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1. Introduction

Consider a discrete-time Hopfield net [HOP82] where the state X;(r) at node i takes values ±1

and satisfies a transition equation of the form

Xi (t+1) = sgn[ £ wtj Xj (0 + 6j] (1.1a)
y = l

or

= Xt (0 (1.1b)

We assume that at each t only one node can change state (i.e., satisfy (1.1a)) but that every node

satisfies it infinitely often as t -» oo.

Now define an energy function

V(x) = -[-*• XwijXiXj +J0^,] xe{-l,l} (1.2)

and assume that the weights wtj satisfy the conditions: wu = 0, wly- = wyV for all / and j. Under

these assumptions, it is easy to show that at every t we have

V(X(t + 1)) - V(X(f)) = [1 - sgn(A£ (0)] A(- (r) (1.3)

for some i, where

Ai (r) = AT, (0 [2 Hty Xy- (0 + 8f] (1.4)

Equation (1.3) indicates that V(X(t)) never increases, and decreases for at most a finite number of

values of t. Thus, there exists a t0 < oo such that



V(X(t))-VQC(to)) = 0 for all t >.t0

which implies that for every i and every t 2. to,

M0*0 ^ X,(0 = X; Co)

Since every component of X is tested infinitely often, VQC(to)) cannot be decreased by a change in

any single component of X(r0). Thus, X(to) is a local minimum of V(x).

As a tool for optimization, Hopfield nets suffer from two flaws: local minimum and restricted

V(x\ while enjoying an implementation advantage. These nets are no mere algorithms, but models

that are readily implementable as hardware. Our goal in this paper is to remove the defects while

preserving the implementation advantage.

Global minimization can be achieved through simulated annealing [KIR83] which is based on the

following idea. Suppose that instead of satisfying (1.1), X(t) is a stochastic process with a distribution

of the form

i -4v(r)
Prob(X(0 =*) = •=« T . *e{-l,l}B (1.5)

which is known as the Gibbs distribution. Further, suppose that the parameter T (interpreted as tem

perature) is reduced slowly so that the distribution of X(t) remains approximately Gibbs, i.e.,

Prob<X(0 =*)=2^* TQ)
for all;. Then, denoting the global minimum by Vm, we have

Prob(X(0 =*) =— j

4:, V(x) = Vm

X

r

0, V(x) ± Vm
x as T(t)-*0

K

where A" is the number of values of x that attain the global minimum.



It is well known that a process with an equilibrium Gibbs distribution can be generated as a sta

tionary Markov chain. In [ACK85] a neural network with states forming such a process is called a

Boltzmann machine, and in [ALS87] it is proposed to approximate a Boltzmann machine by injecting

noise in a Hopfield net Our first objective in this paper is to show that an exact, not approximate,

construction of Boltzmann machine can be achieved by injecting noise in a Hopfield net, but that this

has to be done in a precise way that we shall describe in the sequel.

Our second objective is to generalize V(x) to an arbitrary function. We show that even in the

general case X(t) can still be realized by a network (though no longer a Hopfield net). Finally, we

discuss alternative architectures that are suitable for implementing the resulting network.

2. Boltzmann Machine

Boltzmann under machine under is a binary-state and discrete-time neural network whose states

form a stationary Markov chain X(t) with an equilibrium Gibbs distribution. Such a Markov chain

can be constructed by controlling its transitions as follows:

(a) At time t, select one component, say Xt (r), for possible change.

(b) Compute the energy change that would result from a state change Xt (t) -» -Xt (t), viz.,

A, (0 = 2Xi (0 [2 Wij Xj (0 + 0£] (2.1)
j

(c) Set

Xi(t + 1) = -X/(r) with probability rc(A,(0) (2.2)

= Xt (t) with probability 1 - j^A,- (t))

The quantity n is known as the acceptance probability (accepting a change). In [KES89] it is shown

that an acceptance probability of the form

A

jc(A) = e 277(IAI) (2.3)

suffices to ensure that X(t) will have a steady state distribution given by a Gibbs distribution (1.3). It



is also shown in [KES89] that

tc(A) = min(l, e l) (2.4)

is optimal in the sense of maximizing the speed of reaching equilibrium.

We note that for T = 0, (2.4) reduces to the following:

7t(A) =1 A<0 (2.5)

= 0 A>0

and (2.2) can then be written as

X,(r + 1) = ^(OsgntA.^)] (2.6)

= Xi (0 sgn [Xi (t) [£ Wij Xj (t) + 9J}
j

= sgn[2wf/X.(0 + 8i]
j

which is just (1.1a). Thus, for T = 0, a Boltzmann machine is indeed a Hopfield net.

For T > 0, we hypothesize that the state transition equation (2.2) for a Boltzmann machine is re-

expressible as

Xi (t +1) = Xi (t) sgn[Af (0 - Z] (2.7)

where Z is a random variable with a probability density function pz (z). From (2.7), we have

n(Af (0) = prob(X; (f +1) = -X, (0) (2.8)

= prob (A; (t)<Z)

oo

= J pz(z)dz
MO

Comparing (2.8) with (2.2) shows that if we set

]pz(z)dz = tc(A) (2.9)
A

then (2.7) is indeed equivalent to (2.2) and our hypothesis is confirmed. We can now differentiate

(2.9) to get



Pz(z) ° -"J**) (2-10>

which prescribes the distribution of Z in terms of the acceptance probability n.

We have thus shown that a Boltzmann machine can be implemented by injecting noise Z(r) in a

Hopfield net so that the transition equation is given by

Xi(t + 1) = sgn[5>/y. XjiO + Qi -Xi(t)Z(t)] (2.11)
j

where Z(t) is independent for different t 's (i.e., a white noise) but not Gaussian. Instead, it distribu

tion is governed by the choice of the acceptance probability through (2.10). Both (2.10) and (2.11)

represent new results.

Fro the example given by (2.4), we have

z

pz(z) = e rl(z) (2.12)

where l(z) is the unit-step function. A random variable with this distribution can be generated as

Z = Z} +Z%

where Zi and Z2 are independent W(0,772) random variables. We note, however, no allowable choice

of the acceptance probability would yield a Z that is Gaussian.

Thus, while a Boltzmann machine can be implemented bu injecting noise in a Hopfield net, the

noise must be multiplied by the state before added to the input as prescribed by (2.11), and the noise

cannot be Gaussian.

3. Generalizing the Energy Function

Any function V(x) on the hypercube {-1,1}" admits a multilinear expansion of the form:

V(x) = - 2 wkxklxh • • • x^ + V0 (3.1)
k

where t = (^i»72» * ' *»Jm) denotes an ordered subset of {1,2, • • • ,/t} and the summation is taken

over all 2" —1 such ordered subsets. Henceforth, we shall write x± to denote the product



x*ixh ' '' xjm' For a v&) Sivenby C3.1)f we can now generalize (2.1) to read

A,(0 = 2 2^(0 (3.2)
k&

With A thus generalized, a stationary Markov chain with an equilibrium Gibbs distribution for a gen

eral V(x) can again be constructed using (2.7) and (2.11). However, Xt (t) Af (r) is no longer linear in

X(t). Rather, we have

Xi (t +1) = sgn [Xi (0 A, (0 - Xi (t)Z(t)] (3.3)

= sgn[£ wkXkl(t) • • • Xi (r) • • • Xjm(t)-Xi (t) Z(0]
*Ei

Even at zero temperature (hence zero noise), (3.3) is not realizable as a Hopfield net To realize (3.3)

as a network, we shall develop several altemative architectures based on the first of the equations in

(3.3).

4. Alternative Network Architectures

We begin by rewriting the state transitionequationas follows:

X^r + D = Yi(t)Xi(t) (4.1)

Yi(t) = sgn[A,(0-Z(0] (4.2)

= sgn[2>AX4(0-Z(r)]
kei

An obvious network structure to implement (4.2) is to make use ofmultipliers to compute wk Xk and

adders to yield Yx. An example is given in Fig. 1.
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Figure 1. Analog Network Realization

It is apparent that only the adders in the last stage represent analog operations. The rest is

entirely digital. This means that a considerable reduction in interconnect-complexity can be realized by

using random-access memory and indexing. In such an arrangement, the physical connections are

replaced by logical connections. A hybrid architecture comprising both analog and digital circuits is

shown in Figure 2.

INDEX
xi

Wj
Analog

Ckt y X

i—> j 3i

J

RAM

Figure 2. A Hybrid Network

In this arrangement, the network operates as follows:



(a) A component i is chosen at random.

(b) The INDEX is accessed to determine for eachJc& the address where xk wk is stored.

(c) Each product xk wk is retrieved and converted to an analog value.

(d) The sum J^Xkwk-Z is computed.
jcei

(e) Yi is computed as the "sign" of the sum computed in (d).

(f) If Yi = -1, change the sign of X; and go to (g), otherwise go to (a).

(g) For each fcei, change the sign of Xk wk.

We note that the need to access the set {Xk wk} makes the operation slow. However, there is ample

opportunity for pipelining, which means that the cycles can be overlapped. In this respect, the situa

tion is no different from digital signal processing in general where pipelining is essential for achieving

acceptable speeds.

Finally, we note mat only analog-add and not analog-multiply is required. If the degree of accu

racy needed is not too high, it may well be better to replace the analog adders by digital ones, thereby

obviating the need for D/A conversion and affording a further opportunity to eliminate physical inter

connections. We would then have an all-digital system that can be implemented in various ways,

including ones that use only off-the-shelf components. In this form, the distinction between hardware

and software blurs, and the use of a standard DSP (digital signal processing) system for implementa

tion provides an attractive alternative.
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