«»-♦*)+T^<* +*>J(* +JC)(^ •«* "T^ +X>K -*)dx
P 'R 0 'R 0

L

+^(b+x)faxxdx+k(b+x)9+p&u , (5.5.1)
'R 0

£/. GA, „.GAL,,^._„.. .^
'b jb *R 0

L L
GA r, .... EI- "T1K -$)dx+ f- fo« dx +*8 , (5.5.2)
'Rfl '/? 0

Ga\„ w AxJ . GA^f, .w £/L8=-—f(fr +xXuxx-$s)dx +irLf("x -<|>)dx -fM^ dx-*8 , (5.5.3)
f* o 7* o '* o
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u(0,0 =0 , <j)(0,O =0 , (5.5.4)

GA[ux(L,t)-$(L,t)]+au(L,t) =0 . (5-5-5)

£/<J>x(L,0 +P<|>,(L,0 =0 • <5*5-6)

We define the function space HT in which the solutions of (5.5.1)-(5.5.6) evolve, as

follows:

HT: = [(u ut + <|>, 8)r IueHV^e Hl0,ut eL2,^ e L2,8€ R } , (5.5.7)

where the function spaces L2, H* , H*0 are introduced in (4.4.14).

Equations (5.5.1)-(5.5.3) can be putin the following form :

*L =Az+g(z) . <5-5-8)
dt

where z =(u ut $ <j)f 8)T e HTl the operator A :HT ->HT is a linear unbounded operator

whose matrix form is specified as follows:

A= [mij:iJ =l 6} , (5.5.9)

where allmVi are zeroexcept:

mx2 = m34= 1 ,

GA d2 GA,U h,. ,d2. GA,.^ Sd .

p ox IR o ax 'R o 'R o°x



m2S= k(b +x)

GA d ua t,. s o~ , ua to,m4X =^-— +-—}(b+x)—2dx- — j^-dx ,
IB dx IR 0 9x2 //? o aX

EI d2 GA GAL{f.^ .d ,v ^GALr , ^El) d2
m43 =—tt - -7 7—J Q> +x)-r- dx + —J dx +j-Jt-j dx ,

h dx2 h h o dx !R o hidx1

nt45= k ,

m53=-7dJ(^^)f dx-^]dx-jL)-fidx ,
mss = —k ,

the operator g :HT ->HTisa. nonlinear operator defined as :

*00=tei ••• *5)T . <5-5-10>

where all gi are zero, except:

g2(z) = Q2u .

Note that for all r >0, the operator g(.) is Lipschitz in z in the ballB(0,r).

The domain of the operator A is defined as :

D(A): ={(u w, <|> 0, 8)Te//r Ime H20,feH20,«, e H1^, e H!0,8 e R,

GA[mx(L, O-<t>a-.O] + aw,(L,O = 0,

E/<|)x(L,r) + p<|)/(LfO =0} (5.5.11)

In //T we define the following inner-product:

GA d . GALt,L . , a2 J GALe d

174
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<z .*> =\hM +\\p\Vt +kb +x)l W+W+a:)] dx +-jE/<t>Jx dx
2o 2o

1L 1L+\\h (♦, +8X& +9) dx +•£-JGA (ii, - <J>)(4 - $) dx , (5.5.12)
2q 2o

where z =(u ut $ <|>, 8)T e HT andf =(tf if, <j> <j>, 8) e /7T.

Note the standard Sobolev norm which makes HT a Banach space is :

L L L L L

\\z\\x2=)u2dx+jux2dx+ju2dx+^2dx+^x2dx+Q2 , (5.5.13)
0 0 0 0 0

but, by using inequalities (5.4.31)-(5.4.33), (5.4.52), and (5.4.53), it can be shown that

the norm induced by (5.5.12) is equivalent to the normdefined by (5.5.13), (the proof of

this fact is similar to the proof of Lemma 3.5.4).

5.5.1 Theorem : Consider the linear unbounded operator A :HT ->HT given by (5.5.9).

Then:

(i) A generates a C0 semigroup 7(0;

(ii) there exist positive constantsM >0 and 5 > 0 such that the following holds :

|| 7(011 <Me~*1 r>0 , (5.5.14)

where the norm is the norm induced by the inner-product defined in (5.5.12).

Proof:
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(i)We use Lumer-Phillips theorem to prove the assertion (i), (see Theorem 3.4.4). Hence,

one has to prove thatA is dissipative and the operator 7J - A :HT -> HT is onto for some

A,>0.

As before, differentiating the norm induced by (5.5.12) we obtain : for all z e HT ,

—- = 2<z ,Az>
dt

=-*82-aK,2(L,0-p4>/20<.0 ^0 , (5.5.15)

which is the energy estimate (5.4.26). This proves that A is dissipative.

To prove that the linear operator A/ -A :HT->HT is onto for some X>0, we

decompose the operator A as follows:

A=A! +7D , (5.5.16)

whereA x: HT -» HT is a linear unbounded operator defined as :

Ax:= {n0:ij=l,..,5} , (5.5.17)

where all ntj are zero except:

«12 = 134=1 t

GA__ai
dx2

ga a

fl2,Ta?

p dx

n25 = k(b+x)

ga a

n« = lTTx •
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ei a2

7143 =h a? *
n45 = *

n55= -*

The operator AX:HT ->HT is a linear unbounded operator whose domain D(Ax) is

equal to D(A)c HT defined by (5.5.11). It is known that At generates a C0 semigroup in

HTy (see [Kim.l, Lemma 1.1 ]). Hence A/ -A :HT -> HT is an invertible operator for all

A,>0.

The operator TD :HT -»//T is a degenerate linear operator relative to A lf (see

Theorem (3.5.5)). Hence, as proven in theorem 3.5.5, it follows that for all X>0,

/ -tdQJ - A j)"1: HT ->HT is an invertible linear operator and we havethe following :

QJ -ATl = (kl -AlT\l -TDQJ -Af1)-1 ,

which proves that (A/ - A): HT ->HT is onto for all A, >0.

This, together with the fact thatA is dissipative proves that A generates an C0 semi

group in HT.

(ii) To prove the exponential decay of the semigroup generated by the operatorA defined

in (5.5.9), we first define the energy Ex(t) associated with the inner-product (5.5.12), that

is:

£1(0 = <z(r),z(r)> . (5.5.18)
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Similar to (5.4.27), we define the following function Vx(t):

l l

Vx(t) =2(\-€)tEx(t) +2\px[ut +8(fr +x)]ux dx +2pBx$x($t +8)dx
o o

+5j/B <|)(<j)r +8) dx - 8jpu (u, +8(fr +x))dx . (5.5.19)
o o

Following exactly the same proof of Theorem (5.4.4), we obtain the result that Ex{t)

decays as 0{—) for large r, (see (5.4.30)). Then exponential decay follows from Pazy's

theorem (see Theorem 3.4.5) cited in the proof of theorem 3.5.5. Q

Next we prove the exponential decay of the solutions of (5.5.8):

5.5.2 Theorem : Consider (5.5.8) where the linear operator A : D (A) c HT -> HT is

given by (5.5.9) and the nonlinear operator g :HT -»HT is given by (5.5.10). Let 7(0 be

the C0 semigroup generated by the linear operator A. Then :

(i) for all z0 e D (A), (5.5.8) has a unique solution z(0;

(ii) in terms of the semigroup 7(0 generated by A, this solution can be written as :

z(t) =T(t)z0 +JT(t-s)g(z(s.))ds , (5.5.20)
o

(iii) this solution z(0 decays exponentially.
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Proof:

(i) Since A generates a C0 semigroup 7(0 and g :HT->HT is a C°° function, (see

(5.5.10)), it follows that for all z0 e D(A), (5.5.8) has a unique solution defined locally in

time. But since for sufficiently large r, 7(0 = 0{—) by Theorem 5.4.4, it follows that the

solution is in fact defined for all t > 0.

(ii) This may be proven by back substitution of (5.5.20) into (5.5.8) and by using

Z--AT.
dt

(iii) From (5.5.10) and (5.5.12) it follows that

U(Oll2=jJpeVdr
zo

*\p&Mx\\z\\2 (5.5.21)

where M, = max{2L ,2L } ^^ (5 454) ) Since tf {s decaymg at ieast as
. Ir 1 GA EI,

mm{T'2'"2"'T}

G(—) and since || 7(r)|| <M e~*, applying the Bellman-Gronwall lemma to (5.5.20),

(see the proof of the assertion of (iii) of theorem (3.5.6)), we conclude that the solution of

(5.5.8) is decaying exponentially. D



Chapter 6

Conclusion

In this thesis we dealt with the stabilization of flexible spacecraft. We consider a

rigid body-flexible beam configuration as a case model, (see Section 3.2). We assumed

that the center of mass of the rigid body is fixed in an inertial frame, and the flexible

beam is clamped to the rigid body at one end and free at the other end. We considered

three cases : In Chapter 3, we studied the motion of the basic configuration in plane with

the beam modeled as Euler-Bernoulli beam; in Chapter 4 we removed the planar motion

assumption and in Chapter 5 we studied the motion of the basic configuration in plane

with the beam modeled as Timoshenko beam. In each case we proposed appropriate

force and torque laws, which include boundary forces and torques applied at the free end

of the beam, to stabilize the configuration in question.

In Chapter 3, we proposed two control laws to stabilize the basic configuration per

forming planar motion. The first control law is based on cancellation, (see Section 3.4),

where an appropriate control law applied to the rigid body cancels the effect of beam on
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the rigid body, (see (4.3.3)). This law enables one to study the rigidbody and the flexible

beam separately. The second control law is not not based on a cancellation and enables

one to use the energy of the whole configuration as a Lyapunov function. The stabiliza

tion problem we dealt with here is the stabilization of angular velocity of the rigid body

and the beam deflections. The results obtained and the techniques used here can be used

to study the other problems encountered in thecontrol of flexible structures, such as atti

tude control, orientation, tracking, etc., (see [Ana.1])

In Chapter 4, we extended theresults obtained in chapter 3 to the case of the motion

in R3 of the basic configuration, and we proved someresults similar to the ones obtained

in chapter 3.

In Chapter 5, we consideder the basic configuration with the beam modeleded, first,

as a geometrically exact beam and then as aTimoshenko beam. In the first case, general

izing the control laws proposed in previous chapters we obtained a stability result,

without usingany linearization, (see Proposition 5.4.1). As a future work, generalization

of this stability result to a possible exponential stability result might be useful. In the

remainder of chapter 5, we considered the planar motion of the basic configuration with

the beam modeled as a Timoshenko beam, which comes from appropriate linearization of

geometrically exact beam model. Then using previous results we obtained some results

similar to the ones obtained in Chapter 3 and Chapter 4.

The results in this thesis shows that the boundary control techniques can be applied

to the control of flexible structures. Applications of these techniques to the control of

configurations other than the one we used here, (e.g. dual-spin spacecraft with flexible

attachements); also applications to different control problems, such as tracking, pointing,

etc., can be useful.
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