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Approximate Tracking for Nonlinear Systems
with Application to Flight Control

by

John Edmond Hauser

Abstract

Shankax Sastry
Chairman

in this dissertation, we embark on a project to make recent theoretical advances

in geometric nonlinear control into a practicable control design methodology.

The method of input-output linearization by state feedback provides a natural

framework to design controllers for systems, such as aircraft, where output tracking rather

than stabilization is the control objective. Central notions include relative degree and zero

dynamics. Roughly speaking, the relative degree of a system is the dimension of the part

of the system that can be input-output linearized and the zero dynamics are the remaining

(unobservable) dynamics. Systems with exponentially stable zero dynamics are analogous

to minimum phase linear systems and can be controlled to track a rich class of output

trajectories with internal stability.

While investigating the use of these methods in the control of the V/STOL Harrier

aircraft, we noticed that the small forces produced when generating body moments caused

the aircraft to have an unstable zero dynamics, i.e., to be nonminimum phase. However,

if this coupling were zero, then the aircraft could be input-output linearized with no zero

dynamics. In other words, a small changein a parameter resulted in a significant change in

the system structure!

With this observation as the driving force, this dissertation studies the effects of

system perturbations on the structure of the system and develops methods for tracking

controller design based on approximate systems.

After reviewing the basics of geometric nonlinear control,we show that small reg

ular perturbations in the system can result in singular perturbations in the zero dynamics.

We give asymptotic formulas for the resulting fast dynamics.
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Next, we develop techniques for tracking control design for systems that do not

have a well defined relative degree. Using an approximate system with a well defined

relative degree, we design tracking controllers that guarantee approximate tracking for the

true system. This approach is shown to be superior to the usual Jacobian linearization

method on a simple ball and beam system.

Returning to the aircraft controlproblem, we use a highly simplified planarVTOL

aircraft model to illustrate the (slight) nonminimum phase characteristic of these systems

and develop a controller to guarantee approximate tracking. We also develop a formal

theory for this class of systems.
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Introduction

There has been an explosivegrowthin the last ten yearsin the number of applica

tions of nonlinear control techniques; examples include flight control systems in helicopters

[MC80], robot manipulators [Fre82], process control [SCS87], and even drug delivery sys
tems [CB84]. Nonetheless, it is fair to saythat nonlinear control system design is not at the

state of the art that it should be in industry—especially considering the fact that almost

every physical system is fundamentally nonlinear.

A linear systems approach is often taken is to design a controller based on linear

approximation(s) of the system about desirable operating point(s). Under reasonable con

ditions, the linear controller(s) can be used to stabilize and regulate the system about the

operating point(s). Indeed, a large number of researchers have worked to develop robust

methods (see, e.g., [Fra87]) to somehow enlarge the region where such a linear controller

can effectively control the nonlinear system. This approach is useful for systems where

stabilization or regulation is the goal. Since the controller strives to keep the system close

to the nominal operating point, the approach will be effective provided the system is not

too nonlinear and the excursions from the operating point are not too large. In particular,

this approach has been shown to be quite effective when the neglected nonlinearities are

sector bounded.

For many systems, such as aircraft, stabilization and regulationfall far short of the

true control objective. Indeed, for such systems, agility and maneuverability over a large

region is desirable. We may specify such a goal as the ability of the system to track a rich

set of output trajectories.

One common approach to trajectory tracking is to linearize the system about the

reference trajectory to obtain a linear time-varying system that is valid in a very small

neighborhood of the desired trajectory. Then a time-varying compensator is designed to



control the system. Unfortunately, few methods are available to design such compensators.

Another popular approach is gain scheduling. A family of linear controllers is

designed—each one good at stabilizing the system around a different operating point. The

system controller is then built by scheduling (perhaps interpolating between) the individual
controllers based on a set of parameters (a part of the system state is often the set of

parameters). Then, provided the system state and the parameters do not change too rapidly
and the family of controllers is a continuous (or smooth) function of the parameters, it is

hoped that the closed loop system will maintain the desirable properties of stability and

be able to approximately track reasonable trajectories. Major shortcomings include the

requirements that each point onthe desired trajectory be close to at least one of the selected

operating (i.e., equilibrium) points and that the transitions between operating regions not

be too fast. Also, there are few analytical results proving the effectiveness of thesemethods.

Many of the difficulties experienced are simply due to the fact that control engi

neers are trying to fit a round peg (nonlinear systems) into a square hole (linear system

design methodologies). Fortunately, a large number of these difficulties can be dealt with

directly using a nonlinear system design methodology. Indeed, much of the intuition behind

gain scheduling is quite intrinsic to control laws developed by nonlinear methods. This is

clearly seen in succesful applications of nonlinear control in flight dynamics [MC75,MC80]

and robotics [Fre75], both developed before a general theory had evolved.

From a base of more abstract system theoretic issues [Por70,SJ72,SR72,HK77,

Bro78], the field of nonlinear control has seen a decade of intense activity and evolution

culminating in a well-developed and understood theory (see, e.g., [Sus83,Isi85,Cla86,Isi87]

for expository surveys). One of the key developments useful for the purpose of output

tracking is the theoryof input-output linearization of nonlinear systems by state feedback.

By linearizing the input-output response of the nonlinear system, we can bring to bear

the powerful methods of linear systems theory to achieve robust and stable tracking. This

theory has recently achieved maturation.

The goal in this dissertation is to commence a program for the development of a

practical nonlinear control design methodology. The outlineof the dissertation is as follows.

In Chapter 1 we review the tools and techniques of geometric control theory that

we will find useful in the sequel. In particular, we see that the nonlinear counterpart of

the zeros of a system, the zero dynamics of a nonlinear system [BI84,IM89,BI88], provide

a notion of structure for the nonlinear system. Specifically, the zero dynamics help to



characterize the trajectories that the system can track.

In Chapter 2, we present theoretical results that show that the zero structure of
systems (both linear and nonlinear) is not robust with respect to regular perturbations in
the model. Roughly speaking, regular perturbations in the state space model maygive rise

to singular perturbations in the zero dynamics. We give asymptotic formulas for the zeros
of the (linearization of) the additional fast zero dynamics.

In Chapter 3, we present a method for the approximate input-output linearization

of systems without well defined relative degree. We show that, although the system cannot
beexactly input-output linearized to achieve exact tracking oftrajectories, we can often still

achieve bounded error output tracking by designing the compensator based on a minimum

phase nonlinear system that approximates the true system.

In Chapter 4, we present a method for the approximate input-output linearization

of slightly nonminimum phase systems. Applying the methods of input-output lineariza

tion directly to a nonminimum phase system can yield exact tracking, but at the expense

of unstable internal motion and, perhaps, unrealistic input requirements. As in the no rel

ative degree case, we show that designing the compensator based on an approximate, but
minimum phase system, we can achieve bounded error output tracking. These ideas are

illustrated using a highly simplified planar vertical takeoff and landing (VTOL) aircraft.
These results of Chapters 3 and 4 show that, although the structureof the system

is not robust to perturbations (cf. Chapter 2), control laws designed using systems with

good structure (minimum phase, etc.) are robust to perturbations.

Much interesting work remains to be done. Particular areas indicated by this

dissertation include:

• Trajectory design. For a class of invertible nonlinear systems, the method of input-

output linearization is useful to guarantee that the trajectory error has an exponen

tially stable linear dynamics. However, in order for this approach to be effective, the

desired trajectories must respect constraints imposed by the true system dynamics.

• Actuator limits. One of the most difficult problems in feedback control designers

must face is the fact that real life actuators and systems have limits. This problem

can sometimes be handled by judicious trajectory design. However, this problem

can still pose major difficulties in the presence of measurement errors and external

disturbances.



• System steering. Sometimes a system can be in a state where it does not possess

full controllability. In this case, a natural (sub)task would be to steer the system (in

allowed) directions to get into a region of the state space where normal techniques

can be used.

• Tools for nonlinear systems analysis. The calculations required for even relatively

simple nonlinear systems are often quite involved. Also, the estimates that we derive

to prove stability and tracking performance are extremely conservative and do not

reveal the true nonlinear nature of the problem.



Chapter 1

Introduction to Geometric

Control Theory

In this chapter,we try to present someof the basicnotions from geometric control

theory. We are by no means trying to provide a complete survey of the many interesting

results in this field. For a more complete review, consult one of the many excellent surveys

or texts, for example, [Sus83,Isi85,Cla86,Isi87,Isi89b].

The chapter begins with a brief review of some ideas from differential geometry.

We then cover much of the theory for the input-output linearization of single-input single-

output nonlinear systems using state feedback. This is followed by some generalizations

and algorithms for multi-input multi-output nonlinear systems. We conclude with some

biographical notes.

1.1 Preliminaries

We briefly review some ideas from differential geometry. For a detailed develop

ment consult a standard text such as [Boo86,Mil76,AMR83].

Recall that a diffeomorphism is a smooth, bijective (one-one, onto) map with a

smooth inverse. Here smooth means that the map has continuous derivatives of all orders.

Sometimes we will use smooth to mean sufficiently differentiable for the task at hand.

Roughly speaking (for a precise definition see [B0086]), a set M C Rn is a smooth

manifold of dimension k if it is locally diffeomorphic to R*. Simple examples of smooth



manifolds include a 2-dimensional sphere (embedded in R3)

52 ={*eR3 : W2 =l}, (1.1)

an (n —1)-dimensional hyperplane (embedded in Rn)

JT"-1 = {x e Hn : <c, *> = &}, (1.2)

and the group of proper rotations

50(3) ={A eR3x3 : ATA =1, det A=l}. (1.3)

Let U and V be open subsets of Rm and Rn, respectively, with m> n. Given a

smooth mapping / : U —* V, we say that x G U is a regular point of f if the rank of the

Jacobian Df at x is equal to n. A point y € f{U) C V is called a regular value of f if the

inverse image of y under /, f~l(y) C 27, contains only regular points.

Note that each of the example manifolds above were given as the inverse image of

a regular value of a smooth mapping. In general, since manifolds are locally diffeomorphic

to Rra, we have:

Fact 1.1 If f : M -*• N is a smooth map between manifolds of dimension m > n, and

if y € N is a regular value, then the set f"x(y) C M is a smooth manifold of dimension

m — n.

Consider the set of all smooth curves through a point zona manifold M. The

set of tangent vectors to these curves at x is called the tangent space at a;, denoted TXM.

For fc-dimensional manifold M embedded in Rn, the tangent space TXM at x G Rn can be

thought of as the Jb-dimensional hyperplane that best approximates M in the neighborhood

of x. Note that this hyperplane can be specified as the inverse image of n - k functions of

the form (c;, x) = a,-. Also, note that the tangentspace to Rn at x 6 Rn is just a (different)

copy of Rn.

A vector field on M assigns to each iGMan element of the tangent space at x,

i.e., f(x) € TXM.

The Lie bracket of two vector fields, / and g, denoted [f,g] or ad/g, is a vector

field given (in coordinates) by

adfg = [fi9] = Dg.f-Df-g. (1.4)



Repeated Lie brackets are denoted using the notation

ad?fg := ,, (15)
ad)g := [fMkfl9], *>0-

The Lie derivative of a scalar function h along a vector field /, denoted Lfh, is given by

Lfh(x) = dh(x) • f(x) (1.6)

and is a directional derivative of h in the direction of /.

A smooth fc-dimensional distribution A on a manifold M assigns (smoothly) to

each point x 6 M a subspace of the tangent space at x, A(x) C TXM; that is, it has a /oca/

6o5t5 of linearly independent vector fields g^ i = 1,..., fc, such that

A = span {flfi g2 ••• £*} (1.7)

where the span is taken over the ring of C°° functions. A distribution A is called involutive

if for all /, g € A, we have [/, g] € A, that is, A is closed under Lie brackets.

If A is a distribution on M and N is a submanifold of M such that for each x 6 N

we have TXN C A(ar), then N is an integral manifold of A. The distribution A is called

completely integrable if for each x € M, there exists an integral manifold N of A such that

TxiV = A(x).

The Frobenius theorem relates the concepts of involutivity and integrability:

Theorem 1.1 (Frobenius) A distribution A on a manifold M is completely integrable if

and only if it is involutive.

Since a single vector field is always involutive (trivially), the Frobenius theorem

guarantees the existence of solutions (locally in time) to the ordinary differential equation

x = f(x) x(0) = x0 (1.8)

for smooth /. The solution of (1.8) for each initial condition will be a 1-dimensional integral

manifold of the (trivial) distribution A = span {/}.

The Frobenius theorem can also be used to show that, given an independent in

volutive collection of vector fields, </,-, i = 1,...,&, defined on U C Rn (thought of as a

manifold), there exists a set of independent functions, tjj, j —1,..., n —k, such that

LgMx) = 0 xeU (1.9)



for all combinations of i and j. In other words, we can solve the set of partial differential

equations (1.9) for the functions rj; on U.

1.2 Input-Output Linearization for a Class of SISO Nonlin

ear Systems

Alarge classofnonlinearsystems canbe made to havelinear input-output behavior

through a choice of nonlinearstate feedback control law.

1.2.1 Introductory Concepts

Consider, at first, the single-input single-output system

x = f(x) + g(x)u

y = h(x)

where igR" (with Rn a smooth manifold), / and g are smooth vector fields, and h is

a smooth nonlinear function. In this case, smooth will mean Cr with r sufficiently large.

Differentiating y with respect to time, we get

y = dh-f(x) + dh>g(x)u

= Lfh(x) + Lgh(x)u

where Lfh(x) :Rn-»R and Lgh(x) : Rn -> R are the Lie derivatives of h with respect to

/ and g respectively. If Lgh(x) is bounded away from zero for all x, the state feedback law

(of the form u = a(x) + P(x)v) given by

u= j-j;(-Lfh +v) (1.12)

results in a linear system from v to y given by

y = v. (1.13)

The control law (1.12) also has the effect of rendering (n - 1) of the states of the system

(1.10) unobservable through state feedback.

In the instance that Lgh(x) = 0 for all x, we differentiate (1.11) again to get

y = L)h(x) + LgLfh(x)u . (1.14)



In (1.14), L)h(x) stands for Lf(Lfh)(x) and LgLfh(x) = Lg(Lfh)(x). Now, ifLgLfh(x) is
bounded away from zero for all x, then the control law given by

—ZEstf-W4+') (1'15)
yields the linearized input-output system

y = v. (1.16)

More generally, if 7 is the smallest integer for which LgLlfh(x) = 0 for all x and

i =0,..., 7 - 2and LgLy~xh(x) is bounded away from zero, then the control law given by

u= ^-(-Llh +t>) (1.17)LgLy'h(x)K '
yields

yfr) = v . (1.18)

To make the preceding discussions more precise (and allow for the functions that

are only locally zero or nonzero, i.e., on an open set rather than all of Rn), we make the

following definition for the relative degree of a nonlinear system:

Definition 1.1 The SISO nonlinear system (1.10) is said to have relative degree 7 at x0

(an equilibrium point) if there exists a neighborhood U of xq such that, for x 6 U,

LgL'fh(x) = 0 V0<»<7-1,

LgL}-lh(X) # 0.

Remarks

• This definition is compatible with the usual definition of relative degree for linear

systems (as being the excess of poles over zeros).

• The relative degree of a nonlinear system (at xo) is precisely the number of times we

must differentiate the output to have the input appear explicitly.

• The last requirement in the definition of relative degree could be replaced by

LgLyxh(xQ) # 0 (1.20)

since, by smoothness, this would imply the existence of a nonzero neighborhood.
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• The relative degree of some nonlinear systems may not be defined at some points,

e.g., when some LgL{±h is zero at xq but nonzero for points arbitrarily close to xq.

D

1.2.2 Local 'Normal' Form of a SISO nonlinear system

If a SISO nonlinear system has a relative degree 7 < n at a point xo, then, by a

nonlinear change ofcoordinates, we can transform it locally into a 'normal' form. We find

the transformation as follows. Define

<t>x(x) = h{x),

<f>2(x) = Lfh(x),
(1.21)

<f>-,(x) = L)~lh(x).

To show that these functions can be used as a partial change of coordinates we need the

following lemma which is interesting in its own right.

Lemma 1.2 Suppose the system (1.10) has relative degree 7 at x0 (in a neighborhood U).

Then

0 0<j+fc<7-l

for all x G U, for all j < 7 —1.

(1.22)
(-lYLgiyihix) i+* =7-i

Proof: By induction on j. For j = 0, (1.22) is equivalent to the statement that the system

has relative degree 7. Suppose that (1.22) is true for j = /; we will show it is true for

j = 1+ 1. Since (by straightforward calculation)

Ladfg* = LfLg\-LgLf\ (1.23)

for all smooth functions A(ar), we have

Lad^gfyW =LfLad)gL)h(x) - Lad)gL)"Kx) . (1.24)

We evaluate this expression for k such that /+l + fc<7-l. The first term is zero on

U since Ladi LHh(x) is zero for / + k < 7 - 1 (by assumption) and the Lie derivative of a
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vanishing function is zero. Using the assumption, we find that the second term is given by

0 0</+l+fc<7-l
-LadtaLk+1h(x)=l " (1-25)

'* J [ (-lX-l)'!^}-1^*) /+1+k=7- 1
which shows that (1.22) holds for j = /+ 1and hence the lemma is true. •

Remarks

• For a linear system (c,A,6), the lemma reduces to the (somewhat trivial) statement

cAk'A'b={ (1.26)
cAf-H j+k = -y-l

In other words, multiply cAk on the right by A^b with j + k = 7 - 1 to get the first

nonzero Markov parameter. Note also that (c,A, 6) need not be minimal since no

observability assumptions are made in the definition of relative degree.

• Similarly, in the nonlinear case, the lemma tells us to multiply the differential dL^h
on the right by adKg with j + k = 7 - 1 to obtain the first nonzero function. If
j + k < 7 - 1, the resulting function will be identically zero on U.

We use this result to show:

Proposition 1.3 The functions fa, i = 1,.. .,7, defined in (1.21), are independent on U,

that is, the differentials dfa are linearly independent (over the ring of smooth functions) on

U.

Proof: Suppose that the differentials are linearly dependent on U. Then there exists

smooth functions Ci(x), i = 1,.. .,7, not all identically zero such that

0 = ci(x)#i(x) + c2(x)d<j>2(x) + •••+ c^(x)d<j>^x)
(1.27)

= c\dh + c2dLjh H hc^dlTf h

for all 1 € U. We show, to the contrary, that each c,- must be identically zero on U. Multiply

(1.27) on the right by g (= ad^g) to obtain

0 = ciLgh + c2LgLfh + '" + c^LgLy1h
(.1.28)

= c-fLgLy h .
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Now, since the system has relative degree 7, LgI?fxh does not vanish on Uwhich implies
that c7(a;) must be identically zero on U. Next, multiply (1.27) (with c7 = 0) on the right

by adfg to get (using Lemma 1.2)

0 = ciLadfgh + c2LadfgLjh H \- Cy^iLadfgL^ h

= -<^-iLgLy h

which shows that c7_i(a;) is also identically zero on U. Continuing this process with adfa,
a&g, •••, ady~lg, we see that each c< is identically zero on Uso that the functions fa are
independent on U as claimed. LJ

Remarks

• This proposition is quite remarkable since it says that if we find a (possibly large)
neighborhood Uon which the system has relative degree 7, then the functions fa will
be independent on the whole set and therefore can be used as a partial coordinate

transformation on that region.

• A local version of this proposition can be proved as follows. Let

(c,A, 6) = (dh(x0),Df(xo),g(x0))

be the coefficient matrices for the Jacobian linearized (tangent) system at the equilib

rium point x0. The condition that the differentials d<j>i be linearly independent in a

neighborhood of x0 is equivalent to their independence at xo (by smoothness). Since

dfa(xo) = cA*"1, we check that the matrix

dfa(xo) c

d(j>2(xo)
=

cA

d<j>y(xo) cAt-1

has full rank 7 by multiplication on the right by

[bAb ... A^fr] .

(1.29)

(1.30)

(1.31)
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D

To complete the coordinate transformation, we need to find (n —7) functions rjj such that

the collection fa, rjj, i = 1,... ,7, j = 1,..., n - 7, is independent on U. Since the single
vector field g is (trivially) involutive, the Frobenius theorem guarantees the existence of

(n —1) independent functions A,-, i = 1,..., n —1, such that

Lg\i(x) = 0 x e U, i = l,...,n- 1. (1.32)

Since the functions fa, i = 1,... ,7 -1, are independent and satisfy (1.32), we willuse them

as (7 - 1) of the functions A;. Now, complete the set (A,-) with (n - 7) more functions, rjj,
j = 1,..., n - 7, that satisfy (1.32) and are such that the collection <f>i, %= 1,...,7 - 1, Vji

j = 1,.. .,n - 7 are independent on U. Then, since Lg(f>^(x) £ 0 for x 6 U, the matrix

d$(x) =

dfa(x)

d<f>^{x)

drji(x)

drjn—f{x)

has rank n for all x £ U. This shows that the transformation

$ :x >-• (<fo(x), •••,<£7(a:), »;i(a:), •••,rjn-^)):

(1.33)

(1.34)

is a diffeomorphism of U onto $(*/)• Define coordinates (f, 77) for the transformed state to

be

m

\ Vn-f )

<f>^(x)

rji(x)

^Vn-t(x) j

= $(*) (1.35)
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Then, in the (£,rj) coordinates, the nonlinear system (1.10) is given by

6 = 6

6 = 6

1 (1.36)
£y = *(f|1?)+«(€.«?)*

fj = q(Z,rj)

y = 6

where 6(^,77) and 0(^,17) are I}/i(a:) and LgLylh(x) in (£,??) coordinates and qfarj) is
Lfrji(x) in (£,»?) coordinates. Thus for example,

K(,V) = L}h(i-\t,n)) • (i-37)

Note the lack of input terms in the differential equations for rj—this is due to the fact that

Lgrji(x) = 0, t = 1,.. .,n - 7, for x € U. The system description (1.36) is a local 'normal'
form of the system (1.10) [BI88,Isi89b].

1.2.3 Full State Linearization by State Feedback

Consider now the case when the system (1.10) has a relative degree of exactly n.

In this case, we can locally transform the systeminto a controllable linear system. Indeed,

the normal form of the system is given by

& = &

6 = 6

: (1-38)

y = 6

so that the feedback law

«=^[-K0+»] (1-39)
yields a linear system with a transfer function of l/sn from v to y. The transformation

from the original system (in x and u) to the linear system (in £ and v) consists of
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1. a nonlinear change of state coordinates

(6,6,-, Uf =*(*) =(M*). */*(«).—. irlfc(*))T C1-40)

and

2. a (state-dependent) change of input coordinates and state feedback

v(x, u) =Lnfh(x) + LgLy^^u (1.41)

both defined in a neighborhood of xo.

We can now place the poles of the closed loop system at the zeros of a desired

polynomial d(s) = sn + an^is"""1 H {• ao by choosing the state feedback

v = -a0fi an_if„ (1-42)

or, in the original coordinates

U= r rn-lu, y\-Llh<<*) " On-lXJ"1^.) a0*(*)] • (1-43)
LgLf ti{x)

Thus we see that the nonlinear system (1.10) is equivalent to a controllable linear

system by choice of a particular set of state and input coordinates (with state feedback),

namely, (1.40) and (1.41).

Now, suppose we are given the system dynamics

x = f(x) + g(x)u (1.44)

but no output is specified. An obvious question is then: When are the dynamics of a

nonlinear system of the form (1.44) equivalent to the dynamics of a controllable linear sys

tem? Necessary and sufficientconditions for this equivalence have been given by Jakubczyk

and Respondek [JR80] and (independently) by Hunt, Su, and Meyer [HSM83,Su82] (and

apparently also by Brockett—see note in [JR80]).

These conditions can easily be derived from our development. Indeed, we see that

the nonlinear dynamics of (1.44) are equivalent to a linear dynamics if (and only if) there

exists a function h for which the resulting system has relative degree exactly n. Thus the

function h must be such that (by the definition of relative degree)

LgL)h(x) = 0 x£U,i<n-l (1.45)
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and

LgLny1h(x)^0 xeU. (1.46)

Now, (1.45) is a set of (n - 1) higher order linear partial differential equations for the

function h. Fortunately, it can be reduced to a set of first order linear partial differential

equations using the following proposition.

Proposition 1.4 Let f andg be smooth vector fields on an open set U C Rn and let h be

a smoothfunction on U. Thefollowing conditions are equivalent:

1. LgLjfh(x) =0, a;6^0<i<fe.

2- La<Pgh(x) = °» x€U,0<j<k .

Proof: By induction on k using the same techniques as in the proof of Lemma 1.2. Q

The propositiontells us that equations(1.45) areequivalentto the set of first order

linear partial differential equations

La*/9K*) =° xeU,i<n-l (1.47)

which can be rewritten as

dh •[g adsg •••ady2g] =0. (1.48)

Proposition 1.4 also implies that equation (1.46) is equivalent to

*«$-».*(*) #<> *€V. (1.49)

We now state a result dual to Proposition 1.3:

Proposition 1.5 Suppose that (1-47) and (1.49) hold. Then the distribution

spanlg adjg ••• adj"1^} (1.50)

has dimension n onU.

Proof: Assume the vector fields are linearly dependent, that is, there exist function a,-,

i = 1,..., n, such that

ot\g + a2adfg + •••+ anadnflg = 0 . (1.51)
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Multiplying on the left by dh, we get (by Lemma 1.2)

"nLadl-.gh =0 (1.52)
which shows that an(x) = 0 for x G U. Continue this procedure, multiplying by dLfh,

dLjh, etc., to see that an_i, a„_2, etc., are each identically zero on U. This proves the
proposition. '-'

We can now state the necessaryand sufficient conditions for the equivalence of the

system dynamics:

Theorem 1.6 [JR80,Su82,HSM83] The dynamics of the nonlinear system

x = f(x) + g{x)u (1.53)

are locally (on U) equivalent to the dynamics of a controllable linear system by change of

state and input coordinates and state feedback if and only if

1. the distribution (1.50) has dimension n on U, and

2. the distribution

spanlg adfg ••• ady2g\ (I*54)

is involutive on U.

Proof: The Frobenius theorem saysthat there is a function h solving (1.47) if and only if

the distribution (1.54) has dimension (n - 1) on U and is involutiveon U. This combined

with the previous facts proves the theorem. E

Remarks

• The distribution (1.50) is the controllability distribution and is the nonlinear analog

of the linear controllability matrix

[bAb ... A^b] (1.55)
and tells us that the system is locally controllable (e.g., through its Jacobian approx

imation with 6 = g(xo) and A = Df(xo)).

• The involutivity condition is trivially satified in the linear case but not generically

satisfied in the nonlinear case. Thus, not all locally controllable nonlinear systems

may be locally fully state linearized.

•
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1.2.4 Zero Dynamics and Minimum Phase Nonlinear Systems

Above wesawthat the relativedegree ofa nonlinear systemwasa natural extension

of the relative degree of a linear system—the excess of poles over zeros. In this section, we

will see that this analogy can be extended to define a nonlinear version of the system zeros,

the zero dynamics.

The input-output linearizing control of (1.17) (repeated here for easy reference)

1
u = LgLyxKx)

gives the nonlinear system (1.10) a closed loop transfer function of l/st from v to y (ac
counting for 7 of the n states). Theremaining (n- 7) states ofthe system have been made
unobservable by state feedback. To see how this happens, consider the linear case, i.e.,

f{x) = Ax, g(x) = b, and h{x) = ex. Then, the system has relative degree 7 if the Markov

parameters are such that

cb=cAb = cA2b=-- = cA'<-2b = 0 ^
(1.56)

cAt~lb # 0

i-L}h + v)

so that the control law (1.17) yields the closed loop system

1} 11 bv
(1.57)

y = ex

with transfer function l/$7 from v to y. It follows that (n - 7) of the eigenvalues of
U_ —L^c^-r-ij Ahave been placed (by state feedback) at the zeros of the original
system and the remaining at the origin. Thus, the input-output linearizing control lawmay

be thought of as the nonlinear counterpart of a zero-cancelling controllaw.

There are three equivalent notions that can be used to define the zeros of an

invertible linear system:

1. the system dynamics associated with the maximal controlled invariant manifold in

the kernel of the output map,

2. the system dynamics under the constraint that the output be identically zero for all

time, and

* = ['-S*M^^ +5fM*
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3. the dynamics of a minimal inverse system with the input (i.e., the original output)

set to zero.

Although these notions do not always coincide for anonlinear system. Under certain condi
tions (e.g., the relative degree is well defined), these notions are, in fact, equivalent [IM89].

With this fact in hand, we make the following definition:

Definition 1.2 The zero dynamics of a nonlinear system (1.10) are the dynamics of the

system subject to the constraint that the output be identically zero.

To show that this definition is well-defined, we will explicitly characterize the zero

dynamics of (1.10) using the local normal form (1.36). First note that

y(t) s 0 <^ 6(t) = £2(t) = •••= £,(*) = 0 . (1.58)

Also, in order to keep ^ = 0 we must choose the input so that

u(t) =-b-M§ (1-59)
a(0,rj(t))

where rj(i) is any solution of

r)=q(0,rj), rj(0) arbitrary. (1.60)

Thus, for arbitrary rj(0) with (0,7/(0)) € *(#), the output can be held identically zero

provided that the (,-(0) = 0 for i = l,...,y. In the original coordinates, we see that the

initial state x(0) belongs to the manifold

M* := {x €U: h(x) =Lfh{x) =... =Lylh(x) =o} (1.61)

and the input is given as the state feedback

LU(x) , xu*(*)=-i#ij- <"»>
This control law is precisely (1.17) with v set to zero. Note that this feedback law renders

M* invariant, i.e,given aninitial condition belonging to M*, the entire trajectory of (1.10)

will lie in M*. Thus, the zero dynamics of (1.10) are precisely the dynamics of

x = f(x) + g(x)u*(x) (1.63)
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Figure 1.1: The zero dynamics manifold M*

restricted to M* as shown in Figure (1.1). In (£,rj) coordinates, the zero dynamics are

simply

* = ° (1-64)
rj = q(0, rj)

and are the internal dynamics of the system consistent with the constraint that y(t) = 0.

For a linear system in normal form, the rj dynamics will have the form

r) = PZ + Qrj (1.65)

so that the zero dynamics are simply

fj=Qrj. (1.66)

It is easy to check that the eigenvalues of Q are indeed the zeros of the original system.

Recall that a linear system is called minimum phaseif all the the system zeroslie in

the openleft half plane. In other words, the zero dynamics of the system are (exponentially)

stable. To extend this notion to nonlinear systems we need a few more assumptions.

Recall that the normal form is defined locally around the equilibrium point x0.

Assume, without loss of generality, that the equilibrium point xo is mapped to (£,rj) =

(0,0) by the coordinate transformation $. Specifically, this requires that h(x0) = 0 and

g(0,0) = 0.

Definition 1.3 The nonlinear system (1.10) is said to be asymptotically (exponentially)

minimum phase at xq if the equilibrium point rj = 0 of (1.64) ** locally asymptotically

(exponentially) stable:



21

Remarks

• It is important to note that the minimum phase property of a nonlinear system de

pendson the equilibrium point Xq underconsideration. Thus, a nonlinear systemmay

be minimum phase at some points and nonminimum phase at some others.

• The stability properties of the zero dynamics are independent of the choice of rj coor

dinates.

•

1.2.5 Stabilization and Tracking for SISO systems

With the concepts of zero dynamics and minimum phase systems in hand, weare

now ready to tackle the problems of stabilization and tracking for nonlinear systems for

which the relative degree is welldefined. We start with stabilization:

Theorem 1.7 Suppose thesystem (1.10) has relative degree 7 andis locally asymptotically

minimum phase and let d(s) = si + cty-i^-1 + •••+ ens + a0 be a Hurwitz polynomial.

The state feedback law

1
>u(x) = LgLyxh(x)

results in a (locally) asymptotically stable system.

Proof: In (£,rj) coordinates, the closed loop system (1.10), (1.67) is given by

or, compactly,

\-L)h{x) - a^iLy^x) atLfhix) - a0h(x)] (1.67)

0 ... 0 1

oto a7_i

fftt.i?)

i = m

V = «(€»!?)•

fe-i (1.68)

(1.69)
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If the zero dynamics are exponentially stable, the stability of the Jacobian linearization is

sufficient to show stability. If the zero dynamics are critically stable, then center manifold

theory [Car81] can be used to prove the theorem. See [BI88] for details. D

It is easy to modify the controllaw (1.67) in the instance that the controlobjective

is tracking rather than stabilization. Consider the problem of tracking a given prespecified

desired trajectory yd(t). Define e€ R7 by et- =y(*-1) -yd~^ so that e\ is the tracking error.
Note that f = e + yd where yd := (y«i,y<i,...,y2~1)T' The counterpart of the stabilizing
control law of (1.67) is

U=r Jit/ A\-Llh(<X) +«5 +"T-l^ +'**+a°ei] (1'7°)LgLj h(x) L J

so that the closedloop system (in (e, rj) coordinates with A as above) is given by

e = Ae
(1.71)

fj = q(e + $d,n)>

Though it is not immediately obvious, the control law of (1.70) is a state feedback law since

et =!$-**(*) - si'"1' (L72)
for i = 1,... ,7. The counterpart of Theorem 1.7 is the following:

Theorem 1.8 Suppose the system (1.10) has relative degree 7 and is locally exponentially

minimum phase and, as before, let d(s) be a Hurwitz polynomial. Then, if the desired

trajectory yd(t) and its first (7 —1) derivatives are small enough, the control law (1.70)

results in bounded tracking, i.e., the state x is bounded and the' tracking error e\ and its

first (7 —1) derivatives tend to zero asymptotically.

Proof: Clearly, from the form of the closed loop system (1.71), it is enough to show that

the states remain bounded (i.e., in U). Then the stability of e = Ae will guarantee that

e-^0. Let bd be a bound for yd and its first (7 - 1) derivatives. Note that q(-,•) is locally

Lipschitz (with constant lq) since ??(•), /(•), and $(•) (and $-1(-)) are smooth. Since the

zero dynamics r) = q(Q, rj) are locally exponentially stable, a converse Lyapunov theorem

[Hah67] implies the existence of a Lyapunov theorem V2(rj) such that

fciN2 < v2(v) < k2\v\2

!$q(0,V) <-k3\V\2 (L73>
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for some positive constants k\, k2, fc3, and fc4. Consider as Lyapunov function for (1.71)

V(e,rj) = eTPe + tiV2(rj) (1.74)

where P > 0 solves ATP + PA = -I (possible since e = Ae is stable) and fi > 0 is to be

determined below. Taking the time derivative of V along the trajectories of (1.71), we get

V = -\e\2+^[q(Q,rj) + q(e +n,n)-^")]
< -\e\2-fik3\rj\2 + fik4lq\rj\(\e\ + bd)

< -||e|2 - fW2 - (£ - /*M.M)a +W,)2M2 - M*s(¥ " ^)2 +M^ft
(1.75)

Setting /i = k3/(2k4lq)2 and dropping the squares, we get

^-|ie'2-i|i"'|24- (i-76)
Thus, V < 0 whenever M or |e| is large which implies that \rj\ and \e\ and, hence, |^| and

|a;|, are bounded. The above analysis was for x € U. Indeed, by choosing bd sufficiently

small and appropriate initial conditions, we can guarantee that the action remains in U.

Therefore the state x remains bounded and the stability of c = Ae implies that e -• 0 as

t - oo. a

Thus, the notions of zero dynamics and minimum phase provide useful extensions

to their linear counterparts. In particular, we see that we can control minimum phase

nonlinear systems effectively using a control law such as (1.70) designed using the input-

output linearization methodology.

1.3 Linearization and Decoupling of MIMO Nonlinear Sys

tems

For the multi-inputmulti-outputcase, weconsider square systems (that is, systems

with the same number of inputs as outputs) of the form

i = f(x) + gi(x)u1 + "' + gm(x)um

yP = hm(x)
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where x G Rn, u,y 6 Rm, /, gt, i = l,...,m, are smooth vector fields, and hj, j =

l,...,m, are smooth functions. We will sometimes abuse notation and use g and u to

denote {gi-~gm} and (u1,...,um)T so that gu = 2J»flf.-tt,-. There is a class of MIMO
systems for which the development very closely parallels that for the SISO case of the

previous section. We start with this class:

1.3.1 MIMO Systems Linearizable by Static State Feedback

As in the SISO case, we begin by differerentiating the output(s): the time deriva

tive of the jth. output yj of the system (1.77) is

yj= Lfhj + Y^(L9ihj)ui • (1.78)
i=i

In (1.78) above, if Lgihj(x) = 0 (on anopen set, U C Rn) for each i, then the inputs do not
appear in the equation. Define 7,- to be the smallest integer such that at least one of the

inputs appears in yj' . Then

yW =Ljhj +£ L^Lj-^m (1.79)
i=l

with at least one of the LgiLy~lhj(x) ^ 0for x6 U. Define the mxmmatrix A(x) as

-i]I91I?-% ••• L^LJ-'hi
A(x):= (1.80)

Lgi Ly hm '" LgmLy~ hm

The matrix A(x) is called the decoupling matrix. Using these definitions, we define the

(vector) relative degree for MIMO systems:

Definition 1.4 The system (1.77) is said to have (vector) relative degree (7i»72,• •-,7m)
at xq (an equilibrium point) if there exists a neighborhood U of xq such that, for x € U,

(1) Lg.Lkfhi(x) = 0 0 <k < 7; - 1, 1<hj < m, and

(2) A(x) is nonsingular.
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With the decoupling matrix A(x) defined as in (1.80), then the equations (1.79)

may be written as

fr>

„(7m)

Ljhx(x) «i

+ A{x)

Lyhm(X)

If the system (1.77) has a well defined (vector) relative degree, then A(x) € RmXm is
nonsingular on U and the state feedback controllaw

Lfh(x)

u = -A-^x)

Lyhm(x)

with v G Rm yields the linear closed loop system

rf*> Wl

„(-ym)

u •m

+ A~1(x)v

(1.81)

(1.82)

(1.83)

Note that the system of(1.83) is,in addition, decoupled. Thus, decoupling is a byproduct of

linearization. A useful consequence of this is that a largenumber of results concerning SISO

nonlinear systems can be easily extended to this class of MIMO nonlinear systems. Thus,

as we shall seeshortly, further control objectives, such as tracking, are easily accomplished.

The feedback law (1.82) is a static state feedback linearizing control law.

1.3.2 MIMO 'Normal' Form

If a MIMO system has (vector) relative degree (71,72, •• -,7m) such that 7 :=

-yx _| 1_ ym < n, we can write a normal form for the equations (1.77) as follows: Choose

as coordinates

ei=h(x), Q = LM*)> '" ^l=Lf-1h1(x),
$ = h2(x), e2 = Lfh2(x), ... €i =xy%(x)f

fl" = M*)> & = Lfhm(x), ... «L = ^-lM*)
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Similar to the SISO case, the #, j = l,...,m, i = l,...,7j, qualify as a partial set of

coordinates since the differentials

dL)hj(x) 0<i <7j - 1,1 < j < m (1.85)

are linearly independent on U. Indeed, using the nonsingularity of A(x), the proof of this
proceeds in amanner analogous to thatofProposition 1.3. Now complete thebasis choosing
n-7 more functions rjx(x), rj2(x),..., rjn^(x). Unlike the SISO case, it isnolonger possible

to guarantee that

LgMx) =° * € 17,1 <i <m, 1<i <n- 7 C1-86)

unless the distribution spanned by </i(x),...,gm(x) is involutive on U. Note that the trans

formation $ given byi w (£, rj) is a local diffeomorphism of U onto *(#). In (f, t?)
coordinates, the system equations (1.77) are given locally by

il = 3

8 = S

where

& = b2(S,r,) + Z?=1a%t,n)«j

1 — V

£% = bm(Z,rj)+Z7=ia?&n)u>
f) = g(e,»?)+PK,»7)«

3/1 = tf

2/ro = ftm

6,(^)=Z}iM*),

(1.87)
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a)(^rj)=LgjLy-lhi(x),

qi(^rj)=Lfrji(x),

P*j(^rj)=Lgjrji(x)

in the f,77 coordinates. Note that P € Rn"7Xm,<? € Rn_7 respectively. As in the SISO case
the feedback law of (1.82) renders the rj states unobservable.

1.3.3 Zero Dynamics and Minimum Phase MIMO Systems

In the instance that the decoupling matrix A(x) is nonsingular, the zero dynamics

areeasily found. As in theSISO case, we find thezero dynamics byconstraining theoutputs

to zero.

Definition 1.5 The zero dynamics of a MIMO nonlinear system (1.77) are the dynamics

of the system subject to the constraint that the outputs be identically zero.

Using the normal form (1.87), we see that

yi = 0, i=l,...,m <=> QsO, J = l,...,7i, t=l,...,m. (1.88)

In order to keep £}. = 0, i = 1,..., m, we must choose the input by

W(*) = -A-1(0,r7(<))6(0,r7(*)) (1.89)

where rj(t) is any solution of

rj = g(0, rj) - P(0,rj)A-\0,77)6(0, rj), rj(0) arbitrary. (1.90)

Thus, the output can be held identically zero provided that f}(0) = 0, j = 1,...,7,-,
i = 1,..., m. In the original x coordinates, the initial conditions must be chosen to belong

to the manifold

M* ={x 6U: hi(x) =Lfhi(x) =... =Lj^h^x) =0, 1<i<m) . (1.91)
and the input is given by the static state feedback

Ljhx{x)

u*{x) = -A"1 (*) (1.92)

_Lyhm(x) _
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This is the decoupling control law of (1.83) with v(t) set equal to zero. Note that this

feedback law renders the manifold M* invariant. Thus, analogous to the SISO case, the

zero dynamics of (1.77) are the dynamics of

x = f(x) + g(x)u*(x) (1.93)

restricted to the zero dynamics manifold M*. In the (|,t?) coordinates, the zero dynamics

are given by

* = ° (1.94)
t) = q(0,rj)- PiO^A-^rjWO,*)

and are the internal dynamics consistent with the constraint that yi(t) = 0, i = 1,..., m.

Recall that the MIMO normal form (1.87) is defined in a neighborhood $(J7) of

an equilibrium point $(xo). Assume, without loss ofgenerality, that $(xo) = (0,0) so that
hi(xo) = 0 and rj = 0 is an equilibrium point ofthe zero dynamics (1.94). Then the notion

of minumum phase parallels the SISO case.

Definition 1.6 The MIMO nonlinear system (1.77) is said to be asymptotically (exponen

tially) minimum phase at Xo if the equilibrium point rj = 0 of (1.94) ** locally asymptotically

(exponentially) stable.

1.3.4 Stabilization and Tracking for MIMO systems

The stabilization and tracking results for minimumphase SISO nonlinear systems

withwell-defined relativedegree are easily extended to minimum phaseMIMO systems with

well-defined (vector) relative degree. Specific details are left to the reader. See Chapter 4

for a specific example illustratingthis. The fact that the feedback law (1.82) decouples the

system allows extremely simple stabilizing and trackinglaws to be used.

1.3.5 Dynamic Extension of MIMO Systems

The conditions required for a MIMO nonlinear system to have a a well defined

(vector) relative degree can fail in several ways. As in the SISO case, a MEMO system

can fail to have a (vector) relative degree because of a control coefficient LgiLjhj(x) that
is neither identically zero nor bounded away from zero on U. In this case the decoupling

matrixA{x) is not well defined. A MIMO system, however, canalso fail to have a (vector)
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relative degree even when A(x) is well defined. Note that this cannot happen in the SISO
case since a 1 X 1 matrix with nonzero rows is trivially nonsingular. Suppose that the

decoupling matrix A(x) is well defined on U but does not have full rank. If A(x) has a
constant rank r < m, then we we may be able to extend the system by adding integrators

to certain input channels to obtain a system that does have a well-defined (vector) relative
degree. IfA(x) does not have a constant rank (on U) this will not bepossible. The following

algorithm makes this precise.

Dynamic Extension Algorithm

Step 0 Set m= m, h = n, x = x, x0 = x0, / = /, g = 0, h = h, and u = u.

Step 1 Calculate the decoupling matrix, A(x), valid on U, a neighborhood of x0 (i.e.,
condition (1) in the definition of(vector) relative degree is satisfied on U).

• Ifrank A(x) = monU, stop—the system (/,g,h) has a (vector) relative degree.

• If rank A(x) is not constant in a neighborhood of xo, stop—the system (1.77)
cannot be extended to a system with a (vector) relative degree.

• Otherwise, set r = rank A(x) and continue to Step 2.

Step 2 Calculate a smooth matrix /?(x) ofelementary column operations to compress the

columns of A(x) so that the last (m - r) columns of

A(x)/3(x) (1.95)

are identically zero on U. This is possible since the rank of A(x) is constant on

U (see [DM85] for a construction of such smooth elementary column operations).
Furthermore, let (3 contain column permutations so that the first ri < r columns of

(1.95) consist of all the columns with two or more nonzero entries (thus, columns
t*i + 1 through r have only one nonzero entry.) Partition ft as

/?(*) = [ft(x) &(*)] (1-96)

such that fa consists of the first ri columns of (3.
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Step 3 Extend the system byadding one integrator to each ofthe first ri (redefined) input

channels. Specifically, define z1 G Rri, w2 GR"*_ri by

w2

s\-lr.:= ftx)-1*

Then, with w\ € Rri, the extended system is given by

X

=

f + gfoi
+

m o
.

w2

h
_V V.

0 0 I W\

£ / § 0

y = h(x) = h(x)

(1.97)

(1.98)

where xT = (xT, z[)T is the extended state.

Step 4 Replace x,u, f, g, and h by x, S, /, £, and fe, respectively, and return to Step 1.

•

Descusse and Moog [DM85] have shown that this algorithm will be successful

(terminating in a finite number ofsteps) if thesystem isleft invertible (see also [Isi86]). In
fact, it can alsobeen shown that if the algorithm is successful in extending a system, then

it will terminate in at most n iterations [Isi87].

When the dynamic extension algorithm is succesful, the extended system has a

well defined (vector) relative degree. The extension portion of the new system will then

form the core of a dynamic compensator. Indeed, if only one iteration of the algorithm was

necessary, the resulting extension would be

Z\ - Wi ,

u = Pi(x)zi + 02(x)w2 .

More generally, the dynamic compensator will have the form

z = c(x,z) + d(x,z) ,

u = a(x, z) + (3(x, z)w .

(1.99)

(1.100)
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*2

•* *l

1 Figure 1.2: The simple planar vehicle.

1.3.6 MIMO Example

To help clarify the process of dynamic extension and to show the form of the

dynamic compensator, we present a simple example. Consider the planar vehicle shown in

Figure 1.2 where (xi, X2) is the vehicle position and X3 is the vehicle heading. Forsimplicity,
suppose that the inputs are the vehicle speed (ui) and turning rate (u2) (actual controls
will normally be accelerations) and that the control objective is to steer the vehicle along a

given path in xi and x2. The system equations are then

r -1 "

Xi 0 COSX3 0

x2 = 0 + sin a:3 Ui + 0

33 0

• s

0
y \

1

X

y\

y*

f

hx

X2

h2

91 92

U2

Differentiating each output until at least one input appears, we get (see (1.81))

J/i 0
= +

. ^2 . 0

cos X3 0

sin X3 0

A{x)

Ml

u2

(1.101)

(1.102)
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Clearly, A(x) has rank 1 and, fortunately, /3(x) can be chosen to be the identity. Also,

n = r = 1. Setting

w2

= 1

we extend the system giving (as in (1.98))

Xi Z\ COS X3

x2 z\ sin X3

X3 0

zx 0

2 f 9l 92

with the same outputs. Differentiating the outputs until the new controls (w) appear, we

find

+

Ml

u2

r -1 •

0 0

0
W\ +

0

0 1

1 0

w2

fa 0
= +

fa 0

C0SX3 —zisinx3

sinx3 Z1COSX3

W\

w2

m

Thus, for z\ bounded away from zero, we can choose

W\

w2

cos X3 smX3

sin X3 cos X3
z\ zx

to decouple and linearize the system yielding

Then, the feedback law

y\

fa

vi

v2

vi

v2

vi =

v2 =

fad + <xi(yu -yi) + a0(yu - yi)

fad + <*i(yu - z\ cosx3)+ a0(yid - xi)

3/2d + aiifad - h) + ot0(y2d - 2/2)

fad + «i(3/2d - *\ sinx3) + a0(y2d - x2)

(1.103)

(1.104)

(1.105)

(1.106)

(1.107)

(1.108)
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will result in stable output tracking. Note that (1.108) is a function of only the extended

state (xi,x2,x3,zi) and the desired trajectory. The dynamic compensator is thus

Z\ — t»l

Ml
_-

Z\

U2 w2

(1.109)

where wt and w2 are given by (1.106), (1.108) so that (1.109) is indeed a dynamic state

feedback law.

1.4 Bibliographical Notes

Many of the tools and techniques now common to nonlinear control can be found

(implicitly) in early work on differential equations by such researchers as PoincarS [Poi28]
and Chow [Cho39]. With the introduction of the methods into control theory by Hermann

[Her63] and others [GS68,Lob70,HH70,Sus73], the stage was set for the development of
basic geometric nonlinear systems theory. Researchers investigated important notions such

as decoupling [Por70], accessibility [SJ72], controllability and observability [HK77], as well
as general systems theory in nontraditional settings [Bro72,Bro73,Lob73].

Also, during this time, research into the problem of system equivalence [Kre73,

MC75,Bro78] led to methods for input-to-state linearization [JR80,Su82,HSM83]. Addition
ally, manyresearchers improved ourunderstanding of the questions of nonlinear decoupling

and noninteracting control [SR72,Fre75] and system inversion [Hir79a,Hir79b,Sin81].
Using the tools of differential geometry and especially the notionof controlled in-

variance [Hir81,IKGM81bJKGM81a], many of the important problems in nonlinear control

have been clarified and solved forming the base of a nonlinear control theory [Isi85] that is

clearly thenonlinear counterpart to the geometric methods oflinear control theory [Won74].

Indeed, new techniques and applications are being developed at a exciting rate as

shown by numerous meetings devoted exclusively to nonlinear control [FH86,Isi89a].



Chapter 2

The Structure of Zero Dynamics

In this chapter we present results that show that the structure of a system—

the zero dynamics—is not robust to perturbations. In particular, we show that regular

perturbations of the state space descriptions of linear and nonlinear single-input single-

output (SISO) systems of relative degree > 2 may result in the appearance of singularly

perturbed (fast) zero dynamics. Inother words, perturbations in the state space descriptions

may cause the migration of some zeros from oo to finite locations in the complex plane.

Depending on the signof the regular perturbations, someof the perturbed zeros canmigrate

from oo to the right half of the complex plane. This leads to a reconsideration of minimum

phase systems of high relative degree (pole-zero excess > 2) as being only dominantly

miniTrmm phase since small perturbations may result in right half plane zeros of large

magnitude.

Ourinvestigations in this direction were motivated in partby a study in [HSM88,

HSM89] (see Chapter 4) of the linearization by nonlinear state feedback of a class of slightly

non-minimum phase nonlinear systems encountered in the flight controlof VTOL aircraft.

Indeed, in this work, the true system had a small regular perturbation in its equations

caused by the way moments were generated on the aircraft. This, in turn, manifested

itself as fast time scale zero dynamics, with a saddle type equilibrium point, making the

system slighty non-minimum phase. Though this example was a multi-input multi-output

(MIMO) system, we restrict ourselves to the SISO case here and postpone the considerably

more technical MIMO case.

This chapter deals with both linear and nonlinear systems—definitions of zero dy

namics for nonlinear systems were introduced in [BI84] and made more precise in [IM89,

34
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Isi87]. The qualitative theory is similar for both classes of systems, though the techniques
are rather different. The techniques also draw heavily from the literature on singular per

turbation [KK086,SOK84].

An outline of the chapteris as follows: In Section2.1,we develop explicit formulas

for the locations of the large magnitude zeros of linear systems under perturbation. In

Section 2.2, we repeat this development for the nonlinear case. Section 2.3 collects some

concluding remarks.

2.1 Linear Systems

In this section we will consider the effects of regular perturbations of bo, cq, Aq on

the zeros of a SISO linear system of the form

x = AqX + 6oM

y = cqx.

(2.1)

We will assume that the system (2.1) is minimal and has relative degree (excess of poles

over finite zeros) 70, i.e.,

co&o = coAo&o = •••= coAq 60 = 0

coA$>-% * 0.
(2.2)

To exhibit its (n - 70) finite zeros, it is useful to use a normal form which will also prove

convenient in the nonlinear case. To this end, we define

Co

CqAq

to-lcoA%

x =: (2.3)

H

with f G R70, rj GP"-™ such that (£T, rjT)T is a change of coordinates on the original state

space, i.e. G RnXn is nonsingular. Further, from the definition of relative degree in
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(2.2), we may choose H so that Hb0 = 0. The linear system (2.1) can be rewritten in (f,rj)
coordinates as

0

V

0 1

"*• '•• 0

0 1

a? a2

P Q

+ coAtf-X

Here, ax GR™, a2 GRn"™, P GR"-™*™, Q GR"-™*"-*, and

coAp^x = ali + alrj

HAqx = P£+<?7?.

The form (2.4) is referred to as a normal form and it is well known that the (n - 70)
eigenvalues of Q are the zeros of the system (2.1). It is useful to note that the state

feedback law

M = — ^17- («ft +aHcoA? bo

u. (2.4)

(2.5)

(2.6)

renders the rj variables unobservable and farthermore, if f(0) = 0, it zeros the output for all

t, that is,

y(t) = y(t) = ... = y^-^\t) = 0. (2.7)

The subspace

V0 = {x:c0x =coAox =-.. =coi42°"1x =o}
= {(0,7/):77GRn-^}

(rendered invariant by (2.6)) is referred to as the zero dynamics subspace of(2.1).

2.1.1 Perturbations in 6

To begin with, we study the effects of perturbations in the input channel alone,

i.e., systems of the form

x = AqX + bou + €&iM
(2.9)

y = co»-
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Note that (2.9) remains minimal for e small. Let the relative degree of the perturbation

system (c0,A0,bi) be 71. The case of greatest interest* is 71 < 70, which, by the definition

of 7!, implies that

co&i = c0A0bi = •••= co^o1 2h = 0

coA^-%^0
(2.10)

and that the relative degree of the perturbed system (2.9) will be 71. It is easy to obtain

the form of (2.9) in the (£,77) coordinates defined in (2.3). It will, however, be convenient

for us to decompose the f of (2.3) as fT = (fi\£0 with

6 :=

£2 :=

"See the remarks after Theorem 2.1.

co

CoAq

coA?

co^r1

x €Ri\

(2.11)

x GR™-71.
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Note that if 70 =71, ft fails to exist. Also note that we have already used the assumption
that 71 <70 in the definition (2.11). The system (2.9) is now written as

u.

r

0 1
0

ft

'*• 1

0 1

0 0 ft

0

ecoA?-1*!

0 1 ccoi4jl6i

ft = 0

0 1

0 ft +

«Ctti43"-26i

V

2af a\

1

coi4y-l(6o +«6i)

*P 2P Q €#&1

m m . .

(2.12)

where ^i 6 Rt\ 2ax € R*"^, XP € RC—*)**, 2P € R<»-»)*<'»-'»>, and

a* =(V Vf, P = [XP 2P]. (2.13)

Note that, in (2.12), the perturbations appear as input terms in the equations for fi7l, £2u

•••» £2^0-71 »^^ *?• ^° ^^ t^ie zero dynamics of (2.12), we use the state feedback

u = ;—£21 = z—i—coAZlx€c0Ay-V ecoA^'% °

to zero the output making the subspace

Vi = {x :c0x =cqAqx =•••=co^3l *x =0|
= {(0, ft, 1?): ft € R""*, t/ 6 Rn"™}

(2.14)

(2.15)
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invariant and the state variables (ft,»?) 6 R"-"* unobservable. The dynamics of the (ft,?/)

variables on Vi are given by

ft

where

coA?'Lh

co^°"26i
2—r

co A,

1

0 1

coA20-\ l^->+2fTu 2fll2 ...

*?=
coi40'1 &i

0
ft

fl1.70-7l a\

Q

(2.16)

+ 2P (2.17)

Thus, we see that the system (2.9) has (n- 71) > (n - 70) zeros. To establish the structure
of these zeros, we note that the e-dependent term in (2.16) corresponding to ft,70_7l is of

order 1/e and thus is certainly not a regular perturbation. This singular perturbation term
is due to the high-gain form of the feedback control (2.14). The rich literature onhigh-gain
systems (see, in particular, [Mar88,San83]) is therefore applicable to the study ofperturbed

zero dynamics.

Theorem 2.1 The linear system (2.9) has (n - 71) zeros which, according to their asymp

totic behavior as e -+ 0, belong to two groups:

• The (70 -7i) large zeros tend to 00 asymptotically as

l Kyiy-M^ (2.18)

• The remaining (n - 70) zeros tend to the zeros ofthe unperturbed system (Z.l).
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Proof: To facilitate an asymptotic calculation ofthe eigenvalues ofthe matrix in (2.16), we
transform the system into a standard singular perturbation form. To this end, we rescale

£2 as follows

—Yl-l20Z2L

ftl = ftl, ft2 = €70"71 ft2, •••, ft.70-71 = € "°"'71 ft,70-7l (2.19)

and rewrite (2.16) as

where

W:=

e-ro-ii f 2 = W£2 + €io-yiT£2 + O(e-«Ai J
(2.20)

•n = 2Pft + Qv

coAp-%
coA?-Lh

andr:=

( c0A2lbl \
\ coA^ln)

'^1,70-71

(2.21)

To see that (2.20) is in the standard two-time-scale form of [KKO86], note that its right

hand side is regularly perturbed by e^o—n r, while the matrix of the unperturbed part is

block lower triangular. By inspection, the upper diagonal block is nonsingular as required

for a standard form. It follows that the eigenvalues of (2.16) are asymptotically

€-7o=7T.A(WOuA(Q). (2.22)

Clearly, the eigenvalues of Q axe the (n —70) zeros of the unperturbed system. It is easy

to see [Wil65, chapter 2] that the remaining (70 - 7i) eigenvalues are the (70 - 7i)*n roots

of (-£2421*2.) multiplied by c~t^T, that is

I 1coAtf-Hp} TT0-T1

(2.23)

This is the asymptotic expression of the (70 —7i) large zeros of the perturbed system which

tend to 00 as € —» 0. The remaining (n —70) tend as a set to the eigenvalues of Q (zeros of

the unperturbed system). E
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Remarks

• Theorem 2.1 states that if the relative degree 71 of the perturbation ebi is less than

that of the original 60, then (70 - 71) of the original system's infinite zeros become

finite according to the asymptotic formula (2.23).

• We leave it to the reader to verify (by direct calculation) that, if the relative degree

of the perturbation 61 is 71 > 70, then both the perturbed and unperturbed systems

have the same number of zeros and the zero locations are a smooth function of e.

• Theorem 2.1 hasimportant implications for the concepts of non-minimum phase and

minimumphase. In particular, if 70- 7i > 2, it follows that arbitrarily small pertur

bations of the form (2.9) result in non-minimum phase systems since, for 70 - 7i > 2,

at least one of the roots of (2.18) is in the right half plane. Of course, for e small

enough, the non-minimum phase zeros are far offin the right halfplane prompting us

to think of the perturbed system as being slightly non-minimum phase. Nevertheless,

numerous system theory results based on a strict minimum phase assumption should

be reexamined in this light.

• Even when 70-71 = 1, the relative signs of the quantities in (2.18) may result in

right half plane zeros. In particular, some zeros will be in the right half plane either

when c is positive or when € is negative.

• Note that, if a perturbation resulting in direct feed-through (y = c0x + €d\u) were

allowed, then 71 would be 0 and the asymptotes would coincide with the familiar
root locus asymptotes for the closed loop poles that go to 00 under increasing output

feedback.

• This result is reminiscent of results in high gain feedback giving the asymptotic loca

tionof the closed loop poles as the gain 1/c goes to 00. Indeed the proof techniques of

[YKU77], [San83], for example, can be used to give an alternative and elegant proof

of Theorem 2.1.

•
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2.1.2 Perturbations in c

Consider now the effects of perturbations of (2.1) in the output channel, i.e.,

* = Aox +bou (224)
y = CqX + €C\X.

As before, if 71 represents the relative degree of the perturbation system (ci,A)>&o)> **
follows from considerations dual to those given above that if 71 < 70 the system (2.24) has

(70 -7i) extra zeros given asymptotically by the (70 - 7i) roots of

/ lcoA^-lbQY^ (225)
V ***?-%)

2.1.3 Perturbations in A

Thequalitative effects ofperturbations in Aq aresimilar in that some ofthe (n—70)

zeros at 00 may become finite; the details of the proof axe more subtle.

Consider

x = (Ao + eA^x + bou .

y - cqx.

Further, let the perturbed system (2.26) have relative degree 71 (71 < 70, as before, is the

case of interest), i.e.,

co&o = co(Ao + eAi)b0 = .. •= c0(i4o + €Ai)7l_260 = 0 V*
(2.27)

co (Ao + cAi)71"160 ^ 0 for c small.

From(2.27), it is easy to seethat the relativedegree 71 depends on A\ in a complicated fash

ion. For the purpose of this paper, we willrestrict our attention to the class of perturbations

A\ satisfying assumptions (2.29) and (2.30) below. Define the subpaces

Aj := span |&o, -Ao&o>...»Aoboj. (2.28)

Assume that

AxA, CA.-C Ker co for i = 1,...,71 - 3 (2.29)

and

AiA7l_2 £ A^.2 and AiA7l_2 £ Ker co. (2,30)
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If 71 < 3, assumption (2.29) is vacuous andif 71 < 2, then (2.30) is vacuous. We conjecture

that, if the assumptions (2.29), (2.30) are violated, then the fast zero dynamics occur at a

multiplicity of time scales. The assumptions (2.29), (2.30) guarantee that

coiAo + tA^-Ho = ecoAxA^^bo + Oie2)

=: €a0(e).
(2.31)

Note that a0(0) = cQAiA$~2bo.

The normal form for the system (2.26) is not easily obtained in the (ft 77) coordi

nates of (2.3); consequently, we define

e

co

co(Aq + €Ai)

coiAo + eAx)-*-1

X. (2.32)

The matrix in (2.32) is a perturbation ofthatin (2.3) and is therefore nonsingular for small

€. We partition fe into

« ==

€•2 —

CO

Cq(Aq + €Ai)

coiAo + eA^-1

c0(Ao + €Aiyi

coUo+ cA!)™-1

x 6R71,

(2.33)

x eR™-71
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In these coordinates we have

«

a

n

0 1

*•. 1

0

0

1

0

0

WW

0 1

0 1

WW

0

aUe)

*P(e) 2P(€) «W

a

s

»?

\ 6 <*o(0) )

+

0

ca0(e)

«*i(e)

€a7o-7i-i(€)

«*70-7l W + CqAS0"1^

It.

(2.34)

In (2.34) the vectors, xai(€), ^(e), a2(c), and matrices, xP(e), 2P(<?)> Q(c), are all pertur
bations of the corresponding entries in (2.12) and the a,- (i > 1) are smooth functions of

€. Note that, with the exception of c0A30_16o, all the input coefficients are multiplied by
e. Wenow leave it to the interested reader to verify that the unbounded (as functions of e)

zeros have the asymptotic form of the (70 —71) roots of

(2.35)

Equation (2.35) is very similar to (2.18) except that ccoA?1"1^ is replaced by eao(0) (=
coAiA0n~2bo)y the control coefficient for ff7l.

2.1.4 Simultaneous Perturbations in A, 6, and c

We do not discuss asymptotic formulas in this case. The details are cumbersome

since the relative degree of the perturbed system depends on the perturbations Ai, 61, c\

in a complicated fashion. In particular, in the absence ofassumptions like (2.29) and (2.30)
a multiplicity of time scales may occur. Nonetheless, if we can assert that 71 is the first

integer at which

(co + €Cl)(A0 + €A1y*-1(b0 + €60 = €«oW (2.36)
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where a0(e) is of0(1) and not o(l), then the perturbed high frequency zeros will be given

by (2.35).

2.2 Nonlinear Systems

We briefly review, following the lucid presentation of [Isi87], the definition of zero

dynamics for SISO nonlinear systems of the form

x = fo(x) + go(x)u

y = ho(x)
(2.37)

where /0 and go are smooth vector fields on Rn and h :Rn -»• R is a smooth function. Let
x0 be an equilibrium point of the undriven system (i.e., fo(x0) = 0) and let U C Rn be an
open neighborhood of x0. We will assume the the system has relative degree 70 at x0, i.e.,

(2.38)

for all x e U. Note that we implicitly assume that the system has a relative degree! We

will further assume (w.l.o.g.) that ho(xo) = 0.

To find a convenient normal form for the nonlinear system (2.37), we begin by

defining

ho(x)

{ := eR™

(2.39)
!};-%(*)

77 := t)(x) GRn-™

such that (^,f?) is a diffeomorphism of x in U. From the definition of relative degree, we

may choose rj(x) so that

L^rj^x) = 0 t = l,...,n-70- (2.40)
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The normal form of the nonlinear system (2.37) is then written (using (£,77) coordinates)

as

0 1

V

••. 1

0

0

0

0

0 0

£

0 0

V

+ KZ,v) + a&l)

fltt.1?) 0

_

u. (2.41)

Here, a(f,77) =L^L^hoix) and 6(^,77) =L}lho(x)'m the (£,77) coordinates and ^(£,77) =
Lf07ji(x) in the (f,?7) coordinates.

The zero dynamics of a nonlinear system are the dynamics of (2.41) consistent

with the constraint that the output is held identically zero, i.e., y(t) = 0. From the normal

form (2.41), it is clear that the nonlinear state feedback

1 .^ . 1
u = — • :*tt,i) = ~

results in y(t)= 0. Furthermore, the control law (2.42) renders the manifold

Mo = {x€U:h0(x) =LfM*)=-- =LTlho(*) =0}
= {(0,7?):r7€77(EO}

•xjfco(«) (2.42)

(2.43)

invariant and makes the 77 variables unobservable. Since y(t) = 0 is locally equivalent to

f = 0, we find that the zero dynamics of (2.41) (hence (2.37)) evolve on the zero dynamics

manifold Mo and are described by

t)=<KO,77) (2.44)

in a neighborhood of 77 = 0. We refer to the dimension of the manifold Mo, namely n —70,

as the dimension of the zero dynamics system. Let 770 be the 77 component of xo (i.e.,

x0 >-+ (0,77b) under the change of coordinates). Then 770 is an equilibrium point of (2.44).
Further, we may associate with 770 the (Jacobian) linearization of 9(0,77) at 77 = 770, i.e.,

dg(0,T7o)
dn

(2.45)
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The stability of (2.44) is determined by the eigenvalues of this matrix, provided that it is

hyperbolic. Otherwise, a study of the full zero dynamics system of (2.44) is necessary.

We will now study the effects of perturbations on the normalform (2.41).

2.2.1 Perturbations in g

Consider, as in the previous section, perturbations in the input channel alone, i.e.,

x = /o(x) + g0(x)u + €gt(x)u

y = ho(x).
(2.46)

We will assume that the perturbation system (/io,/o,0i) bas a strict relative degree of 71,

i.e.,

Lgiho(*) =A^/oV*) ='•' =Lg,Lj-2ho(x) =0 Vx € U
LgiLl-1ho(x)^0.

(2.47)

Asbefore, the case ofgreatest interestiswhen 71 < 70. Following the previous development,

we partition £ as

£1 =

6 =

ho(x)

Lf0ho(x)

L-lLl~lh0(x)

Lfoh0(x)

Lj~xho{x)

€R^1,

(2.48)

£ R70-71
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The perturbed system (2.46) expressed in (£i,6>»7) coordinates looks

0 1

like

0

. 1

0

«(f,i?)

+

0

0

0

0

-1:eI«iJ-lfto

eLgiZ%ko

eLgiLJ-2ho

6

i

U.

-ll

<t,v) + *L*LTk>
€Lg,T}l

Note that, in (2.49), we have deliberately chosen not to write the L^L^ho terms in the

(f, 77) coordinates.

Using the nonlinear state feedback

u = :—£21 = ; Lliho(x)
eL^XJ-% d^^V*)

(2.49)

(2.50)
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to zero the output, we make the manifold

Mi = {xeU:ho(x) =Lfoho(*)=''' =Lfii~lho(x) =o}
= «0,&,i?) :&€ 6(17).*€U(10}

(2.51)

invariant and the (£2,1) € R1*-^ variables unobservable. Thus, the zero dynamics of (2.46)

are precisely the dynamics of (6>77) on M\ given by

6

1

0 1

_£fi£S^ 0

Lgim
=r;LfflLj;-l/.0

0 1

... 0

0

0

0

0

V

q&V)

(2.52)

Before we state a nonlinear counterpart to Theorem 2.1, we apply the scaling specified by

equation (2.19) to (2.52), namely

1 - KB-11-1

6l = 6l> 62 = CIO-"- 62, *' ', 6,70-71 = € ^"^ 6,70-71' (2.53)

Note that the scaling of | is singular at c = 0 as is frequently the case in such asymptotic

calculations. The transformation of (2.53) renders terms in the first column of the matrix
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in (2.52) potentially unbounded as € tends to zero. Now rewrite (2.52) as

€-">-"• 6
0

o *-. 1

* /o 0 ••• 0 + e-ro-n fc(6,»?,<0

- -V-i,L^L^ho

*n*%*o

^2 *•

0 0 v

(2.54)

In (2.54), we will assume that fc(6, »?><0 € R""71 is asmooth function of|, 77, and e. Thus,
for example, we may require that for some positive K < 00 that

< JTI&il,

< #|6i| + ^I62|,

etc.

(2.55)

Further, we will also assume that

/?(6,6,»?):=-lim
^3T *>

~oXffix?r% (2.56)

is a well defined smooth function and is nonzero when 6 = 0 , 6 = 0> an<l "0 = Wo- With

these assumptions, which areunique to the nonlinear case, it may be verifiedthat the second

term in (2.54) is multiplied by €*>o-ii in analogy with the second term on the right hand

side of (2.20). Equation (2.54) shows the two time scale nature of the zero dynamics. We

mention in passing that if conditions such as (2.55), (2.56) do not hold then there may be

more than two time scales in the zero dynamics. These assumptions have appeared in other

forms as well in the literature. For instance, the conditions (2.55) guarantee the absence

of peaking response caused by terms in fc(6» *?, c). The condition (2.56) guarantees that the

6 variables are in fact the fast variables and the slow manifold of the zero dynamics of

(2.54) is the subspace corresponding to the 77 variables (up to zeroth order in c). The fast
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dynamics of the 6 variables are determined by studying the scaled variables 6 m tbe fast
time, i.e., set r = i/e^o-Ti and then set e = 0 to get

# =

0(0,6, w)

77(7-) = 770.

'-. l

o

(2.57)

In spite of its apparent linear form, it is important to note that the right hand side of
equation (2.57) is a nonlinear function of 6- Clearly, 6 = 0 is an equilibrium point of
(2.57) and the eigenvalues of (the linearization of) (2.57) about 6 = 0 determine the
stability properties of the fast zero dynamics system if they are not all on the ju axis.

These eigenvalues are precisely the (70 —71) different roots of the lower left term of (2.57)

with 6 = 0, i.e.,

|-lim
-1; 10-71

at (6,6,*?) = (0,0,770). (2.58)

In the original time scale, these eigenvalues axe of order i/cVto-ti. From this formula, it
also follows that if 70 - 7i > 2 that at least oneof the eigenvalues is in the open righthalf

plane resulting in unstable fast zero dynamics.

The remarJtabie new feature of the fast zero dynamics of the nonlinear system is

that they vary with 770 on the base slow manifold Mo. Collecting these observations, we

have the following counterpart to Theorem 2.1.

Theorem 2.2 Thezerodynamics of theperturbed nonlinear system (2.46) areofdimension

(n - 71). Suppose that fc(6,*?,e) € R""^ defined in (2.54) wa smooth function of |, 77,
and € and 0(6,6, l) defined in (2.56) is a well defined smooth function and is nonzero at
(6,6,n) = (0,0,770). According to their asymptotic behavior as € -> 0, the zero dynamics
decouple into two subsystems:
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The fast zero dynamics subsystem of dimension (70 —71) is given by

eto-Ti
^6
dt

—lim
j^X"1*0

^oL^LjJ-%

•6

6 = 0

V=Vo

(2.59)

• The slow zero dynamics of dimension (71 —70) w identical to the zero dynamics of the

unperturbed system (2.37) given by (2.52).

Proof: The preceding observations yield the first part of the theorem. The verification

that as e -* 0 the dynamics of 77 in (2.54) tend to those of 77 = g(0,77) follows from setting

6 = 0 and 6 = 0 in (2.5.4). (Actually, this happens in quite a subtle fashion since some

terms appear as multiples of 61 and others appear as multiples of ^Aw-ifit) •

Remarks

• As in the remarks after Theorem 2.1, we leave it to the reader to verify that, if the

relative degree of the perturbation g\ (i.e., 71) is > 70, then the zero dynamics of

the perturbed and unperturbed systems have the same dimension and qualitative

properties (i.e., the perturbation in the zero dynamics is regular).

• The remarkable additional feature found in nonlinear systems that is not present in

linear systems is that the locations of the eigenvalues of the Jacobian of the fast

zero dynamics subsystem in the complex plane, i.e., l/eVTo-Ti times the quantities in

(2.58), vary with 770. Of course, it is easy to show that if the equilibrium point xq of

the original system corresponds to (0,770), then the eigenvaluesof the linearization of

the fast zero dynamics will be given by

TO—Tl

(2.60)

(*1,|2.»?)=(0,0,»70)

•
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2.2.2 Perturbations in h

As in Section2.1.2,the qualitative results of Section2.2.1hold when the nonlinear

system (2.37) is perturbed in ho. To this end, we consider the perturbed system

x = fo{x) + go(x)u

y = ho(x)+ehi(x)
(2.61)

with relative degree 71 < 70. It is no longer possible to invoke duality but one may use a

new set of coordinates for the normal form given by

e :=

77 :=

ho(x)+€hi(x)

Lf0(ho(x) + chi(z))

Ll-1(ho(x) + eh1(x))

77(3)

eR™

(2.62)

g Rn-70

Note that the diffeomorphism of (2.62) is a perturbation of that in (2.39). By partitioning

fe into ff and £| and scaling Q as above, it can be shown that the Q variables in the time

scale t = t/€1/*yo-7i satisfy

dr

oo(0,(l,t?)
'00(0,3,1?)

3 (2.63)

where a0(ff,Q, v) and a0(^i^77) are LgQL\ xhx and LgfsL\"xho in (g,Q,77) coordinates.
As before, we will also need to assume that the limit as € -*• 0 of the quantity in the lower

left hand corner of (2.63) exists and is nonzero at |2 = 0, 77 = 770. Under these conditions,
the results of Theorem 2.2 will hold with (2.63) replacing (2.59).
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2.2.3 Perturbations in /

The situation here is delicate and analogous to that in Section 2.1.3. Consider the

perturbed system

* = fo(x) + €f1{x) + g0(x)u

y = ho(x)

and assume that it has relative degree 71 < 70. The class of perturbations fi(x) satisfy a

nonlinear analog of assumptions (2.29) and (2.30). Define the distributions

A,- := span |flf0, adj0go,..., ad*fogoj.

Assume that (the notation X means the orthogonal distribution)

adh A, CA, C {dho}1 for t = 1,...,71 - 3

and

orf/lA7l_2 £ ^71-2 and arf/xA7l_2 £ {dho} •

If 7i < 3, assumption (2.66) is vacuous and if 71 < 2, (2.67) is vacuous. As in the linear

case, we conjecture that if these assumptions are violated then the fast zero dynamics may

occur at a multiplicity of time scales. These assumptions guarantee that

L9oLl+lhho = tf»XA2$-aAo +0(€»)
=: ca0(e).

-2iNote that a0(0) = LgoLflL']fc~*ho.
For coordinates, one uses

e5 :=

ho(x)

Lfo+€hho(x)

Ll7cfM*)

€R70

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

77 := r}(x) €Rn"™

and the developmentof Sections 2.2.1 and 2.2.2 can be repeated to yield the fast dynamics
mm *V O

of equation (2.63) with the difference that ao(^f,^2, *l)1S ^go^h^fl ^o*
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2.2.4 Perturbations in /, g, and h

The same remarks as were made in Section 2.1.4 can be made here as well. As

before, if

*«»+<«C (»o + efci) = «*(«) (2-70)

for some ao(e), a smooth function ofs, which is 0(1) but not o(l), then there is only one
time scale for the fast zeros and the development of Sections 2.2.1,2.2.2 could be repeated.

2.3 Conclusion

In this chapter, wehaveshown the effects of perturbation on the zero dynamics of

both linear and nonlinear SISO systems. We have shown how regular perturbations in the

state spacedescriptions of thesesystems canresult in the appearanceofsingularly perturbed

or fast zero dynamics. In the linear case, wehave given explicit formulas for the locations in

the complexplane that the zeros at oomigrate to under perturbation. In the nonlinear case,

we have given the formula for the fast zero dynamics subsystem under perturbation. For

the most part, we have placed assumptions on the structure of the allowable perturbations

so as to guarantee the appearance of fast time scale zero dynamics at one time scale alone.

When these assumptions are not met, we conjecture that our qualitative results will be

unaltered but that fast zero dynamics at multiple time scales will appear. Our theory bears

a strong resemblance to the literature on high gain feedback and is in some sense to be

thought of as a companion to that literature, since it reveals the zero structure at oo by the

artifact of system perturbation.

We conclude by noting that the analysis presented in this chapter can be extended

albeit in much more subtle form to the MIMO case, and involving a multiplicity of time

scales.



Chapter 3

Approximate Input-Output

Linearization for Nonlinear

Systems without Relative Degree

3.1 Introduction

The past few years have seen the maturation of the use of differential geometric

techniques in understanding input-output and full state linearization of nonlinear systems,

normal forms and zero dynamics. An elegant discussion of these results is in the work of

Isidori [Isi87]. The conditions for the existence of full state linearizable nonlinear systems

or for that matter systems which are input-output linearizable are non-generic and it is of

obvious interest to extend the results to situations where these conditions fail but do so

only slightly. Such a program was begun by Krener in [Kre84], who gave conditions for

approximate full state linearization of nonlinear multi-input systems. In this chapter we

take this program one step forward by discussing approximate input-output linearization of

single input singleoutput systems which fail to have relative degree in the sense of Byrnes

and Isidori [Isi87]. Though in the same spirit as [Kre84], it is different in detail in that the

control objective is tracking: i.e., a prescribed output function is required to follow a given

specific function of time. Such applications are prototypical in the flight control of aircraft

where trajectory following rather than set point regulation are paramount to performance.

Approximate linearization of nonlinear systems has, of course, a lengthy history,

56



57

starting with Jacobian linearizations and continuing with extended linearization [WR89]
and pseudo-linearization [RC84]. Our approximate linearization is different in spirit in that

it is specifically geared for tracking problems rather than the regulation problems that the

extendedor pseudo linearization techniques appear to be useful for. Also,ourapproximation

is not an approximation by alinear system or family of linear systems but rather by a single

input-output linearizable nonlinear system.

An outline of the chapter is as follows: In Section 3.2, we start with an example

drawn from undergraduate control laboratories, the ball and beam experiment, and use it

to study the failure of exact input-output linearization and the latitude available in our

proposed technique to do approximate input-output linearization. We also compare the

linearizations with the Jacobian linearized system. In Section 3.3, we present the general

method motivated by Section 3.2 to define robust relative degree and approximate input-

output linearization of SISO systems. Section 3.4 has some concluding remarks.

3.2 The Ball and Beam Example

Consider a version of the familiar ball and beam experiment found in many un

dergraduate control laboratories (see Figure 3.1). In this setup, the beamis symmetric and

is made to rotate in a vertical plane by applying a torque at the point of rotation (the

center). Rather than have the ball roll on top of the beam as usual, we restrict the ball

to frictionless sliding along the beam (as a bead along a wire). Note that this allows for

complete rotations and arbitrary angular accelerations of the beam without the ball losing

contact with the beam. To remind us of this simplification, we shall refer to the system as

the 'ball and beam' system. We shall be interested in controlling the position of the ball

along the beam. However, in contrast to the usual set-point problem, we would like the ball

to track an arbitrary trajectory.

In this section, we first derive the equations of motion for the 'ball and beam'

system. Then, we try to apply the techniques of input-output linearization and full state

linearization to develop a control law for the system and demonstrate the shortcomings

of these methods as they fail on this simple nonlinear system. Finally, we demonstrate

a method of control law synthesis based on approximate input-output linearization and

compare the performance of two control laws derived using differing approximations with

that derived from the standard Jacobian approximation.
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Figure 3.1: The ball and beam system.

3.2.1 Dynamics

Consider the 'ball and beam* system depicted in Figure 3.1. Let the moment of

inertia of the beam be J, the mass of the ball be M, and the acceleration of gravity be G.

Choose, as generalized coordinates for this system, the angle, 0, of the beam and

the position, r, of the ball. The potential energy, V, of the system is given by

V = MGr sin$. (3.1)

The kinetic energy of the system is given by

K=i JO2 +\M{f2 +r2$2). (3.2)
beam ball

Then, with the Lagrangian defined as L = K - V, the equations of motion are given by

0 = &{%)-% or 0 = r+Gsine-re2 ^3)
T = £(H)_!£ r = (Mr2+ J)0 +2Mrr8 +MGr cos0

where r is the torque applied to the beam and there is no force applied to the ball.

Once again, note that we have simplified the system by limiting the 'balT to

frictionless sliding on the 'beam'. We could easily deal with the case of the ball rolling

without slipping on the beam. This would, of course, place a nontrivial restriction on the

angular acceleration of the beam. Since the system would still be holonomic, the form of

the equations would be the same as (3.3) with slightly modified coefficients. The true ball

and beam system where the ball rolls and may slip and even lose contact with the beam is

difficult and will not be considered here.

Using the invertible transformation

t = 2Mrr6 + MGr cos 9 + (Mr2 + J)u (3.4)
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to define a new input, «, the system can be written in state space form as

x\

x2

xa

V

x2

x\x\- G sin33

xa

0

/(*)

0

0

0

1

g(x)

u

(3.5)

= Xx

h{x)

where x = («i,X2,a?3,«4)T := (r>r,0>0)T ig tne state and y = h(x) := r is the output of
the system (i.e., the variable that we want to control). Note that (3.4) is a nonlinear input

transformation.

3.2.2 Exact Input-Output Linearization

We are interested in making the system output, y(t), track a specified trajectory,

yd(t), i.e., y(t) -> yd(t) ast-*oo.

To this end, we might try to exactly linearize the input-output response of the

system. Following the usual procedure, wedifferentiate the output until the input appears:

y = *i,

y = *2,

2 n • (3-6)y = x\x\ -Gsinx3,

yi3) = x2x\ - Gxa cos Xz + 2X2^4 «•

At this point, if the coefficient of ti, a(x), were nonzero in the region of interest, we could

use a control law of the form

u=^)[-4(l)+"1
to yield a linear input-output system described by

y<3> = t>.

(3.7)

(3.8)

Unfortunately, for the 'ball and beam', the control coefficient a(x) is zero whenever the

angular velocity xa = 9 or ball position x\ = r are zero. Therefore, the relative degree of
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the 'ball and beam' system is not well definedl This is due to the fact that

LglJfh(x) = 2^1X4 (3.9)

fails to be nonzero at x = 0 (an equilibrium point of the undriven system) but also fails to

be identicallyzero on a neighborhood of x = 0. This is a characteristicunique to nonlinear

systems. Thus, when the system has nonzero angular velocity and nonzero ball position,

the input acts one integrator sooner than when the angular velocity or ball position are

zero.

Thus we conclude the exact input-output linearization does not provide a method

ology for designing a trajectory tracking controller.

3.2.3 Full State Linearization

Next we try our hand at fully linearizing the state of this system, that is to say,

find a set of coordinates and a feedback law such that the input-to-state behavior of the

transformed system is linear. The necessary and sufficient conditions for this were given by

Jakubczyk and Respondek [JR80] and, independently, by Hunt, Su, and Meyer [HSM83].

First we check the dimension of the controllability distribution,

span ig adjg ••• adj^gf (3.10)

where ad*±g denotes the iterated Lie bracket [/, [/,••• [/,</] •• •]]• Since, the matrix

Q(x) =

0 0 2x1X4 4x2X4 + G cos X3

0 —2x1X4 —2x2X4 —GcosX3 —4x1X4* + ZGxa cosX3

0-10 0

10 0 0

(3.11)

has full rank at x = 0 (detQ(0) = G2), it follows that the 'ball and beam' system is locally

controllable.

The second requirement is not generic. It is required that the distribution

span Ig adjg ••• adj~2g\ (3.12)

be involutive, that is, the Lie bracket of any two vector fields in the distribution should also

be contained in the distribution.
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•fr* Stt STV J* *-**

small nonlinear tenns

Figure 3.2: Approximate input-output linearization: a chain of intergrators perturbed by

small nonlinear terms.

Checking the brackets for the 'ball and beam* system wefind that

[g,ad)g] = (2x1 -2x2 0 0)T (3.13)

does not lie within the span of the first three columns (vector fields) of (3.11).

Failing this condition, we see that it is not possible to fully linearize the 'ball and

beam' system.

3.2.4 Approximate Input-Output Linearization

In this section, we see that, by appropriate choice of vector fields close to the

system vector fields, we can design a feedback control law to achievebounded error output

tracking. The control law will, in fact, be the exact output tracking control law for an

approximate system defined by these vector fields.

Ideally, we would like to find a state feedback control law, u(x) = a(x) + /3(x)v,

that would transform the 'ball and beam' system into a linear system of the of the form

yW = v. Then, the system could be made to track an arbitrary (C4) trajectory, 3/<j(t),

asymptotically by using a tracking control law of the form

v=^W+aafoJftt)^ (3.14)

where s4 + a^s3 + a2s2 + a\S + cto is a Hurwitz polynomial. Note that y, y, etc., are all

functions of the state x.

Unfortunately, due to the presence of the centrifugal term r92 = x\x\, the input-

output response of the 'ball and beam' system cannot be exactly linearized. Here we try

to find an input-output linearizable system that is close to the true system. We present

two such approximations for the 'ball and beam' system. In each case, we will design a
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nonlinear change of(state) coordinates, £ = $(x),and a state dependent feedback, u(x, v) =
a(x) -r /?(x)v, to make the system look like a chain of integrators (i.e., Brunovsky canonical
form) perturbed by small higher order terms, V>(x,t;), as depicted in Figure 3.2. We also
compare the performance of these designs to a linear controller based on the standard

Jacobian approximation to the system.

We then build an approximate tracking control law by designing u so that

v= yd4)(t) +a3(yd3)(t) - &(*)) +M&W - &(*)) +«i(fr(«) " *(*))+«o(w(*) - *i(*))
(3.15)

making the error system into an exponentially stable linear system perturbed by small

nonlinear terms.

For each approximation, we present simulation results depicting (a) the output

error, yd(t) - <fa(x(t)), (b) the neglected nonlinearity, ^(x,u), (c) the angle of the beam,
9(i) = x3(t), and (d) the position ofthe ball, r(t) = xi(t) = y(t), for a desired trajectory of

yd(t) = .RcosTri/30, with R = 5,10, and 15.

Approximation 1

Since the centrifugal acceleration term X\x\ = r92 causes the system to not have a well

defined relativedegree, we design our first approximate system by simply neglecting it. Let

fi = <fa(x) = h(x). Then, along the system trajectories, we have (defining <£,(•) recursively)

ft = ^

f2 = —Gsinxz + xix2

€•=*•(*> * V^O or *2 = &+**(*) (3>16)
£3 = -GX4 COS X3 £3 = &

«*=**(*) £4 = b(x) + a(x)u=: v(x,u).
£4 = Gx2 sinX3 + (—G cos X3) u

6(x) a(ar)

As expected, by neglecting the centrifugal term (which is higher order), we obtain an ap

proximate system with a well defined relative degree. Note that the choice of what to

neglect (i.e., il>2(x)) leads to a specification of the coordinate transformation $(x). In this
case, the approximate system is obtained bya simple modification of the / vector field (i.e.,

by neglecting ^(O)*

6 = 6
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(o) thata (R - 5, 10, IS)

120. 60.

Figure 3.3: Simulation results for yd(t) = Rcoswt/30 using the first approximation ((a)

e = 3fc - &,0>) V>2, (c) 0, (d) r)

The simulation results in Figure 3.3 show that the closed loop system provides good

tracking. Notice that the tracking error increases in a nonlinear fashion as the amplitude

of the desired trajectory increases. This is expected since the approximation error term

il>2(x) is a nonlinear function of the state. A good a priori estimate of the mismatch of the

approximate systemfor a desired trajectory can be calculated using ^(^~1(ydiyd,yd,yd '))

where $-1 : £ h+ x is the inverse of the coordinate transformation. This in turn may be a

useful way to define a class of trajectories that the system can track with small error.

Approximation 2

For this approximation, we will retain the centrifugal acceleration and only discard terms

that we must to obtain a approximate system with a well defined relative degree. Again,

let £i = <f>\(x) = h(x). Then, along the system trajectories, we have

£i = x2

6 = -Gsinx3 +*i*2

or

(1

6 =

£2

6tz=<fo (*)

£3 = —CxX4 COS X3 + X2X4 + 2x2xau £3 = £4 + ^3(3,**)

€4=^4(3?) *»(*,«)
61 — 6(x) + a(x)u =: v(x,u).

£4 = xix|-|-(—G cos X3 + 2x2xa)u
b(x) a(x)

(3.17)

Note that we had no choice but to discard ^(x, u) = 2x2xau since X2X4 is zero at x = 0
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but not identically zero in a neighborhood of x = 0. However, at this point, tj)2 and </>a are

not uniquely determined since, for example, x2x\ could be included in $3 rather thanin 4>a

as we have done.

This time the approximate systemis obtained by modifying the g vector field in a

more subtle way. Pulling back the modified g vector field (obtained by neglecting ^>z(x,u))
to the original x coordinates (using u as input) we get

0

0

0

1

g(x)

0

0

2GxxXj coexa—4xiJ2X?
G[G cos2xj—2x2X4 CO6X3—x\x\ sinxj)

2xix? sinxj
Gcos2 X5—2x2X4cosxj—xixj sinxs

Afl(x)

(3.18)

The system with g modified in this manner is input-output linearizable and is an approxi

mation to the original system since Ag is small for smallangular velocity, 0 = X4.

-J.E-4

(6

-S.E-S

(0

(a) «rror (R - S, 10, 15)

f~^

" W. 517"

(b) pai3 (R - S, 10, IS)

-0.2

w. • *o. los. • r?o. (i

(c) tbata (R - 5, 10, IS)

^
120. to. ~W. ' io"7

(d) r (R - 5, 10, 15)

IS.

^
W.J0. 10!

Figure 3.4: Simulation results for yd(t) = Rcosvt/ZO using the second approximation ((a)

e = W-«i,(b)iMc)Md)r)

The simulation results in Figure 3.4 show that the tracking error is substantially

less than that obtained by the first design. Thus, in some sense, approximation 2 is closer

to the true system than approximation 1.

We note that there are an endless number of approximate systems (perhaps less

obvious than these two) that may result in reasonable performance. The main requirement

is that the neglected terms ^>, be higher order.
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Jacobian Approximation

Toprovide a basis for comparison, we calculate a linear control law based on the Jacobian
approximation. Previously, we used the invertible nonlinear transformation of (3.4) to
simplify the form of X4. Since we are only allowed linear functions in the control, we must

work directly with the original input r and the true angular acceleration 9 = x4 given by

—MGx\ cos X3 - 2Mx\x2xa 1

6

£2

£3

£4

x4 = +Mx2 + J ' Mx2 + J

We will linearize about x = 0, r = 0. Since the output is a linear function of the state, we

begin with £1 = ^i(x) = h(x). Then, along the system trajectories, we have (using (3.5)

and (3.19))

:T . (3.19)

i2=4n(x)

-Gx3 + xix^ + G(x3 - sinx3)

-Gx4

MG2 -G MG2xi COSX3 + 2MGxix2x4
-y-X! +—r+ Mx2 + J

MG2xi (G G \
+ VJ Mx\ +J)

b(x) a(x) tln(x,r)
(3.20)

The Jacobian approximation is, of course, obtained by replacing the / vector field

by its linear approximation and the g vector field by its constant approximation.

Figure 3.5 shows the simulation results from the Jacobian approximation. Un

fortunately, the control system with the linear controller is not stable for R greater than

about 7. We see that the Jacobian approximation performs quite well within the somewhat

limited region of validityof the approximation, but quickly loses even basic stability outside

of this region.

The following table provides a direct comparison of the error e = yd —<j>i for the

three approximations:

R Approximation 1 Approximation 2 Jacobian Approximation

5 ±9.6 • 10-5 ±1.5 • lO"5 -4.7 • lO"3 +3.0 • lO"3

10 ±7.5 • 10-4 ±6.5 • lO"5 unstable

15 ±2.5 • 10-3 ±1.9 • 10-4 unstable

Note that Approximation 2 provides better tracking for this class of inputs by about an
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Figure 3.5: Simulation results for yj(t) = iJcos7r*/30 using the Jacobian approximation

((a)e = yd-#i,(b)«3,(c)Md)r)

order of magnitude over Approximation 1. Due to the large excursions from the origin, the

Jacobian Approximation is no longer a good approximation so the system goes unstable.

Of course, the other approximations will eventually go unstable as R becomes large.

In the next section, we will see that these approximations belong to a large class

of approximations that provide the model to design stable closed loop control laws for

approximate output tracking.

3.3 Theory for Approximate Linearization

In this section, we will consider single-input single-output systems of the form

x = f(x) -r g(x)u

y = h(x)
(3.21)

where x GRn, u, y € R, / and g are smoothvectorfields on Rn (i.e., f(x) 6 TxRn = Rn, x €

Rn), and h : Rn -» R is a smooth function (smooth is understood to mean as differentiable

as needed). We assume that x = 0 is an equilibrium point of the undriven system, i.e.,

/(0) = 0.

If the control objective is tracking, the input-output linearization proceeds as

follows: differentiate the output repeatedly until the input appears for the first time on



the right hand side. Thus, we obtain, for x in a neighborhood of 0,

y = Ljh(x) ,

y = L2fh(x) ,

y(t) = L)h(x) +LgLyxh(x)u .
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(3.22)

Here, Lfh(x) stands for the Lie derivative of h(x) along /, L2fh(x) stands for Lf(Lfh)(x)
and so on. It follows that in (3.22) above, that

Lgh(x) =LgLfh(x) =•••=LgLy2h(x) =0 for x € U (3.23)

where U is an open neighborhood of the origin. In the event that LglPf h(x) ^ 0 for
x G U, the system is said to have relative degree 7 and the control law

^j%)[-wH (3-24)u =

linearizes the system from v to y. However, it may happen that LgI?j~ h(x) = 0 at x = 0
but is not identically zero in a neighborhood U of x = 0, i.e., LglPf h(x) is a function
which is of order 0(x) rather than 0(1). Then, the relative degree of the system is not well

defined and the input-output linearizing control law of (3.24) is no longer valid.

(In the sequel we willuse the 0 notation. Recall that a function 6(x) is said to be

0(x)n if
\6(x)\

lim , . exists and is 5^ 0.
|*|-o |x|n

Also, functions which are 0(x)° are referred to as 0(1). By abuse of notation, we will also

use the notation0(x, it)2 to meanfunctions of x, u which are sums of terms of O(x)2, 0(xu)

or 0(u)2. Similarly for 0(x,u)p.)

Falling this, we seek a set of functions of the state, 4>i(x), i = 1,...,7, that

approximate the output and its derivatives in a special way. The integer 7 will be determined

during the approximation process.

Since our control objective is tracking, the first function, ^i(x), should approxi

mate the output function, that is

h(x) = ^i(x) + i})o(x, u) (3.25)
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where rj}0(x,u) is 0(x,u)2 (actually, V>o does not depend on u, but for consistency below we
include it). Differentiating ^i(x) along the system trajectories we get

<fc(x) = Lfh(x) + Lgh(x)u. (3.26)

If Lgh(x) is O(x) or ofhigher order, we cannot effectively control the system at this level
so we neglect it (and a small part of Lfh(x) if we so desire) in our choice of <t>2(x)\

Lf+gu<f>i(x) = <h(x) + 1>\(xiu) (3-27)

where ij)i(x,u) is 0(x,u)2. We continue this procedure with

Lf+gu<f>i(x) = &+i(*) +*(*>u) (3-28)

until at some step, say 7, the control term, Lg4>^(x)y is 0(1), that is,

Lf+gu^x) = 6(x) + a(x)u (3.29)

where a(x) is 0(1). Using this procedure, it looks likewehave found anapproximate system

of relative degree 7. This motivates the following definition:

Definition 3.1 We say that a nonlinear system (3.21) has a robust relative degree of 7

about x = 0 if there exists smooth functions <j>i(x), i = 1, ..., 7, such that

h(x) = <i>\(x) + il)o(x,u)

I*f+gu<t>i(x) = *+i(*) +A(*i«) t =l,...,7-l (3'3°)

Lf+gu<f>f(x) = Kx) + a(x)u+ 1MX»u)

where the functions ^,(x,ti), i = 0, ..., 7, are 0(x,it)2 anda(x) is 0(1).

Remarks

• In equation (3.30) above, the dependence of $,• on x and u has the form

y>i(x,u) = v/(x) + v,2(«K i = 1,.. .,7 -1

where, for i = 0,...,7 - 1, ^Jfa) is O(x)2 and ^2(x) is O(x).
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• There is considerable latitude in the definition of the <j>i(x) since each 1>}(x) may be

chosen in a number of waysas long asit is O(x)2.

•

We now characterize the robust relative degree. First, define the Jacobian lin

earized version of the system(3.21) about x = 0, u = 0 to be

z = Az + bu t
(3.32)

y - cz

with A = Df(0), b = #(0), and c = dh(0). Then, we have

Theorem 3.1 The robust relative degree of the nonlinear system (3.21) is equal to the

relative degree of the Jacobian linearized system (3.32) and so is well defined.

Proof: For t = 1,...,7 —1, we have

Lf+gu<f>i = Lf4>i + Lg(j>iU

= fa+l + tf + *l>iU

so that

<f>i+i(x) = Lf<t>i(x)-i})}(x),
(3.34)

#(*) = Lg<j>i(x).

Also, since ^J(x) is O(x)2, we have, for i = 1,... ,7 —1,

#/(0) = 0 . (3.35)

Using this and the fact that /(0) = 0, the differentials of the functions <f>i are given by

d^i(0) = d/i(0) - #3(0)

= c-0,

d<fe(0) = d£/<fc(0) - a>}(°) .

= o^i(0)./(0)-M<M0)-^/(0)-0 (3.36)

= 0 + cA,

-1d<^(0) = cAf
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Calculating the control coefficients, we find

#(0) = d4n(0).g(0)

= c6,

V'KO) = cAb,

V>2_i(0) = cA^26,

a(0) = cA^b.

Since ^>2(0) = 0 and a(0) # 0, it follows that

c6=cA6=-.. = cA^"26 = 0,

cAi~lb ± 0.

Thus, 7, the robust relative degree of (3.21), is equal to the relative degree of the Jacobian

linearized system (3.32). From this, it is easy to see that 7 is independent of the choice,of

theneglected functions V$(»,«) of order 0(x, it)2 and is therefore well defined. d

An immediate corollary of this theorem is

Corollary 3.2 The approximate relative degree of a nonlinear system (3.21) is invariant

under a state dependent change of controlcoordinates of the form

u(x, v) = q(x) +0(x)v (3.39)

where a and /3 are smooth functions anda(0) = 0 while /?(0) ^ 0.

In order to show that this procedureproduces an approximation of the true system,

we need to show that the functions <f>i(-) can be used as part of a (local) nonlinear change

of coordinates. To this end, we prove:

Proposition 3.3 Suppose that the nonlinear system (3.21) has approximate relative degree

7. Then the functions <f>i(*), i = 1, . •., 7, are independent in a neighborhood of the origin.

Proof: Since the <£,(•) are smooth, it is sufficient to check that the constant 7 x n matrix

D<j>(0) =

#1(0) c

#2(0)
=

cA

_#7(0) cA^-1

(3.37)

(3.38)

(3.40)



(from (3.36)) has full rank. If we multiply D(f>(Q) on the right by the n x 7 matrix

[P-HAT-H -.. b]

we get the nonsingular 7X7 matrix

a(0) 0 0

* '•• *♦.
•

:
•.

'•• 0

* * a(0)
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(3.41)

(3.42)

whereV denotes possibly nonzero entries. This shows that D<f>(0) has a rank of 7 and the

proposition is proved. ^

With the 7 independent functions, <£,(•), in hand, we can, by the Frobenius

theorem, complete the nonlinear change of coordinates with a set of functions, n,(x),

i = 1,..., n —7, such that

Lgrji(x) = 0 x G U.

Defining new coordinates, (£, n), by

£7

Vn-y

<£i(x)

<f>^(x)

m(x)

Vn-f(x)

=: *(x),

(3.43)

(3.44)
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we can rewrite the true system (3.21) as

fi = b + Mxiu)

It = *&*)+ ««.*)« (3-45)

v = g(£,n)

y = & + Mxiu)

where g(f, n) is X/n expressed in (£,n) coordinates.

Note that the form (3.45) is a generalization of the standard normal form of Byrnes

and Isidori psi87,BI88] with the extra terms tf)i(x,u), i = 0,...,7 of 0(x,u)2. Thus the

control law

«=777Tx Mf, H) +«] (3-46)

approximately linearizes the system(3.21) from the input v to the output y up to terms of

0(x,it)2.

If the robust relative degree of the system (3.21) is 7 = n, then the system (3.21)

is almost completely linearizable from input to state as well (since there will be no n state

variables). This situation was investigated by Krener [Kre84] who showed that the system

x = f(x) + g(x)u (3.47)

with no output explicitly defined was linearizable to terms of 0(x,u)fi iff the distribution

span |<7 adfg ••• adnylg\ has rank n (3.48)

and the distribution

span [g adfg ••• adj~2g\ is order pinvolutive, (3.49)

i.e., has abasis, up to terms of 0(x)p, which is involutive up to terms of 0(x)p. Equivalently,

conditions (3.48) and (3.49) guarantee (through a version of the Frobenius theorem with

remainder [Kre84]) the existence of an output function h(x) with respect to which the

system(3.47) has robust relative degree n and further that the remainder functions ^,(x, u)



73

are 0(x, u)p. Our development differs somewhat from that in [Kre84] in that weare given a

specific output function y = h(x) and a tracking objective for this output. However, thereis

a happy confluence of our results and those of Krener for the ball and beam example of the

previous section where it may be verified that the condition of (3.49) is satisfied for p = 3

and further more the desired output function h(x) is in fact an order p = 3 integral manifold

of the distribution of that equation. Consequently the ball and beam can be input-output

and state space linearized up to terms of order 3.

As was remarked after Definition 3.1, there is a great deal of latitude in the choice

of the functions ^*(x), t = 0,... ,7 - 1, so long as they are O(x)2. To improve the quality

of the approximation,one may insist on choosing these terms to be 0(x)p for some p > 2.

There is less latitude in the choice of the functions ^2(x). They must be neglected if they

are O(x) or higher and not neglected if they are 0(1) (this determines 7). We cannot in

general guarantee that an approximation of 0(x,u)p for p > 2 can be found. At this level

of generality, it is difficult to give analytically rigorous design guidelines for the choice of

the functions ^/(x). However, from the ball and beam example of section 3.2, it would

appear that it is advantageous to have the i>}(x) be identically zero for as long (as large an

i) as possible. We conjecture that the larger the value of the first i at which either if>}(x) or

tff2(x) are nonzero, the better the approximation.

It is also important to note the distinction between the nonlinear feedback control

law (3.46) which approximatelylinearizes the system (3.45) and the linear feedback control

law obtained from the Jacobian linearization of the original system (3.21) given by

u=-^ITi[-cA'*x +v] , (3.50)

though, as we have shown in the proof of Theorem 3.1, they agree up to first order at x = 0

since cA7~16 = a(0) and cA7 = dLf<f>^(Q) = dh(0). It is also useful to note that the control
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law (3.46) is the exact input-output linearizing control law for the approximate system

ft = 6

& = b(^n)+a(^n)u (3-51)

v = q(Z,n)

y = 6

In general, we can only guarantee the existence ofcontrol laws of the form (3.46)
that approximately linearize the system up to terms of0(x, u)2—the Jacobian lawof(3.50)

is such a law. In specific applications, we see that the control law (3.46) may produce

better approximations (the ball and beam of section 3.2 was linearized up to terms of
0(x, u)3). Furthermore, the resulting approximations may be valid on larger domains than

the Jacobian linearization (also seen in the ball and beam example). We try to make this

notion precise by studying the properties enjoyed by the approximately linearized system

(3.21), (3.46) on a parameterized family of operating envelopes) defined as:

Definition 3.2 We call Uc C Rn, e > 0, a family of operating envelopes provided that

Us C Ue whenever 6 < e (3.52)

and

sup{6 :B6CUe} = € (3.53)

where B$ is a ball of radius 6 centered at the origin.

Remarks

• It is not necessary that each Ue be bounded (or compact) although this might be

useful in some cases.

• Since the largest ball that fits in Ut is 2?c, the set Ue must get smaller in at least one

direction as 6 is decreased.

D
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The functions ^>,(x,ii) that are omitted in the approximation are of 0(x,u)2 in a
neighborhood of the origin. However, if we are interested in extending the approximation

to (larger) regions, say of the form of Uei we will need the following definition:

Definition 3.3 A function if) : Rnx R -* R is said to beuniformly higherorder on Ue XB„ C

Rn x R, €> 0, if, for some a > 0, there exists a monotone increasing function ofe, Kc such

that

|^(x, «)| < eKe(\x\ + |«|) for x GUe, \u\ < a. (3.54)

Remarks

• If ij>(x,u) is uniformly higher order on Ut x B„ then it is 0(x,u)2.

• This definition is a refinement of the condition that ^(x, u) be 0(x, u)2 in as much as

it does not allow for terms of the form 0(u)2.

•

Now, return to the original problem. If the approximate system (3.51) is expo

nentially minimum phase and the error terms if>i in (3.45) are uniformly higher order on

Uex B<r, we may use the stable tracking control law for the approximate system given by

u=-^-^ [-6({, n)+y™ +oy-i^7-1* - f7) +•••+a0(yd -6)] (3.55)
(with s7 + o^-is7""1 -| f- ao a Hurwitz polynomial). We can now prove the following

result:

Theorem 3.4 Let Ue, € > 0, be a family of operating envelopes and suppose that

• the zero dynamics of the approximate system (3.51) (i.e., 7) = 0(0,77)^ are exponen

tially stable and q is Lipschitz in £ and n on$(Ue) for each c and

• the functions ^i(x,m) are uniformly higher order on U€x B„.

Then, for e sufficiently small and for desired trajectories with sufficiently small values and

derivatives (yd, yd, ..., yd), the states of the closed loop system (3.21), (3.55) will remain

bounded and the tracking errorwill be 0(c).
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Proof: Define the trajectory error, e GR7, to be

ei ft ya

e2 ft yd

i '. •

67 . >.
(7-1)yd '

(3.56)

Then, the closed loop system (3.21), (3.55) (equivalently, (3.45), (3.55) ) may be expressed

as

ei

€7-1

0 1 0

0 1

-a0 -0:1 ••• -<*-y-i

ei

C7-1

^i(x,ti(x,5d))

^7-i(x,«(x,ft*))

V>7(x,tt(x,^))

i = «(ft»7)

or, compactly,

e - Ae + il)(x,u(x,yd))

V = <z(ft»?)

where jfa := (ydiyd,.. .,3^)« Since the zero dynamics are exponentially stable, aconverse
Lyapunov theorem implies the existence of a Lyapunov function (see, e.g., [Hah67]) V2(n)

for the system

?)=g(0,T?) (3.59)

satisfying

*iM2<V2(n)<Mnr

«>,«)<-fc3M2
m* * *<w

(3.57)

(3.58)

(3.60)

for some positive constants k\, &2, &3» an<i &4«

We first show that e and n are bounded. To this end, consider as Lyapunov

function for the error system (3.58)

V(e,n) = eTPe + nV2(n) (3.61)
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where P > 0 is chosen so that

ATP + PA = -I (3.62)

(possible since e = Ac is stable) and p. is a positive constant to be determined later.

Note that, by assumption, yd and its first 7 derivatives are bounded,

|f|<|«| +6rfand|»W|<6<i, (3.63)

the function, g(ft n) is Lipschitz

IstfV) - ?«W)I <W - ?\ + I-?1 - V2\), (3-64)

the function, ^>(x, it),is uniformly higher order with respect to U€ x B0 and u(x,yd) locally

Lipschitz in its arguments with it(0,0) = 0,

\2Pi}>(x,u(x,yd))\ < €Kelu(\x\ + M (*>«) € U* x ^» (3-65)

and x is a local diffeomorphism of (ft n),

M<«ICI + M). (3-66)

Using these bounds and the properties of V^.), we have

^(ftr/) = ^(0,n)+^(a(ftn)-o(0,n)) ^

Taking the derivative of V(«, •)along the trajectories of (3.58), we find, for (x, u) G Ue x B^,

V = -|e|2 +2cTP^(x,W(x,^)) +^o(ftn)

< -|c|2 + €|e|*e/,(|e| + bd+ \n\) + p,(-k3\n\2 + k4lq\n\(\e\ + bd))

< -(^-€tt6d)2 +WxW2

-(J§l - (ear./. +»k4lq)M)2 + (eK€lx + nk4lq)2\v\2
-»h(& - !^)2 +plt^
-(} - eJT€«|c|2 - f^3N2

< -(* - 6^e/x)|e|2 - (j/ife - (eKtlx + A*fc4/,)2)M2

+(6%W2 +^.
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Define

"°=4(KjxkU4iqr (3>69)
Then, for all \i < \io and all e< min(fj,y 4^77), we have

v <_Jf!! _i^!2l! +4*4M1 +(dr.iA)». (3.70)
4 2 «3

Thus, V" < 0 whenever |n| or |e| is large which implies that |n| and |e| and, hence, |f| and

|x|, are bounded. The above analysis is valid for (x,it) €UeX B9. Indeed, by choosing bd
sufficiently small and appropriate initialconditions, wecan guarantee that the state remains

in U€ and the input is bounded by o. Using this fact, we may abuse notation and write the

function i/)(x, u(x, yd)) as eif)(t) and note that

e = Ae-r €if)(t) (3.71)

is an exponentially stable linear system driven by an order e input. Thus, we conclude that

the tracking error will be O(e). "-•

3.4 Conclusion

In this chapter, we have presented an approach for the approximate input-output

linearization of nonlinear systems, particularly those for which relative degree is not well

defined. We saw that there is in fact a great deal of freedom in the selection of the approx

imation. We have seen that, by designing a tracking controller based on the approximating

system, we can achieve tracking of reasonable trajectories with smallerror. The approxi

mating system is a nonlinear system, with the difference that it is input-output linearizable

by state feedback. We have shown some properties of the accuracy of the approximation

and in the context of the ball and beam example shown it to be far superior to the Jacobian

approximation. Future research in this area will include developing methods to effectively

search among the prospective approximate systems and to evaluate their accuracy.



Chapter 4

Approximate Tracking for Slightly

Nonminimum Phase Systems:

Application to Flight Control

The method of input-output linearization provides a natural framework for the

design of tracking controllers. This technique has in fact been successfully implemented

in several practical applications, such as flight control [Ass73,MC75,MC80,LS88] and the

control of rigid robots by the so-called computed torque method [Fre75]. The theory is now

well developed and understood [Isi85,Isi87].

One of the major obstacles to the direct application of this theory is the fact that

it relies on a nonlinear version of pole-zero cancellation. Of course, the nonlinear pole-zero

cancellation implicit in these techniques is only a problem when the cancellation is one

involving unstable zero dynamics (introduced in [BI84] and made precise in [IM89,Isi87]).

In this chapter, we focus on this problem with specific emphasis on the aircraft control

problem.

While several researchers have applied the methods of nonlinear control to the

aircraft problem (see [LS88] for a nice summary), most have neglected the small moment-

to-force coupling without proper justification. This coupling provides dynamic effects that

cannot be assumed to be boundedl Due to the fact that we are building a closed loop

feedback system, we must carefully analyze the effects of this coupling to guarantee that

small changes in this parameter do not result in drastic changes in behavior such as the

79
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bifurcation behavior that can result from ihertialcoupling [H074] or high angles-of-attack

[MKC77]. In this chapter, we provide rigorous justification for the common practice of
ignoring the moment-to-force coupling in the design of the controller.

This chapter is organized as follows: Section 4.1 discusses some modeling issues

for aircraft dynamics and presents a simplified planar VTOL aircraft that will be used

in the main discussion. In section 4.2, we work through the details of both exact and

approximate input-ouput linearization for the simplified aircraft and present illustrative

simulations showing the qualitative behavior of this system. In section 4.3, we develop

the rudiments of a theory for the approximate linearization of slightly non-minimum phase

systems.

4.1 Aircraft Dynamics

The complete dynamics of an aircraft, takinginto account flexibility of the wings

and fuselage, aeroelastic effects, the (internal) dynamics of the engine and control surface
actuators, and the multitude of changing variables, are quite complex and somewhat un

manageable for the purposes of control. A useful first approximation is to consider the

aircraft as a rigid body upon which a set of forces and moments act.

Then, with r, R, andu being the aircraft position, orientation (rotation matrix),

and angular velocity, respectively, the equations of motion can be written as

mr = Rfa + mg ' (4.1)

J&a = Ta - Ua X J(jJa (4-2)

R = u X R (4.3)

where fa and r0 are the force and moment acting on the aircraft expressed in the aircraft

reference frame. Here, the a subscript means that a quantity is expressed with respect to

the aircraft reference frame.

Depending on the aircraft and its mode of flight, the forces and moments can

be generated by aerodynamics (lift, drag, and roll-pitch-yaw moments), by momentum ex

change (gross thrustvectoring and reaction controls to generate moments), ora combination
of the two. The flight envelope of the aircraft is the set of flight conditions for which the

pilot and/or the control system can effect the forces and moments needed to remain in the

envelope and achieve the desired task.
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While the function mapping the control inputs to the forces and moments is a

highly nonlinear state-dependent function, it isuseful tonote that this function can normally

be decomposed as

fa ' =?(x) +g(x)u(x,c) (4.4)

where x G Rn denotes the state and c G Rm denotes the control input and T : Rn -> R6,

Q : Rn -*• R6xm, and u : Rn X Rro -*•' Rm axe (continuous) functions. In particular, for

each x in the function it(x, •): Rm -> Rm is one-to-one and hence (algebraically) invertible.

The value of the function it(«, •) can often be taken to be the components of the force and

moment that the actuators were designed to produce.

As an example, consider the YAV-8B Harrier produced by McDonnell Aircraft

Company [McD82,McD83] depicted in figure 4.1 (aircraft frame-A, runway frame-R). The

Harrier is a single-seat transonic light attack V/STOL (vertical/short takeoff and landing)

aircraft powered by a single turbo-fan engine. Four exhaust nozzles on the turbo-fanengine

provide the gross thrust for the aircraft. These nozzles (two oneach side of the fuselage) can

be simultaneously rotated from the aft position (used for conventional wing-borne flight)

forward approximately 100 degrees allowing jet-borne flight and nozzlebraking. The throttle

and nozzle controls thus provide two degrees of freedom of thrust vectoring within the x-z

plane of the aircraft. (If the line of action of the gross thrust does not pass through the

aircraft center of mass, then this thrust will also produce a net pitching moment.)

In addition to the conventional aerodynamic control surfaces (aileron, stabilator

(sta&iftzer-elevafor), and rudder for roll, pitch, and yaw moments, respectively), the Harrier

also hasa reaction controlsystem (RCS) to provide moment generation duringjet-borneand

transition flight. Reaction valves in the nose, tail, and wingtips use bleed air from the high

pressure compressor of the engine to produce thrust at these points and therefore moments

(and forces) at the aircraft center of mass. The design of the aerodynamic and reaction

controls provides complete (three degree of freedom) moment generation throughout the

flight envelope of the aircraft. When moments are produced by applying a single force

rather than a couple, a nonzero force (proportional to the moment) will be seen at the

aircraft center of mass.

Using the throttle, nozzle, roll, pitch, and yaw controls we can produce (within

physical limits) any moment and any force in the x-z plane of the aircraft. Therefore, the
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Figure 4.1: Aircraft coordinate systems (R-runway, A-aircraft)

function it(«, •) for the Harrier can be chosen to map the control inputs to the moment and

x-z force on the aircraft (with «(x,0) = 0 so that the force and moment acting on the

aircraft with the controls in the zero position are subsumed into F(x) ). With this choiceof

u(-, •), five of the six rows of G(x) will be the rows of a 5 x 5 identity matrix. The remaining

row will determine the side force fay and can easily be seen to form a (state-dependent)

linear combination of the rolling and yawing moments.

Since the function u(x, •) can be inverted (on its range), we are free to consider u

to be the input (control) rather than c. The idea of inverting the algebraic nonlinearities

present in the system has been applied to real flight control problems [MC75,MC80]. With

these considerations in mind, we see that the dynamics of the aircraft are of the general

form
m

* = /(*)+£<&•(*)".•. (4-5)
i

The small forces that are produced when moments are commanded result in some

important effects. To examine these more closely, consider the geometry of the reaction

control system as shown in figure 4.2. Since the roll moment reaction jets create a force

that is not perpendicular to the y axis, the production of a positive rolling moment (to the

pilot's right) will also produce a slight acceleration of the aircraft to the left. As we will
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Figure 4.2: Reaction control system geometry

Figure4.3: The planar vertical takeoff and landing (PVTOL) aircraft

see, this phenomenon makes the aircraft non-minimum phase.

4.1.1 A Simple Planar Aircraft

For the purpose of illustration, it is particularly useful to consider a simple toy

aircraft that has a minimum number of states and inputs but retains many of the features

that must be considered when designing control laws for a real aircraft such as the Harrier.

Figure 4.3 shows our prototypePVTOL (planar vertical takeoff and landing) aircraft. The

aircraft state is simply the position, x, y, of the aircraft center of mass, the angle, 9, of the

aircraft relative to the x-axis, and the corresponding velocities, x, y, 9. The control inputs,

«i, «2, are the thrust (directed out the bottom of the aircraft) and the rolling moment.
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Figure 4.4: Block diagram of the PVTOL aircraft system

The equations of motion for our PVTOL aircraft are given by

x = — sin

y = cos

9 = u2

in9u\ + ecos 9u2 I

s 9ui + e sin 9u2 - 1 * (4.6)

where '-1' is thegravitational acceleration and €isthe (small) coefficient giving thecoupling
between the rolling moment and the lateral acceleration of the aircraft. Note that € > 0

means that applying a (positive) moment to roll left produces an acceleration to the right
(positive x). Figure 4.4 provides a block diagram representation ofthis dynamical system.

The PVTOL aircraft system is the natural restriction of V/STOL aircraft to jet-

borne operation (e.g., hover) in a vertical plane. The study of this simple planar model
provides important insight that extends naturally to the more complicated six degree-of-

freedom aircraft.

4.2 Linearization by State Feedback

4.2.1 Exact Input-Output Linearization of the PVTOL Aircraft System

Consider the PVTOL aircraft system given by (4.6). Since we are interested in

controlling the aircraft position, we choose x and y as the outputs to be controlled. We

seek a (possibly dynamic) state feedback law of the form

u = a(z) + b(z)v (4.7)



such that, for some 7 = (7i,72)T,

XM = Vi

yM = v2<
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(4.8)

Here, v is our new input and z is used to denote the entire state of the system (including

compensator states, if necessary).

Proceeding in the usual way, wedifferentiate each output until at least one of the

inputs appears. This occurs after differentiating twice and is given by (rewriting the first

two equations of (4.6) )

X
,

0

+
-sin0 ecos0 i*i

y -1 COS0 esin9 u2

(4.9)

Since the matrix operating on u (the so-called decoupling matrix) is nonsingular (barely—

its determinant is -c!), we can linearize (and decouple) the system by choosing the static

state feedback law

til

u2

The resulting system is

— sin 9 cos 9

cos 9 sin 9
€ €

( 0
+

vi

\ 1 v2

x = V\

y = v2

9 = \(sin9 +cos9vi + sin9v2)

(4.10)

(4.11)

This feedback law makes our input-output map linear, but has the unfortunate side-effect

of making the dynamics of 9 unobservable. In order to guarantee the internal stability of

the system, it is not sufficient to look at input-output stability, we must also show that all

internal (unobservable) modes of the system are stable as well.

The first step in analyzing the internal stability of the system (4.11) is to look

at the zero dynamics [BI84JM89,Isi87] of the system. The zero dynamics of a nonlinear

system are the internal dynamics of the system subject to the constraint that the outputs

(and, therefore, all derivatives of the outputs) are set to zero for all time.
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Figure 4.5: Phase portrait of an undamped pendulum (9 vs. 9, e= 1)

Constraining the outputs and their derivatives to zero by setting V\ = v2 = 0 (and

using appropriate initial conditions), we find the zero dynamics of (4.11) to be

9 = -sin9.
€

(4.12)

Equation (4.12) is simply the equation of an undamped pendulum. Figure 4.5

shows the phase portrait (9 vs 9) of the pendulum (4.12) withe = 1. The phase portrait for

e < 0 is simply a horizontal ^-translate of figure 4.5. Thus, for € > 0, the equilibrium point

(9,9) = (0,0) is unstable and the equilibrium point (?r,0) is stable but not asymptotically
stable andis surrounded by a family of periodic orbits with periods ranging from 2tt yfl to oo.

Outside of these periodic orbits is a family of unbounded trajectories. Thus, depending on

the initial condition,the aircraft willeitherrock from sideto side forever or rollcontinuously

in one direction (except at the isolated equilibria).

Nonlinear systems, such as (4.11), with zero dynamics that are not asymptotically

stable are called non-minimum phase. Figure 4.6 shows the response of the system (4.11)

when (t7i, v2) is chosen (by a stable feedback law) so that x will track a smooth trajectory
from x = 0 to x = 1 with y remaining at zero.' The bottom section of the figure shows

snapshots of the PVTOL aircraft's position and orientation at 0.2 second intervals. From the

phase portrait of 9 (figure 4.6e), we see that the zero dynamics certainly exhibit pendulum

like behavior. Initially, the aircraft rolls left (positive 9) to almost 2ir. Then, it rolls right

through four revolutions before settling into a periodic motion about the —3ir equilibrium

point. Since vi and v2 are zero after t —5, the aircraft continues rocking approximately

±ir from the inverted position.

From the above analysis and simulations, it is clear that exact input-output lin

earization of a system such as (4.6) can' produce undesirable results. The source of the
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problem lies in trying to control modes of the system using inputs that are weakly (e)
coupled rather than controlling the system in the way it was designed to be controlled
and accepting a performance penalty for the parasitic (c) effects. For our simple PVTOL
aircraft, we should control the linear acceleration by vectoring the thrust vector (using
moments to control this vectoring) and adjusting its magnitude using the throttle.

4.2.2 Approximate Linearization of the PVTOL Aircraft System using
a Simplified Model

In the last section we (exactly) linearized input-output map ofthe PVTOL aircraft

system (4.6). However, due to the small coupling between rolling moments and lateral
acceleration, the linearized system had unstable zero dynamics. Thus, while the outputs

(the x and y position) can be tracked perfectly, the internal behavior (the aircraft attitude)
is not regulated and exhibits unstable behavior.

In this section, we propose controlling the system as if there were no coupling

between rolling moments andlateralacceleration (i.e., €= 0). Using this approach to control

the true system (4.6), we expect to see a loss ofperformance dueto the unmodeled dynamics

present in the system. In particular, we see that we canguarantee stable asymptotic tracking

of constant velocity trajectoriesand bounded tracking for trajectories with bounded higher

order derivatives.

We now model the PVTOL aircraft as ((4.6) with c = 0)

xm = —sin 9u\

ym = cos0«i-l

9 = «2

(4.13)

sothat there is no coupling between rolling moments andlateral acceleration. Differentiating

the model system outputs, xm and ymi we get (analogous to (4.9))

Xm 0
= +

ym -l

-sin0 0

cos0 0

«i

u2

(4.14)

Now, however, the matrix multiplying u is singular which implies that there is no static

state feedback that will linearize (4.13). Since u2 comes into the system (4.13) through 0,

we must differentiate (4.14) at least two more times. Let iti and t*i be states (in effect,



Figure 4.7: Block diagram of the augmented model PVTOL aircraft system

placing twointegrators before the u\ input) and differentiate (4.14) twice giving

<^m
^m

sin 992u\ —2 cos99u\
+

-sin0 — cos 9u\ u\

ytt - cos 992ui - 2 sin 99u\ COS0 —sin 9u\ u2
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(4.15)

The matrix operating on our new inputs, (ui,u2)T, has determinant equal to u\ and

therefore is invertible as long as the thrust, t»i, is nonzero. This fact agrees well with our

intuition since we know that no amount of rolling will affect the motion of the PVTOL

aircraft if there is no thrust to effect an acceleration. Figure 4.7 shows a block diagram

of the model system with u\ and u\ considered as states. Note that each input must go

through four integrators to get to the output. Thus, welinearize (4.13) using the dynamic

state feedback law

ill

«2

=

— sin0

COS0
L Ml

COS0

sin#
Ml J (

-sin0^2Mi

cos992u\ •

+ 2 cos 99ui

f 2sin99ui
+

Vi

. V2 . I

=

92ut

2fltt!
Ml J

+
_<

sin t

:osl
Ml

) cos 9

sin 9
Mi J

Vi

v2

resulting in

x#

„(4)
ym

Vi

V2

(4.16)

(4.17)

Unlike the previous case (equation (4.11)), the linearized model system does not contain

any unobservable (zero) dynamics. Thus, using a stable tracking law for v, we can trackan

arbitrary trajectory and guarantee that the (model) system will be stable.

Of course, the natural question that comes to mind is: will a control law based

on the model system (4.13) work well when applied to the true system (4.6)? In the next



90

section, we will show (in a more general setting) that, if e is small enough, then the system

will have reasonable properties (such as stability and bounded tracking).

How small is small enough? Figure 4.8 shows the response of the true system

with epsilon ranging from 0 to 0.9 (0.01 is typical during jet-borne flight, i.e., hover, for

the Harrier). As in section 4.2.1, the desired trajectory is a smooth lateral motion from
x = 0 to x = 1 with the altitude (y) held constant at 0. The figure also shows snapshots

of the PVTOL aircraft's position orientation at 0.2 second intervals for e = 0.0, 0.1, and

0.3. Since the snapshots were taken at uniform intervals, the spacing between successive

pictures gives a clue of the aircraft velocity and acceleration. The computer graphics movie

of the trajectories provides an even better sense of the system response.

Interestingly, the x response is quite similar to the step response ofanon-minimum

phase linear system. Note that for e less thanapproximately 0.6, the oscillations are reason

ably damped. Although performance is certainly worse at higher values of e, stability does
not appear to be lost until €is in the neighborhood of 0.9. A value of 0.9 for e means that

the aircraft will experience almost lg (the acceleration of gravity) in the wrong direction

when a rolling acceleration of one radian per second per second is applied. For the range

of e values that will normally be expected, the performance penalty due to approximation

is small, almost imperceptible.

Note that, while the PVTOL aircraft system (4.6) with the approximate control

(4.16) is stable for a large range of e, this control allows the PVTOL aircraft to have
a bounded but unacceptable altitude (y) deviation. Since the ground is hard and quite

unforgiving and vertical takeoff and landing aircraft are designed to be maneuvered in close
proximity to the ground, it is extremely desirable to find a control law that provides exact

tracking of altitude if possible. Now, €enters the system dynamics (4.6) in only one (state-

dependent) direction. We therefore expect that one should be able to modify the system
(by manipulating the inputs) so that the effects of the €-coupling between rolling moments
and aircraft lateral acceleration do not appear in the y output of the system.

Consider the decoupling matrixof the true PVTOL system(4.6) given in (4.9) as

— sin 9 e cos 9

cos 9 e sin 9

To make the y output independent ofe requires that the last rowof this decoupling matrix

be independent of c. The only legal way to do this is by multiplication on the right (i.e.,

(4.18)
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Figure 4.8: Response of the true PVTOL aircraft system under the approximate control
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column operations) by a nonsingular matrix V which corresponds to multiplying the inputs

by V-1. In this case, we see that

— sin0 ecos0

cos 9 e sin 9

1 —etan9

0 1

is the desired transformation. Defining new inputs, u, as

-sin0 -£
cos

cos 9 0

mi

u2

1 etan9

0 1

Ml

u2

we see that (4.9) becomes

X
^_

0
+

— sin0 €

COS

y -l cos0 0

Ml

U2

(4.19)

(4.20)

(4.21)

Following the previous analysis, we set c = 0 andlinearize the resulting approximate system

using the dynamic feedback law

mi

u2

92ux

20ui
ui J

— sin0 cos0

COS0
Mi

sinfl
«i J L

vi

v2

(4.22)

Note that this control law will approximately linearize the true system. The true system

inputs are then calculated as

mi

u2

1 —etan9

0 1

«i

u2

(4.23)

Figure 4.9 shows the response of the true system using the control law specified

by equations (4.22) and (4.23) for the same desired trajectory. With this control law, our

PVTOL aircraft maintains the altitude as desired and provides stable, bounded lateral (x)

tracking for e up to at least 0.6. Note, however, that the system is decidedly unstable for

€ = 0.9. Since we have forced the error into one direction (i.e., the x-channel), we expect

the approximation to be moresensitive to the value of e. In particular, compare the second

column of the decoupling matrices of (4.9) and (4.21), i.e.,

CCOS0
and

€

cos 9

€sin# 0

(4.24)
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Figure 4.9: Response of the true PVTOL aircraft system under the approximate control

with input transformation

Notice that the first is simply e times a bounded function of 9 while the second contains e

times an unbounded function of 9 (i.e., 1/ cos0). Thus, for (4.21) with e = 0 to be a good

approximation to (4.21) with non-zero crequires that 9be bounded away from ±ir/2. This
is not a completely unreasonable requirement since most V/STOL aircraft do not have a

large enough thrust to weight ratio to maintain level flight with a large roll angle. Since

the physical limits of the aircraft usually place constraints on the achievable trajectories,

a control law analogous to that defined by (4.22) and (4.23) can be used for systems with

small 6 on reasonable trajectories.

4.3 A Formal Approach to the Control of Slightly Non-

minimum Phase Systems

In this section we will take a more formal approach to the control of systems that

are slightly non-minimum phase.

Consider the class of nonlinear systems of the form

x = f(x) + g(x)u

y = h(x)
(4.25)
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where x GRn, u,y GRm, and / : Rn -♦ Rh and g : Rn -• RnXm are smooth vector fields

and h : Rn -+ Rm is a smooth function with /i(0) = 0.

In the sequel, we will assume that theorigin is an equilibrium point of(4.25), i.e.,
/(0) = 0, and will consider x in an open neighborhood, U, ofthe origin, i.e., the analysis
will be local. All statements that wemake, suchas the existence of certain diffeomorphisins,

will be assumed merely to hold in U. Also, when we saythat a function is zero, it vanishes

on Uy and when we say it is non-zero, we mean that it is bounded away from zero on U.
While we will not precisely define slightly non-minimum phase systems, the concept

iseasy enough toexplain. The reader may wish to review thedefinition ofthezero dynamics
for non-linear systems (and the concept ofminimum phase) in Isidori and Moog [IM89].

4.3.1 Single-Input Single-Output (SISO) Case

Consider first the single-input single-output (SISO) case. Suppose that Lgh(x) =
eif>(x) for some scalar function tff(x) with €> 0 small. In other words, the relative degree
of the system is one, but is very close to being greater than one. Here, Lgh(x) is the Lie
derivative of h(-) along g(*) and is defined to be

L9h{X) =*gW (4-26)
Now, define twosystems in normal form (see Byrnes and Isidori [BI88]) using the following

two sets of local diffeomorphisms of x € Rn

(f, VT)T = (6 := M*), »l(*)> •••-Vn-l(x)f, (4-27)

and

(f, fiT)T = (ft := h(x% |2(x) :=Lsh(x), %(*), •••, *?n-2(s))T, (4.28)

with

and

System 1 (true system)

|̂ (x) =0, i=l,...,n-l (4.29)

§J*(x)=:0, i=l,...,n-2. (4.30)

ft = Lfh(x) -t Lgh(x)u

V = q(Z,n)
(4.31)
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li =6 ]
)u >
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|2 = L2fh(x) +LgLfh(x)u > (4-32)

Note that the system (4.31) represents the system (4.25) in normal form and the

dynamics of 9(0,77) represent the zero dynamics of the system (4.25). System (4.32) does
not represent the system (4.25), since in the (ft 77) coordinates of (4.28), the dynamics of

(4.25) are given by

li = i2 + Lgh(x)u

|2 = L2fh(x) +LgLfh(x)u

h = q(£>v)

Informally, we call the system (4.25) slightly non-minimum phase if the true system

(4.31) (with nonzero e) is non-minimum phase but the approximate system (4-32) (with
e= 0) is minimum phase. Since Lgh(x) = €^(x), we may think of the system (4.32) as a

perturbation of the system (4.31) (= (4.33)).

Of course, there aretwo difficulties with exact input-output linearization of (4.31):

• The input-output linearization requires a large control effort since the linearizing

control is

This could present difficulties in the instance that there is saturation at the control

inputs.

• If (4.31) is non-minimum phase, atracking control lawproducing alinear input-output

response may result in unbounded 77 states.

Our prescription for the approximate input-output linearization of the system

(4.31) is to use the input-output linearizing control law for the approximate system (4.32);

namely

<=i^m^h^+v) (4-35)

(4.33)
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where v is chosen depending on the control task. For instance, if y is required to track ydy

we choose v as

v = yd + a1(yd-i2) + a0(yd-i1) (4.36)

= Vd -r ai(yd- Lfh(x)) + a0(yd - h(x)). (4.37)

Using (4.35) and (4.36) in (4.33) along with the definitions

«i = fi - Vd

e2 = ft - yd

yields

ei = c2 +€il>(x)

e2 = —ai62 — aoe\

h = «(£*?)•

ua(x) 1

(4.38)

(4.39)

As we will see below,exponential stabilityof the zero dynamics of the approximate system

(i.e., fj = g(0,77)) combined with the designed stability of the error system will guarantee
overall stability of the system and yield approximate tracking.

The preceding discussion may be generalized to the case when the difference in

the relative degrees between the true system and the approximate system is greater than

one. For example, if

Lgh(x) = c^i(x)

LgLfh(x) = €^>2(x)
(4.40)

LgLf 2h(x) = €^y_i(x)

but LgL"lh(x) is not of order e, we define

(f, VT) =W*). i/M*)'. •••. L}-xh(x),T,T? € R" (4.41)
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and note that the true system is

(i = 6 + «*i(*)tt

|^i = ey +^7-i(x)M (4-42)
|7 = L}h(x) +LgL}-1h(x)u
h = q(£,fi).

The approximate (minimum phase) system (with c = 0) is given by

li = 6

The approximate tracking controllaw for (4.43) is

«• =r JL, X(-*}M«)+^+«7-i(^7_1) - ^r1^))+•••+a^ - V))-14-44)LgLj h(x)

The following theorem provides a bound for the performance of this control when applied

to the true system.

Theorem 4.1 Suppose that

• the zero dynamics of the approximate system (4-43) are locally exponentially stable

and

• thefunctions i{>(x)ua(x) are locally Lipschitz continuous.

Then, for € sufficiently small and for desired trajectories with sufficiently small values and

derivatives (yd, yd, ..., yd^), the states ofthe system (4>42) m»W be bounded and the tracking
error

M := 111 - Wl < fa (4-45)

for some k < oo.
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Proof: Define the trajectory error, e 6 R7, to be

€l & yd

e2
=

h
—

yd

<h >. (*y-i)yd '

(4.46)

Then, the system (4.42) with the approximate tracking control (4.44) may be expressed as

ei

e-y-i 0 1

-a0 -«i *•• -«7-i

ei

e~_i

+ *

^i(x)

^7-i(x)

0

«a(x)

or, compactly,

e = Ae + eij)(x)ua(x)

h = $(£»?)•
Since the zero dynamics are assumed to be exponentially stable, a converse Lyapunov

theorem implies the existence of a Lyapunov function (see, e.g., [Hah67]) v2(fj) for the

system

fj = 5(0,77) (4.49)

satisfying

ki\fj\2<v2(fj)<k2 «|2

dvtz
WK9,Q<-**

«|2

(4.47)

(4.48)

(4.50)

for some positive constants fci, fc2, £3, and k4.

We first show that e and 77 are bounded. To this end, consider as Lyapunov

function for the error system (4.48)

v(e,77) = eTPe + /^(t}) (4.51)

where P > 0 is chosen so that

ATP -rPA=-I (4.52)
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(possible since e = Ae is stable) and p. is a positive constant to be determined later.
Note that, by assumption, yd and its first (7 - 1) derivatives are bounded,

lH<|e| + 6d, (4.53)

the functions, £(£77) and if>(x)ua(x) are locally Lipschitz with^(0)ita(0) = 0,

Wtf1,*1) - «?,*2)l <vi? - Pi +w1 - *?2i)> (4-54)

|2P#c)««(*)l < lu\*\, (4-55)

and x is a local diffeomorphism of (£,77),

M < U\H + Ml)- (4-56)

Using these bounds and the properties of v2(*), we have

!»*«"•« = ^(°^) +^(^^)-«(°^)) (4.57)
< -W + MMM+ *««)•

Taking the derivative of v(>, •) along the trajectories of (4.48), we find

v = -\e\2 + 2eeTP,J>(x)ua(x) + fi2%q(£tfj)

< -\e\2 + e\e\lulx(\e\ + bd + \ij\) + fi(-k3\ij\2 + fe^KM + 6d))

-(^ - (d«/, +»k4lq)\fi\)2 + (elulx +fik4lq)2\fj\2
_^3(J|l_^k)2+MiM^li

-(J - *U*)|e|2 - \»kz\fj\2

< -(i - elulx)\e\2 - (&k3 - (elulx +tik4lq)2)\rj\2

HeUxbd)2 +»&%*£.

Define
fc3

/Z°"4(/U/X + A:4g2'
Then, for all ^ < p.Q and all 6<min(fj., 4^), we have

(4.58)

(4.59)

V<J±_ ^ +K^M +(£UxW2. (4.6O)
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Thus, v < 0 whenever \fj\ or |e| is large which implies that \ij\ and |e| and, hence, |£| and

|x|, are bounded. The above analysis is valid in a neighborhood of the origin. By choosing

bd sufficiently small and with appropriate initialconditions, we can guarantee the state will

remain in a small small neighborhood. Using the boundedness of x and the continuity of

if)(x)ua(x), we see that

e = Ae+ €i})(x)ua(x) (4.61)

is an exponentially stable linear system driven by an order e input. Thus, we conclude that

the tracking error, e, converges to a ball of order e. LJ

When the control objective is stabilization and the approximate system has no

zero dynamics we can do much better. In this case, one can showthen that the control law

that stabilizes the approximate system also stabilizes the original system.

Suppose that the approximate system has no zero dynamics, i.e.,

Lgh(x) = €^i(x)

LgLfh(x) = €ij>2(x)
(4.62)

LgLnf2h(x) = 6^n_i(x)

Define

| =(h(x), Lfh(x),..., Lylh(x))T e Rn (4.63)

and write the approximate system

£i = 6

|n = Lnfh(x) +LgLnf'1h(x)u

and the stabilizing control law

«•(*) = r rn-U, vM?M*) - «»-l&-l «o|l) (4.65)LgLf tl{X)

= r m-lu, S-Llh(x) ~<*n-lLyxh(x) a0h(x)). (4.66)
LgLf n{x)

(4.64)



The true system in these coordinates is given by

ft = ft + e^i(x)M

|„-1 = Zn + Cll>n-l(x)u

|n = Lnfh(x) +LgLnf~1h(x)u

Using u,(x) (from (4.65)) in (4.67) yields

£n-l

In

0 1

-QfO —«1

1

~0!n_l

+ €

£n-l

il>i(x)

lj>n-l(x)

0
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(4.67)

u,(x). (4.68)

Letting ij)(x) = (i}>\(x), •••»^n-i(s), 0)T, we can state the following:

Theorem 4.2 Suppose that ij)(x)u8(x) is Lipschitz in x and that if>(Q)u8(0) = 0. Then, the

system (4.68) is exponentially stable for e sufficiently small.

Proof: The stabilized system (4.68) can be compactly written as

| = A£ + €li)(x)u„(x). (4.69)

Choose as Lyapunov function v = lTP£ with ATP + PA = -7. Then, using the bounds

analogous to (4.55) and (4.56), the derivative of v along trajectories of (4.69) is given by

v = -\£\2 + 2€Prf>(x)ua(x)

<= -(l-eljx)\£\2.

Thus, for all e < eo := n~> *^e svstem (4.69) is exponentially stable.

(4.70)

D
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4.3.2 Generalization to MIMO Systems

We now consider MIMO systems of the form (4.25) which, for the sake of conve

nience, we rewrite as

x = f(x) + 9i(x)ui + •••+ gm(x)um

Vl = kl{x) \ (4.71)

ym = hm(x)

Let 7; be the relative degree of the tth output, i.e., we need to differentiate yi at least 7;

times before at least one of the inputs appears in the right hand side. Then, we have

yj7f) = Ljhi +Lgi Lj^hiUt +•••+L^Lj^hiUrn i =1,...,m. (4.72)

The decoupling matrix is defined to be A(x) e RmXm with

L^Lf-'h! ... L^Lf-'hi

so that

A(x) =

LgiLy-xhm ... L^Ly^hrn

' #«" Ljhx Ml

I
=

• + A(x) •

ytim) . LThm Mm

If the decoupling matrix A(x) is non-singular, the control law

-1u(x) = A(x)

/ Ljhx \

— '. + v

\ L)mhm I

with v 6 RTO linearizes (and decouples) the system (4.71) resulting in

47,)

ytim)

(4.73)

(4.74)

(4.75)

(4.76)
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To take up the ideas of Section 4.3.1, we will first consider the case when A(x) is

non-singular but is close to being singular, that is, its smallest singular value is uniformly
small for x € U. Definitions of zero dynamics for MIMO systems are considerably more

subtle than those for SISO systems and thereader maywish to review themin [IM89Jsi87]
before proceeding further. Since A(x) is close to being singular, i.e., it is close in norm to a
matrix of rank m - 1, we may transform A(x) using elementary column operations to get

A°(x) = A(x)V°(x) = «&(*) 3°m(*) ]CiW €S'
(4.77)

where each S°- is a column of A0. This corresponds to redefining the inputs to be

m? Ml

-l= (V°(«» (4.78)

m° M,

Now, the normal form of the system (4.71) is given by defining the following local diffeo-

morphism of x € Rn,

and noting that

tf = fc2(x),...,^ = £?-%«,

,-ift- = M*)>"..fiR. = L?l hm(x),

rF )

& = &

m-l

4 = &!(«,»?)+2>?;s« + «i2mfi°,

a = &

m-l

r1m

V «(f,i?)+P&n>°

(4.79)

(4.80)
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where 6,(ft n) is Ljhi(x) for i - 1,...,min (ft n) coordinates. The zero dynamics of the
system are the dynamics of the n coordinates in the subspace f = 0 with the linearizing

controllaw of (4.75) (with v = 0) substituted, i.e.,

ft = g(0, rj) - P(0, V)( A°(0, t/))"^^, rj). (4.81)

We will assume that (4.71) is non-minimum phase, that is to say that the origin of (4.81)

is not stable.

Now, an approximation to the system is obtained by setting c = 0 in (4.80). The

resultant decoupling matrix is singular and the procedure for linearization by (dynamic)
state feedback (the so-called dynamic extension process) proceeds by differentiating (4.80)

and noting that

x = f(x) + fi(x)U°l + -.. + gm(x)u°m (4.82)

where

[S?(*) ••' *!(«) ]=[*(«) •'' *»(«) ]V°(*)' (4-83)
We then get

^+1)

w(7m-l+l)

where

= b\x,u°1,..~,iJ.'3m_1) + A\x,ul,...,u0m_l)

= {.VJ + ^V)"1

u1 = (fi?,...,«i!Li»fim)T

6!

i.0
Mm_l

mSL

is the new input and

«»-(xr, •?,..., li.,)1,

isthe extended state. Note the appearance ofterms ofthe form fij,..., um_x in (4.84). The
system (4.84) islinearizable (and decouplable) if A1(x1) isnonsingular. Wewill assume that

the singular values of A1 are all oforder 1(i.e., A1 is uniformly nonsingular) so that (4.84)
is linearizable. The normal form for the approximate system is determined by obtaining a

(4.84)

(4.85)

(4.86)

(4.87)



local diffeomorphism of the states x, fi?,..., 8°,_, (6 R"*™"1) given by

(*W) =
m-l

(£i =h(*),...,& =Lj-'h^xUUi =L?h(x)+ Ea?isi>
i=i
m-l

m-l
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(4.88)

§• =M«). •••. fit =^M*),Ct+i =^}mM*) + ^ a^M?,
j=i

»?T )

Note that | 6 Ri*+~+'fti>+»» and 77 € R"-'*1 "irm~1 as compared with f GRi*+•"+?»» and
n q Rn-71 -ym -with, these coordinates, the true system (4.71) is given by

•J

€1

♦-1

•a

6yi+i
•J

«1

= (1

- A2
- S2

- — n i

S7m S-ym-1 t ^mm^m

n ill*i-rm+x = 6J.tt.^)+«m.(e.*«
aw

In (4.89) above, bJ(ft fj) and a* (ft rj) are the ith element and row of61 and A1, respectively,
in (4.84) above (in the ft rj coordinates). The approximate system used for the design of

the linearizing control is obtained from (4.89) by setting € = 0. The zero dynamics for

the approximate system are obtained in the £ —0 subspace by linearizing the approximate

system using

r miii)

»L(I,«

(4.89)

(4.90)
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to get

^ = $(0,i/)+P(0,7»Ml(0,77). (4.91)

Note that the dimension of fj is one less than the dimension of 77 in (4.81). It

would appear that we are actually determining the zero dynamics of the approximation to

system (4.71) with dynamic extension—that is to say with integrators appended to the first
m-l inputs fij, fi§,..., Km_v While this isundoubtedly true, it has been shown in Byrnes

and Isidori [Isi87] that the zero dynamics of systems are unchanged by dynamic extension.
Thus, the zero dynamics of (4.91) are those of the approximation to system (4.71).

The system (4.71) is said to be slightly non-minimum phase if the equilibrium

77 = 0 of (4.81) is not asymptotically stable, but the equilibrium fj = 0 of (4.91) is.
It is also easy to see that the preceding discussion may be iterated if it turns out

that A1(ft fj) has some small singular values. At each stage ofthe dynamic extension process
m-l integrators are added to the dynamics of the system and the act of approximation

reduces the dimension of the zero dynamics by one. Also, if at any stage of this dynamic

extension process, there are two, three,... singular values of order e, the dynamic extension

involves m —2, m —3, ... integrators.

If the objective is tracking, the approximate tracking control law is

/

s.W-1«!(€.« = (^(f.«)

*1(M)

^i+1)+<(«r-&+i)+ + <*h(ydi-£{)
(4.92)

+

{fm+l) , „m dfrt™) _;ra \ 1
% +<xhn(ydm-£m) \j

with the polynomials

B7i+1 + <.s7* + + a*0, i = 1,..., m, (4.93)

chosen Hurwitz.

The following theorem is the analog of Theorem 4.1 in terms of providing a bound

for the system performance when the control law (4.92) is applied to the true system (4.71).
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Theorem 4.3 Suppose that

• the zero dynamics (4.91) of the approximate system are locally exponentially stable

and q+ Pu\ is locally Lipschitz in £ and fj and

• the functions a°mum are locally Lipschitz continuous for i = 1,..., m.

Then, for c sufficiently small and for desired trajectories with sufficiently small values and

derivatives (yid, yid, ..., y\di+1)), the states of the system (4-89) are bounded and the
tracking errors satisfy

kii = ia-wii ^ k€

N = II?-^1 < * (494)

l«m| = \£m-ydm\ < k€

for some k < oo.

Proof: Similar to that ofTheorem 4.1. t3

As in the SISO case, the stronger conclusions of Theorem 4.2 can be stated when

the controlobjective is stabilization and the approximate system has no zero dynamics.

Conclusion

In this chapter, we have described the application of techniques of exact input-

output linearization of nonlinear control systems to the flight control of vertical take-off

and landing aircraft. We saw that the application of the theory to this example is not

straightforward. In particular, the direct application of the theory yielded an undesirable

controller. We remedied the situation by neglectingthe coupling between the rollingmoment

input to the aircraft dynamics and the dynamics along the y axes.

The example of the vertical takeoffand landingaircraft is an example of a system

which is slightly non-minimum phase. Thus, the exact linearization technique resulted

in a system which was internally unstable. We generalized the lessons learned from this

application to define, informally, slightly non-minimum phase systems and gave methods to

linearize them approximately.



Conclusion

In this dissertation,we have seen that it is possible to achievereasonable tracking

performance for a large class of nonlinear systems, including systems that are not invertible

and systems that have unstable inverses. The main requirement for this is that the true

system be close to an exponentiallyminimum phase nonlinear system. Designing the exact

tracking control law for the approximate system then yields bounded tracking for the true

system.

This result is fortunate since, as we have seen, the structure of the zero dynamics

of a system system (i.e., whether it is minimum phase or not) is not robust to system

perturbations. In particular, the tracking control results show that controller design based

on exponentially minimum phase systems is indeed robust to system perturbations.

This dissertationis just a small step in a larger project to bring nonlinear control

theory into a practical control design methodology. In order to bring these interesting

techniques into use we must work to understand and soften the many of the restrictions

and assumptions currently required by the theory.

Much interesting work remains to be done. Particular areas indicated by this

dissertation include:

• Trajectory design. For a class of invertible nonlinear control systems, the method

of input-output linearization is useful to guarantee that the trajectory error has an

exponentially stable linear dynamics. In order for input-output linearization to be

effective, the desired trajectories must respect constraints imposed by the true system

dynamics.

• Actuator limits. One of the most difficult problems in feedback control designers

must face is the fact that real life actuators and systems have limits. This problem

can sometimes be handled by judicious trajectory design. However, this problem

108
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can still pose major difficulties in the presence of measurement errors and external

disturbances.

• System steering. Sometimes a system can be in a state where it does not possess

full controllability. In this case, a natural (sub)task would be to steer the system (in

allowed) directions to get into a region of the state space where normal techniques

can be used.

• Tools for nonlinear systems analysis. The calculations required for even relatively

simple nonlinear systems are often quite involved. Also, the estimates that we derive

to prove stability and tracking performance are extremely conservative and do not

reveal the true nonlinear nature of the problem.

We conclude with a very simple exampleas a warning of the pitfallsthat nonlinear

systems maycontain. Consider a verysimple system with a smooth saturating nonlinearity

given by

x = M

(4.95)
y = tanhx

where the controlobjective is to track a given desired output yd. Clearly, since

sup \y(x)\ = 1,

we cannot track just any trajectory. Following the usual procedure for input-output lin

earization, we differentiate the output to get

y = (l-tanh2x)tt. (4.96)

Since (1 —tanh2 x) ^ 0 for x € R, we use the control law

m=1_t1ajih2x [yd +<*0(yd - y)] (4-97)
to give a closed loop system of

y = ild + <x0(yd - y) (4.98)

or

e + a0e = 0. (4.99)

Given this error equation, it would appear that our control law will make the system track

any desired trajectory. Indeed, as long as the system states remain bounded, the closed
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loop system will have thelinear error dynamics given by (4.99). However, when the desired
trajectory is outside the range of tanhx, the system state will become unbounded in finite
time! For example, let the desired trajectory be yd = 2. Then, the closed loop dynamics

are given by (with cto —4)

t =4(2-tanhs) =e2X +4+3e-2* (4.100)
1 — tanh2 x

For any finite initial condition, the state x of(4.100) will become unbounded in finite time.
The simplicity of the linear error equation (4.99) (valid for every finite x) has hidden the
danger in the underlying differential equation (4.100) (finite escape time for this particular

desired trajectory).

This verysimple and somewhat contrived example illustrates animportant point—

we must verify, at each step, that we are not violating any important assumptions. In this

regard, nonlinear systems seem to be much less forgiving than linear systems.
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