Numbering Document Components”

Michael A. Harrison FEthan V. Munson
June 30, 1990

Abstract

Numbering document components such as sections, subsections, fig-
ures and equations gives each component a unique identifier and helps
the user locate the component when it is cross-referenced. This report
discusses ways in which such numbering can be described and proposes a
simple paradigm for declarative specification of how components should
be numbered. The class of algorithms for incremental update of compo-
nent numbers is studied and the “best” such algorithm is developed in
detail.

1 Introduction

It is common, particularly in technical documents, to assign ordinal numbers
to certain document components, such as sections, figures, and equations. The
purpose of numbering 1s to facilitate cross-referencing of distant components
and to help the user locate distant components in a long document.

Numbering serves these purposes in two ways. First, it gives each component
a unique identifier within its type, so that Figure 2 is the only figure given the
number 2. Unlike such alternate identifiers as section titles and figure captions,
numbers are short, can be generated automatically, and are certain to be dis-
tinct. Also, there is an inexhaustible supply of them. However, numbers have
none of the mnemonic qualities of these textual alternatives. Secondly, a com-
ponent number gives the reader a strong hint about the component’s location
in the document. Figure 2 i1s guaranteed to appear after Figure 1 and before
Figure 3. Page numbers might specify the location more precisely, but they may
not specify a unique component (since a page may contain multiple figures or
equations). Moreover, in certain computerized document systems, the text is
assumed to be an infinite scroll, i.e. there are no page numbers. Thus, while
component numbering is neither the best unique identifier nor the best locator,
it 1s probably the best tool for achieving both.

*Sponsored by the Defense Advanced Research Projects Agency (DARPA), monitored by
Space and Naval Warfare Systems Command under Contract N0O0039-88-C-0292.

Support for automated component numbering has traditionally been one
of the features that distinguish “document-processing” systems from “word-
processing” systems. Document-processing systems free the user from the te-
dious task of updating component numbers and cross-references by hand. How-
ever, for those document-processing systems that support interactive editing,
the maintenance and incremental update of component numbers and their re-
lated cross-references 1s a difficult problem.

This paper discusses two related topics. The first is a paradigm for speci-
fying how document component numbers should be computed. This paradigm
improves on existing approaches by being fully (rather than partially) declara-
tive. Next, possible algorithms for the incremental update of component num-
bers in an interactive structured document editor are explored with an emphasis
on one particular algorithm, the last/previous algorithm. This algorithm keeps
component numbers up to date at all times, is reasonably efficient, and requires
very little overhead for editing operations on unnumbered components.

The next section of this paper discusses conventions for component num-
bering and provides some background on the domain of structured documents.
Section 3 discusses previous work on component numbering. Sections 4 and 5
present our declarative specification paradigm and the incremental update al-
gorithms, respectively. The final section presents our conclusions.

2 Background

We have been led to investigate the problem of numbering document compo-
nents by our work on the design of Ensemble, an interactive editing system for
structured multimedia documents. The needs of Ensemble underly our interest
in novel specification methods and fast incremental formatting algorithms. Our
work on numbering is motivated by a set of assumptions about

e the ways that documents are numbered,
e the nature of structured documents,
e and the design principles required by interactive editing systems.

This section provides some background on these three topics.

2.1 Numbering Conventions

Numbering conventions for documents vary considerably between certain classes
of documents. These conventions are not rigidly adhered to, but there 1s enough
consistency to allow some general assertions.

In discussing these conventions it is useful to make a distinction between
two classes of document components. Structural components, such as chapters,

sections, subsections,; etc., are used by an author to give his work a hierarchi-
cal structure. Non-structural components, such as figures, footnotes, tables,
and equations, are simply distinguished elements of the document and may
be placed at almost any depth in the work’s structural hierarchy. The distinc-
tion may seem fairly arbitrary, but the strictly hierarchical relationship between
the structural components makes it easier to specify and implement automatic
numbering for them.

Literary works often have some structural components in the form of parts,
chapters, and sections. While such works may have illustrations or maps, these
are seldom numbered and rarely cross-referenced in the text. Cross-references
are particularly rare because they violate the convention that the reader should
not be reminded that he is merely reading a book, rather than directly observing
events. Literary works typically number parts and chapters independently. Part
IT of a novel may contain Chapters 9 through 15 because the first eight chapters
were found in Part I. However, sections within the chapters usually start their
numbering anew with each new chapter. In such documents, numbering simply
serves to help the reader understand the flow of the document.

Technical documents and some scholarly works make much greater use of
component numbering. In general, their structural components are numbered
strictly hierarchically. That is, each type of component is numbered with respect
to its enclosing structure. For example, subsection numbers start over from one
with each new section. Non-structural components are generally numbered with
respect to a structural component of medium size. In a journal article, they are
numbered with respect to the entire article. In a book, their numbers are likely
to start over with each new chapter. In a multi-volume technical manual, the
numbers may be based on an even smaller unit, like a subsection.

Scholarly works in the humanities and social sciences tend to fall in between
these two extremes. They usually number structural components in the manner
of literary works but include a substantial number of non-structural components,
especially footnotes or endnotes, which are typically numbered with respect to
a chapter.

In all these cases, document components are numbered in ascending order as
they are encountered in a linear pass through the document. It is the conventions
about when component numbering should start (i.e. be reset to one) that make
these cases differ. From these observations, we make the following assumptions:

e No matter what kind of document is being produced, the key problem
for a document processing system is identifying when the numbers for a
particular component type should start over.

e Component numbers always start over at the beginning of an enclosing
structural component.

e The structural components of a document are always arranged in a strict
hierarchy (i.e. a chapter is never divided between two parts of a book).

e Thus, the specification of document component numbering reduces to the
problem of specifying a particular subtree of the document’s structural
hierarchy.

2.2 Structured Documents!’

All document processing systems are based, implicitly or explicitly, on a docu-
ment model. Perhaps the simplest document model is that of a linear sequence
of printable symbols interspersed with control symbols indicating changes of
formatter state (e.g. position on the page or character font). This model forms
the basis of most direct-manipulation systems (e.g. MacWrite [4] and the Inter-
leaf publishing software [8]) and of some batch-oriented document processing
systems (e.g. troff [12] and Plain TEX [9]). The user of such a system becomes
both author and typographer, a position which can be both empowering and
burdensome.

Structured document systems are based on a higher-level document model
which emphasizes structure, rather than appearance. The canonical example of
a structured document i1s a book composed of a sequence of chapters, which are
themselves composed of sections, which are, in turn, composed of subsections.
The hierarchical organization of this example is typical of many kinds of doc-
uments. As a result, structured documents are usually conceived of as trees.
Structured document systems typically support a variety of document types,
each having different legal arrangements of components. Common document
types are book, article, letter, and memo.

The author provides the structured document system with the text of the
document and specifies how the text is broken into components. The appearance
of the document is determined by a separate choice of style or presentation. In
most cases, this style was designed by a style designer, who fills the traditional
role of typographer. Thus, by separating the specification of content from the
specification of appearance and by providing predefined styles, structured doc-
ument systems relieve their users of the typographer’s duties. In addition, they
encourage the reuse of documents and their components because little effort is
required to make changes of style.

In practice, there are two kinds of structured document systems, batch and
interactive. The most widely used batch systems are Scribe [15] and INTEX [10].
While they present the user with a tree-structured document model, the under-
lying implementation does not actually build a tree, because their single-pass
formatting implementation does not require it. Also, the separation of struc-
ture and presentation is not reflected in the way styles are defined. For example,
I’TRX style files not only define the appearance of a class of documents, but also
the legal configurations of members of the class.

In contrast, the implementations of interactive structured document systems,

1This discussion of structured documents is based on the complete presentation in [7].

like the pedtnt [7] and Grif [14], closely reflect the structured document model.
In both the pedtnt and Grif| the system’s central data structure is a k-ary tree,
the document tree. These systems must explicitly maintain the document tree
in order to support the structure-oriented editing operations that are naturally
required in an interactive structured document system. In both systems, docu-
ment types are defined using a grammar-based specification language. Grif calls
this specification a structural schema and uses a separate presentation schema
to specify the appearance of the document.

2.3 Design Principles for Interactive Editor

One of the most common editing operations in an interactive document editor
is text entry. If entered by a fast typist, new characters may arrive at rates as
fast as 10 per second [5]. Users of an editor will quickly become dissatisfied if
on-screen feedback for this text entry does not keep up with their typing. These
same users may be much more tolerant of brief delays when performing less fre-
quent operations that appear complex on their face. Clearly, the implementors
of interactive document editors should focus their optimization efforts on those
operations that are performed frequently and appear simple to the user.

However, the designer of an interactive document editor is faced with a more
difficult decision when choosing algorithms. The standard wisdom is to choose
algorithms and data structures that minimize the maximum complexity of the
editor’s operations. For example, it is generally considered best to choose a
data structure for which all operations are run in log time even though it means
sacrificing constant time complexity on some individual operations.

We believe that this wisdom does not hold for interactive editors. It isimpor-
tant that most operations (e.g. insertion of unnumbered document components)
resulting from normal text entry run in constant time , even if it increases the
complexity of less frequent operations. If this is not the case, the designer runs
the risk of creating a system that is only useful for “toy” documents.

3 Previous Work

3.1 Numbering Mechanisms

Component numbering actually involves two separate tasks, component number
generation and cross-reference resolution. It nicely illustrates some of the differ-
ences between batch and interactive systems because batch systems can easily
generate component numbers but have trouble with cross-reference resolution,
while the situation is reversed for interactive systems.

The original batch-oriented formatting systems [9, 12] did not support num-
bering directly. However, they did provide registers which could be used for
various purposes, including component number generation. The user allocates

a register for each component type being numbered and then directly manages
updates to the value stored there. Thus, as the formatter scans the document,
each register holds the current number for its corresponding component type.
This approach to number generation is used by all batch formatters, though the
details are usually hidden from the user.

Cross-reference resolution is made difficult by the possible presence of for-
ward references, which are cross-references to components appearing later in
the document. Resolution of forward references requires two passes over the
document source. In addition, the second pass must be a full formatting pass
because the width of the cross-reference characters cannot be determined until
after resolution. There are two basic approaches to cross-reference resolution
for batch formatters.

Aho and Sethi [2] show how a simple preprocessor, using the UNIX utilities
grep, awk, and sed, can be used to resolve cross-references. Using this approach,
document formatting requires three passes over the source, but formatting is
only done on the last step.

In the second approach, introduced by Scribe and also used by IWIRX, the
batch formatter is run twice so that it acts as its own preprocessor [11]. On
the first run, the formatter saves cross-reference information in an auxiliary file.
The second run of the formatter reads the auxiliary file and uses the information
there to resolve the cross-references. While only two passes are made over the
document, they are both relatively expensive passes.

The register approach to number generation is not adequate for interactive
WYSIWIG systems. In such systems, the user may move to random locations
in the document and expects any component numbers found at those locations
to be up to date. If the system is to respond quickly to the user’s movement
commands it must be able to “jump” to the new location without having to
inspect all of the intervening material in order to update its numbering registers.

A solution is to abandon the register approach in favor of number slots in
the components themselves. The use of number slots largely eliminates the
cross-referencing problem because, as long as the slots are kept up to date, a
cross-reference need only point to the component it references. Unfortunately,
keeping the number slots up to date is not so straightforward. Whenever a
numbered component is inserted or deleted, the number slots of all subsequent
components must be made up to date. Without some secondary data structures,
this could require a full pass over the document. In addition, whenever multiple
components are inserted or deleted by a single editor operation they must be
scanned for the presence of numbered components.

3.2 Specification

As mentioned above, the early batch formatters provided registers which could
be used for component number generation. Direct allocation and update of such

COUNTERS
Chapter_Count : RANK OF Chapter;
BOXES
Chapter_Number :
Content : (VALUE (Chapter_Count, UpperRoman));
RULES
Chapter :
Create (Chapter_Number);
Ref_Chapter :
Copy (Chapter_Number);

Figure 1: Example showing the use of a counter in Grif’s presentation schemas.

registers was used to support hierarchical section numbering in the -me macros
for troff [3].

The general trend in structured document systems has been to use a more
declarative specification method, but one still based on the register model.
Scribe introduced a system of counters whose definition was essentially declar-
ative [16]. This approach was brought to interactive systems by Grif.

Grif documents are described by two schema types, structure and presen-
tation. The structure schema defines the logical structure of the document,
which can be thought of as a tree. The presentation schema defines how each of
the document components defined in the structure schema is displayed on the
page or screen. To support component numbering, Grif’s presentation schema
language, P, provides special registers called counters, which only support a
restricted class of updates [13].

An abridged sample of a presentation schema showing the definition and use
of a counter for chapters can be seen in Figure 1. This example defines a counter
called Chapter_Count. The formatted version of the counter is produced by the
definition of the Chapter_Number box. This box of formatted text is placed at
the beginning of the chapter by the Create command and cross-references to it
are generated using the Copy command.

The primary type of counter specification, shown in Figure 1 is based on
a component’s rank, which 1s the ordinal rank of a component relative to its
siblings in the document tree. This approach works well for the hierarchical
numbering of structural components, like chapters, because they are guaranteed
to be siblings. However, it does not work for non-structural components which
either appear at varying depths in the tree or are numbered with respect to an
ancestor which is not their parent. Grif handles these cases with a specification
that looks like a return to the register model:

CountEquation: Set 0 on Article Add 1 on Numbered_equation;

A counter can only be set by one type of component, can only be added to by
one other type of component, and its initial and added values must be positive
integer constants. So, the arbitrary updates that are possible with registers in
troff or TEX are not possible in Grif.

Grif’s counters are separate entities from the document components they
count. The connection between the counter and the counted component is
established by how the document designer uses the counter to construct the
document’s presentation. This lack of connection results in complex semantics
for the Copy command [13].

4 Declarative Specification

Having examined this earlier work, we have designed a completely declarative
method for the specification of component numbering. It improves on the ap-
proach of Grif by generalizing the notion of rank and by binding the component
number to the definition of the component. Our approach is based on the fol-
lowing assumptions:

1. The document is represented as a tree.

2. The order of the document’s components is equivalent to their positions
in a preorder traversal of the (k-ary) tree [1, p. 54].

3. All components of a particular type are numbered with respect to a par-
ticular ancestor, specified by its type.

These assumptions point the way to a generalization of the notion of rank, as
introduced by Grif. Since the order of components can be found by a preorder
traversal of the document tree, the definition of rank can be extended from
that of “rank among siblings” to that of “preorder rank within a subtree”.
The subtree within which to perform the traversal is specified by naming the
type of its root. An application of this approach to the equation numbering
example we examined for Grif (using modified Grif syntax) is shown in Figure 2.
This example says that each Equation is numbered “with respect to” (wrt) its
Chapter ancestor. The formatted version is created by accessing the Number
attribute of the Equation.

This new specification method has several favorable qualities. It makes no
commitment, implicit or explicit, about the way component numbers are com-
puted. It unifies in one construct both the “rank among siblings” and “set-add”
paradigms used in Grif. Finally, the new method makes the number an attribute
of the component, rather than an independent data structure.

4.1 Recursively-Specified Structure

While it is not common in existing document processing systems, it is possi-
ble to create document specifications whose structural components are defined

BOXES
Equation_Number :
Content : (VALUE (Number(Equation), UpperRoman));
RULES
Equation :
Number: wrt Chapter;
Create(Equation_Number) ;
Ref_Equation :
Copy (Equation_Number);

Figure 2: Example showing the specification of equation numbers using the
preorder rank approach.

Section = BEGIN
Section_heading = TEXT;
? Section_Preamble = LIST OF (Paragraph);
? Section_sequence = LIST OF (Section);
END;

Figure 3: Sample definition of recursive sections.

recursively. An example would be the definition of sections shown in Figure 3
where each section is composed of a heading, an optional list of paragraphs, and
an optional list of sections. For the sake of conciseness, we use the adjective
recursive for such recursively-specified document components. Note that a re-
curstve section does not contain a list of copies of itself, just other sections with
arbitrary content.

Our specification method is not adequate when documents can have recursive
structure. Consider an article with recursive sections. As one descends the
document tree from the root toward some leaf, one encounters a sequence of
sections. The first section encountered corresponds to the traditional notion of
section, the second to a subsection, and so on. So, specifying a subtree within
which to number a particular component type requires being able to count
sections on the downward path from the root to the component. Our construct
for doing this is

Equation:
Number: wrt second Section

where second is a predefined keyword.
This approach is quite sufficient for recursive sections but does not handle all
structures which could be defined recursively. Recursive figures are an example

Figure = BEGIN
Figure_content = CASE OF
Frame = GRAPHIC_OBJECT;
Sub_figures = LIST OF (Figure);
END;
Figure_caption = Contents;
END;

Figure 4: Structural specification for recursive figures.

of such a structure. A specification for such a structure appears in Figure 4.
Typically, a figure is numbered with respect to its enclosing section or chapter.
However, subfigures are usually numbered with respect to their enclosing figure.
As an example, Figure 10 (tenth figure in its chapter) might contain two separate
charts, which might be lettered (a) and (b) (corresponding to numbers 1 and
2). Accommodating both ways of numbering figures requires the use of some
sort of conditional expression in the numbering specification. Such a scheme
could be described using parser generation tools, such as attribute grammars,
but support for such mechanisms has yet to provided by any existing document
processing system.

5 Incremental Update Algorithms

For interactive structured document editors, the most difficult aspect of compo-
nent numbering is the maintenance of correct values in the number slots of the
components. Nearly every insertion or deletion operation involving numbered
components must update some component numbers. This section describes the
task more formally and presents a series of algorithms for the incremental update
of these numbers.

In order to make our presentation more concrete, we will discuss the in-
cremental update problem in terms of a running example: a book containing
equations which are numbered with respect to their enclosing chapter. A speci-
fication corresponding to this numbering scheme appeared in Figure 2. The use
of this example allows the update problem and the algorithms to be presented
in terms of “equations” and “chapters”, rather than “numbered components”
and “components of the type they are numbered within.”

5.1 The Problem

In a structured document editor, all modifications of the document can be con-
sidered to be built from three primitive operations set-attribute, insert-subtree,

10

and delete-subtree. As described here, these operations immediately update any
invalid component numbers. This is a necessary feature if the system is to en-
sure that all component numbers and cross-references that are on screen are
correct.

Set-attribute(N, A, v) assigns the value v to attribute A of node N. Except
when used to change the value of a node’s equation number slot, the set-atiribute
operation has no effect on equation numbers.

The insert-subtree('S, N, i) operation inserts the subtree S as the i'* child of
the node N. In some editor implementations, the N and ¢ parameters may not
be necessary because the editor supports a notion of current insertion point.
The insertion operation involves four steps:

1. Attach S to the document tree as the % child of N.

2. Determine whether S contains any equations. If not, the insertion opera-
tion is complete. Otherwise, continue.

3. Find Ep,..number, the number of the equation preceding S in a preorder
traversal of the chapter subtree.

4. Assign new values to the number slots of the equations in S and all
equations following S in the chapter subtree, beginning with the value
Fpre.number + 1.

The delete-subtree(S) operation removes S from the document tree. Like
insertion, deletion involves four steps:

1. Determine whether S contains any equations. If not, skip to step 4.

2. Find E,q.number, the number of the first equation in S. Alternatively,
find F,,..number, which is always one less than F,;3.number.

3. Assign new values to the number slots of the equations following S in the
chapter subtree, beginning with the value E,q.number.

4. Remove S from the document tree.

These two operations have several common subtasks. They both must deter-
mine whether S contains any equations, find a starting equation number, and
update all equations after the point of change in the document. Because their
underlying subtasks are so similar, they generally have similar complexity.

5.2 The Algorithms

Given our specification method based on preorder rank, the naive approach to
the problem is to traverse the tree to locate the relevant equations. Using this
approach, the insert-subtree operation would:

11

e Attach S to the document tree as the it child of N.

e Traverse S until an equation is found. If no equation is found in S, inser-
tion is complete. Otherwise, call this equation E,., and continue.

e Traverse the chapter subtree backwards from S to find the immediately
preceding equation, Fy,., and its number, E},...number. If there are no
preceding equations, consider F,,...number to be zero.

o Set Epe.number equal to Fy,..number 4 1. Traverse the chapter subtree
forward (in preorder) from FE, .y, setting the numbers of all subsequent
equations.

The naive delete-subtree operation is:

e Traverse S until an equation is found. If no equation is found in S, deletion
is complete. Otherwise, call this equation F,; and continue.

e Traverse the chapter subtree forward (in preorder) from S, updating the
numbers of all subsequent equations, starting with the value F ;3. number.

Both operations can, in the worst case, require a complete traversal of the
chapter subtree. If equations appear at random locations in the subtree, the
final step of the algorithm will require traversing, on average, half of the chapter
subtree. In addition, both operations must completely traverse S to ascertain
that .S contains no equations. A subtree traversal requires crossing each edge in
the subtree twice. Since the number of edges in a tree is n — 1, where n is the
number of nodes in the subtree, we consider this to be an O(n) algorithm.

The naive algorithm does not require any additional storage. Every other
algorithm described here attempts to improve on the naive approach by trading
space for time.

5.2.1 The Traditional Approach

In this algorithm, the additional space is required by a new data structure, a
single binary search tree containing all nodes in the chapter subtree. The nodes
are ordered in this search tree according to their position in a preorder traversal
of the chapter subtree. In addition, each node has a slot holding a count of the
number of equations below it in the search tree and the equations themselves
are chained together in a “thread”, the head of which is also stored in the
chapter node. This new data structure allows the computation of F,,..number
by ascending the search tree from S to the root and summing the equation
counts of the left siblings (if any) of S and its ancestors. If the search tree is
balanced, this is an O(logn) operation.

The insert-subtree operation first attaches S to the document tree. S must
have an attached search tree and equation thread, even if .S 1s not a full chapter.
Once S is attached to the document tree, it is straightforward to locate its

12

predecessor, Npr.q. If S is a singleton tree, then S’s search tree can be inserted
directly into the search tree for the chapter. Otherwise, a more complicated
sequence of operations is required. The search tree 1s split around the new
predecessor of S, leaving a left subtree L, the predecessor Np,.q, and a right
subtree R. The search tree is rebuilt by two successive joins, as in

]Oln(]Oln(L, Npreda S)a Da R)

where D is a dummy node that is immediately deleted.

The delete-subtree operation is similar. If S is a singleton tree, normal dele-
tion is used. Otherwise, the chapter’s search tree is split at the predecessor of
S and at the successor of S. Again using a dummy node, the resulting left and
right subtrees are re-joined and the dummy node is deleted. The middle subtree,
which contains the nodes of S, is attached to S in case S is later re-inserted, as
is the middle portion of the equation thread.

All search tree operations must be enhanced to update the equation count
slots and to correctly split and merge the equation thread. In addition, when
either of these operations actually inserts or deletes equations, those equations
following the point of insertion or deletion must have their number slots updated.
If the search tree operations are implemented using self-adjusting binary search
trees [17], the search tree manipulations of both operations will run in log time
(amortized). The cost of updating the equation numbers will be linear in the
number of equations in the chapter, because the presence of the equation thread
obviates the need to perform a tree traversal. We consider this algorithm to have
O(logn + k) running time when S contains k equations.

The problem with this approach is that all insertions and deletions become
log time operations. This conflicts with the design principles we endorsed in
Section 2.3.

5.2.2 Owur Approach

We set out to construct an incremental update algorithm which would provide
constant time operations on equation-less subtrees and sub-linear operations on
subtrees containing equations. Every algorithm we considered makes use of the
idea of an equation thread. An equation thread is a list containing every equation
in the chapter subtree. Each equation’s position in the list corresponds to its
position in a traversal of the chapter subtree and, therefore, to its equation
number. When a subtree is inserted (deleted), a list of the equations in the
subtree is inserted into (cut out of) the chapter’s equation thread. The numbers
of any equations following the point of the editing operation are updated by
stepping through the elements of the thread. Use of an equation thread reduces
the time required for this final step of the insertion and deletion operations
from O(n) to O(k), where k is the number of equations in the chapter subtree.
Thus, the algorithms differ only in the running time for determining whether S

13

contains any equations, the running time to find the number of E,,., and the
amount of additional storage required.

Before settling on the algorithm described in detail below, we examined and
rejected five algorithms:

Equation Thread Only. This algorithm simply added an equation thread to
the chapter subtree. Subtrees being inserted are assumed to have an
equation thread (possibly empty) attached. Using this algorithm, the
central operation i1s the comparison of the position of S to that of the
equations in the chapter’s equation thread. This comparison operation is
used to determine the position at which S’s equation thread should be
inserted into or deleted from the main thread. The complexity of a single
comparison has an upper bound of (2h + b) where h is the height of the
chapter subtree and b is its branching factor. This comparison is necessary
when determining whether S contains equations (when deleting S) and
when finding the previous equation’s number. The number of comparisons
performed can be minimized by representing the equation thread as a
balanced binary search tree, rather than as a list. However, since all
subtrees being deleted must be checked for the presence of equations, this
algorithm does not allow deletion of equation-less subtrees in constant
time.

Equation Count 1. This algorithm adds a slot to every node which records
the number of equations at or below that node. A subtree contains equa-
tions whenever the equation count at its root is non-zero, which can be
tested in constant time. The previous equation number is computed by
summing the equation counts of the left siblings of the ancestors of .S (in-
clusive of S). Thus, this algorithm performs both operations in constant
time with equation-less subtrees and in O(k + bh) time when S contains
equations.

Equation Count 2. The equation count slot could be used only to determine
whether S contains equations. This approach achieves constant running
time for equation-less subtrees while the running time becomes O(k +
(logk) - (2h + b)) when S does contain equations. In the special case of
section numbering, where the & numbered components are siblings, the
running time is O((log k) - k).

Cumulative Equation Count. Alternatively, each node can hold a slot which
records the number of equations at or below its left siblings. The number
of equations at or below the node can be computed by subtracting the
node’s value from that of its right sibling?. This cumulative equation

?Nodes which have no right sibling must subtract their slot value from the number of
equations at or below their parent. For nodes along the right edge of the tree, this recursive
process is halted when reaching the chapter node which records the total number of equations

it holds.

14

count slot makes it possible to compute the previous equation number by
inspecting only the ancestors of S. Unfortunately, the slots of the right
siblings of those same ancestors must be kept up to date. As a result, this
algorithm does not improve on its predecessor.

Lazy Cumulative Equation Count. The update of the cumulative equation
count slots can be done “lazily” if each internal node also stores a pointer
to its rightmost-up-to-date-child. While this allows the algorithm to avoid
pointless update operations, it adds complexity by requiring comparisons
of the position of each ancestor of S to the pointer stored in its parent.
Since this approach merely exchanges two tasks of equivalent complexity
and requires more storage, it was rejected.

The best incremental update algorithm is the last/previous algorithm. Tt
requires two additional slots per tree node which, together, permit fast compu-
tation of equation numbers. For a particular node N, they are

o N.leg (last equation) points to the last equation in the subtree rooted at
N. If Nis an equation itself, then N.leq = N. If the subtree rooted at N
has no equations, then N.leq = nil.

e N.peq (previous equation) is a pointer to the leg slot of the closest (i.e.
rightmost) left sibling of N which has a non-nil leg slot. If there is no such
“previous equation”, then N.peq = nil.

There are two operations which affect equation numbers, insert-subtree and
delete-subtree. An inserted or deleted subtree contains zero or more equations
and is assumed to have correct values for the leq and peq slots of its nodes®.
Subtrees being inserted must also have an attached equation thread which con-
tains all equations in the subtree in traversal order. The deletion operation will
create such a thread. We consider a single equation, E, to be a special case of
a subtree, with F.leq = E, E.peq = nil, and with an attached list containing
only itself.

The insert-subtree('S, N, i) operation inserts the subtree S as the i** child
of the node N. The insertion operation involves two phases. The first phase
attaches S to the document tree and determines the value of S.peq, as follows:

1. Attach S to the document tree as the % child of N.
2. Let L — left-sibling(S).

e If L = nil, then set S.peq — nil.
o If L.leq # nil, set S.peq — address-of (L.leq).
e Otherwise, set S.peq — L.peq.

3In the case of an inserted subtree, the correct value of the peq slot is always nil.

15

If S does not contain any equations, the insertion operation is complete. How-
ever, when S does contain equations, they must be numbered correctly, which
requires finding £),., the equation immediately before S in a traversal of the
chapter subtree. Also, it may be necessary to update the leg slots of the ances-
tors of S and the peq of the right siblings of the ancestors of S. In this case, the
insertion operation involves the following additional steps:

1.

Scan the right-siblings of 5, setting their peq slots to point to S.leq. Stop
when there are no more right-siblings or after setting the peq field of a
sibling with a non-n:l leq slot.

Let ¢« S and P — N. C will always be a child of P. Let E,.. = nil.

Let CouldBelLast — true. CouldBeLast will be set to false when it has
been proven that S is not the last equation in the chapter.

While CouldBeLast = true and C' is not the chapter node:

(a) If Eppe = nil, then let E,,. be the equation pointed to by C.peq. If
C.peq = nil, then Ey,.. «— nil.

(b) If Pleq = nil, then P had no equation descendants prior to the
insertion of S. Set P.leq «— S.leq and update the peq slots of the
right-siblings of P.

(c) Otherwise, if P.leq points to Ep,. then S now contains the last equa-
tion in the subtree rooted at P. Set P.leq — S.leq.

(d) Otherwise, there are equations following S in the subtree rooted at
P. Set CouldBeLast — false.

(e) Let C' — P and P — parent(P).

Get the list of equations attached to the chapter node. Insert the list of
equations attached to S immediately after £,,.. Renumber all equations
that follow £, in the list, starting with the value Fp..+1. If By, = nil,
insert the new equations at the front of the list and start numbering with
an initial value of 1.

The delete-subtree(S) operation removes S from the document tree and is
almost precisely the reverse of the insertion operation. The major difference is
that if S does not contain any equations, no updating work is necessary. If S
does contain equations, the deletion operation must:

e Update the peq slots of the right siblings of S.

e Update the leq slots of any ancestors of S whose last equation was S.leq.

If an ancestor’s subtree will no longer contain any equations after the
deletion of S, the right siblings of the ancestor must have their peq slots
updated. In the process of updating the ancestors of S, the algorithm will
locate Fp,., the immediately preceding equation.

16

e Get the list of equations attached to the chapter node. Remove the sublist
containing the equations between E,,. (exclusive) and S.leq (inclusive)
and attach this sublist to S. It is the list of all equations at or below S.

e Update the number slots of any equations which followed S.leq in the
equation list attached to the chapter node.

The worst case running time of both operations is O(k + bh), where b is the
branching factor of the chapter subtree, d is the depth of S in the subtree, and &
is the total number of equations in the subtree*. The k term is derived from the
need to update all subsequent equations. The bd term results primarily from
updating the peq slots of the right siblings of S and its ancestors. The actual
cost of this task is limited as much as possible by using double indirection for
the peq slots. Because the peg slot is actually a pointer to some other node’s
leg slot, changes to the leg slot automatically update all peg slots that point to
it. It is also important to note that in the special case where the k& numbered
components are children of a single node, both operations run in O(k) time.

5.8 Discussion

Each of the algorithms described in Section 5.2 has been implemented to test
its correctness. However, we have not attempted to analyze the performance of
all of the algorithms in detail.

Every algorithm we considered represented a clear improvement over the
naive approach based on tree traversal. Of these algorithms the two best are the
“last/previous” algorithm and the second “equation count” algorithm (which
uses the equation count only to determine if a subtree contains equations). The
order statistics for the worst-case running times of these algorithms are O(k+bh)
and O(k + (log k) - (2h + b)), respectively.

Comparison of the performance of these algorithms is not easy because, even
ignoring degenerate cases like trees of height n—1, there are no guarantees about
the nature of structured document trees. The relationship between branching
factor, height, and the number of equations in a chapter subtree cannot be
determined a priori. Experience with structured documents suggests that height
grows logarithmically with overall subtree size and that branching factor can
be fairly large but is bounded. In addition, it is very rare to see component
numbers with even three decimal digits, so there seems to be a practical upper
limit to this parameter of running time.

In an attempt to compare the algorithms more quantitatively, we measured
the values of &k, b, and h for several technical documents, including this one.
Then, for each of these examples, we computed upper bounds on the number of

4We assume that, given a tree node, it is a constant time operation to find its right sibling.
We also assume that immediately after inserting or deleting S, it is a constant time operation
to access its left sibling. These assumptions are sufficiently weak to allow the use of singly-
linked lists as the representation for children of a node in the document tree.

17

medium level operations (e.g. assignment to a slot or getting the next item in a
list) required to insert a subtree containing numbered components. This anal-
ysis indicated that the last/previous algorithm is generally 33% to 50% faster
than the equation count algorithm, except when k is small (k < 3). When &
is small, the equation count algorithm is 15-25% faster than the last/previous
algorithm. The last/previous algorithm is always better for the special case of
section numbering, running at least twice as fast as the equation count algo-
rithm.
Other arguments in favor of the last/previous algorithm are:

e It appears to minimize redundant operations since the update of the leg
and peq slots 1s halted at the earliest possible moment and the use of
double pointers in the peg slots eliminates the need to update them in
many cases.

e It does not require the implementation of balanced binary trees, which are
needed in the equation count method.

e When multiple types of numbered components are present in the inserted
or deleted subtree, update of their numbers can be performed in the same
pass up the tree. In contrast, the equation count algorithm must update
each type of component number independently.

Extending each of these algorithms to the case where multiple types of com-
ponent numbers must be updated is straightforward. In general, each numbered
component type must have its own thread and set of slots.® The algorithms
must be modified to take into account the presence of component types that are
numbered within different subtree types.

6 Conclusions

We have presented a simple method for declaratively specifying how the compo-
nents of a traditional linear document are numbered. The specification method
appears to be sufficient for all traditional numbering schemes.

One class of document that the method does not support is the class of
non-linear documents, of which hypertext is the obvious example. The problem
with hypertext documents is that they do not conform to a tree structure. This
makes the notion of preorder rank, on which the new numbering method is
based, invalid for hypertext. However, ordinal numbering in any form does
not make sense for hypertext, since there is no natural unique ordering for a
hypertext document. A hypertext document does need some system of unique

5The only exception is the “traditional” algorithm. It does require a separate thread
and equation count slot for each numbered component type. However, multiple numbered
component types that are numbered within the same type of subtree can share that subtree’s
search tree.

18

identifiers so that textual cross-references (as opposed to hypertext links) can be
stated in a sensible manner. These identifiers could well be numbers, but there
is no general method for assigning such numbers on the basis of the hypertext
document’s structure. However, any subportion of the hypertext document
which is linear could make use of our numbering mechanisms.

We have also presented a number of algorithms for the incremental update
of component numbers, focusing primarily on the last/previous algorithm. This
algorithm improves considerably on the performance of the naive alternative
while maintaining constant time insertion and deletion of non-numbered com-
ponents.

We plan to use both the specification method and last/previous algorithm in
Ensemble, an interactive editing system for structured multi-media documents,
including programs, currently being designed here at Berkeley [6]. An interac-
tive system like Ensemble requires the use of efficient incremental algorithms
like the one described in Section 5. Also, Ensemble will use the model of sep-
arate specifications for document structure and presentation previously seen in
Grif. The numbering specification presented in this paper will be part of the
presentation language of Ensemble.

Acknowledgements

We would like to thank Raimund Seidel and John Hauser for useful discussions
on incremental update algorithms.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1974.

[2] Alfred V. Aho and Ravi Sethi. Maintaining cross references in manuscripts.

Software—Practice & Fxperience, 18(7):1001-1012, July 1988.

[3] Eric P. Allman. -ME Reference Manual. Electronic Research Laboratory,
University of California, Berkeley, California. Available in bsd UNIX User’s
Manual.

[4] Apple Computers, Inc., Cupertino, California. MacWrite Manual, 1984.

[5] Kenneth P. Brooks. A two-view document editor with user-definable doc-
ument structure. Technical Report 33, Digital Systems Research Center,
Palo Alto, California, November 1988.

[6] Wayne Christopher. The architecture of Ensemble. Ensemble Internal
Document, November 1989.

19

[7]

[10]

[11]

[12]

[13]

[14]

Richard Furuta, Vincent Quint, and Jacques André. Interactively editing
structured documents. FElectronic Publishing—Origination, Dissemination

and Design, 1(1):20-44, April 1988.

Interleaf, Inc., Cambridge, Massachusetts. Interleaf Publishing Systems
Reference Manual, Release 2.0, Vol. 1: Fditing and Vol 2: Management,
June 1985.

Donald E. Knuth. The TpX Book. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1984. Reprinted as Vol. A of Computers & Type-
setting, 1986.

Leslie Lamport. IATpX: A Document Preparation System. User’s Guide
and Reference Manual. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1986.

Bruce Leverett. One-pass text formatting. Technical report, Scribe Sys-
tems, Inc., Pittsburgh, PA, 1988.

Joseph F. Ossanna. Nroff/troff user’s manual. Computer Science Technical
Report No. 54, AT&T Bell Laboratories, Murray Hill, New Jersey, October
1976. Also available in UNIX User’s Manual.

Vincent Quint. Les langages de Grif, December 1988. Distributed with the
program.

Vincent Quint and Iréne Vatton. Grif: An interactive system for structured
document manipulation. In J. C. van Vliet, editor, Text processing and
document manipulation, pages 200-213. Cambridge University Press, April
1986.

Brian K. Reid. Scribe: A document specification language and its com-
piler. PhD thesis, Computer Science Department, Carnegie-Mellon Uni-
versity, Pittsburgh, Pennsylvania, October 1980. Available as technical
report CMU-CS-81-100.

Brian K. Reid, Michael I. Shamos, and Janet H. Walker. SCRIBE Database
Administrator’s Guide. Unilogic, Ltd., Pittsburgh, PA, first edition, July
1981. Preliminary Draft, Order No. AA-L507A-TK.

Robert Endre Tarjan. Data Structures and Network Algorithms, volume 44
of CBMS-NSF Regional Conference Series in Applied Mathematics. STAM,
Philadelphia, PA, 1983.

20

