Stability of Block Algorithms
with Fast Level 3 BLAS

James W. Demmel * Nicholas J. Higham !

July 27, 1990

Abstract

Block algorithms are becoming increasingly popular in matrix computa-
tions. Since their basic unit of data is a submatrix rather than a scalar they
have a higher level of granularity than point algorithms, and this makes them
well-suited to high-performance computers. The numerical stability of the block
algorithms in the new linear algebra program library LAPACK is investigated
here. It is shown that these algorithms have backward error analyses in which
the backward error bounds are commensurate with the error bounds for the un-
derlying level 3 BLAS (BLAS3). One implication is that the block algorithms
are as stable as the corresponding point algorithms when conventional BLAS3
are used. A second implication is that the use of BLAS3 based on fast matrix
multiplication techniques affects the stability only insofar as it increases the
constant terms in the normwise backward error bounds. For linear equation
solvers employing LU factorization it is shown that fixed precision iterative re-
finement helps to mitigate the effect of the larger error constants. The analysis

is illustrated with the aid of numerical examples.

*Computer Science Division and Mathematics Department, University of California, Berkeley,
CA 94720, U.S.A. (na.demmel€na-net.stanford.edu). This author acknowledges the financial
support of the National Science Foundation via grants DCR-8552474 and ASC-8715728. He is also

a Presidential Young Investigator,
tDepartment of Mathematics, University of Manchester, Manchester, M13 9PL, UK.

(na.nhigham@na-net.stanford.edu).

Key words: block algorithm, LAPACK, level 3 BLAS, iterative refinement,

LU factorization, Q R factorization, backward error analysis.

AMS(MOS) subject classifications. primary 65F05, 65F25, 65G05.

1 Introduction

A block algorithm in matrix computations is one that is defined in terms of operations
on submatrices rather than matrix elements. Such algorithms are well-suited to many
high-performance computers because their data locality properties lead to efficient
usage of memory hierarchies [15], [16], [17, Ch.1].

When a block algorithm is coded in Fortran, advantage can be taken of the level 3
Basic Linear Algebra Subprograms (BLAS3). The BLAS3 are a set of Fortran primi-
tives for various types of matrix multiplication, together with solution of a triangular
system with multiple right-hand sides [11,12]. For a suitably coded block algorithm
the bulk of the computation is carried out by calls to the BLAS3.

The BLAS3 specifications [11] stipulate the input, output and call sequence for
each routine, but allow freedom of implementation, subject to the requirement that
the routines be numerically stable. This freedom includes not only the various ways
to order matrix multiplication, but the use of algorithms algebraically different from
the conventional ones. Of chief interest here are algorithms that achieve a more
favourable operation count (for suitable dimensions) through the use of a fast matrix
multiplication technique. We will refer to such BLAS3 implementations as “fast
BLAS3".

One set of fast BLAS3 is proposed in [18]. There it is shown how asymptotic
speedups can be produced in all the BLAS3 routines by the use of Strassen’s method
for matrix multiplication [30], which forms the product of two n X n matrices in
O(n'°&:7) operations (log, 7 ~ 2.807). A set of fast BLAS3 could also be built from
Winograd's matrix multiplication method [34] (which has an operation count of O(n®)
with different constants than the conventional technique) or one of the methods with
a lower exponent than Strassen’s method (although the practical utility of the latter

methods has yet to be demonstrated [22]). In the case of complex matrices all these

possibilities can be combined with the technique analyzed in (21], which enables the
product of two complex matrices to be formed using only three real matrix multipli-
cations. Several researchers are experimenting with the use of fast BLAS3 in linear
equation solvers. In particular, we mention the work of Bailey, Lee and Simon [3],
who use Strassen’s method for the matrix multiplications arising in the LAPACK LU
factorization routine SGETRF.

Our purpose in this work is to investigate the numerical stability of block al-
gorithms that employ fast BLAS3. We restrict our attention mainly to the block
algorithms used in LAPACK [4,9]. For a block size of 1, the algorithms in LAPACK
are classical point algorithms that are well-known to be numerically stable, that is,
each computed answer is the exact answer to a perturbed problem, where the norm of
the perturbation is bounded by the product of the unit roundoff, a modest constant
depending on the dimensions, and the norm of the data. (To be precise, this state-
ment is true modulo the possibility of a large growth factor in Gaussian elimination
with partial pivoting, and a weaker definition of stability for matrix inversion.) For
block sizes r > 1, with conventional BLAS3, it is generally accepted that the same
stability results are valid, although we are not aware of any detailed proofs (in the
case of block LU factorization one can argue that the same arithmetic operations
are carried out as for r = 1, albeit in a different order). The question of particular
interest here is the effect on the stability of using fast BLAS3 when r > 1. We will
show that, for all BLAS3 implementations of interest, backward error bounds hold
for the block algorithms that are commensurate with the error bounds for the BLAS3
themselves. This is clearly the best we could expect to prove.

As our model for floating point arithmetic we take

fllzxy) = z(1+a)xy(l+8), lal, 18] £ u,
fl(zopy) = (zopy)(1+6), |6|<u, op==,/,

where u is the unit roundoff. We need to make some assumptions about the stability
of the BLAS3. The BLAS3 primitives involve three types of matrix multiplication: a
general product AB, a cross product AT A, and the product of a triangular matrix with
a full matrix. It is sufficient to assume that all these products satisfy the following

general condition: if A € R™*", B € R"*? and C is the computed approximation to

3

C = AB, then
C=AB+AC, |AC| < aim,n,p)ullAll| B]| + O(w?), (1.1)

where ¢;(m,n,p) denotes a constant depending on m, n and p. Here, the matrix
norm is defined by

11| = max]zs|.
Note that for this norm, with A and B dimensioned as above, ||AB|| < n| A|||| B} is
the best such inequality.

We also assume that the computed solution to the triangular systems TX = B,

where T € IR™*™ and B € IR™*?, satisfies
TX =B+AB, ||AB| < c(m,p)ul|T|IIIX]| + O(x). (1.2)

For conventional BLAS3 implementations conditions (1.1) and (1.2) hold with ¢;(m,n, p) =
n? and c;(m,p) = m(m + 1).

For the fast BLAS3 proposed in [18], based on Strassen’s method, (1.1) and (1.2)
hold with ¢; and ¢, rather complicated functions of the dimensions m, n, p and the
threshold no that determines the level of recursion. In the special case m =n =p=

2k ng = 2!, the constants reduce to {18]

log, 12
ci(n,n,n) = (ﬁ) &2 (n + 5ny) — 5n,

L
n\log12/n2 23 10, 35 143
c2(n, n) = (;1;) (ﬁ E{ﬂo) 1—1n0 + Hno - gg-n

Condition (1.1) also holds when the multiplication is done by Winograd’s method
with scaling, or, in the case of complex matrices, by the method of [21] combined with
any method for real matrix multiplication that satisfies (1.1) (see the error analysis
in [6] and [21]).

Note that for conventional multiplication we have the following componentwise

version of (1.1):
C = AB+ AC, |C| < nuld||B|+ O(d?). (1.3)
Similarly, for the substitution algorithms for solving triangular systems we have
TX =B+ AB, |AB| < (m+1)uT||X|+ O(x?). (1.4)

4

We stress that these bounds are much stronger than (1.1) and (1.2). For example,
if D = diag(d;) with d; > 0 for all ¢, then scaling AB — AD - DB leaves C and
the upper bound in (1.3) unchanged, and scaling AB — DA - BD causes the bound
of (1.3) to scale in the same way as C; (1.1) does not share these favourable scaling
properties. For further remarks on the differences between (1.1) and (1.3) see [18].
A consequence of (1.3) and (1.4) is that for some block algorithms it is possible to
obtain stronger backward error results than the usual normwise ones (perhaps for
certain classes of matrix only); for examples see (8] and [19]. These stronger results
are usually not valid for any of the fast BLAS3 discussed above.

The block algorithms in LAPACK break into two main classes: those based on
LU factorization and those involving orthogonal transformations. In the next section
we give an error analysis of block LU factorization. We show that iterative refine-
ment in fixed precision is beneficial for all BLAS3 implementations and point out the
instability of a particular form of LU factorization with block triangular factors. We
also explain how to investigate the stability of a block algorithm without doing a full
error analysis. In section 3 we consider the use of aggregated Householder transfor-
mations, which form the basis of a variety of block algorithms involving orthogonal

transformations. Some concluding remarks are given in section 4.

2 LU Factorization

2.1 Error Analysis

In this section we examine in detail the stability of block LU factorization. Initially
we assume that no pivoting is used and that the factorization succeeds; below we
discuss the addition of pivoting.

Consider a block implementation of the outer product form of LU factorization

[16, p.91], [17, p.100]. The algorithm may be described through the partitioning
An A L 0 I. 0]1[U U
[11 12]=[n][}{ 11 12]€]Rnxn’
An A Ly I..,]10 BJLlO I,
where A;; is r X 7. One step of the block algorithm consists of factoring Ay = L13Uny,
solving the multiple right-hand side triangular systems Ly1Uys = Ayp and LUy =

5

A, for Uy, and Lo, respectively, and forming B = Az — L,,Uy,; this procedure is

then repeated on B. The block operations defining U2, Ly, and B are level 3 BLAS

operations.

We will assume that the block level LU factorization is done in such a way that

the computed LU factors of A;; € R™™" satisfy
Euﬁu = A + AAn, ”AAIIH < Cs(T)U”En””ﬁu” + O(uz)' (2.1)

We claim that under these assumptions, together with (1.1) and (1.2), the LU

factors of A € R™*" computed using a block size r satisfy
L0=a+04, [A4] < u(énr)]A]+ o(n,)IZIIDN) + O, (2:2)

where 8(n,r) and 6(n, r) are constants depending on n and r. The proof is essentially

inductive. For n = r, (2.2) holds with
6(r,r) =0, 6(r,r)=cs3(r), (2.3)

in view of (2.1). Consider the first block stage of the factorization. The assumptions

imply that
Luli, = A+ DAy, |AAL] £ co(r,n — T‘)U“Zu””ﬁu“ + O(u?), (24)
zglﬁn = A:Zl + AAQ], “AAQ]“ S CQ(T,Tl - T')U”.Zn””ﬁll“ + O(‘U,z). (25)

To obtain B = A,y — Ly Uy, we first compute C = L,,0,,, obtaining
C=Lulun+aC, AC| < aln—rrn—r)ul|lLall|Thel + O,
and then subtract from A,,, obtaining |
B=Ayn-C+F |F| <u(llAxnl+C]) +O?). (2.6)
It follows that

-

B = Ap-ILalUn+AB,
|AB| u(l| Azl + 121 0nall + e1(n = ry7ym — P Zalli0all) + O(u?)(2.7)

IA

The remainder of the algorithm consists of the computation of the LU factorization

of B, and by our inductive assumption (2.2) the computed LU factors satisfy
Ezngg = B + AE,
IABY < é(n = r,r)ul| Bl + 6(n — r,r)ull L[| T2sl] + O(u?). (2.8)

Combining (2.7) and (2.8), and bounding || B|| using (2.6), we obtain

L0+ LUy = Ay + AAp,
1A Az < w1+ 6(n —r,)]| Azl + [1 + eu(ryn = ryn = 1) + 8(n = 1,)| L || Dl
+8(n =, 7) | Laalll| Daall) + O(u?). (2.9)

Collecting together (2.1), (2.4), (2.5) and (2.9) we have
LU = A+ A4, (2.10)

where bounds on ||AA4;;|| are given in the equations just mentioned. These bounds
for the blocks of AA can be weakened slightly and expressed together in the more

succinct form

IAA] < u(6(n,P)IAll +8(n,) ZITI) + O(u?) (2.11)

§(n,r) = 1+6(n—r,r),
f(n,r) = max{C3(r),c2(r,n —-r),1+a(r,n—rn—r)+6(n—rr)+06(n-— r,r)}.

Using (2.3) it follows that é(n,r) < n/r.

These recurrences show that the basic error constants in assumptions (1.1), (1.2)
and (2.1) combine additively at worst. Thus, the backward error analysis for the LU
factorization is commensurate with the error analysis for the particular implementa-
tion of the BLAS3 employed in the block factorization. In the case of the conventional
BLAS3 we obtain a generalization of the classical Wilkinson result for r = 1, with
6(n,r) = O(n?).

Although the above analysis is phrased in terms of the block outer product form
of LU factorization, the same result holds for other “ij&” block forms (with slightly

different constants), for example the gaxpy or sdot forms.

7

If we incorporate partial pivoting in the above factorization then two of the block
steps are coalesced: L;; and L,; are obtained by using Gaussian elimination with
partial pivoting (GEPP) to compute the factorization

P, {A“] = [L”] Us. (2.12)
An Ly
Thus each main step of the algorithm involves two, rather than three, BLAS3 oper-
ations. If the obvious analogue of (2.1) holds for (2.12) then (2.10) (with A replaced
by PA) and (2.11) remain valid, with minor changes in the recurrences for §(n,r)
and 8(n,r).

There is no difficulty in extending the analysis to cover solution of Az = b using

the computed LU factorization. Invoking the usual error analysis for substitution

(see [17, sec.3.1], for example) we find that (4 + AA)Z = b, with
IAA] < u(8(n, P4l + (B(n,) + 20 ZIT]) + O(?). (2.13)

For a linear system with multiple right-hand sides, AX = B with X, B € R"*?,
both substitution stages are BLAS3 operations. Using (1.2) it is straightforward to
show that the computed X satisfies

1AX - B| < {{ca(n, p)(n*+7) +8(n, V)l L | Tl|+6(n,)nl AN I X lu+O(u?) (2.14)

We mention that the error analysis given in this section adapts in a straightforward
way to block LU factorization for banded matrices, block factorization of symmetric
indefinite matrices [17, p.168], and block Cholesky factorization of (banded) symmet-

ric positive definite matrices [24).

2.2 Iterative Refinement

The LAPACK routines for solving linear equations support fixed precision iterative
refinement [10], that is, iterative refinement in which no extra precision is used in
calculating the residuals. The benefits of this process can be explained in terms
of the componentwise relative backward error w(y) of an approximate solution y to

Az = b. This quantity is defined by
w(y) = min{e: (A+AA)y =b+ Ab, |AA| < €|A], |Ab] < €lb]},

8

b~ Ayl
= m (219)
where the latter equality is proved in {25]. A small value for w(y) implies that y is the
solution of a system in which each element of A and b has undergone a small relative
perturbation—in particular, zero elements are not perturbed. However, in general, all
that can be guaranteed for the Z from GEPP is that the normwise relative backward

error 7(Z) = O(u), where

n(y) = minfe: (A+ AA)y =b+ Ab, ||AA|lw < €ll4]le, |Abllo < €l]leo}

_ oo
T ([Al ¥lleo + 18]l (216)

Skeel [29] showed that as long as A is not too ill-conditioned, and the components

of the vector |A||z| do not vary too much in magnitude, then w(y) = O(u) for the
vector y obtained from GEPP with one step of fixed precision iterative refinement.
Skeel’s result, together with further analysis in [1], provides the theoretical foundation
for the inclusion of fixed precision iterative refinement in LAPACK.

In LAPACK iterative refinement is terminated if
1. w<u,
2. w has not decreased by a factor of at least 2 from the previous iteration, or

3. five iterations have been performed.

These criteria have been chosen to be robust in the face of different BLAS implemen-
tations and machine arithmetics.

Skeel’s result is applicable only when conventional BLAS3 are used. To investigate
the effect of using fast BLAS3, we can make use of work in (23] that covers fixed pre-
cision iterative refinement with an arbitrary linear equation solver. For our purposes,
the results in [23] require a bound of the form |b — AZ| < uG|Z| for the given solver,
where G is a nonnegative matrix. For block LU factorization with partial pivoting
we have

b — Az| < |AAl[z],
where ||AA|| is bounded in (2.13). We assume that the residual for the refinement

step is computed in the conventional way, via inner products or saxpy operations,

9

as in LAPACK. Since we have only a normwise bound on AA we cannot apply
a direct generalization in [23] of Skeel’s result (to do so we would need to have
|AA| < uG|A| with ||G|| bounded independently of A). However, we can invoke the
weaker Theorem 2.1 in [23] to obtain

|6 — Agl < (n +2)u(4]l7] + [b]) + O(u?), (2.17)

where § is the computed vector obtained after one step of fixed precision iterative
refinement. This result has two main features. First, it is asymptotic, and the second
order term prevents us concluding from (2.17) and (2.15) that w(7) < (n + 2)u.
However, if the components of |A||§]| + |[b] do not vary too much in magnitude it is
likely that this inequality will be satisfied (if not, extra refinement steps may help to
achieve a small w). The second point is that AA does not appear in the first order
term of (2.17)—it is hidden in the second order term where it multiplies a vector
with elements of O(u). This means that the refinement step tends to suppress any
instability manifested in AA.

LAPACK also supports iterative refinement for linear systems with multiple right-
hand sides, AX = B where X, B € IR™*?. In this case it is appropriate to consider
whether a small componentwise relative backward error is achieved for each individual
system Ax; = b;, ¢t = 1:p. If conventional BLAS3 are used for the computation of
X and for the refinement process then Skeel’s result is applicable to each system
Az; = b;.

Suppose that fast BLAS3 are used in computing X. First, we will obtain a bound
of the form |b; — AZ;| < uG;|;| for each 7. It is necessary to do this in an indirect

way, as follows. We note first that (2.14) implies
A%, — billoo < Mpiv|AllwllZille +O(w?), i=1Lip,

where
Lo
M = [c(n,p)(n®+n)+ O(n,r)n]-”—n‘—llillll—” + é(n,r)n,
i = ”AX” 2 L
1Zilloo
.From (2.16) it follows that
(A4 AA)Z; = b;, A Ailleo € Muiul|Aljoo + O(u?). (2.18)

10

Hence we have |b; — AZ;| < |AA;||Z;], with ||A]| bounded as in (2.18). In invoking
Theorem 2.1 of [23] we need to specify how the residuals R = B — AX are computed
and how the corrections for the refinement are computed. We will assume that the
residuals are computed using conventional BLAS3. If fast BLAS3 are used we can do
no better than to obtain a normwise bound for each b; — Af; that is proportional to
the fast BLAS3 error constant ¢; (this is not surprising, since it is a general principle
for iterative techniques that the stability or accuracy is limited by the quality of the
computed residuals).

If we use fast BLAS3 for the substitutions on the correction step then for each
computed correction we have a result analogous to (2.18). Theorem 2.1 of [23] then
shows that (2.17) holds for b; and #;, but the potentially very large u; term, and
its analogue for the refinement step, are present in the second order term of (2.17),
making the result of limited practical value. If the substitutions are done using
conventional BLAS3 then (2.17) holds for b and §; with u; alone present in the
second order term; hence we would expect a small w(7;) as long as y; is not too
large. Finally, we note that if all the substitutions in the computation of X and in
the refinement process are done with conventional BLAS3 then we can set y; = 11in
the above analysis, and we will obtain the same computed results as if the refinement
was carried out on each system Az; = b; independently.

Our overall conclusion is that fixed precision iterative refinement can be beneficial
for GEPP with fast BLAS3 in two ways, assuming that residuals are computed using
conventional BLAS3. First, it may lead to a componentwise relative backward error of
order u, although the theoretical backing is weaker than when conventional BLAS3
are used. Second, the refinement will, in any case, tend to counteract any “mild
instability” induced by the potentially faster growth of errors in the fast BLAS3.

We present some numerical results for illustration. Our experiments were per-
formed in MATLAB, for which u = 2.2 x 107'%. We solved Az = b by block outer
product LU factorization with partial pivoting, using both conventional BLAS3 and
a fast BLAS3; the latter uses conventional triangular solves and does matrix mul-
tiplication by Strassen’s method with no = 1 (recursion down to the scalar level).

Iterative refinement was applied with the convergence test w < u.

11

We give detailed results for three matrices taken from the test collection [20]:
pascal(n) is a symmetric positive definite matrix constructed from the elements of
Pascal’s triangle; triw(n,) is upper triangular with 1s on the diagonal and every en-
try in the upper triangle equal to o; and ipjfact(n, 1) is the symmetric positive definite
matrix with (,7) entry 1/(i + j)!. In each case b was chosen randomly, with elements
from the uniform distribution on [0,1]. Tables 2.1-2.3 show the componentwise rela-
tive backward errors w for the iterates, with the normwise relative backward errors 7
in parentheses; the column heading “Conv.” denotes conventional BLAS3. We also
report the condition numbers £oo(4) = ||Allw[|A™!|lo and cond(4) = || [A7]|A] || -

In these three specially chosen examples all the 7 values for the original computed
solution are less than u, but the w values for the fast BLAS3 are substantially larger
than for the conventional BLAS3. Note how iterative refinement reduces the w values
below u in one step in the first three examples. More typical, less extreme behaviour
is illustrated in Table 2.4, where rand(n) is a random matrix with elements from the
uniform [0, 1] distribution.

The matrices in the first three examples each have nonnegative elements of widely
varying magnitude. These matrices were tried because it is known that Strassen’s
method can provide poor relative accuracy when forming the product of such matrices
in floating-point arithmetic [18]. It is interesting to recall the result that the computed
solution to Az = b obtained by GEPP in floating-point arithmetic is invariant under
row or column scalings by powers of the machine base, as long as the same pivot
sequence is chosen (7, p.181]. This invariance property does not hold when Strassen’s
method is used in the BLAS3—this observation provides some further insight into

the first three examples.

12

Table 2.1: A = pascal(8)
Koo(A) = 3.96 x 107, cond(A) = 4.60 x 10°

Conv.,r =1. Conv.,r = 2. Fast, r = 2.
3.03e-16 (2.62e-18) 1.15-16 (3.54e-18) 1.7de-14 (1.2le-16)
4.91e-17 (8.60e-18) 4.92e-17 (8.60e-18)

Table 2.2: A = triw(16,—5)7
Koo(A) = 3.57 x 10'3, cond(A) = 9.40 x 10"

Conv., r = 1. Conv.,r = 2. Fast, r = 2.

8.42e-17 (4.28¢-19) 8.42e-17 (4.28e-19) 3.12¢-9 (4.24e-19)
1.68¢-16 (1.27e-18)

Table 2.3: A = ipjfact(7,1)
Koo(A) = 1.69 x 101, cond(A) = 6.85 x 10'°

Conv., r = 1. Conv.,r = 2. Fast, r = 2.

8.45¢-16 (1.51e-20) 3.68¢-16 (1.23e-20) 2.09e-12 (5.49¢-20)
1.98¢-17 (1.07e-20) 5.89¢-18 (3.19e-21) 7.07e-18 (2.15e-21)

13

Table 2.4: A = rand(32)
Koo(A) = 6.00 x 10%, cond(A) = 3.33 x 10

Conv., r = 1. Conv.,r = 8. Fast, r = 8.

1.48e-16 (2.67e-17) 2.34e-16 (4.56e-17) 6.81e-16 (1.07e-16)
2.31e-17 (7.16e-18) 2.99e-17 (8.38e-18)

14

2.3 Block-Triangular LU Factorization

Next, we discuss the computation of a true block LU factorization A = LU € R™*",
where L and U are block lower triangular and upper triangular respectively. This
factorization is not used in LAPACK, but it has attracted attention because of its

suitability for parallel machines [16,27]. Assuming that A;; € IR™*" is nonsingular we

A A I 0][A A
A= [11 12] - [] [11 12] — LU, (219)
A2l A22 Ln I 0 B

which leads to the following algorithm for computing L and U [16,27]:

can write

1. X = A7l

2. Ly = AnX.

3. B= Ay — Ly A

4. Compute the block LU factorization of B, recursively.

The explicit computation of Ajy' = Ug;' in this algorithm can lead to greater efficiency
on parallel machines, for if U7’ is stored rather than Uy, the back substitution phase
of solving Az = b consists entirely of matrix-vector multiplications.

Since the algorithm does not incorporate pivoting it is intended only for applica-
tions in which it is safe not to pivot in Gaussian elimination, for example, where A is
diagonally dominant or symmetric positive definite. We wish to point out, however,
that even in these situations, stability is not guaranteed. To see this it suffices to

consider the (2,1) block (relative to the partitioning (2.19)) of the residual,
(A—LO)n = An — LnAn.
Suppose, for simplicity, that X = A7} is obtained ezactly. Then, using (1.1), we have
Ln=Ln+ALn, |ALafl < aln—rrr)ulAnlllAL],

and so
(A= LO)a| = |ALnAnll € a(n —r,ryr)ul|An k(A1)

15

Table 2.5: Relative residuals for LU factorization
Koo(A16(—0.7)) 0(10®)
Koo(Als(—ll)) = 0(1011)
Koo(A16(—3)) = 0(10'°)

a=-07 a=-11 a=-3
1.35e-16 8.44e-17 0

6.19e-17 4.04e-17 9.46e-17
3.75e-17 1.15e-16 1.29e-14
5.76e-16 6.13e-15 1.86e-12
1.10e-14 5.69e-14 4.82e-10
10 | 1.54e-14 6.98e-13 3.74e-08
12 | 1.06e-12 4.3%-11 7.43e-05
14 | 4.50e-12 9.11e-10 2.89e-02

0 O W= N =S

Thus the bound for ||4 — LU|| depends on the condition of A;1, and, by the recursive
nature of the algorithm, on the condition of other r x r submatrices arising in the
algorithm. If any of these submatrices is ill-conditioned then there is the possibility
of a large residual.

Examples demonstrating instability are readily generated. Consider the symmet-
ric positive definite Moler matrix A,(a) = triw(n,a)Ttriw(n,a) € R™" from [20],
where triw(n, @) is defined in section 2.2. We ran the block LU algorithm on A;6(e)
in MATLAB, for block sizes r = 1,2,4,8,10,12,14 with three different a, using' con-
ventional BLAS3. The relative residuals |4 — ZU}|eo/||Alloo for the LU factorization
are displayed in Table 2.5; they clearly reveal instability increasing with the block
size (note that x(Ay;) increases with the block size).

This instability of block LU factorization does not seem to be well-known. We
suspect that in most applications where the algorithm has been used A has been
diagonally dominant, for if the diagonal dominance is sufficiently strong then the

inverses occurring in the algorithm are guaranteed to be of modest norm.

16

2.4 Recognizing a Stable Block Decomposition

How can one distinguish a stable block algorithm of the kind discussed in section 2.1
from the unstable one in section 2.37 Here we present an informal approach allowing
easy recognition without the need for a full error analysis. Our approach has some
similarities with that of Wilkinson [33] who describes a general approach to analysing
unblocked algorithms.

We consider LU factorization with partial pivoting, although the same approach
applies to the other factorizations mentioned at the end of section 2.1 and to QR

factorization. We view the algorithm as a sequence of computed decompositions
PLU;,+ R, = A+ AA,, 1= 0:m, . (220)

where one or more such decompositions describe a single step of the block algorithm.
P, is a permutation matrix and AA; represents rounding errors introduced by the
first ¢ steps of the algorithm. Initially, Po = Lo = I, Up = 4, and Ry = AAy = 0,
while L,, is unit lower triangular, U,, is upper triangular and R,, = 0. The term R;
is introduced for notational convenience.

The matrices P;, L;, U; and R; are transformed to Piyy, Liy1, Uit and R,;; by a
single matrix operation, either unblocked (BLAS1 or BLAS2), or blocked (BLAS3).
The rounding error introduced by this matrix operation is AA;1 — AA;. If each AA;
is small (]|AA;]| = O(u||A]|)) then the algorithm is stable.

To illustrate, the first stage of the block LU factorization in section 2.1 (ignoring
pivoting) may be written, using (2.20) with : = 0:4, as

A A
A - 11 21
Az A
_ (L, 0] [U 0’+'o Ay AA;, O
JL 0 0

L 0 I A21 Agg_‘ LO 0

Lll 0 Ull Ul2 'AAll AAIZ
| 0]| An An o 0

_ (a0l U U] 0 0] 1 AAn Ady
Ly I']| 0 =Lyl 0 Az AAy O

17

Un U
0 B

AAn AAp

. (2.21)
AAy DAz

[Ln oo
oL, I

It is clear from the assumptions (1.1) and (1.2) that each rounding error term AA; ;
has a bound of order u||A||, and (2.21) shows that their contribution is additive. It
follows that the whole process is stable.

One possible obstacle to stability, which does not occur in LAPACK, would be
computing part of a decomposition (say A;; = L1nUn above), using it to compute
other parts of the decomposition (Ls;, Uiz, and B) and then recomputing it by some
method yielding different rounding errors. There is no motivation for this in Gaussian
elimination, but it is conceivable that such redundant operations would be needed to
use the BLAS3. (There are redundant operations in the use of block orthogonal
transformations in the next section, but they do not lead to this difficulty).

How could this recomputation damage stability? Suppose we refactorize 4;; =
L,,U,, stably after the last step above, and replace Ly; by L,; and Uy, by Uyy. This
will increase A A, by (f/u — Ly;)U;, and AAy; by Lgl(ﬁu —Uyi), and neither of these

quantities is guaranteed to be small.

3 Orthogonal Transformations

In this section we consider block algorithms based on orthogonal transformations.
The algorithms of interest include QR factorization, orthogonal reduction to Hessen-
berg, tridiagonal or bidiagonal form, the unsymmetric QR algorithm, and algorithms
for generalized eigenvalue or singular value computations. The techniques used in
LAPACK for constructing block versions of these algorithms are based on the aggre-
gation of Householder transformations. Our aim is therefore to analyse the stability
of these aggregation techniques.

One form of aggregation is the “WY” representation of Bischof and Van Loan

[5]. This involves representing the product @, = P.P,_;... Py of r Householder
T

transformations P; = I — u;ul € R™" (ufu; = 2) in the form

Q. =I+WYT, WY, eR™.

18

This can be done using the recurrence
Wl = —U, Yl = U, VVt = [VVi—l’ "Qi—lui]a),: = D/i—laui]-

Using the WY representation a block QR factorization can be developed as follows.
Partition A € R™ " (m > n) as

A=[A1, B], A1€]R'"x',

and compute the Householder QR factorization of A,
Ry
P,-P,-_]...P]A1= 0 .

The product P.P,_;... P, = I + W,Y,T is accumulated as the P; are generated and
then B is updated according to

B — (I+W,YT)B = B+ W.(Y"B),

which involves only BLAS3 operations. The process is now repeated on the last m—r
rows of B.

An alternative form of accumulation is proposed in [14] for r = 2, extended to
general r in [13], and used in [2]. In the context of orthogonal similarity reduction to

Hessenberg form, the technique involves expressing
P.P,_y...PAP,...P..,P, = A-UVT - W,UT, (3.1)

where U,,V,,W, € R™™". We refer the reader to [13] for details of how to obtain
this representation. The key point is that, once again, only BLAS3 operations are
involved in computing the update, once U,, V, and W, have been formed.

Now we consider numerical stability. We concentrate on the WY technique, and
comment that similar analysis applies to the alternative method of aggregation (3.1),
as well as to the more storage efficient compact WY representation of Schreiber and
Van Loan [28]. First, we note that the construction of the W and Y matrices is done
in a stable manner (indeed it does not involve the BLAS3): Bischof and Van Loan
[5] show that the computed @ = I + WYT is such that

1QTQ - I|| = O(u), (3-2)
Wil =0@), |I¥]=0() (3.3)

19

The condition (3.2) implies that
Q=U+AU, UTU=1I, |AU| =0(u), (3.4)

that is, Q is close to an exactly orthogonal matrix.
Next we consider the application of Q. Suppose we form C = QB=(I +W?T)B,

obtaining
¢ = fI(B + fUW (YT B))).

Analyzing this BLAS3-based computation using (1.1) and (3.4) it is straightforward
to show that

-~

C = UB+AC=U(B+UTAC),
|ac) < c.m(cl(r,n,n) + cl(n,r,n))u”BH + O(v?), (3.5)

where ¢, is a constant of order 1. This result shows that the computed update is an
exact orthogonal update of a perturbation of B, where the norm of the perturbation
is bounded in terms of the error constants for the BLAS3.

In the case r = 1, (3.5) reduces to Wilkinson’s result on the application of a
single Householder transformation {32, p.160]. Wilkinson uses this result to obtain a
backward error result for the application of a sequence of Householder transformations
[32, pp.160-161]. With the use of (3.5), it is straightforward to show that Wilkinson’s
method of analysis can be adapted to accommodate WY updates. Alternatively, to
obtain a backward error result for a sequence of orthogonal similarity transformations,
we can simply insert the bound (3.5) into the general analysis of (26, sec.6-5] or
[31]. It follows that the standard backward error analysis results for Householder
transformation algorithms remain valid when the WY technique is used, as long as
the constants in the error bounds are replaced by appropriate linear combinations of
c; terms.

Our overall conclusions are as follows. First, algorithms that employ aggregated
Householder transformations with conventional BLAS3 are as stable as the corre-
sponding point algorithms. Second, the use of fast BLAS3 for applying the updates

affects stability only through the constants in the backward error bounds.

20

4 Concluding Remarks

Our main conclusion is that the use of fast BLAS3 satisfying (1.1) and (1.2) with
LAPACK block algorithms is “safe” from a numerical standpoint. The algorithms
retain their normwise backward stability, but the actual backward errors may increase
to reflect any decreased accuracy in the BLAS3. Also, any special properties relating
to componentwise backward error may be lost in switching to fast BLAS3.

How large the increase in backward errors will be, on average, is difficult to say,
since the theoretical error bounds tend to be quite pessimistic (this applies particularly
to the bound for Strassen’s method—see [18]). A quantitative assessment of the speed
versus stability tradeoff must await the accrual of experience in using fast BLAS3 for
the values of n for which useful speedups are obtained.

In the important application of solving Az = bby LU factorization the use of fast
BLAS3 need carry no stability penalty: we have shown that fixed precision iterative
refinement with conventionally computed residuals can improve normwise stability
and can even produce a small componentwise relative backward error, although we
have not been able to state useful conditions under which such improvements are
guaranteed.

Finally, we reiterate a point discussed in [18]. When replacing conventional BLAS3
by fast BLAS3 in an iterative algorithm, it is important to consider the implications
for the convergence tests—a change in the BLAS3 may necessitate a retuning of the
algorithm parameters. Ideally, a convergence test will be effective across different
BLAS3 implementations and computer arithmetics and so will not need tuning. The
stopping criterion used in LAPACK for iterative refinement of linear equations (see
section 2.2) has been designed with this goal in mind. Experience will tell whether

the goal has been achieved!

21

References

[1] M. Arioli, J.W. Demmel and LS. Duff, Solving sparse linear systems with sparse
backward error, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165-190.

[2] Z. Bai and J.W. Demmel, On a block implementation of Hessenberg multishift
QR iteration, Int. J. High Speed Computing, 1 (1989), pp. 97-121.

[3] D.H. Bailey, K. Lee and H.D. Simon, Using Strassen’s algorithm to accelerate the
solution of linear systems, Report RNR-90-001, NAS Systems Division, NASA
Ames Research Center, Moffett Field, CA 94035, 1990.

[4] C.H. Bischof and J.J. Dongarra, A project for developing a linear algebra library
for high-performance computers, Preprint MCS-P105-0989, Mathematics and

Computer Science Division, Argonne National Laboratory, 1989.

[5] C.H. Bischof and C.F. Van Loan, The WY representation for products of House-
holder matrices, SIAM J. Sci. Stat. Comput., 8 (1987), pp. s2-s13.

[6] R.P. Brent, Error analysis of algorithms for matrix multiplication and triangular

decomposition using Winograd’s identity, Numer. Math., 16 (1970), pp. 145-156.

[7] G. Dahlquist and A. Bjorck, Numerical Methods, Prentice-Hall, Englewood
Cliffs, New Jersey, 1974.

[8] J.W. Demmel, On floating point errors in Cholesky, LAPACK Working Note

#14, Department of Computer Science, University of Tennessee, Knoxville, 1989.

[9] J.W. Demmel, J.J. Dongarra, J.J. Du Croz, A. Greenbaum, S.J. Hammarling,
and D.C. Sorensen, Prospectus for the development of a linear algebra library
for high-performance computers, Technical Memorandum No. 97, Mathematics

and Computer Science Division, Argonne National Laboratory, Illinois, 1987.

[10] J.W. Demmel, J.J. Du Croz, S.J. Hammarling and D.C. Sorensen, Guidelines

for the design of symmetric eigenroutines, SVD, and iterative refinement and

22

condition estimation for linear systems, LAPACK Working Note #4, Techni-
cal Memorandum 111, Mathematics and Computer Science Division, Argonne

National Laboratory, 1988.

[11] J.J. Dongarra, J.J. Du Croz, LS. Duff and S.J. Hammarling, A set of Level 3
basic linear algebra subprograms, ACM Trans. Math. Soft. , 16 (1990), pp. 1-17.

[12] J.J. Dongarra, J.J. Du Croz, LS. Duff and S.J. Hammarling, Algorithm 679: A
set of Level 3 basic linear algebra subprograms, ACM Trans. Math. Soft., 16
(1990), pp. 18-28.

[13] J.J. Dongarra, S.J. Hammarling and D.C. Sorensen, Block reduction of matri-
ces to condensed forms for eigenvalue computations, J. Comp. Appl. Math., 27
(1989), pp. 215-227.

(14] J.J. Dongarra, L. Kaufman and S.J. Hammarling, Squeezing the most out of
eigenvalue solvers on high-performance computers, Linear Algebra and Appl., 77

(1986), pp. 113-136.

[15] K. Gallivan, W. Jalby, U. Meier and A.H. Sameh, Impact of hierarchical memory
systems on linear algebra algorithm design, Int. J. of Supercomputer Applics., 2

(1988), pp. 12-48.

[16] K.A. Gallivan, R.J. Plemmons and A.H. Sameh, Parallel algorithms for dense
linear algebra computations, SIAM Review, 32 (1990), pp. 54-135.

(17) G.H. Golub and C.F. Van Loan, Matrix Computations, Second Edition, Johns
Hopkins University Press, Baltimore, Maryland, 1989.

[18] N.J. Higham, Exploiting fast matrix multiplication within the level 3 BLAS,
Technical Report 89-984, Department of Computer Science, Cornell University,
1989; to appear in ACM Trans. Math. Soft.

[19] N.J. Higham, How accurate is Gaussian elimination?, in Numerical Analysis
1989, Proceedings of the 13th Dundee Conference, Pitman Research Notes in
Mathematics 228, D.F. Griffiths and G.A. Watson, eds., Longman Scientific and
Technical, 1990, pp. 137-154.

23

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[29]

N.J. Higham, A collection of test matrices in MATLAB, Technical Report 89-
1025, Department of Computer Science, Cornell University, 1989.

N.J. Higham, Stability of a method for multiplying complex matrices with three
real matrix multiplications, Numerical Analysis Report No. 181, University of
Manchester, England, 1990.

N.J. Higham, Is fast matrix multiplication of practical use?, to appear in SIAM
News.
N.J. Higham, Iterative refinement enhances the stability of QR factorization

methods for solving linear equations, Numerical Analysis Report No. 182, Uni-

versity of Manchester, England, 1990.

P. Mayes and G. Radicati, Banded Cholesky factorization using level 3 BLAS,
LAPACK Working Note #12, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Illinois, 1989.

W. Oettli and W. Prager, Compatibility of approximate solution of linear equa-
tions with given error bounds for coeflicients and right-hand sides, Numer. Math.,

6 (1964), pp. 405-409.

B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood
Cliffs, New Jersey, 1980.

R.S. Schreiber, Block algorithms for parallel machines, in Numerical Algorithms
for Modern Parallel Computer Architectures, M.H. Schultz, ed., IMA Volumes In
Mathematics and Its Applications 13, Springer-Verlag, Berlin, 1988, pp. 197-207.

R.S. Schreiber and C.F. Van Loan, A storage efficient WY representation for
products of Householder transformations, SIAM J. Sci. Stat. Comput., 10 (1989),
pp. 53-57.

R.D. Skeel, Iterative refinement implies numerical stability for Gaussian elimi-

nation, Math. Comp., 35 (1980), pp. 817-832.

24

[30] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp.
354-356.

[31] J.H. Wilkinson, Error analysis of eigenvalue techniques based on orthogonal
transformations, J. Soc. Indust. Appl. Math., 10 (1962), pp. 162-195.

(32] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press,
1965.

[33] J.H. Wilkinson, Error analysis revisited, IMA Bulletin, 22 (1986), pp. 192-200.

[34] S. Winograd, A new algorithm for inner product, IEEE Trans. Comput., C-18
(1968), pp. 693-694.

25

