Eric Enderton

Department of Electrical Engineering and Computer Science
Computer Science Division
University of California, Berkeley

Interactive Type Synthesis of Mechanisms
March 30, 1990

RESEARCH PROJECT

Submitted to the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley,
in partial satisfaction of the requirements for the degree
of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

/ .
Committee: /&f/f'é / «/é% 23 Research Advisor
CARLO H- SEAQAUIN Print Name
. Z/ /// 1990 Date

% %/‘AW Second Reader

/ _.)’0\'\“\ C{navw Print Name
4/7/90<] Date

Interactive Type Synthesis of Mechanisms

Enc Enderton™

March 30, 1990

Abstract

As a step towards CAD systems that model function as well as form, we have developed
an interactive tool for qualitative mechanism design. Called the mechanism editor, it enables
the user to quickly sketch abstract planar mechanisms made up of polygonal links connected by
revolute and prismatic joints. The user may interactively control the parameter of a joint, and
the editor will compute and display the resulting motion of the entire mechanism.

When the user requests an animation, the editor builds a plan to be executed repeatedly
as the user flexes the input joint. The graph of the mechanism’s topology, in which each link
is represented by a node and each joint by an edge, is used for counting degrees of freedom,
including the detection of overconstrained submechanisms. The graph is modified during the
planning stage to represent the portion of the mechanism that remains to be solved. Each step
in the plan solves a small subgraph that matches the graph of one of the available base cases.
This step computes the relative positions of the links in the subgraph. This subgraph is then
contracted to a single node, leaving a smaller graph to be solved. After a number of steps, the
graph is reduced to one node, and the positions of every link are known relative to ground.
There are some mechanisms whose graphs cannot be solved in this fashion.

A set of base cases, composed of the RRR, PRR, and RPR mechanisms, is described in
detail. Simple trigonometry yields closed-form solutions for these base cases. Therefore the
whole plan represents a closed-form solution. Each base case typically has either two possible
solutions, in which case the plan step must choose one of them, or it has zero solutions, in which
case the mechanism breaks. A number of possible policies for these situations are presented.

Several earlier systems, most of them descendants of Sutherland’s Sketchpad, are described
and compared to the mechanism editor. Some implementation details are presented, including
control structures for the user interface and for the planner.

Submitted in partial fulfillment of the requirements for a Master’s Degree at the Univer-
sity of California, Berkeley, Department of Computer Science, under the direction of Professor
Carlo Séquin.

*This material is based upon work supported under a National Science Foundation Graduate Fellowship.

Contents

1

Introduction

1.1 Motivation i

1.2 The Mechanism Editor

1.3 AScenario. v v i it
1.3.1 Building A Four-Bar Linkage

1.3.2 Animating the Linkage
1.3.3 Editing the Linkage

Mechanisms in the Abstract

2.1
2.2
2.3
2.4

2.5
2.6

Approach Definition

Building, Planning, and Moving
The Mechanism Graph
Degrees of Freedom

2.4.1 Grubler’s Formula
2.4.2 Rigid Submechanisms
2.4.3 Genericity
Contractions
Planning and Moving

Planning, Solving, Breaking, and Branching

31 ThePlanner0....
32 BaseCases,
321 RRR
3.2.1.1 Breaking
3.2.1.2 Branching
322 PRR
3.2.2.1 Breaking
3.2.2.2 Branching
323 RPR
3.2.3.1 Breaking
3.2.3.2 Branching
3.2.4 OtherSolvers
3.2.5 Breaking Policy
3.2.6 BranchingPolicy
Implementation
4.1 TUser Interface Control Structure
4.2 Implementation Layers
4.3 Implementation of Plan Time Versus Move Time
4.4 The Input Step Solver
4.5 Programming Languages
Results
51 Examples
5.2 Counterexamples
5.2.1 Input Parameters

...........

...............

............

................

...................

..............

.....................

.....................

...........................

..............................

.....................

.....................

.....................

.....................

.....................

...............................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

....................

.....................

.....................

.....................

.....................

.....................

5292 UndercomstTaiit . . « v v o v v v o v e e e e e e e e e e e e e
593 Closed Form Solutions ¢ v v v v v i i v v vt e e e e e
5.2.4 Genericity Againo e

6 Past Work

6.1
6.2
6.3
6.4
6.5
6.6

LINKPAC . o i o i it e
Sketchpad e
ThingLab . . .« . ot it e
Todd and CheITy . .« ¢ v v v i it e e e e e e e
Physically-based modeling oo
DiSCUSSION & v v e o v e

7 Future Work

8 Conclusions

Acknowledgements

References

55

56

58

59

1 Introduction

1.1 Motivation

Existing computer aided design tools are useful primarily in the late stages of design, when details
are being filled in and drawings are being prepared. We are interested in building tools for the early
stages of design, when the designer is exploring rough design concepts and evaluating qualitatively
different alternatives. For computer programs to assist with these evaluations, they must work with
descriptions of the function of the system being designed, and not merely the form.

The domain we consider is the design of mechanical linkages. Linkage design may be loosely
separated into the phases of type synthesis and dimensional synthesis [Olson 85]. Type synthesis
determines the types of the joints — revolute, prismatic, spherical, etc. — and the topology of the
mechanism, while dimensional synthesis determines the distances between the joints, that is, the
dimensions of the links. Once a designer has fixed the type of a mechanism, the dimensional
synthesis problem amounts to numerical optimization in an n-dimensional parameter space, for
some fixed n. Many programs have been written for this; most of them are specific to a single
mechanism type [Olson 85].

We consider programs that assist the designer’s exploration of the space of qualitatively dif-
ferent mechanisms. We call this type ezploration, even though it involves not only the type of
the mechanism but also its rough, qualitative dimensions (such as whether one link is longer or
shorter than another). Effective and rapid type exploration requires a tool with a fluent interface
for entering and modifying rough mechanism designs. The tool should allow the designer to view
the motion of a mechanism, immediately and interactively. The designer is concerned first with
function; the function of a mechanism is its motion.

1.2 The Mechanism Editor

This report describes a tool for sketching mechanical linkages and previewing their motjon. The
tool is an interactive computer program dubbed the mechanism editor. The editor runs on a color
graphics workstation. It maintains a diagram of the mechanism on the screen, and provides menu-
and mouse-based commands that manipulate the mechanism. With these commands, the user may
add a link (that is, a rigid body), sketching it into the diagram with the mouse. The user may also
form joints between links, and delete links and joints. More interestingly, the user may flex a joint,
with the editor displaying the resulting motion of the entire mechanism.

The editor is limited to planar mechanisms. Links are essentially polygons, and joints are either
revolute (pin joints) or prismatic (sliders). But it is intended that the ideas and methods presented
here should be applicable to problems in three dimensions and with a wide range of joint types.

This report also describes how the tool does what it does, and compares the approach taken to
those taken by other authors.

We begin with a scenario of the program being used to sketch and animate a few simple mech-
anisms.

1.3 A Scenario

1.3.1 Building A Four-Bar Linkage

Starting with a clean slate, the user chooses the “create new link” option from the menu. She
moves the mouse to each vertex of the new link and clicks the left mouse button, except for the
last vertex, where she clicks the right button. In three clicks, she has a triangular link, which is

(a) (b) (c)

Figure 1: First, the user draws a triangular link. Mouse clicks are marked with an ‘x’; current
mouse position is marked with an arrow. (a) Just before the second click. (b) After the second
click. The image rubber-bands as the mouse is moved. (c) After three clicks, the link is complete.

drawn on the screen as an outline of a triangle with rounded corners (Figure 1). While a new link
is being created, the image “rubber-bands” as the user moves the mouse; the user can always see
what shape she will get, before she clicks.

To draw the second link, the user chooses the same menu option, and again outlines a polygon
with the mouse. But when the mouse gets near a vertex of the first link, the rubber-banding vertex
snaps to the existing vertex, and the screen shows a circle around the two coinciding vertices,
indicating that, if she clicks the mouse, the user will have formed a pin joint between the two links.
Color is used to make the visual feedback easier to interpret. While a new link is being outlined,
the new link is bright red and any new joints are bright orange. Existing joints are light green and
each existing link has its own color selected from a palette of blues and darker greens. The user
accepts the new link by clicking the right mouse button for the last vertex, and the new link and
the pin joint are redrawn in the cooler colors. Figure 2 shows the two links, with the small circle
that represents the pin joint between them.

Figure 2: A second link has been drawn, connected to the first by a pin joint.

The user now draws a third link, pin-jointed to the second, in a similar manner. In this case,
the new link has only two vertices. See Figure 3.

Figure 3: Three links, two joints.

As it stands, the mechanism is now floating freely in space. The next task is to root it to the
ground plane. The user picks the “fixed pivot” option from the menu. -Now,asthe-mouse gets close
to a free vertex (that is, one that is not already part of a joint), the screen shows two concentric
circles at that vertex, and the associated link lights up. The two circles indicate a fixed pivot, i.e.,
a pin joint between that link and the ground. The user clicks to accept, and the two circles go from
orange to green. Figure 4 shows the mechanism after both the first and the third links have been
pinned to ground.

Figure 4: The four-bar linkage. Nested circles indicate fixed pivots.

This mechanism is called a four-bar linkage (the ground counts as one). It is a closed chain
with one degree of freedom; depending on the relative distances between the joints, the links on
the ends can pivot either back and forth along an arc or in a complete circle.

1.3.2 Animating the Linkage

To try this out, the user selects the “rotate fixed pivot” menu option. She moves the mouse close
enough to a fixed pivot that a cross appears over it, and then clicks. Now the mechanism can be
exercised, in real time. The cross is a sort of crank. By moving the mouse about the screen, the
user causes the cross to rotate; the long arm always points at the mouse. The pivoted link always
rotates with the cross, and the mechanism editor attempts to find a valid motion of the rest of the
links as well — one that will keep all the joints joined and the fixed pivots fixed. Figure 5 shows the
four-bar linkage being exercised. The four-bar linkage may be rotated from the other fixed pivot
as well.

Figure 5 also shows some positions of the crank that the mechanism cannot reach (because the
sum of the lengths of the second and third links is not enough to reach the end of the first link).
This is discussed in Section 3.2.1.1.

1.3.3 Editing the Linkage

Once the user tires of twirling the four-bar around, and exits “motion mode” by clicking the mouse
again, she may continue to edit the mechanism. Figure 6 shows a possible six-bar linkage, formed
by adding two more links onto the center link of the four-bar linkage. The figure also shows the
mechanism being animated.

The user now backs up to the situation where we had just two links (see Figure 2), via the
“delete link” menu option. (Deleting a link also deletes any joints in which it-participated.) She
adds a third link as before, but using a prismatic joint, also known as a slider, instead of a revolute
one. To do this, she first goes to one free vertex of the second link and clicks; this produces an
orange pin joint, as before. But as she moves the mouse near the second free vertex on that same
link, the pin joint turns into a slider. The slider involves two vertices on each link; it constrains all
four of these vertices to be collinear. It is displayed as four parallel lines running between the two
pairs of coincident vertices. (Like a pin joint, it is orange until accepted, and light green thereafter.)
The user clicks the left mouse again, then clicks the right mouse on the third vertex of the polygon,
accepting the link and the new joint.

The user now pins the free end of the new link to the wall with a fixed pivot, and once again
selects the “rotate fixed pivot” option, in order to view the motion of the mechanism. The new
mechanism and its motion are shown in Figure 7.

As the slider slides, its four parallel lines stay parallel, but the inner two move with one link
while the outer two move with the other. This gives the appearance (in a rather schematic way) of
a sliding member on runners.

Throughout all of this, the mechanism editor also maintains on the screen a textual status
window. Something is printed in this window whenever the user interface changes state (which
means every mouse click). By reading these messages, even a novice user can keep track of which
mouse button does what at each point in time. The window also displays the number of links,
number of joints, and number of degrees of freedom in the mechanism.

Figure 5: The four-bar linkage being moved. Also, the four-bar linkage being broken (frames 8 and
9) and then unbroken (frame 10).

77
s

Figure 6: A six-bar linkage and its motion.

JEgE
je g
e
&

7: A sliding mechanism and its motion.

Figure

2 Mechanisms in the Abstract

2.1 Approach Definition

Convenient and rapid type exploration requires direct real-time interaction with the mechanisms
under investigation. In order to provide this, the editor presents a direct manipulation interface
to the user. The structures being edited have graphical representations on the screen, and, to
a large extent, editing operations are performed by picking, dragging, and sweeping out these
representations with the mouse.

In order to provide fast response of the mechanism to user input, the editor uses closed form
solutions whenever possible. The alternative to closed-form calculations would be iterative numer-
ical methods. A closed-form calculation evaluates a fixed expression that yields the exact answer
(or rather, it would yield the exact answer if it were evaluated exactly). Iterative methods gener-
ate approximate answers, which improve as more calculations are performed; the total amount of
calculation to be done is determined at run time. Since closed-form calculations are typically much
faster than iterative ones, they are, at least superficially, the best suited to producing the smooth
and rapid animations that we want,.

The mechanism editor computes only the mouse-driven kinematics of the user’s mechanism,
not its dynamics. This means that there are no force terms nor momentum terms involved; we are
simply computing the static positions of the links, given the positions of the input variables.?

The mechanism editor’s user interface is inspired by Borning’s constraint-based simulation pro-
gram ThingLab (discussed in Section 6.3). Its use of closed-form kinematics solutions is modeled on
Suh and Radcliffe’s kinematics package LINKPAC (discussed in Section 6.1). Our work attempts
to combine these ideas, to further automate closed-form solutions, and to analyze the results.

2.2 Building, Planning, and Moving

Following Borning’s ThingLab, we break up the editor’s work into three distinct phases. First,
there is build time, while the user is modifying the topology of a mechanism, such as by adding
joints or deleting links. The third phase is move time, during which the topology of the mechanism
is fixed, but the user is interactively varying a continuous geometric property, such as a joint angle,
and the editor is computing and displaying the resulting motion of the entire mechanism. In order
to make the animations as smooth as possible, the move time computations should be as fast as
possible. To speed the move time computations, there is a second phase, plan time. Once the user
has requested an animation, and specified what parameters he will control with the mouse during
the animation, the editor assembles a plan, to be executed repeatedly at move time. The plan is a
sequence of function calls that, when made, bring the mechanism to a new, consistent state, based
upon the mouse input. A plan is put together once (per animation) and then executed repeatedly,
for as long as the user continues to manipulate the mechanism from the same parameters.

Plan time and move time for mechanism animations are analogous to compile time and run
time for programs. Build time might be analogous to edit time, for program editors that constantly
maintain a parse tree for the program being edited.

!The term kinematics also includes velocities and accelerations. The scheme described here could easily be
extended to compute these, just as LINKPAC does; see Section 6.1.

11

2.3 The Mechanism Graph

In a sketch of a mechanism, particularly one made up of revolute joints, it is easy to see a sort of
graph, with the joints as nodes and the links as edges (or multi-edges) connecting them. There is a
dual to this graph that turns out to be more useful; it is the mechanism graph that has been used
by mechanical engineers since 1964.

The graph of a kinematic chain is obtained by representing each link by a vertez and each
kinematic pair [i.e., joint] connecting two links by an edge connecting the corresponding
vertices. [Olson 85]

(We will call the graph’s vertices nodes in order to avoid confusion with the vertices of a link’s
polygonal shape.) The editor always maintains such a graph for the mechanism being edited. The
graph changes only as a result of editing operations that change the mechanism’s type; maintaining
the graph is therefore done at build time.

Each link in a mechanism is a rigid body that may move over time. We can think of each
link as having a local coordinate system in which the link’s rigid geometry is described. To know
the complete geometry of the mechanism at a certain time — and in particular to be able to draw
this geometry ~ we need to know the transformation from each link’s local coordinates to some
known coordinate frame, such as world coordinates. Furthermore, a joint may be thought of as a
parameterized change of coordinates. A pin joint, for instance, has some fixed geometry, namely its
coordinates in the local coordinate systems of each of the two links that it joins, It also has a single
variable parameter, namely its angle, measured as the angle between two reference directions, one
on each link. Given a value of the joint parameter, the joint specifies the relationship between
the links’ two coordinate systems. Using the fixed geometry of the joint, a transformation from
one local coordinate system to the other can be written as a matrix that depends on the joint
parameter. The same is true of any type of joint: given the joint parameter(s), it determines the
relation between its two links’ local coordinate systems.

In this view, a node in a linkage’s graph represents one link’s coordinate system. (One can
imagine a mechanism smoothly transmuting into its graph by imagining that everything rigidly
attached to a particular coordinate system is contracting to a node.) Meanwhile, an edge of the
graph represents a parameterized transformation between the two coordinate systems of the two
nodes that it connects.

A joint can also be thought of as a constraint between the two coordinate systems. Thus the
mechanism graph is the graph of the constraint system corresponding to the mechanism.

One coordinate system of interest is the world coordinate system, or in other words, the fixed
ground frame. Accordingly, the mechanism graph always contains a node for the ground link.
Unlike other links, the ground link does not have a corresnondine polveon on the screen.

2.4 Degrees of Freedom
2.4.1 Grubler’s Formula

The allowed motions of a link in a plane are rigid motions, and so are parameterized completely by
three numbers: two for translation in the plane and one for rotation. In other words, placing a link
in the plane has three degrees of freedom. Pin and slider joints each have one degree of freedom.
Therefore, adding a pin or slider joint to a collection of links removes two degrees of freedom: the
coordinate system of the second link would have required three parameters to specify, but now can
be specified by using only one parameter — the joint parameter — plus the coordinate system of the

12

first link. So, to determine the number of degrees of freedom (DOFs) in a linkage, we add three
DOFs for each link, except for the ground link (which has no DOFs), and we subtract two DOFs
for each one-DOF joint such as a pin joint or a slider. This gives us Grubler’s formula:[Suh 78]

DOFs=3-(links — 1) — 2 - joints

For instance, the four-bar linkage has four links (including ground) and four joints; this give us one

degree of freedom, as expected.
There are some special situations in which Grubler’s formula is inaccurate. These are discussed

in the next two sections.

2.4.2 Rigid Submechanisms

If a mechanism has zero DOFs, then it is rigid. What if Grubler’s formula gives us a number less
than zero? Then the mechanism is overconstrained. This can mean that a mechanism has been
specified which cannot be assembled, or that a mechanism has been assembled that could not have
been if the lengths involved had been slightly different. See Figure 8.

—

(a) (b)

Figure 8: Minus one degrees of freedom. (a) This mechanism cannot be assembled. (b) This
mechanism can be assembled, because the top bar has exactly the right length: it was constructed
in place.

A remarkable advantage of the editor’s direct-manipulation interface is that there is no way
for a user to specify a mechanism that cannot be assembled. The user can only create satisfied
constraint systems. (The exception to this is if a mechanism is assembled and then later broken
by motion, as discussed in Section 3.2.1.1.) During initial construction, the danger of a mechanism
being overconstrained poses no special difficulty to the editor.

The difficulty is that, if one of these overconstrained mechanisms is included as a submech-
anism in something larger, then Grubler’s formula will fail. This happens because, while the
overconstrained mechanism can move as a rigid body (DOFs = 0), it contributes negative DOFs
to the formula. For example, consider pinning an extra link onto Figure 8; the extra link is free to
move, so the mechanism does have a degree of freedom.

In order to detect and handle this situation, the mechanism editor groups any rigid set of links
(DOFs < 0) together into a super-link that we call an R-link (for “rigid link”). More precisely,

13

an R-link is any maximal rigid submechanism. The editor maintains these maximal groupings
along with the mechanism graph. Equivalently, we may say that it maintains two graphs, plus
the mapping between them: the first is a graph of links, the second is a graph of R-links, and the
mapping is a contraction (graph homomorphism) from the first onto the second. See Figure 9. It is

(a) (b) (c)

Figure 9: (a) A mechanism. (b) Its graph. (c) Its R-link graph. Rigid substructures, indicated by
dotted lines, are contracted to single nodes in the R-link graph.

the second graph that is actually used for planning motions (and for printing the number of degrees
of freedom on the screen). It has the property that, for any vertex-induced subgraph, Grubler’s
formula yields a positive number.

It is still useful to think of a node as representing a coordinate system, even in the R-link graph.
Since the joints inside an R-link cannot flex, all the links within an R-link may be reduced to a
single coordinate system in a manner that is constant regardless of any motion of the mechanism.

To let the user know when a rigid submechanism has been created, the mechanism editor uses
colors. Links in the same R-link are drawn with the same color. Actually, this is not always visually
striking, since the colors are all blues and greens and the image is only a line drawing. But at least
it is a hint. One important special case is visually very clear: links that become part of the ground
R-link (that is, links that become rigidly joined to the ground plane) are always drawn in grey.

The mechanism editor detects R-links by brute force. Whenever joints are added to the mech-
anism, the editor exhaustively tests all subsets of the set of R-links. If any subset is found to
induce a subgraph with zero or fewer degrees of freedom, by Grubler’s formula, then the subset
is merged into a single R-link (and the subsets containing this new R-link are also checked). Of
course, the running time of this algorithm is exponential in the size of the mechanism. There may
be more efficient algorithms, but for the small mechanisms we usually draw (ten or fewer links),
the brute-force method suffices. (One algorithm that does not work is checking the R-link graph
only for three-cycles and two-cycles. This would catch the majority of rigid submechanisms that
arise in practice, but would fail to detect the rigid three-legged table shown in Figure 10 below.)

2.4.3 Genericity

Even in the absence of overconstrained submechanisms, Grubler’s formula will fail if certain coin-
cidences occur. Suh and Radcliffe refer to these as “maverick mechanisms,” and give the example
of the three-legged table shown in Figure 10 [Suh 78].

It has six joints and five links, and so should be rigid. If the middle leg is longer or shorter than
the other two, then the table is rigid. But if all three legs are the same length, then it moves with

14

~

O
Q
0O

o

non-generic generic

Figure 10: Three-legged table. The non-generic one can move, the generic one cannot.

one degree of freedom, just as if the middle leg were missing.

We avoid responsibility for such situations in the usual way, namely, by assuming that all
our mechanisms are generic. That is, we assume that the mechanism we are analyzing is such
that distorting its geometry by an arbitrarily small amount will not change its behavior in any
discontinuous manner. The three-legged table is not generic, since distorting it slightly suddenly
changes its degrees of freedom from one to zero. But the mechanism editor will not recognize this
accident of geometry, and so will mistake the table for its generic cousin, the table with zero degrees
of freedom. Another view of genericity is that it prevents the mechanism’s constraints from being
linearly dependent. Some ins and outs of this assumption are discussed in Section 5.2.4.

2.5 Contractions

With an understanding of graphs of mechanisms, we can search for closed-form solutions for mech-
anism motions. Inspired by Suh & Radcliffe’s LINKPAC (discussed in Section 6.1), we seek to
build up the solutions to larger mechanisms from the solutions to very small mechanisms. In other
words, we proceed by induction.

How can we combine the solutions of small submechanisms? Solving a submechanism means
computing the free parameters of its joints. With the joints’ parameters fixed, all the coordinate
systems of the submechanism’s links are in known relation to one another. Much like a rigid
submechanism, then, a solved submechanism may be considered a single link while the rest of the
mechanism is being solved.?

In terms of graphs, this means that solving a submechanism lets us contract the corresponding
subgraph to a single node. The edges in the subgraph disappear, as do all but one of the nodes;
all edges going into the subgraph from the rest of the graph now go into that single node. The

2The difference is that, in a rigid submechanism, the relative positions of the links are constant over time, whereas
the relative positions within a solved submechanism are functions of the mouse input. There are two equivalent ways
to look at this. The move-time view is that, during a particular move cycle when we are given particular mouse values,
the relative positions of the solved links are fixed, and thus they may all be treated as a single link. The plan-time
view is that, during planning, the solved subsystem is like a single link whose lengths and angles are described by
possibly complicated functions rather than by constants.

15

smaller, contracted graph is the graph of the mechanism that now remains to be solved. Solving
a submechanism reduces the problem of solving the original graph to the problem of solving a
contracted graph.

These contractions arise in two ways. Firstly, the user may fix the free parameter of a joint,
e.g., by flexing the joint with the mouse. This contracts the two links being joined into a single
link, eliminating the now-fixed joint from the graph to be solved. Secondly, the editor may solve
for the joint parameters of a small submechanism, if that submechanism matches one of the base
cases that the editor knows how to solve. This contracts the small submechanism into a single link.

2.6 Planning and Moving

At plan time, we construct a plan to be executed repeatedly at move time. Each cycle through
the plan computes a position of the mechanism, based on the joint parameters that the user is
controlling with the mouse. (Alternatively, the user could control the position and /or orientation
of a link with the mouse. This is equivalent to controlling the parameters of joints between that
link and the ground plane.) These joint parameters are the input to the move cycle. In order to
display the new state of the mechanism, that is, a state consistent with the input parameters, the
editor must compute the remainder of the joint parameters, or, equivalently, the transformation
from each link coordinate system to the ground link system. These transformations are the output
of the move cycle.

So, at plan time, we construct a list of expressions for computing the outputs of a move cycle
from its inputs. Each expression results from applying a base case solution to a small submechanism
in the graph. When we apply a base case solution, we contract the graph of the mechanism. We
keep doing this until the entire graph is contracted to a single node. At this point, we have a list
of expressions for reducing everything, including the ground link, to a common coordinate system.
Applying this list of expressions — executing the plan — solves the mechanism.

This chapter has described a few abstractions — mechanism graph, Grubler’s formula, rigid
submechanism — and has described the algorithms used by the mechanism editor. These algorithms
and abstractions are quite general. They are applicable to mechanisms with joint types other than
just rotational and prismatic, to mechanisms that include “black box” inputs or transformers, and
to mechanisms in three dimensions. (Mechanisms that these methods do not handle are discussed
in Sections 5.2.)

16

3 Planning, Solving, Breaking, and Branching

3.1 The Planner

In order to keep our implementation as simple as possible, while still demonstrating the basic ideas,
we restrict the motion animation problem to the case where there is one degree of freedom in the
mechanism, one input parameter, and that parameter is the joint angle of a fixed pivot. (A fixed
pivot is a rotational joint between a link and the ground.)

The motion problem may be viewed either as the problem of finding the joint parameters or as
the problem of finding the link coordinate systems. Since the link coordinate systems — that is, the
link-to-world coordinate transformations — are what is needed for drawing the links on the screen,
we consider these transformations to be the output of executing a plan.

The planning algorithm, then, is as follows. We begin by taking the R-link graph for the
mechanism, marking the ground link as fixed, and marking all other links as unfixed. We will mark
each R-link fired as we output a step of the plan that will update that link’s link-to-world coordinate
transformation, or in other words, a step that will fix the link’s coordinate system relative to the
ground system. This also keeps track of the current contraction of the R-link graph. At any time,
the fixed R-links are exactly those that have been merged with the ground R-link. Unfixed R-links
have not been merged with anything. (Merges into the ground link are the only merges that this
data structure can represent. Because we are solving only a restricted motion problem, this is
sufficient.)

Each step of the plan is a function call; the function call is to be made each time the plan is
executed. The first step is a call to the routine for obtaining the input parameter. This routine
obtains the joint angle of the input pivot from the user’s mouse, and from this computes the
coordinate system of the pivoted link. Since this step will correctly update the coordinate system
of the pivoted link, we output this step, and mark the input link fixed.

We then examine the contracted R-link graph, looking for a subgraph that will match a base
case that we know how to solve. Since our next step is to solve the subgraph completely, it must
be a rigid subgraph. In fact, as will be explained in Section 3.2, the graph of each base case is
a triangle (a 3-cycle made up of three links and three joints). So we may restrict our search to
triangular subgraphs.

We may further restrict our search to subgraphs containing the ground node. This is because a
rigid subgraph that does not contain the ground node would be made up only of unfixed R-links,
and would therefore appear as a rigid subgraph in the uncontracted R-link graph. This would
contradict the definition of R-link.

In sum, as we search the contracted graph for a subgraph to match to a base case, we need
only look at triangular subgraphs that include the ground node. In the uncontracted graph, such
a subgraph appears as two unfixed R-links that are connected to each other, and that are each
connected to some fixed R-link.

We may label a triangular graph by the three joint types (revolute or prismatic) of its three
edges. A triangular subgraph matches a base case when the type of each joint of the subgraph
matches the type of the corresponding joint of the base case. If we find a subgraph that matches
a base case, we pass it to the base case solver, which returns the next step in the plan. This
step is a function that, when called, will solve the subgraph, using the geometry of its links and
the (already updated) coordinate transformations of the fixed links to update the link-to-world
coordinate transformations of the two unfixed R-links in the triangle. Having output this step, we
can now mark these two R-links as fixed. This is equivalent to contracting the triangular subgraph
into the ground node. (Since the triangle has zero degrees of freedom, this operation preserves the

17

input
B D F D F
H H H
AB ABC
ground ground
A C E C E E
ground

(a) (b) (c)

Figure 11: Solving a mechanism graph. (a) The uncontracted graph. (b) The contracted graph,
after B is fixed by the input step. (c) The contracted graph, after C and D are fixed by the next
step.

number of degrees of freedom in the contracted graph.)

We continue this process, at each stage identifying an application of a base case and using it to
produce one more step in the plan. If all goes well, contracting the input joint creates a triangle in
the graph, and each time we contract a triangle, a new triangle is created. This continues until all
R-links are marked fixed, or in other words, until the whole mechanism has been resolved against
the ground plane. At this point, the plan is complete; executing it will solve the mechanism. If
after some steps there is no triangle, or there is no triangle that matches a base case, then we are
stuck, and the plan is incomplete. These cases are analyzed in Section 5.2.

Figure 11 shows an example of this process. The uncontracted graph is shown in Figure 1la.
At first, only the ground node — node A — is fixed. The first step fixes the input link, whose node is
node B. Figure 11b shows the contracted graph at this stage. Nodes C and D now form a triangle
with ground. (This can be seen in the uncontracted graph as well, where they are connected to
each other, and they are each connected to some fixed link.) Assume we have a base case that
matches the triangle AB-C-D. Then the next step will fix nodes C and D. With A, B, C,and D
fixed, the contracted graph now looks like Figure 11c. Now nodes E and F form a triangle with
ground. Once E and F are fixed, then G and H form a triangle with ground. Fixing G and H
completes the solution of the mechanism.

We have described these techniques as if the base case mechanisms will have exactly one solution
for each set of input values. But in fact they will almost always have either zero or two solutions.
We term these situations breaking and branching, respectively, and discuss them in Sections 3.2.1.1
and 3.2.1.2.

Again, we have restricted the input to be a single, grounded, revolute joint only for simplicity.
With only minor extensions to the above algorithm, these restrictions may be dropped. The
extensions required are described in Section 5.2.1.

In the course of contracting the R-link graph, could we create an overconstrained subgraph? In
particular, might we need solvers for two-link, two- joint mechanisms? A simple induction argument
shows that the answer is no. Any overconstrained subgraph that could be present after a contraction
would have to correspond to an overconstrained subgraph that was present before the contraction.

18

3.2 Base Cases

This section describes the small mechanisms that we solve directly in closed form. From these
solutions, we build up plans for solving more complicated mechanisms.

Since we will solve these linkages completely, they must have zero degrees of freedom. A
rearrangement of Grubler’s formula shows that any mechanism with zero degrees of freedom must
satisfy

3-(links — 1) = 2- joints.

Aside from the trivial mechanism of one link and zero joints, the smallest such mechanisms have
three links and three joints. In order for them to have no overconstrained submechanisms, their
graphs must be triangles.

We name each base case according to the joint types on its three edges, using ‘R’ for revolute
joints (pins) and ‘P’ for prismatic joints (sliders). As stated in the previous section, one node of
the triangle is always the ground node; we list the joint types by starting at the ground node.
Considering symmetry, there are only six possible base case mechanisms: RRR, PRR, RPR, PPR,
PRP, and PPP. We implement only the first three of these, on the grounds that the cases with
more than one prismatic joint do not seem to arise very often. (Extra base cases may be added
to the system, as described in section 3.2.4.) Figure 12 shows mechanisms for the PRR and RPR
cases.

C

PRR RPR

Figure 12: PRR versus RPR. The dotted links are already fixed.

The ground node is special here not so much because it is ground, but because it is the one
node that may be the result of contractions, and may therefore be made up of several R-links. This
changes the set of computations that may be performed at plan time, as opposed to move time.
For instance, the distance between two points on the same R-link is constant throughout a motion,
whereas the distance between two points on different R-links may change as the mechanism moves,
even though both R-links are “fixed” by earlier steps of the plan. The former distance may be
computed at plan time, whereas the latter must be computed later, at move time.

Designing solvers is a straightforward matter, involving only simple geometry and some book-
keeping. With the planning problem solved, the largest issues that remain in the design of the
mechanism editor are what to do about breaking, which is when the geometric limits of a mech-
anism are exceeded, and branching, which is when there are two (or more) configurations of the

19

mechanism that satisfy the input conditions and joint constraints. We discuss these issues below
in the contexts of the individual solvers, where these situations are detected.

3.2.1 RRR

The prototypical situation for the RRR solver is shown in Figure 13. The summary is that, because
the lengths of all three sides of the triangle are known, the law of cosines may be used to solve for
the three angles. The details follow. The four-bar animation in Figure 5 uses the RRR solver.
The three joints are labeled A, B, and C, such that A and B are the joints connected to the
ground node. The R-link connecting joints A and C is labeled link-AC, and similarly for link-BC.

.............

ground coords

(2) (b)

Figure 13: Notation for the RRR solver. The dotted links are already fixed.

Each of these two R-links has its coordinate system; the goal is to find the transformations from
these systems to ground coordinates. The R-link geometries are constant, so that in particular we
know the positions of A and C in link-AC coordinates, and the positions of B and C in link-BC
coordinates. There is no R-link link-AB because joints A and B may be connected to different fixed
R-links, but in any case, the positions of joints A and B in ground coordinates are known at move
time (though not at plan time).

We focus first on solving for the position of R-link link-AC. Because the ground coordinates of
joint A are known, it suffices to compute the rotation of the link-AC system. We solve for the angle
that the link-AC x-axis forms with the ground frame x-axis, using the simple relation

[XAC = LAB + LA - LAC
where
(XAC = angle from ground x-axis to link-AC x-axis
LAB
LA angle from ray AB to ray AC
LAC = angle from link-AC x-axis to ray AC .

Of these, ZAC is constant and ZAB is known at move time. Angle /A is computed from the law of
cosines:

angle from ground x-axis to ray AB

AB? 4 AC? — BC?

cos LA = 5 AR AC

20

where

AB = distance from A to B
AC = distance from A to C
BC = distance from B to C.

Length AC is a constant easily computed in link-AC coordinates, BC is a constant easily computed
in link-BC coordinates, and AB is easily computed at move time in ground coordinates.
The equations for fixing the link-BC system are analogous:

(XBC =7+ LAB + /(B — (BC
AB? 4+ BC? — AC?

cosLB = = AB BC
where
(XBC = angle from ground x-axis to link-BC x-axis
7+ (AB = angle from ground x-axis to ray BA
(B = angle from ray BA to ray BC
(BC = angle from link-BC x-axis to ray BC .

3.2.1.1 Breaking

Since an arccosine function is-used by the solver, we must.ask when its argument will be out of
the [-1,1] range. Algebraically, this happens when the triangle inequality

AB + AC > BC

is violated. (This is for the LA computation.) Geometrically, this means that a triangle with sides
of the given lengths cannot be assembled. And physically, it means that the user has turned the
input crank past the limits of where the mechanism can reach. We say that the mechanism is
broken; an example is shown in Figure 5.

The mechanism editor implements a fairly simple policy regarding breakage. The joints con-
necting the fixed portion of the mechanism to the as yet unfixed portion are flagged as broken, and
the rest of the mechanism is not solved. That is, if some step of the plan finds that the geometry
of its submechanism cannot be solved, then the rest of the plan is not executed, until, perhaps, the
whole plan is executed again during the next move cycle. The unfixed portion remains stationary in
its previous configuration. All links are still displayed, and broken joints are displayed with bright
red lines indicating the violation of their constraints. If the user should move the input crank
back into the range within which the mechanism can be assembled, then the joints will become
unbroken, the red lines will vanish, and the rest of the mechanism will move again. But the user is
not required to do this. The user may even end the motion with the mechanism in a broken state,
and go on from there to edit the mechanism or to initiate other motions.

Several other possible policies are discussed in Section 3.2.5.

3.2.1.2 Branching
When the mechanism is not broken, the arccosine argument will normally be in the open

interval (—1,+41), in which case arccosine will have two possible values, positive and negative.
These correspond to the two possible ways of placing link-AC and link-BC with joints A and B fixed:

21

they may be placed either above AB or below it. This problem is often called branching, and the
alternative solutions of the mechanism are called branches, or modes of assembly [Sub 78].3

Which branch does the user want? Most often continuity is enough of a guide: if only one of
the two possible solutions is close to the previous position of the mechanism, then that value is
presumably preferable to one that would cause the animation to snap suddenly to a very different
configuration. So for example, if an angle’s previous value was +45°, and its possible next values
are +£50°, then +50° is the clear choice.

The trouble comes near the boundary. If the previous value is +4°, and the possible next values
are £2°, then it is not so clear which is desired. The canonical example is, again, the four-bar
mechanism shown in Figure 5. The right crank, used as an input, may be turned through full
revolutions without the mechanism breaking. Furthermore, the configurations of the left two bars
is unambiguous: the mode of assembly remains constant. But the left crank can be turned only
through a limited arc. If the user is to be able to put the right bar through a full revolution using
the left crank as input, it must be by moving the crank to the end of its arc, reversing direction,
and moving it back along the arc. Near the ends of the arc — that is, near the breaking points — the
mode of assembly of the right two bars is ambiguous. (Algebraically: near +1 and —1, arccosine is
0°.) In fact, the mode of assembly must change, if there are to be full revolutions.

Since the regions of ambiguous branching are adjacent to regions of breaking, the RRR solver
currently implements the policy of changing branches after breaks. That is, if the user turns the
left crank past the breaking point, and then back into the non-breaking zone, the right portion
of the mechanism will “flip over™ to-the other mode of assembly; if-the user-never.goes past the
breaking point, then the mechanism will never change modes. The physical rationalization for this
is that the device would have to go through the 0° point (where the bars are collinear) in order to
change modes, and that if the user wants to go all the way to 0°, he signals this intent by in fact
going somewhat past this point. Thus, to make full revolutions using the left crank, the user may
oscillate the crank, going slightly past the breaking point at each end on each oscillation.

In general, branching policy is determined for each base case individually, though in practice all
the solvers we discuss here use analogous policies. A couple of other possible policies are mentioned
in Section 3.2.6.

3.2.2 PRR

The prototypical situation for the PRR solver is shown in Figure 14a. The crank on the left is not
part of what is being solved; it is there to form an example of a complete mechanism that uses
the PRR solver. This mechanism shows the slider’s fixed link as being grounded, but of course in
general that link may move. In other words, it is fixed at move time, but not necessarily at plan
time.

The solver fixes the coordinate frames of two R-links. One goes between the fixed revolute joint
B and the unfixed revolute joint C. The other goes between joint C and the fixed prismatic joint
A. The prismatic joint constrains some particular line on that link to be collinear with a line of
known position. Joint C is thereby constrained to lie a constant distance AC away from this known
line (this distance, and its sign, being determined by the link geometry). The other link constrains
joint C to lie on the circle of constant radius BC centered on joint B. This places joint C at the

3The term “branching” presumably refers to the branches of the complex log function, and of functions (like
arccosine) that can be expressed in terms of log. Strictly speaking, there are infinitely many potential values for
arccosine, but these values represent only two distinct angles. In practical terms, since our ultimate use for these
angles is in rotation matrices, we do not actually need the arccosine so much as the sine of the arccosine; this has
only two possible values.

22

(2) (b)

Figure 14: (a) Notation for the PRR solver. The dotted links are already fixed. (b) B and C in
the slider coordinate system.

intersection of a line and a circle. This information is enough to compute the position of joint C,
which in turn suffices for computing the positions of the coordinate frame of the two links that it
joins.

The position of joint C is easiest to compute in a coordinate system whose x-axis lies along the
line of the slider joint. In this system,

c, = AC
C. = B.+/BC?—(B,-C,)?
where
C,,Cy = coordinates of joint C in the slider system
B,,B, = coordinates of joint B in the slider system
AC = distance from joint C to the line of slider joint A (constant)
BC = distance from joint C to joint B (constant).

The equation for C; is just the Pythagorean Theorem applied to the right triangle shown in Figure
14b.

3.2.2.1 Breaking
If joint B strays farther than AC + BC from the slider’s line, then the two links together will
not be able to reach the slider, and the mechanism will break. In this case (and this case only),

the argument for the square root in the formula above will be less than zero. When this happens,
joints A and B are flagged as broken, and the remainder of the plan is not executed.

3.2.2.2 Branching

When its argument is positive, the square root has two opposite values, corresponding to whether
joint C is to the right or the left of joint B. This is very similar to the RRR case, in that the regions

23

of ambiguous branching are adjacent to the regions of breaking. (They are separated by the two
points at which the square root argument is zero; here the line BC is perpendicular to the slider.)
The PRR solver is therefore built to implement the same branching policy as in the RRR case: it
switches branches only after the mechanism breaks (that is, just as it is brought out of a broken
state into an unbroken state). So by oscillating the crank in Figure 14, but somewhat exceeding
the limit of the mechanism on each oscillation, the user may easily shuttle the A-C link back and
forth, to either side of joint B.

3.2.3 RPR
In this case, neither side of the prismatic joint is yet fixed (Figure 15). Again, the two cranks are

. X

A®

(2) (b)
Figure 15: (a) Notation for the RPR solver. (b) Construct the line through B parallel to C.

there simply to show a possible complete mechanism, and will be, if not grounded, at least fixed
before the RPR solver is called.

Line C is constrained, by the link geometries, to be at a perpendicular distance AC from joint
A and at a perpendicular distance BC from joint B. AC and BC are constants. The distance AB is
known (though not constant). By constructing the line C’ through B parallel to C, we can form a
right triangle of hypotenuse AB and side AC + BC; see Figure 15. We then have the angle

AC + BC
AB

B = arcsin

which is the angle from ray AB to the direction perpendicular to the slider. From this, we can
compute the slider’s orientation in the world frame; from this, and the fixed point from the revolute
joint on each link, we can compute the links’ orientations and positions in the world frame.

The distances AC and BC are signed; choosing an arbitrary, consistent orientation for the slider
line C puts each of joints A and B consistently on either the left (+) or the right (—).

3.2.3.1 Breaking

24

The RPR mechanism cannot be assembled when joints A and B are too close together; specifi-
cally, the arcsine has no real value when

|AB| < |AC + BC|.

In the limiting case, the slider line is perpendicular to the line AB. The mechanism can be solved
with joints A and B arbitrarily far apart; the slider line approaches AB in this case. (Of course, a
more realistic device would have joint limits at which the slider stopped, or fell apart.)

3.2.3.2 Branching

The branching of the RPR assembly is again analogous to that of the RRR and PRR assemblies.
Drawing the triangle in Figure 15(b) with its AC + BC side below AB, rather than above it, shows
a second solution, with

Br=—b

where the angle 8 has value B; for the first solution, and 32 for the second. These correspond
to the two values of arcsine. In the limiting case, 81 and (3, equal 0°, so that the slider axis is
perpendicular to AB; this is also the limiting case for breaking.

We again use the policy of switching branches after breaking. The user may rock joint A closer
and farther from joint B; if A is moved close enough to B to break the assembly, then both branches
may be explored. ' C - :

3.2.4 Other Solvers

RRR, PRR, and RPR are the only three solvers currently implemented in the mechanism editor.
These base cases have proven sufficient for a good deal of experimentation. Of course, other labeled
triangles can be considered, solvers can be written for them, and mechanisms can be designed
whose motion requires these solvers. This is especially true if additional joint types are added to
the system, such as gears or pulleys.

Adding a base case to the mechanism editor is no more complicated than writing a solver for
it. Since the planning algorithm simply calls solvers based on the labeled triangles that it finds,
incorporating the new solver merely requires adding a case to one multi-case conditional statement.

3.2.5 Breaking Policy

In general, a given input joint can only be turned so far before the mechanism’s geometric con-
straints cannot be solved, and the mechanism breaks. How should the editor respond when an
input joint is turned past this limit? The goal is to provide the user with clear feedback as to
how far the mechanism can go and why it can go no farther. (Of course, we want to do this while
maintaining interactive speeds.) Our current policy does reasonably well, displaying each broken
joint in bright red.

A significant drawback of our current policy is that it does not show the actual limit configu-
ration of the mechanism. After the discrete motion step that crosses the limit, the broken portion
of the mechanism is left immobile in its last position before the break. (This is described above in
Section 3.2.1.1.) If the animation is reasonably smooth, then this position will be near the limiting
one. But how near is near? In the case of a broken four-bar, for instance, it is surprising how close
the two links can be to being straight without it being obvious that they cannot reach the input

25

lever. (Cf. Figure 5.) We have displayed the fact that the linkage is broken, but because we have
not displayed the limit position, the break is not visually convincing.

The current policy allows a mechanism to be moved from an unbroken state, through a series of
broken states, to a new unbroken state that could not have been reached from the original position
by any smooth path. This is good in that it allows more states to be explored. But it is potentially
confusing for the user.

This confusion, as well as the problem of not displaying limit positions, are exacerbated if the
motion is not smooth. The current implementation is quite slow (1-2 updates per second), and
it requires great discipline on the part of the user not to introduce large mouse motions between
updates. Of course, the worst case of this is during the all-too-frequent garbage collections. In any
case, large mouse motions may jerk the mechanism wildly about, making it hard for the user to
interpolate how the mechanism arrived at its new state. This is especially bad if the mechanism
breaks, or if it goes from one unbroken state to another, having passed over an intermediate broken
state.

Since our algorithms require so little computation, the mechanism editor could be implemented
to run at video rates. (This is discussed in Section 4.5.) With scarcely any lag time between moving
the mouse and seeing the effect on the mechanism, the user could more easily avoid discontinuous
motions. This would eliminate the confusion in most practical cases. Theoretically, the danger of
discontinuous animations would still exist, since mechanisms can be designed that amplify input
motions to an arbitrarily large extent.

For systems with slow update rates, or-sensitive mechanisms to animate, a limit could be
imposed on the amount of motion per update. When the user moved the mouse too quickly, the
mechanism would advance towards the new mouse position in steps. The size of each step might
be restricted by a limit on the motion of the input joint. A more sophisticated technique would set
a limit on the distance moved by any vertex in the mechanism during one step. Any motion that
moved a vertex too far would not be displayed, but instead smaller step sizes would be tried, until
a small enough motion was found. Restricting the step size has the undesirable effect of letting
the mouse appear to be detached from the mechanism, but this may be preferable to allowing an
animation to appear discontinuous.

We now consider four alternative policies for handling input motions that cause a mechanism
to break: limiting, searching, stretching, and approximation.

Limiting. The simplest possible policy is to limit the mechanism to unbroken positions. Any
motion step that would break the mechanism is rejected. The entire mechanism, including
the input link, remains stationary, until the mouse is moved back into a range that moves the
input joint without breaking anything. This policy has an elegant simplicity, but little else
to recommend it. It does not display the breaking point of the mechanism, and it does not
allow any control of the mechanism beyond the breaking point.

Searching. Instead of simply rejecting a motion that is out of range, we could search for the
breaking point. Under this policy, an input motion that would break the mechanism would
not be accepted, but instead a motion half as big would be tried. If this motion succeeded -
that is, nothing broke — then this half motion would be accepted and displayed, and a motion
three quarters the size of the original would be tried. In this way, a binary search is conducted
to locate the mechanism’s limit position. With only the unbroken states being displayed, the
user, having just made a large mouse motion, would see the mechanism ooze monotonically
into its limiting configuration. The search would quickly converge to within the tolerance of
the graphical display.

26

(2) (b)

Figure 16: Two possible variants of the stretch policy for breakage. (a) Break only the inner joint,
and minimize the distance. (b) Break the outer two joints, and minimize the sum of the squares
of the distances. In either case, as the input crank moves, the links look as though they are being
pulled by their broken joints.

Stretching. Another possibility would be to let the unsolvable joints break, as our current policy
does, but to move the links involved to their “best” broken position (according to some metric,
e.g., one that simulates rubber bands in the broken joints), and based on these positions to go
ahead and execute the rest of the plan. Figure 16 shows examples of two possible variations
on this stretch policy. These policies have the disadvantage of not displaying the limit position,
and they do involve displaying broken joints, which may complicate both the user’s life and
the programmer’s. But they would display the breaks in a more visually convincing manner
than our current policy does. A further advantage is that, no matter how the mouse was
moved, the whole mechanism would be animated. Even when a constraint was violated early
in the plan, the late portions of the plan would still be executed, and the user would be able
to manipulate the rest of the mechanism somewhat.

Approximation. If our current policy could sample the mouse position infinitely often, it would
leave the later portions of the mechanism (i.e., the links fixed by later steps in the plan) in
their limit positions, while still allowing the earlier portions to move beyond the limit point.
We could create this effect by using the searching policy to find the limit point, and then
letting the early portions go beyond this. Can we create a similar effect with less computation?
During the discrete motion that first breaks the mechanism, the base case solver has available
the coordinates of the vertices on the fixed links, in both their unbroken and their broken
positions. Unfortunately, the solver does not know the full trajectories of these vertices, so it
can only estimate where they would be in the limit position, just as the mechanism breaks.
A policy of linear approzimation would work well, but only for small motions.

Of these, the searching and stretching policies sound the best. But none of these policies is
completely satisfactory. The only one that reliably displays limit points is the searching policy, and
it does this by numerical methods. This is not in the spirit of closed-form solutions, and it is not
in the spirit of making editors that are more powerful because they better understand the object

27

being edited. It would be an important step forward to find an algorithm capable of computing
in closed form the exact ranges of an input joint parameter for which a mechanism can remain
unbroken.

Figure 17: The difficulties of computing joint limits a priori. The two bold links constrain the
motion of the whole mechanism.

Figure 17 is an example of the difficulties inherent in this problem. In the plan for solving this
animation, the final solver step is the one that fixes the two center links in the top row. If this final
solver is to succeed, an inequality constraint must be satisfied, namely that the distance between
the endpoints of the two links be no greater than the sum of the links’ lengths (a constant). (Other
types of solvers introduce similar inequality constraints, such as a constant limit on the distance
between a point and a line.) We would like to be able to propagate this constraint backwards
through the plan, eventually arriving at limits on the input joint. When the input joint was kept
within these limits, the final solver step would be guaranteed not to break. But it is not at all clear
how this back-propagation could be done. The two endpoints are fixed at two different times, by
separate solver steps within the plan. It does not seem that the distance constraint between the
two endpoints could be meaningful to a solver step that is responsible for fixing the position of only
one endpoint.

As a side issue, note that our branching policy depends on detecting that a submechanism has
gone from broken to unbroken; this approach may still be used with any of the breaking policies
we have described.

3.2.6 Branching Policy

There are several other policies that solvers could use that also respect continuity. One would
be to branch randomly, either when the mechanism breaks or whenever the mechanism is near a
branching point. This would tend to make the user feel powerless over the mechanism, which, unless
somehow pedagogically useful, is undesirable. Another approach would be to use a momentum term
that tries to maintain continuity of the direction of motion of the links. Our policy is equivalent
to one version of this. Overall, the currently implemented policy seems the easiest for the user to
understand and control; it seems best to adhere to the Principle of Least Astonishment mentioned
by Borning et al. [Borning 87]

28

Even so, branching is not easy to control in larger mechanisms. When there are N solvers that
each have two possible modes of assembly, there are 2% modes for the whole device. Our experience
has been that it is difficult to navigate in this space. To flip a particular submechanism over into
its other mode, the user must cause that submechanism to break — and in order to do that, the
user must first avoid breaking anything that comes earlier in the plan. Our experience has been
that, once a few things have been flipped over, it can take some time to find a path back to the
original mode. The airplane engine in Figure 22 is an example of this.

Better would be to give the user a way to interactively push the system into the desired mode. In
other words, to obtain branching information, we should provide an extra channel of communication
between the user and the program, rather than using an automatic policy. We have not yet studied
the question of how to provide this channel so that it is pleasant to use. One possibility would be
to let the user double-click on a joint in order to switch it to its other branch.

29

4 Implementation

The mechanism editor has been implemented in Common Lisp, and runs on a color graphics
workstation under the X window system. Specifically, we use a Hewlett-Packard 9000/350 SRX
computer, running HP Common Lisp II, which.is based on Lucid’s Common Lisp. HP’s Starbase
graphics library is used for graphics output, while the X windows library is used to handle windows,
menus, and mouse and keyboard events.

In this section, we describe some highlights of the structure of the mechanism editor program.
We then discuss our use of Lisp versus other language alternatives, including object-oriented pro-
gramming.

4.1 User Interface Control Structure

The editor’s user interface code is responsible for receiving in-coming events from the window system
and for interpreting these events, calling functional routines as appropriate. A user interface is often
thought of as a finite state machine. In each state (also called a mode), there is a mapping of events,
such as a click of the right mouse button, to functionality, such as deleting a link or changing the
interface state.

An important decision in the design of a user interface is the choice of a call tree for the control
structure. One possibility is to have a top-level routine that gets events, examines them, and calls
down to the other routines accordingly. The inverse possibility is to get events at the bottom of
the call tree. In this case, there are various points within subroutinies and subsubroutines where an
event is waited for; after each of these points, the program branches based on the event received.
The state of the user interface is determined by what part of the program is executing. In other
words, the state is stored in the program counter. In the first case, there is only one point in the
program at which events are read; therefore the user interface state must be stored in variables.

The mechanism editor uses a hybrid of these techniques. The resulting state machine is much
like an augmented transition diagram. A table of handlers, subroutines that each handle a specific
event type, is maintained. Subroutines entered in this table handle events that do not affect the
state of the user interface, such as window expose or resize events. The main execution thread
changes the interface state by changing its program counter, such as by entering the subroutine
ui-fixed-pivot when the user selects the “create fixed pivot” command from a menu. The main
thread calls the routine next-unhandled-event to read the next user action. This routine pulls
events off of the system’s event queue and looks them up in the handlers table. If the event has a
handler subroutine, next-unhandled-event calls this routine, and then goes on to the next event.
Once it finds an event that does not have a handler, it returns this event to the caller. In this way,
for example, while the main thread waits for the user to enter a keyboard command or make a
menu selection, window resize events are still properly handled.

The main execution thread can modify the handlers table, so that different sets of handlers are
active in different states. This is primarily used to implement mouse tracking, that is, continuous
graphical feedback as the mouse is being moved. The most complex mouse tracking takes place
while the user is positioning a vertex in the polygon of a new link. Whenever the mouse moves, we
redraw the whole link using the new mouse position. We also draw (potential) new joints, whenever
the mouse position is near a free vertex in an existing link; these potential joints are created and
destroyed as the mouse moves in and out of range of the free vertex. The routine that does all
this must be called repeatedly as the mouse moves. To achieve this, we place the routine in the
handlers table, as the handler for mouse motion events. It remains in the table only until the

30

tracking operation is complete (which is usually until the next mouse click). The handler must
keep track of its state in variables, since a separate call is made to it for each small mouse motion.

Once this control structure was selected, and once it was understood exactly when state could
be stored in the program counter and when it had to be stored in variables, the user interface
became easy to implement. The control structure cleanly separates the state-independent code
from the state-dependent code. It does have the limitation of providing only one program counter,
namely that of the main execution thread. It would be an improvement if handlers, such as the
mouse tracking handler described above, could keep state in a program counter as well.

4.2 Implementation Layers

We now list the layers of the implementation, from low-level to high-level. This is primarily for the
benefit of anyone who wishes to read the source code.

o At a low level, there are the X Windows and Starbase graphics packages. These packages are
provided as libraries of routines callable from the C programming language.

e For these routines to be accessible from Lisp, they must be imported via HP Common Lisp’s
foreign function interface. This layer required some Lisp programming and some C program-
ming. As an interface to the X Windows routines, we used U. C. Berkeley’s XCL package,
after porting it to the HP environment.

The remaining levels are implemented purely in Lisp.

e This layer draws on the color graphics screen. Graphics output is accomplished by calls to
(the Lisp interfaces to) the Starbase routines for drawing lines, circular arcs, etc. Drawable
objects — links, joints, and a few other things — are declared as subtypes of the type drobj. The
variable *display-1list* contains a list of all objects on the screen. The routine gwin-redraw
redraws the graphics window (gwin) by first clearing the screen and then calling draw-drobj
with each item in *display-list*. There is also a routine gwin-resize for changing the
size, location, or world-to-screen coordinate transformation of the graphics window.

e This layer puts an X window over the graphics window. Calling the Starbase package directly
is the only way to make efficient use of the graphics hardware in our HP workstation. On the
other hand, X Windows, while unreliable, inelegant, and obscenely difficult to configure, does
permit the mechanism editor to run within a popular development environment. For this
reason, we decided to use the two packages in combination. Our X Windows implementation
uses only the overlay planes, where it has a special “see-through” color that shows the full-
color graphics beneath. We fill the interior of the X window with this transparent color.
We can then see the Starbase graphics underneath, while still being able to see the menus,
window titles, etc., drawn into the overlay planes by X Windows. We must be careful to
draw our graphics to coincide exactly with the inside of the X window; coordinating dynamic
window moves and resizes is tricky but possible.

e The next layer handles window system input. It conmsists of the next-unhandled-event
routine described in the previous section, plus some handlers, handler tables, and auxiliary
routines.

e Mouse tracking is implemented as a layer above next-unhandled-event. The main rou-
tine is next-event-track. This routine creates a handler for mouse motions, then calls

31

next-unhandled-event. The handler is created from tworoutines passed tonext-event-track
as arguments, track-on and track-off. Track-on is passed each new mouse position; its
function is to draw any tracking information on the screen. Track-off ’s function is to undraw
this information, so that the screen does not become a cluttered jumble as track-on is called
repeatedly.

Next-event-track returns the last value returned by track-on. This value is normally
related to picking. For instance, during a “delete link” operation, the track-on routine
might return a pointer to the link that the mouse is currently closest to. The final value of
this pointer is returned by next-event-track, and the link is deleted.

e Finally, there is the main execution thread. Its top level is ui-main-loop, which, based on
menu selection events, calls the routines for creating a link, fixing a pivot, animating, writing
a file, etc.

4.3 Implementation of Plan Time Versus Move Time

A plan is a list of executable functions - closures, in Lisp terminology — that, when executed,
solve the mechanism. Each closure in the plan is the result of calling a solver on a subgraph of
the mechanism. The solver is passed three joints, A, B, and C, such that A and B each have
fixed links on one side; it returns a closure that, when executed, will compute the positions and
orientations of the R-links AC and BC. A Lisp closure contains not only a piece of code, but also
the environment in which the code should be executed; in particular, this includes the values of
any local variables whose scope includes the code. This provides us with an especially simple and
convenient mechanism for separating the plan-time calculations from the move-time calculations.
We compute as much as we can at the time that the solver is called (plan time). We return a
closure that does the rest (at move time). The results of the plan time computations are left in
local variables whose scope includes the code we return. Thus, the code has access to these values
when it is executed at move time. The Lisp closure mechanism is what makes this work even if
the same solver is called several times: each closure returned has its own copy of the solver’s local
variables. The code ends up looking something like that in Figure 18.4

Once the plan is complete, next-event-track (described in the previous section) is called with
the list of closures as part of its track-on argument. This causes the closures to be executed
repeatedly as the mouse moves.

4.4 The Input Step Solver

The user controls the animation by controlling a grounded revolute joint with the mouse. Since the
graph edge corresponding to this joint is the first to be contracted during planning, the first step of
the plan must fix the coordinate frame of the R-link attached to this joint. The closure that does
this is returned by a special solver, control-gnded-rjoynt. This closure implements the transfer
function from mouse motion to joint rotation, which we call the control strategy.

4The author apologizes for any inconvenience caused by his somewhat fanciful spellings in the source code. Vertices
of links are of type poynt, which is separate from, though derived from, the type point. (This is because, at first, it
was felt that these vertices might have extra properties or values attached to them, in addition to simple coordinates.
This proved not to be the case, and a poynt is, in practice, just a point.) The word lynk is used to mean “link”
in the mechanical engineering sense, to distinguish this from “link” in the computer programming sense. The word
joynt is used for consystemcy.

Also, what are herein called contractions are termed “collaptions” in the source code.

32

(defun solve-rrr (ja jb jc)
:: JA JB JC are the three joints in the 3-cycle being solved.
(let* (;; PLAN-TIME COMPUTATIONS:
;; Vector from JA to JC, in RLYNK-AC coords:
(vac (point-diff (rjoynt-poynt jc jc-rlynk-ac)
(rjoynt-poynt ja ja-rlynk-ac)))
(lac (point-length vac))
R
(1abels ((t-on ()
;; MOVE-TIME COMPUTATIONS:
;; start with: Vector from JA to JB, in world coords.

(set-point-diff vab jb-world ja-world)
(letx ((lab (point-length vab))
;; Solve the triangle (law of cosines):
(cos-a (/ (+ (- (* lac lac) (* 1lbc 1bc))
(* lab lab))
(* (* 2.0 lac)

lab)))
ced)
;; Based on these values, fix RLYNK-AC and RLYNK-BC:
(set-xform (rlynk-to-world rlynk-ac) ...)

(set-xform (rlynk-to-world rlynk-bc) ...))))

;; The following is also done at plan time:
(setf (rlynk-fixed-p rlynk-ac) t)

(setf (rlynk-fixed-p rlynk-bc) t)

;; Return the T-ON closure defined above:
(1ist #’t-on))))

Figure 18: The code for a solver.

33

Our control strategy, described briefly in Section 1.3.2, is simple. We choose an x-axis on the
ungrounded link, and always turn the link so that this x-axis points from the joint towards the
mouse. This rotates the link smoothly while the mouse is far away, but becomes increasingly
unstable as the mouse approaches the joint. To avoid the worst of this, we do not move the joint
at all unless the mouse is at least a certain distance away from the joint. Another flaw in this
control strategy is that the x-axis we choose may not be the one that the user would have guessed.
Our heuristic is to use the direction described by the first two points that the user entered while
drawing the link. This is easy, and it does the right thing for two-vertex links — half the time,
at least. Certainly, better control strategies could be found. Even more interesting would be to
investigate control strategies for controlling two (or more!) joints at once, with a single mouse.

4.5 Programming Languages

The project of implementing the mechanism editor made us acutely aware of the some of the trade-
offs among programming languages. At the start of the project, we needed to choose from among the
programming languages — more precisely, from among the program development systems — available
to us. The C language had the advantages of efficiency and a stable development environment,
including source-level debugging tools. We also considered C++ for its additional expressiveness,
though its development environment was still immature. Ultimately, we chose Lisp, because it
seemed the language best matched to a program that would dynamically build and execute code.
It was felt that this advantage would be worth the increased costs in processing time and memory
usage.

We often found Lisp’s functional programming paradigm to be both elegant and practical. As
explained above (Section 4.3), Lisp’s notion of closures provides a clean implementation for the gen-
eration of solver steps. We make frequent use of functions as arguments (e.g. to next-event-track)
and as elements in tables (e.g. the event handlers table); the ability to define new functions locally
is handy in these situations. Even ordinary procedural code benefits; for example, the clause “if all
the R-links in the list of R-links are fixed” can be written

(if (every #’rlynk-fixed-p *rlynks*) ...).

It is difficult to express the same idea so neatly and orthogonally in C.

On the other hand, several important parts of the program were more difficult to write, and to
read, in Lisp than they would have been in C. In particular, arithmetic expressions in Lisp look more
like a jumble of parentheses than like arithmetic, making errors harder to spot. There were also
the difficulties of writing foreign function interfaces (discussed in Section 4.2) and of dynamically
loading the foreign packages into the Lisp interpreter’s memory image; these procedures often failed
mysteriously.

But the biggest problem with Lisp is its appalling performance on hardware not specifically
designed to support it. Our program produces painfully slow animations (1-2 updates per second).
In addition, there is garbage collection (and garbage production, which is also expensive). While
animating, it is not uncommon to have to wait every twenty updates or so for several seconds
of garbage collection. Owur algorithms perform very little computation; using a language system
capable of efficient implementations, we would expect them to run at video rates (perhaps 30-60
updates per second). In a language that allowed explicit freeing of memory structures, garbage
collection could be avoided altogether.

In retrospect, while it was very helpful to think of the program in terms of Lisp, the use of
Lisp for the actual implementation appears to have been a mistake. Many aspects of development

34

would have been facilitated by using C instead, while only a few sections of code would have been
noticeably encumbered.

One such section is the generation of solver steps; this portion of the algorithm was one of the
major motivations for using Lisp in the first place. Section 4.3 shows the implementation of this
using closures; closures effectively save the values of local variables for future use. The same effect
can be achieved in C by storing the local variables into the fields of a structure, and passing this
structure to the plan step when it is executed. This does have the unfortunate effect of separating
the code that sets the local variables (plan time) from the code that uses these values (move time).
But the program is still wieldly.

When this code is couched in terms of C++, the structure becomes an object, and the plan step
itself becomes a method (probably implemented as a virtual function). The code is still separated,
as for C, but the notation is more concise. C++ also does quite well with the “if every R-link is
fixed” example mentioned above. Assuming that every is a member function of the list class, we
can write:

if (Rlynks.every(rlynk:fixedp))

If both every and rlynk:fixed.p are implemented as in-line functions, the code will be quite
efficient.

Our conclusion is this moral: Think in Lisp, write in C++.

The moral presumes that there is a fully developed implementation of C++ at hand; if all that
is available is a translator from C++ to C, it is probably not worth it. -In-particular, we do not
feel that use of an object-oriented language system is prerequisite to producing a well-designed
program. We resisted the temptation to use an object-oriented programming package, such as the
Portable Common Loops implementation of the Common Lisp Object System (CLOS). We were
thus able to avoid the expenses (in time, memory, and administrative effort) of adding on yet
another large software package. But we used an object-oriented style at times, declaring structure
types and subtypes, and naming our routines appropriately. The most extreme example is the
drawing routines, draw-1ynk, draw-rjoynt, draw-pjoynt, etc., where lynk, rjoynt, and pjoynt
are among the subtypes of the “drawable object” structure type. We believe we were able to reap
most of the structural and extensibility benefits of the object-oriented approach, without actually
using an object-oriented language.

35

5 Results

In this section, we discuss some examples of mechanisms that the mechanism editor can animate,
and some classes of mechanisms that the program cannot animate successfully.

The mechanism editor can compute and display the motion of any planar mechanism of polyg-
onal links, revolute joints, and prismatic joints that meets the following criteria:

e There is one control parameter for the animation, and that parameter is the joint angle of a
fixed pivot.

e The mechanism has one degree of freedom. (Rigid submechanisms are allowed, and properly
detected.)

o The R-link graph of the mechanism may be reduced toa single node by a series of contractions,
the first of which contracts only the edge representing the input pivot, and the remainder of
which each contract a triangular subgraph. This criterion may also be stated in the reverse
direction: the mechanism’s R-link graph may be constructed by starting with the two-node
graph of its input pivot (and associated R-links), and adding twonodes in each step, with one
joint between the two nodes and one joint from each new node to an already existing node.®

e The geometry of the mechanism is generic.

In the above characterization, only the last criterion is-geometric, while the first three.are strictly
topological. Below, we will discuss in turn the prospect of relaxing each of these restrictions. But
first, we show some examples of mechanisms that meet all the criteria.

5.1 Examples

Figure 19: The crab moves sideways.

The Crab, Figure 19, has six links (including ground) and seven joints. Either “foot” may be
pivoted, causing the “body” to slide back and forth horizontally.

5There is also the restriction resulting from the fact that the solvers for base cases containing two or more prismatic
joints have not been implemented. But this is incidental.

36

Figure 20: The wine rack.

The Wine Rack is shown in Figure 20. Cranking the upper left pivot causes it to extend and
contract (though not perfectly horizontally). The plan for this motion is a series of RRR steps that
solves the wine rack from left to right. In the next section, we show a variant of the wine rack that
cannot be solved by our algorithms.

Figure 21: The radial four-piston combustion engine.

The Airplane Engine is a radial arrangement of four pistons, each sliding against a grounded
“cylinder.” All four pistons are connected to a single link in the center, which may be pivoted
against ground to drive the pistons in and out.

If the piston rods are long enough, the mechanism should never break. But if not, pistons
may individually break and then flip over into other modes of assembly. Even if the rods are long
enough, sudden large motions of the driving link may cause a new mode to appear, since, in the
presence of large motions, the new mode may momentarily appear more continuous than the old
mode. A little of this puts the engine in an unnatural state (Figure 22). There are many more
bad states than good ones, and once a bad one is achieved, finding a path back to a good one can

37

Figure 22: The same engine, a few minutes later.

be difficult. This sort of behavior may be avoided by cautious and continuous mouse usage, plus
proper engine design.

5.2 Counterexamples

We now discuss mechanism animations that our editor does not know how to solve. These are
animations that violate one of the four criteria stated above.

When the geometric criterion of genericity is violated, the editor does not notice. It simply
treats a non-generic mechanism as if it had had been perturbed slightly to become the nearby
generic mechanism. This produces consistent results, and is only in error when the non-generic
mechanism has fewer degrees of freedom than the generic one would have had.

When a topological criterion is violated, one of two things happens. Either there is no way to
ask the editor to perform the desired animation - for instance, if the animation has two separate
control parameters — or else the planning phase fails to construct a plan that completely solves the
mechanism. In the latter case, the planner returns the partial plan, one that fixes some links but
not others. This plan will cause motion that violates mechanism constraints only if there are joints
between links that are fixed by the plan and links that are not. The mechanism editor counts up
the number of these joints, prints a warning message in its text window, and marks these joints as
broken. So if there is no warning message, then the user knows that the plan will work, and the
mechanism will animate. Otherwise, the user will see how much of the mechanism the editor was
able to solve; the rest will be left stationary, connected to the moving part by broken joints.

We now consider each of the four criteria in turn.

5.2.1 Input Parameters

The restriction that the input parameter be a revolute joint, rather than a prismatic one, is trivial.
The prismatic case can be handled by code entirely similar to that used in the revolute case
(including a control solver analogous to control-gnded-rjoynt; see Section 4.3).

The restriction that the input joint be grounded is not as trivial, but is still quite easy to relax.
Suppose neither side of the input joint is grounded. If we pick one side and temporarily pretend
that it is ground, then we can solve the mechanism. Afterwards, we transform our answers into

38

the true ground frame by multiplying them by the inverse of the transformation we found for the
ground R-link. (The only complication arises if our planning algorithm gets stuck before it fixes
the ground R-link. Then we don’t know how to transform our answers back to world coordinates.
One reasonable answer is to transform everything such that our temporary ground link stays still
on the screen.) This extension, plus some additional user interface code to make use of it, can
handle ungrounded input joints.

How might we solve animations that are controlled by more than one input parameter? Assum-
ing that there are exactly as many input parameters as degrees of freedom in the total mechanism,
the fundamental planning scheme can remain the same: we contract the graph edges that corre-
spond to input joints, and turn the resulting graph over to the planner, to be contracted a triangle
at a time. This works. The complication is that, at times, the planner must keep track of several
contractions, each independently contracting some portion of the mechanism graph. When two
contracted regions are contracted together, their coordinate systems may be resolved against each
other. Eventually, all regions are resolved against ground, and the results may be displayed.

Of course, it is necessary to check that the input parameters that the user has chosen are
independent. Otherwise, fixing them will overconstrain the mechanism. This condition is easy to
detect in the mechanism graph.

We have implemented one case of multiple input parameters: the user can select a vertex of a
link, and then drive the mechanism by moving this vertex in two dimensions (the vertex follows
the mouse). The link is free to turn around the controlled vertex, as if it were connected to the
mouse by a revolute joint. We found this to be a very pleasant and intuitive means of controlling
an animation.

Our implementation of this differs from the approach described above in that the mouse motion
is not converted to joint parameters; indeed, there are no input joints. It would have been possible
to build the plan by temporarily adding some imaginary joints and links to the mechanism, and
letting the mouse control these joints. For instance, the controlled vertex could be pivoted to one
imaginary link, which could slide horizontally against a second link, which could slide vertically
against ground. The positions of the horizontal and vertical sliders would be computed from the x
and y mouse coordinates, as part of the input step. This would fix the coordinate systems of the
imaginary links, and in the contracted graph the controlled vertex would be connected to ground
by a revolute joint.

We use a short cut. We temporarily add a revolute joint between the controlled vertex and
ground, and we use the mouse position to vary the coordinates of the grounded side of that joint.
The mouse does not (directly) control any joints, and the input step does not contract any edges of
the graph. (Adding the revolute joint already reduces the number of degrees of freedom by two.)
It is as though a fixed pivot were added to the mechanism, but at each time step, the fixed pivot
is moved, and the mechanism is re-solved. Thus, rather than build imaginary extensions to the
mechanism’s graph and then contract these extensions into ground as part of the input step, we
work with a “pre-contracted” graph, in which the controlled side of the pivot is already part of the
ground frame.

5.2.2 TUnderconstraint

We now consider increasing the number of degrees of freedom of the mechanism, but without
increasing the number of control parameters. It is natural to build such underconstrained mecha-
nisms when using the editor, and it is frustrating to have them not move, not because there is no
consistent motion for them, but because there are too many possible consistent motions. Figure 23

39

shows three of the simplest cases. The first consists of two separate mechanisms (only one of which

Figure 23: Underconstrained mechanisms.

is being animated); the second is an open two-link chain; and the third is a closed five-bar chain.

Given any underconstrained animation to solve, the planner will solve as much of the mechanism
as becomes rigid when the control parameter is fixed.® The graph that is left after these contractions
has no rigid submechanisms, so the current planner stops here. But the graph does have degrees of
freedom. To continue solving the graph, the planner could fix the joint parameters of any remaining
edge.” Call this edge a free edge. “This would eliminate one degree of freedom, and create some
(possibly trivial) rigid submechanism. By solving the now-rigid portions, and continuing in this
way for each remaining degree of freedom, the planner could solve the entire underconstrained
mechanism.

The solver step that fixes a free edge must, at run time, choose a joint value. Because it is a
free edge, this choice is somewhat arbitrary. Here are some possible policies for choosing the value.

Frictive joints. Keep the old joint value.
Frictive links. Try to move the joint’s links as little as possible.
Jiggle. Add a small random perturbation to the old joint value.

This last policy would cause the free portions of a mechanism to jiggle and wander about during
an animation. This might be disconcerting, but it might help in making clear to the user where
the extra degrees of freedom are. The first two policies would give reasonable results on each of
the examples in Figure 23, though the first one might make linkages too stiff, and serve to hide the
extra degrees of freedom. But the trouble with any of these policies is that a joint value chosen by
one step of the plan may cause things to break later in the plan; as discussed in Section 3.2.1.1,
there doesn’t seem to be any way to predict this in advance. These issues deserve further thought
and experimentation.

Before the geometric decision of what joint value to choose, there is the topological decision of
which edge to fix. The simplest thing is to choose an edge which connects a solved portion of the
graph with an unsolved portion; otherwise a new, independent contraction will be created when
the edge is contracted. In the following section, we describe mechanisms that are rigid and yet

®Barring the occurrence of the uncontractable mechanisms, described in the next section.
"This assumes that the graph is connected, which it is, unless there are portions of the mechanism that are entirely
unconnected to ground.

40

ground ground, A

(a) (b)

Figure 24: (a) Graph of the six-bar linkage from Figure 6. The dotted edge corresponds to the
upper fixed pivot. (b) The same graph after the upper pivot’s edge has been contracted. This
graph contains no triangles. It is therefore uncontractable.

cannot be solved by the planner; this suggests choosing an edge based on what percentage of the
rest of the graph will be solvable once that edge is fixed.

5.2.3 Closed Form Solutions

We come now to the most fundamental restriction of our technique, namely, that after the input
joints’ edges are contracted, the mechanism’s graph must be reducable to a point by the succes-
sive contraction of triangular subgraphs. Let us call the graphs and mechanisms that can be so
contracted contractable.® For these mechanisms, we have solutions in closed form. But there are
uncontractable mechanisms. There are even simple examples of mechanisms that do not appear
to have closed-form solutions at all. For example, consider the six-bar linkage in Figure 6. If the
control joint is either of the two lower pivots, the graph is contractable, and we have a closed form
solution. But trying to solve for the motion as a function of the angle of the upper pivot results
in an unpleasant non-linear system in two variables. This system has no known solution in closed
form.? (Visually speaking, we can’t pull the rabbit by its ear in closed form.) The graph for this
case is shown in Figure 24.

The technique we have presented is thus incomplete: it cannot successfully animate all mech-
anisms (not even all those with the right number of degrees of freedom). Exactly how incomplete
is an important question, one to which we do not yet have the full answer. We can offer two
pieces of evidence, however. The first is anecdotal: while our system was being used, nearly every
one-degree-of-freedom mechanism that users built was contractable. (Admittedly, these users were
computer scientists, not mechanical engineers.) The second and less encouraging piece of evidence
is mathematical: there is an infinite number of distinct mechanisms that are uncontractable. Fig-
ure 25a shows the construction of an infinite family of such mechanisms. Each graph is a row of
n squares, plus an input edge that is attached to each end of the row. Assume that the input
edge has been contracted. Then the total graph has 2n + 3 nodes and 3n + 3 edges, yielding
3(2n+ 3 — 1) — 2(3n + 3) = 0 degrees of freedom, yet no proper subgraph has less than one degree

8We have left the term a little bit ambiguous, since it may refer either to a graph (or mechanism) after the input
joints have been fixed, or to a graph (or mechanism) whose input joints have been chosen but not yet fixed.

°C. W. Radcliffe, personal communication, September 1988. We are not aware of any proof that no such solution
exists.

41

(2) (b)

Figure 25: An infinite family of uncontractable mechanisms. (a) The graphs. The dotted edge
represents the controlled joint. (b) The mechanism for n = 2.

of freedom. Therefore, these mechanisms cannot be solved by breaking them down into triangles,
or indeed any smaller pieces — any solver than can solve one of these mechanisms must solve it all
at once. A mechanism that instantiates one of these graphs is shown in Figure 25b; it is identical
to the Wine Rack, save that its fixed pivot is on the side opposite from its handle.

Could the mechanism editor be extended to handle all planar mechanisms, while still maintain-
ing our inductive approach? Perhaps new “base cases” could be implemented to solve each of the
uncontractable graphs. The observation that there are infinitely many such graphs is discouraging
but not unanswerable; special solvers could handle whole families, and besides, in practical terms
we are only interested in handling mechanisms up to some finite size. A valuable next step for
research would be to characterize the uncontractable graphs or, more fundamentally, the set of
rigid graphs containing no rigid subgraphs.

Of course, the simplest approach would be to fall back on a relaxation technique, or other
numerical method, to solve these cases. The planner would formulate closed-form solutions for as
much of the graph as possible, recognize the remaining portions of the graph as uncontractable,
and then create a numerical solver step for this remainder. Borning’s ThingLab uses this approach,
and we discuss it further in Section 6.3. For the example in Figure 25b, there is a solution that is
an interesting combination of closed-form and numerical methods. The length L may be computed
in closed form from the joint angle at A. The inverse of this closed formula is enough to solve
the mechanism, since the position of the input crank at B determines what value of L is required.
Numerically inverting the closed formula is more efficient than using a relaxation technique on
the entire mechanism. To further speed up the computation, values of the formula could be pre-
computed into a lookup table at plan time.

5.2.4 Genericity Again

The mechanism in Figure 26 gives us a fairly pathological example of non-generic behavior. As
the slider slides, the positions of the all the other links may be determined from the position of
the slider; the mechanism exhibits one degree of freedom. But the slider may be moved so that its
pivots coincide with the fixed pivots. In this configuration, each “hinge” may rotate independently
about its coinciding pivots, giving the mechanism two degrees of freedom. Not only can the number
of degrees of freedom not be computed from the mechanism’s graph, it is not even constant!

(a) (b)

Figure 26: (a) A very non-generic mechanism. {Lengths which appear to be equal are exactly
equal; lines which appear to be horizontal are exactly horizontal.) (b) The topology of its reachable
configurations. The horizontal axis represents the slider position. When the slider is off-center,
there are four possible states, given by the two branches of each of the two fixed pivots. When the
slider is centered, the two fixed pivots may have any angle, yielding a two-dimensional region of
possible configurations.) '

Correctly animating non-generic mechanisms would require the detection of dependent con-
straints. The above example shows that these can arise dynamically.

Outlawing generic mechanisms saves us a lot of trouble. How much does this limitation impact
the usefulness of the editor? Here again, the nature of our quick-sketch, direct-manipulation user
interface comes to our aid in avoiding unpleasant special cases. It is very difficult (though not
impossible) for a user to enter a non-generic mechanism, since this usually requires creating parallel
lines or other perfectly aligned constructions. Nonetheless, this will often be the user’s intent.
Mathematically, genericity rules out only a measure zero subset of the universe of mechanisms.
But this subset has measure much greater than zero in the user’s mind. For instance, the three-
legged table from Section 2.4.3 undoubtedly has structural properties preferable to those of any
two-legged version.

For better or worse, the mechanism editor does not capture structural properties. It models
only abstract mechanisms.

43

6 Past Work

Our mechanism editor is largely a combination of ideas from Suh and Radcliffe’s LINKPAC and
Borning’s ThingLab; ThingLab is described by its author as a combination of ideas from Suther-
land’s Sketchpad and the object-oriented language Smalltalk. In the following sections, we discuss
LINKPAC, Sketchpad, and ThingLab, plus more recent work done by Todd and Cherry. We at-
tempt to analyze each system’s capabilities for mechanism animation, and to discover what they
do and do not have in common, both with each other and with our mechanism editor.

We also discuss the relative merits of physically-based modeling, a competing and (at least
within the world of computer graphics) more popular approach to this sort of animation.

6.1 LINKPAC

In their undergraduate text [Suh 78], Suh and Radcliffe discuss, and present full listings of, a FOR-
TRAN package for kinematic analysis in closed form. The package, LINKPAC, contains routines to
solve for the positions, velocities, and accelerations of mechanisms built up from three basic build-
ing blocks, shown in Figure 27: the two-link dyad, the oscillating slider, and the rotating guide.
Fach of these routines takes some vertices as input, together with some geometric parameters, and

N3
DYAD OSC GUIDE
(RRR) (RPR) (PRR)
Inputs: N1, N2, ry, rz, mode Inputs: N1, N2, e, r3 Inputs: N1, N2, a, r;, mode
Outputs: N3 Outputs: N3, rg Outputs: N3, r3

Figure 27: LINKPAC’s basic mechanisms.

produces one or more vertices as output. The user defines a mechanism with a list of calls to these
routines, plus some other routines for describing rigid links. The list is ordered such that each
vertex appears as output before it is used as input. Thus, the list both defines the mechanism and
specifies how to solve its kinematics.

LINKPAC was a major inspiration for our mechanism editor’s closed form solutions, and the two
programs have many of the same strengths and weaknesses. Our solvers correspond exactly with
their basic mechanisms: the dyad with RRR, the oscillating slider with RPR, and the rotating
guide with PRR. A philosophical advantage of our mechanism editor is that, by concentrating on
mechanism graphs, and by storing the shape of each rigid link in a local coordinate frame, we
separate geometry from topology. More important are the practical advantages of the graphical
interface and the automatic planner.

44

The mechanism editor uses interactive graphics and direct manipulation, and supports rapid,
imprecise sketching of mechanisms. LINKPAC programs are batch mode and text based (though
there is some work underway to provide more graphics). This is mostly because LINKPAC was
written in 1978 (or earlier); was written within the FORTRAN culture, which discourages both
interaction and flexible programming styles; and was written for, and is still used within, the
constraints of undergraduate teaching resources. But it is also because mechanical engineers are
interested in being able to use precise numerical measurements as inputs, and to obtain them as
outputs, whereas we have exclusively emphasized rough sketching.

The other obvious distinction between the two programs is that our mechanism editor includes
an automatic planner that computes closed-form solutions given only the mechanism type, while
LINKPAC users express their mechanisms as solutions made up from the available solvers. The
disadvantage for us is that the user can now express uncontractable mechanisms (cf. Section 5.2.3),
but the advantage is that the user need not work out solutions while working out a design. The
mechanism editor allows a designer to think in units other than the base cases for closed-form
solutions.

In this sense, the mechanism editor tries to provide a “high level language” for mechanisms.
Making the computer do more work allows the user to express the input at a higher level of
abstraction. For instance, two mechanisms that differ only in the choice of input joint must be
expressed with two possibly quite different “programs” for LINKPAC, but may be expressed very
similarly for the mechanism editor. Also, branching decisions are explicit in LINKPAC - each
basic mechanism routine takes a-parameter specifying which branch to compute — but automatic
in the mechanism editor. (Of course, in relieving users of this responsibility, we also relieve them
of precise control over branching.)

Suh and Radcliffe have implemented a number of interesting features. LINKPAC has routines
for computing velocities and accelerations, as well as trajectories. (The mechanism editor could be
extended to do this; the largest question would be how to meaningfully display the data.) They have
worked out many closed form solutions for spatial mechanisms (three dimensions). They present a
Newton-Raphson iterative method, which can be used when there is no closed form solution. And,
while no dynamic simulation code is provided, there are routines that solve for the instantaneous
forces on a mechanism in the presence of springs and dampers.

6.2 Sketchpad

The first constraint-based graphical editor, Sketchpad, was written in 1962 by Ivan Sutherland as
part of his Ph.D. research. With a calligraphic display and a light pen, the Sketchpad user could
build planar diagrams hierarchically out of points, line segments, circular arcs, and instances of
smaller diagrams. The user also entered constraints on the diagram, which Sketchpad enforced; for
example, two line segments might be constrained to have the same length, or to be parallel. There
was also some facility for constraining text, such as by requiring that it display the length of some
line in the diagram. A constraint between objects was (optionally) visible on the screen, as a letter,
indicating the type of constraint, and a circle around the letter connected to each of the objects
being constrained.

This work was foundational in the field of interactive computer graphics. Sketchpad imple-
mented many of the key ideas commonly used in graphics modeling systems today, including
definition-instance hierarchies and the inexact picking of objects with a light pen (or mouse).
Its programming style included recursive functions, abstract data types, and generic functions ca-
pable of handling objects of many types, in a fashion that very nearly comprises object-oriented

45

programming, which it significantly predates.'® Of all the work that has been done in this area to
date, it is amazing how large a part of it was done at the outset by Sutherland.

In Sketchpad, each constraint was defined by a subroutine that examined the constrained vari-
ables and returned a scalar error value, which was zero if and only if the constraint was satisfied.
Two methods were used to solve systems of constraints. The first, “the reliable but slow method
of relaxation,” was used only on systems that could not be solved by the second, “the one pass
method.” The one pass method, which Borning later called “propagation of degrees of freedom”
[Borning 79}, examines the constraint graph to find “an order in which the variables of a drawing
may be re-evaluated to completely satisfy all the conditions on them in just one pass,” as follows.
Suppose there is a variable with enough degrees of freedom and few enough constraints that its
value may be changed so as to satisfy all of its constraints. This variable may be re-evaluated last,
and the constraints on it will be satisfied. So we may eliminate this variable and its constraints
from the graph, and look for an ordering on the remaining variables in the same way. If the graph
can be completely dismantled in this fashion, then the entire system may be solved one variable at
a time, in the reverse of the order in which they were eliminated from the graph. (A small example
is given below.)

Since Sketchpad’s variables are essentially always points (in the plane), and its constraints
always remove one degree of freedom, finding an eliminable variable means finding a point with
no more than two constraints on it. Solving for that point entails solving a two degree of freedom
system. Typically this system will be a simple geometric intersection; for instance, the unknown
point may be constrained to be horizontal with-one-known point and a fixed distance from another.
These systems Sketchpad could solve as tiny relaxation problems. (Relaxation may be slower than
closed-form solutions would be here, but it has the elegant property that the same solving routine
may be used regardless of what particular constraints are involved.)

Though they are far from being the only application that Sutherland suggests, he does discuss
the use of Sketchpad for drawing and animating mechanical linkages. One of his examples is the
four-bar linkage, one possible construction of which is shown in Figure 28. (Here he is seen to

(a) (b)

Figure 28: (a) A four-bar linkage as it might be drawn in Sketchpad. (b) The corresponding
constraint graph. The angle constraint (marked ‘e’) is a multi-edge, connecting three points; the
remaining edges are distance constraints.

share the spirit of rapid and exploratory user interface with which we have tried to approach the

10A1) this was done at a time when doubly-linked circular lists were enough of a novelty that Sutherland feels
compelled to explain their use.

46

(a) (b)

Figure 29: The basic solvable units. Each step of a solution adds this much to the solved mechanism
graph. (a) Our mechanism editor. (b) Sketchpad.

mechanism editor: “Total time to construct the linkage was less than 5 minutes, but over an hour
was spent playing with it.”) The linkage is built of line segments whose end points have been
constrained to lie a fixed distance apart; call these sticks. A revolute joint is merely two sticks that
share an end point. Thus, coincidence constraints are something of a special case in Sketchpad
(and in ThingLab). Instead of there being two separate points constrained to be equal, the two
points are merged into a single variable. This can simplify the constraint graph considerably.

The four-bar linkage can be solved using the method of propagation of degrees of freedom, by
eliminating the points in the order F, E, B. (Points A and D are grounded, while C is fixed by the
input motion.) This order lets each point be eliminated while it has only two constraints on it;
this guarantees that the diagram can be solved in the reverse order B, E, F. The B step fixes the
links AB and BC, and is analogous to our RRR solver, with the distinction that it solves for points
rather than for link coordinate systems. One could say that it solves for the joints instead of the
links.

This method can also successfully find orderings for other pin-joint mechanisms, such as the
six-bar mechanism in Figure 6 or the wine rack in Figure 20. In fact, this ordering process functions
exactly as the planning phase does in our editor, but in reverse order.

Our planner could be made to work in reverse. Consider the two links that are fixed last by
a plan; their graph will always look like the “open triangle” shown in Figure 29a. By repeatedly
eliminating such open triangles from the mechanism graph, we could build up our plans in reverse
order. This backwards planner would completely solve exactly those graphs that our forwards
planner completely solves. The only reason to prefer forwards to backwards is that, when the
planner gets stuck, at least some of the mechanism still moves. !

In short, this directional difference between the mechanism editor’s planner and Sketchpad’s
one-pass planner is largely superficial. The fundamental distinction between the two planners is that
in Sketchpad, the variables are points, while in the mechanism editor, the variables are coordinate
systems. Our basic solvable unit — the graph that we can reduce to a point - is the open triangle in
Figure 29a, containing two nodes with three degrees of freedom each, plus three constraint edges,
each constraining two degrees. Figure 29b is Sketchpad’s basic unit, containing one node with
two degrees of freedom, plus two edges each constraining one degree. Sketchpad’s basic unit has
the advantage of being simpler than ours. In particular, the method of propagation of degrees of

11 As will be discussed below, it is best to be able to solve both forwards and backwards; see Section 6.3.

47

B B B
k E E
C C C

(2) (b) (c)

Figure 30: Three ways of expressing the line segment. Only the first two can be solved by the
one-pass method.

freedom does not apply straight-forwardly to our graphs: neither node can be solved first, without
reference to the constraints on the other node. Our advantage is that we have a built-in notion of
rigid links, while in Sketchpad, a rigid shape must be expressed by sufficiently constraining some
subdiagram. Thus, our graphs will typically have fewer edges, particularly if link shapes with many
vertices are involved.

Sketchpad could be extended to detect rigid subdiagrams. As it stands, it must re-solve the
shapes of the links each time the mechanism moves. Whether or not it can do this with the one-pass
method may depend on exactly how the link shape is expressed. This danger can be seen even in
the four-bar example above. Consider the rigid line segment containing points B, E, and C. Figure
30 shows three possible constraint graphs that express this rigidity (with neither underconstraint
nor overconstraint). The first, which imposes three distance constraints, and the second, which
imposes collinearity and two distances from point B, both have one-pass orderings. But the third,
which also uses collinearity but takes both its distances from point E, does not have a one-pass
ordering; to solve it, Sketchpad would have to resort to a global relaxation.

In all, the method of propagation of degrees of freedom is surprisingly effective in solving
mechanisms made up of revolute joints. Since it can do the the work of our RRR solver, and it
can do the ordering that our planner does, it can solve anything that our mechanism editor can -
as long as it can solve for the rigid link shapes when necessary. For sticks and triangles, it is not
difficult to find cooperative ways to express link shapes. For more complex links, there are more
opportunities to build something that cannot be ordered.

Prismatic joints are more problematic. They can be expressed by means of collinearity con-
straints, and Sketchpad can solve certain cases. But, for instance, solving an RPR configuration
(see Figure 15) requires solving for the line of the slider first; Sketchpad can only solve for points.
A solution to this is to introduce lines as variables, rather than as just connections between two
points. For instance, a line could be represented by its slope and offset, or by the coefficients of its
line equation. This numerical representation can then be solved for. Todd and Cherry make this
extension; we discuss their system below, in Section 6.4.

To summarize, we gain in efficiency, at move-time at least, because we do not have to resolve
the shapes of rigid links for every cycle, and because we solve the base-case geometric intersection
problems in closed form, rather than by using mini-relaxations. (Of course, we use trigonometric
functions and square roots, which are computed by convergent series. Relaxation might actually

48

have been faster on the type of machine Sutherland was using.) Our graphs are simpler if the links
have fancy shapes. Sutherland’s graphs are simpler if the links are just line segments. In all, our
primitives are better suited to our problem - just as his are better suited to geometric constructions
(like the conic section example he gives), circuit diagrams, etc.

Sketchpad falls back on relaxation when it cannot solve the system one variable at a time; our
mechanism editor would definitely benefit from such an ability. This also handles overconstrained
systems, by letting the constraints fail. (Sutherland uses this to advantage in his bridge-load
example.) Sketchpad’s backwards planner easily recognizes and solves underconstrained systems,
by finding variables with only one remaining constraint edge rather than two.

6.3 ThingLab

Alan Borning brought Sketchpad up into a modern, object-oriented programming language (namely
Smalltalk), and made several interesting extensions and variations. The result was ThingLab
[Borning 79]. In ThingLab, as in Sketchpad, constraints typically can return a numerical value
that is zero only if they are satisfied. But in addition, attached to each ThingLab constraint is a
set of executable methods, each of which cause the constraint to be satisfied (by recomputing the
values of the constrained variables). From these methods, ThingLab composes its plans. These
methods are faster than the mini-relaxations used by Sketchpad.

A ThingLab method can only take into account one constraint (i.e. the constraint to which it
is attached). This means that, in order for ThingLab to solve the sorts of geometric constructions
we are discussing, more complex constraints must be used. For instance, consider a point that
is constrained to be a fixed distance from one point, and collinear with another two. Sketchpad
expresses this with two separate constraints — let us call these atomic constraints — and uses a
mini-relaxation to solve them. In ThingLab, a method can be implemented to solve for this point
in closed form, but the method must be attached to a single bundled constraint; this constraint will
reference all four of the points involved.

In ThingLab, a mechanism can be expressed in terms of atomic constraints, just as it would be
in Sketchpad, but ThingLab cannot solve such mechanisms without resorting to global relaxation.
Fortunately, as Borning explains under the heading “Using Multiple Views to Avoid Relaxation”
([Borning 79] page 69), ThingLab can simultaneously represent both atomic constraints and bun-
dled constraints on the same mechanism. In ThingLab, a constraint type can be created for each
of our base cases, and our solvers may be implemented as methods for these constraints.!? If a
mechanism is built out of these bundled constraints (either initially or after being built from atomic
constraints), then ThingLab will find the same closed-form solutions as the mechanism editor. The
result is a system remarkably like LINKPAC: once the user has built the mechanism out of solvable
submechanisms, the program can solve it. Actually the ThingLab planner is a little smarter, in
that it does not require the user to re-express the mechanism when she selects a new input joint.

For solving constraint graphs, ThingLab uses both the one-pass method that Sketchpad uses
and a new method that Borning calls “propagation of known states.” Here, the program looks
for a variable whose value can be completely determined from a single constraint. If all the other
variables involved in the constraint have already been fixed by earlier portions of the plan, then
this variable may be fixed by the next step of the plan. If this technique is transferred to the
setting of Sketchpad, where multiple constraints may be solved simultaneously, then it becomes
more general: a variable can be fixed when its value is determined by a set of constraints, all

12The PRR and RPR cases should be implemented as two methods on a single constraint type. This constraint
can then be used on any triangle with two revolute joints and one prismatic joint.

49

of whose other variables are already fixed. The technique then becomes a forwards planner to
complement Sketchpad’s backwards planner. As we have mentioned, the set of graphs that may be
solved completely is the same for forwards planning as for backwards planning. But when there
is a portion of the graph that cannot be solved, having both forwards and backwards techniques
available lets the system solve as much of the graph as possible.

Like the one-pass method, the method of propagation of known state cannot be directly applied
to the mechanism editor’s graphs. Since our variables (nodes) have three degrees of freedom, and
our constraints only take away two, we never have enough constraints to completely determine the
values at any single node (except in the case of overconstraint, which we don’t need to solve at all).

When both techniques fail, ThingLab falls back on the slow but effective technique of global
relaxation. But first it uses both the forwards and backwards techniques to determine which
variables may be directly computed; only the remaining, unsolved, variables participate in the
relaxation. ThingLab cleverly reduces the set of participating variables even further, by looking
for a small subset such that, once the subset has been solved for, the others may be computed
directly. We have mentioned that the mechanism editor would greatly benefit from having a global
relaxation technique to fall back on; ThingLab provides an excellent model for such a technique.

ThingLab is very general and elegant in concept — a software laboratory for simulation, with
a direct-manipulation interface. In designing the mechanism editor, we attempted to emulate
ThingLab, but to specialize it for the editing of mechanisms. By specializing, we were able to provide
a data structure that avoids the repeated resolving of rigid geometry, a planner that recognizes (and
solves) certain bundled constraints-automatically,-and-a user interface that is_streamlined for rapid
assembly of mechanisms.

6.4 Todd and Cherry

Recently, Todd and Cherry at Tektronix Laboratories have developed a system for calculating
properties of dimensioned, planar drawings. [Todd 88] [Todd 89} The input is a drawing made up
of points and straight lines, with some distances between points given, and some angles between
lines given; Figure 31a shows an example. From this drawing the system builds a constraint graph
like Sketchpad’s, except that in addition to a node for each point in the diagram, there is also a
node for each line in the diagram. Whenever a point is on a line, there is an “incidence” constraint
between the two nodes; see Figure 31b.

They solve the constraint graph by iteratively eliminating nodes with exactly two constraints
on them; this much is exactly like Sketchpad. But instead of using mini-relaxation, they use a
closed-form construction to solve each two-constraint system. For instance, the program includes
a construction for the point that is incident on each of two known lines, and a construction for the
point incident on one known line and a fixed distance away from a known point. (Constructions
would be called solvers in the mechanism editor, or methods in ThingLab.) A node may only be
eliminated if its two constraints match an available construction.

As explained in Section 6.2, Sketchpad can already animate any revolute mechanism that our
editor can animate. With both points and lines as primitives, Todd and Cherry’s system can
solve any mechanism our editor can solve, revolute or prismatic.!® The caveat is the same as for
Sketchpad, namely, that the system must be able to solve the rigid link shapes.

Interestingly, their system uses only symbolic computation. A length is typically an expression
like “a” or “r/2”, rather than a numeric value. This allows them to prove theorems by means of

13A constraint type for the distance between a point and a line would have to be added to their system, with some
new constructions as well. This would be a trivial extension.

50

D2 = (070)

h = (Oab)
_—a?+ b+ P)
ps o= (——
_a2 +.b2+c2
ps = (———0)

2b
(a) (b) (c)

Figure 31: An example from Todd and Cherry. (a) The input drawing. (b) Its constraint graph.
The dotted edge is an angle constraint, the dashed edges are distance constraints, and the other
edges are incidence constraints. (c) The output is in the form of symbolic equations involving the
variables in the drawing. [Todd 88]

diagrams, such as by showing that the distance between two particular points is identically zero.
It would be interesting to compare the capabilities of their system with those of a general-purpose
symbolic equation solver.

The use of symbolic computation rules out any sort of relaxation method, and places renewed
emphasis on finding solutions in closed form. Unfortunately, their terminology does not distinguish
between properly constrained graphs that happen to be uncontractable!* and graphs that are
actually overconstrained. This risks confusing the notions of “well defined” and “computable by
this algorithm.” Also, they do not discuss non-genericity, though each of their theorems is a clever
example of it.

6.5 Physically-based modeling

Physically-based modeling has recently been a very active area of computer graphics research. This
work presents a radically different approach to the animation of constrained, articulated models. In
this approach, objects are assigned masses and moments, and interact through forces and torques.
The system is governed by differential equations adapted from classical dynamics; these equations
are solved numerically to find the motions of the objects. Various forms of this approach have been
demonstrated with animations of chains [Isaacs 87], flags [Platt 87], cubes of gelatin [Platt 88], desk
lamps [Witkin 88], and even mechanisms [Witkin 87].

Computing the motions is largely a matter of using the equation F = ma to find the accelera-
tions of the system’s state variables and then numerically integrating the accelerations over time.
Forces may arise from ob ject interaction (e.g. collisions), from the internal stresses of an object (e.g.
the stretched or compressed springs of a finite-element model), from outside forces (e.g. gravity,
wind), or from user interaction (allowing the user to push or pull parts of the system into place).

A constraint may be represented by an error function, just as in Sketchpad; the closer the
constraint is to being satisfied, the closer the function’s value is to zero. Constraint forces may
be introduced that push the error values towards zero. The magnitude of a constraint force will
depend on the state of the system, on the non-constraint forces, and on the other constraint forces.

4Unconstructible, in their terminology.

51

For example, to keep a certain point on an object nailed to the wall, the constraint force should
exactly counteract the acceleration of that point (relative to the wall) due to the other forces in
the system.!® The other forces include forces arising from other constraints; in general, finding the
constraint forces requires solving a system of simultaneous equations. [Barzel 88]

Using this approach requires careful attention to the intricacies of numerical methods. The
overall flavor is quite different from that of our mechanism editor, with its abstract graphs and
closed-form solutions! One would expect the numerical methods to be computationally expensive,
but surprisingly nimble systems have been demonstrated. In particular, Witkin has demonstrated
editors that with a dozen or so links are still comfortably interactive on a Silicon Graphics IRIS
4D/70 graphics workstation.[Witkin 89] (These interactive systems often have a loose or flabby
feel; for example, when the user positions an object with the mouse, the object’s position may
exponentially decay towards the mouse position over a half second or so. Such exponential decays
help to prevent the differential equations from becoming stiff, which would cause the numerical
methods to become either unstable or excessively time-consuming.)

Simulating equations from physics in this way is evidently an extremely powerful and general
technique. The simulation provides dynamics, not just kinematics. Mechanisms need not be con-
tractable (cf. Section 5.2.3) to be animated. The issue of branching is automatically handled by
the momenta of the masses involved. (Ideally, the user is provided with interactively controlled
forces strong enough to kick the model out of any undesired mode.) Since the system includes
forces that tend to minimize the amount by which constraints are violated, both broken joints and
overconstrained systems behave in a reasonable manner.'® The behavior of broken mechanisms
resembles that of the “stretch” policy illustrated in Figure 16.

Adding a new joint type to the mechanism editor is not prohibitively difficult, but does require
deriving and implementing a suite of new solvers for the various situations in which the joint
would be used. In contrast, adding a new joint to a physically-based system might only require
incorporating a new constraint force equation; the actual solution machinery would likely not need
to be changed at all. Extensions such as friction, gravity, and load computations — even objects
bending under a load — are difficult to contemplate in a closed-form system, yet can be easily
incorporated into a physical simulation.

Of particular relevance to the design of mechanisms is Witkin, Fleischer, and Barr’s demon-
stration [Witkin 87] of a system that allows the parameters of a mechanism — lever lengths, pivot
positions, etc. — to be smoothly varied, even while the mechanism is being animated! Since the
system already uses numerical optimization in its simulations, parameters of a mechanism could
be optimized against an objective function. This raises the exciting possibility of an interactive,
visual system that combines type synthesis with dimensional synthesis.

6.6 Discussion

The basic distinction between our mechanism editor and the Sketchpad-like systems that we have
discussed (Sketchpad, ThingLab, and Todd and Cherry’s diagram solver) is that we describe rigid
links in their own local coordinate systems, and we use these coordinate systems as primitive
variables in our constraint graphs. This more cleanly separates the geometry of the mechanism

15However, if the point on the object starts out away from the nail - i.e. if the constraint is violated — then one
component of the constraint force should be a restoring force that will push the point towards the nail.

16T, handle overconstraint properly, the implementation must be able to solve non-square systems of equations.
The same is true of underconstraint (the equations are non-square in the other direction). Most of the systems we
have cited are capable of solving non-square systems.

52

from its topology. It also frees the user from having to build rigid links out of simple constraints,
and it frees our program from having to solve for these shapes.

Each of these Sketchpad-like systems employs a different flavor of constraint solving. Sketchpad
uses the same iterative numerical procedure for all base cases (where by base case, we mean a small,
solvable configuration of constraints); ThingLab uses closed-form numerical procedures attached to
bundled constraints; and Todd and Cherry use closed-form symbolic arithmetic procedures attached
to each base case type. Our editor uses yet another variant: closed-form numerical procedures
attached to each base case type. Closed-form procedures are more efficient than iterative ones, and
numerical procedures are more efficient than symbolic ones. We have combined this with a user
interface tuned for our specific application (namely type exploration), and the result is a useful and
usable design tool.

But we have relied too much on our closed-form solvers. As a result, there are properly con-
strained mechanisms our editor cannot solve at all. (These are the uncontractable mechanisms
discussed in Section 5.2.3.) A relaxation method, or other numerical method, could handle these
cases; this would be an important extension of our system. We would do well to borrow the tech-
niques used in ThingLab to make the set of variables that must be numerically solved as small as
possible.

The mechanism editor’s handling of broken joints is less than graceful, and underconstrained
mechanisms it simply refuses to animate at all. The editor should be extended to incorporate
reasonable rules for making the arbitrary choices in placing underconstrained or broken mechanisms.
Sketchpad and ThingLab handle underconstraint reasonably well, simply by leaving extra degrees
of freedom unchanged. (Their authors do not discuss breaking.)

Physically-based modeling is a very powerful and flexible tool. Given a sufficiently powerful set
of numerical methods, this tool subsumes underconstraint, overconstraint, breaking, branching, and
all base cases under a single metaphor. This same metaphor allows for the simulation of dynamics
and for numerical optimization, such as optimization for dimensional synthesis. These capabilities
could prove to be tremendous advantages for a physically-based system for interactive mechanism
design. This approach should certainly be investigated.

In trying to make a practical physically-based mechanism design system, the main difficulty
we expect to encounter is speed. Whether animations can be made interactive will depend on the
speed of the available computer hardware. It will also depend on the size of the systems being
animated. The time required to execute one of our closed-form plans is linear in the number of
links in the mechanism. (Assuming a constant bound on the number of joints on any one link,
our planning algorithms are linear too, except for the detection of rigid submechanisms.) For a
physically-based method, the equations may be of linear size (assuming the same constant bound,
and taking sparseness into account), but typically quadratic or even cubic time is used to solve
them. [Barzel 88] Closed-form methods may be the only way to animate, say, forty or a hundred
links in real time. Rates of convergence are also important to consider; especially if we insist that
the animation appear rigid, rather than decaying towards valid positions over multiple updates,
these rates are going to have a significant impact on speed.

As we have said, the closed-form methods presented here need to be augmented by a numerical
method in order to be complete. The physically-based approach provides one such method; numer-
ical methods that only solve geometry, rather than providing realistic dynamics, may be faster. In
any case, a numerical method that can solve the uncontractable mechanisms will be able to solve
the contractable ones as well. Why use closed-form methods at all? The principal justification
is speed. In other words, while the closed-form approach needs to be augmented by a numerical
method in order to be complete, we expect that numerical systems will need to be augmented by

53

closed-form methods in order to be interactive. The example at the end of Section 5.2.3 indicates
that there may be a rich variety of techniques that combine numerical and closed-form methods,
techniques that benefit from the strengths of both.

Through this analysis of our mechanism editor and its ancestors, we have learned how best to
tune our basic approach to make an effective and efficient editor for mechanism type synthesis. The
next step is to fuse this approach with numerical methods. This will require close study of how
physically-based modeling performs for mechanisms, how our closed-form methods may be refined,
and how these techniques may be most effectively combined.

54

7 Future Work

Earlier sections have discussed several possible areas for further research:

o The nature (and relative size) of the set of uncontractable graphs. Solution techniques for
uncontractable mechanisms. The existence or non-existence of closed form solutions. (Section
5.2.3.)

e Analyzing the capabilities and performance of physically-based modeling, and other numerical
techniques, for mechanism animation. (Section 6.6.)

e Hybrid techniques for using both closed-form and numerical methods to animate mechanisms
with no closed-form solution. Minimizing the number of variables solved numerically. (Im-
plementing a backwards solver in addition to the forwards solver would be a step in this
direction.) (Sections 5.2.3, 6.3 and 6.6.)

e Detecting and solving non-generic mechanisms. (Section 5.2.4.)
o Efficient algorithms for detecting rigid subgraphs. (Section 2.4.2.)

e Animating underconstrained mechanisms: policies for choosing which free joint to fix, and at
what value to fix it. (Section 5.2.2.)

o Policies for mechanisms that bréak. Displaying the breaking point; ¢learly and efficiently.
(Section 3.2.5.)

o Interfaces to let the user handle branching more naturally. (Section 3.2.6.)

e Interfaces to allow the user to control several input parameters at once. (Sections 5.2.1 and
4.4)

o Displaying velocities, accelerations, forces, or stresses in a clear and useful way. (Section 6.1.)

One feature that would make the editor much more useful would be the ability for the user
to adjust the geometry of a mechanism in a continuous manner. As it stands, any change in a
link’s shape must be made by deleting the link (along with all its joints) and re-entering it from
scratch. Also, there is no way to reposition a link except by animating the whole mechanism. Ata
minimum, there should be an editing function that allows the user to reposition a link vertex with
the mouse; if there is a joint at this vertex, this operation should move the relevant vertex of the
other link as well. Further thought should be given to the set of editing operations provided, with
the goal of allowing smoother and more convenient exploration of mechanism geometries.

Finally, an obvious possibility is to investigate similar type exploration systems for three-
dimensional mechanisms. The same method for finding closed-form solutions - i.e. examining
the graph of a mechanism’s topology, finding subgraphs that match base cases, and contracting
each subgraph as we solve it — may be used in three dimensons. Here links have six degrees of
freedom; some joints have one (revolute, prismatic, helical) while others have two (cylindrical) or
three (spherical, planar). Suh and Radcliffe present solvers for the RSSR, RRSS, and RCCC base
cases [Suh 78]; likely, more are possible. The question of completeness comes up again: for what
portion of the three-dimensional mechanisms that users would actually want to animate can we
find solutions in closed form? Then there is also the question of user interfaces for interaction with
simulated three-dimensional worlds, which is an entire field of research by itself.

55

8 Conclusions

The graph of a mechanism is an abstraction that removes the mechanism’s geometry, leaving only
its topology. There are several equivalent ways of viewing the mechanism graph. Each node of
the graph represents a link, or (equivalently) a coordinate system, or a set of points whose relative
positions are known. Each edge represents a joint, or a parameterized transformation between the
coordinate systems of its two nodes. The mechanism graph is also the constraint graph. With this
data structure, it is simple to analyze a mechanism for overconstraint, underconstraint, and degrees
of freedom.

The mechanism graph also provides an orderly setting for building plans that solve mechanisms.
We form our plans inductively, using the threelink, three-joint rigid mechanisms as base cases.
Each step in the plan — each application of a base case - fixes the parameters of a set of joints.
During animation, the user’s mouse fixes the parameters of the input joints. Fixing a joint defines
the relative positions of its two links. We represent this by contracting the corresponding edge in
the mechanism graph; when the graph has been contracted to a single node, we have solved the
positions of all the links in the mechanism.

Since we can solve our base cases in closed form, our plans are always closed-form solutions.
This works for many mechanisms, though there are simple mechanisms — as simple as six bars —
that cannot be solved by this technique of contractions, and in fact do not appear to have closed
form solutions at all.

During animation, while the plan is being executed repeatedly, the mechanism’s geometry comes
back into play. When an input joint is turned too far, the mechanism breaks. It is important to
give the user clear feedback when this happens; we have discussed the trade-offs of several ways of
doing this. We have also discussed branching, i.e., the fact that there are typically two solutions to
each base case. Usually the desire for continuity of motion is enough to determine which branch
is appropriate. But near the breaking point, the two branches are close together. Ideally, the user
should have a convenient means of controlling which branch is taken.

In non-generic mechanisms, coincidences of geometry conspire to change the mechanism’s ef-
fective topology, possibly changing the number of degrees of freedom. This situation can arise
dynamically during animation. Our system does not notice these coincidences.

We have discussed our system alongside several other Sketchpad-like systems. They are more
alike than they are different. The mechanism editor uses coordinate systems, rather than individual
points, as the variables being constrained; this is better suited to our specialized task of animating
mechanisms. Our planner is automatic, in that it does not require the user to express his mechanism
in terms of our base case mechanisms. (The same is true of Sketchpad, but not of ThingLab.) Our
planner uses a forward solution technique, one that finds the steps of a plan in the same order that
the steps will be executed. There is an equivalent backward technique. Ideally, the mechanism
editor would be able to use both forwards and backwards methods, in order to solve as much as
possible of an uncontractable mechanism. Relaxation or other numerical methods should then be
used to solve the uncontractable core.

We found the Lisp programming language to be helpful in thinking about the program, and
for implementing some aspects — in particular, its closures provided a clean and convenient way
to separate plan time from move time — but we found it slow and somewhat unwieldly for general
program development. Think in Lisp, write in C++.

The editor benefits from having both its user interface and its constraint-solving technique
tuned for the task of mechanism type exploration. Closed-form solutions are efficient, but do not
always exist. For a given application — with given hardware limitations, typical size of mechanisms,

56

and other requirements — a hybrid technique should be developed that represents an appropriate
trade-off among the universality of numerical methods in general, the power of physically-based
modeling in particular, and the performance of closed-form solutions.

57

Acknowledgements

This work was done under the guidance of Carlo Séquin, whose advice, support, and inexhaustible
talent for generating valuable ideas played an enormous role throughout the process. Early dis-
cussions with C. W. Radcliffe were inspirational. Late discussions with John Canny provided a
mathematical viewpoint, and helped to clarify several important areas. Eric Bier, Andrew Witkin,
Michael Gleicher, Robert Duisberg, and Alan Borning generously took time to educate me. Iam
also grateful to my colleagues at Berkeley, particularly Seth Teller, Henry Moreton, Nina Amenta,
Ziv Gigus, Mark Segal, and Bob Boothe, for providing discussion, inspiration, assistance, moral
support, and T-shirts.

Many thanks to Luis Miguel, Hervé Da Costa, Ken Lutz, Joseph Hohl, Brian Shiratsuki, and
Keith Sklower for their help in assembling and maintaining the computing environment. Many
thanks also to Kathryn Crabtree, who shields us from virtually all administrative concerns.

For the remarkable patience and understanding shown by my friends, family, and co-workers, all
of whom put up with me while I was doing this work, I am deeply indebted. Nancy Botkin and Ernie
Rideout each came to my rescue with advice and active support on multiple, crucial, occasions.
Judit Mandi was a marvelous study partner; I would like to thank her and to congratulate her
on her medical license. Doug Kay and the computer graphics department of Industrial Light and
Magic have been very generous. I would also like to particularly thank Peter Goldberg, David
Anderson, Rob Culverhouse, Alex Melnick, Bert Enderton, Mom, and Dad (who won'’t like the
split infinitive).

58

References

[Barr 88]

[Barris 88]

[Barzel 88]

[Bier 86]

[Borning 79]

[Borning 87)

[Crawford 85]

[Guillemin 74]

[Isaacs 87]

[Luck 85]

[Mittelstadt 85]

[Myklebust 88]

[Olson 85]

[Platt 87]

Alan H. Barr, “Teleological Modeling,” Developments in Physically-Based Mod-
eling course notes, SIGGRAPH ’88, ACM, August 1988.

Wesley C. Barris, Sridhar Kota, Donald R. Riley, and Arthur G. Erdman, “Mech-
anism Synthesis Using the Workstation Environment,” IEEE Computer Graphics
& Applications, pp. 39-50, March 1988.

Ronen Barzel and Alan H. Barr, “Controlling Rigid Bodies with Dynamic Con-
straints,” Developments in Physically-Based Modeling course notes, SIGGRAPH
88, ACM, August 1988.

Eric Allan Bier and Maureen C. Stone, “Snap-Dragging,” SIGGRAPH ’86, ACM,
August 1986.

Alan Borning, ThingLab - A Constraint-Oriented Simulation Laboratory, Xerox
Report SSL-79-3, Xerox PARC, July 1979.

Alan Borning, Robert Duisberg, Bjorn Freeman-Benson, Axel Kramer, and
Michael Woolf, “Constraint Hierarchies,” OOPSLA ’87 Proceedings, pp. 48-60,
October 1987.

R. H. Crawford, W. W. Charlesworth, and M. J. Bailey, “The Désign, Anal-
ysis and Display of Three-Dimensional Mechanisms Using a CAD Executive,”
Mechanism and Machine Theory, Vol. 20, No. 4, pp. 251-256, 1985.

Victor Guillemin and Alan Pollack, Differential Topology, Prentice-Hall, Engle-
wood Cliffs, N.J., 1974.

Paul M. Isaacs and Michael F. Cohen, “Controlling Dynamic Simulation with
Kinematic Constraints, Behavior Functions and Inverse Dynamics,” Proc. SIG-
GRAPH ’87, pp. 215-224, ACM, July 1987.

Kurt Luck, Karl-Heinz Modler, and Joérg Reber, “Computer-Aided Design in
Mechanisms,” Mechanism and Machine Theory, Vol. 20, No. 4, pp. 297-302,
1985.

William A. Mittelstadt, Donald R. Riley, and Arthur G. Erdman, “Integrated
CAD of Mechanisms,” Mechanism and Machine Theory, Vol. 20, No. 4, pp. 303-
311, 1985.

Arvid Myklebust, “Mechanical Computer-Aided Engineering,” IEEE Computer
Graphics & Applications, pp. 24-25, March 1988.

Daniel G. Olson, Arthur G. Erdman, and Donald R. Riley, “A Systematic Pro-
cedure for Type Synthesis of Mechanisms with Literature Review”, Mechanism
and Machine Theory, Vol. 20, No.4, pp. 285-295, 1985.

John Platt, Demetri Terzopoulos, Kurt Fleischer, and Alan Barr, “Elastically
Deformable Models,” Topics in Physically-Based Modeling course notes, SIG-
GRAPH ’87, ACM, July 1987.

59

[Platt 88]

[Ryan 81]

[Sub 78]

[Sutherland 63]

[Thatch 88]

[Todd 88]

[Todd 89]

[Witkin 87)

[Witkin 88]

[Witkin 89]

[Witkin 90]

John C. Platt and Alan H. Barr, “Constraint Methods for Flexible Models: the
Tutorial Notes,” Developments in Physically-Based Modeling course notes, SIG-
GRAPH ’88, ACM, August 1988.

Daniel L. Ryan, Computer-Aided Kinetics for Machine Design, Marcel Dekker,
New York, 1981.

C. H. Suh and C. W. Radcliffe, Kinematics and Mechanisms Design, Krieger,
Malabar, Florida, 1978.

Ivan Sutherland, “Sketchpad: A Man-Machine Graphical Communication Sys-
tem,” Proceedings of the Spring Joint Computer Conference, pp. 329-345, AFIPS,
January 1963.

B. R. Thatch and Arvid Myklebust, “A PHIGS-Based Graphics Input Interface
for Spatial-Mechanism Design,” IEEE Computer Graphics & Applications, pp.
26-38, March 1988.

P. H. Todd and G. W. Cherry, “Symbolic Analysis of Planar Drawings,” Tek-
tronix Laboratories Technical Report No. CR-88-03, February 1, 1988.

Philip Todd, “A k-Tree Generalization That Characterizes Consistency of Dimen-
sioned Engineering-Drawings,” SIAM Journal on Discrete Mathematics, Vol. 2,
No. 2, May 1989.

Andrew Witkin, Kurt Fleischer, and Alan Barr, “Energy Constraints On Param-
eterized Models,” Proc. SIGGRAPH 87, pp. 225-232, ACM, July 1987.

Andrew Witkin and Michael Kass, “Spacetime Constraints,” SIGGRAPH 88,
pp- 159-168, ACM, August 1988.

Andrew Witkin and Michael Gleicher, “forcefields,” computer program, 1989.

Andrew Witkin, Michael Gleicher, and William Welch, “Interactive Dynamics,”
Computer Graphics, Vol. 24, No. 2, ACM, 1990.

60

