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ABSTRACT

In this dissertation, we embark on a project to make recent theoretical advances
in geometric nonlinear control into a practicable control design methodblogy.

The method of input-output linearization by state feedback provides a natural
framework to design controllers for systems, such as aircraft, where output tracking rather
than stabilization is the control objective. Central notions include relative degree and zero
dynamics. Roughly speaking, the relative degree of a system is the dimension of the part
of the system that can be input-output linearized and the zero dynamics are the remaining
(unobservable) dynamics. Systems with exponentially stable zero dynamics are analogous
to minimum phase linear systems and can be controlled to track a rich class of output
trajectories with internal stability.

While investigating the use of these methods in the control of the V/STOL Harrier
aircraft, we noticed that the small forces produced when genera.ting body moments caused
the aircraft to have an unstable zero dynamics, i.e., to be nonminimum phase. However,
if this coupling were zero, then the aircraft could be input-output linearized with no zero
dynamics. In other words, a small change in a parameter resulted in a significant change in
the system structure!

- With this observation as the driving force, this dissertation studies the effects of
system perturbations on the structure of the system and develops methods for tracking
controller design based on approximate systems.

After reviewing the basics of geometric nonlinear control, we show that small reg-
ular perturbations in the system can result in singular perturbations in the zero dynamics.

We give asymptotic formulas for the resulting fast dynamics.



Next, we develop techniques for tracking control design for systems that do not
have a well defined relative degree. Using an approximate system with a well defined
relative degree, we design tracking controllers that guarantee approximate tracking for the
true system. This approach is shown to be superior to the usual Jacobian linearization
method on a simple ball and beam system.

Returning to the aircraft control problem, we use a highly simplified planar VTOL
aircraft model to illustrate the (slight) nonminimum phase characteristic of these systems
and develop a controller to guarantee approximate tracking. We also develop a formal
theory for this class of systems.



Acknowledgements

I would like to express my deepest appreciation to my advisor, Professor Shankar
Sastry, for his guidance, encouragement, and genuine friendship during my studies at Berke-
ley. His unbounded excitement in the area of dynamical systems has been an inspiration to

me.

I would like to thank Professor Charles A. Desoer for his careful review of this
dissertation, for serving as chairman of my qualifying examination committee, and especially
for showing me the power of precise thinking. I am also happy to thank Professor J. Karl
Hedrick for his intérest in reading and reviewing this dissertation, Professors Jitendra Malik
and Jerry Marsden for serving on my qualifying examination committee, and Professor E.
(Lucien) Polak for his guidance during my early graduate work and for his encouragement
and continuing faith in me (“I think you should stay on for your doctorate”). Additionally,
I would like to thank Dr. George Meyer of NASA Ames Research Center for giving me
access to the facilities and models used at Ames and for inspiring many areas of research

through his insight into practical problems in flight control.

I have benefitted greatly from interactions with many friends and colleagues here
in the department. To name just a few (dozen), Ping Hsu, Andreas Neyer, Arlene Cole,
Zexiang Li, Paul Jacobs, Greg Heinzinger, Saman Behtash, Richard Murray, Kris Pister,
A. K. Pradeep, Pietro Perona, Niklas Nordstrom, Curt Deno, Andy Packard, Paul Kube,
Er Wei Bai, Li-Chen Fu, Marc Bodson, Bob Minichelli, John Anagnost, Omer Morgul,
Shahram Shahruz, Nazli Giindez, Giintekin Kabuli, Gary Demuth, Ted Baker, Joe Higgins,
Tim Salcudean, and Stephen Wpu.

In May 1985, my graduate studies were interrupted by a peculiar incident—while
working in a research lab, I opened a small plastic box that contained an explosive bomb. I

am sincerely grateful to Professor Mike Lieberman for his clear thinking and quick applica-

iii



iv

tion of first aid that quite literally saved my life. T am also indebted to Dr. Joseph Togba for
saving my right arm and hand through his excellent surgical skills. I would like to thank my
father John G. Hauser and my brother Christopher J. Hauser for being at my side during
this time. The members of the First Baptist Church of Richmond demonstrated their love
and faith in supporting my family and me during this trying period. I would especially like
to thank Larry and Judy Allgaier and Steven and Mary Lou Hopkins for their support and
friendship.

I would like to acknowledge the generous financial support of my work here at
Berkeley. My research has been supported by many sources including the United States Air
Force, NASA Ames Research Center (grant number NAG2-243), the Army Research Office
(grant number DA AL03-88-K-0106), the MICRO foundation, the Schlumberger Founda-
tion, and the Berkeley Engineering Fund. I would especially like to thank Professor Karl
Pister, Dean of the College of Engineering, and Professor Eugene Wong, Chairman of the
Department of Electrical Engineering and Computer Science, for their help and support in
this area during the years following the bombing incident.

I would like to express my deepest love and gratitude to my wife, Babbette. Her un-
failing support and understanding through these years have been a source of great strength..
I would like to dedicate this dissertation to our children, Jennifer, John, and Jacqueline.
May we always find the world as delightful as they do.



Contents

Table of Contents
List of Figures
Introduction

1 Introduction to Geometric Control Theory

1.1 Preliminaries . . . . . . oo v vttt ittt e e e e e e e
1.2 Input-Output Linearization for a Class of SISO Nonlinear Systems . .. ..
1.2.1 Introductory Concepts . . . . .« vt v v ot b bttt
1.2.2 Local ‘Normal’ Form of a SISO nonlinear system . .. ... ... ..
1.2.3 Full State Linearization by State Feedback . .............
1.2.4 Zero Dynamics and Minimum Phase Nonlinear Systems . . ... ..
1.2.5 Stabilization and Tracking for SISO systems . . . ... ... .....
1.3 Linearization and Decoupling of MIMO Nonlinear Systems .........
1.3.1 MIMO Systems Linearizable by Static State Feedback . . ... ...
132 MIMO ‘Normal’Form . . .. ... oot v vt vt v i v v
1.3.3 Zero Dynamics and Minimum Phase MIMO Systems . . . . ... ..
1.3.4 Stabilization and Tracking for MIMO systems . . . ... .. ... ..
1.3.5 Dynamic Extension of MIMO Systems . . . . ... ..........
136 MIMOExample . ...... .ottt ennenennnnns
1.4 Bibliographical Notes. . . . . .. . o v v v i it ittt e e e e

The Structure of Zero Dynamics

2.1 Linear Systems . . . . . . . v v vt it it e e e e e e e e e e e
2.1.1 Perturbationsind ... ... ... .. it
2.1.2 Perturbationsine ... ... ...t
2.1.3 Perturbationsin 4 . ... .. ... ... . i i oo,
2.1.4 Simultaneous Perturbationsin 4,b,andc¢ .. ... .. ... .. ...

2.2 Nonlinear Systems . . ............ e e e e e e e e
22,1 Perturbationsing .......... ... . i,
222 Perturbationsinh . ... .. ... .. ... i i e
2.2.3 Perturbationsin f . ... ..... .. .. . o oo
2.2.4 Perturbationsin f,g,andh. ... ... ... ... ... e e e



23 Conclusion . ... ..ot ittt ittt e e e e e e e e 55
3 Approximate Input-Output Linearization for Nonlinear Systems without
Relative Degree 56
3.1 Introduction.. . . . v v vt v vttt h e e e e e e e e e e 56
32 TheBalland Beam Example . .................0cccon. 57
321 Dynamics ... ..o vt ittt e e e 58
3.2.2 Exact Input-Output Linearization ................... 59
3.2.3 Full State Linearization ... ... ... ... 60
3.2.4 Approximate Input-Output Linearization ............... 61
3.3 Theory for Approximate Linearization .. ... ................ 66
34 Conclusion ....... S 78
4 Approximate Tracking for Slightly Nonminimum Phase Systems: Appli-
cation to Flight Control 79
41 Aircraft Dynamics . . . . . o v vttt i i e e 80
4.1.1 A Simple Planar Aircraft ........ e e e e e e e 83
4.2 Linearization by State Feedback. . . . .. ... ... ... . oo 84

4.2.1 Exact Input-Output Linearization of the PVTOL Aircraft System . 84
4.2.2 Approximate Linearization of the PVTOL Aircraft System using a

Simplified Model . . ... .. ...ttt i 88

4.3 A Formal Approach to the Control of Slightly Non-minimum Phase Systems 93
4.3.1 Single-Input Single-Output (SISO)Case . . . ... .......... 94

4.3.2 Generalization to MIMO Systems . . . . . . . . o v vttt v oo 102
Conclusion 108

Bibliography 111



List of Figures

11
1.2

3.1
3.2

3.3

34

3.5

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

The zero dynamics manifold M* ... ..... ... ... .. ... ... .. 20
The simple planar vehicle. . . . . .. ... . i i oo L, 31
The ball and beam system. . . . . ...« .ot v vt vttt vt oe oo 58
Approximate input-output linearization: a chain of intergrators perturbed

by small nonlinear terms. . . .. . .. ..ttt it e it e e 61
Simulation results for y4(t) = R cos7t/30 using the first approximation ((a)

e=ya—¢1, () P2, ()0, (d)r) ... i 63
Simulation results for y4(t) = Rcosnt/30 using the second approximation

(@)e=ya—1,(b) Y3, (c) O, (d)r) . .. v v v v i it 64
Simulation results for y4(t) = R cos7t/30 using the Jacobian approximation

()e=ya—1, (B) ¥3,(c)0,(A)7) . . . oo v i i i il e 66
Aircraft coordinate systems (R-runway, A-aircraft) . ............. 82
Reaction control system geometry . .............00 ... 83
The planar vertical takeoff and landing (PVTOL) aircraft ........ .. 83
Block diagram of the PVTOL aircraft system . ................ 84
Phase portrait of an undamped pendulum (theta vs. theta,e =1) ... .. "~ 86
Response of non-minimum phase system to smooth step input . . . ... .. 87
Block diagram of the augmented model PVTOL aircraft system . . . . . . . 89
Response of the true PVTOL aircraft system under the approximate control 91

Response of the true PVTOL aircraft system under the approximate control
with input transformation . . . . .. ... ... ... .. o o oo 93



Introduction

There has been an explosive growth in the last ten years in the number of applica-
tions of nonlinear control techniques; examples include flight control systems in helicopters
[MC80], robot manipulators [Fre82], process control [SCS87], and even drug delivery sys-
tems [CB84]. Nonetheless, it is fair to say that nonlinear control system design is not at the
state of the art that it should be in industry—especially considering the fact that almost
every physical system is fundamentally nonlinear.

A linear systems approach is often taken is to design a controller based on lnear
approximation(s) of the system about desirable operating point(s). Under reasonable con-
ditions, the linear controller(s) can be used to stabilize and regulate the system about the
operating point(s). Indeed, a large number of researchers have worked to develop robust
methods (see, e.g., [Fra87]) to somehow enlarge the region where such a linear controller
can effectively control the nonlinear system. This approach is useful for systems where
stabilization or regulation is the goal. Since the controller strives to keep the system close
to the nominal operating point, the approach will be effective provided the system is not
too nonlinear and the excursions from the operating point are not too large. In particular,
this approach has been shown to be quite effective when the neglected nonlinearities are

sector bounded.

For many systems, such as aircraft, stabilization and regulation fall far short of the
true control objective. Indeed, for such systems, agility and maneuverability over a large
region is desirable. We may specify such a goal as the ability of the system to track a rich

set of output trajectories.

One common approach to trajectory tracking is to linearize the system about the
reference trajectory to obtain a linear time-varying system that is valid in a very small

neighborhood of the desired trajectory. Then a time-varying compensator is designed to
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control the system. Unfortunately, few methods are available to design such compensators.
Another popular approach is gain scheduling. A family of linear controllers is
designed—each one good at stabilizing the system around a different operating point. The
system controller is then built by scheduling (perhaps interpolating between) the individual
controllers based on a set of parameters (a part of the system state is often the set of
parameters). Then, provided the system state and the parameters do not change too rapidly
and the family of controllers is a continuous (or smooth) function of the parameters, it is
hoped that the closed loop system will maintain the desirable properties of stability and
be able to approximately track reasonable trajectories. Major shortcomings include the
requirements that each point on the desired trajectory be close to at least one of the selected
operating (i.e., equilibrium) points and that the transitions between operating regions not
be too fast. Also, there are few analytical results proving the effectiveness of these methods.
_ Many of the difficulties experienced are simply due to the fact that control engi-
neers are trying to fit a round peg (nonlinear systems) into a square hole (linear system
design methodologies). Fortunately, a large number of these difficulties can be dealt with
directly using a nonlinear system design methodology. Indeed, much of the intuition behind
gain scheduling is quite intrinsic to control laws developed by nonlinear methods. This is
clearly seen in succesful applications of nonlinear control in flight dynamics [MC75,MC80]
and robotics [Fre75], both developed before a general theory had evolved.
From a base of more abstract system theoretic issues [Por70,5J72,SR72,HK77,
Bro78), the field of nonlinear control has seen a decade of intense activity and evolution
culminating in a well-developed and understood theory (see, e.g., [Sus83,Isi85,Cla86,1si87]
for expository surveys). Ome of the key developments useful for the purpose of output
tracking is the theory of input-output linearization of nonlinear systems by state feedback.
By linearizing the input-output response of the nonlinear system, we can bring to bear
the powerful methods of linear systems theory to achieve robust and stable tracking. This
theory has recently achieved maturation.
The goal in this dissertation is to commence a program for the development of a
practical nonlinear control design methodology. The outline of the dissertation is as follows.
In Chapter 1 we review the tools and techniques of geometric control theory that
we will find useful in the sequel. In particular, we see that the nonlinear counterpart of
the zeros of a system, the zero dynamics of a nonlinear system [BI84,IM89,BI88], provide

a notion of structure for the nonlinear system. Specifically, the zero dynamics help to



characterize the trajectories that the system can track.

In Chapter 2, we present theoretical results that show that the zero structure of
systems (both linear and nonlinear) is not robust with respect to regular perturbations in
the model. Roughly speaking, regular perturbations in the state space model may give rise
to singular perturbations in the zero dynamics. We give asymptotic formulas for the zeros
of the (linearization of) the additional fast zero dynamics.

In Chapter 3, we present a method for the approximate input-output linearization
of systems without well defined relative degree. We show that, although the system cannot
be exactly input-output linearized to achieve exact tracking of trajectories, we can often still
achieve bounded error output tracking by designing the compensator based on a minimum
phase nonlinear system that approximates the true system.

In Chapter 4, we present a method for the approximate input-output linearization
of slightly nonminimum phase systems. Applying the methods of input-output lineariza-
tion directly to a nonminimum phase system can yield exact tracking, but at the expense
of unstable internal motion and, perhaps, unrealistic input requirements. As in the no rel-
ative degree case, we show that designing the compensator based on an approximate, but
minimum phase system, we can achieve bounded error output tracking. These ideas are
illustrated using a highly simplified planar vertical takeoff and landing (VTOL) aircraft.

These results of Chapters 3 and 4 show that, although the structure of the system
is not robust to perturbations (cf. Chapter 2), control laws designed using systems with '
good structure (minimum phase, etc.) are robust to perturbations.

Much interesting work remains to be done. Particular areas indicated by this

dissertation include:

e Trajectory design. For a class of invertible nonlinear systems, the method of input-
output linearization is useful to guarantee that the trajectory error has an exponen-
tially stable linear dynamics. However, in order for this approach to be effective, the

desired trajectories must respect constraints imposed by the true system dynamics.

o Actuator limits. One of the most difficult problems in feedback control designers
must face is the fact that real life actuators and systems have limits. This problem
can sometimes be handled by judicious trajectory design. However, this problem
can still pose major difficulties in the presence of measurement errors and external

disturbances.



e System steering. Sometimes a system can be in a state where it does not possess
full controllability. In this case, a natural (sub)task would be to steer the system (in

allowed) directions to get into a region of the state space where normal techniques

can be used.

e Tools for nonlinear systems analysis. The calculations required for even relatively
simple nonlinear systems are often quite involved. Also, the estimates that we derive
to prove stability and tracking performance are extremely conservative and do not

reveal the true nonlinear nature of the problem.



Chapter 1

Introduction to Geometric

Control Theory

In this chapter, we try to present some of the basic notions from geometric control
theory. We are by no means trying to provide a complete survey of the many interesting
results in this field. For a more complete review, consult one of the many excellent surveys
or texts, for example, [Sus83,1si85,Cla86,15i87,I5i89b).

The chapter begins with a brief review of some ideas from differential geometry.
We then cover much of the theory for the input-output linearization of single-input single-
output nonlinear systems using state feedback. This is followed by some generalizations
and algorithms for multi-input multi-output nonlinear systems. We conclude with some
biographical notes.

1.1 Preliminaries

We briefly review some ideas from differential geometry. For a detailed develop-
ment consult a standard text such as [Boo86,Mil76,AMR83].

Recall that a diffeomorphism is a smooth, bijective (one-one, onto) map with a
smooth inverse. Here smooth means that the map has continuous derivatives of all orders.
Sometimes we will use smooth to mean sufficiently differentiable for the task at hand.

Roughly speaking (for a precise definition see [Boo86]), a set M C R" is a smooth
manifold of dimension k if it is locally diffeomorphic to R%. Simple examples of smooth
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manifolds include a 2-dimensional sphere (embedded in R3)
S = {a: eER’ : |z = 1}, (1.1)
an (n — 1)-dimensional hyperplane (embedded in R")
H*l={zeR" : (c,z) =0}, (1.2)
and the group of proper rotations
50(3)={A€R™® : ATA=1, detA=1}. (1.3)

Let U and V be open subsets of R™ and R", respectively, with m > n. Given a
smooth mapping f : U — V, we say that = € U is a regular point of f if the rank of the
Jacobian Df at z is equal to n. A point y € f(U) C V is called a regular value of f if the
inverse image of y under f, f~1(y) C U, contains only regular points.

Note that each of the example manifolds above were given as the inverse image of
a regular value of a smooth mapping. In general, since manifolds are locally diffeomorphic

to R"®, we have:

Fact 1.1 If f : M — N is a smooth map between manifolds of dimension m > n, and
if y € N is a regular value, then the set f~(y) C ‘M is a smooth manifold of dimension

m-n.

Consider the set of all smooth curves through a point z on a manifold M. The
set of tangent vectors to these curves at z is called the tangent space at z, denoted T; M.
For k-dimensional manifold M embedded in R", the tangent space T; M at z € R™ can be
thought of as the k-dimensional hyperplane that best approximates M in the neighborhood
of z. Note that this hyperplane can be specified as the inverse image of n — k functions of
the form (c;, z) = ;. Also, note that the tangent space to R" at z € R™ is just a (different)
copy of R™. '

A vector field on M assigns to each z € M an element of the tangent space at z,
ie., f(z) e T-M. -

The Lie bracket of two vector fields, f and g, denoted [f, g] or adyg, is a vector
field given (in coordinates) by ’

adsg = [f,g]=Dg-f-Df-g. (1.4)



Repeated Lie brackets are denoted using the notation

adjg = g,
adg := [f,adj7lg), k>0.

(1.5)

The Lie derivative of a scalar function h along a vector field f, denoted L zh, is given by
Lyh(z) = dh(z) - f(z) (1.6)

and is a directional derivative of & in the direction of f.

A smooth k-dimensional distribution A on a manifold M assigns (smoothly) to
each point £ € M a subspace of the tangent space at z, A(z) C T M; that is, it has a local
basis of linearly independent vector fields g;, ¢ = 1,...,k, such that

A =span{g g2 --- gk} (1.7)

where the span is taken over the ring of C* functions. A distribution A is called involutive
if for all f,g € A, we have [f, g] € A, that is, A is closed under Lie brackets.

If A is a distribution on M and N is a submanifold of M such that for each z € N
we have TN C A(z), then N is an integral manifold of A. The distribution A is called
completely integrable if for each z € M, there exists an integral manifold N of A such that
T N = A(z).

The Frobenius theorem relates the concepts of involutivity and integrability:

Theorem 1.1 (Frobenius) A disiribution A on a manifold M is completely integrable if

and only if it is involutive.

Since a single vector field is always involutive (trivially), the Frobenius theorem

guarantees the existence of solutions (locally in time) to the ordinary differential equation
= f(z) z(0)==zo (1.8)

for smooth f. The solution of (1.8) for each initial condition will be a 1-dimensional integral
manifold of the (trivial) distribution A = span {f}.

The Frobenius theorem can also be used to show that, given an independent in-
volutive collection of vector fields, g;, ¢ = 1,...,k, defined on U C R"™ (thought of as a

manifold), there exists a set of independent functions, 7;, j = 1,...,n — k, such that

Lgni(z)=0 zeU ' (1.9)



for all combinations of ¢ and j. In other words, we can solve the set of partial differential

equations (1.9) for the functions #; on U.

1.2 Input-Output Linearization for a Class of SISO Nonlin-

ear Systems

A large class of nonlinear systems can be made to havelinear input-output behavior
through a choice of nonlinear state feedback control law.
1.2.1 Introductory Concepts
Consider, at first, the single-input single-output system
i = fz)+g(e)u
vy = h(z)

where z € R® (with R a smooth manifold), f and g are smooth vector fields, and h is

a smooth nonlinear function. In this case, smooth will mean C" with r sufficiently large.

(1.10)

Differentiating y with respect to time, we get

i = dh-f(z)+dh-g(a)u
= Lsh(z) + Lgh(z)u

(1.11)

where Lsh(z) : R®* — R and Lyh(z) : R® — R are the Lie derivatives of h with respect to
f and g respectively. If Lyh(z) is bounded away from zero for all z, the state feedback law
(of the form u = a(z) + B(z)v) given by

1
u= m(—L;h + v) (1.12)
results in a linear system from v to y given by
y=v. (1.13)

The control law (1.12) also has the effect of rendering (n — 1) of the states of the system
(1.10) unobservable through state feedback.
In the instance that Lyh(z) = 0 for all z, we differentiate (1.11) again to get

§ = L}h(z) + LyLgh(z)u . (1.14)



In (1.14), L3h(z) stands for Ly(Lsh)(z) and LyLgh(z) = Lg(Lsh)(z). Now, if LgLsh(z)is

bounded away from zero for all z, then the control law given by

()

= %L—:h(zj(-L}h(z) + v) | (1.15)

yields the linearized input-output system
j=v. (1.16)

More generally, if 4 is the smallest integer for which L gL"fh(a:) = 0 for all z and

i=0,...,7y—-2and LgL}'lh(a:) is bounded away from zero, then the control law given by

1
- . 117
“ L,L}-‘h(z)( jhto) (1.17)

yields
yMN=v. (1.18)

To make the preceding discussions more precise (and allow for the functions that
are only locally zero or nonzero, i.e., on an open set rather than all of R™), we make the

following definition for the relative degree of a nonlinear system:

Definition 1.1 The SISO nonlinear system (1.10) is said to have relative degree v at z¢
(an equilibrium point) if there ezists a neighborhood U of zo such that, for z € U,

LLik(z) = 0 VO0<i<y-1,

(1.19)
LyL} 'h(z) # 0.
Remarks

o This definition is compatible with the usual definition of relative degree for linear

systems (as being the excess of poles over zeros).

o The relative degree of a nonlinear system (at z¢) is precisely the number of times we

must differentiate the output to have the input appear explicitly.

o The last requirement in the definition of relative degree could be replaced by
LI} h(zo) #£ 0 (1.20)

since, by smoothness, this would imply the existence of a nonzero neighborhood.
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e The relative degree of some nonlinear systems may not be defined at some points,

e.g., when some LgL"fh is zero at z¢ but nonzero for points arbitrarily close to zo.

a

1.2.2 Local ‘Normal’ Form of a SISO nonlinear system

If a SISO nonlinear system has a relative degree 7 < n at a point o, then, by a
nonlinear change of coordinates, we can transform it locally into a ‘normal’ form. We find

the transformation as follows. Define

$1(z) h(z),
¢2(z) = Lgh(z),

(1.21)

$y(z) = L} 'h(z).

To show that these functions can be used as a partial change of coordinates we need the

following lemma which is interesting in its own right.

Lemma 1.2 Suppose the system (1.10) has relative degree v at zo (in a neighborhood U ).
Then
0 0<j+k<vy-1
L, Lsh(z) = . TrEST (1.22)
! (-1PLgL} 'h(z)  j+k=7-1

forallz €U, forallj <v-1.
Proof: By induction on j. For j = 0, (1.22) is equivalent to the statement that the system
has relative degree y. Suppose that (1.22) is true for j = I; we will show it is true for
j =1+ 1. Since (by straightforward calculation)

Ladggh = LyLgh ~ LyLgX (1.23)
for all smooth functions A(z), we have
Ladc!ugL'}h(z) = LsLoa JL5h(z) - Lo, SL5 h(z) . (1.24)

We evaluate this expression for k such that [ + 14+ k < y — 1. The first term is zero on
U since Lad} ,L5h(z) is zero for I + k < v — 1 (by assumption) and the Lie derivative of a
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vanishing function is zero. Using the assumption, we find that the second term is given by

0 0<Il+1+k<y-1
- Ladz!gL,}'Hh(z) = . (1.25)
(=1)(-1)'L,L} 'h(z) I+1+k=7-1
which shows that (1.22) holds for j = !+ 1 and hence the lemma is true. O

Remarks
e For a linear system (c, A, b), the lemma reduces to the (somewhat trivial) statement

. 0 i+ k< y~-1
cAF . A7b = d (1.26)

cA7-1p jt+tk=v-1
In other words, multiply cA* on the right by Ab with j + k = v — 1 to get the first
nonzero Markov parameter. Note also that (c,4,b) need not be minimal since no

observability assumptions are made in the definition of relative degree.

e Similarly, in the nonlinear case, the lemma tells us to multiply the differential dL ’}h
on the right by ad"}g with j + £ = 4 — 1 to obtain the first nonzero function. If
j+ k < v —1, the resulting function will be identically zero on U.

a
We use this result to show:

Proposition 1.3 The functions ¢;, i = 1,...,7, defined in (1.21), are independent on U,

that is, the differentials dp; are linearly independent (over the ring of smooth functions) on
U. .

Proof: Suppose that the differentials are linearly dependent on U. Then there exists

smooth functions ¢;(z), ¢ = 1,...,7, not all identically zero such that
0 = ci(z)dds(z) + ca(z)dda(z) + -+ - + o (2)d,(2) (1.27)
= cidh+cadLsh+ -+ + c,dL} R

for allz € U. We show, to the contrary, that each ¢; must be identically zero on U. Multiply
(1.27) on the right by g (= ad%g) to obtain
0 = clgh+csLgLh+ - +cyLgLY 'h

(1.28)
= c.,LgL}"lh .
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Now, since the system has relative degree v, L,,L’}'lh does not vanish on U which implies
that ¢,(z) must be identically zero on U. Next, multiply (1.27) (with ¢, = 0) on the right
by ad;g to get (using Lemma 1.2)

0 = clLad!gh + C2Lad/ngh +---+ C‘y-lLad,gL}-zh

(1.29)
= —cyalgL} 'R

which shows that c,_;(z) is also identically zero on U. Continuing this process with ad %9,
ad3g, - -+ ad}'lg, we see that each ¢; is identically zero on U so that the functions ¢; are

independent on U as claimed. O

Remarks

e This proposition is quite remarkable since it says that if we find a (possibly large)
neighborhood U on which the system has relative degree 7, then the functions ¢; will
be independent on the whole set and therefore can be used as a partial coordinate

transformation on that region.

o A local version of this proposition can be proved as follows. Let

(C, A7 b) = (dh(x0)1Df(IO)$ 9(30))

be the coefficient matrices for the Jacobian linearized (tangent) system at the equlib-
rium point zo. The condition that the differentials d¢; be linearly independent in a
neighborhood of zg is equivalent to their independence at zo (by smoothness). Since
dei(zo) = cA*~!, we check that the matrix

d¢1 (Io) ] c
d¢2.(z°) = cf4 (1.30)
L dé(z0) cAT1

has full rank 4 by multiplication on the right by

[6 4b --- Arh| (1.31)
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O

To complete the coordinate transformation, we need to find (n — ) functions 7; such that
the collection ¢;, nj, i = 1,...,7, 5 = 1,...,n — 7, is independent on U. Since the single
vector field g is (trivially) involutive, the Frobenius theorem guarantees the existence of

(n — 1) independent functions A;, i = 1,...,n — 1, such that
LyAi(z)=0 =z€U,i=1,...,n—-1. (1.32)

Since the functions ¢;, i = 1,...,7—1, are independent and satisfy (1.32), we will use them
as (7 — 1) of the functions ;. Now, complete the set ();) with (n — 7) more functions, 7;,
j=1,...,n -7, that satisfy (1.32) and are such that the collection ¢;,¢=1,...,7-1, 1)',-,
j=1,...,n — v are independent on U. Then, since Ly¢,(z) # 0 for z € U, the matrix

-
d¢ ()

az)= | @ (1.33)

dm(z)

I dnn—(2) ]

has rank 7 for all z € U. This shows that the transformation

8:2 0 (1(a)y- ) ba(2), M@+ Incrl(2))T (1.34)

is a diffeomorphism of U onto &(U). Define coordinates (§,7) for the transformed state to
be '
( & } ( $1(z) )

N D L ¢:(2) = &(z) . (1.35)

i T m(z)

\ s )\ el )
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Then, in the (£,7) coordinates, the nonlinear system (1.10) is given by

b = &

& = &

. (1.36)
& = b(&n)+a(§,nu

7 = aémn)

y = &

where b(£,7) and a(§,n) are L}h(z) and LgL}'lh(:c) in (&, 7) coordinates and ¢;(§,7) is
Lni(z) in (€,7m) coordinates. Thus for example,

b(¢,n) = LA(271(&,m)) - (1.37)

Note the lack of input terms in the differential equations for 7—this is due to the fact that
Lyni(z) =0,i=1,...,n — 7, for z € U. The system description (1.36) is a local ‘normal’
form of the system (1.10) [BI88,Isi89b].

1.2.3 Full State Linearization by State Feedback

Consider now the case when the system (1.10) has a relative degree of ezactly n.
In this case, we can locally transform the system into a controllable linear system. Indeed,

the normal form of the system is given by

b = &
& = &
: (1.38)
bn = b(E)+a(E)u
vy = &
so that the feedback law
u= 50O+ (1.39)

yields a linear system with a transfer function of 1/s® from v to y. The transformation

from the original system (in z and u) to the linear system (in £ and v) consists of
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1. a nonlinear change of state coordinates
(61’ 62’ seey En)T = Q(z) = (h(z)’ L.fh(x)’ ceey L';_lh(z))T (1°40)
and

2. a (state-dependent) change of input coordinates and state feedback

v(z,u) = L}h(z) + Lo} h(z)u (1.41)

both defined in a neighborhood of zo.
We can now place the poles of the closed loop system at the zeros of a desired

polynomial d(s) = s” + ap-15""1 + -+ -+ ap by choosing the state feedback

v=—agby — - — an-1én (1.42)

or, in the original coordinates

1

= _LgL}‘"h(z)[_L?h(z) - an_1 L3 h(z) — - - - — aoh(z))] - (1.43)

u

Thus we see that the nonlinear system (1.10) is equivalent to a controllable linear
system by choice of a particular set of state and input coordinates (with state feedback),
namely, (1.40) and (1.41).

Now, suppose we are given the system dynamics

& = f(z) + g(ayu (149)

but no output is specified. An obvious question is then: When are the dynamics of a
nonlinear system of the form (1.44) equivalent to the dynamics of a controllable linear sys-
tem? Necessary and sufficient conditions for this equivalence have been given by Jakubczyk
and Respondek [JR80] and (independently) by Hunt, Su, and Meyer [HSM83,5u82] (and
apparently also by Brockett—see note in [JR80]).

These conditions can easily be derived from our development. Indeed, we see that
the nonlinear dynamics of (1.44) are equivalent to a linear dynamics if (and only if) there
exists a function h for which the resulting system has relative degree exactly n. Thus the
function » must be such that (by the definition of relative degree)

LyLih(z)=0 =zeUi<n-1 (1.45)
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and .
LgL’;‘lh(z) #0 - z€U. (1.46)

Now, (1.45) is a set of (n — 1) higher order linear partial differential equations for the
function h. Fortunately, it can be reduced to a set of first order linear partial differential

equations using the following proposition.

Proposition 1.4 Let f and g be smooth vector fields on an open set U C R™ and let h be
a smooth function on U. The following conditions are equivalent:

1. LyLih(z)=0, ze€U,0<j<k.
2. Lad,}gh(a:)=0, zeU,0<j<k.

Proof: By induction on k using the same techniques as in the proof of Lemma 1.2. O

The proposition tells us that equations (1.45) are equivalent to the set of first order

linear partial differential equations
Ladigh(x) =0 =zeUi<n-1 (1.47)
which can be rewritten as
dh - [g adsg -+ ad}~%g| =0. (1.48)
Proposition 1.4 also implies that equation (1.46) is equivalent to
Laa}'-*gh(z) #0 zeU. (1.49)
We now state a result dual to Proposition 1.3:
Proposition 1.5 Suppose that (1.47) and (1.49) hold. Then the distribution
span{g adsg - ad'f"'lg} (1.50)
has dimension n on U.

Proof: Assume the vector fields are linearly dependent, that is, there exist function a;,

i=1,...,n, such that

a1g+ azadgg+ -+ apad?lg=0. 1.51
f f
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Multiplying on the left by dh, we get (by Lemma 1.2)
@aLgp-1gh =0 (1.52)
which shows that ay(z) = 0 for z € U. Continue this procedure, multiplying by dLsh,

dL"}h, etc., to see that ap_1, @n_2, etc., are each identically zero on U. This proves the

proposition. O
We can now state the necessary and sufficient conditions for the equivalence of the
system dynamics:
Theorem 1.8 [JR80,Su82,HSM83] The dynamics of the nonlinear system
¢ = f(z)+ g(z)u (1.53)
are locally (on U) equivalent to the dynamics of a controllable linear system by change of
state and input coordinates and state feedback if and only if
1. the distribution (1.50) has dimensionn on U, and
2. the distribution
span{g adsg --- ad'f“zg} (1.54)

18 involutive on U.

Proof: The Frobenius theorem says that there is a function % solving (1.47) if and only if
the distribution (1.54) has dimension (n — 1) on U and is involutive on U. This combined

with the previous facts proves the theorem. O
Remarks

¢ The distribution (1.50) is the controllability distribution and is the nonlinear analog
of the linear controllability matrix
[bab - a1y | (1.55)
and tells us that the system is locally controllable (e.g., through its Jacobian approx-
imation with b = g(z¢) and 4 = D f(zo)).

e The involutivity condition is trivially satified in the linear case but not generically
satisfied in the nonlinear case. Thus, not all locally controllable nonlinear systems

may be locally fully state linearized.
O
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1.2.4 Zero Dynamics and Minimum Phase Nonlinear Systems

Above we saw that the relative degree of a nonlinear system was a natural extension
of the relative degree of a linear system—the excess of poles over zeros. In this section, we
will see that this analogy can be extended to define a nonlinear version of the system zeros,
the zero dynamics.

The input-output linearizing control of (1.17) (repeated here for easy reference)

1

el (“Lh+v
Y= LI Y

gives the nonlinear system (1.10) a closed loop transfer function of 1/s7 from v to y (ac-
counting for 4 of the n states). The remaining (n —7) states of the system have been made
unobservable by state feedback. To see how this happens, consider the linear case, i.e.,
f(z) = Az, g(z) = b, and h(z) = cz. Then, the system has relative degree v if the Markov

parameters are such that

ch=cAb=cA%=---=cA""2 =0

(1.56)
cAT71p#0
so that the control law (1.17) yields the closed loop system
& = |I— pgbcA™| Az + g=rzby
[ 5 ] 3 (1.57)
y = ¢

with transfer function 1/s” from v to y. It follows that (» — 7) of the eigenvalues of
[I - a;‘:q;bcA"'l] A have been placed (by state feedback) at the zeros of the original
system and the remaining at the origin. Thus, the input-output linearizing control law may
be thought of as the nonlinear counterpart of a zero-cancelling control law.-

There are three equivalent notions that can be used to define the zeros of an

invertible linear system:

1. the system dynamics associated with the maximal controlled invariant manifold in

the kernel of the output map,

2. the system dynamics under the constraint that the output be identically zero for all

time, and
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3. the dynamics of a minimal inverse system with the input (i.e., the original output)
set to zero.

Although these notions do not always coincide for a nonlinear system. Under certain condi-
tions (e.g., the relative degree is well defined), these notions are, in fact, equivalent [IM89).
With this fact in hand, we make the following definition:

Definition 1.2 The zero dynamics of a nonlinear system (1.10) are the dynamics of the

system subject to the constraint that the output be identically zero.

To show that this definition is well-defined, we will explicitly characterize the zero
dynamics of (1.10) using the local normal form (1.36). First note that .

Y(H) =0 <= £1(t) = &(t) = -+ = &(1) = 0. (1.58)

Also, in order to keep £, = 0 we must choose the input so that

u(t) = _% (1.59)
where 7(t) is any solution of
7= q(0,7), n(0) arbitrary. . (1.60)

Thus, for arbitrary n(0) with (0,7(0)) € &(U), the output can be held identically zero
provided that the &;(0) = 0 for ¢ = 1,...,7. In the original coordinates, we see that the
initial state z(0) belongs to the manifold

M ={zeU : h(z)=Lsh(z) =...= L} 'h(z) = o} (1.61)

and the input is given as the state feedback

u*(z) = __Lik=) (1.62)

—1 .
L,L} h(z)
This control law is precisely (1.17) with v set to zero. Note that this feedback law renders
M?* invariant, i.e, given an initial condition belonging to M *, the entire trajectory of (1.10)

will lie in M*. Thus, the zero dynamics of (1.10) are precisely the dynamics of

¢ = f(z) + 9(z)u"(2) (1.63)
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Figure 1.1: The zero dynamics manifold M*

restricted to M* as shown in Figure (1.1). In (§,7) coordinates, the zero dynamics are
simply

£ =0

7 = q(0,)

and are the internal dynamics of the system consistent with the constraint that y(t) = 0.

(1.64)

For a linear system in normal form, the 7 dynamics will have the form

7= PE+Qn (1.65)

so that the zero dynamics are simply

1=@Qn. (1.66)

It is easy to check that the eigenvalues of Q are indeed the zeros of the original system.

Recall that a linear system is called minimum phase if all the the system zeros lie in
the open left half plane. In other words, the zero dynamics of the system are (exponentially)
stable. To extend this notion to nonlinear systems we need a few more assumptions.

Recall that the normal form is defined locally around the equilibrium point zo.
Assume, without loss of generality, that the equilibrium point zo is mapped to (§,7) =
(0,0) by the coordinate transformation . Specifically, this requires that 2(zo) = 0 and
4(0,0) = 0.

Definition 1.8 The nonlinear system (1.10) is said to be asymptotically (exponentially)
minimum phase at zq if the equilibrium point n = 0 of (1.64) is locally asymptotically
(ezponentially) stable.
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Remarks

e It is important to note that the minimum phase property of a nonlinear system de-
pends on the equilibrium point zo under consideration. Thus, a nonlinear system may

be minimum phase at some points and nonminimum phase at some others.

o The stability properties of the zero dynamics are independent of the choice of 7 coor-

dinates.

a

1.2.5 Stabilization and Tracking for SISO systems

With the concepts of zero dynamics and minimum phase systems in hand, we are
now ready to tackle the problems of stabilization and tracking for nonlinear systems for
which the relative degree is well defined. We start with stabilization:

Theorem 1.7 Suppose the system (1.10) has relative degree y and is locally asymptotically
minimum phase and let d(s) = s7 + ay_187"1 + .-+ 18 + o be ¢ Hurwitz polynomial.
The state feedback law '

1

MO LI

(-L}h(z) - a.,_lL}"lh(z) — «ov= oy Lyh(z) — agh(z)] (1.67)
results in a (locally) asymptotically stable system.

Proof: In (£,7) coordinates, the closed loop system (1.10), (1.67) is given by

& 0 1 0 &
|l o o0 1 e, (1.68)
-g,, ] | a0 e oy | _5" _
1 = q(&n)
or, compactly,
§ = Af

(1.69)
7 = q(&n)
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If the zero dynamics are exponentially stable, the stability of the Jacobian linearization is
sufficient to show stability. If the zero dynamics are critically stable, then center manifold
theory [Car81] can be used to prove the theorem. See [BI88] for details. a

It is easy to modify the controllaw (1.67) in the instance that the control objective
is tracking rather than stabilization. Consider the problem of tracking a given prespecified
desired trajectory y4(t). Define e € RY by ¢; = y(i-1) - yg'l) so that e is the tracking error.
Note that £ = e + 3 where Fg := (yd, ¥dy---» }'I)T. The counterpart of the stabilizing
control law of (1.67) is )

1
U = —————
L,LY 'h(z)

so that the closed loop system (in (e, n) coordinates with A as above) is given by

[~L3h(z) + 3] + az_1e7 + -+ -+ coer] (1.70)

é = Ae
(1.71)

n = Q(e+gd,77)-

Though it is not immediately obvious, the control law of (1.70) is a state feedback law since
& = L7 h(z) — 4§~V (1.72)
fori =1,...,7. The counterpart of Theorem 1.7 is the following:

Theorem 1.8 Suppose the system (1.10) has relative degree v and is locally exponentially
minimum phase and, as before, let d(s) be a Hurwitz polynomial. Then, if the desired
trajectory y4(t) and its first (y — 1) derivatives are small enough, the control law (1.70)
results in bounded tracking, i.e., the state z is bounded and the tracking error e; and its
first (v — 1) derivatives tend to zero asymptotically.

Proof: Clearly, from the form of the closed loop system (1.71), it is enough to show that
the states remain bounded (i.e., in U). Then the stability of é = Ae will guarantee that
e — 0. Let by be a bound for y4 and its first (y — 1) derivatives. Note that g(-,-) is locally
Lipschitz (with constant ;) since 5(-), f(-), and ®(-) (and &-1(-)) are smooth. Since the
zero dynamics 77 = ¢(0,7) are locally exponentially stable, a converse Lyapunov theorem

[Hah67] implies the existence of a Lyapunov theorem V3(7) such that

klnl? < Va(n) < kz|n|?
224(0,1) < —kalnl? (1.73)
|%‘,’,1|-s kan|
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for some positive constants kq, k2, k3, and k4. Consider as Lyapunov function for (1.71)
V(e,n) = e Pe + pVa(n) (1.74)

where P > 0 solves ATP + PA = —1I (possible since é = Ae is stable) and p > 0 is to be
determined below. Taking the time derivative of V along the trajectories of (1.71), we get

14

~lel? + uZ2 [9(0,7) + ale + Fa, 1) — 2(0, )]

< —lel® - pks|nf? + pkalglnl(le] + ba)
2
< —3lef2 - 3inl2 — (5! — pkalglnl)? + (wkalg)*Inl? — pho (gt — 2420)? 4 Cialeg.
(1.75)
Setting pu = k3/(2k4l4)? and dropping the squares, we get
. 3 k3 b3
< -2 2 _ 3 2 _(_i.. 76

Thus, V < 0 whenever |g] or |e| is large which implies that || and |e| and, hence, |£| and
|z|, are bounded. The above analysis was for z € U. Indeed, by choosing ba sufficiently
small and appropriate initial conditions, we can guarantee that the action remains in U.
Therefore the state z remains bounded and the stability of é = Ae implies that e — 0 as

t — oo. ' a

Thus, the notions, of zero dynamics and minimum phase provide useful extensions
to their linear counterparts. In particular, we see that we can control minimum phase
nonlinear systems effectively using a control law such as (1.70) designed using the input-

output linearization methodology.

1.3 Linearization and Decoupling of MIMO Nonlinear Sys-

tems

For the multi-input multi-output case, we consider square systems (that is, systems

with the same number of inputs as outputs) of the form

£ = f(@)+a(@)nt o+ gm(@)m

n = M=) (1.77)

¥p = hm(z)
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where z € R®, v,y € R™, f, gi, i = 1,...,m, are smooth vector fields, and kj, j =
1,...,m, are smooth functions. We will sometimes abuse notation and use g and u to
denote {g1---gm} and (¢1,...,um)T so that gu = Y 7" giu;. There is a class of MIMO
systems for which the development very closely parallels that for the SISO case of the
previous section. We start with this class:

1.3.1 MIMO Systems Linearizable by Static State Feedback

As in the SISO case, we begin by differerentiating the output(s): the time deriva-
tive of the jth output y; of the system (1.77) is

m
95 = Lghj + Y _(Lghj)ui - (1.78)
i=1

In (1.78) above, if Ly,hj(z) = 0 (on an open set, U C R™) for each i, then the inputs do not
appear in the equation. Define v; to be the smallest integer such that at least one of the

inputs appears in yf”' ). Then
( .) . . m sl
v, = L7h; + ZILQ‘(L}’ h;)ui (1.79)
11

with at least one of the Ly, L7 “1h;(z) # 0 for z € U. Define the m x m matrix A(z) as

Ly L} 'hy o+ Lg L} '

A(z):= : : . (1.80)
Ly Ly b o+ LguLT" 'hm

The matrix A(z) is called the decoupling matriz. Using these definitions, we define the
(vector) relative degree for MIMO systems:

Definition 1.4 The system (1.77) is said to have (vector) relative degree (Y1,72,---57m)
at zo (an equilibrium point) if there ezists a neighborhood U of zo such that, for z € U,

(1) LgIkhi(z)=0 0<k<7%-1,1<4i,j<m, and

(2) A(z) is nonsingular.
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With the decoupling matrix A(z) defined as in (1.80), then the equations (1.79)

may be written as

) L} ha(z) u
| = : +A@)| ] (1.81)
™) L7 hm(z) Um

If the system (1.77) has a well defined (vector) relative degree, then A(z) € R™*™ is

nonsingular on U and the state feedback control law
L}‘ hi(z)
u=-A"1(z) : + A Y (z) (1.82)
L7 hm(z)

with v € R™ yields the linear closed loop system

y{'n) v
= . (1.83)
yf.? m) Um

Note that the system of (1.83) is, in addition, decoupled. Thus, decoupling is a byproduct bf
linearization. A useful consequence of this is that ;.la.rge number of results concerning SISO
nonlinear systems can be easily extended to this class of MIMO nonlinear systems. Thus,
as we shall see shortly, further control ob jectives, such as tracking, are easily accomplished.
The feedback law (1.82) is a static state feedback linearizing control law.

1.3.2 MIMO ‘Normal’ Form

"If a MIMO system has (vector) relative degree (v1,72,...,7m) such that v :=
11 + -+ ++ Ym < n, we can write a normal form for the equations (1.77) as follows: Choose

as coordinates

d=h) &G=Lm@), - &=L} k)

2 = ho(z), gg = Lyhy(z), -+ €% = L} ho(2), (1.84)

gi” = hm(x)a 55" = thm(z)1 o ;nm = L}m_lhm(z)o
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Similar to the SISO case, the E;?, j=1,...,m,i=1,...,7; qualify as a partial set of
coordinates since the differentials

dLihj(z) 0<i<7;-1,1<j<m (1.85)

are linearly independent on U. Indeed, using the nonsingularity of A(z), the proof of this
proceeds in a manner analogous to that of Proposition 1.3. Now complete the basis choosing
n— more functions 7 (z), 72(2), . - -y Tn—y(z). Unlike the SISO case, it is no longer possible
to guarantee that ’

Lymi(z)=0 z€U,1<j<m,1<i<n-7 (1.86)

unless the distribution spanned by g1(z), ..., gm(z) is involutive on U. Note that the trans-
formation & given by z ~— (£,7) is a local diffeomorphism of U onto (U). In (§,7)
coordinates, the system equations (1.77) are given locally by

g = ¢

L = by(€,n)+ TRy a}(ém)u;

: = g

£2 = by(&,m)+ TP, ak(€ n)u;

(1.87)

im = b(€,0) + Ty a7 (6, My

7 = q(&n)+ P nu
n = &
Ym = H"

where .
b€, m) = L¥hi(a),
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“j'(f’ n)= ngL}'._l hi(z),
gi(§,n) = Lymi(2),
Pij(&,m) = Lg;mi(z)
in the £, 7 coordinates. Note. that P € Rn=7Xm g € R~ respectively. As in the SISO case
the feedback law of (1.82) renders the 7 states unobservable.
1.3.3 Zero Dynamics and Minimum Phase MIMO Systems

In the instance that the decoupling matrix A(z) is nonsingular, the zero dynamics
are easily found. As in the SISO case, we find the zero dynamics by constraining the outputs

to zero.

Definition 1.5 The zero dynamics of a MIMO nonlinear system (1.77) are the dynamics
of the system subject to the constraint that the outputs be identically zero.

Using the normal form (1.87), we see that
g=0,i=1,...,m <> £&=0,j=1,..,7,i=1...,m. (1.88)
In order to keep f,‘;‘ =0,i=1, .,m, we must choose the input by
u(t) = —A7(0,(£))b(0, (1)) | (1.89)
where 7(t) is any solution of
1= g(0,7) — P(0,7)A™1(0,n)b(0,7),  n(0) arbitrazy. (1.90)

Thus, the output can be held identically zero provided that §j~(0) =0,7=1,...,7,
i=1,...,m. In the original z coordinates, the initial conditions must be chosen to belong
to the manifold

M* = {a: €U : hi(z)= Lshi(z)=...= L}"'lh,-(z) =0,1<1:< m} ' (1.91)
and the input is given by the static state feedback

L}l hl(:z:)
u*(z) = —A71(z) : . (1.92)
L7 hm(z)
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This is the decoupling control law of (1.83) with v(t) set equal to zero. Note that this
feedback law renders the manifold M* invariant. Thus, analogous to the SISO case, the

zero dynamics of (1.77) are the dynamics of

& = f(2) + 9(x)u’(z) (1.93)

restricted to the zero dynamics manifold M*. In the (£, n) coordinates, the zero dynamics
are given by

¢ =0

n = q(oa 17) - P(Or n)A—l(ov n)b(o$ 77)
and are the internal dynamics consistent with the constraint that y;(t) =0,¢=1,...,m.

Recall that the MIMO normal form (1.87) is defined in a neighborhood &(U) of
an equilibrium point &(zo). Assume, without loss of generality, that (zo) = (0,0) so that

(1.54)

hi(zo) = 0 and 1 = 0 is an equilibrium point of the zero dynamics (1.94). Then the notion
of minumum phase parallels the SISO case.

Definition 1.8 The MIMO nonlinear system (1.77) is said to be asymptotically (exponen-
tially) minimum phase at z¢ if the equilibrium point n = 0 of (1.94) is locally asymptotically
(ezponentially) stable.

1.3.4 Stabilization and Tracking for MIMO systems

The stabilization and tracking results for minimum phase SISO nonlinear systems
with well-defined relative degree are easily extended to minimum phase MIMO systems with
well-defined (vector) relative degree. Specific details are left to the reader. See Chapter 4
for a specific example illustrating this. The fact that the feedback law (1.82) decouples the

system allows extremely simple stabilizing and tracking laws to be used.

1.3.5 Dynamic Extension of MIMO Systems

The conditions required for a MIMO nonlinear system to have a a well defined
(vector) relative degree can fail in several ways. As in the SISO case, a MIMO system
can fail to have a (vector) relative degree because of a control coefficient L g,.L’f‘hj(z) that
is neither identically zero nor bounded away from zero on U. In this case the decoupling
matrix A(z) is not well defined. A MIMO system, however, can also fail to have a (vector)
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relative degree even when A(z) is well defined. Note that this cannot happen in the SISO
case since a 1 X 1 matrix with nonzero rows is trivially nonsingular. Suppose that the
decoupling matrix A(z) is well defined on U but does not have full rank. If A(z) has a
constant rank r < m, then we we may be able to extend the system by adding integrators
to certain input channels to obtain a system that does have a well-defined (vector) relative
degree. If A(z) does not have a constant rank (on U) this will not be possible. The following
algorithm makes this precise.

Dynamic Extension Algorithm

Step O Setﬁ'z:m,ﬁ:n,i:x,io=zo,f=f,§=g,7z=h,a,ndﬁ=u.

Step 1 Calculate the decoupling matrix, A(%), valid on U, a neighborhood of %o (i.e.,
condition (1) in the definition of (vector) relative degree is satisfied on 0).
. o Hrank A(Z) = m on T, stop—the system (£, §, k) has a (vector) relative degree.

e If rank A(%) is not constant in a neighborhood of o, stop—the system (1.77)

cannot be extended to a system with a (vector) relative degree.

e Otherwise, set r = rank A(Z) and continue to Step 2.

Step 2 Calculate a smooth matrix 3(%) of elementary column operations to compress the

columns of A(Z) so that the last (m — r) columns of
A(2)B(£) (1.95)

are identically zero on U. This is possible since the rank of A(Z) is constant on
U (see [DM85] for a construction of such smooth elementary column operations).
Furthermore, let 8 contain column permutations so that the first 71 < r columns of
(1.95) consist of all the columns with two or more nonzero entries (thus, columns °

1 + 1 through r have only one nonzero entry.) Partition § as

B(%) = [B1(&) B2(2)] (1.96)

such that B, consists of the first 7; columns of S.



30

Step 3 Extend the system by adding one integrator to each of the first 7, (redefined) input
channels. Specifically, define z; € R, w; € R™-"1 by

A= p@)a. (1.97)
w2

Then, with w; € R™, the extended system is given by

z _ f+§bin + b2 0 w2
21 0 0 I wn
e ptetd (1.98)
H i 1 g
y = KE)=h@)

where 2T = (£7, 2])7 is the extended state.

Step 4 Replace 3, i, f, §, and h by %, g, f, g, and &, respectively, and return to Step 1.

O

Descusse and Moog [DM85] have shown that this algorithm will be successful
(terminating in a finite number of steps) if the system is left invertible (see also [Isi86]). In
fact, it can also been shown that if the algorithm is successful in extending a system, then
it will terminate in at most = iterations [Isi87).

When the dynamic extension algorithm is succesful, the extended systém has a
well defined (vector) relative degree. The extension portion 6f the new system will then
form the core of a dynamic compensator. Indeed, if only one iteration of the algorithm was

necessary, the resulting extension would be

H = w,
(1.99)
u = fi(z)z1 + Ba(z)w2 .
More generally, the dynamic compensator will have the form
z = c(z,2)+d(=z,2),
(z,2) +d(z,2) (1.100)

v = az,2)+ B(z,2)w.
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>

Figure 1.2: The simple planar vehicle.

1.3.6 MIMO Example

To help clarify the process of dynamic extension and to show the form of the
dynamic compensator, we present a simple example. Consider the planar vehicle shown in
Figure 1.2 where (21, z2) is the vehicle position and z3 is the vehicle heading. For simplicity,
suppose that the inputs are the vehicle speed (u;) and turning rate (u2) (actual controls
will normally be accelerations) and that the control objective is to steer the vehicle along a

given path in z; and z,. The system equations are then

i 0 cos 3 0
2o = 0|+ | sinzg |1+ ]| 0 | 2%
I3 0 0 1
| — L S g | ——
H Y P4 s (1.101)
= z
n 1
h
woo= 2
hy

Differentiating each output until at least one input appears, we get (see (1.81))

] 0 coszz O %
= + : . (1.102)

U2 0 sinzz 0 ug
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Clearly, A(z) has rank 1 and, fortunately, (z) can be chosen to be the identity. Also,

ry = r = 1. Setting

=1 (1.103)
wo U2

we eztend the system giving (as in (1.98))

& 21 COS T3 0 0
T 21 8inz 0 0
L I ek w; + wz (1.104)
I3 0 0 1
21 L 0 1 0
2 I ]k ]

with the same outputs. Differentiating the outputs until the new controls (w) appear, we

i 0 cosz3 —z sinzg w
niotv. 3 ! (1.105)
Y2 0 sinzg 23c08Z3 wo
A@)
Thus, for z; bounded away from zero, we can choose
w coszz sinzg vy
=] T (1.106)
e _ sn; lza co;lza Ve
to decouple and linearize the system yielding
.. v
e I (1.107)
(7)) v2
Then, the feedback law
v = dhd+ea(91d — 1) + @o(y1d — n1)
= 14 + oa1(f1d — 21 c0823) + xo(Y14 — T1
( ) ( ) (1.108)

vy = fod + a1(Jad — 2) + o(Y2d — ¥2)

= fod + a1(J2d — 21 sin z3) + ao(y24 — T2)
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will result in stable output tracking: Note that (1.108) is a function of only the extended

state (21,32, %3,7) and the desired trajectory. The dynamic compensator is thus

3} = w
iU 21 ( 1. 109)
U2 w2

where w; and w, are given by (1.106), (1.108) so that (1.109) is indeed a dynamic state
feedback law.

1.4 Bibliographical Notes

Many of the tools and techniques now common to nonlinear control can be found
(implicitly) in early work on differential equations by such researchers as Poincaré [Poi28]
and Chow [Cho39]. With the introduction of the methods into control theory by Hermann
[Her63] and others [GS68,Lob70,HH70,Sus73], the stage was set for the development of
basic geometric nonlinear systems theory. Researchers investigated important notions such
as decoupling [Por70], accessibility [SI72], controllability and observability [HK77], as well
as general systems theory in nontraditional settings [Bro72,Bro73,Lob73].

Also, during this time, research into the problem of system equivalence [Kre73,
MC?75,Bro78] led to methods for input-to-state linearization [J R80,5u82,HSM83]. Addition-
ally, many researchers improved our understanding of the questions of nonlinear decoupling
and noninteracting control [SR72,Fre75] and system inversion [Hir79a,Hir79b,Sin81].

Using the tools of differential geometry and especially the notion of controlled in-
variance [Hir81,IK GM81b,JKGM81a], many of the important problems in nonlinear control
have been clarified and solved forming the base of a nonlinear control theory [Isi85] that is
clearly the nonlinear counterpart to the geometric methods of linear control theory [Won74].

Indeed, new techniques and applications are being developed at a exciting rate as

shown by numerous meetings devoted exclusively to nonlinear control [FH86,Isi89a).



Chapter 2

The Structure of Zero Dynamics

In this chapter we present results that show that the structure of a system—
the zero dynamics—is not robust to perturbations. In particular, we show that regular
perturbations of the state space descriptions of linear and nonlinear single-input single-
output (SISO) systems of relative degree > 2 may result in the appearance of singularly
perturbed (fast) zero dynamics. In other words, perturbations in the state space descriptions
may cause the migration of some zeros from oo to finite locations in the complex plane.
Depending on the sign of the regular perturbations, some of the perturbed zeros can migrate
from oo to the right half of the complex plane. This leads to a reconsideration of minimum
phase systems of high relative degree (pole-zero excess > 2) as being only dominantly
minimum phase since small perturbations may result in right half plane zeros of large
magnitude. |

Our investigations in this direction were motivated in part by a study in [HSM8S,
HSM89] (see Chapter 4) of the linearization by nonlinear state feedback of a class of slightly
non-minimum phase nonlinear systems encountered in the flight control of VTOL aircraft.
Indeed, in this work, the true system had a small regular perturbation in its equations
caused by the way moments were generated on the aircraft. This, in turn, manifested
itself as fast time scale zero dynamics, with a saddle type equilibrium point, making the
system slighty non-minimum phase. Though this example was a multi-input multi-output
(MIMO) system, we restrict ourselves to the SISO case here and postpone the considerably
more technical MIMO case.

This chapter deals with both linear and nonlinear systems—definitions of zero dy- -

namics for nonlinear systems were introduced in [BI84] and made more precise in [IM89,

34
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Isi87]. The qualitative theory is similar for both classes of systems, though the techniques
are rather different. The techniques also draw heavily from the literature on singular per-
turbation [KK086,SOK84]. ‘

An outline of the chapter is as follows: In Section 2.1, we develop explicit formulas
for the locations of the large magnitude zeros of linear systems under perturbation. In
Section 2.2, we repeat this development for the nonlinear case. Section 2.3 collects some

concluding remarks.

2.1 Linear Systems

In this section we will consider the effects of regular perturbations of bo, co, Ao on

the zeros of a SISO linear system of the form

z = Aoz + bou
(2.1)

Yy = coz.

We will assume that the system (2.1) is minimal and has relative degree (excess of poles

over finite zeros) 7o, i.e.,

cobo = codgbo = -+ - = coAP bo = 0

(2.2)
co AP bo # 0.

To exhibit its (n — 7o) finite zeros, it is useful to use a normal form which will also prove

convenient in the nonlinear case. To this end, we define

co
13 coAo =
= : T = z (2.3)
1 e A;,'°'1
= n - = H - e H -

with £ € R, 7 € R* gsuch that (£7,77)T is a change of coordinates on the original state

—
)
—

space, i.e., € R™*" is nonsingular. Further, from the definition of relative degree in
H
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(2.2), we may choose H so that Hbg = 0. The linear system (2.1) can be rewritten in (&,7)

coordinates as

0 1 0
3 0 3
0 1 0
= a{ ag‘ |+ COAgo_lbo u. (2'4)
7 p Q N 0

Here, a; € R, a; € R*™®, P ¢ R*-1X% Q € R*~MX7=%, and

cody 'z = af€+afn
HAoz = PE+Qn.

The form (2.4) is referred to as a normal form and it is well known that the (» — vo)

(2.5)

eigenvalues of Q are the zeros of the system (2.1). It is useful to note that the state

feedback law
1

. U A T (afff + d{n) (2:6)
renders the 7 variables unobservable and furthermore, if £(0) = 0, it zeros the output for all
t, that is,

y(t) = §(t) = ---=y-N(t) = 0. (2.7)
The subspace

Vo = {z 16T = cgAgr =+ = coA8°"l:c = 0}

= {(0,n):n€R"™}

(rendered invariant by (2.6)) is referred to as the zero dynamics subspace of (2.1).

(2.8)

2.1.1 Perturbatioﬁs inb

To begin with, we study the effects of perturbations in the input channel alone,
i.e., systems of the form

E = bou + €b
z Aoz + bou + ebju (2.9)

y = coz.
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Note that (2.9) remains minimal for € small. Let the relative degree of the perturbation
system (co, Ao, b1) be ;. The case of greatest interest* is v; < 7p, which, by the definition
of 71, implies that '

coby = cgdoby = -+ = CoAgl_le =0
(2.10)
CoAgl_lbl ?l-' 0

and that the relative degree of the perturbed system (2.9) will be v;. It is easy to obtain
the form of (2.9) in the (£,7) coordinates defined in (2.3). It will, however, be convenient
for us to decompose the £ of (2.3) as (T = (¢f,€7) with

Co -‘
Cng
6] 3 — r € R’fl,
coAT ™ (2.11)
= =
C{)Agl
£, = r € R,
C()Ago_.l

*See the remarks after Theorem 2.1.
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Note that if yo = 71, &2 fails to exist. Also note that we have already used the assumption
that 73 < Yo in the definition (2.11). The system (2.9) is now written as

1 o 1 ] 0
& 0 0 &
1 0 .
o1 ecoAQ by
T 0 1 eco A by
& |~ 0 0 & |+ u
01 ecoAP by
taf 2a{ aj coAP ™ (bo + €b1)
1 p 2P Q n eHb,
ST T (2.12)

where 1a; € R7, 2a1 € Ro—mn, 1pe R(n-—‘m)x-u, 2p e R(n—w)x(‘yﬂ_‘n)%a‘nd
o = (*af 2], P=[P?P] (2.13)

Note that, in (2.12), the perturbations appear as input terms in the equations for €1y » €21,

+ vy £249—x » ad 7. To find the zero dynamics of (2.12), we use the state feedback

1 1
% = —————fy = —————cpAJ'Z 2.14
ccodl 10, €n ccodD 10, 04o (2.14)
to zero the output making the subspace
Vi = {z:co0x=cpdoz=---=0p n-lyz =9
{ 4372 =0} 15)

= {(0,62,7): €2 € RP-1 ne R}
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invariant and the state variables (£2,7) € R*~" unobservable. The dynamics of the ({2, n)
variables on V; are given by

& &
—Sdg " b 0 .- 0 1

Y01 T0-1
—_— co b coA bo —_
QAP b _ 1208k 425, Zayp oer cer 2G140-m | 6]

oAl b

(2.16)

where

2p = ——‘—,;Hbl 0 +2P. (2.17)

mn=
cOAo

Thus, we see that the system (2.9) has (n —71) > (n — 70) zeros. To establish the structure
of these zeros, we note that the e-dependent term in (2.16) corresponding to €2.40—m, 18 OF
order 1/¢ and thus is certainly not a regular perturbation. This singular perturbation term
is due to the high-gain form of the feedback control (2.14). The rich literature on high-gain
systems (see, in particular, [Mar88,5an83]) is therefore applicable to the study of perturbed

zero dynamics.

Theorem 2.1 The linear system (2.9) has (n — v1) zeros which, according to their asymp-

totic behavior as € — 0, belong to two groups:

o The (70 — 71) large zeros tend to oo asymptotically as

1y \ i '
( 1cods™ bo "0)”"', (2.18)

€ coAT by

o The remaining (n — 7o) zeros tend to the zeros of the unperturbed system (2.1).
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Proof: To facilitate an asymptotic calculation of the eigenvalues of the matrix in (2.16), we
transform the system into a standard singular perturbation form. To this end, we rescale

&, as follows

-y —1

- - P S -
€21 = €21, €2 = €19, o+, Egpppamy =€ N {290 (2.19)

and rewrite (2.16) as

1 - L S —
en-nf, = WE, + ew-nT¢ + 0 (e'ro-‘u )
2 (2.20)
7 = 2P + Qn
where
[ 1 i coAg' by |
0o (=)
: .t- .O. o .
W= and T :=
0 .’. 1 E '.‘ 1
co A "ty
B _COA;"'— by 0 - 0 J L 0 0 0 2a1v70—‘71 |
(2.21)

To see that (2.20) is in the standard two-time-scale form of [KKO86], note that its right
hand side is regularly perturbed by 61_0'1-7'1‘, while the matrix of the unperturbed part is -
block lower triangular. By inspection, the upper diagonal block is nonsingular as required
for a standard form. It follows that the eigenvalues of (2.16) are asymptotically

T A(W)UA(Q). (2.22)

Clearly, the eigenvalues of Q are the (n — o) zeros of the unperturbed system. It is easy
to see [Wil65, chapter 2] that the remaining (7o — 71) eigenvalues are the (yo ~ 1)th roots
oA " bo i S - )
of (—-c;.gl—_q) multiplied by e~ =7, that is
—1_

1 CoAgo-lbo 0-n

-0 20 . (2.23)

€ oAy T b

This is the asymptotic expression of the (yo — 1) large zeros of the perturbed system which
tend to co as € — 0. The remaining (n — 7o) tend as a set to the eigenvalues of Q (zeros of

the unperturbed system). O
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Remarks

o Theorem 2.1 states that if the relative degree 71 of the perturbation €b; is less than
that of the original bg, then (7o — 71) of the original system’s infinite zeros become
finite according to the asymptotic formula (2.23).

. We leave it to the reader to verify (by direct calculation) that, if the relative degree
of the perturbation b; is 43 > 70, then both the perturbed and unperturbed systems

have the same number of zeros and the zero locations are a smooth function of e.

o Theorem 2.1 has important implications for the concepts of non-minimum phase and
minimum phase. In particular, if o — 11 > 2, it follows that arbitrarily small pertur-
bations of the form (2.9) result in non-minimum phase systems since, for yo — 71 > 2,
at least one of the roots of (2.18) is in the right half plane. Of course, for ¢ small
enough, the non-minimum phase zeros are far off in the right half plane prompting us
to think of the perturbed system as being slightly non-minimum phase. Nevertheless,
numerous system theory results based on a strict minimum phase assumptign should

be reexamined in this light.

o Even when 99 — 71 = 1, the relative signs of the quantities in (2.18) may result in
right half plane zeros. In particular, some zeros will be in the right half plane either

when ¢ is positive or when ¢ is negative.

o Note that, if a perturbation resulting in direct feed-through (y = coz + ediu) were
allowed, then v; would be 0 and the asymptotes would coincide with the familiar
root locus asymptotes for the closed loop poles that go to co under increasing output
feedback.

e This result is reminiscent of results in high gain feedback giving the asymptotic loca-
tion of the closed loop poles as the gain 1/e goes to co. Indeed the proof techniques of
[YKU77], [San83], for example, can be used to give an alternative and elegant proof
of Theorem 2.1.
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2.1.2 Perturbations in ¢

Consider now the effects of perturbations of (2.1) in the output channel, i.e.,

- = b
& = Aoz +bou (2.24)

y = ¢z +eéciT.
As before, if v; represents the relative degree of the perturbation system (e1, Ao, bo), it
follows from considerations dual to those given above that if 73 < 7o the system (2.24) has
(70 — 71) extra zeros given asymptotically by the (yo — 11) roots of

0—1 _'ET
(_lf_@i_l_%) o (2.25)
€c1Ag " bo

2.1.3 Perturbations in A

The qualitative effects of perturbations in Ag are similar in that some of the (n—7o)
zeros at co may become finite; the details of the proof are more subtle. '

Consider

z = + €A4;)z + bou
(Ao 1) 0 (2.26)
y = co.
Further, let the perturbed system (2.26) have relative degree 1 (71 < 70, as before, is the

case of interest), i.e.,

cobo = co(Ao+€A1)bo=---=co(Ao+ed)" 2hp=0 Ve

(2.27)
co (Ao + eAl)""'l bo #0 for € small.

From (2.27), it is easy to see that the relative degree v, depends on A; in a complicated fash-
ion. For the purpose of this paper, we will restrict our attention to the class of perturbations
A, satisfying assumptions (2.29) and (2.30) below. Define the subpaces

A; := span {bo, Agbo, . . .,Af,bo} . (2.28)
Assume that
A1A; CA;C Kereg fori=1,...,71-3 (2.29)

and
AlAan_z ¢ A.,l_g and AlA.,l_g ¢ Ker Co. (2.30)
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If 7, < 3, assumption (2.29) is vacuous and if ;1 < 2, then (2.30) is vacuous. We conjecture

that, if the assumptions (2.29), (2.30) are violated, then the fast zero dynamics occur at a

multiplicity of time scales. The assumptions (2.29), (2.30) guarantee that

A )m-1py = A1 AT 2ho + O(€?
co(Ag + €4;) 0 ecoA1 AJ ~"bo + O(€?) (2.31)

=: eag(€).

Note that ag(0) = cods AZ ~2bo.
The normal form for the system (2.26) is not easily obtained in the (£, 7) coordi-

nates of (2.3); consequently, we define

Co

& co (Ao + €4y)

: (2.32)

co(Ao + e4;)™!
H

The matfix in (2.32) is a perturbation of that in (2.3) and is therefore nonsingular for small

e. We partition £¢ into

Co

co (Ao + €4y) s €Rm

co (Ao + €A ! (2.33)

Co (Ao + 6,4.1)‘71

z € R,

| co(4o+ ed)™!
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In these coordinates we have

] Jo 1 7 11 0 -
& 0 0 &
1 0
01 eao(€)
0 1 e (e)
&= 0 0 & |+ : u
0 1 €0ty -1(€)
1a](e) 2af()  [af(e) €atg_m (€) + 0AY b
1 1P(e) 2P(e) Q(e) 1 0
1L It 1L

(2.34)

In (2.34) the vectors, lai(€), 2a1(€), a2(¢), and matrices, 1 P(¢), 2P(¢), Q(¢), are all pertur-
bations of the corresponding entries in (2.12) and the a; (i > 1) are smooth functions of
€. Note that, with the exception of coAg°'1bo, all the input coefficients are multiplied by
¢. We now leave it to the interested reader to verify that the unbounded (as functions of ¢)
zeros have the asymptotic form of the (7o — 71) roots of
( 1 c.,Ago-lbo) T

e 2@ (2.35)

Equation (2.35) is very similar to (2.18) except that ecoAg' =1p, is replaced by eag(0) (=

coA1 A3 ~2bo), the control coefficient for £5., .

2.1.4 Simultaneous Perturbations in A, b, and ¢

We do not discuss asymptotic formulas in this case. The details are cumbersome
since the relative degree of the perturbed system depends on the perturbations 4, b1, 1
in a complicated fashion. In particular, in the absence of assumptions like (2.29) and (2.30)
a multiplicity of time scales may occur. Nonetheless, if we can assert that v; is the first

integer at which
(co + €c1)(Ao + €41)" ~1(bo + €by) = €ao(€) (2.36)
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where ag(€) is of '0(1) and not o(1), then the perturbed high frequency zeros will be given
by (2.35).

2.2 Nonlinear Systems

We briefly review, following the lucid presentation of [Isi87], the definition of zero

dynamics for SISO nonlinear systems of the form

& = fo(z)+ go(z)u
y = bho(z)

(2.37)

where fo and go are smooth vector fields on R® and A : R" — R is a smooth function. Let
zo be an equilibrium point of the undriven system (i.e., fo(zo) = 0) and let U C R" be an

open neighborhbod of zo. We will assume the the system has relative degree 7o at Zo, i.e.,

Lgoho(z) = Lgy Lyyho(z) = --- = LyoL}g—zhO(z) =0

(2.38)
Lg LR ho(z) # 0

for all z € U. Note that we implicitly assume that the system has a relative degree! We
will further assume (w.l.o.g.) that ho(zo) = 0.

To find a convenient normal form for the nonlinear system (2.37), we begin by
defining

ho(z)
Ly, ho(z )

(2.39)

i L ho(2) _

7 = n(z) € Rm—®

such that (£,7) is a diffeomorphism of z in U. From the definition of relative degree, we
may choose 7(z) so that

Lyni(z)=0 i=1,...,n—70. 4 (2.40)
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The normal form of the nonlinear system (2.37) is then written (using (£,7) coordinates)

as
[ ] [ 0 1 17 1 [ 0 ] [ 0 -
£ 0 3
1 0 0
= 0 | H b | | aem | v (24
i 0 0 n q(€,m) 0

Here, a(€,n) = Ly, L}:"l ho(z) and b(€,n) = LY ho(z) in the (£, n) coordinates and ¢;(§,n7) =
Ly, mi(z) in the (§,7) coordinates.

The zero dynamics of a nonlinear system are the dynamics of (2.41) consistent
with the constraint that the output is held identically zero, i.e., y(t) = 0. From the normal
form (2.41), it is clear that the nonlinear state feedback

1

WL}: ho(z) (2.42)
0

1
v=—-———=b(,n)=-
aEm "
results in y(¢) = 0. Furthermore, the control law (2.42) renders the manifold

Mo = {a: € U: ho(z) = Lyyho(z)= -+ = L}:'lho(z) = 0}
= {(0,n):n€n(U)}

invariant and makes the 7 variables unobservable. Since y(t) = 0 is locally equivalent to

(2.43)

€ =0, we find that the zero dynamics of (2.41) (hence (2.37)) evolve on the zero dynamics
manifold My and are described by

1= ¢(0,7) (2.44)
in a neighborhood of 7 = 0. We refer to the dimension of the manifold Mo, namely n — 7o,
as the dimension of the zero dynamics system. Let 7o be the 1 component of zo (i.e.,
zo + (0,7o) under the change of coordinates). Then 7 is an equilibrium point of (2.44).
Further, we may associate with 7o the (Jacobian) linearization of ¢(0,7) at n = o, i.e.,

9q(0,n0)

5 (2.45?
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The stability of (2.44) is determined b)} the eigenvalues of this matrix, provided that it is
hyperbolic. Otherwise, a study of the full zero dynamics system of (2.44) is necessary.

We will now study the effects of perturbations on the normal form (2.41).

2.2.1 Perturbationsin g

Consider, as in the previous section, perturbations in the input channel alone, i.e.,

& = fo(z)+ go(z)u + eq(z)u
y = ho(z)

(2.46)

We will assume that the perturbation system (ho, fo,g1) has a strict relative degree of 71,

ie.,

Lo ho(z) = Ly, Lyho(z) = - = Lo L} ?ho(z) =0 Vz €U (247
Lg, L} " ho(z) # 0.

As before, the case of greatest interest is when v; < 7o. Following the previous dévelopment,

we partition £ as

ho(m)
Lfo ho(z) € R

-1
L L3 ho(2) . (2.48)

L}; ho(z)
&£ = : € Ro—m,

i L}:_lho(z) ]
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The perturbed system (2.46) expressed in (£1,£2,7) coordinates looks like

w o 1 W
51 BRI 0 0 &
) 1
0|1
0 1
L | = 0 0 13}
) 1
0
1 0 0 0 7
[ X i T r Il _ (2.49)
0 0
0
0 €Ly L7 " ho
0 ELgl L}; ho
+ + : u
0 Loy LT~ ho
b(¢,n) a(€,n)+ €Ly LR ho
GLm m
a(€,m) :
| ] i €Lg, n—v ]
Note that, in (2.49), we have deliberately chosen not to write the Lg L% ho terms in the
(&,7m) coordinates.
Using the nonlinear state feedback
1 1
U= -——621 = L}; ho(x) (2.50)

Lo L2 ho eLgy L} ho()
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to zero the output, we make the manifold

My = {z€U:ho(z)=Lyho(z)=---= LE  ho(z) = 0}
= {(0,&2,m): &2 € &(U),n € n(U)} |

(2.51)

invariant and the (£2,7) € R*~" variables unobservable. Thus, the zero dynamics of (2.46)

are precisely the dynamics of (£2,7) on M; given by

- LglL}lho -
2 |

Ly L1+ ho
. Lt P 0 1 - . 0
. LglL‘}; ’lo
&2 :

Lg L?™? .0

_lnly M 0 ... 0 1

LOILI; ho + b
Inipthe  alpthe o R A R

LoLP"ho Ly L] ™ ho

—Lgm . n
U] Lo LS Tho q(¢,n)

L?.l nn_P
Lg, L}; ““he

(2.52)
Before we state a nonlinear counterpart to Theorem 2.1, we apply the scaling specified by
equation (2.19) to (2.52), namely

-1 —1

- - PR ~
En=&n,80 =€y, oo, E2qgmm =€ VN Lo . (2.53)

Note that the scaling of £ is singular at € = 0 as is frequently the case in such asymptotic

calculations. The transformation of (2.53) renders terms in the first column of the matrix
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in (2.52) potentially unbounded as ¢ tends to zero. Now rewrite (2.52) as

* . .
. . .
. . . P

0 o1
LmL.'o-l'Io

—t -
| -2 0 .0 +e™ N | k(&2, 7€)

= L“LG ho
L
_Aﬂr_

",l—
L“L!o ho

1 -
€ﬁ§2

_ Lg Nin -
(2.54)
In (2.54), we will assume that k( &,1,€) € R*™M is a smooth function of £, n, and . Thus,

for example, we may require that for some positive K < co that

Lo LT ho

—=h—| < K|,

Lnly i

Lﬂ[ L'Yl +1 ho

—L | < K|l + K|é2l,

Loy L} ~Tho

(2.55)

etc.

Further, we will also assume that

- L L”’°'1ho
B(€1,&3,m) 1= — lim Lo

2.56
€—0 Lgl L‘};—lho ( )

is a well defined smooth function and is nonzero when §; = 0, £, = 0, and n = 7. With
these assumptions, which are unique to the nonlinear case, it may be verified that the second
term in (2.54) is multiplied by e™=7 in analogy with the second term on the right hand
side of (2.20). Equation (2.54) shows the two time scale nature of the zero dynamics. We
mention in passing that if conditions such as (2.55), (2.56) do not hold then there may be
more than two time scales in the zero dynamics. These assumptions have appeared in other
forms as well in the literature. For instance, the conditions (2.55) guarantee the absence
of peaking response caused by terms in k(£z,7,€). The condition (2.56) guarantees that the
&, variables are in fact the fast variables and the slow manifold of the zero dynamics of

(2.54) is the subspace corresponding to the 7 variables (up to zeroth order in €). The fast
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dynamics of the £ variables are determined by studying the scaled variables & in the fast

time, i.e., set T = ¢/€/70-1 and then set € = 0 to get

p ) SO )
?sz o1 & (2.57)
i B(0, 52’ 7o) 0

9(t) = no.

In spite of its apparent linear form, it is important to note that the right hand side of
equation (2.57) is a nonlinear function of £&,. Clearly, £, = 0 is an equilibrium point of
(2.57) and the eigenvalues of (the linearization of) (2.57) about £; = 0 determine the
stability properties of the fast zero dynamics system if they are not all on the jw axis.
These eigenvalues are precisely the (7o — 71) different roots of the lower left term of (2.57)

with & = 0, i.e.,

Ly, L}Yo—l To-n -

- lim —2—— at (&1,&2,m) = (0,0, 70). (2.58)
e—0 Lm L}; 1 hO Yy |

In the original time scale, these eigenvalues are of order 1/ €l/v%=m_ From this formula, it

also follows that if yo— 1 > 2 that at least one of the eigenvalues is in the open right half

plane resulting in unstable fast zero dynamics.

The remarkable new feature of the fast zero dynamics of the nonlinear system is
that they vary with 1o on the base slow manifold Mo. Collecting these observations, we

have the following counterpart to Theorem 2.1.

Theorem 2.2 The zero dynamics of the perturbed nonlinear system (2.46) are of dimension
(n — 71). Suppose that k(€;,m,€) € R~ defined in (2.54) is a smooth function of En,
and € and B(&1,&2,1) defined in (2.56) is a well defined smooth function and is nonzero at
(é1,€2,m) = (0,0,n0). According to their asymptotic behavior as ¢ — 0, the zero dynamics

decouple into two subsystems:



52

o The fast zero dynamics subsystem of dimension (7o — 71) s given by

0 1
déz ®e ‘e . .
NN —— = . 2.59
€ dit .1 €2 ( )
L La LR ho =0
C—'OLn L"Il- ' 0

ST N=To

o The slow zero dynamics of dimension (n — 7o) is identical to the zero dynamics of the
unperturbed system (2.37) given by (2.52).

Proof: The preceding observations yield the first part of the theorem. The verification
that as € — 0 the dynamics of 7 in (2.54) tend to those of 7 = ¢(0, n) follows from setting
€= 0and & = 0 in (2.54). (Actually, this happens in quite a subtle fashion since some

terms appear as multiples of £&; and others appear as multiples of e}/Y-71) O

Remarks

e As in the remarks after Theorem 2.1, we leave it to the reader to verify that, if the
relative degree of the perturbation g; (i.e., 71) is > 7o, then the zero dynamics of
the perturbed and unperturbed systems have the same dimension and qualitative

properties (i.e., the perturbation in the zero dynamics is regular).

o The remarkable additional feature found in nonlinear systems that is not present in
linear systems is that the locations of the eigenvalues of the Jacobian of the fast
zero dynamics subsystem in the complex plane, i.e., 1/€!/70=" times the quantities in
(2.58), vary with 9. Of course, it is easy to show that if the equilibrium point z¢ of
the original system corresponds to (0,7o), then the eigenvalues of the linearization of
the fast zero dynamics will be given by

1 L L‘Yo—lho 70-N
~=lim %) . (2.60)

€e~v0 ] M-l ho
M=t (& .gzm)=(°»0.'lo)
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2.2.2 Perturbationsin

As in Section 2.1.2, the qualitative results of Section 2.2.1 hold when the nonlinear
system (2.37) is perturbed in ho. To this end, we consider the perturbed system

& = fo(z)+ go(z)u
y = bho(z)+ ehy(x)

(2.61)

with relative degree 71 < 7o. It is no longer possible to invoke duality but one may use a

new set of coordinates for the normal form given by

ho(:t) + ehl(a:) ]
o | Ene ) | o
: (2.62)
| L3 (ho(a) + ea(a) |
n = () € R

Note that the diffeomorphism of (2.62) is a perturbation of that in (2.39). By partitioning
€ into &5 and &5 and scaling £§ as above, it can be shown that the £ variables in the time

scale T = t/el/10-7 satisfy

0 1
dé’c e, el . ‘
d—: = ) & (2.63)
.. 1
_ 80(0,€5:m) 0
00(0,65"1) .

where ao(£5, &, n) and ao(&§, €5, 1) are LgoL};'lhl and Ly, L}’g'lho in (&5, €5, 1) coordinates.
As before, we will also need to assume that the limit as ¢ — 0 of the quantity in the lower
left hand corner of (2.63) exists and is nonzero at & =0, 7 = 1. Under these conditions,
the results of Theorem 2.2 will hold with (2.63) replacing (2.59).
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2.2.3 Perturbations in f

The situation here is delicate and analogous to that in Section 2.1.3. Consider the
perturbed system

& = fo(z)+ efi(z) + go(z)u

y = bho(z)
and assume that it has relative degree 7, < 7o. The class of perturbations f1(z) satisfy a
nonlinear analog of assumptions (2.29) and (2.30). Define the distributions

(2.64)

A; := span {go, adg,go, - - .,adffogo} . (2.65)
Assume that (the notation L means the orthogonal distribution)
ads, A; C A; C {dho}* fori=1,...,71 -3 (2.66)

and
adhA.n_g ¢ Aan_z and adﬁA.,l_g ¢ {dho}'l' . (2.67)

I 11 < 3, assumption (2.66) is vacuous and if 7; < 2, (2.67) is vacuous. As in the linear
case, we conjecture that if these assumptions are violated then the fast zero dynamics may

occur at a multiplicity of time scales. These assumptions guarantee that

LoLPiisho = eLgLy LT 2ho+ O()

(2.68)
=: eap(e€).
Note that ao(0) = LgoLs, L} ~2ho.
For coordinates, one uses
ho(z)
g = Lfo+cf.1 ho(z) € Ro
’ . (2.69)
| Lvenho()
n = () € R

and the development of Sections 2.2.1 and 2.2.2 can be repeated to yield the fast dynamics
of equation (2.63) with the difference that co(5,€5,7) is Lg Ly, L};'zho.



55

2.2.4 Perturbations in f, g, and h

The same remarks as were made in Section 2.1.4 can be made here as well. As
before, if

for some ag(¢), a smooth function of z, which is O(1) but not o(1), then there is only one
time scale for the fast zeros and the development of Sections 2.2.1, 2.2.2 could be repeated.

2.3 Conclusion

In this chapter, we have shown the effects of perturbation on the zero dynamics of
both linear and nonlinear SISO systems. We have shown how regular perturbations in the
state space descriptions of these systems can result in the appearance of singularly perturbed
or fast zero dynamics. In the linear case, we have given explicit formulas for the locations in
the complex plane that the zeros at co migrate to under perturbation. In the nonlinear case,
we have given the formula for the fast zero dynamics subsystem under perturbation. For
the most part, we have placed assumptions on the structure of the allowable perturbations
s0 as to guarantee the appearance of fast time scale zero dynamics at one time scale alone.
When these assumptions are not met, we conjecture that our qualitative results will be
unaltered but that fast zero dynamics at multiple time scales will appear. Our theory bears
a strong resemblance to the literature on high gain feedback and is in some sense to be
thought of as a companion to that literature, since it reveals the zero structure at co by the
artifact of system perturbation.

We conclude by noting that the analysis preseﬂted in this chapter can be extended
albeit in much more subtle form to the MIMO case, and involving a multiplicity of time

scales.



Chapter 3

Approximate Input-Output
Linearization for Nonlinear

Systems without Relative Degree

3.1 Introduction

The past few years have seen the maturation of the use of differential geometric
techniques in understanding input-output and full state linearization of nonlinear systems,
normal forms and zero dynamics. An elegant discussion of these results is in the work of
Isidori [Isi87]. The conditions for the existence of full state linearizable nonlinear systems
or for that matter systems which are input-output linearizable are non-generic and it is of
obvious interest to extend the results to situations where these conditions fail but do so
only slightly. Such a program was begun by Krener in [Kre84], who gave conditions for
approzimate full state linearization of nonlinear multi-input systems. In this chapter we
take this program one step forward by discussing approximate input-output linearization of
single input single output systems which fail to have relative degree in the sense of Byrnes
and Isidori [Isi87). Though in the same spirit as [Kre84], it is different in detail in that the
control objective is tracking: i.e., a prescribed output function is required to follow a given
specific function of time. Such applications are prototypical in the flight control of aircraft

where trajectory following rather than set point regulation are paramount to performance.

Approximate linearization of nonlinear systems has, of course, a lengthy history,

56
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starting with Jacobian linearizations and continuing with extended linearization [WR89]
and pseudo-linearization [RC84]. Our approximate linearization is different in spirit in that
it is specifically geared for tracking problems rather than the regulation problems that the
extended or pseudo linearization techniques appear to be useful for. Also, our approximation
is not an approximation by a linear system or family of linear systems but rather by a single
input-output linearizable nonlinear system.

An outline of the chapter is as follows: In Section 3.2, we start with an example
drawn from undergraduate control laboratories, the ball and beam experiment, and use it
to study the failure of exact input-output linearization and the latitude available in our
proposed technique to do approximate input-output linearization. We also compare the
linearizations with the Jacobian linea.rized.system. In Section 3.3, we present the general
method motivated by Section 3.2 to define robust relative degree and approximate input-

output linearization of SISO systems. Section 3.4 has some concluding remarks.

3.2 The Ball and Beam Example

Consider a version of the familiar ball and beam experiment found in many un-
dergraduate control laboratories (see Figure 3.1). In this setup, the beam is symmetric and
is made to rotate in a vertical plane by applying a torque at the point of rotation (the
center). Rather than have the ball roll on top of the beam as usual, we restrict the ball
to frictionless sliding along the beam (as a bead along a wire). Note that this allows for
complete rotations and arbitrary angular accelerations of the beam without the ball losing
contact with the beam. To remind us of this simplification, we shall refer to the system as
the ‘ball and beam’ system. We shall be interested in controlling the position of the ball
along the beam. However, in contrast to the usual set-point problem, we would like the ball

to track an arbitrary trajectory.

In this section, we first derive the equations of motion for the ‘ball and beam’
system. Then, ;ve try to apply the techniques of input-output linearization and full state
linearization to develop a control law for the system and demonstrate the shortcomings
of these methods as they fail on this simple nonlinear system. Finally, we demonstrate
a method of control law synthesis based on approzimate input-output linearization and
compare the performance of two control laws derived using differing approximations with

that derived from the standard Jacobian approximation.
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Figure 3.1: The ball and beam system.

3.2.1 Dynamics

Consider the ‘ball and beam’ system depicted in Figure 3.1. Let the moment of
' inertia of the beam be J, the mass of the ball be M, and the acceleration of gravity be G.
Choose, as generalized coordinates for this system, the angle, 8, of the beam and

the position, r, of the ball. The potential energy, V, of the system is given by
V = MGrsiné. (3.1)

The kinetic energy of the system is given by

K= %Jéz + -;-M(i'z +1262). (3.2)
—_—— & ~ v
beam ball

Then, with the Lagrangian defined as L = K — V, the equations of motion are given by

0 = 3"’;(%%)—%% 0 = 7+ Gsinf—ré?

T = é’;(%ﬁ-)—%ﬁ‘- > T = (Mr24J)+2Mrif + MGrcos (32)
where 7 is the torque applied to the beam and there is no force applied to the ball.

Once again, note that we have simplified the system by limiting the ‘ball’ to
frictionless sliding on the ‘beam’. We could easily deal with the case of the ball rolling
without slipping on the beam. This would, of course, place a nontrivial restriction on the
angular acceleration of the beam. Since the system would still be holonomic, the form of
the equations would be the same as (3.3) with slightly modified coefficients. The true ball

and beam system where the ball rolls and may slip and even lose contact with the beam is

. difficult and will not be considered here.

‘ Using the invertible transformation

T =2Mri0 + MGrcos@ + (Mr® + J)u (3.4)
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to define a new inpuf, u, the system can be written in state space form as

% T2 0
Eo 7172 — Gsinzg 0
= + u
5:3 Tq 0
3.5
L d R . J d
f(=) 9(2)
vo= o
h(z)

where z = (21,%2,23,24)T := (r,#,0, )T is the state and y = h(z) := r is the output of
the system (i.e., the variable that we want to control). Note that (3.4) is a nonlinear input

transformation.

3.2.2 Exact Input-Output Linearization

We are interested in making the system output, y(t), track a specified trajectory,
ya(2), i-e., y(t) = ya(t) as t — oo.
To this end, we might try to ezactly linearize the input-output response of the

system. Following the usual procedure, we differentiate the output until the input appears:

vy =,

g = 2,

§ = =123 - Gsinzs, (3.6)
() = 2,22 — Gz4cosz3+ 22974 u.

i} T2T4 T4 3+ 22224

b(z) a(z)
At this point, if the coefficient of u, a(z), were nonzero in the region of interest, we could
use a control law of the form
1

u= gy [-be) + o) (3.7)

to yield a linear input-output system described by

yO® = 0. (3.8)

Unfortunately, for the ‘ball and beam’, the control coefficient a(z) is zero whenever the

angular velocity z4 = 0 or ball position z; = r are zero. Therefore, the relative degree of
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the ‘ball and beam’ system is not well defined! This is due to the fact that
LyL%h(z) = 22124 (3.9)

fails to be nonzero at z = 0 (an equilibrium point of the undriven system) but also fails to
be identically zero on a neighborhood of z = 0. This is a characteristic unique to nonlinear
systems. Thus, when the system has nonzero angular velocity and nonzero ball position,
the input acts one integrator sooner than when the angular velocity or ball position are
zero.

Thus we conclude the ezact input-output linearization does not provide a method-

ology for designing a trajectory tracking controller.

3.2.3 Full State Linearization

Next we try our hand at fully linearizing the state of this system, that is to say,
find a set of coordinates and a feedback law such that the input-to-state behavior of the
transformed system is linear. The necessary and sufficient conditions for this were given by
Jakubczyk and Respondek [JR80] and, independently, by Hunt, Su, and Meyer [HSM83].

First we check the dimension of the controllability distribution,

span {g adgg --- ad’}’lg} (3.10)

where ad%g denotes the iterated Lie bracket [f,[f,--+[f,g]--]]. Since, the matrix

0 0 27124 42924 + G cos T3
0 —2z124 —27224— Gcoszy —47123 + 3Gz4c0823
Qz) = (3.11)
0 -1 0 0
1 0 0 0

has full rank at z = 0 (det @(0) = G2), it follows that the ‘ball and beam’ system is locally

controllable.

The second requirement is not generic. It is required that the distribution

- span {g adgg --- ad}“2g} (3.12)

be involutive, that is, the Lie bracket of any two vector fields in the distribution should also

be contained in the distribution.
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E § g, g
s
¥ (xv)
small nonlinear terms

Figure 3.2: Approximate input-output linearization: a chain of intergrators perturbed by

small nonlinear terms.
Checking the brackets for the ‘ball and beam’ system we find that
[9,ad}g] = (221 —2z2 O 0T (3.13)

does not lie within the span of the first three columns (vector fields) of (3.11).
Failing this condition, we see that it is not possible to fully linearize the ‘ball and

beam’ system.

3.2.4 Approximate Input-Output Linearization

. - In this section, we see that, by appropriate choice of vector fields close to the
system vector fields, we can design a feedback control law to achieve.bounded error output
tracking. The control law will, in fact, be the ezact output tracking control law for an
approzimate system defined by these vector fields.

Ideally, we would like to find a state feedback control law, u(z) = a(z) + B(z)v,
that would transform the ‘ball and beam’ system into a linear system of the of the form
¥ = v. Then, the system could be made to track an arbitrary (C*) trajectory, ya(t),
asymptotically by using a tracking control law of the form

v = ¥ (£)+as(3 (1) —y® (2))+ 22 (§(t) - (2))+ a1 (§a(t) = #(2)) + co(va(t) - y(2)) (3.14)

where s + a3s3 + a3 + 18 + og is a Hurwitz polynomial. Note that y, 7, etc., are all
functions of the state z.

Unfortunately, due to the presence of the centrifugal term 762 = z,z2, the input-
output response of the ‘ball and beam’ system cannot be exactly linearized. Here we try
to find an input-output linearizable system that is close to the true system. We present

two such approximations for the ‘ball and beam’ system. In each case, we will design a



62

nonlinear change of (state) coordinates, £ = &(z), and a state dependent feedback, u(z,v) =
o(z) + B(z)v, to make the system look like a chain of integrators (i.e., Brunovsky canonical
form) perturbed by small higher order terms, ¥(z,v), as depicted in Figure 3.2. We also
compare the performance of these designs to a linear controller based on the standard
Jacobian approximation to the system.

We then build an approximate tracking control law by designing u so that

v = y§0(t) + a3 (¥ () - $a(2)) + ca(§ia(t) - $a(®)) + e1(9a(2) - $2(2)) + co(9a(t) — #1(2))

(3.15)
making the error system into an exponentially stable linear system perturbed by small
nonlinear terms.

For each approximation, we present simulation results depicting (a) the output
error, y4(t) — $1(z(t)), (b) the neglected nonlinearity, ¥(z,u), (c) the angle of the beam,
0(t) = z3(t), and (d) the position of the ball, 7(t) = z1(t) = y(t), for a desired trajectory of
vd(t) = Rcoswt/30, with R = 5, 10, and 15.

Approximation 1

Since the centrifugal acceleration term z,72 = rf? causes the system to not have a well
defined relative degree, we design our first approximate system by simply neglecting it. Let
€1 = ¢1(z) = h(z). Then, along the system trajectories, we have (defining ¢;(-) recursively)

a=
&a=d2(x) .
§ = —Gsinzz+z123 h = &
Es=ds(x) € = &+P(z)
: ¥a(2) or (3.16)
£&3 = —-Gz4coszs & = &
. U=t € = b(z)+ a(z)u=: v(z,u).
& = Qzﬁ sinz3 + (—G cosz3) u
b(z) a(z)

As expected, by neglecting the centrifugal term (which is higher order), we obtain an ap-
proximate system with a well defined relative degree. Note that the choice of what to
neglect (i.e., ¥2(z)) leads to a specification of the coordinate transformation ®(z). In this

case, the approximate system is obtained by a simple modification of the f vector field (i.e.,
by neglécting ¥a(+)).
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{a) errcr (R = 5, 10, 15) {c}) theta (R = 5, 10, 15)

0.003 0.2
’—
’\ N\ x -
0. 1 g\ /!/\i 0. [ = =
A, S
-0.003 . -0.2 — __
6 105. 120. 60. 13, 35. 10S. 120.
psi2 (R = S, 10, 18) (d) £ (R=35, 10, 15)
0.002 15. —
é -
1—
0.} l————-— RL . F\
%i 7 § S 7 1“-—-1
-o.coz s.
xos 120.

" Figure 3.3: Simulation results for y4(t) = Rcosnt/30 using the first approximation ((a)
e=yi— o, (b) ¥, (c) 8, (d) 1') .

The simulation results in Figure 3.3 show that the closed loop system provides good
tracking. Notice that the tracking error increases in a nonlinear fashion as the amplitude
of the desired trajectory increases. This is expected since the approximation error term
12(z) is a nonlinear function of the state. A good a priori estimate of the mismatch of the
approximate system for a desired trajectory can be calculated using (@ ~(ya, 94, §d, ¥y )))
where &-1 : £ » z is the inverse of the coordinate transformation. This in turn may be a

useful way to define a class of trajectories that the system can track with small error.

Approximation 2
For this approximation, we will retain the centrifugal acceleration and only discard terms
that we must to obtain a approximate system with a well defined relative degree. Again,

let & = ¢1(z) = h(z). Then, along the system trajectories, we have

b= 2

§2=¢2(z) .
& = —Gsinzz+ 212} b = &
. t=bsle) or 6.2 =& (3.17)
& = —Gzycos 23 + z92% + 22224 & = &4+ vs(z,u)
- ba=du(2) ¢3(z,u) €& = b))+ a(z)u =: v(z,u).
€& = 7125+ (~Gcoszz+ 2z224)u

— - 4

b(z) a(z)

Note that we had no choice but to discard ¥3(z,u) = 2zaz4u since z2z4 is zero at z = 0
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but not identically zero in a neighborhood of = = 0. However, at this point, 2 and ¢4 are
not uniquely determined since, for example, 2,23 could be included in 93 rather than in ¢4
as we have done.

This time the approximate system is obtained by modifying the g vector field in a
more subtle way. Pulling back the modified g vector field (obtained by neglecting ¥3(z,v))

to the original z coordinates (using u as input) we get

- 0 1]
0 0 3.18
0 + 2Gz, 24 cos £3—4T1 T2 T3 ( ‘ )
G(G cos? £3—2x374 CO8 T3 T} 32 sinzy)
1 2:13‘3 sinzs
L ] L G cos? £3-22374 COBT3—T| TF sinzs |
N ~ ’
g(z) Ag(z)

The system with g modified in this manner is input-output linearizable and is an approxi-

mation to the original system since Ag is small for small angular velocity, 0 = z4.

(a) errer R = 8, 10, 15) (o) theta (R = 5, 10, 15)
3.2-4 o.z
3—
,_.
0. &j—é\ 0. _-\
%37—? —_— 7
-3.B-4 -0.2
0. 8. 30 105. 120. 0. 120.

®) psil3 R = 5, 10, 15) {d) r (R =35, 10, 13)

; "B =
= #Lgvr\\§%

o~

€ . 8. 90. 105. 120.

5.2=5

Figure 3.4: Simulation results for y4(t) = R cost/30 using the second approximation ((a)
€=Yd— &, (b) ¥s, (C) 0$ (d) 1‘)

The simulation results in Figure 3.4 show that the tracking error is substantially
less than that obtained by the first design. Thus, in some sense, approximation 2 is closer
to the true system than approximation 1.

We note that there are an endless number of approximate systems (perhaps less
obvious than these two) that may result in reasonable performance. The main requirement

is that the neglected terms 1; be higher order.
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Jacobian Approximation
To provide a basis for comparison, we calculate a linear control law based on the J acobian
approximation. Previously, we used the invertible nonlinear transformation of (3.4) to
simplify the form of 4. Since we are only allowed linear functions in the control, we must
work directly with the original input 7 and the true angular acceleration § = &4 given by
—MGz1cosz3 — 2M 212224 1

Mz +7 TMEZ+T

We will linearize about z = 0, T = 0. Since the output is a linear function of the state, we

&4 = (3.19)

begin with & = ¢1(z) = h(z). Then, along the system trajectories, we have (using (3.5)
and (3.19))

&

= zz
-~
ba=dn(x)
: . .
§2 = —Gz3 + §1m4+G(fa sin z3)
és=¢3(z) ¥2(z)
& = -—-Gz4
E4=d4 (x)
£ = MG’z + -G rt MG?z; cosz3 + 2MGz12274 MG?z, (E __ G )1_
S SRR Mz24+J J J Mzi+J)
Bz)  a() ' (@)
: (3.20)

The Jacobian approximation is, of course, obtainéd by replacing the f vector field

by its linear approximation and the g vector field by its constant approximation.

Figure 3.5 shows the simulation results from the Jacobian approximation. Un-
fortunately, the control system with the linear controller is not stable for R greater than
about 7. We see that the Jacobian approximation performs quite well within the somewhat
limited region of validity of the approximation, but quickly loses even basic stability outside
of this region.

The following table provides a direct comparison of the error e = yq — ¢; for the

three approximations:

R || Approximation 1 | Approximation 2 | Jacobian Approximation
5 +9.6-10~% +1.5.10-% —4.7-1073 4+3.0-10-3
10 +7.5.10"4 +6.5.10-5 unstable

15 +2.5.10-3 +1.9.10—4 unstable

Note that Approximation 2 provides better tracking for this class of inputs by about an
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Figure 3.5: Simulation results for yq4(t) = Rcoswt/30 using the Jacobian approximation
(() e = ya — ¢1, (b) ¥3, (c) 8, (d) )

order of magnitude over Approximation 1. Due to the large excursions from the origin, the
Jacobian Approximation is no longer a good approximation so the system goes unstable.

Of course, the other approximations will e'ventua,lly go unstable as R becomes large.

In the next section, we will see that these approximations belong to a large class
of approximations that provide the model to design stable closed loop control laws for
approximate output tracking.

3.3 Theory for Approximate Linearization

In this section, we will consider single-input single-output systems of the form

¢ = f(z)+9(z)u
y = h(z)

(3.21)

where z € R", u,y € R, f and g are smooth vector fields on R” (i.e., f(z) € T;R* =R",z €
R"), and h : R® — R is a smooth function (smooth is understood to mean as differentiable
as needed). We assume that z = 0 is an equilibrium point of the undriven system, i.e.,
f(0)=0.

If the control objective is tracking, the input-output linearization proceeds as

follows: differentiate the output repeatedly until the input appears for the first time on
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the right hand side. Thus, we obtain, for z in a neighborhood of 0,

y = th(z) ’
] Lih(z) ,

@
I

(3.22)

y™ = LIh(z) + LyL}  h(z)u .

Here, Lsh(z) stands for the Lie derivative of h(z) along f, L}h(z) stands for Ly(Lsh)(z)
and so on. It follows that in (3.22) above, that

Loh(z) = LyLsh(z) = -+ = L,L} 2h(z) =0 forzeU (3.23)

where U is an open neighborhood of the origin. In the event that LQL}'lh(z) # 0 for

z € U, the system is said to have relative degree v and the control law

1

v L [~L3h(2) + ] (3.24)

linearizes the system from v to y. However, it may happen that LyL}'l_h(z) =0atz=0
but is not identically zero in a neighborhood U of z = 0, i.e., LgL'}'lh(z) is a function
which is of order O(z) rather than O(1). Then, the relative degree of the system is not well
defined and the input-output linearizing control law of (3.24) is no longer valid.
(In the sequel we will use the O notation. Recall that a function §(z) is said to be
O(z)" if
_ 162)

[z]-0 |z|"

exists and is # 0.

Also, functions which are O(z)? are referred to as O(1). By abuse of notation, we will also
use the notation O(z,u)? to mean functions of z,u which are sums of terms of O(z)?, O(zu)
or O(u)?. Similarly for O(z,u)*.)

Failing this, we seek a set of functions of the state, ¢i(z), ¢ = 1,...,7, that
approximate the output and its derivatives in a special way. The integer v will be determined
during the approximation process.

Since our control objective is tracking, the first function, ¢,(z), should approxi-

mate the output function, that is

h(z) = ¢1(z) + to(z,u) (3.25)
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where 9o(z,u) is O(z,u)? (actually, 1o does not depend on u, but for consistency below we

include it). Differentiating ¢1(z) along the system trajectories we get
é1(z) = Lsh(z) + Lyh(z)u. (3.26)

If Lyh(z) is O(z) or of higher order, we cannot effectively control the system at this level

so we neglect it (and a small part of L sh(z) if we so desire) in our choice of ¢2(z):
Li+gutr(z) = $2(2) + $1(2,u) (3.27)
where ¥ (z,u) is O(z,2)%. We continue this procedure with
Li+gudi(z) = dis1(z) + i(z,u) (3.28)
until at some step, say 7, the control term, L ,¢,(z), is O(1), that is,
Lisgudy(@) = ba) + alz)u - (3.29)

where a(z) is O(1). Using this procedure, it looks like we have found an approximate system

of relative degree 4. This motivates the fo]lowing.deﬁnition:

Definition 3.1 We say that a nonlinear system (8.21) has a robust relative degree of v

about z = 0 if there erists smooth functions ¢i(z), i =1, ..., 7, such that

h(z) . = ¢1(z) + Yo(z,v)
Litgudi(z) = dipa(z)+¥i(z,u) i=1,...,7-1 (3.30)
Lisgudy(z) = b(z)+ a(z)u+ Pa(z,u)

where the functions' Yi(z,u),1=0, ..., v, are O(z,u)? and a(z) is O(1).
Remarks

o In equation (3.30) above, the dependence of ¥; on z and u has the form

1/’0(3’»"’) = ¢(l)(z) ’

| | (3.31)
Yi(z,u) = PX(z) + Yz, i=1,...,7-1

where, for i = 0,...,7 — 1, $}(z) is O(z)? and ¥?¥(z) is O(z).
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e There is considerable latitude in the definition of the ¢;(z) since each ¥}(z) may be

chosen in a number of ways as long as it is O(z)2.

O

We now characterize the robust relative degree. First, define the Jacobian lin-

earized version of the system(3.21) about z = 0, u = 0 to be

2 = Az+4+bu
(3.32)
y = ¢z
with A = Df(0), b = g(0), and ¢ = dh(0). Then, we have
Theorem 3.1 The robust relative degree of the nonlinear system (3.21) is equal to the
relative degree of the Jacobian linearized system (3.32) and so is well defined.

Proof: Fori=1,...,7— 1, we have

Liygupi = i i
f+gqu® Lo, + Lgdiu (3.33)
= din+9! + Yiu
so that
. = (2 — 2hl
$i+1(z) Ls¢i(z) — (=), (3.34)
Hz) = Lgoi() .
Also, since ¥}(z) is O(z)?, we have,fori=1,...,7- 1,
dy}(0)=0. (3.35)

Using this and the fact that f(0) = 0, the differentials of the functions ¢; are given by

d$1(0) = dh(0) - di5(0)
= ¢-0,

d$2(0) = dLsi(0) - depi(0)
= d2¢,(0)- £(0) + d$1(0) - DF(0) — 0 (3-36)
= 0+4cA,

dp(0) = cA™T1.
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Calculating the control coefficients, we find
$(0) = d¢1(0)-9(0)

= cb,
2(0 = cAb,
¥3(0) ¢ (3.37)
a(0) = cA""1b.
Since ¥?(0) = 0 and a(0) # 0, it follows that
cb=cAb=..-=cA""2 =0,
(3.38)
cAT1p £ 0.

Thus, v, the robust relative degree of (3.21), is equal to the relative degree of the Jacobian
linearized system (3.32). From this, it is easy to see that v is independent of the choice of
the neglected functions v;(z,u) of order O(z,u)? and is therefore well defined. O

An immediate corollary of this theorem is

Corollary 3.2 The approzimate relative degree of a nonlinear system (3.21) is invariant

under a state dependent change of control coordinates of the form
u(z,v) = a(z) + B(z)v (3.39)
where a and B are smooth functions and (0) = 0 while 5(0) # 0.

In order to show that this procedure produces an approximation of the true system,
we need to show that the functions ¢;(-) can be used as part of a (local) nonlinear change

of coordinates. To this end, we prove:

Proposition 3.3 Suppose that the nonlinear system (3.21) has approzimate relative degree

4. Then the functions ¢;(-), i =1, ..., v, are independent in a neighborhood of the origin.
Proof: Since the ¢;(-) are smooth, it is sufficient to check that the constant v X n matrix
d¢1(0) ¢

WO A (3.40)

D¢(0) =

dp(0) | | car
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(from (3.36)) has full rank. If we multiply D¢(0) on the right by the n X v matrix

[47-16 4% .. b] (3.41)

we get the nonsingular 4 X v matrix
a0) 0 --- 0
*

(3.42)
0

| x * a(0)

where ‘+’ denotes possibly nonzero entries. This shows that D¢(0) has a rank of 7 and the

proposition is proved. a

With the 4 independent functions, ¢;(-), in hand, we can, by the Frobenius
theorem, complete the nonlinear change of coordinates with a set of functions, 7:(z),

i=1,...,n — 7, such that

Lgni(z)=0 =zeU. (3.43)

Defining new coordinates, (£,7), by

[ & 1 [ $1(z)

& = #:() =: &(z), (3.44)

T m(z)

Mn—v ] i "In—-y(z) i
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we can rewrite the true system (3.21) as

& = &+ ti(z,u)

é"{—l = E‘y""p‘y-l(m’")

& = b&n)+a,nu (3.45)
7 = a&n)
Yy = & + Yoz, u)

where g(£,7) is Lyn expressed in (€,7) coordinates.
Note that the form (3.45) is a generalization of the standard normal form of Byrnes
and Isidori [Isi87,BI88] with the extra terms ¥;(z,u), i = 0,...,7 of O(z,u)? Thus the

control law
1
u= ST [=5(&,m) + ] (3.46)

approximately linearizes the system (3.21) from the input v to the output y up to terms of
O(z,u)?.

If the robust relative degree of the system (3.21) is ¥ = n, then the system (3.21)
is almost completely linearizable from input to state as well (since there will be no 7 state

va:iables). This situation was investigated by Krener [Kre84] who showed that the system
& = f(z) + g(z)u | (347)
with no output ezplicitly defined was linearizable to terms of O(z, u)” iff the distribution
span {g adsg --- ad?‘lg} has rank n (3.48)
and the distribution
span {g adsg --- ad}"zg} is order p involutive, (3.49)

i.e., has a basis, up to terms of O(z)?, which is involutive up to terms of O(z)”. Equivalently,
conditions (3.48) and (3.49) guarantee (through a version of the Frobenius theorem with
remainder [Kre84]) the existence of an output function h(z) with respect to which the

system (3.47) has robust relative degree n and further that the remainder functions ¥;(z,u)
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are O(z,u)?. Our development differs somewhat from that in [Kre84] in that we are given a
specific output function y = h(z) and a tracking objective for this output. However, there is
a happy confluence of our results and those of Krener for the ball and beam example of the
previous section where it may be verified that the condition of (3.49) is satisfied for p = 3
and further more the desired output function h(z) is in fact an order p = 3 integral manifold
of the distribution of that equation. Consequently the ball and beam can be input-output

and state space linearized up to terms of order 3.

As was remarked after Definition 3.1, there is a great deal of latitude in the choice
of the functions }(z), i = 0,...,7 — 1, so long as they are O(z)2. To improve the quality
of the approximation, one may insist on choosing these terms to be O(z)? for some p > 2.
There is less latitude in the choice of the functions ¥?(z). They must be neglected if they
are O(z) or higher and not neglected if they are O(1) (this determines y). We cannot in
general guarantee that an approximation of O(z,u)? for p > 2 can be found. At this level
of generality, it is difficult to give analytically rigorous design guidelines for the choice of
the functions ¥}(z). However, from the ball and beam example of section 3.2, it would
appear that it is advantageous to have the $}(z) be identically zero for as long (as large an
i) as possible. We conjecture that the larger the value of the first i at which either ¥}(z) or

¥?(z) are nonzero, the better the approzimation.

It is also important to note the distinction between the nonlinear feedback control
law (3.46) which approximately linearizes the system (3.45) and the linear feedback control
law obtained from the Jacobian linearization of the original system (3.21) given by

1
U= — [-cA'z + 0] , (3.50)

though, as we have shown in the proof of Theorem 3.1, they agree up to first order at z =0
since cA7-1b = a(0) and cAY = dLy¢,(0) = dh(0). It is also useful to note that the control
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law (3.46) is the ezact input-output linearizing control law for the approzimate system

s = &

é’r—l = &

& = b(&n)+a(En)u (3.51)
7 = qén)

y = &

In general, we can only guarantee the existence of control laws of the form (3.46)
that approximately linearize the system up to terms of O(z, u)?—the Jacobian law of (3.50)
is such a law. In specific applications, we see that the control law (3.46) may produce
better approximations (the ball and beam of section 3.2 was linearized up to terms of
O(z,©)?). Furthermore, the resulting approximations may be valid on larger domains than
the Jacobian linearization (also seen in the ball and beam example). We try to make this
notion precise by studying the properties enjoyed by the approximately linearized system
(3.21), (3.46) on a parameterized family of operating envelopes) defined as:

Definition 3.2 We call U, C R", € > 0, a family of operating envelopes provided that
Us C U, whenever § < € (3.52)

and
sup{6:Bs C U} =¢ (3.53)

where Bjs is a ball of radius § centered at the origin.
Remarks

e It is not necessary that each U, be bounded (or compact) although this might be

useful in some cases.

e Since the largest ball that fits in U, is B, the set U, must get smaller in at least one

direction as ¢ is decreased.

O
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The functions t;(z,u) that are omitted in the approximation are of O(z, u)2in a
neighborhood of the origin. However, if we are interested in extending the approximation

to (larger) regions, say of the form of U, we will need the following definition:

Definition 3.3 A function ¢ : R"XR — R is said to be uniformly higher order on U, S(B, C
R" X R, € > 0, if, for some o > 0, there ezists a monotone increasing function of €, K. such
that

|¥(z,u)| < eKe(|z| + |u]) forz € U, |u| < 0. (3.54)

Remarks
o If ¥(z, ) is uniformly higher order on Ue X B, then it is O(z,u)?.

e This definition is a refinement of the condition that ¥(z, u) be O(z,u)? in as much as

it does not allow for terms of the form O(u)2.

O

Now, return to the original problem. If the approximate system (3.51) is expo-
nentially minimum phase and the error terms #; in (3.45) are uniformly higher order on

U. X B,, we may use the stable tracking control law for the approximate system given by

a(f, ) [-b(f’ n)+ y("l) + oy-1(yy (r-1) _ &)+ -+ ao(ya — 51)] (3.55)

(with s” + a,_18""! + ...+ @ a Hurwitz polynomial). We can now prove the following
result:

Theorem 3.4 Let U, ¢ > 0, be a family of operating envelopes and suppose that
e the zero dynamics of the approzimate system (3.51) (i.e., 7 = ¢(0,7)) are exponen-
tially stable and q is Lipschitz in £ and n on ®(U,) for each € and
e the functions vi(z,u) are uniformly higher order on U, X B,.
Then, for € sufficiently small and for desired trajectories with sufficiently small values and

derivatives (Y4, d, - - -, ‘(,'7) ), the states of the closed loop system (3.21), (3.55) will remain
bounded and the tracking error will be O(e).
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Proof: Define the trajectory error, e € R?, to be

-1 o 1T -
e1 & Yd
e | _ 2| | Ve (3.56)
o] L&) [

Then, the closed loop system (3.21), (3.55) (equivalently, (3.45), (3.55) ) may be expressed

as

] [ ]

é1 0 1 see 0 €1 ¢1(2, u(za gd))
= +
€y-1 0 1 €y-1 Yoy-1(2, (2, 7a)) (3.57)
| & | —20 o —ay1 || e | | ¥a(zu(=0) |
i = q(&n)

or, compactly,
¢ = Ae+Y(z,u(z,74))
n = 9(67 7’)

(3.58)

where Fa := (Yds Ydy - - +» 3’7)). Since the zero dynamics are exponentially stable, a converse
Lyapunov theorem implies the existence of a Lyapunov function (see, e.g., [Hah67]) Va(n)
for the system

7= q(0,7) (3.59)
satisfying
kln|? < Va(n) < kalnl?
824(0,7) < —ks|n|? (3.60)
|%2| < kalnl

for some positive constants k1, k2, k3, and k4.
We first show that e and 7 aré bounded. To this end, consider as Lyapunov
function for the error system (3.58)

V(e,n)=eTPe+uVa(n) (3.61)
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where P > 0 is chosen so that
ATP 4+ PA=-TI (3.62)

(possible since é = Ae is stable) and u is a positive constant to be determined later.

Note that, by assumption, y4 and its first -y derivatives are bounded,
€] < le] + ba and |y™)] < ba, (3.63)
the function, ¢(&, 1) is Lipschitz
la(€',7") — «(€%, 77| < Ug(I€* = €1 + In* — 7)), (3.64)

the function, ¥(z, u), is uniformly higher order with respect to U X B, and u(z, a) locally
Lipschitz in its arguments with »(0,0) = 0,

[2Py(z, u(z,7q))| < eKclu(|z| +b4) (z,u) € Ue X By, (3.65)
and z is a local diffeomorphism of (¢, 1),

|z| < L(I€] + Inl)- (3.66)

Using these bounds and the properties of V2(-), we have

q(t,n) = F2q(0,7)+ F2(a(ém) - 2(0,))

< —kslnl? + kalg|nl(le] + ba)-

(3.67)

Taking the derivative of V(-,-) along the trajectories of (3.58), we find, for (z,u) € U X Bo,

14

~le|? + 2¢T Pp(z, u(z, 4)) + n52a(€, )

—lef? + ele] Kelx(le] + ba + [n]) + #(—ks|nl? + kalg|nl(le| + ba))
—( - eK.1.b4)? + (eKclzba)?

—(5 — (eBelz + palg)lnl)? + (Kl + pkalg)?In]?

~ k(g — kidayz Chalghal®

—(} - eKcl:)\el® — §pks|nf?

—(§ — eKclo)lel? — (Bpks — (eKelz + pkslg)?)nl?

H(eKelsba)? + pliiigha,

IA

IA

(3.68)

IA



78

Define .
3

_ . 3.69
Ho = {Kd, + Falg)? (3.69)

Then, for all 12 < o and all € < min(u,n};,;), we have

2 2 2
V< _I_eil__ _£ k32|"| +£ (k“,:"b") + (eKelzba)?. (3.70)

3

Thus, V < 0 whenever || or |e| is large which implies that |p| and |e| and, hence, |£]| and
|z|, are bounded. The above analysis is valid for (z,u) € Ue X B,. Indeed, by choosing bg
sufficiently small and appropriate initial conditions, we can guarantee that the state remains
in U, and the input is bounded by o. Using this fact, we may abuse notation and write the
function ¥(z, u(z,Ja)) as ep(t) and note that

é = Ae + ey(t) (3.71)

is an exponentially stable linear system driven by an order € input. Thus, we conclude that
the tracking error will be O(e). o

3.4 Conclusion

In this chapter, we have presented an approach for the approximate input-output
linearization of nonlinear systems, particularly those for which relative degree is not well
defined. We saw that there is in fact a great deal of freedom in the selection of the approx-
imation. We have seen that, by designing a tracking controller based on the approximating
system, we can achieve tracking of reasonable trajectories with small error. The approxi-
mating system is a nonlinear system, with the difference that it is input-output linearizable
by state feedback. We have shown some properties of the accuracy of the approximation
and in the context of the ball and beam example shown it to be far superior to the Jacobian
approximation. Future research in this area will include developing methods to effectively

search among the prospective approximate systems and to evaluate their accuracy.



Chapter 4

Approximate Tracking for Slightly
Nonminimum Phase Systems:

Application to Flight Control

The method of input-output linearization provides a natural framework for the
design of tracking controllers. This technique has in fact been successfully implemented
in several practical applications, such as flight control [Ass73,MC75,MC80,LS88] and the
control of rigid robots by the so-called computed torque method [Fre75]. The theory is now
well developed and understood [Isi85,Isi87)].

One of the major obstacles to the direct application of this theory is the fact that
it relies on a nonlinear version of pole-zero cancellation. Of course, the nonlinear pole-zero
cancellation implicit in these techniques is only a problem when the cancellation is one
involving unstable zero dynamics (introduced in (BI84] and made precise in [IM89,si87]).
In this chapter, we focus on this problem with specific emphasis on the aircraft control

problem.

While several researchers have applied the methods of nonlinear control to the
aircraft problem (see [LS88] for a nice summary), most have neglected the small moment-
to-force coupling without proper justification. This coupling provides dynamic effects that
cannot be assumed to be bounded! Due to the fact that we are building a closed loop
feedback system, we must carefully analyze the effects of this coupling to guarantee that

small changes in this parameter do not result in drastic changes in behavior such as the

79
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bifurcation behavior that can result from inertial coupling [HO74] or high angles-of-attack
[MKC77]. In this chapter, we provide rigorous justification for the common practice of
ignoring the moment-to-force coupling in the design of the controller.

This chapter is organized as follows: Section 4.1 discusses some modeling issues
for aircraft dynamics and presents a simplified planar VTOL aircraft that will be used
in the main discussion. In section 4.2, we work through the details of both exact and
approximate input-ouput linearization for the simplified aircraft and present illustrative
simulations showing the qualitative behavior of this system. In section 4.3, we develop
the rudiments of a theory for the approzimate linearization of slightly non-minimum phase

systems.

4.1 Aircraft Dynamics

The complete dynamics of an aircraft, taking intb account flexibility of the wings
and fuselage, aeroelastic effects, the (internal) dynamics of the engine and control surface
actuators, and the multitude of changing variables, are quite complex and somewhat un-
manageable for the purposes of control. A useful first approximation is to consider the
aircraft as a rigid body upon which a set of forces and moments act.

Then, with 7, R, and w being the aircraft position, orientation (rotation matrix),

and angular velocity, respectively, the equations of motion can be written as

mi=Rf,+mg (4.1)
JWe = Tq — W X Jw, (4.2)
R=wxR ' (4.3)

where f, and 7, are the force and moment acting on the aircraft expressed in the aircraft
reference frame. Here, the a subscript means that a quantity is expressed with respect to
the aircraft reference frame.

Depending on the aircraft and its mode of flight, the forces and moments can
be generated by aerodynamics (lift, drag, and roll-pitch-yaw moments), by momentum ex-
change (gross thrust vectoring and reaction controls to generate moments), or a combination
of the two. The flight envelope of the aircraft is the set of flight conditions for which the
pilot and/or the control system can effect the forces and moments needed to remain in the

envelope and achieve the desired task.
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While the function mapping the control inputs to the forces and moments is a
highly nonlinear state-dependent function, it is useful to note that this function can normally

be decomposed as

fa

Ta

= F(z) + 9(z)u(z,¢) (4.4)

where z € R® denotes the state and ¢ € R™ denotes the control input and F : R® — RS,
G : R® —» R8*m_ and u : R® x R® —» R™ are (continuous) functions. In particular, for
each z in the function u(z,-) : R™ — R™ is one-to-one and hence (algebraically) invertible.
The value of the function u(:,-) can often be taken to be the components of the force and
moment that the actuators were designed to produce.

As an example, consider the YAV-8B Harrier produced by McDonnell Aircraft
Company [McD82,McD83] depicted in figure 4.1 (aircraft frame-A, runway frame-R). The
Harrier is a single-seat transonic light attack V/STOL (vertical/short takeoff and landing)
aircraft pt;wered by a singlé turbo-fan engine. Four exhaust nozzles on the turbo-fan engine
provide the gross thrust for the aircraft. These nozzles (two on each side of the fuselage) can
be simultaneously rotated from the aft position (used for conventional wing-borne flight)
forward approximately 100 degrees allowing jet-borne flight and nozzle braking. The throttle
and nozzle controls thus provide two degrees of freedom of thrust vectoring within the z-z
plane of the aircraft. (If the line of action of the gross thrust does not pass through the
aircraft center of mass, then this thrust will also produce a net pitching moment.)

In addition to the conventional aerodynamic control surfaces (aileron, stabilator
(stabilizer-elevatof), and rudder for roll, pitch, and yaw moments, respectively), the Harrier
also has a reaction control system (RCS) to provide moment generation during jet-borne and
transition flight. Reaction valves in the nose, tail, and wingtips use bleed air from the high
pressure compressor of the engine to produce thrust at these points and therefore moments
(and forces) at the aircraft center of mass. The design of the aerodynamic and reaction
controls provides complete (three degree of freedom) moment generation throughout the
flight envelope of the aircraft. When moments are produced by applying a single force
rather than a couple, a nonzero force (proportional to the moment) will be seen at the
aircraft center of mass.

Using the throttle, nozzle, roll, pitch, and yaw controls we can produce (within

physical limits) any moment and any force in the -z plane of the aircraft. Therefore, the
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z

Figure 4.1: Aircraft coordinate systems (R-runway, A-aircraft)

function u(-,-) for the Harrier can be chosen to map the control inputs to the moment and
z-z force on the aircraft (with u(z,0) = 0 so that the force and moment acting on the
aircraft with the controls in the zero position are subsumed into F(z) ). With this choice of
u(+,-), five of the six rows of G(z) will be the rows of a 5 x 5 identity matrix. The remaining
row will determine the side force f,, and can easily be seen to form a (state-dependent)
linear combination of the rolling and yawing moments.

Since the function u(z,-) can be inverted (on its range), we are free to consider u
to be the input (control) rather than c. The idea of inverting the algebraic nonlinearities
present in the system has been applied to real flight control problems [MC75,MC80]. With
these considerations in mind, we see that the dynamics of the aircraft are of the general

form

&= f(z)+ zt.:g,-(z)ug. (4.5)

The small forces that are produced when moments are commanded result in some
important effects. To examine these more closely, consider the geometry of the reaction
control system as shown in figure 4.2. Since the roll moment reaction jets create a force
that is not perpendicular to the y axis, the production of a positive rolling moment (to the
pilot’s right) will also produce a slight acceleration of the aircraft to the left. As we will
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x

Figure 4.3: The planar vertical takeoff and landing (PVTOL) aircraft

see, this phenomenon makes the aircraft non-minimum phase.

4.1.1 A Simple Planar Aircraft

For the purpose of illustration, it is particularly useful to consider a simple toy
aircraft that has a minimum number of states and inputs but retains many of the features
that must be considered when designing control laws for a real aircraft such as the Harrier.
Figure 4.3 shows our prototype PVTOL (planar vertical takeoff and landing) aircraft. The
aircraft state is simply the position, z, y, of the aircraft center of mass, the angle, 6, of the
aircraft relative to the z-axis, and the corresponding velocities, &, 7, 6. The control inputs,

u1, U2, are the thrust (directed out the bottom of the aircraft) and the rolling moment.
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Figure 4.4: Block diagram of the PVTOL aircraft system

The equations of motion for our PVTOL aircraft are given by

3 = -—sinfu; + ecosuy
§ = cosfu; +esinfuz —1 (4-6)
6 = U

where ‘—1is the gravitational acceleration and ¢ is the (small) coefficient giving the coupling
between the rolling moment and the lateral acceleration of the aircraft. Note that ¢ > 0
means that applying a (positive) moment to roll left produces an acceleration to the right

(positive ). Figure 4.4 provides a block diagram representation of this dynamical system.
The PVTOL aircraft system is the natural restriction of V/STOL aircraft to jet-

borne operation (e.g., hover) in a vertical plane. The study of this simple planar model
provides important insight that extends naturally to the more complicated six degree-of-

freedom aircraft.

4.2 Linearization by State Feedback

4.2.1 Exact Input-Output Linearization of the PVTOL Aircraft System

Consider the PVTOL aircraft system given by (4.6). Since we are interested in
controlling the aircraft position, we choose z and y as the outputs to be controlled. We

seek a (possibly dynamic) state feedback law of the form

u = a(z) + b(2)v (4.7)
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such that, for some v = (71,72)%,

n) =
? vl (4.8)
y2) = v,

Here, v is our new input and z is used to denote the entire state of the System (including
compensator states, if necessary).

Proceeding in the usual way, we differentiate each output until at least one of the
inputs appears. This occurs after differentiating twice and is given by (rewriting the first

two equations of (4.6) )

L 0 —sin® ecosd uy
= + . (4.9)

i -1 cosf esind )

Since the matrix operating on u (the so-called decoupling matrix) is nonsingular (barely—
its determinant is —e!), we can linearize (and decouple) the system by choosing the static
state feedback law

Uy —sinf cosé 0 "
= 0 sing + (4.10)
U2 _COGS ———812' 1 V2 .
The resulting system is
E = m
i = un (4.11)

b = %-(sino + cos Ov; + sin 6v;)

This feedback law makes our input-output map linear, but has the unfortunate side-effect
of making the dynamics of # unobservable. In order to guarantee the internal stability of
the system, it is not sufficient to look at input-output sta,bility; we must also show that all
internal (unobservable) modes of the system are stable as well.

The first step in analyzing the internal stability of the system (4.11) is to look
at the zero dynamics [BI84,IM89,1si87] of the system. The zero dynamics of a nonlinear
system are the internal dynamics of the system subject to the constraint that the outputs

(and, therefore, all derivatives of the outputs) are set to zero for all time.
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Figure 4.5: Phase portrait of an undamped pendulum (é vs. 0,e=1)

Constraining the outputs and their derivatives to zero by setting v; = v2 =0 (and

using appropriate initial conditions), we find the zero dynamics of (4.11) to be

6= %sin 0. (4.12)

Equation (4.12) is simply the equation of an undamped pendulum. Figure 4.5
shows the phase portrait (8 vs 8) of the pendulum (4.12) with € = 1. The phase portrait for
€ < 0 is simply a horizontal 7-translate of figure 4.5. Thus, for € > 0, the equilibrium point
(9,6) = (0,0) is unstable and the equilibrium point (7,0) is stable but not asymptotically
stable and is surrounded by a family of periodic orbits with periods ranging from 27 /€ to co.
Outside of these periodic orbits is a family of unbounded trajectories. Thus, depending on
the initial condition, the aircraft will either rock from side to side forever or roll continuously

in one direction (except at the isolated equilibria).

Nonlinear systems, such as (4.11), with zero dynamics that are not asymptotically
stable are called non-minimum phase. Figure 4.6 shows the response of the system (4.11)
when (v1,v2) is chosen (by a stable feedback law) so that z will track a smooth trajectory
from z = 0 to z = 1 with y remaining at zero.” The bottom section of the figure shows
snapshots of the PVTOL aircraft’s position and orientation at 0.2 second intervals. From the
phase portrait of § (figure 4.6e), we see that the zero dynamics certainly exhibit pendulum
like behavior. Initially, the aircraft rolls left (positive #) to almost 2. Then, it rolls right
through four revolutions before settling into a periodic motion about the —37 equilibrium
point. Since v; and v, are zero after ¢ = 5, the aircraft continues rocking approximately
+7 from the inverted position.

From the above analysis and simulations, it is clear that exact input-output lin-

earization of a system such as (4.6) can produce undesirable results. The source of the
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Figure 4.6: Response of non-minimum phase system to smooth step input
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problem lies in trying to control modes of the system using inputs that are weakly ()
coupled rather than controlling the system in the way it was designed to be controlled
and accepting a performance penalty for the parasitic (¢) effects. For our simple PVTOL
aircraft, we should control the linear acceleration by vectoring the thrust vector (using

moments to control this vectoring) and adjusting its magnitude using the throttle.

4.2.2 Approximate Linearization of the PVTOL Aircraft System using
a Simplified Model

In the last section we (exactly) linearized input-output map of the PVTOL aircraft
system (4.6). However, due to the small coupling between rolling moments and lateral
acceleration, the linearized system had unstable zero dynamics. Thus, while the outputs
(the z and y position) can be tracked perfectly, the internal behavior (the aircraft attitude)
is not regulated and exhibits unstable behavior.

In this section, we propose controlling the system as if there were no coupling
between rolling moments and lateral acceleration (i.e., ¢ = 0). Using this approach to control
the true system (4.6), we expect to see a loss of performance due to the unmodeled dynamics
present in the system. In particular, we see that we can guarantee stable asymptotic tracking
of constant velocity trajectories and bounded tracking for trajectories with bounded higher
order derivatives.

We now model the PVTOL aircraft as ((4.6) with € = 0)

Pm = —sinfuy;
m = cosfu;—1 (4.13)
5 = U2

so that there is no coupling between rolling moments and lateral acceleration. Differentiating

the model system outputs, Z,, and ¥, we get (analogous to (4.9))

i 0 —sind 0 u
" + . (4.14)
Um -1 cosf 0 UL

Now, however, the matrix multiplying u is singular which implies that there is no static
state feedback that will linearize (4.13). Since u2 comes into the system (4.13) through 6,

we must differentiate (4.14) at least two more times. Let u; and %, be states (in effect,
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Figure 4.7: Block diagram of the augmented model PVTOL aircraft system

placing two integrators before the u, input) and differentiate (4.14) twice giving

z#) sin 062y, — 2 cos 041, —sinf — cosfuy iy
= ‘ T+ (4.15)
y,(:) — cos 06%u, — 2sin 60, cosf —sinfuy U

The matrix operating on our new inputs, (#1,u2)%, has determinant equal to z; and
therefore is invertible as long as the thrust, uy, is nonzero. This fact agrees well with our
intuition since we know that no amount of rolling will affect the motion of the PVTOL
aircraft if there is no thrust to effect an acceleration. Figure 4.7 shows a block diagram
of the model system with u; and #; considered as states. Note that each input must go
through four integrators to get to the output. Thus, we linearize (4.13) using the dynamic
state feedback law '

ily —sin@  cos@ — sin 06%u; + 2 cos 061, + 7"
ug I —2%*;—0 —%‘1—0 cos 062y, + 2sin 867, Vg
62u, —sin@ cosé n
= . + . (4.16)
_ 20, _cosf _sinb v
L T U Uy 2

resulting in

:cs,‘f) m
o | = . (4.17)
v | e |

Unlike the previous case (equation (4.11)), the linearized model system does not contain
any unobservable (zero) dynamics. Thus, using a stable tracking law for v, we can track an
arbitrary trajectory and guarantee that the (model) system will be stable.

Of course, the natural question that comes to mind is: will a control law based
on the model system (4.13) work well when applied to the true system (4.6)? In the next
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section, we will show (in a more general setting) that, if € is small enough, then the system

will have reasonable properties (such as stability and bounded tracking).

How small is small enough? Figure 4.8 shows the response of the true system
with epsilon ranging from 0 to 0.9 (0.01 is typical during jet-borne flight, i.e., hover, for
the Harrier). As in section 4.2.1, the desired trajectory is a smooth lateral motion from
z = 0 to z = 1 with the altitude (y) held constant at 0. The figure also shows snapshots
of the PVTOL aircraft’s position orientation at 0.2 second intervals for ¢ = 0.0, 0.1, and
0.3. Since the snapshots were taken at uniform intervals, the spacing between successive
pictures gives a clue of the aircraft velocity and acceleration. The computer graphics movie
of the trajectories provides an even better sense of the system response.

Interestingly, the z response is quite similar to the step response of a non-minimum
phase linear system. Note that for € less than approximately 0.6, the oscillations are reason-
ably damped. Although performance is certainly worse at higher values of ¢, stability does
not appear to be lost until ¢ is in the neighborhood of 0.9. A value of 0.9 for € means that
the aircraft will experience almost 1g (the acceleration of gravity) in the wrong direction
when a rolling acceleration of one radian per second per second is applied. For the range
of € values that will normally be expected, the performa.nce' penalty due to approximation
is small, almost imperceptible.

Note that, while the PVTOL aircraft system (4.6) with the approximate control
(4.16) is stable for a large range of ¢, this control allows the PVTOL aircraft to have
a bounded but unacceptable altitude (y) deviation. Since the ground is hard and quite
unforgiving and vertical takeoff and landing aircraft are designed to be maneuvered in close
proximity to the ground, it is extremely desirable to find a control law that provides exact
tracking of altitude if possible. Now, ¢ enters the system dynamics (4.6) in only one (state-
dependent) direction. We therefore expect that one should be able to modify the system
(by manipulating the inputs) so that the effects of the e-coupling between rolling moments
and aircraft lateral acceleration do not appear in the y output of the system.

Consider the decoupling matrix of the true PVTOL system (4.6) given in (4.9) as

—sin@ ecosé
(4.18)

cosf esinf

'To make the y output independent of € requires that the last row of this decoupling matrix
be independent of €. The only legal way to do this is by multiplication on the right (i.e.,
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Figure 4.8: Response of the true PVTOL aircraft system under the approximate control
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column operations) by a nonsingular matrix V' which corresponds to multiplying the inputs .
by V-1, In this case, we see that

—sind ecosf 1 —etanf —sinf =
= cos (4.19)
cosf e€sind 0 1 cos§ 0
is the desired transformation. Defining new inputs, i, as
i |. 1 etané U
o= ! (4.20)
ﬁz 0 1 U2
we see that (4.9) becomes
F 0 —sinf =< i
= + cos ¥ ! (4.21)
] -1 cosf 0 iig

Following the previous analysis, we set ¢ = 0 and linearize the resulting approximate system

using the dynamic feedback law

iy 6%, —sind cosf 7

=1 26a | T 8 _sind 5
-~ U [oe]:] sin
i e ull B Sl all B

Note that this control law will approximately linearize the true system. The true system
inputs are then calculated as

(/31 1 —etand ﬁl
= . (4.23)

U2 10 1 ﬁz

Figure 4.9 shows the response of the true system using the control law specified
by equations (4.22) and (4.23) for the same desired trajectory. With this control law, our
PVTOL aircraft maintains the altitude as desired and provides stable, bounded lateral (z)
tracking for € up to at least 0.6. Note, however, that the system is decidedly unstable for
€ = 0.9. Since we have forced the error into one direction (i.e., the z-channel), we expect
the approximation to be more sensitive to the value of €. In particular, compare the second

column of the decoupling matrices of (4.9) and (4.21),i.e.,

€

ecosé
and | 088 | (4.24)

esin 8 0
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Figure 4.9: Response of the true PVTOL aircraft system under the approximate control

with input transformation -

Notice that the first is simply € times a bounded function of # while the second contains €
times an unbounded function of @ (i.e., 1/ cos§). Thus, for (4.21) with € = 0 to be a good
approximation to (4.21) with non-zero € requires that § be bounded away from 7 /2. This
is not a completely unreasonable requirement since most V/STOL aircraft do not have a
large enough thrust to weight ratio to maintain level flight with a large roll angle. Since
the physical limits of the aircraft usually place constraints on the achievable trajectories,
a control law analogous to that defined by (4.22) and (4.23) can be used for systems with

small € on reasonable trajectories.

4.3 A Formal Approach to the Control of Slightly Non-

minimum Phase Systems

In this section we will take a more formal approach to the control of systems that
are slightly non-minimum phase.

Consider the class of nonlinear systems of the form

g = f(z)+g(z)u
y = h(z)

(4.25)
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where z € R®, u,y € R™, and f : R® — R" and g : R®* — R"*™ are smooth vector fields
and A : R® — R™ is a smooth function with 2(0) = 0.

In tHe sequel, we will assume that the origin is an equilibrium point of (4.25), i.e.,
f(0) = .0, and will consider z in an open neighborhood, U, of the origin, i.e., the analysis
will be local. All statements that we make, such as the existence of certain diffeomorphisms,
will be assumed merely to hold in U. Also, when we say that a function is zero, it vanishes
on U, and when we say it is non-zero, we mean that it is bounded away from zero on U.

While we will not precisely define slightly non-minimum phase systems, the concept
is easy enough to explain. The reader may wish to review the definition of the zero dynamics

for non-linear systems (and the concept of minimum phase) in Isidori and Moog [IM89].

4.3.1 Single-Input Single-Output (SISO) Case

Consider first the single-input single-output (SISO) case. Suppose that Lyh(z) =
ep(z) for some scalar function 9(z) with € > 0 small. In other words, the relative degree
of the system is one, but is very close to being greater than one. Here, Lgyh(z) is the Lie
derivative of h(-) along g(-) and is defined to be

Lyh(z) = 9—’;({—)g(z). (4.26)

Now, define two systems in normal form (see Byrnes and Isidori [BI88]) using the following
two sets of local diffeomorphisms of z € R"

(€7, 0T = (& = h(z), m(z), -y 7m-1(2))T (4.27)
and
(&, 77)T = (& = h(a), =) = Lyh(2), ia(@)s- - Fin-2(2))T, (4.28)
with
%Z—:g(z) = 0, = 1,...,11— 1 (4'29)
and . |
aa—z.‘-g(z) =0, i=1,...,n-2. (4.30)

System 1 (true system)

€ = Lsh(z)+ Loh(z)u } wan)

7 = q(&mn)
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System 2 (approximate system)

é:l = &
éz = L3h(z) + LgLsh(z)u (4.32)
".7 = Q(é’ ﬁ)

Note that the system (4.31) represents the system (4.25) in normal form and the
dynamics of (0, 7) represent the zero dynamics of the system (4.25). System (4.32) does
not represent the system (4.25), since in the (£,7) coordinates of (4.28), the dynamics of

(4.25) are given by
£ = &+Lh(z)u
£, = L3h(z) + LyLsh(z)u (- _ (4.33)
io= a6 |

Informally, we call the system (4.25) slightiy non-minimum phase if the true system
(4.81) (with nonzero €) is non-minimum phase but the approzimate system (4.32) (with
€ = 0) is minimum phase. Since Lyh(z) = ep(z), we may think of the system (4.32) as a
perturbation of the system (4.31) (= (4.33)).

Of course, there are two difficulties with exact input-output linearization of (4.31):

e The input-output linearization requires a large control effort since the linearizing

control is
-L fh(.’c) +v
ep(z)

This could present difficulties in the instance that there is saturation at the control

)( =Lsh(z)+v) = (4.34)

w(@)= 3 h(

inputs.

o If (4.31)is non-minimum phase, a tracking control law producing alinear input-output

response may result in unbounded 7 states.

Our prescription for the approzimate input-output linearization of the system
(4.31) is to use the input-output linearizing control law for the approximate system (4.32);

namely

‘—
Uy =



96

where v is chosen depending on the control task. For instance, if y is required to track ya,

we choose v as

v = §at+or(ga— &)+ ao(va-&) (4.36)
= jia+ e1(¥d — Lyh(z)) + ao(ya — h(z))- (4.37)

Using (4.35) and (4.36) in (4.33) along with the definitions

e1 = & -
! g_’ v (4.38)
e2 = §2—Vda
yields
é = e +ep(z)uz(z)
é = -—ajez — agey (4.39)
i = @&

As we will see below, exponential stability of the zero dynamics of the approximate system
(i.e., i = §(0,7)) combined with the designed stability of the error system will guarantee
overall stability of the system and yield approximate tracking.

The preceding discussion may be generalized to the case when the difference in
the relative degrees between the true system and the approximate system is greater than

one. For example, if

Lh(z) = ei(z)

LoLsh(z) = ea() (4.40)

LeL7 %h(z) = €yi(2)

but LyL7h(z) is not of order €, we define

(€T,47) = (h(z), Lsh(z),..., L} (=), 7T)T € R" (4.41)
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and note that the true system is

£, = &L+epi(z)u

é‘y—l = éy + ﬂl’-y-l(z u (4.42)
é,, = Lih(z)+ LgL’}'lh(x)u
i = a&a)

The approximate (minimum phase) system (with ¢ = 0) is given by

-~ -

& = &

£.1 = & (4.43)
E_, = L}h(z)+LgL}'lh(z)u

7 = a&n)

The approximate tracking control law for (4.43) is

1

= —LgL}-lh(z)(_L}h(Z) + y¢(;7) + aﬂ-l(?l&""” - L}-lh(z‘)) + -+ ao(ya - y)). (4.44)

Ug

The following theorem provides a bound for the performance of this control when applied

to the true system.

Theorem 4.1 St'zppose that
e the zero dynamics of the approzimate system (4.43) are locally exponentially stable
and
o the functions Y(z)uqs(z) are locally Lipschitz continuous.
Then, for € sufficiently small and for desired trajectories with sufficiently .;Jmall values and

derivatives (Yd, Yd, - - -» y‘(;') ), the states of the system (4.42) will be bounded and the tracking

error

lea] := &1 — yal < ke (4.45)

for some k < oo.



98

Proof: Define the trajectory error, e € R?, to be

1 21 1 1
e1 & Yd :
e 4 .
2 | _ | | . (4.46)
z -1
el | & I y‘("y ) .
Then, the system (4.42) with the approximate tracking control (4.44) may be expressed as
é 0 1 ... 0 e P1(z)
= 1 - . | ) +€ . uq(2)
éy_1 0 1 ey-1 Py-1(z) (4.47)
L éy —0p =01 **r —0Oy-1 ey 0
7:'7 = q(g) ﬁ)

or, compactly,
é = Ae+ ep(z)uq(z)

’:7 = q(é’ 7.])'

Since the zero dynamics are assumed to be exponentially stable, a converse Lyapunov

(4.48)

theorem implies the existence of a Lyapunov function (see, e.g., [Hah67]) vo(7j) for the

system
7= §(0,7) (4.49)
satisfying .
kalil? < va(f) < kalil?
9.§(0,7) < —kslil® (4.50)
|92 < kall
for some positive constants kj, ka, k3, and ky4.

We first show that e and 7j are bounded. To this end, consider as Lyapunov
function for the error system (4.48)

v(e, 7)) = €7 Pe + pva(77) | (4.51)

where P > 0 is chosen so that
ATP4+ PA=-I ‘ (4.52)
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(possible since é = Ae is stable) and p is a positive constant to be determined later.

Note that, by assumption, y4 and its first (y — 1) derivatives are bounded,
€] < lel + b, (4.53)
the functions, §(£,7) and 9(z)u.(z) are locally Lipschitz with (0)uq(0) = 0,
|38, 7") — 482,37 < 1,18 - & + 15" - 7)), (4.54)

12P(z)ua(2)| < lulzl, (4.55)

and z is a local diffeomorphism of (£, ),

|2 < L(I€] + Ia)- (4.56)

Using these bounds and the properties of v3(-), we have

924(€,7) = §24(0,7) + F2(a(€,7) - 4(0,7))

(4.57)
< —ksl|? + kalgliil(le] + ba).
Taking the derivative of v(-, ) along the trajectories of (4.48), we find
v = —|e|? + 2¢eeT Pyp(z)uq(z) + ﬂ%‘?q'(é, )
< —lef? + elellulz(le] + ba + |7]) + u(—k3lii|? + kalgliil(le] + ba))
< =g - elulzba)? + (elulzba)?
"‘(l§l — (elulz + I‘k4IQ)I"7|)2 + (elulz + l‘k414)2|ﬁ|2 (4.58)
-Nka(ng _ k,l!sbd)z +p kd:« 2
—(% - elula:)lel2 - %pklilﬁlz
< __(.% - elulz'_)lel2 — %[.I,k;; —~ (elylz + I-"k-ilq)z)lﬁ'z
+(elulgba)? + plisld®,
Define
Ho= 4(lulz + k4lq)2 . (4.59)
Then, for all 4 < po and all € < min(pu, ‘;1,171;), we have
2 kal7i|2 k4l bg)?
b < __I_CI_ _ ot 3|77| + l“( 4tq d) + (elulxbd)z- (4.60)

4 2 ks
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Thus, ¥ < 0 whenever |7j| or |e| is large which implies that |7j| and |e| and, hence, | €] and
|z|, are bounded. The above analysis is valid in a neighborhood of the origin. By choosing
bg sufficiently small and with appropriate initial conditions, we can guarantee the state will
remain in a small small neighborhood. Using the boundedness of z and the continuity of

¥(z)uq(z), we see that
é = Ae + ey(z)uq(x) (4.61)

is an exponentially stable linear system driven by an order € input. Thus, we conclude that

the tracking error, e, converges to a ball of order e. O

When the control objective is stabilization and the approximate system has no
zero dynamics we can do much better. In this case, one can show then that the control law
that stabilizes the approximate system also stabilizes the original system.

Suppose that the approximate system has no zero dynamics, i.e.,

Lyh(z) = e1(z)
LyLsh(z) = epa(z) (4.62)
L,L’}‘zh(z) = ePn-1(z)
Define
§ = (h(z), Lsh(z),..., L7 h(z))T € R" (4.63)
and write the approximate system
él = §~2
: (4.64)
§n = L3h(z)+ LQL?'lh(z)u
and the stabilizing control law
1 . . .
u(z) = W(-L,«h(m) ~ an-1€n-1 =+ — a0é1) >(4-65)
= -——1-——(—L}‘h(m) - an_1L}"1h(x) — -« = agh(z)). (4.66)

LyL} h(z)
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The true system in these coordinates is given by

& = &+ epi(z)u
. (4.67)
£n-l = éu + 61/),._1(:0)24
£, = Loh(z)+ LyL3 'h(z)u
Using u,(z) (from (4.65)) in (4.67) yields
& o 1 .- 0 & P1()
Col=] c Folvel T Jue e
€n-1 0 1 én-1 | Yn-1(z)
I E,. ] | 0 -1 - —@ne || €n ] I 0 ]

Letting 9¥(z) = (¥1(2), . .-, ¥n-1(z),0)T, we can state the following:

Theorem 4.2 Suppose that P(z)u,(z) is Lipschitz in z and that ¥(0)u,(0) = 0. Then, the
system (4.68) is ezponentially stable for € sufficiently small.

Proof: The stabilized system (4.68) can be compactly written as
é’ = A + etp(z)u.(z). ’ (4.69)

Choose as Lyapunov function v = T P§ with ATP + PA = —I. Then, using the bounds
analogous to (4.55) and (4.56), the derivative of v along trajectories of (4.69) is given by

o = | +2ePp(z)us(z)

(4.70)
<= —(1- eul2)|é>

Thus, for all € < € := EIE’ the system (4.69) is exponentially stable. a
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4.3.2 Generalization to MIMO Systems

We now consider MIMO systems of the form (4.25) which, for the sake of conve-

nience, we rewrite as

i = f@)+ (@t t @y
n = h(z) |
Ym = hm(“’) )

(4.71)

Let +4; be the relative degree of the ith output, i.e., we need to differentiate y; at least v;

times before at least one of the inputs appears in the right hand side. Then, we have

y,h") = L}‘h,- + L, L}"_lh,'m 4ot LgmL}""lh;um i=1,..

The decoupling matrix is defined to be A(z) € R™X™ with

Lo I}k o0 L LT 'hy

A(z) =
Loy L7 o - Lo L}
so that
ym L} U
= : + A(z)
g Ly b Um

If the decoupling matrix A(z) is non-singular, the control law
LY hy
u(z) = A(z)™1 | - : +v
L hm
with v € R™ linearizes (and decouples) the system (4.71) resulting in

(m)

¥ "

y&?’"‘) Um

.M.

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)



103

To take up the ideas of Section 4.3.1, we will first consider the case when A(z) is
non-singular but is close to being singular, that is, its smallest singular value is uniformly
small for z € U. Definitions of zero dynamics for MIMO systems are considerably more
subtle than those for SISO systems and the reader may wish to review them in [IM89,15i87)
before proceeding further. Since A(z) is close to being singular, i.e., it is close in norm to a

matrix of rank m — 1, we may transform A(z) using elementary column operations to get

Ao(z) = A(a:)VO(:c) = [ a?l(z) eee &2m_1(z) ea%,(z) ] (4.77)

where each @2 is a column of A°. This corresponds to redefining the inputs to be

ﬁg Uy
=(Vo(z) | : |. (4.78)
a9, Um

Now, the normal form of the system (4.71) is given by defining the following local diffeo-
morphism of z € R",

0T = ( €& =h(z),....,E} = L} k(=) (4.79)
6% = h2(3)7' .o ’f-n = L}z_lh2(z)’

& = hn(), .o €5, = LT hm(2),

7 )
and noting that
g = &
. m-—1
1 = b(&n)+ _Zla?,-ﬁ?wa&’mﬂ?,.
J=
& = & ; (4.80)
. m-1
m = bm(En)+ Y 80,87 + €80 m TN,
IJ=1
i = g(&n)+ P& n)a° J
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where b;(§,n) is LY hi(z) fori=1,...,m in (€,7) coordinates. The zero dynamics of the
system are the dynamics of the 7 coordinates in the subspace £ = 0 with the linearizing
control law of (4.75) (with v = 0) substituted, i.e.,

7 = ¢(0,7) — P(0,m)(A%0, 7))~'5(0, 7). (4.81)

We will assume that (4.71) is non-minimum phase, that is to say that the origin of (4.81)
is not stable.

Now, an approximation to the system is obtained by setting ¢ = 0 in (4.80). The
resultant decoupling matrix is singular and the procedure for linearization by (dynamic)
state feedback (the so-called dynamic eztension process) proceeds by differentiating (4.80)
and noting that

2 = f(2) + R + -+ T (=) (4.82)
where
[#@) - 2@ | =[ 0@ - m@ |V (489)
We then get
y{‘h-l-l) . ﬁ?
oty | = b(z,2d,..., 8% ) + AX(z, 8, ..., T_1) '.o (4.84)
ymrl_ ﬁm-l
= bl(z!) + Al (z!)u! (4.85)
where
ul = (ﬂ(l)’ MR &?n—lv ﬂm)T (4.86)
is the new input and
gl = (va ﬂ'?’ sey a?n—l)T (4.87)

is the eztended state. Note the appearance of terms of the form 4, ..., @ _, in (4.84). The
system (4.84) is linearizable (and decouplable) if A*(z!) is nonsingular. We will assume that
the singular values of A! are all of order 1 (i.e., A! is uniformly nonsingular) so that (4.84)

is linearizable. The normal form for the approximate system is determined by obtaining a



105

local diffeomorphism of the states z;a9,...,2%_; (€ R**™-1) given by

(&, 4T = | (4.88)
(& = ha(z),....E, = ,Iﬁl—lhl(z), &=L h(z)+ ni:ﬁ?,-ﬁ%
5=
&2 = ho(z),.. 62 = L""lhz(-'ﬂ)’ 241 =Lfha(z)+ Sﬁgjﬁ?,
j=
m-1
& = h(z),..., &7 = 7m—1hm(”)s Ens1 = Ly hm(2z) + g—?na_g’
o )

Note that £ € Rn+-+m+m and 5 € Rr-n—=mm-1 a5 compared with £ € Rn++™ and
n € Rr—n—=7m_ With these coordinates, the true system (4.71) is given by

-1 - 3

'3 = &

é-n = é-ln -1 + ea?mﬁ'}n

21 = = .

f‘h +41 = b%(é.’ f') + a}.(fa 77)“1

& =8 » (4.89)
61". = E—'y':,.-l + ea?nmﬁ'tl-n

£ = LG +ak (€ it

’:7 = q(é’ ) + P(é" ﬁ)"’l )

In (4.89) above, b}(£,7) and a} (£, 7) are the ith element and row of b! and A, respectively,
in (4.84) above (in the £, 7j coordinates). The approximate system used for the design of
the linearizing control is obtained from (4.89) by setting € = 0. The zero dynamics for
the approximate system are obtained in the £ = 0 subspace by linearizing the approximate
system using
bi(E, )
u(é, i) = -(4'Ea) 7 | (4.90)
AGL)
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to get
1 = §(0,7) + P(0, D)u(0, %) (4.91)

Note that the dimension of 7 is one less than the dimension of 7 in (4.81). It
would appear that we are actually determining the zero dynamics of the approximation to
system (4.71) with dynamic extension—that is to say with integrators appended to the first
m—1 inputs 49, @3, ..., %_,. While this is undoubtedly true, it has been shown in Byrnes
and Isidori [Isi87) that the zero dynamics of systems are unchanged by dynamic extension.
Thus, the zero dynamics of (4.91) are those of the approximation to system (4.71).

The system (4.71) is said to be slightly non-minimum phase if the equilibrium
7 = 0 of (4.81) is not asymptotically stable, but the equilibrium 7 = 0 of (4.91) is.

It is also easy to see that the preceding discussion may be iterated if it turns out
that A1(£, 77) has some small singular values. At each stage of the dynamic eztension process
m — 1 integrators are added to the dynamics of the system and the act of approximation
reduces the dimension of the zero dynamics by one. Also, if at any stage of this dynamic
extension process, there are two, three, ...singular values of order ¢, the dynamic extension
involves m — 2, m — 3, ... integrators.

If the objective is tracking, the approximate tracking control law is

b1(€,7)
ua(6,7) = (AY &) | -
bL(€,7) (492)
U ol (o5 - &) + -+ oblva - &)
+ .
yg,',',"“) + o (3131'.") —&m )+ + of (Yam — €1)
with the polynomials
sH¥l ol M 4.t o, i=1,...,m, (4.93)

chosen Hurwitz.
The following theorem is the analog of Theorem 4.1 in terms of providing a bound

for the system performance when the control law (4.92) is applied to the true system (4.71).
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Theorem 4.3 Suppose that
e the zero dynamics (4.91) of the approzimate system are locally exponentially stable
and G+ Pul is locally Lipschitz in € and 7j and
o the functions @, u}, are locally Lipschitz continuous fori=1,...,m.
Then, for ¢ sufficiently small and for desired trajectories with sufficiently small values and

derivatives (Yid, Yidy -+, y&’""l) ), the states of the system (4.89) are bounded and the

tracking errors satisfy

lesl = |8 -yl < ke
e = |- < ke
|e2| 167 —yazl < (4.94)
lem| = 1P — yam| < Fe
for some k < .
Proof: Similar to that of Theorem 4.1. O

As in the SISO case, the stronger conclusions of Theorem 4.2 can be stated when

the control objective is stabilization and the approximate system has no zero dynamics.

Conclusion

In this chapter, we have described the application of techniques of exact input-
output linearization of nonlinear control systems to the flight control of vertical take-off
and landing aircraft. We saw that the application of the theory to this example is not
straightforward. In particular, the direct application of the theory yielded an undesirable
controller. We remedied the situation by neglecting the coupling between the rolling moment
input to the aircraft dynamics and the dynamics along the y axes.

The example of the vertical takeoff and landing aircraft is an example of a system
which is slightly non-minimum phase. Thus, the exact linearization technique resulted
in a system which was internally unstable. We generalized the lessons learned from this
application to define, informally, slightly non-minimum phase systems and gave methods to

linearize them approzimately.



Conclusion

In this dissertation, we have seen that it is possible to achieve reasonable tracking
performance for a large class of nonlinear systems, including systems that are not invertible
and systems that have unstable inverses. The main requirement for this is that the true
system be close to an exponentially minimum phase nonlinear system. Designing the exact
tracking control law for the approximate system then yields bounded tracking for the true
system.

This result is fortunate since, as we have seen, the structure of the zero dynamics
of a system system (i.e., whether it is minimum phase or not) is not robust to system
perturbations. In particular, the tracking control results show that controller design based
on exponentially minimum phase systems is indeed robust to system perturbations.

This dissertation is just a small step in a larger project to bring nonlinear control
theory into a practical control design methodology. In order to bring these interesting
techniques into use we must work to understand and soften the many of the restrictions
and assumptions currently required by the theory.

Much interesting work remains to be done. Particular areas indicated by this

dissertation include:

e Trajectory design. For a class of invertible nonlinear control systems, the method
of input-output linearization is useful to guarantee that the trajectory error has an
exponentially stable linear dynamics. In order for input-output linearization to be
effective, the desired trajectories must respect constraints imposed by the true sysiem

dynamics.

e Actuator limits. One of the most difficult problems in feedback control designers
must face is the fact that real life actuators and systems have limits. This problem

can sometimes be handled by judicious trajectory design. However, this problem
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can still pose major difficultiés in the presence of measurement errors and external

disturbances.

e System steering. Sometimes a system can be in a state where it does not possess
full controllability. In this case, a natural (sub)task would be to steer the system (in
allowed) directions to get into a region of the state space where normal techniques

can be used.

e Tools for nonlinear systems analysis. The calculations required for even relatively
simple nonlinear systems are often quite involved. Also, the estimates that we derive
to prove stability and tracking performance are extremely conservative and do not

reveal the true nonlinear nature of the problem.

We conclude with a very simple example as a warning of the pitfalls that nonlinear
systems may contain. Consider a very simple system with a smooth saturating nonlinearity
given by

E = u

y = tanhz

(4.95)

where the control objective is to track a given desired output y4. Clearly, since
sup |y(z)| = 1,
z€R

we cannot track just any trajectory. Following the usual procedure for input-output lin-

earization, we differentiate the output to get
y = (1 — tanh?z)u. : (4.96)

Since (1 — tanh? z) # 0 for z € R, we use the control law

w= ————lia + o0(ta — )} (497)
to give a closed loop system of
¥ =94+ ao(ya — v) (4.98)
or
é+ age =0. (4.99)

Given this error equation, it would appear that our control law will make the system track

any desired trajectory. Indeed, as long as the system states remain bounded, the closed -
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loop system will have the linear error dynaniics given by (4.99). However, when the desired
trajectory is outside the range of tanh z, the system state will become unbounded in finite
time! For example, let the desired trajectory be yg = 2. Then, the closed loop dynamics
are given by (with ag = 4)
&= %‘fz‘—z) =e®® + 4432 (4.100)
For any finite initial condition, the state z of (4.100) will become unbounded in finite time.
The simplicity of the linear error equation (4.99) (valid for every finite z) has hidden the
danger in the underlying differential equation (4.100) (finite escape time for this particular
desired trajectory).
This very simple and somewhat contrived example illustrates an important point—
we must verify, at each step, that we are not violating any important assumptions. In this

regard, nonlinear systems seem to be much less forgiving than linear systems.
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