
Performance Measurements of the First RAID Prototype

Ann L. Chervenak

May 17, 1990

Abstract

This paper examines the performance of RAID the First, a prototype disk array built by the
RAID group at U.C. Berkeley. A hierarchy of bottlenecks was discovered in the system that limit
overall performance. The most serious is the memory system contention on the Sun4/280 host
CPU, which limits array bandwidth to 2.3 MBytes/sec. The array performs more successfully
on small random operations, achieving nearly 300 I/Os per second before the Sun4/280 becomes
CPU-limited. Other bottlenecks in the system are the VME backplane, bandwidth on the disk
controller, and overheads associated with the SCSI protocol. All are examined in detail.

The main conclusion of this report is that to achieve the potential bandwidth of arrays, more
powerful CPUs alone will not su�ce. Just as important are adequate host memory bandwidth
and support for high bandwidth on disk controllers. Current disk controllers are more often
designed to achieve large numbers of small random operations, rather than high bandwidth.
Operating systems also need to change to support high bandwidth from disk arrays. In particu-
lar, they should transfer data in larger blocks, and should support asynchronous I/O to improve
sequential write performance.

1

1 Introduction

The increasing performance gap between CPUs and I/O systems threatens to create an I/O bottle-
neck that will limit overall system performance [RAID]. Disk arrays are one attractive solution to
this problem. Enormous I/O bandwidth can be achieved if many disks can be accessed in parallel
on an array. RAIDs (Redundant Arrays of Inexpensive Disks) add redundancy to arrays in an
attempt to make them at least as reliable as a single, large high-reliability disk.

In 1989, the RAID group at U.C. Berkeley built a prototype RAID to test the di�erent striping
and parity schemes proposed in [RAID]. This prototype, called RAID the First (RAID-I), was
constructed from commercially available 5 1/4" SCSI disks, disk controllers, and a workstation
acting as a host processor.

RAID-I performs fairly successfully on small random operations, achieving nearly 300 I/Os per
second before host CPU utilization begins to limit performance. Unfortunately, RAID-I is not
as successful on large sequential operations. For this workload, host memory system contention
limits system bandwidth to 2.3 MBytes per second. Other bottlenecks in the system are the VME
backplane, bandwidth on the disk controller, and overheads associated with the SCSI protocol.

The results of this study suggest that to achieve the potential bandwidth of arrays, more
powerful CPUs alone will not su�ce. Just as important are adequate host memory bandwidth and
support for high bandwidth on disk controllers. Current disk controllers are more often designed
to achieve large numbers of small random operations, rather than high bandwidth. Operating
systems also need to change to support high bandwidth from disk arrays. In particular, they
should transfer data in larger blocks, and should support asynchronous I/O to improve sequential
write performance.

This paper describes the RAID-I prototype. It presents measurements of the performance this
con�guration has delivered, and explains the performance limitations present in di�erent parts of the
system. In Section 2, the system hardware is described in detail and the SCSI protocol is discussed.
In Section 3, the methods and tools used for the research are discussed. Section 4 examines the
performance of the system, describes performance bottlenecks, and attributes overheads to various
pieces of the hardware. These results include measurements for I/O performed on raw disk devices,
as well as those that include the software overhead of the Sprite operating system and of RAID
software. Finally, Section 5 draws conclusions about RAID-I performance, and discusses plans for
a second RAID prototype.

2 RAID the First

This section presents a description of the hardware that makes up the �rst RAID prototype. It
also touches briey on some software issues that will be important in subsequent sections of the
report.

Figure 1 shows the con�guration of RAID-I. The components of RAID-I are o�-the-shelf parts
that use standard interfaces. There is a Sun4/280 host processor that is attached over a VME
backplane to Interphase Jaguar Host Bus Adaptors. The Jaguars control strings of Imprimis Wren
IV disks. The Jaguars and Wrens communicate using the SCSI protocol.

We chose the SCSI interface to the disks for several reasons. SCSI is a widely available industry
standard. SCSI disks are available in very small formats, and are very inexpensive because their
price is driven by the PC market. In addition, SCSI implementations are highly integrated and

2

Configuration of RAID the First

Strings
SCSI

Disks
IV

Wren

Host

Jaguar HBA
Interphase

Sun4/280

Figure 1: Hardware con�guration of RAID-I.

3

intelligent, which was appealing to us in our desire to use components that were as independent
as possible. Finally, Imprimis donated 32 Wren IV SCSI disks for use in RAID-I. Because SCSI is
an intelligent protocol, its implementation incurs more overhead than simple protocols. We chose
to use it in spite of this performance penalty because its intelligence made our work easier. The
measured overheads of the SCSI components are discussed in Section 4.6.

The RAID-I host processor is a Sun4/280, a 32-bit RISC machine that uses a SPARC chip
capable of about 10 VAX MIPS. Devices attached to the Sun4/280 transfer data to and from it
across the VME backplane, through the Sun4's virtual memory. (Limitations of the Sun4/280's
direct virtual memory addressing scheme are discussed below in Section 2.4.2.) The Sun4/280 host
processor is named \raid", and it runs the Sprite operating system, developed at U.C. Berkeley.

Attached to the host processor are several Host Bus Adaptor (HBA) boards, which serve as
interfaces between the host and disks attached to SCSI strings. The HBAs used in RAID-I are
Interphase Jaguar HBAs [Jaguar]. Each Jaguar board can control the communication for two SCSI
strings, with four disks per string. In all, there are 7 SCSI strings currently in the array, attached
to four Jaguar HBA boards, for a total of 28 disks in the system.

Software on the host allows the Sun4/280 to communicate with the Jaguar. To access individual
disks, Mendel Rosenblum, a member of the Sprite group, wrote a Jaguar-speci�c SCSI device driver
that changes commands to the Jaguar format and sends them to the HBA. To access groups of
disks in one of the various RAID levels, Ed Lee, a member of the RAID group, wrote a RAID
driver that controls striping, parity and reconstruction [Lee].

The remainder of this section focuses on speci�c pieces of RAID-I. Section 2.1 examines the
WrenIV disk, including the use of the Zone Bit Recording technique, bu�ers on the disk, and
the user-settable parameters Bu�er Full Ratio and Bu�er Empty Ratio. Section 2.2 discusses the
setup of commands on the Jaguar Host Bus Adaptor. Section 2.3 describes the SCSI protocol used
by the Jaguar and the Wren IV disks. Finally, some problems encountered with the Sprite and
the Sun4/280 that will be important in the subsequent discussion on performance are included in
Section 2.4.

2.1 The WREN IV Disk

The Imprimis Wren IV is a 5 1/4", 344 MByte disk drive. The disks used in RAID-I have an 80188
processor and a SCSI interface using the Emulex chip. Characteristics of the Wren IV disks are
summarized in Table 1 [Wren].

2.1.1 Zone Bit Recording on the Wren IV

The Wren IVs make use of the technique of Zone Bit Recording, resulting in a variable number of
sectors per track [ZBR]. Unlike most disks, in which each track on the disk has a �xed number of
sectors determined by the length of the innermost track, the Wrens make use of the added capacity
available from track lengths that are progressively larger as the disk head moves from the innermost
to the outermost track. Adjacent tracks di�er in capacity by only a few bytes. Since sectors never
span track boundaries on a Wren, extra bytes available on successive tracks are ignored until there
are enough unused bytes on a given track to form the largest allowed sector (4096 bytes) plus at
least 100 bytes for overhead information. Once this amount of capacity has accumulated, a new
sector is made available on this track and on all subsequent tracks of larger diameter. The disk is
thus divided into \zones", with all tracks in a zone having the same number of available sectors.

4

Because there are di�erent numbers of sectors per track, the transfer rate of data o� the
disk head is also variable. It is highest at the outermost track, averaging a sustained rate of
1.3 MBytes/sec.

2.1.2 Disk Bu�ers

Although the data comes o� the disk head at this rate of approximately 1.3 MBytes/sec, it is
transferred between the disk and the host across the SCSI bus at 4 MBytes/sec, a rate that is
negotiated between the disk and the HBA when power is turned on. To make such transfers
possible, the Wren IV is equipped with a 32KByte disk bu�er. Data sent across the SCSI bus
goes directly to or from the disk bu�er, rather than the disk medium. The disk bu�ers can be
used as simple speed-matching bu�ers, or they can perform read-ahead in order to improve the
performance of sequential read operations. The e�ect of enabling the disk bu�er for read-ahead is
examined in Section 4.2.1.

2.1.3 Bu�er Full Ratio and Bu�er Empty Ratio Parameters

Two user-settable parameters, the Bu�er Full and Bu�er Empty Ratios, control the operation of
the disk bu�ers. On a read operation, the disk waits until as much data as is mandated by the
Bu�er Full Ratio (BFR) parameter has been transferred o� the disk and into the disk bu�er before
initiating a reconnect to transfer the data to the host. On a write operation, data is transferred
from the host across the SCSI bus to the disk bu�er; when the bu�er �lls, the disk disconnects
from the SCSI bus to free the bus while the disk empties some of the data from its disk bu�er
onto the disk medium. The disk will not reestablish communication with the host (reconnect) to
receive more data into its disk bu�er until the disk consumes (empties) enough data from its bu�er
to satisfy the Bu�er Empty Ratio (BER). (See Section 2.3 for a complete description of the SCSI
protocol, including the use of disconnects and reconnects.)

In the SCSI protocol, the BER and BFR are expressed as numbers from 0 to 255, and the ratios
are obtained by dividing those numbers by 255. The resulting ratio is multiplied by the size of the
disk bu�er on a particular SCSI disk to obtain the number of bytes represented by the BFR and
BER for a speci�c disk. For example, on the Wrens, a BFR of 80 hex (128 decimal) represents
a BFR of 128/255, or 1/2. On the Wrens, this corresponds to 16 KBytes of the 32 KByte track
bu�er. So, on large reads, the disk will wait until 16 KBytes of read data are in its bu�er before
attempting to obtain control of the SCSI bus in order to send data across the bus to the host.

Two things should be noted in connection with the BFR and BER. First, I/O completions do
not wait for the ratios to be met. For example, if the BFR is 16KBytes, as in the previous example,
but the read request is for 4KBytes, as soon as the request is completely within the disk bu�er,
the reconnect with the host will be initiated. Second, a BFR or BER specifying less than a sector
of disk bu�er space is not allowed.

Section 4.2.2 examines the e�ect of various BFR and BER settings on performance.

2.2 The Interphase Jaguar HBA

A Host Bus Adaptor is a disk controller linking a host processor to disks and other peripheral
devices attached to SCSI strings.

5

In RAID-I, the Interphase Jaguar [Jaguar] HBA communicates with the Sun4/280 host via a
VME interface. All commands, data and control information passed between the HBA and the
host are written into 2 KBytes of shared short I/O space of the VME bus.

To issue a command to the Jaguar, the Jaguar-speci�c device driver on the host processor sets
up an Input/Output Parameter Block (IOPB) in the VME short I/O space. The IOPB contains
a pointer to the SCSI command that will be sent to the disk, pointers to the data bu�er and the
status block for the command in the host memory, and other control information.

There are two ways that IOPBs can be submitted to the Jaguar, through the Master Command

Entry and through the Command Queue. On power-up, the Jaguar has a Master Command Entry
(MCE) space allocated to it in short I/O space. The MCE contains control information and a
pointer to space for an IOPB. Commands entered into the MCE are always executed with the
highest priority in the system, and can be used to perform error checking and ushing of the
queues. Also, upon power-up, the MCE can be used to initialize a Command Queue and Work
Queues.

The Command Queue is a circular queue that can be initialized to contain up to 40 slots. Each
slot, or Command Queue Entry (CQE), contains control information (including the work queue
into which the command will be entered) and a pointer to an IOPB. After the initialization of
the queues is complete, commands submitted to the Jaguar are sent to the command queue �rst,
unless they go through the MCE interface. Then the controller processor submits requests to the
appropriate work queues.

Work queues contain commands destined for a particular device. One Jaguar can support up
to 14 Work Queues (one for each device on the two SCSI strings). A Work Queue entry contains
the control information from the CQE and a copy of the IOPB referred to in the CQE. Once a
command enters a work queue, its CQE on the command queue is freed. From the Work Queues,
commands are submitted directly to the disks using the SCSI protocol.

When a command is complete, a command response block (CRB) is constructed in the short
I/O space shared by the host and controller, and the host processor is interrupted. The CRB
contains status information (work queue number, command tag number, completion status) and
a copy of the IOPB (so that the host can match the completed command with the appropriate
outstanding one). After the host reads the CRB, the space it occupied in the short I/O space is
freed.

One important feature of the Jaguar is that data passed through the Jaguar goes through
internal Jaguar bu�ers. There are 128KBytes of memory allocated on the Jaguar for data bu�ers
and for other data structures. The bu�er space is allocated 8KBytes at a time, adding overheads
to large operations, as discussed in Section 4.6. The performance of the Jaguar is also discussed in
Section 4.3.

2.3 The SCSI Protocol

This section describes the SCSI protocol, used as the interface between the Interphase Jaguar HBAs
and the Wren IV disks in RAID-I.

The SCSI (Small Computer System Interface) Protocol allows up to eight devices to communi-
cate on a bus or \string" at sustained speeds of 4-5 MBytes/sec [SCSI]. Future SCSI performance
will reach 10-20 MB/sec on fast/wide SCSI. Each device on the string can attain control of the
bus as a master or \initiator", or may be designated as a slave or \target" for the operation. In

6

RAID-I, the host bus adaptors function as initiators at all times, and the disks attached to each
SCSI string are always targets that receive commands to perform various I/O operations.

The SCSI protocol consists of a series of \phases", during which speci�c actions are taken by the
controller and the SCSI disks. Because it is a high-level, message-based protocol, SCSI inherently
has more overhead than simpler protocols. We chose SCSI partly because of its intelligence; the
amount of overhead that we incurred as a result is described in Section 4.6.

Section 2.3.1 describes each phase of the SCSI protocol, and Section 2.3.2 details the protocol,
applying it speci�cally to reads and writes using the Wren IV disk and the Interphase Jaguar HBA.

2.3.1 SCSI Phases

Bus Free: No device is currently accessing the bus.

Arbitration: When the SCSI bus goes free, multiple devices may request (arbitrate for) the bus.
Each device on the bus is given a unique string address. During arbitration, priority is given
to the SCSI device with the highest address.

Selection: After arbitration by an initiator succeeds, the selection phase informs the target that
it will participate in the operation. (This phase is followed by the Command phase.)

Reselection: After arbitration by a target device succeeds, the reselection phase is entered. This
occurs when a target wishes to resume an operation interrupted by a disconnect. Reselection
informs the HBA which outstanding operation is about to resume.

Command: During this phase, the initiator (controller) reads the SCSI command bytes from host
memory and sends them to the target device over the SCSI bus.

Data Transfer: The two data transfer phases allow data bytes to be sent across the SCSI bus
in either direction between initiator and target. Direction is speci�ed with respect to the
initiator.

� DATA IN: Data is read from the target and sent to the initiator.

� DATA OUT: Write data is sent from the initiator to the target.

Message Phase: The two message phases allow messages to be sent across the SCSI bus in either
direction between initiator and target. Direction is speci�ed with respect to the initiator.
These messages are used to perform control functions.

� MESSAGE IN:

{ IDENTIFY: This message from the target after reselection speci�es which target
device is going to resume its operation.

{ SAVE DATA POINTER: This message from the target before a disconnection tells
the controller to save its \place" in the data transfer operation so that the data
operation can later resume without retransmitting data bytes.

{ RESTORE DATA POINTER: This message from the target after reconnection tells
the host to set the value of the Current Data Pointer to the value of the Saved Data
Pointer.

7

{ DISCONNECT: This message from the target indicates that the target is going to
give up the SCSI bus in order to perform certain operations internally, for example,
to perform a seek, to �ll its bu�ers as speci�ed by the BFR on a read operation, or
to empty them as speci�ed by the BER on a write operation.

{ COMMANDCOMPLETE: This message is sent by the target to inform the initiator
that an operation is complete.

� MESSAGE OUT:

{ IDENTIFY: This message from the controller at the start of an operation tells the
devices on the string the identity of the initiator and the desired target.

Status Phase: Immediately before the COMMAND COMPLETE message is sent, the target
sends the initiator status information about the command.

2.3.2 The Protocol

Figure 2 shows the SCSI phase transitions for a typical read operation.
Multiple I/O operations can be in progress at a time through a host bus adaptor. The setup

on the host machine for each command requires that the host create a command descriptor block
in host memory and allocate space for the operation's data and status blocks. The host then issues
the command to the HBA, including pointers to the data, status and command blocks in host
memory. The instruction also includes the SCSI address of the target device.

The HBA maintains two sets of pointers for each outstanding operation{the Current and the
Saved pointers. (There is at most one outstanding operation per disk.) The Current pointers point
to the next byte of command, data or status information to be transferred from host memory to
the device. The Saved command and status pointers always point to the start of their respective
blocks. The Saved data pointer initially points to the start of the data block. If a disconnect occurs
during data transfer, it is preceded by the SAVE DATA POINTER message issued from the target
device. This message updates the Saved data pointer to reect the current position within the data
transfer. An interrupted operation may later resume (following a reconnection and a RESTORE
DATA POINTER message) from the position in the data transfer where the data pointer was last
saved. This eliminates the need to retransmit data bytes.

After the HBA has set up these pointers, it arbitrates for the SCSI bus. When it wins, it selects
the SCSI target device. During the selection, it asserts the ATTENTION line. This is a signal to
the target that the initiator wishes to send a message. This is necessary, since in the SCSI protocol,
all bytes of data and messages sent across the SCSI bus are requested by the target device and
acknowledged by the initiator device, regardless of the direction of the transfer.

The disk responds to the ATTENTION (ATN) signal by asserting the REQUEST (REQ) line
for the initiator, which responds with an IDENTIFY message in the MESSAGE OUT phase and
an assertion of the ACKNOWLEDGEMENT (ACK) line. (The REQ/ACK protocol for all that
follows is analogous, and will not be repeated.) The IDENTIFY message contains the target logical
unit number (LUN), and indicates whether the initiator is capable of disconnection. (In RAID-I,
all devices support disconnection.)

The next phase is the COMMAND phase, in which the target requests successive bytes of the
command. In general, the HBA uses DMA to read the command bytes from host memory. In the
speci�c case of the Jaguar HBA, the command bytes at this time are in Jaguar memory space in

8

Disconnect Completion

Disconnect to Seek/Fill Buffer

Command CompletionDisconnect to Fill Buffer

Arbitration

Selection

Message Out (Identify)

Command

Message In (Disconnect)

Arbitration

Message In (Identify)

Reselection

Message In (Save Data Pointer)

Message In (Disconnect)

Arbitration

Message In (Identify)

Reselection

Status

Message In (Command Complete)

SCSI Phase Transitions -- Read Operation

Command Setup

Data Transfer

Data In

If No Disconnect Required
-- Bus Free --

-- Bus Free --

:

:

:

: :

Figure 2: SCSI phase transitions for read operations.

9

a device-speci�c Work Queue. From the work queue, the commands are sent across the SCSI bus
to the disk.

After it has received the command, the SCSI chip on the target disk decodes the instruction
and determines whether a disconnection is necessary. The disk will disconnect if a seek is necessary.
Also, on a read operation, a disconnect will occur if the amount of data in the disk's bu�er ready to
be transferred is less than the entire request, or less than speci�ed by the bu�er full ratio (whichever
is smaller). On a write, the Wren will accept data into the disk bu�er while the seek, if necessary,
is being issued; a disconnect will occur when the bu�er �lls, or when the data for the operation is
completely contained in the bu�er.

If a disconnect is necessary, the target issues a DISCONNECT message in the MESSAGE IN
phase. (Since no data has yet been transferred, the DISCONNECT message is not preceded by a
SAVE DATA POINTER message.) The target releases the busy signal and the bus goes free.

When the seek is complete, or when the relevant bu�er ratio is met so that the disk is ready to
continue the operation, the target device arbitrates for the SCSI bus. When the disk gets the bus,
the RESELECTION phase is entered. The disk sends an IDENTIFY message in the MESSAGE
IN phase, followed by the RESTORE DATA POINTER message. The HBA then reconstructs the
logical thread between the request being resumed and the pointers relating to that operation in the
HBA's local memory.

The DATA TRANSFER phase now begins. If the operation is a read, then the phase is the
DATA IN phase, and the target device asserts the REQ line as it puts each byte on the SCSI bus.
If the operation is a write, then during the DATA OUT phase, the disk requests each byte, and the
controller responds by putting the data bytes on the bus.

Data transfer continues until the operation completes or until the need arises for a disconnect.
On a read, a disconnect will occur if the disk bu�er empties (possible, since data enters the bu�er
from the disk at 1.3 MBytes/sec and leaves over the SCSI bus at 4 MByte/sec) or if a cylinder
boundary is crossed, requiring a seek. On a write, a disconnect will occur whenever the disk bu�er
�lls with data transferred from the host; when enough data is written from the bu�er to the disk
medium that the bu�er empty ratio is met, the operation can be resumed.

To disconnect, the disk �rst sends a SAVE DATA POINTER message in the MESSAGE IN
phase, which the HBA acknowledges after it saves the data pointer. Then the disk sends a DIS-
CONNECT message, and after the HBA acknowledges it, the bus goes free.

As before, when the disk is ready to resume the data transfer, it arbitrates for the SCSI bus
and reselects the initiator.

When all the data has been transferred, the target device enters the STATUS phase and sends
a status message to the HBA indicating any errors that occurred during the operation.

Finally, the MESSAGE IN phase is entered, as the target sends a COMMAND COMPLETE
message to the initiator.

2.4 Problems Encountered with Sprite and the Sun4/280

This section discusses some characteristics of Sprite and the Sun4/280 that a�ect the performance
measurements that will be discussed in Section 4. They are included here as background material.
Section 2.4.1 describes the instruction sequence of a Sprite �le system read; this sequence a�ects the
performance of RAID-I for large sequential transfers. Section 2.4.2 describes problems encountered
with the Sun 4/280's direct virtual memory addressing system.

10

2.4.1 Sprite

The host processor for RAID-I is the Sun4/280, running the Sprite Network Operating System.
Table 2 summarizes the instructions necessary to issue a read from the Sprite �le system. These

instructions were counted by Mendel Rosenblum.
This instruction sequence is relevant because it a�ects the performance of RAID-I for large

sequential operations.
Traditional �le system workloads are characterized by small transfers, performed 4 KBytes or 8

KBytes at a time. [Ouster] showed that �les are generally small, and are read and written in their
entirety. Sprite running on the RAID-I host works well for this traditional �le system workload,
but unfortunately, runs into problems for large operations.

All I/O on Sprite is done through the kernel; when the disk read is complete, for instance, the
data must be copied from kernel space into the appropriate user address space that initiated the
I/O operation. In addition, since I/O is performed through the cache on the Sun4/280 (described
in the next section in more detail), I/O operations incur a cache ush. The copy operation executes
at about 5 MBytes/sec, and is the largest problem for fast operation on the host. The cache ushes
take place at 12 MBytes/sec if the cache line is dirty, and 78 MBytes/sec if the cache line is clean.
The e�ect of the copies and cache ushes is that the Sun4/280's memory system quickly becomes
saturated with so much DMA activity occuring. The e�ect of this bottleneck can be seen in Section
4.1.2 and Section 4.4.

Because large sequential transfers create a bottleneck in the host memory system when Sprite is
used, Mendel Rosenblum wrote a system call to eliminate much of the overhead generally associated
with Sprite This system call will be referred to throughout this paper as the \no-copy system call".
The purpose of this system call was to give us a measure of the raw performance possible on the
hardware for large sequential operations. Section 3.2 discusses the system call in more detail.

2.4.2 Sun4/280 DVMA Problem

An idiosyncrasy of RAID-I's host processor, the Sun4/280, caused problems early in the testing
phase of RAID-I. It was discovered that there were never more than a few concurrent I/O operations
in progress. Members of the Sprite group traced the problem to the DVMA system used by the
Sun4/280.

All DMA from VME-based devices to the Sun4/280 pass through the host's cache using virtual
addresses. To read the disk as a raw device, the sequence of events is as follows: the read system
call is issued, and the �le system allocates a bu�er for the data from the I/O operation. This kernel
bu�er is mapped into a 1 MByte space in the address space of the currently executing process
(called the current context). During the I/O operation, the data is written to the mapped kernel
bu�er. After the data transfer is complete, the kernel bu�er is unmapped from the current context
and the cache is ushed. Data is copied from the kernel bu�er to the user space that requested the
data, and the kernel bu�er is freed.

Using this scheme, all DVMA must be done through a 1 MByte space in the current context. In
all, there are 16 contexts on the Sun4/280, but it is this same 1 MByte space that is mapped into
each of the separate contexts. They share it as they share a single copy of the kernel mapped into
each of their address spaces. So, in all there is 1 MByte of space available for concurrent DVMA
operations to use. (Actually, the space is slightly less than 1 MByte.) This space limitation reduces
the number of outstanding I/O operations to a few at a time.

11

The Sprite group was able to circumvent this limitation by changing the DVMA. Instead of
going through the 1 MByte space allotted to it in the current context, DMA is now performed
through 2 GBytes of an unused address space. This \�x" virtually eliminated the limitation on the
number of concurrent operations that could be issued from the host.

3 Tools and Methods

I used a number of di�erent tools and approaches to analyze the performance of RAID-I. Section
3.1 describes traces of activity on the SCSI bus. Section 3.2 discusses programs used to generate
and evaluate I/O performance in the array. Section 3.3 describes modi�cations of the Sprite kernel
I used to stress the array and to trace operating system behavior.

3.1 Traces

Traces of activity on the SCSI bus were collected directly using the Ancot SCSI Bus Analyzer
[Ancot]. The Ancot records the timestamps of transitions of any of the following control lines on
the SCSI bus: BSY (busy), SEL (select), ATN (attention), RST (reset), MSG (message), I/O (data
direction on the bus), C/D (control or data). The Ancot's timer has a resolution of 50 nanoseconds.

The Ancot is designed to allow trace data to be uploaded to an IBM PC/AT. Richard Drewes,
a member of the RAID group, wrote a program to upload those traces along a serial RS232 line
into the serial port of a Sun3 workstation. Traces were stored on disk, and then downloaded back
onto the Ancot for later analysis. Also, the encoded traces were processed on a Sun3, using various
awk and C programs to collect statistics on the traces.

Examples of this trace analysis are shown in Tables 3, 5, 7 and 9. The collected data includes the
percentage of time spent in each phase of the SCSI protocol and the time in each phase normalized
per I/O. (These tables are described in detail in Section 4.)

The size of traces recorded on the Ancot is limited by the size of the device's internal memory
(32K), and thus reects I/O activity over a relatively short time{generally a few seconds. Longer
periods of I/O activity were monitored using statistics-gathering programs.

3.2 Programs

Peter Chen (another member of the RAID group), Richard Drewes and I wrote user-level programs
that generated I/O operations and gathered statistics on I/O activity. The statistics gathered using
these programs reect the performance of the system including the overhead of the Sprite operating
system, described in detail in Section 4.1.2. Most of the programs were very simple, designed to
issue some number of random or sequential reads or writes, time the execution of the operations,
and report on the MBytes/sec or I/Os/sec achieved by the array. Peter Chen's \mult" program
was more sophisticated; it could issue requests as distributions of reads and writes of multiple sizes.
These features of the mult program were not used in the tests reported here.

3.3 Modi�ed Sprite Kernel

There were two sets of modi�cations to the Sprite kernel. The �rst modi�cations were intended to
circumvent some Sprite processing in order to stress the RAID-I hardware. The second set allowed
tracing of Sprite activity during I/O operations.

12

As discussed in Section 2.4.1, the copy operations and cache ushes that occur during DMA
transfers to and from the disk cause a bottleneck on the host CPU's memory system for large
or sequential operations. To measure the raw performance of the array for large operations, we
needed to eliminate some of these DMA operations. Mendel Rosenblum wrote a system call that
accepts a bu�er containing up to 512 commands and puts them all on the device driver queue at
once. This eliminates much of the overhead normally required to issue subsequent commands, since
returning to user level between these commands is not required. Also, this system call allocates a
single bu�er in DVMA space where the results of all the I/O operations are written. Subsequent
operations overwrite the data from the last operation; the data written by an I/O operation into
DVMA space is never copied to the user's address space, but is simply discarded. This system call
allowed us to measure the performance capabilities of the hardware with minimal processing of the
data being transferred. Performance measurements obtained using this system call represent an
optimistic upper bound on what the hardware can deliver.

To better understand how the overhead limiting RAID performance is divided between the
operating system and the controller, we modi�ed a Sprite kernel to record the timing of certain
I/O events. Of interest were the time at which a command is submitted to the device driver by the
�le system, when the device driver signals the Jaguar controller board that a command is awaiting
execution, when the Jaguar interrupts the host upon completion of SCSI activity, and when the
operating system completes the operation. Results obtained using this kernel are described in
Section 4.7.

4 Performance

We had two performance goals in RAID-I. We hoped to use the many available disk arms in the array
to demonstrate the ability of disk arrays to function well in environments that typically generate
small, random I/Os, such as database applications and traditional �le systems. We also hoped to
demonstrate the high bandwidth possible using a RAID for large and sequential I/O operations
typical of scienti�c computing applications. The following sections examine both workload types.

Section 4.1 looks at the performance of disks on a single SCSI string, and the performance impact
of host software overhead. Section 4.2 examines the e�ect of varying user-settable disk parameters:
disk bu�er readahead and the Bu�er Full and Empty Ratios. HBA performance is examined in
Section 4.3. Overall large sequential performance (measured in MBytes/sec) is discussed in Section
4.4, while small random I/O rates for the array (measured in I/Os/sec)are described in Section
4.5. Overheads attributable to the disk and the HBA are discussed in Section 4.6. Section 4.7
describes the results obtained from the modi�ed Sprite kernel described in Section 3.3, including
timing sequences from start to �nish for various I/O operations.

4.1 Disk and String Performance

4.1.1 String Performance with Minimal Sprite

The performance results presented in this section are for I/O operations generated using the special
no-copy system call described in Section 3.2.

Sequential Reads and the String Bottleneck

13

Single disk

Two disks, same string

Three disks, same string
Four disks, same string

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

0

1

2

3

4

Request size in Kbytes
MB/sec

RAID the First: String Bottleneck

Figure 3: Bandwidth for sequential read operations issued using the no-copy system call to disks
on a single string. A separate process issues requests to each active disk; from one to four disks are
active at a time.

Figure 3 shows the bandwidth attained on a single SCSI string performing sequential reads
using the no-copy system call. The �rst disk on the string is able to achieve its expected bandwidth
of 1.3 MBytes/second. When a second disk is added, the bandwidth approximately doubles for
large request sizes. However, when a third and fourth disk are accessed on the string, there is
very little performance improvement, indicating the existence of a performance bottleneck. The
maximum bandwidth obtained on the string is around 3 MBytes/sec, only 75 % of the expected
string bandwidth of 4 MBytes/sec. This 4 MB/sec transfer rate is agreed upon by the Wren IV
disk and the Jaguar HBA during a negotiation process in which they participate on power-up.
Trace analysis shows that data bytes do pass between the devices at 250 nsec per byte, but that the
expected sustained transfer rate of 4 MBytes/sec is not attained because of overheads associated
with the disk and controller in implementing the SCSI protocol. These overheads are described in
detail in Section 4.6.

Table 3 lists the percentage of time and the normalized time per I/O spent in each phase of the
SCSI protocol for a trace of 32 KByte sequential reads. A separate process issued these reads to
each of four disks on a single SCSI string.

The time spent in the arbitration phase is very short, indicating that four disks can perform large
sequential transfers without consuming much SCSI bandwidth with arbitration overhead. Most of

14

the other SCSI phases (messages, selection, disconnects, reconnects, etc.) similarly account for very
little time in the life of the transaction.

Large sequential transfers are dominated by time spent in the data transfer phase, which ac-
counts for 93% of the time on the SCSI bus during this trace. This is not surprising, since for
sequential transfers, there are no seeks between subsequent transactions. Other overheads from
the protocol consume only a few milliseconds, and the minimum time in the data transfer phase
is 7.8 msec (the time to transfer 32 KBytes over the SCSI bus at 4 MBytes/sec). As mentioned
above, there are overheads within the data transfer phase that make the actual transfer time longer
than this minimum. In this trace, the time in the data transfer phase is approximately 10 msec
per transaction. The overheads that account for this longer transfer time are discussed in detail in
Section 4.6.

The SCSI bus is free only 1% of the time in this trace. The bus is fully utilized. Since only 75%
of the expected bandwidth from the string is achieved, 25% of the bandwith must be consumed by
SCSI overheads. Given these overheads, 3 MBytes/sec is the best bandwidth that can be achieved
on a single SCSI string.

Table 3 does not include normalized numbers for the average bus free time during a transaction.
Trace analysis does not give an accurate measure of average bus free time per I/O, since in this
trace there are four disks active on the SCSI string at a time, and their operations overlap. The
time that the bus is actually free in the trace represents the amount of time overall that there is
no such overlap.

An interesting question is how busy the host CPU is during this period. Unfortunately, this is
not a straightforward question to answer. Idle time on a CPU is measured by counting the number
of times that the CPU executes the instructions in an \idle loop". These instructions must be
fetched over the memory bus before they can be executed. It is our assertion that when performing
intensive I/O, the Sun4/280 host experiences saturation on its memory bus rather than in its CPU
because of all the copy operations performed by the operating system. This complicates the CPU
utilization measurements, because the DMA for the copy operations has precedence in acquiring
the memory bus over the CPU process attempting to execute the idle loop. If there is a lot of
tra�c over the memory bus, then the CPU will be slow in fetching subsequent instructions of the
idle loop, and its idle time will be underestimated in CPU utilization measurements. Thus, it will
appear that the CPU is highly utilized when it is actually the host memory system that is highly
utilized.

The \CPU utilization" numbers that can be measured, although not accurate measures of the
CPU's status for the reason just explained, nonetheless do allow a comparison to be made between
di�erent workloads and how they stress the combination of the host memory and CPU. Such
numbers will be referred to here as Sun4/280 host utilization measurements. Low host utilization
numbers indicate that the Sun4/280's memory system is not highly utilized, and that the CPU has
no trouble fetching the instructions to execute the idle loop. High host utilization numbers indicate
that either the CPU or the memory system has become a bottleneck. In our case, the memory
system is generally the limiting factor for performance, due to the number of copy operations being
performed (see Section 2.4.1).

For 32 KByte sequential reads issued by the special no-copy system call to four disks on a string,
the host utilization measurement is 7.69%, indicating that the host memory system and CPU are
not a performance limitation in this case.

Figure 3 represents performance of sequential reads when the disk bu�ers are enabled for reada-

15

Four disks, same string
No-copy sequential reads

Sequential Write Performance, Operations Issued from System Call

MB/sec

Request size in Kbytes

4

3

2

1

0

128120112104968880726456484032241680

Four disks, same string
Three disks, same string
Two disks, same string

Single disk

Figure 4: Bandwidth for sequential writes generated using the no-copy system call. A separate
process issues requests to each active disk. The top line in the graph is the bandwidth for no-copy
sequential reads issued to four disks, included for comparison.

head. Much (or all, for small operations) of the data for a sequential read is contained in the disk
bu�er before the operation begins. Section 4.2.1 examines the performance consequences of dis-
abling readahead in the disk bu�ers.

Sequential Writes

Figure 4 shows the performance for sequential writes issued to one, two, three and four disks
from the no-copy system call.

The bandwidth achieved for sequential writes is much lower than that for reads. For a single
disk, performance approaches 1.1 MBytes/sec only for the largest request sizes. By comparison,
in the sequential read case, 1.3 MBytes/sec was achieved even for small request sizes. Four disks
active on a string achieve only around 2 MBytes/sec, compared to 3 MBytes/sec in the sequential
read case. (The top line in the graph shows the sequential read performance for four disks, for
purposes of comparison.)

The disparity in performance results partly from the inability to use readahead, which helped
performance in the sequential read case. It also results partly from a longer data transfer phase on
write operations. Table 4 shows the breakdown of SCSI phase times for 32 KByte sequential writes

16

to four disks. On average, 14 msec are spent in the data transfer phase compared to 10 msec for
sequential reads.

We examined a trace of 32 KByte sequential write operations on the Wren IV. On every trans-
action in the trace, the command was sent to the disk immediately followed by data. Each time,
the entire 32 KBytes of data were sent to the track bu�er before the disk disconnected. Since the
new transaction holds onto the data bus in the Data Transfer Phase until all its data has been
transferred to the disk bu�er, some transactions that could otherwise use the bus are unable to
do so. In addition, the data transfer phase of sequential write operations is longer than that of
sequential reads because the write operations su�er pauses during data transfer. These pauses
begin after the �rst 8 KBytes of data have been transferred, occur every 512 bytes thereafter, and
last for 100 to 400 msec. The pauses are caused either by the Jaguar or by the Wren IV; I was
unable to tell which, because the Ancot does not reveal the signals on the request and acknowledge
lines that would have revealed which component was holding up the transfer. These delays within
the data transfer phase explain why the bus continues to be fully utilized in this case but lower
bandwidth is achieved.

Another intersting observation about sequential write performance is that a single write spends
much longer on the Jaguar board than a read does. I suggest that the di�erence is caused by a missed
rotation on the sequential write operation. Tables 24 and 25 show a timeline for non-overlapped
sequential reads issued from the no-copy system call to a single disk. These timelines show that
approximately 16 msec of extra time is spent on the Jaguar board during write operations. About
4 msec of this time is due to the extra time spent in the data transfer phase in the sequential write
operation. The other 12 msec appears to be the results of a missed rotation. Between subsequent
operations, some processing in the Jaguar device driver and some setup time on the Jaguar board
are required; this processing consumes several hundred microseconds. Then SCSI overheads are
incurred. By the time the write operation actually is ready to write data from host memory to the
disk, the disk position has moved past the starting point for the write operation on the disk. The
12 msec extra time seen in the write trace compared to the read trace corresponds to about 3/4 of
a full rotation.

Host utilization is measured at 5.2% for this case, once again indicating that the Sun4/280 CPU
and memory system are not a bottleneck for operations issued by the special system call, since the
copy operation and most cache ushes are eliminated.

Random Reads

Figure 5 is a graph of I/O rates for small random read operations issued using the no-copy
system call for minimal Sprite processing. Table 5 shows the breakdown of the various SCSI phases
for two traces. Both involve 4 KByte random read requests to each of four disks on a single string.
The �rst set of measurements is for requests issued by a separate process for each disk. The second
set of measurements is for requests issued by four processes per disk.

The �rst three disks activated on a string get 30 I/Os/sec each for 4 KByte random operations.
When four disks are active on a string, there is a slight performance degradation, with each disk
consistently achieving only 29 I/Os/sec. This slight decrease in I/O rate per disk for four disks on a
string is not the result of string contention; Table 5 shows that the SCSI bus is free approximately
2/3 of the time. The small degradation is also not the result of contention on the host memory

17

one disk

two disks

three disks
four disks

0 4 8 12 16 20 24 28 32 36 40 44 48

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Request size in Kbytes

IOs/sec

I/O Rates on a String, Random Operations

Figure 5: I/O Rates for random operations generated using the no-copy system call. A separate
process issues requests to each active disk.

18

bus or CPU; host utilization measures only 7% in this case. Thus, the slight drop in performance
when four disks are active on the string must be caused by the Jaguar's internal processing.

Figure 5 shows that larger random operations su�er signi�cant performance losses when a third
and fourth disk on the string are activated. This degradation is caused by utilization of the SCSI
string, which measures nearly 80 % for four disks performing 48 KByte operations.

The most dramatic di�erences between Table 5 and Table 3 are the decreased time spent in
the data transfer phase, and the increased percentage of time that the SCSI bus is free. Since
the transactions in the trace are small (4 KBytes), a short data transfer phase is expected. The
Jaguar controller is optimized for such short transactions, and performs e�ciently. Thus, each data
transfer phase takes about 1.5 msec, only slightly longer than the minimum transfer time of 1 msec.

The increase in bus free time is also not surprising. These small operations are dominated by
average seek and rotation times (26 msec) plus the time to satisfy the Bu�er Full Ratio (3.3 msec
to move 4 KBytes o� the disk head), which dwarf data transfer time (less than 1 msec for 4 KByte
transfers) and protocol overheads (a few msec). Even with an operation pending on each of the
four disks, the SCSI bus will be idle most of the time, because the disks spend most of their time
performing seeks.

The other phases of the SCSI protocol (selection, messages, status, etc.) show some small
deviations from Table 3, and because the request size is smaller in this case and the transaction
time is shorter, these phases account for a larger percentage of the total than they did in the
sequential read case. However, these other phases still represent a small fraction of the lifetime of
a transaction.

Random Writes

Small random write performance is actually better than small random read performance, as
shown in Figure 6. Each disk on the string achieves about 32 I/Os/sec for random writes, as
compared to 30 I/Os per second in the case of reads.

The slightly better performance is due to the ability of the disks to perform the seek simul-
taneously with the transfer of data into the disk bu�er. This is not possible on random read
operations.

The signi�cant di�erences between Tables 5 and 6 illustrate the di�erent ways reads and writes
are performed on the Wren IV disks. For reads, the seek is performed after the disk has relinquished
the SCSI bus; after the seek, the disk initiates a reconnect to transfer data. For writes, the seek is
begun concurrently with the data transfer phase, and the disk holds onto the SCSI bus for much
longer (16600 usec) than in the read case (1500 usec). Thus, for the read trace, the SCSI bus was
only about 33% utilized, while in the write case is is 99% utilized.

The kernel traces shown as timelines in Tables 30 and 31 show that a single operation spends
the same amount of time on the Jaguar board for random reads and writes. The di�erence in the
operations, apparent in Tables 5 and 6, is how long an operation holds on to the SCSI bus. For
small (4 KByte) random operations, this di�erence does not a�ect performance for write compared
to reads, since the SCSI bus had low utilization in the read case. The writes \use up" the remaining
bandwidth of the SCSI bus, and the resulting I/O rates in Figures 5 and 6 are very similar.

19

Write Performance for Random Operations, Issued from System Call

IOs/sec

Request size in Kbytes

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

48444036322824201612840

four disks
three disks
two disks

one disk

Figure 6: I/O Rates for Random Write Operations Issued from the No-Copy System call to four
disks on a single string. A separate process issues requests to each active disk.

20

four disks, same string
No-copy sequential reads

String Performance including Sprite, Sequential Reads

MB/sec

Request size in Kbytes

4

3

2

1

0

128120112104968880726456484032241680

four disks, same string
three disks, same string

two disks, same string

one disk

Figure 7: Bandwidth for sequential read operations issued from Sprite user level to four disks on a
single string. A separate process issues requests to each active disk. The top line in the graph is
the bandwidth for no-copy system call reads issued to four disks, included for comparison.

4.1.2 String Performance Including Sprite

This section looks at string performance when I/O operations are issued as raw disk requests from
Sprite user level, rather than with the no-copy system call. The previous section represented the
best performance that could be achieved on a string. There is an obvious drop in performance when
executing a \real" operating system. Unlike the special no-copy system call, the Sprite operating
system must return data to the user process that requested it. In order to do this, Sprite performs
a number of copy and cache ush operations. These operations cause contention on the Sun4/280
host's memory system, resulting in performance that is lower than the maximum numbers described
in the last section.

Sequential Reads

Figure 7 shows a graph similar to that of Figure 3. It depicts sequential read activity for one,
two, three and four disks on a single SCSI string. Here, the requests are issued as raw disk requests
from Sprite user level.

The performance of a single disk on the string is somewhat lower than the corresponding
performance in Figure 3. The highest bandwidth achieved is 1.2 MBytes/sec for request sizes in

21

the range of 16 KBytes to 56 KBytes. For larger request sizes, the bandwidth drops to about 1
MByte/sec. There is no obvious explanation for the performance drop for larger requests. Tables 12
and 14 show the timelines for 128 KByte and 32 KByte sequential read operations. These timelines
demonstrate that the time on the Jaguar board, the time for the DMA free cache ush operation
and the data copy time are all proportional to the size of the transfer. Since as many bytes must
be copied and ushed per MByte in either case, there appears to be no reason for the performance
drop for larger sequential reads issued from Sprite user level. This decrease has been consistently
measured over many iterations of the test, however.

The performance degradation for 32 KByte sequential reads issued under Sprite compared to
those issued from the no-copy system call is the result of the extra processing necessary when
Sprite is used. A comparison of the timelines in Tables 14 and 24 show that sequential reads
issued from the no-copy system call and from Sprite spend the same amount of time on the Jaguar
board. However, there is considerable extra processing evident in the Sprite timeline. In particular,
signi�cant time is spent doing the cache ush of DMA space and doing the copy of data from the
kernel to user space.

When a second disk on the string is accessed along with the �rst, the combined bandwidth of
the two disks is around 1.8 MBytes/sec, compared to approximately 2.6 MBytes/sec in �gure 3.
When a third and fourth disk are accessed, performance continues well under the level of Figure
3. The maximum bandwidth seen in the four disk cases is around 2.3 MBytes/sec, about 75% of
the 3 MBytes/sec bandwidth achieved for sequential reads issued to four disks from the no-copy
system call, shown in the top line of Figure 7 for comparison.

Table 7 shows the breakdown of time spent in the various SCSI phases for the 32 KByte raw
sequential reads issued to four disks (one process issuing requests per disk). The SCSI bus is idle
only 3.8% of the time in this trace. This number is slightly larger than the corresponding bus
free time in Table 3, but indicates that the SCSI bus is highly utilized, and is the reason for the
performance limitation of the string.

Tables 7 and 3 are surprisingly similar. The only signi�cant di�erence is that a little more time
is spent in the data transfer phase in the Sprite trace.

The overall throughput of this trace is limited to 2.3 MBytes/sec. This turns out to be an
important number, since it is the maximum bandwidth that can be achieved by the array under
Sprite on the Sun4/280. The host utilization, which measures 75.6% in this case, is the reason
for this limitation. It indicates that the host memory bus is reaching saturation, and cannot
support greater bandwidth. During Sprite I/O, the host performs copy operations and cache
ushes. These operations saturate the host memory system, and cause the performance bottleneck
at 2.3 MBytes/sec.

When the no-copy system call was used, the comparable host utilization for similar operations
was 7.69%.

Sequential Writes

The performance of large sequential writes using full Sprite processing is shown in Figure 8,
and the SCSI phases for a trace of four disks performing 32 KByte sequential writes are described
in Table 8. Compared to Figure 4, where the operations were issued from the low overhead system
call and four disks achieved 2 MBytes/sec, in Figure 8 only 1.5 MBytes/sec is achieved. This 25%

22

four disks, same string
Sprite sequential reads

Sequential Write Performance, Operations Issued from User Level

MB/sec

Request size in Kbytes

4

3

2

1

0

128120112104968880726456484032241680

Four disks, same string
Three disks, same string
Two disks, same string

Single disk

Figure 8: Bandwidth for sequential writes issued from Sprite user level. A separate process issues
requests to each active disk. The top line in the graph is the bandwidth of sequential reads issued
to four disks from Sprite user level, included for comparison.

di�erence in performance may be caused by a cache miss for the bu�er from which data is being
transferred on the host.

The performance of user level sequential writes is also signi�cantly lower than user level sequen-
tial reads, shown in the top line in Figure 8. In the last section, we observed that the trace of 32
KByte sequential reads issued from the special system call had data transfer phases that averaged
13 msec, instead of the minimum time of about 8 msec. In the case of 32 KByte sequential writes
issued from user level, the time spent in the data transfer phase averages 20 msec. A cache miss
would explain this discrepancy.

As in the no-copy system call traces, the traces of sequential reads and writes issued from Sprite
user level show that much more time is spent on the Jaguar board in a single user-level sequential
write than in a read. Once again, this increase can be explained by a missed rotation su�ered by
sequential writes. In the user level I/O traces, the di�erence between the time spent on the board
for reads and writes is 10 msec. This is less than the 16.7 msec required for a full rotation, since
host processing overlaps about 6 msec of the disk rotation. This 6 msec of host processing can be
seen in Table 14 as the sum of the times required to perform the data copy, the cache ush, and
other Sprite operations.

The measured host utilization in this case is 36.3%, signi�cantly higher than the 5.2% in the
case where writes were issued from the special system call, but signi�cantly lower than the 75.6

23

No-copy random reads, four disks

I/O Rates on a String, Random Operations from Sprite User Level

IOs/sec

Request size in Kbytes

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

48444036322824201612840

four disks
three disks
two disks
one disk

Figure 9: I/O Rates for small random reads issued from Sprite user level. A separate process issues
requests to each active disk. The top line in the graph shows the I/O rates for small random reads
issued from the no-copy system call, included for comparison.

% utilization for sequential reads. The reason that utilization is lower for writes than for reads is
that the DMA ush operation for a sequential write operation is much faster than for a sequential
read operation, since in the write case, the ushed cache blocks are likely to be clean. Tables 14
and 15 show that the DMA ush for reads is approximately �ve times slower in the read case. See
the discussion in 4.7 for more details on cache ushing rates.

Random Reads

Figure 9 shows the I/O rates achieved for small random reads issued from Sprite user level.
Compared to Figure 5, this graph shows a small performance penalty for small random operations
issued from Sprite user level. This penalty translates into a loss of 2 or 3 I/Os per second per active
disk when the random operations are issued from Sprite user level, or about 10% per disk. In the
case of four disks performing 4 KByte random reads on a string, issuing the reads from Sprite user
level results in an I/O rate of 103 I/Os/sec, while issuing them from the no-copy system call gave
114 I/Os/sec. The top line in Figure 9 shows no-copy read I/O rates for comparison.

This small performance degradation is due to the addition of full Sprite processing, including
copy and cache ush operations. The copy overhead is proportional to the size of the transfer, and
is relatively small for 4 KByte operations, so subsequent operations are issued fairly quickly. There

24

is some delay in issuing subsequent operations, however, so the disks are not kept as busy as they
were when I/O was issued from the special system call.

Table 9 shows the breakdown for small random reads issued from Sprite user level. In comparison
to Table 5, Table 9 shows a slightly higher percentage of bus free time. This is evidence that there
is some e�ect from the delay in issuing subsequent instructions due to the data copy operation. The
number of I/Os per second is also reduced a little for the case of a single process issuing requests to
a particular disk; this number drops to 121 from 130 in the earlier case. However, having multiple
processes issue requests to the four disks (to increase the depth of the request queues) brings the
total number of I/Os/sec back to previous levels, and to the maximum capabilities of the disks.

25

Wren IV

Diameter 5 1/4"
Formatted Capacity 344 MBytes
Rotational Speed 3600 RPM
Avg. rotation 8.33msec
Avg. seek 17.5msec
Surfaces 9
Heads 9
Tracks 549 per surface
Sectors per track variable
Data transfer rate variable, avg. 1.3 MB/sec
I/O rate (4KByte random reads) 33 I/Os/sec
Bytes per sector 512 default

Table 1: Characteristics of Imprimis Wren IV Disks Used in RAID-I

Sprite Instruction Counts

Trap for read system call 118 instr
Read system call; convert �le handle to pointer 536 instr
Look for request in cache 192 instr
On cache miss, convert data request into disk block 1228 instr

address; generate "generic" SCSI command
Setup command in Jaguar device driver; 951 instr

convert to Jaguar-speci�c command format;
stu� into Jaguar board;
allocate DMA space for data to be written into

(I/O issued at this point)
Back out of routines to wait for interrupt from disk 443 instr
On interrupt, check the operation's status; 3548 instr

free DMA space used for data
Copy 4K to user space, back out of procedure calls 6433 instr

(includes 20 register window overow/
underow pairs)

Total: 13449 instr

Table 2: Instruction counts for issuing a 4 KByte �le system read operation from Sprite user level.

26

Time in Each SCSI Phase Percentage Normalized

Arbitration .06 % 6.5 usec
Selection .20 % 22 usec
Command 4.02 % 430 usec
Message Out .72 % 77 usec
Message In .22 % 24 usec
Data Transfer 93.15 % 10000 usec
Disconnect/Reconnect 0.11 % 12 usec
Reselection 0.02 % 2.0 usec
Status 0.45 % 48 usec
Bus Free 1.05 %

Elapsed Time of Trace 6.64 sec
I/Os completed 620
Bandwidth 2.92 MBytes/sec

Table 3: Breakdown of time in SCSI phases for trace of 32 KByte sequential reads issued by no-copy
system call. Four disks are active during this trace, with a separate process issuing requests to each
disk. Note the high (99%) utilization of the SCSI string. The column labeled \Normalized" gives
the average time per I/O spent in each phase of the protocol.

Time in Each SCSI Phase Percentage Normalized

Arbitration 0.07 % 11 usec
Selection 0.14 % 22 usec
Command 2.3 % 355 usec
Message Out 0.16 % 25 usec
Message In 1.9 % 290 usec
Data Transfer 93.1 % 14400 usec
Disconnect/Reconnect 1.06 % 160 usec
Reselection 0.21 % 32 usec
Status 0.31 % 48 usec
Bus Free 0.77 %

Elapsed Time of Trace 8.73 sec
I/Os completed 565
Bandwidth 2.02 MBytes/sec

Table 4: Breakdown of time in SCSI phases for trace of 32 KByte sequential writes issued by special
no-copy system call. Four disks are active in this trace, with a separate process issuing requests to
each disk.

27

1 Process/Disk 4 Processes/Disk
Time in Each SCSI Phase Percentage Normalized Percentage Normalized

Arbitration 0.43 % 33 usec 0.37 % 28 usec
Selection 0.55 % 42 usec 0.52 % 39 usec
Command 6.21 % 480 usec 6.33 % 480 usec
Message Out 4.29 % 330 usec 4.37 % 330 usec
Message In 0.32 % 25 usec 0.32 % 24 usec
Data Transfer 20.0 % 1500 usec 20.4 % 1500 usec
Disconnect/Reconnect 0.38 % 29 usec 0.38 % 29 usec
Reselection 0.07 % 5.4 usec 0.06 % 4.7 usec
Status 0.68 % 52 usec 0.68 % 52 usec
Bus Free 67.1 % 66.6 %

I/O's per second 130 132

Table 5: Breakdown of time in SCSI phases for two traces of 4KByte random reads issued from
the no-copy system call. Four disks are active in each case. The �rst two columns show statistics
for requests generated by a single process per disk, and the second two show statistics for requests
generated by four processes per disk.

Time in Each SCSI Phase Percentage Normalized

Arbitration 0.2 % 35 usec
Selection 0.2 % 30 usec
Command 2 % 360 usec
Message Out 0.1 % 22 usec
Message In 1.8 % 330 usec
Data Transfer 94.0 % 16600 usec
Disconnect/Reconnect 0.6 % 100 usec
Reselection 0.005 % 0.8 usec
Status 0.3 % 48 usec
Bus Free 0.7 %

I/O's per second *

Table 6: Breakdown of time in SCSI phases for trace of 4KByte random writes issued from No-
Copy system call. Four disks are active in this trace, with a separate process issuing request to
each disk. *Because of recent problems with the trace upload program, these trace statistics had
to be gathered by hand over a small number of I/Os. They are less reliable than the other tables,
so I don't include an overall I/O rate number here.

28

Time in Each SCSI Phase Percentage Normalized

Arbitration 0.05 % 7.0 usec
Selection 0.16 % 22 usec
Command 3.0 % 420 usec
Message Out 0.49 % 68 usec
Message In 0.17 % 24 usec
Data Transfer 91.9 % 12800 usec
Disconnect/Reconnect 0.07 % 9.8 usec
Reselection 0.01 % 1.4 usec
Status 0.41 % 57 usec
Bus Free 3.8 %

Elapsed Time of Trace 8.72 sec
I/Os complete 625
Bandwidth 2.24 MBytes/sec

Table 7: Breakdown of time in SCSI phases for a trace of 32 KByte sequential reads issued from
Sprite user level. Four disks are active in this trace, with a separate process issuing requests to
each disk.

Time in Each SCSI Phase Percentage Normalized

Arbitration 0.05 % 10 usec
Selection 0.10 % 22 usec
Command 1.68 % 370 usec
Message Out 0.11 % 24 usec
Message In 1.25 % 280 usec
Data Transfer 89.3 % 19700 usec
Disconnect/Reconnect 0.77 % 170 usec
Reselection 0.14 % 30 usec
Status 0.22 % 49 usec
Bus Free 6.41 %

Elapsed Time of Trace 12.5 sec
I/Os completed 566
Bandwidth 1.42 MBytes/sec

Table 8: Breakdown of time in SCSI phases for trace of 32 KByte sequential writes issued from
Sprite user level. Four disks are active in this trace, with a separate process issuing requests to
each disk.

29

Time in Each SCSI Phase Percentage Normalized Percentage Normalized

Arbitration 0.12 % 9.6 usec 0.42 % 33 usec
Selection 0.27 % 22 usec 0.52 % 40 usec
Command 5.66 % 470 usec 6.16 % 480 usec
Message Out 3.60 % 300 usec 4.38 % 340 usec
Message In 0.30 % 24 usec 0.31 % 24 usec
Data Transfer 18.7 % 1500 usec 19.7 % 1500 usec
Disconnect/Reconnect 0.53 % 44 usec 0.38 % 30 usec
Reselection 0.04 % 3.2 usec 0.06 % 4.7 usec
Status 0.62 % 51 usec 0.68 % 53 usec
Bus Free 70.2 % 67.4 %

I/O's per second 121 129

Table 9: Breakdown of time in SCSI phases for two traces of 4KByte random reads issued from
Sprite user level. The �rst two columns show statistics for requests generated by a separate process,
and the second for requests generated by four processes per disk.

30

Write Performance for Random Operations, Issued from User Level

IOs/sec

Request size in Kbytes

120

110

100

90

80

70

60

50

40

30

20

10

0

48444036322824201612840

No-copy random writes, four disks

four disks
three disks
two disks

one disk

Figure 10: I/O Rates for small random writes issued from Sprite user level. A separate process
issues requests to each active disk. The top line in the graph shows the I/O rates for small random
writes issued from the no-copy system call, included for comparison.

The Sun4/280 host utilization numbers for small random read operations issued to four disks
from Sprite user level is 21.3%. Compared to the 7.0% utilization when requests were issued
from the no-copy system call, the utilization increase caused by including all Sprite processing is
signi�cant.

Random Writes

Figure 10 shows I/O rate performance for small random write operations issued from Sprite
user level. The penalty for including Sprite is about the same as in the random read case: close to
10% of the I/O rate per disk for small operations. The no-copy small random write performance
line is included in the graph for comparison. Table 10 shows the breakdown of time spent in the
various SCSI phases. Performance for random writes issued from Sprite is very close to that for
random reads.

31

Random Read Operations Issued to Four-Disk RAID from RAID driver

I/Os / sec

Request size in KBytes

100

90

80

70

60

50

40

30

20

10

0

48444036322824201612840

Sprite random reads, four disks
Parallelism = 16
Parallelism = 8
Parallelism = 4

Figure 11: I/O Rates of four disks on one string con�gured as a single-row RAID device performing
random read operations. Parallelism of 4, 8 and 16 indicates the number of independent processes
issuing requests to the array. The top line in the graph shows small random reads issued from
Sprite user level; it is included for comparison.

4.1.3 String Performance including Sprite and the RAID Driver

Figures 11 and 12 show the performance of random read and write operations performed on four
disks on a string con�gured as a four-disk, single row RAID Level 5 logical device [RAID]. Requests
are issued to these disks using the RAID driver written by Ed Lee. Data is striped across the disks
in units of 32 KBytes. Requests of less than 32 KBytes are satis�ed by a single disk. (Requests are
aligned on stripe unit boundaries.)

It is di�cult to compare the performance of disks accessed directly with those accessed as part
of a RAID device. The goal in including these numbers is to demonstrate that the extra overhead
of executing the RAID driver has a signi�cant e�ect on I/O rates, as seen in the top lines of Figures
11 and 12.

I tested three di�erent workloads: parallelism of 4, 8 and 16 processes issuing I/O requests
to the 4-disk RAID at a time. Since the sectors requested were chosen randomly, more processes
issuing requests at a time increased the likelihood of disks being highly and evenly utilized. The
RAID device achieves about 95 I/Os per second in the random read case with parallelism of 16
and request size of 4 KBytes. This compares to approximately 105 I/Os per second achieved when
requests were issued from Sprite user level.

Write performance is poor in this case, since we are performing small writes. On a RAID
device, a small write turns into four separate operations, since the old data must be read along

32

Time in Each SCSI Phase Percentage Normalized

Arbitration 0.12 % 26 usec
Selection 0.25 % 55 usec
Command 4.9 % 1080 usec
Message Out 0.27 % 60 usec
Message In 2.6 % 570 usec
Data Transfer 16.9 % 3700 usec
Disconnect/Reconnect 1.88 % 410 usec
Reselection 0.09 % 20 usec
Status 0.53 % 120 usec
Bus Free 72.4 %

I/O's per second 111

Table 10: Breakdown of time in SCSI phases for trace of 4KByte random writes issued from Sprite
user level. A separate process issues requests to each active disk.

Random Write Operations Issued to Four-Disk RAID from RAID driver

I/Os / sec

Request size in KBytes

100

90

80

70

60

50

40

30

20

10

0

48444036322824201612840

Sprite random writes, four disks

Parallelism = 16
Parallelism = 8
Parallelism = 4

Figure 12: I/O Rates of four disks on one string con�gured as a single-row RAID device performing
random write operations. Parallelism of 4, 8 and 16 indicates the number of independent processes
issuing requests to the array. The top line in the graph shows small random writes issued from
Sprite user level; it is included for comparison. Note that the I/O rates for the RAID device are
logical rather than physical I/Os, and actually represent four physical I/Os for each logical I/O.

33

Two disks, no readahead

Three disks, no readahead
Two disks, readahead

Three disks, readahead

Sequential Read Performance With and Without Disk Buffer Readahead

MB/sec
Request size in Kbytes

4

3

2

1

0

128120112104968880726456484032241680

Single disk, no readahead

Single disk, readahead

Figure 13: Bandwidth with and without readahead enabled for sequential read operations generated
using the no-copy system call to three disks on a single string. A separate process issues requests
to each active disk.

with the old parity, and when the parity has been updated, the new data and new parity must be
written. See [RAID] for a discussion of the small write performance issues in RAID. The small write
performance was about 27 (logical) small writes/sec, compared to 111 (physical) small writes/sec
performed from Sprite user level.

4.2 Disk Parameters

Very few parameters on the Wren IV disks can be varied by the user. Those that can include
the readahead enable bit, the Bu�er Full Ratio and Bu�er Empty Ratio. The following sections
describe the e�ect on performance of varying these parameters.

4.2.1 Using the Disk Bu�er for Readahead

The Imprimis Wren IV disks have 32 KByte bu�ers through which all data is transferred. These
bu�ers are used for speed matching, allowing the disk to transfer data across the SCSI bus at 4
MBytes/sec instead of at the rate data comes o� the disk head (1.3 MBytes/sec). In addition,
these bu�ers can be enabled to perform readahead to improve the performance of sequential read
operations.

34

three disks, readahead
three disks, no readahead

two disks, readahead
two disks, no readahead

one disk, readahead
one disk, no readahead

String Performance on Random Reads, With and Without Cache

MB/sec

Request size in Kbytes

3

2

1

0

48444036322824201612840

Figure 14: I/O Rates with and without readahead enabled for random reads generated using the
no-copy system call to three disks on a string. A separate process issues requests to each active
disk.

Figure 13 shows the performance of various numbers of disks with and without their disk bu�ers
enabled for readahead on sequential read operations. This test used the no-copy system call. The
gap in performance between enabling the disk bu�ers for readahead and not doing so is consistently
large for sequential operations. It is most dramatic on small requests, since when readahead is
enabled, these can come directly from the track bu�er without waiting for additional disk accesses.
In contrast, as requests get larger than the full track bu�er size (32K), the performance advantage
for readahead on the disk bu�er narrows. On these larger operations, the track bu�er will have
to be �lled multiple times, and readahead will give an advantage only for the �rst 32 KBytes of a
request. This explains why the gaps in performance narrow as requests get large.

While track bu�ers enabled for readahead improve the performance of sequential reads, they
degrade performance very slightly for random reads. Figure 14 shows small random read operations
on a string with between one and four disks active, with and without readahead. The performance
di�erence is very small. Where there is a di�erence, the advantage generally goes to the case where
the track bu�er is not enabled for readahead. Not surprisingly, it appears to take a little longer
to stop writing into the track bu�er and perform a seek than it does to perform the seek when
readahead is not being performed. The performance di�erence is shown in the graph.

35

The advantage for sequential read operations is so large and the performance penalty for random
operations is so small that there is no reason to disable the readahead option on the Wren IV disk
bu�ers.

4.2.2 Bu�er Full and Empty Ratio E�ects

The role played by the Bu�er Full Ratio (BFR) and the Bu�er Empty Ratio (BER) was described
in Section 2.1.3. The BFR relates to reads, and speci�es the amount of data that must be read into
the disk bu�er before the disk attempts to obtain the SCSI bus to transfer data. The BER relates
to writes; after the data bu�er �lls with data to be written to disk, the disk will disconnect from
the SCSI bus and write the data from the bu�er onto the disk medium. When the disk's bu�er is
empty enough to meet the BER, then a reconnection will occur and more data will be accepted
by the disk from the HBA. (For simplicity, this section will refer to BFR and BER values by the
number of bytes represented by the ratio, rather than by the ratio itself.)

The choice of the BFR and BER parameters determines the number of disconnects and recon-
nects that will occur during an I/O. A small BFR (say, 512 bytes) will result in a large number of
disconnects during a read operation. Whenever the disk reads 512 bytes into its bu�er, the disk will
attempt to get hold of the bus and transfer the data out. During the time it takes to arbitrate for
the bus, some more data for the request will be read into the bu�er. Data can only be written into
the bu�er at a rate of 1.3 MBytes/sec, but it is transferred across the SCSI bus at 4 MBytes/sec.
Thus, the bu�er will soon be emptied, and a disconnect will occur. The smaller the BFR, the
more frequent are the disconnects and the shorter the time a particular device will hold onto the
SCSI string to transfer data, since there will be less data in the bu�er to transfer out. Analogous
behavior occurs for writes depending on the value of the BER.

From the SCSI phase tables of Sections 4.1.1 and 4.1.2, we saw that disconnect, reconnect,
arbitration and messages for saving and restoring data pointers accounted for a very small part of
the lifetime of a transaction. Since disconnects are not \expensive", we would expect that changing
the BFR and BER would not have much e�ect. This turns out to be true in the middle range of
possible values for the BFR and BER. However, there are some minor di�erences that result from
changes in the BFR and BER in this range. Below, I explain the expected performance di�erences
for di�erent BFR values and show experimental data to support these predictions. (The remainder
of this discussion will focus on reads and the BFR. Analogous conclusions apply for writes and the
BER.)

Small random (e.g., 4 KByte) operations are dominated by their seek times. Good perfor-
mance on such operations depends on how quickly their seeks are issued. A large BFR allows
one transaction to transfer all its 4 KBytes of data before giving up the SCSI bus. A small (e.g.,
512 bytes) BFR, on the other hand, results in a number of disconnects during the 4 KByte data
transfer, allowing seek operations for other disks to be issued more quickly. Thus, somewhat better
performance for small random operations is expected for smaller BFRs.

By contrast, good performance for large operations depends on e�cient data transfer. Large
BFRs are expected to do better for such workloads, since they allow a large amount of data to
be transferred for each SCSI disconnect/reconnect overhead. A small BFR for a very large (e.g.,
128 KByte) transfer would result in a large number of disconnects and reconnects. Although the
overhead for each disconnect and reconnect is small, the combination of so many is expected to be
signi�cant enough to a�ect performance.

36

BFR = 512 Bytes and 16 KBytes

Bandwidth of Sequential Reads, No-Copy System Call

Two disks, same string, BFR = 512 bytes

One disk, BFR = 512 bytes
One disk, BFR = 16 KBytes

Two disks, same string, BFR = 16 KBytes

Three disks, same string, BFR = 16 KBytes
Three disks, same string, BFR = 512 bytes

MB/sec

Request size in Kbytes

4

3

2

1

0

128120112104968880726456484032241680

Figure 15: Bandwidth for sequential reads generated using no-copy system call for BFR = 16
KBytes and BFR = 512 bytes.

37

These expectations generally agree with observed performance. Figure 15 shows sequential read
performance for one, two and three disks on a single string for BFR = 512 bytes and for BFR = 16
KBytes. These I/Os were generated using the no-copy system call. For one and two disks active
on a string, there is not a clear winner between the BFR values, although the smaller BFR is
ahead for more of the time. In the three-disk case, the smaller BFR still wins on smaller operations
(up to about 32 KBytes) because the latency is lower with the smaller BFR. However, for larger
operations, the 16KByte BFR is a clear winner. As expected, in these larger operations the extra
disconnects and reconnects start to hurt performance for when the BFR is small, while in the large
BFR case, transfers are e�cient.

For random reads, Figure 16 shows that the di�erence in performance between the two BFRs
is consistently very small. However, in the small random case, the advantage consistently goes to
the smaller BFR. The reason for this is the same as mentioned above: for smaller operations, some
performance is lost if the BFR is too high, and one disk keeps the SCSI bus during data transfer
long enough that the latency of other operations is a�ected.

It is clear from the graphs that varying the BFR over the range of values shown doesn't have
much e�ect on performance. A BFR (or BER) in the middle range of possible values will make
little di�erence to overall throughput.

One BFR does result in dismal performance. Figure 17 shows the performance for one, two and
three disks performing sequential reads with a BFR = 32 KBytes. This corresponds to the entire
disk bu�er on the Wren IV. When the entire bu�er must be full before data transfer is initiated,
there are two e�ects. The �rst is that while arbitration, reselection and identi�cation are going
on (a process that takes hundreds of microseconds), no more data can be transferred into the disk
bu�er from the disk. For any BFR except the largest, the overhead of reselection is overlapped
with data continuing to �ll the disk bu�er. By the time reselection is complete, more data than
the amount speci�ed by the BFR is actually in the disk bu�er, ready to be transferred to the host.
No such overlap of reselection overhead and writing into the disk bu�er is possible when the BFR
requires �lling the entire bu�er before initiating the reselection. The second e�ect of the BFR =
32 KBytes is that very large latencies are introduced for any operations waiting to complete while
data is being transferred from the disk.

4.3 HBA Performance

Section 4.1.1 described the performance limitations of a single SCSI string. Another performance
limitation in RAID-I is the amount of bandwidth that can be sustained by a single Jaguar Host
Bus Adaptor.

Figure 18 shows evidence for this HBA bottleneck. The string limitation of Section 4.1.1 is
apparent in the �gure when three disks on a single string do not achieve much of a performance
improvement over two disks. Moving one of the three disks to the second string controlled by
a single HBA results in better performance than the single string case, since much of the string
contention is alleviated. However, the performance achieved is less than the expected value of 3.9
MBytes/sec (three times the bandwidth possible on a single disk).

The top line on the graph indicates that the performance limitation is due to the capacity of
the HBA. If three disks are placed on three separate Jaguars, the full performance possible on each
disk is achieved. Again, the HBA has been regarded as a \black box" in this study; this bottleneck
is observed rather than explained.

38

BFR = 512 Bytes and 16 KBytes
Bandwidth of Random Reads, No_Copy System Call

One disk, BFR = 16 KBytes
One disk, BFR = 512 bytes

Two disks, same string, BFR = 16 KBytes
Two disks, same string, BFR = 512 bytes

Three disks, same string, BFR = 16 KBytes
Three disks, same string, BFR = 512 bytes

0 4 8 12 16 20 24 28 32 36 40 44 48

0

1

2

3

4

Request size in Kbytes

MB/sec

Figure 16: Bandwidth for random reads generated from the no-copy system call for BFR = 512
bytes and BFR = 16 KBytes.

39

Single disk

Two disks, same string

Three disks, same string

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

0

1

2

3

4

Request size in Kbytes
MB/sec

Buffer Full Ratio = 1, Sequential Reads, Minimal Sprite

Figure 17: Bandwidth for sequential reads issued from no-copy system call, BFR = 32 KBytes

40

Three disks, two strings, same HBA

RAID the First: HBA Bottleneck

MB/sec

Request size in Kbytes

5

4

3

2

1

0

128120112104968880726456484032241680

Three disks, each on a separate HBA

Three disks, same string

Two disks, same string

Single disk

Figure 18: Bandwidth for sequential reads generated with the no-copy system call for one, two and
three disks arranged in various ways on the two strings of a single HBA, and three disks on three
HBAs. In each case, a separate process issued requests to each active disk.

41

Interphase con�rmed that a single Jaguar HBA is capable of processing a maximum of 4
MBytes/sec total from the two strings attached to it. Since each SCSI string is nominally ca-
pable of achieving 4 MBytes/sec (or 5 with some other SCSI disks), it is clear that the Jaguar
was not really designed to support high bandwidth. Rather, it was designed for more traditional
systems requiring a high I/O rate. The di�erences in our design goals and those of the designers
of some of the components used in RAID-I are discussed in Section 6.

4.4 Overall Sequential RAID Performance

Figure 19 shows the performance of the disk array for sequential reads of size 32 KBytes, when up
to 13 disks are active in the array at a time. Programs that generated I/O activity on particular
disks were activated in a round-robin fashion on the strings, to avoid as much string contention as
possible. The tests for user level I/O used 11 disks on three strings, while the tests for the no-copy
system call I/O used 13 disks on four strings.

The lower line in the graph represents I/O operations issued from Sprite user level. It is obvious
that the bandwidth possible when sequential read requests are issued from Sprite user level is limited
to 2.3 MBytes/sec, no matter how many disks are active. Since in the case when requests are issued
from user level, most of the time is spent performing copy operations and cache ushes, we believe
that the Sun4/280 host's memory system is the cause of this performance limitation, rather than
the Sun4/280 CPU.

As explained earlier, host utilization numbers provide a way of comparing the relative utilization
of the Sun4/280's CPU and memory systems across the di�erent workloads studied. The measured
utilization when 11 disks are actively performing 32 KByte I/Os issued from user level is 97.3%,
indicating that the memory system is completely saturated, and explaining the overall limitation
of 2.3 MBytes/sec.

The other line in the graph shows I/O operations generated by the special no-copy system
call for minimal Sprite processing. The graph rises steeply at �rst, with each disk providing its
maximum bandwidth. After 4 disks are active in the array, performance increases begin to level
o�. For 13 active disks, approximately 7.5 MBytes/sec is delivered by the array. This bandwidth
is lower than anticipated. This performance limit is not caused by the Sun4/280 host utilization,
which measures 23.78% when 13 disks are active. This value is larger than any of the numbers seen
in Section 4.1.1, but is still relatively low. The performance limit is also not caused by the string
or HBA bottlenecks, since each of the string/HBA pairs should be able to deliver 3 MBytes/sec for
a total of 12 MBytes/sec from the system.

Instead, the bottleneck is the result of saturation of the VME backplane. This is a surprise, since
we expected closer to 10 MBytes/sec before the VME became a bottleneck in RAID-I. However,
observing the behavior of the system when 13 disks are active shows that the VME bottleneck has
arisen earlier. By the time 8 disks are active on four strings, the VME/HBA connection with the
lowest priority on the backplane experiences so much delay in getting access to the VME that the
HBA begins to experience timeouts. As further evidence that the VME is a bottleneck, the disk
operations can be observed to complete in the exact order of their priorities on the SCSI bus and
on the VME backplane, which was not the case earlier when the VME bus was not particularly
heavily utilized.

The highest bandwidth ever measured on RAID-I was 9 MBytes/sec for 16 active disks per-
forming 128 KByte sequential reads.

42

Special System Call I/O

User Level I/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

Number of disks

MB/sec

Bandwidth of 32 KByte Sequential Reads

Special System Call I/O: 13 disks, activated round-robin, on 4 strings, 4 HBAs

User Level I/O: 11 disks, activated round-robin, on 3 strings, 3 HBAs

Figure 19: Bandwidth for 32 KByte Sequential Read operations for up to 13 disks over four strings
(each string on a separate HBA) in RAID-I. The top line shows performance for I/Os generated
from the no-copy system call, and the bottom line for those issued from Sprite user level.

43

4.5 I/O Rates

Figure 20 shows I/O rates achieved on 14 disks on four strings, each on a di�erent HBA, performing
small (4 KByte) random reads, where the I/O operations were issued from Sprite user level and
from the no-copy system call.

The graph for operations issued from the no-copy system call is close to linear, increasing
approximately 30 I/Os per second per disk to 420 I/Os per second for 14 disks. The linear increase
shows that there is no bottleneck in this system other than what the disks themselves are capable
of delivering. The measured host CPU/memory bus utilization in the 14-disk case is 40%, but it
doesn't a�ect the number of I/Os per second achieved in the system.

However, when the requests are issued from Sprite user level, the I/O rates delivered by 14
disks are signi�cantly lower. The �rst disk on each string contributes about 25 I/Os per second.
The number of I/Os per second per disk decreases as more disks are added. 14 disks achieve
approximately 275 I/Os per second, close to 20 I/Os per second per disk.

The host CPU/memory bus utilization measured for 14 active disks is 78.4%. This high uti-
lization is not solely the result of memory system contention due to copy and DMA cache ush
operations. We saw in the last section that Sprite could sustain 2.3 MBytes/sec of such activity,
and the 14 disks performing 275 I/Os per second generate only 1.1 MBytes/sec of bandwidth. High
host utilization in this case is mainly caused by the host CPU, which is required to perform 275
context switches per second. (A context switch takes about 1 msec in Sprite.)

Although we are encountering this host utilization limitation, we consider the performance
achieved by RAID-I on small random operations (275 I/Os per second) to be excellent. RAID-I
and Sprite deliver good performance for the small operations typical of current operating systems
and databases.

4.6 Measured SCSI Overheads

The Wren IV disk and the Interphase Jaguar HBA each contain a processor and a SCSI chip that
together implement the SCSI protocol. This implementation includes bu�er allocation, saving and
restoring state, and controlling the REQ/ACK lines for data transfer. This section observes the
time required by each component for various parts of the SCSI implementation. Both components
are treated as \black boxes." Little information was available for explaining these observations.

Figure 3, which showed the bottleneck on a SCSI string, showed that about 25% of the available
bandwidth on the SCSI string was used up by overhead associated with the SCSI protocol when
four disks on the same string were accessed simultaneously. Table 11 shows a breakdown of the
overheads observed for a particular trace, that of successive 32 KByte sequential read requests
submitted to a single disk by a single process. The BFR for this trace was set at 1/2 (16 KBytes),
and the read-ahead cache was enabled. The overheads can be attributed either to the disk or the
controller, or sometimes to neither one, as in the case of an arbitration phase. Refer to Section 2.3
for a complete description of the SCSI protocol.

The trace reects the following sequence. After receiving a command from the host, the con-
troller arbitrates for the bus, selects the target disk, and sends the command. The disk releases
the SCSI bus in order to �ll its disk bu�er to the amount required by the Bu�er Full Ratio. When
the BFR is met, the disk re-establishes communication and transfers data until its bu�er empties.
It then disconnects and again �lls its bu�er. After reconnecting and transferring the remainder of
the data, the disk signals that the command is complete, and the operation ends.

44

User-level I/O

Special System Call I/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

Number of disks

IO/sec

I/O Rates for 4 KByte Random Reads

14 disks, activated round-robin, on 4 strings, 4 HBAs

Figure 20: I/O Rates for 4 KByte random reads performed on 14 disks on four strings (each string
on a separate HBA) in RAID-I. I/Os are issued from the no-copy system call in the top line, and
from Sprite user level in the lower line in the graph.

45

Measured SCSI Overheads

Wren Jaguar neither/both

Command Setup:

Arbitration 4 usec
Selection 3 usec
Disk Pause before request for ID message 27 usec
Command Phase, �rst byte 22 usec
Acknowledge remaining 5 command bytes 11 usec
Disk pause before disconnect request 300 usec
Controller acknowledge of disconnect few usec
Bus Free
Rearbitration 3 usec
Reselection 3 usec

Data Transfer:
Disk pause before request data byte 185-285 usec
Controller ack after �rst 8 bytes 82 usec
Data Transfer at 4 MB/sec
Contr. bu�er allocation after 8 KBytes 300-1700 usec
Pause before save pointer request 200-400 usec
Controller ack of save pointer 100 usec
Controller ack of disconnect 30 usec
Bus Free
Rearbitration 3 usec
Reselection 3 usec
Disk pause before request data byte 185-285 usec
Controller ack after �rst 8 bytes 82 usec
Data Transfer at 4 MB/sec
Contr. bu�er allocation after 8 KBytes 300-1700 usec

Command Completion:
Disk pause before status request 500-1000 usec
Controller ack of status 40 usec
Controller ack of command complete 24 usec

Total: 1.8 msec 2.4 msec

Table 11: SCSI Overheads traced during the execution of 32 KByte sequential read operation issued
using no-copy system call.

46

There are several notable disk overhead values. During the command setup phase, the disk
pauses for 300 microseconds (usec) before requesting that a disconnect message be sent to the
controller. At the beginning of the data transfer phase, the disk waits for 185-285 usec after
reconnection is complete before requesting that it be allowed to send the �rst byte of read data
to the controller. Before the second disconnect, the disk pauses for 200-400 usec before requesting
that it be allowed to send a SAVE DATA POINTER message to the controller. Finally, when
the operation is about to complete, the disk pauses for 500-1000 usec before entering the STATUS
phase.

One of the notable controller overheads is the 82 usec pause before the controller acknowledges
the �rst 8 bytes of the data transfer; until the eighth byte has been sent, acknowledgments are
sent to the disk, but the DMA into the Jaguar's bu�er space is not completely set up. Instead of
going to the bu�er, the �rst eight bytes enter a FIFO on the controller. When the FIFO �lls, the
controller cannot accept more data bytes until it moves the �rst data bytes out of the FIFO and
into its local bu�ers.

The largest controller overhead occurs after each 8 KBytes of data have been transferred to the
controller. These delays range from 300-1700 usec, and increase in size depending on the size of
the transfers. They occur because the Jaguar allocates its internal data bu�er space 8 KBytes at
a time. (The Jaguar is designed speci�cally for traditional �le system applications, and allocating
bu�er space in pieces >8 KBytes was considered to be ine�cient for these applications.) Whenever
an 8 KByte boundary is crossed during large transfers, another 8 KByte block of space must be
allocated in the Jaguar's memory. (Note that the initial allocation for each data transfer occurs
during the preceding disconnect, so the only pauses noticed are the ones that occur when an 8
KByte boundary is crossed during the transfer phase.)

One other controller overhead is notable. It takes the controller 100 usec to perform and
acknowledge the SAVE DATA POINTER operation.

The overheads add up to a total of about 4.2 msec for the operation, 1.8 msec attributable to
the Wren IV disk and 2.4 msec to the Jaguar HBA. The data bytes are transferred at a rate of 250
nsec per byte. At this rate, the transfer of the 32 KBytes of data requires 7.8 msec to complete.
So, out of a total of 12.0 msec that the bus is busy during the operation (data transfer time plus
SCSI overhead), overhead accounts for more than 1/3 of the time.

4.7 Timelines for I/O Operations

This section presents timelines for various Sprite I/O operations. These measurements were ob-
tained by modifying the Sprite kernel to include instructions that read a high-resolution (1 usec)
timer whenever certain events occured during the course of an I/O operation.

The timing intervals of interest were:

� Start System Call: For requests issued from Sprite user level, this interval is the time between
the entrance to Sprite system call code and the procedure call into device driver code.

� Device Driver Time: This measurement records the time spent in the \generic" Sprite device
driver before being sent to the Jaguar-speci�c device driver.

� Jaguar Driver Time: Records time spent in the device driver speci�c to the Interphase Jaguar
HBA.

47

Start System Call 420 us
Device Driver Time 350 us
Jaguar Driver Time 380 us
Time on Jaguar Board 77900 us
Start Jaguar Interrupt Handling 67 us
DMA Free Time 9600 us
Processing before Copy 660 us
Kernel to User Copy 21000 us
Finish Processing 200 us
Total Time per Call 111000 us
Time Between Subsequent Calls 650 us

Table 12: Timeline of 128 KByte sequential read operations issued from Sprite user level.

� Time on Jaguar Board: Records the interval from the time when the SCSI command is
submitted to the Jaguar board until the �rst instruction of the Jaguar interrupt handler is
executed. The jaguar board does not interrupt the host until all disk activity is complete.

� Start Jaguar Interrupt Handling: Records the processing time in the interrupt handler up to
the DMA ush.

� DMA Flush: Time spent ushing the DMA space used in the data transfer with the Jaguar.

� Processing before Copy: Processing time between DMA ush and copy operation.

� Copy Time (Kernel to User for reads, User to Kernel for writes): The copy associated with a
read operation would occur at this point in the sequence. Data is DMA'd out of the Jaguar
and into the kernel's address space; after the DMA operation is complete, the data must be
copied from the kernel space to the user space that requested it.

On a write operation, the copy goes from user space to kernel space, and occurs in the
sequence after the \Start system call" interval, and before the \Device Driver Time" interval.
After being copied to kernel space, the data is DMA'd to the Jaguar board.

� Finish Processing: This interval records the time to complete the system call execution.

� Time between Subsequent Commands: This interval records the time in Sprite between �n-
ishing execution of one system call and starting processing on the next.

Tables 12 through 21 show the timelines for operations generated as raw reads and writes
from Sprite user level. These timelines show values averaged over approximately 50 operations.
The tables display timelines for sequential reads and writes of size 4 KBytes, 32 KBytes and 128
KBytes, and random reads and writes of size 4 KBytes and 32 KBytes.

There are a number of interesting measurements in these �gures. First, it is clear that time on
the Jaguar board is the largest portion of each timeline. Most intervals on Sprite are very small by
comparison. Two operations in Sprite do take a signi�cant amount of time, as described in Section
2.4.1. They are the ushing of the cache memory used for the DMA operation between the host
and a Jaguar HBA, and the copy between kernel and user space. Since these are the operations

48

Start System Call 250 us
User to Kernel Copy 23400 us
Before Device Driver 170 us
Device Driver Time 260 us
Jaguar Driver Time 390 us
Time on Jaguar Board 97000 us
Start Jaguar Interrupt Handling 42 us
DMA Free Time 1800 us
Finish Processing 680 us
Total Time per Call 124000 us
Time Between Subsequent Calls 190 us

Table 13: Timeline of 128 KByte sequential write operations issued from Sprite user level.

Start System Call 290 us
Device Driver Time 150 us
Jaguar Driver Time 250 us
Time on Jaguar Board 22800 us
Start Jaguar Interrupt Handling 21 us
DMA Free Time 2700 us
Processing before Copy 420 us
Kernel to User Copy 4230 us
Finish Processing 170 us
Total Time per Call 31000 us
Time Between Subsequent Calls 190 us

Table 14: Timeline of 32 KByte sequential read operations issued from Sprite user level.

Start System Call 170 us
User to Kernel Copy 4500 us
Before Device Driver 120 us
Device Driver Time 200 us
Jaguar Driver Time 270 us
Time on Jaguar Board 38200 us
Start Jaguar Interrupt Handling 26 us
DMA Free Time 570 us
Finish Processing 470 us
Total Time per Call 44500 us
Time Between Subsequent Calls 2000 us

Table 15: Timeline of 32 KByte sequential write operations issued from Sprite user level.

49

Start System Call 230 us
Device Driver Time 110 us
Jaguar Driver Time 270 us
Time on Jaguar Board 57600 us
Start Jaguar Interrupt Handling 32 us
DMA Free Time 2650 us
Processing before Copy 470 us
Kernel to User Copy 4450 us
Finish Processing 170 us
Total Time per Call 66000 us
Time Between Subsequent Calls 690 us

Table 16: Timeline of 32 KByte random read operations issued from Sprite user level.

Start System Call 140 us
User to Kernel Copy 4400 us
Before Device Driver 150 us
Device Driver Time 225 us
Jaguar Driver Time 260 us
Time on Jaguar Board 58000 us
Start Jaguar Interrupt Handling 15 us
DMA Free Time 590 us
Finish Processing 500 us
Total Time per Call 64300 us
Time Between Subsequent Calls 440 us

Table 17: Timeline of 32 KByte random write operations issued from Sprite user level.

Start System Call 168 us
Device Driver Time 110 us
Jaguar Driver Time 170 us
Time on Jaguar Board 4100 us
Start Jaguar Interrupt Handling 7 us
DMA Free Time 480 us
Processing before Copy 260 us
Kernel to User Copy 420 us
Finish Processing 120 us
Total Time per Call 5800 us
Time Between Subsequent Calls 90 us

Table 18: Timeline of 4 KByte sequential read operations issued from Sprite user level.

50

Start System Call 110 us
User to Kernel Copy 500 us
Before Device Driver 70 us
Device Driver Time 140 us
Jaguar Driver Time 170 us
Time on Jaguar Board 17800 us
Start Jaguar Interrupt Handling 20 us
DMA Free Time 145 us
Finish Processing 320 us
Total Time per Call 19300 us
Time Between Subsequent Calls 120 us

Table 19: Timeline of 4 KByte sequential write operations issued from Sprite user level.

Start System Call 140 us
Device Driver Time 140 us
Jaguar Driver Time 160 us
Time on Jaguar Board 33600 us
Start Jaguar Interrupt Handling 28 us
DMA Free Time 480 us
Processing before Copy 300 us
Kernel to User Copy 500 us
Finish Processing 85 us
Total Time per Call 35400 us
Time Between Subsequent Calls 370 us

Table 20: Timeline of 4 KByte random read operations issued from Sprite user level.

Start System Call 96 us
User to Kernel Copy 480 us
Before Device Driver 46 us
Device Driver Time 130 us
Jaguar Driver Time 190 us
Time on Jaguar Board 31700 us
Start Jaguar Interrupt Handling 18 us
DMA Free Time 240 us
Finish Processing 380 us
Total Time per Call 33300 us
Time Between Subsequent Calls 320 us

Table 21: Timeline of 4 KByte random write operations issued from Sprite user level.

51

that we claim tend to limit overall performance of RAID under Sprite, it is not surprising to see
that they make up a signi�cant portion of the timeline for operations issued from Sprite user level.

One interesting measurement is the speed at which the data copy occurs. The rate at which
data is copied between kernel and user space varies somewhat with the size of the transfer. For
128 KByte operations, copy speed averaged 5.7 MBytes/sec. For 32 KByte operations, the copy
rate was around 7 MBytes/sec, and for 4 KByte operations, the rate was around 8 MBytes/sec.
The di�erent copy rates can be explained by [Ouster2], which measured data copy operations on
a Sun4; copies are performed at about 11 MBytes/sec when both the source and destination of
the copy are in the cache, and at about 5 MBytes/sec when neither object is cached. Large (128
KByte) copy operations are slower because the cache itself is only 128 KBytes, so the source and
destination are unlikely to be in the cache when he operation occurs. Smaller operations are more
likely to have cached data, and are therefore faster.

The cache ushing rates for the DMA ush operation were around 12 MBytes/sec for read
operations (where cache blocks tend to be dirty when ushed) and 50-70 MBytes/sec for write
operations (where cache blocks tend to be clean when ushing occurs). This explains why the
DMA ush operations in Tables 12 through 21 are four to �ve times longer for reads than for
writes, except for the 4 KByte operations. (These small operations must perform ushes 8 KBytes
at a time, which a�ects their ush times.)

Another observation from the graphs is that sequential write operations spend much longer on
the Jaguar board than do sequential reads of the same size. The di�erences in the timeline tables
range from 12 msec to 20 msec. The reason for this disparity is that on sequential write operations,
subsequent operations su�er a missed rotation on the disk, since by the time setup of the operation
is complete, the disk has spun past the point at which the previous operation stopped writing.

This observation can be used to compare the times spent on the Jaguar board by sequential and
random reads and writes. Random and sequential reads of the same size di�er in time spent on the
Jaguar by an amount approximately equal to an average seek plus an average rotation. Random
and sequential writes of the same size di�er by a much smaller amount, approximately the time of
an average seek; both random and sequential writes su�er a rotation penalty.

For sequential reads, where no extra seek or rotation penalty is paid, the time on the Jaguar
board is proportional to the size of the transfer. Likewise, the time for copy and cache ushing is
proportional to the size of the transfer.

Processing for operations other than the copy, cache ush, and time spent on the Jaguar board
accounts for less than 5% of the lifetime of an operation in all the traces of Tables 12 through 21,
except for the 4 KByte sequential write trace, where such processing accounts for 14% of the total.

Tables 22 through 31 shows average timelines for events of interest in operations issued by the
no-copy system call. These events are:

� Time between Entry Avail and Submit Command: This rather cryptic description refers to
the interval from the time that the Jaguar interrupts the host to inform it that the Jaguar
is ready to accept a command for execution until the time that the command is actually
submitted to the Jaguar board. The code for this processing is in the Jaguar device driver.

� Time on Jaguar Board: Time from when command is submitted until the host processor
receives a completion interrupt from the Jaguar.

� Time between Interrupt from Jaguar and Entry Avail: This measures the interval between

52

Time between entry avail and submit command 340 us
Time on Jaguar board 91500 us
Time between interrupt and entry avail 180 us

Table 22: Timeline of 128 KByte sequential read operations issued from the special no-copy system
call.

Time between entry avail and submit command 290 us
Time on Jaguar board 10800 us
Time between interrupt and entry avail 180 us

Table 23: Timeline of 128 KByte sequential write operations issued from the special no-copy system
call.

the completion interrupt from the Jaguar until the time that the Jaguar is ready to accept a
new command (in the Jaguar driver procedure EntryAvail).

From Tables 22 through 31, it is clear that the Jaguar board is completely dominant in these
kernel traces. It is also obvious why host utilization is so low in the case of operations issued
from the no-copy system call, since there is no data copy or DMA cache ush operation between
subsequent operations in this case, and the processing time between successive operations is very
short.

Once again, the intervals on the Jaguar board indicate that operation time for random reads
and writes is roughly equal, while sequential writes su�er a penalty compared to sequential reads
due to the missed rotations.

As when operations were issued from Sprite user level, for sequential reads, where no extra seek
or rotation penalty is paid, the time on the Jaguar board is proportional to the size of the transfer.

5 Conclusions

The goal of RAID-I was to discover whether a disk array built from commercially available compo-
nents could provide adequate performance both for traditional �le system and database applications
(small, random I/Os) and for large scienti�c and image processing applications (large, sequential
I/Os). Table 32 compares the expected performance of the components of RAID-I with those
actually measured. It reveals a hierarchy of bottlenecks in the system.

The most constraining performance limitation in the system is the memory bandwidth limitation
of the Sun4/280 host. This limits overall sequential performance to 2.3 MBytes per second, less
than can be achieved by just two Wren IV disks. CPU utilization on the Sun4/280 host limits
overall small random I/O rates on the array to around 300 I/Os per second. The next level in the

Time between entry avail and submit command 120 us
Time on Jaguar board 24500 us
Time between interrupt and entry avail 57 us

Table 24: Timeline of 32 KByte sequential read operations issued from the special no-copy system
call.

53

Time between entry avail and submit command 200 us
Time on Jaguar board 40400 us
Time between interrupt and entry avail 130 us

Table 25: Timeline of 32 KByte sequential write operations issued from the special no-copy system
call.

Time between entry avail and submit command 130 us
Time on Jaguar board 57000 us
Time between interrupt and entry avail 54 us

Table 26: Timeline of 32 KByte random read operations issued from the special no-copy system
call.

Time between entry avail and submit command 442 us
Time on Jaguar board 55500 us
Time between interrupt and entry avail 100 us

Table 27: Timeline of 32 KByte random write operations issued from the special no-copy system
call.

Time between entry avail and submit command 140 us
Time on Jaguar board 3200 us
Time between interrupt and entry avail 43 us

Table 28: Timeline of 4 KByte sequential read operations issued from the special no-copy system
call.

Time between entry avail and submit command 120 us
Time on Jaguar board 19400 us
Time between interrupt and entry avail 46 us

Table 29: Timeline of 4 KByte sequential writes operations issued from the special no-copy system
call.

Time between entry avail and submit command 120 us
Time on Jaguar board 33200 us
Time between interrupt and entry avail 52 us

Table 30: Timeline of 4 KByte random read operations issued from the special no-copy system call.

Time between entry avail and submit command 150 us
Time on Jaguar board 32500 us
Time between interrupt and entry avail 60 us

Table 31: Timeline of 4 KByte random write operations issued from the special no-copy system
call.

54

bottleneck hierarchy is the VME backplane limitation. One of the big surprises of this study is
that the VME backplane limited bandwidth for operations using the no-copy system call to only
7.5 MBytes/sec in Figure 19. (The highest bandwidth ever measured on RAID-I was 9 MBytes/sec
for 128 KBytes sequential reads.) This VME limit is signi�cantly lower than the expected 15
MByte/sec limit. The next observed performance limitation is that of the Jaguar HBAs, which are
only capable of supporting 4 MBytes/sec from the two strings they control. If the other bottlenecks
of RAID-I were eliminated, the four HBAs in the system would limit performance to 16 MBytes/sec.
SCSI overheads limit bandwidth on a string to 3 MBytes/sec. The last performance limitation in
the system is the amount of data that can be delivered by the disks; I measured the expected
performance of 1.3 MBytes/sec for large operations and 30 I/Os per second for small operations
on the disks.

These results suggest a number of conclusions. First, a disk array built from o�-the-shelf parts
has achieved reasonably good performance for small random I/O operations, the standard design
point for today's systems. However, the array is not adequate for providing high throughput for
large sequential operations. To get better performance out of an array like RAID-I, we need a
more powerful host CPU, a more powerful CPU on the controller (to handle the SCSI protocol
more quickly), and more bandwidth available on the controller. (The Jaguar can only absorb half
the potential bandwidth of the two strings attached to it.) The o�-the-shelf parts used in the
construction of RAID-I were not designed with the large, sequential workloads that we used to
test RAID-I in mind. Rather, they were designed for traditional small random accesses, and they
do provide adequate performance for such applications. In our second RAID prototype, which
diverges substantially from the simple design of RAID-I, we hope to build controller boards that
can support the bandwidth of all the disks attached to them, so that we can realize the potential
bandwidth of the array.

The need for greater memory bandwidth on the host CPU deserves special consideration. This
was the single most important factor limiting the performance of the disk array, and it is not a
problem unique to the Sun4/280. Many of the fastest workstations currently being produced have
limited memory system bandwidth. The RAID group is experiencing di�culting �nding a machine
with adequate memory bandwidth to support the needs of our second prototype machine. Disk
arrays will not be able to deliver bandwidth to the CPU unless the memory system is capable of
consuming what the array delivers.

Sprite, with its long copy overheads and traditional �le system style of accessing data 4 KBytes
at a time, is not particularly suitable for achieving very high bandwidth on the array when op-
erations are issued to raw devices from user level, as was done in most of the tests in this study.
In addition, when a RAID driver is used to access the disks, there will be additional overhead,
since in that case, small writes do parity updates that result in additional disk accesses. In order
to improve the performance of such writes, we plan to use the Log Structured File System being
developed at U.C. Berkeley, which turns all small write operations into large ones [Rosenblum].

Operating systems should also support asynchronous I/O. This study showed a fundamental
performance di�erence between large sequential reads and writes. Write performance for a disk is
lower than read performance because disks appear to su�er a missed rotation on writes. Being able
to issue subsequent write requests before the current operation completes would allow this missed
rotation to be avoided. Asynchronous I/O is the key to improving sequential write performance.

A �nal conclusion of this work is that measuring the performance and attributing the overheads
of o�-the-shelf hardware is a daunting task. One of the reasons that RAID-II will not be built

55

exclusively from o�-the-shelf parts is so that hardware and software instrumentation can be added
to the system to make performance measurements easier.

6 Acknowledgements

I am grateful to Richard Drewes and Mendel Rosenblum for their help over the life of this project.
Thanks also to Randy Katz, Ken Lutz, Mary Baker, Peter Chen, Ed Lee, Garth Gibson and Ethan
Miller for all their assistance and advice.

56

References

[Ancot] SCSI Bus Analyzer/Emulator Model DCS-202 User's Manual, ANCOT Corporation,
Redwood City, CA.

[Lee] Ed Lee, \Software and Implementation Issues in the Implementation of a RAID Pro-
totype ", Masters report, U.C. Berkeley, May, 1990.

[Jaguar] V/SCSI 4210 Jaguar High Performance VMEbus Dual SCSI Host Adaptor{User's

Guide,Interphase Corporation, Dallas, TX.

[Ouster] John K. Ousterhout, Herve Da Costa, et. al., \A Trace-Driven Analysis of the UNIX
4.2 BSD File System", Proceedings of the 10th SOSP, Operating Systems Review, Vol.
19, No. 5, December 1985, pp. 15-24.

[Ouster2] John K. Ousterhout, \Why Aren't Operating Systems Getting Faster As Fast as Hard-
ware?", USENIX Summer Conference, Anaheim, CA, June, 1990.

[RAID] Dave Patterson, et. al, \A Case for Redundant Arrays of Inexpensive Disks", ACM
SIGMOD, Chicago, IL, June, 1988.

[Rosenblum] Mendel Rosenblum, \The LFS Storage Manager", USENIX Summer Conference, Ana-
heim, CA, June, 1990.

[SCSI] SCSI Guidebook, Adaptive Data Systems, Inc., Pomona, CA, 1985.

[Wren] Product Speci�cation for Wren IV SCSI Model 94171-344, Control Data Corporation,
Minneapolis, MN.

[ZBR] \Disk Drive Capacity and Performance Increases Through ZBR Variable Track Ca-
pacity Recording," Al U. Sharon, SDNC 1989 Proceedings, May 23-25, 1989, Santa
Clara, CA.

57

I/O Rates (I/Os per sec) Bandwidth (MBytes/sec)
Component Expected No-Copy Full Sprite Expected No-Copy Full Sprite

Single disk 25-30 29 27 1.3 1.3 1.3
String (4 disks) 100-120 114 103 4 3 2.3
Overall (14 disks) 320 320 270
Overall (13 disks) 10-15 7.5 2.3
Best Ever (16 disks) 10-15 9

Table 32: Expected versus Actual performance of RAID-I for operations issued from the No-Copy
special system call and from Sprite user level. I/O rates were measured for 4 KByte random read
operations. Bandwidth was measured for 32 KBytes sequential read operations. Bandwidth for the
\Best Ever" case was for 128 KByte sequential reads. Note that the \expected" 10-15 MByte/sec
bandwidth for the array is the expected limit of the VME backplane.

58

