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Abstract

Semantically-powerful views, formatted program text, and struc-
tural operations on programs are powerful tools for helping users un-
derstand and edit programs. The Pan Program Presenter provides
these facilities, including elision and display of program annotations,
in an incremental, portable implementation. It provides novel lan-
guages for specifying program appearance, including both a succinct,
easy-to-use form and a more powerful, extensible form.
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1 Introduction: Problems and Solutions

Pan I is a system designed to make programmers more effective by giv-
ing them powerful ways of viewing and editing programs [BV87] [BGV90].
Since so little is known about what are the most useful viewing and editing
paradigms, Pan I is flexible, serving as a test bed for comparing and devel-
oping these paradigms. A program presentation tool has much to offer in
pursuit of these goals of power and flexibility. It can provide increased access
to structural ways of thinking about and manipulating programs; it can pro-
vide formats that make syntactic structure apparent and thus make programs
easier to read; and it can provide semantically powerful viewing mechanisms.
If it is sufficiently flexible, it can allow researchers to experiment with ways
of using these three techniques to empower users.

For a tool providing these services to be useful, it must be incremental,
since otherwise it will be too slow to use on large programs. It must also be
flexible and description-driven, since we will want to display a given program
differently based on user preferences or the kind of viewing or editing task
being performed, experiment with different approaches to program presen-
tation, and allow presentation of programs written in different languages.
Finally, so that it can remain useful as Pan I and its successor system En-
semble evolve, it should be portable, so that it can be used to deal with
non-textual representations, and to deal with implementations of text other
than that currently used in Pan I.

The Pan Program Presenter (PPP) provides structural, formatted, and
semantically-powerful views of programs in the Pan I context in an in-
cremental, description-driven, and portable way, using novel specification
paradigms.

1.1 Structural Operations

One of Pan I's design goals has always been to support both textual and
structural viewing and editing operations on programs. Structural operations
are powerful, but users are accustomed to using textual operations. Because
users have highly-developed skills for textual manipulation of programs, such
manipulation is highly effective. Moreover, users are likely to feel hamstrung
by a system that does not allow such manipulation, and will probably not
use it. Nevertheless, Pan I’s developers believe that structural operations



are valuable and powerful, and that, if they are supplied along with textual
operations, users will gradually adopt them, at least in the situations where
they provide more power than textual manipulations.

However, Pan I’s access to structure has been limited in the past. While
structural selection and navigation were possible, purely structural editing of
programs was not possible. The reason lies in the implementation architec-
ture. Every program is represented by an abstract syntax tree whose leaves
contain pointers into the text of the program as edited by the user. The user
can make additional textual edits to the text stream; the tree is updated to
reflect these edits via incremental parsing. The textual and tree represen-
tations of programs have always had equal status. Neither has been given
primacy, and there is no clear paradigm for structural manipulations. For
example, it was impossible to do purely structural transformations, because
there was no way to generate text for the newly-created structure. The pro-
gram presenter gives us a tool that allows creation of textual views from the
(now-primary) tree representation. Textual editing remains possible, since
we can use a parser to transform textual edits into structural edits. Struc-
tural editing becomes possible, because we can now provide views onto the
changed objects.

These new capabilities have yet to be fully exploited. Textual editing in
PPP-created views is impossible until a new parser is installed, and struc-
tural editing has not yet been implemented. However, the program presenter
supplies the basic building-block that has heretofore been missing: views
created solely from the program tree.

1.2 Formatted Program Text

Formatted program text, which uses layout and fonts to reflect lexical and
syntactic structure, is valuable in enhancing program readability. [OC90]
PPP provides this facility, allowing the user to specify the appearance of
each program construct. Fonts and whitespace can be used to reflect such
structural properties as lexical class and nesting depth. See for example Fig-
ure 1 which shows unformatted and formatted views of the same program.
Note that the formatted view’s display panel says “language: Text,” indicat-
ing that the view is purely textual, and does not allow structural navigation;
no language-oriented commands are meaningful in this view. PPP does not
maintain the mappings from formatted views to the to the tree which would



be needed to provide this facility; for discussion of possible extensions in this
area, see Section 5.

1.3 Semantically-Powerful Views

Pure program text is not sufficiently informative. Sometimes it contains too
much information; detail may obscure the overall structure of a program, or
intervening, unrelated statements may make it impossible to view distantly-
spaced but semantically-related statements simultaneously. In such cases,
we may wish to elide (suppress display of) parts of the program. See for
example Figure 2, in which error-handling code is elided to make it possible
to view only the standard thread of control. Note that the two views use
fonts differently; an elided view is not required to use the same formatting
style as any other view. At other times, program code contains too little
information. We may wish to display annotations on the program, or to
influence the display of the program on the basis of computed values. When
a view of a program reflects non-syntactic information about a program,
whether that information is static semantics, computed information, such
as dataflow information, or user annotations, we call the view semantically-
powerful. ‘

Pan I provides facilities for making computations about programs via
Colander. Colander provides a language for specifying oontextual con-
straints (computations) on programs, an incremental constraint-checker which
updates computations in response to user editing events, and a database of
information about programs being edited which contains both information
computed by Colander and information computed by other Pan I clients.
PPP can display user comments and uses Colander to implement elision
and indentation; this provides proof of concept of its ability to make use of
annotations and semantic values.

1.4 Flexibility

As in much of Pan I, the design of PPP is oriented towards providing facilities
that will allow later implementation of a wide range of policies, rather than
implementing particular policies in the code. To this end, PPP is description-
driven. Descriptions can be specified at three levels.



Pan 3.2 (alpha) 28:37:28 Thursday 5/18/96

§ show-fact.asple
show-fact.asple[1]

ki

Buffer: show-fact.aspie T
PAN Languags: asple @ @ Level: Character
AC AC A

Yfegin int X, /* input */ Fact, /% result */ N;
/* read X */
input X;
/% initialize */
Fact := 1;
N := 1;
/* loop */
if (X !'= 0) then
while (N != X) do
N :« N+ 1; Fact := Fact * N

end
fi;
output Fact
end

‘Buffer: show-fact.aspls T
Language: Text : Character

begin
int X, /* input */ Fact, /* result */ N;

/* read X */
input X;
/* initialize %/
Fact := 1;
N :=1;
/% loop */
if (X !'= 0) then Y
while (N != X) do
N:=N+1;
Fact := Fact * N
and
fi;
output Fact
endf]

Figure 1: Formatted Program Text



Pan 3.2 {(alpha) 28:37:28 Thursday 5/18/98
PAN Rebinding menu: Pan, item Semantics to be 18

§ HelpInfo
elide-example.asple

Helide-example.asple[1]
d Rrog/

Buffer: elide-example.asple ] T
PAN Language: asple M Level: Character

int X, Fact, N;
Bool errflag, verboseRead;

/% read X »/

input X;

if errflag then
verbossRead := trus;
input X

fi;
/* initialize =/
Fact := 1;
N := 1;
/% loop »/
if (X 1= @) then
while (N != X) do
N := N+ 1;
Fact := Fact * N

end
£
Buffer: elide-example.asple T
| PAN | anguage: asple @ @ Level: character

int X, Fact, N;

/* read X */
input X;

e e
/% initialize %/
Fact := 1;
N := 1;
/* loop */ X
if (X !'= 0) then
while (N != X) do
N := N+ 1;
Fact := Fact * N

end
fi;

Figure 2: Elision



The status level gives a concise if highly-constrained way of specifying
program appearance. It provides acceptable results in return for very little
work in specification and is useful for providing presentations of language
prototypes. Status-level descriptions can be processed to produce front end
descriptions.

A complete program appearance specification consists of a front end spec-
ification and a back end specification. The front end level associates an
appearance specification with each rule of the abstract grammar. These
appearance specifications are expressed in terms of primitive appearance no-
tions, such as character strings, spaces, and carriage returns. The back end
level provides COMMON LISP code to implement each appearance primitive.
This code can read, use, and display information from Colander’s database
of computed values about the program.

A casual user can write a front end description to specify her formatting
preferences and use it in conjunction with one of the back ends provided
with the system. The standard back end will format her program on the
screen; other back ends can provide other representations, such as document
formatting languages. More advanced users can write back end specifications
to provide semantically-powerful views of programs.

1.5 Increrﬂentality

PPP is incremental; only the parts of the appearance that represent pieces
of the tree that have changed are re-computed.

1.6 Portability

A PPP appearance specification is divided into two parts: a front end specifi-
cation, which describes the desired appearance in terms of appearance prim-
itives, and a back end specification, which describes how appearances are
to be implemented. A given front end description can be used with any
of several different back end descriptions, and can thus be used to produce
the same appearance in different output representations. These description
mechanisms will be described in more detail, with examples, in Section 3.
Currently, back ends are constrained to produce their output in the form
of text rather than, for example, graphics. Even with this constraint, they
are able to produce different representations. For example, one back end



produces text suitable for direct viewing; indentation is produced with space
characters, and emphasized characters are printed in a bold font. Another
back end produces TEX source, with indentation and emphasis represented by
appropriate TEX commands. This text can be written to a file and processed
by TgX to produce the desired appearance. This is useful, for example,
in producing program examples to be included in textual documents. See
Figure 3 for two views of a program, produced with the same front end
description and different back end descriptions. One is suitable for direct
viewing; the other is TEX source. The output produced by TEX from the
latter version can be seen in Figure 4. With minor changes, the back end
mechanism will provide true portability between representations.

1.7 System Context

Pan I [BV87] is a language-based editor written in COMMON LISP and C,
running under SunView and X11. Its syntactic specifications are written
in Ladle [But89]; its semantic specifications are written in Colander [Balg9].
Users who wish to view programs using PPP must be familiar with the Pan I
user interface. Users who wish to write status and front end presentation
descriptions for PPP must be familiar with Ladle, though only a surface
familiarity is needed to write status descriptions. They must also be familiar
with Colander. Users who wish to write back end descriptions should be
familiar with COMMON LISP and the Pan I extension language.

1.8 Plan of Paper

Having addressed issues of design goals and motivations, this paper will pro-
ceed from the outside in. It begins in section 2 with a discussion of the
way the system looks to a user who is simply using alternate views on her
programs, using specifications provided with the system or by other users; it
describes the capabilities the system provides and the user interface used to
invoke them. This discussion includes coverage of elision. It proceeds, in Sec-
tion 3, with a discussion of the various specification languages, from simplest,
to most complex, along with the tools the system provides for building and
processing these descriptions. It finishes its inward journey in Section 4 with
a description of the implementation. Sections 5 and 6 discuss further work to
be done on PPP and list known bugs and problems. The final two sections

10



Pan

3.2 (alpha) 28:37:28 Thursday 5/18/98

HelpInfo
prog/
show-fact.asple
Bhow-fact .asplel1]
show-fact.asple[2]

Buffer: T
PAN Language: asple ¥ Level: Character

begin
int X, /* input */ Fact, /* result */ N;

/* read X */

input X;

/% initialize x/

Fact := 1;

N :=1;

/* loop */

if (X != 0) then

while (N != X) do

N:=N+1;
Fact := Fact * N

end
fi;
output Fact
end]]
Buffer: show-fact.aspie
PAN Language: Text P @ @ Level: CnaracteI P
/home/sequoia/sggs/black/ns/shou-fact.tex written (487 characters).

\6be§iine§v'
{\bf begin}
\quad {\bf int} X, /% input %/ Fact, /* result */ N;

\quad /* read X */

\quad {\bf input} X;

\quad /* initialize %/

\quad Fact := 1;

\quad N := 1;

\quad /* loop */

\quad {\bf if} (X != 0) {\bf then}
\quad \quad {\bf while} (N != X) {\bf do}
\quad \quad \quad N := N + 1;
\quad \quad \quad Fact := Fact * N
\quad \quad {\bf end}

# \quad {\bf fi};

{ “\quad {\bf output} Fact

1 {\bf end}

Figure 3: Two Different Back Ends
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begin
int X, /* input */ Fact, /* result */ N;
/* read X */
input X;
/* initialize */
Fact := 1;
N :=1;
/* loop */
if (X !=0) then
while (N = X) do
N:=N+1;
Fact := Fact * N
end
fi;
output Fact
end

Figure 4: PPP Output Run Through TgX

put the project in perspective, with a discussion of PPP in the context of
other work in the field in Section 7 and an overall evaluation of the project,
listing its successes and failures, in Section 8. The appendices provide exam-
ples: a complete front end specification for asple, two back end descriptions,
and a specification of asple in Ladle.

Throughout this paper, terms being defined are printed in stalics and
CoMMON LISP objects and code are printed in typewriter font. Pan [
commands and functions and macros in the Pan I extension language are
printed in a sans-serif font.
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smiling when things got rough.

2 The User Point of View

This section outlines the operations users can perform on programs using
PPP. It is not a complete user manual, but rather aims to give the reader an
overview of the services provided by PPP.

2.1 Visiting Programs and Creating Views

In Pan I, a user edits a program (or any other object) in a buffer. The buffer
may contain multiple views on the object; currently, each view is textual.
Each view may have zero or more viewers, or windows. The user initially
imports a program object into Pan I by visiting a file whose text is the text
of the program; to create a new program, she visits a non-existent file with
an appropriate name. When the file is initially visited, the system creates a
default view (the primary view) that shows the program text and on which
analysis and structural navigation, as well as textual edits and navigation,
can be performed. The user can choose between having the primary view for-
matted automatically according to some appearance specification and having

13



it retain the format in which it was entered. The command Reformat-Toggle!
enables and disables primary view reformatting. The first time it is enabled,
the user will be prompted for the name of a file containing a front end descrip-
tion specifying the desired appearance. When primary view reformatting is
enabled, it is performed each time the program is analyzed.

The user can also add PPP views, called alternate views, using the Pan [
command Add-Ppp-View. She will be prompted for the names of two files, one
containing a front end description and one containing a back end description.
After these are specified, a new view is created. Its initial contents are the
formatted text corresponding to the state of the tree at the time it is added.
Whenever the program is parsed, the view will be updated to reflect the
structural changes. The view can be navigated textually, but cannot be
edited or navigated structurally. The user can add as many views as she
likes, using whatever front and back end descriptions she likes.

2.2 Elision

The user may designate certain program views as elidable. The commands
Enable-Elision and Disable-Elision turn elision on and off for the current view.
Elision is not permitted in the primary view, since the primary view is the
source from which the program tree is created; elision in this view would
destroy part of the program. To elide the subtree rooted at a node, she
positions the Pan I tree cursor on that node in the primary view using the
tree cursor motion commands (Cursor-To-Token, Tree-Up, etc.) and invokes
the command Elide. This elides the node in all elidable views. The standard
presentation of an elided subtree is a horizontal row of three equally-spaced
dots; however, in the future, other back end descriptions may provide other
kinds of elision, including elision which replaces code with system-generated
summary information. To unelide a node, the user again positions the tree
cursor on the node, and invokes Unelide. This unelides the node in each
elidable alternate view. Unelision replaces the text that had been standing
in the subtree’s place with its current textual representation, accounting for
any structural, semantic, or formatting changes since the node was elided,
including elision and unelision of its descendants. Note that eliding or un-

1A]] PPP commands are currently bound to key sequences. Menu bindings could be
added, either as the system default or in individual users’ Pan I configuration files.
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eliding a descendant of an elided node has no visible effect until all elided
ancestors of the node have been unelided, that is, until the node’s yield is
visible.

3 Descriptions

There are three levels of description in PPP. The simplest, most concise, and
least powerful is the status level. It is useful for fast generation of appearance
specifications for new languages. The system translates it into the next level,
the front end level, where it can either be used as-is or modified to suit
the user’s tastes. The front end level is a general language for describing
formatting based on syntax. Finally, the back end level allows the user
to provide portability and to make use of Pan I’s facilities for annotating
programs and performing computations on them.

Status and front end descriptions are language-specific, and describe pro-
gram appearance in terms of appearance primitives; back end descriptions
are language-independent and describe how to implement appearance primi-
tives. In other words, a front end or status description says what a program
should look like; a back end description tells you how to get it to look that
way. Both a back end and a front end (or status) specification are needed to
fully specify a view of a program. (Standard back ends are provided for users
who do not want to write their own.) Front and back ends can be mixed and
matched freely; this provides conciseness, flexibility, and portability.

All the examples in this section are specifications for the appearance of
the little language asple. The Ladle specification for asple is attached as
Appendix D.

3.1 The Status Level

The status level is based on a simple idea. We assign one of four formatting
statuses to each lexeme and abstract non-terminal in the language. (Gram-
mar symbols and rules are known collectively as operators.) This status
determines how it is presented on the screen. An operator’s status may be
one of punctuation, word, sentence, or paragraph. A punctuation operator 18
not given any special spacing; a word is separated from whatever surrounds it
(except punctuation) by a single space on either side; a sentence is placed on
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its own line, and nesting of one sentence within another is shown by deeper
indentation of the nested sentence; a paragraph is separated from words or
sentences by a single newline and from another paragraph by a double new-
line. Nesting of a paragraph within a sentence or paragraph is shown by
indentation. Given these rules, a status for each operator in the language,
and a textual representation for each operator in the language, we have a
complete appearance specification for any program in the language.

A status specification consists of zero or more COMMON LIsP lists. ( A
status specification for asple is found in Figure 5, and an asple program
printed in accordance with this specification is found in Figure 6.) The first
item of each list is one of : punctuation, :word, :sentence, and : paragraph.
The remaining items of each list are the string names of operators in the
language. The status of an operator is the status at the head of the last list
it appears in. If the status is not specified, a lexeme has status :word and a
non-terminal has status :sentence.

In the example, loop is not listed since we wish it to have the default
status for a non-terminal, that is, :sentence. "," is listed since we wish it to
be treated as punctuation rather than as a word, the default for a terminal.

The status system is highly constrained: the set of statuses and the treat-
ment of each status are fixed. This makes the system very rigid, but also
makes it concise and easy to learn and use. A more extended version might
be of interest, but it would probably also be more complicated to learn and
use.

3.1.1 Creating and Processing Status Specifications

For help in creating a status description, a user can invoke the command
Status-Helper from within Pan I. This command prompts the user for a file
pame and then creates a file with that name containing a list of all the
operator names for the current language. The user can then edit this file to
produce a status specification. The command Process-Status can be used to
transform a status specification into a front end specification. When invoked,
it prompts the user for two filenames. The first file is a status specification;
the command creates a file with the second name containing a front end
description corresponding to the given status specification. The user may
then either process and use this description as described in Section 3.2 or
edit it to modify particular cases she wishes to have handled differently.

16



(:punctuation "," ";")

(:paragraph "stmts" "decls" "program'")

(:word "ANNOTATE" "ref" "plus" "times" '"equals"
"not_equals" "mode" "idlist""expression")

Figure 5: A Status Specification for Asple

3.2 Front End Specifications

A front end specification is a mapping from lexemes and abstract grammar
rules to rules in the Annotation Language (AL). Therefore, to describe the
front end descriptions, we must first describe the annotation language.

3.2.1 The Annotation Language

A rule in the annotation language is a list of annotation language items. (See
examples in Figure 8.) An item is made up of an annotation type and a list
of arguments.

The yield of a node of the abstract syntax tree is defined to be the con-
catenation of the yields of the items in the annotation list for that node.
An item with the special annotation type :child is a placeholder for the
corresponding child of the node being printed; its yield is the yield of the
child. The yield of any other item is defined by the back end being used.
:child is called a system annotation type, because its definition is fixed by
the PPP kernel; all other types are called user annotation types because they
are defined by the user in the back end. User annotation types might include
a :string type with two arguments, a string and a font, and a :space type
with an integer argument indicating the length of the piece of white space to
be produced.

The AL serves as an intermediate representation for program appear-
ance. Each AL item is a concise description of a piece of appearance that is
in some sense primitive, for example, a single string, a group of spaces, or a
marginal note. It is a low-level appearance specification which is independent
of the eventual output representation, just as an intermediate representation
in compilation is a low-level machine-independent specification for compu-
tations. A back end describes how to implement each appearance item in
a particular representation. A combination of a front end description and

17



Pan 3.2 (alpha) 208:37:28 Thursday 5/16/98

elpInfo
prog/
show-fact.asple
? show—fact.asple[1]

Buffer: show-fact.asple T D
PAN tanguage: Text @ Level; Character

INT X, /* input */ Fact, /% result */ N;

/* read X »/

INPUT X;

/% initialize %/

Fact := 1;

N = 1;

/% loop */

IF ( X != 0 ) THEN

WHILE ( N = X ) DO

N:=N+1;
Fact := Fact * N

END
FI;
OUTPUT Fact
20

Figure 6: A Program Printed Using a Status Specification
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annotate-list — (annotate-item”)

annotate-item — (keyword argument’)

keyword is any COMMON LISP keyword.
argument is any COMMON LISP value.

Figure 7: A Grammar for the Annotation Language

((:emstring "if"))
((:child) (:sp 1) (:child) (:sp 1) (:child) (:cr)
(:in 1) (:child) (:cr)

(:child))

((:colored-string :blue "var"))

Figure 8: Some Rules in the Annotation Language
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a back end description describes how to present an appearance in a given
representation. The ability to use different back ends with a single front end
allows us to present the same appearance in a number of representations. It
is this interchangeability of back ends that makes PPP portable.

Because user annotation types are defined by the back ends that support
them, any keyword can be added to the set of annotation types. A user
who wishes to add some new kind of appearance item need only assign a
conventional meaning and argument signature to an appropriate keyword
and provide a back end function to support it. By doing so, she has extended
the AL.

The meaning of any user annotation type is determined by the back end
in use. However, each annotation type has a fixed meaning which is adhered
to in most back ends. Users who do not wish to use special back ends
may use the system back ends and rely on the annotation types having the
conventional meanings described here.

Annotate types other than :child supported by existing back ends are:

:sp Takes an integer argument n; prints n spaces.

:cr No arguments; prints a carriage return and indentation white space
according to indent level.

:self No arguments; prints the string name of the node.
:string Has a string as an argument; prints the string.
:in Has an integer argument depth; tabs in by depth tabwidths.

:comment No arguments; prints the text representation of the comment at-
tached to the current node.

:emstring Has a string as an argument; prints the string in an emphasized
font.

:startprog No arguments; lets the back end know where the beginning of
the program is. In many back ends this is a no-op; in a TEX back end
it prints TEX prologue instructions.

:endprog No arguments; analogous to :startprog.

:elide No arguments; prints three dots.

20



3.2.2 Front End Descriptions Defined

A front end description maps node types to annotation language rules. A
given node will always be printed with the rule associated with its node
type. This restriction to one presentation per node type is common in the
literature [Hor81] [Mat83) [Opp80] [Rub83], and was chosen to simplify the
specification language. However, it would not be difficult to extend the
system. Rules could be be chosen conditionally on the basis of the value of
an arbitrary expression over syntactic and computed properties of the node.
For example, the rule chosen to present a node representing a reference to
a variable could depend on the type of the variable. Also, the system could
provide commands to allow the user to interactively choose the rules to be
used to present a node.

A front end description is a series of front end items, each of which is a
CoMMON Lisp list. (Sample rules from a front end description for asple
can be found in Figure 9.) A front end item starts with a keyword that tells
what the rest of its parts must be.

e :lexeme must have an operator name and an AL rule

e :commented-lexeme must have a list of the operator name and the
literal "comment", and then an AL rule

e :rule must have an operator name, a right-hand side, and an AL rule

o :commented-rulesame, but the right-hand side willinclude "comment"
and the AL rule will be used to format the rule when it has an associated
comment

The right-hand side is the list of operator names of the right-hand side
of the grammar rule corresponding to the operator. In effect, it tells what
the node’s children are. The code that processes the descriptions does not
read the right-hand sides; it reads only the keywords, the operator names,
and the AL rules. The right-hand sides are provided for the user, to make
the description more readable.

Note that in primary buffer reformatting, the front end specification is
used only to describe whitespace format; any other directives will be ignored.
This is because primary buffer reformatting is whitespace-only, to preserve
the property that the program tree can be reproduced from the program
text.
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(:lexeme "IF" ((:emstring "if")))
(:lexeme "FI" ((:emstring "£i")))

(:lexeme "id" ((:self)))

(:rule "if_then" ("IF" "expression" "THEN" "stmts" “"FI")
((:child) (:sp 1) (:child) (:sp 1) (:child) (:cr)

(:in 1) (:child) (:cr)

(:child)))

(:commented-rule "if_then"

("IF" "expression" "THEN" "stmts" "FI" "comment')

((:comment) (:cr) (:child) (:sp 1) (:child)(:sp 1) (:child) (:cr)
(:in 1) (:child) (:cr)

(:child)))

Figure 9: Excerpt from a Front End Description
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3.2.3 User Commands Dealing With Front Ends

The command Create-Description prompts the user for a file name and creates
a file with that name containing a front end description for the current lan-
guage with all the AL rules empty. This provides the user with a framework
that provides all the keywords, operator names, and right-hand sides; she
then has merely to add the AL rules.

The system does not actually use rules in the form they are viewed and
edited by the user, but rather uses an internal form. A user can create an
internal-form file from a front end description file with the command Process-
Description. By convention, a front end file is identified with the suffix “.desc”
an internal form file is identified with the suffix “.int”.

3.3 Back Ends

The program presenter itself defines the meaning of the annotation type
:child. Other annotation types are defined by back ends. A back end is
a mapping from annotation types to implementation functions. Back end
specifications provide the user with three kinds of power. First, she can
implement particular annotation types differently, as in the earlier example
which used TEX commands to provide the emphasis for :emstring. Sec-
ond, she can access Colander values and either display them or use them
to influence printing. Third, she can include arbitrary COMMON LISP code.
Used in conjunction with special front end and Colander specifications, she
can provide interesting functionality. The TEX presentations and the elision
mechanism are implemented in whole or part using back ends, and represent
only two examples of the wide range of possibilities. This power comes at a
cost, of course; users not familiar with COMMON LISP and the Pan [ exten-
sion language will not be able to specify back ends, and users not familiar
with Colander will not be able to use their full power. Fortunately, status
descriptions and front end descriptions provide sufficient power for the casual
user.

A back end is a mapping from annotation types (COMMON LISP key-
words) to COMMON LISP functions. (Excerpts from a back end description
can be found in Figure 10.) A back end is created using the macro define-
back-end; it takes one argument, a COMMON LISP symbol that is to be the
name of the back end. New functions are added to the back end using the
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:3;; This back end implements the functiomns
;355 self

5335 string

3355 SP

(define-back-end basic)

(defun self-handler (tnode)
(let ((region
(Insert-Region (Create-Region-From-String
(string-for-tnode tnode))
:no-copy)))
(cons (region-first-item region) (region-last-item region))))

(defun string-handler (tnode string)
(declare (ignore tnode))
(let ((region
(Insert-Region (Create-Region-From-String
string)
:no-copy)))
(cons (region-first-item region) (region-last-item region))))

(defun sp-handler (tnode n)
(declare (ignore tnode))
(let ((region (Insert-Region
(Create-Region-From-String
' (make-string n :initial-element #\space))
:no-copy)))
(cons (region-first-item region) (region-last-item region))))

(add-back-end-function basic #’self-handler :self)
(add-back-end-function basic #’string-handler :string)
(add-back-end-function basic #’sp-handler :sp)

Figure 10: Excerpts From a Back End Definition
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macro add-back-end-function; its arguments are the back end being added to,
the function being added, and the annotation type with which it is associated.

A back end function will be called with, as arguments, the tree node it
is printing a piece of yield for and the arguments to the annotation item.
Thus, it should take one more argument than the number associated with
the annotation type being implemented. It should perform Pan text-editing
operations to produce the yield of the type applied to the given arguments at
the current cursor location, and it should return a pair of Pan text pointers
delimiting the yield of the item. If the item has no yield, it should return
the pair (nil . nil).

In addition to using COMMON LISP code and the Pan extension language
(a set of COMMON LISP functions that provide operations on Pan objects
such as text and trees), back end functions can use the function getvar. Its
arguments are a variable name and a tree node. It returns the value of that
Colander variable at the given tree node.

Variables respected by existing back ends are:

indent-incr When its value is 7, causes each child to have an indentation ¢
character positions greater than its parent.

3.3.1 Uses for Back End Specifications

The back end mechanism was designed initially to provide portability be-
tween different output representations. The TEX versus Pan text example
given in Section 1.6 is an example of this use. However, the back end mech-
anism turns out to provide a wider range of flexibility.

One simple use is to change the meaning of a single annotation type. A
back end producing double-spaced views could be written easily; it would
be the same as a standard back end, except that it would produce two car-
riage return characters for each :cr item, not just one. This is not really a
new output representation, but still stays well within the original intention
that back ends would serve to provide straightforward implementations of
appearance primitives.

More complicated applications of back ends make use of their procedural
nature, their access to the full power of COMMON LISP and the Pan I ex-
tension language, and their access to Colander values. The simplest instance
of back end access to Colander values is for indentation. To have inden-
tation reflect nesting depth, the user writes Colander rules which compute
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the desired indentation for each node. The back end function for the :cr
annotation type obtains this value from Colander using getvar and prints a
carriage return and an appropriate indentation for the new line.

As another example, the implementation of elision makes use of the back
end. The system code that elides a node simply replaces its AL rule with an
:elide item whose argument is the former rule, sets its Colander extrinsic
property elide-node to t, deletes its old yield, and calls the program pre-
senter to print its new yield. Note that it needs to do work only at the root of
the elided subtree. To unelide a node, the code simply restores the previous
annotation rule, deletes the elided form of the yield, removes the Colander
property, and calls the program presenter to print the new yield of each node
in the subtree. There is a back end function supporting the :elide annota-
tion type; it presents the node as a row of dots. Every back end function uses
getvar to see whether the node it is called at is in an elided subtree before
printing anything. If it is, the back end function prints nothing; otherwise,
it prints the node as usual.

Being able to implement elision in the back end had two valuable results.
First, it made it possible to add significant new functionality without changes
to the program presenter’s kernel. Second, it showed that clients can use the
program presenter to provide special kinds of appearance not supported by
the front end and to change program appearance between parses on the basis
of arbitrary computations.

It will also be possible to use the back end to display semantic anno-
tations. Suppose we wish to have code that annotates certain tree nodes
with profile data. We can then have a front end description that adds a
:profile item to the rules for certain nodes. The back end implementation
of :profile can check for the existence of profile data for the current node,
printing the data in an appropriate form and position if it exists, and printing
nothing if it does not. Another possibility would be to have an annotation
type :var-name. A standard back end could simply produce the string name
of the variable, but a special back end for use on color machines could be
used to examine the node’s Colander properties, and print it in a special
color if the variable is undeclared.

These examples hardly exhaust the power of the back end mechanism,
but they begin to demonstrate its potential.
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4 The Algorithm

Within a view, each node has a direct yield, the white space and text that
arise directly from that node and not from its children. Suppose an if-then
node represents the grammar rule if-then — if ezpression then statement .

It might be printed using the following rule:
(?:child) (:sp 1) (:child) (:sp 1) (:child) (:cr) (:in)

(:child))

The space, indent, and carriage return are part of the direct yield; the
yields of the children are part of the yield of the node, but not part of its direct
yield. (Note that in the current implementation of Pan I, each terminal has
a node in the program tree; thus, the keywords are children. In a more
abstract tree, there would be no nodes for the keywords, and they would be
part of the direct yield.) A maximal contiguous piece of direct yield is called
an item of direct yield; thus, all of the direct yleld between the yields of two
children, or before the first or after the last child, is one item. The (:cr)
and (:in) annotate items make up a single item of direct yield. Note that
no two items, for a single node or two different nodes, can possibly overlap.

After a parse, the parser delivers lists of nodes that have been inserted
or deleted. First, the kernel processes deletions. To delete a node, we delete
each item of its direct yleld. This is easy, because for each node, for each
view, the kernel maintains a list of pairs of pointers to the beginning and end
of each item of the direct yield.

Insertions are processed in two phases. First, the kernel marks each in-
serted node with the AL rule to be used in its printing. Second, it inserts the
text for the node’s direct yield between the yields of its children. For each
non-:child item in the AL rule, it dispatches the tree node and the item’s
arguments to the back end function associated with the item’s annotation
type. It stores the pointer pairs (returned by the back end) that record the
locations of the direct yield items. Keeping pointers to items works well be-
cause it is easy to locate where to print an inserted node (before the next
item of its parent’s direct yield) and it is easy to delete a node (run down
the list of items, deleting each one).

In general, nothing need be done with a node that is neither inserted nor
deleted, even if nodes near it change. It is still a node for the same rule, and
it is this rule that determines its direct yield. Text around its direct yield or
between items of its direct yield may need to change, but these changes will
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be performed when the nodes whose direct yields they are in are processed.
This may not be the case with a sequence node, though. It may have children
added or deleted, in which case it needs to have either more or fewer items
of direct yield. This is handled by acting as if every sequence node with
inserted or deleted children was both inserted and deleted; thus, we delete
and recompute its entire direct yield. This is not as efficient as we would
like, but gives a clean implementation. (The problem is that a sequence node
whose length changes is treated as unchanged by the parser; PPP treats it as
changed, but is unable to distinguish it from a node with children inserted
or deleted whose length does not change, and thus performs redisplay more
often than necessary.)

The incrementality model above is also a problem when errors are in-
troduced into a program. Suppose the user edits a well-formed program,
transforming it into an ill-formed program. What should the direct yield
of an error node be? It must have some kind of direct yield; otherwise, its
children will collide with each other without any space between them. The
solution currently implemented simply inserts a carriage return between each
pair of children.

A better solution would be to leave whatever space was between them
before. This could be done as follows: When it is time to delete an item of
direct yield, we first check for the case where a child that is next to the yield
is not an inserted node and has a parent that is an inserted error node. In
this case, the item is not deleted. This heuristic works reasonably well; it
would work better with better node re-use.? An attempt was made to im-
plement this solution, but, unfortunately, the parser discards some necessary
information about deleted nodes.

There are other possible approaches to error node presentation; they are
described in Section 5.

Reformatting of the primary view is done differently. The goal of refor-
matting is to make the text reflect a set of tree changes computed by the
parser from a set of textual changes to the primary view. Thus, most of
the textual changes corresponding to the structural changes have already

2Primary-buffer reformatting causes some nodes not to be re-used that otherwise might
be. When the primary buffer is reformatted, the text of the program in the primary buffer
is edited. These edits affect only white space, and should not change the tree. However,
some of the tree’s pointers to the program text point to white space, and invalidation of
these pointers can prevent re-use of the nodes they appear at.
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been made in the primary view. Only white space changes still need to be
performed here. (Throughout this discussion, for “white space” read “text
not significant to the parser”.) So, we mark any white space items (maxi-
mal sequences of white space characters) that may have been corrupted as
dirty. We take every dirty white space item and compute what should come
between the two subtrees on either side. If it is different from the item, the
item is deleted and the new text is inserted. Currently, we use a heuristic
that says every white space item is dirty. Work has been done on another
heuristic, but it is incomplete.

5 Further Work

There are two categories of further work: enhancements to the system which
would improve its functionality but would not constitute new research, and
new research areas.

5.1 Additional Research

There is interesting work to be done in the part of the formatter that assigns
printing rules to nodes. For example, it would be easy to take some of the
tree pattern-matching code developed at Berkeley [Far88} and use it for this
purpose. Because rule assignment is isolated from printing, it would be easy
to experiment in this area. We could also add declarative access to and
dependence on semantics; these are already procedurally available.

A lot of interesting work remains to be done on ways of presenting syn-
tactically incorrect code. For example, the status system provides obvious
heuristics for what to produce as the direct yield of an error node — line
breaks between sentences, spaces between words, et cetera. An interesting
question is how the results of a policy which computed error node yields based
on a heuristic would compare to a policy that let the user’s text remain in
place when it was recoverable.

It would be useful to be able to incrementally reformat views based on
changes to the front end specification. For example, when the user changed
a particular rule, only nodes whose appearances were affected by the change
would be reformatted. This would be a useful environment for developing
and debugging front end specifications.
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Finally, now that this testbed has been developed, there is room for re-
search on what program presentation styles are most useful to programmers.

5.2 System Enhancements

Current presentations are constrained not to re-order a node’s children. How-
ever, a user might want this functionality. For example, expressions could
be printed in prefix, infix, or postfix notation. Adding this would require
a slight increase in the complexity of both the descriptions and the print-
ing algorithm, but it would increase the system’s usefulness as a tool for
experimenting with program appearance, and is probably worth the cost.

Sequence nodes should be handled more incrementally; this may require
major changes to the parser, the presenter, or both. It would also be good to
come up with better heuristics for what whitespace in the main buffer needs
to be recomputed.

Structural navigation of alternate views should be added. This would
require creating and maintaining pointers from the text of alternate views to
the tree. It may not be possible to simply re-use the existing (primary view)
structural navigation code for alternate buffers, as pointers from tree to view
are different in the two cases. .

It would be convenient for users to be able to combine PPP specifications
and PPP-relevant Colander specifications. The Colander portion could be
in either Colander syntax or some PPP-specific syntax. The PPP descrip-
tion processors would extract the Colander specification and pass it on to
Colander for preprocessing.

6 Known Bugs and Problems

PPP’s implementation is fairly sound, except for its handling of comments.

Before the PPP project was initiated, Pan I ignored comments beyond
the lexical level. That is, a comment would be part of the lexical stream
maintained for a program, but it would not be part of the program tree.
This is sufficient for traditional program analysis, which ignores comments.
It is not sufficient for program presentation, since we need to know what a
comment applies to before we know where to display it. Accordingly, PPP
has an initial phase which uses a heuristic to determine what program node
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each comment applies to, and attaches each comment to the relevant tree
node as an annotation. One problem is that the heuristic is too simple.

There is also an awkwardness in the way comments are handled in the
front end specification language. Commented nodes are treated as a special
case in the front end descriptions; each operator is given two AL rules, one
to be used in the presence of comments and one to be used in their absence.
Since this decision was made, it has become clear that the same effect could
be achieved by giving each operator one rule, some of whose items would
have back end implementations that produce output if and only if there is
a comment on the node. This would make descriptions more concise and
simplify the code that processes descriptions and attaches rules to nodes.

If a semantic value that affects the presentation changes, but the node it
is at does not change syntactically, the presenter will not notice. It is possible
to add Colander triggers that will notify the PPP kernel of these changes.
Nodes where such changes occur can be reformatted by treating the changes
as a deletion of the node followed by an insertion of the node.

Reformatting the main buffer marks the tree as dirty and causes a lot
of re-computation. Since these edits are known not to change the tree, they
should not invoke a reparse. Fixing this would involve having the program
presenter maintain correspondences between text and tree initially set up by
the parser. Another possibility is to create a lexer call which will restore the
correspondences, working on the assumption that only whitespace changes
have been made.

7 Related Research

This section puts PPP in perspective in the context of research on program
presentation. There are six major areas or problems of interest in the field:

1. specification languages for describing program appearance

2. line breaking algorithms

3. incremental algorithms

4. how program presgnting can work in an interactive editor environment

5. what kind of appearances are useful to programmers
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6. elision

PPP embodies interesting new work in the area of specification languages.
It has entirely disregarded the question of line breaking, the primary focus of
many papers published under the rubric of “pretty printing.” It presents one
solution to the problems of providing program presentation incrementally in
an editor environment. It provides a useful test bed for investigating kinds
of program appearance, since it is general and flexible. Many papers in the
literature describe particular elision policies and algorithms for implementing
them. PPP, rather than implementing a particular policy, supports elision
of subtrees and allows client code to choose the subtrees to be elided. Thus,
as with other appearance issues, it will serve as a useful test bed for policy
development.

7.1 XP

Some of the earliest work in program formatting was done for LISP systems.
For example, Joel Moses’s 1967 PhD thesis [Mos67] refers to a LISP pretty
printer developed by Whitfield Diffie. LISP pretty printers have developed
over the years; a current system of particular interest is XP, a pretty printer
for COMMON LisP[Wat89). It provides functions that replace the standard
COMMON LISP printing functions. It prints COMMON LiIsP functions and
data structures in a way that reveals their structure and can do sensible line
breaking if the material to be printed exceeds the line width available. It is
configurable at several levels. There are a number of parameters affecting
printing that can be set by the user, for example, the maximum number
of rows and columns to be used in printing an object. There are also new
format directives that allow the user to specify the preferred line breaking
and indentation of the material being printed. For example, it is possible
to group parts of a format string together, specifying that breaks outside
the group should be preferred to breaks within the group, and to indicate
good potential line breaks. Finally, it is possible to define to the system
what printing function should be used to print objects of a particular type
(these functions can of course be defined with the special format directives
provided by the system). Thus, it is possible to use the default printings for
most objects, but override them for certain objects and add new printings
for new object types defined by the user. The same formalism could clearly
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be applied to languages other than LISP, since anything that handles nested
LISP lists translates naturally to trees.

This formalism is extremely powerful, since printing descriptions can in-
clude arbitrary LISP code. PPP can also do this. In each case, the escape
to LISP is handicapped in a different way. In XP, because there are no back
pointers from children to parents, making printings depend on inherited con-
text will be tricky. In PPP, because LISP code is called in individual AL
items, the LISP code for presenting a single node will be scattered among
the functions for the different items. If the escapes to LISP are not used,
and we use straightforward format statements in the XP case and front end
descriptions with a standard back end in the PPP case, the two formalisms
are equivalent in power, except that PPP provides the more concise status
formalism and XP provides line breaking directives. Recall, however, that
it would not be difficult to use PPP to produce input to a text-processing
system that could do line breaking.

My primary reservation with the XP model is that, while format as
extended by Waters is a powerful descriptive method, it is not friendly for
novices. This is not a problem in the XP context, where printing functions are
already provided for anything a novice might want to do, since the language
to be presented is already defined; however, in the PPP context, where users
may be defining new languages, there needs to be some easy way like the
status system to get descriptions for new languages.

In many ways, XP and PPP address different problems. XP addresses
line breaking in a batch-printing ascii environment; PPP addresses presen-
tation without line breaking in an incremental, interactive environment with
extended ascii — for example, it can be used to support different fonts. Both
are powerful; each is tailored to its particular setting.

7.2 tgrind and vgrind

The UNIX tools tgrind and vgrind use a model of program presentation
different from that used in PPP and other work in the area [Jac87] [PJ89].
The program to be presented is purely a text stream without more than
lexical structure and the presenter acts as a filter, adding some typesetting
information and annotations but not altering the whitespace layout.

The presenter does not parse the program, and the description does not
include a complete grammar of the language. Rather, the presenter acknowl-
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edges a hardwired set of programming language constructs, such as keywords,
comments, string literals, and function names. It is not possible to describe
or specify treatments for constructs outside this set. The user specifies, on
a per language basis, ways of recognizing these constructs, usually by begin-
ning and end markers and keyword lists. The presenter treats each construct
in a fixed way — e.g., puts keywords in boldface — and adds certain anno-
tations, such as page headers, marginal function names, and line numbers.
White space and indentation are typically not affected, except perhaps for
some additional space around function headers and the like; thus, program
structure is not reflected by the display.

The grind approach has two kinds of limitations, only one of which can be
addressed without a complete paradigm shift. The first is its hardwired set of
programming language constructs and hardwired treatments of them. These
could be replaced with the ability to specify syntactic classes and associated
treatments.

The other limitation is more serious. The text-filter model does not allow
for reflecting general syntactic structure, let alone context of any sort. Also,
it makes generation of formatted text from a tree, increasingly important in
programming environments, impossible.

All that said, I do not want to neglect the strengths of the grind model.
It is simple to write the presenter and the language descriptions, and the sys-
tem addresses fonts, headers, and other advanced display features that are
very useful in making code readable and that are ignored in many supposedly
more advanced systems. These grind-type program presenters are especially
effective when combined with either “hand-made” whitespace (which pro-
grammers have traditionally provided on a routine basis) or other whitespace
facilities, for example in an Emacs language mode. This model is an excel-
lent example of a good “eighty percent solution,” the twenty-percent effort
that provides eighty percent of the needed result. However, it is not of any
use in an editor context, where we are working from a program tree and our
primary interests are syntactic and semantic, not lexical.

All the other solutions I have examined do include consideration of pro-
gram syntax, and are thus more closely related to the problems addressed by

PPP.
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statement = ’IF’ expression ’THEN’
stmts
'ELSE’
stmts
)FI)
=> if_else

Figure 11: Specification by Grammar Layout

7.3 Specification Languages

Many papers in the literature are addressed primarily to questions of line
breaking [PS87] [Opp80]. These papers also generally include a specification
scheme consisting of parse rules decorated with directives. These schemes
differ primarily in terms of what directives are available, which depends on
the model of line breaking. Babel [Hor81] also uses a decorated grammar
scheme. It provides a small, fixed set of directives: carriage return, increase
indentation, and decrease indentation. It does not support line breaking.
PPP’s front end descriptions are equivalent to a decorated grammar scheme,
except that they are unique in the extensibility of the set of directives avail-
able.

An interesting variation on the decorated grammar scheme is to present
the grammar rules as one would wish the code produced by them to be
presented. For example, we could specify an appearance for the asple if-
then-else statement by printing its Ladle grammar rule as in Figure 11. This
is the approach taken in the Ada language specification {Uni80]. It has the
advantage of being pleasing to the eye and easy to understand. However, it
is somewhat limited. It does not easily express line breaking directives, and
there is no easy way for a reader to see whether a given piece of white space
should be represented by a tab or a series of spaces.

Rubin [Rub83] also includes a specification scheme involving a decorated
grammar, and adds a form of abbreviation: if some grammar symbol is
always followed by the same pretty printing directive, the association between
symbol and directive can be specified once and will be obeyed throughout.
For example, suppose we were to implement this scheme in the PPP front
end. If, in a particular front end description, every occurrence of the grammar
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terminal “integer” was followed by (:sp 1), we could specify this once, and
omit the (:sp 1) in each rule that referred to an integer. This seems of
limited utility, however; each grammar rule still has a presentation rule, but
not all of its eventual appearance is clear from the rule alone. This form
of description seems likely to be confusing. Of course, carried to its logical
conclusion, where each grammar symbol is given a single treatment to be
used in all contexts, we arrive at something like the status system.

The Cornell Program Synthesizer Generator [RT85] also uses a descrip-
tion scheme involving a decorated abstract grammar. This scheme is specifi-
cally designed for use in specifications to an editor, and includes information
especially for browsing and editing issues. In particular, it is possible to
specify whether a particular tree component is editable and whether 1t is
structurally selectable. It is also possible to specify alternate presentations
for a given production; the user is then able to toggle between the different
options. Among other things, this can be used to provide user-controlled
elision. This scheme does not provide for the use of alternate output repre-
sentations, access to semantics, or any form of abbreviation, all of which are
provided within PPP. This extended form of elision, with multiple alternate
presentations, could be supported in a way similar to that used to support
the more limited form of elision provided in PPP.

The Mentor programming environment [MCC86] provides a powerful
specification language, allowing reference to annotations and conditionality
on tree structure. Rather than being associated with grammar rules, node
presentations are associated with tree patterns; a node is printed using the
first rule whose pattern matches at the node. Rules contain standard pretty
printing directives, and may also contain conditional statements which dic-
tate a particular presentation based on the tree’s structure. This condition-
ality within the rules does not extend the power of the language beyond that
provided by its pattern-matching capabilities, but it does make it possible
to write more concise descriptions. PPP supports reference to annotations
— see, for example, its handling of comments. Because of its modular struc-
ture, conditionality on tree structure could be introduced; see the discussion
of tree pattern matching in Section 5.

Mateti [Mat83] comes up with a method of formally specifying the task
of a program-formatting algorithm and rigorously proves the correctness of
one algorithm. '
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7.4 Efficiency Concerns

Caplinger and Hood [CH86] present an algorithm addressing interactive sys-
tems’ need for efficiency. Rather than being truly incremental, in the sense of
creating a presentation that it then changes in response to program changes,
their algorithm provides partial presentation — it will provide as much pro-
gram text as is needed, possibly with elision, around a given point in the pro-
gram. It is language-specific and embodies a particular presentation scheme
and elision scheme rather than serving as a test bed. The particular appear-
ance it provides for Fortran is derived in much the way that status-based
schemes are. Caplinger and Hood include a survey stating that most struc-
tured program editors do not use incremental program presenters.
Cameron’s abstract pretty printer [Cam88] uses an idea similar to the
PPP concept of back ends. It is a program presenter that requires a fixed
set of functions to access its output device. By supplying these functions,
the user can support printing on any of a number of output devices, and
can also support other tasks, such as mapping between tree and text. This
model is more limited than PPP’s because the front end description and the
set of back end functions are both fixed, whereas in PPP, the front end is
description-driven and the set of back end functions is expandable.

7.5 User Issues

Baecker and Marcus [BM86] provide valuable insights on how programs
should be presented. With adequate back end support, the PPP frame-
work could be used to support these presentations and for investigation of
program presentation in general. While the front end descriptions are not
powerful enough to express all possible appearances — lacking, for example,
the ability to describe several alternate presentations for a single node type
— the implementation of elision illustrates that it is possible to use PPP
to display nodes based on AL rules assigned to nodes by other tools. The
primary limitation of our model is that tree nodes are constrained to be pre-
sented in the order of their appearance in the tree. The other problem is that
a given back end function is called on only a small piece of the appearance
being generated; it is thus difficult for the back end to perform computations,
such as page layout, line breaking, and page breaking, which operate over
larger units of the appearance. Note that page layout computations, such as
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positioning marginal notes, are necessary for the presentations proposed by
Baecker and Marcus. The natural approach to providing these presentations
using PPP would be to have the back end emit a layout specification which
could be processed by an appropriate mechanism, as in the TEX example
given in this paper.

Mikelsons [Mik81] presents a scheme for choosing code to be elided based
on a notion of the user’s current task. Since PPP allows client code to mark
nodes for elision, it is capable of serving as a test bed for such schemes.

7.6 Viz and UAL

Garlan’s Viz and UAL [Gar85] provide incremental display based on a pow-
erful specification paradigm. A user can have multiple simultaneous views
of a program. Within a view, the display of any particular tree node can
be conditional on various values, including the amount of space available.
Descriptions are parameterizable by general style parameters. The model of
incremental display is much like PPP’s. PPP has simpler computations to do
because of its somewhat more restricted scope. It also has a different specifi-
cation model, allowing more procedural specification. It will take some time
with a user community to determine the wisdom of these particular design
choices. '

7.7 Summary

In summary, the solution generally posed in the literature to the problem
of how to describe program appearance is to decorate grammar rules with
printing directives, or to associate sequences of strings and directives with
grammar rules. The latter solution, chosen by PPP, is somewhat more gen-
eral, as it supports alternate concrete syntaxes, including different keywords.
Some systems, such as the Cornell Program Synthesizer Generator, allow
the user some control over which presentation is chosen for a given instance
of a rule. Others provide declarative means for specifying that a presenta-
tion should display semantic information, or that the presentation chosen for
a node should depend on such information. There may be room for more
work in concise specifications, such as the status system, for use in the rapid
prototyping of new languages, and on the best formalisms for expressing
dependence on semantics.
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In terms of algorithms, few systems are incremental, though there has
been some work on partial presentations. There has also been some work
done on retargetability. There has been a great deal of work done on line
breaking algorithms.

Some work has been done on preferred appearances for reflecting syntax
[BMS6], but little has been done with semantically-powerful viewing.

PPP is unique in providing a combination of incrementality and retar-
getability and in providing an extensible set of directives. It is equaled only
by XP in its provision of a range of levels for specifying appearance, and it
works in a very different setting. Because of its flexibility, and its position
as part of a sophisticated language-oriented editor, it will provide a valuable
test bed for experimenting with program appearance.

8 Achievements

PPP provides Pan I’s first view of programs that is not simply the text as
entered by the user. It provides multiple views of a single program tree, and
is language-independent, description-driven, and incremental.

One of the project’s major achievements is the development of the status
system, a succinct and powerful formalism for describing program appear-
ance.

The other major achievement is the three-part architecture and annota-
tion language. This is an important innovation for two reasons. First, the
annotation language serves as an intermediate representation for program
appearances, so that a single appearance description can be used to produce
several views. Second, it serves as an escape to procedural specification and
has been used to support elision.

PPP also supports display of erroneous program text, a problem that, so
far as I know, no other system addresses. I know of no systems that support
syntactically incorrect programs in any interesting way.

The main design error was to make commented nodes a special case.
Overall, however, the project has produced a powerful, flexible test bed for
experimenting with structural viewing, formatted text, and semantically-
powerful views of programs.
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A A Front End Description

;; Copyright 1987-1990 by the Regents of the University of California.
;; All rights reserved.

;; PPP Description:

.. A front end specification for asple. It can be used with

;; either the standard or the TeX back end.

(:lexeme "ERROR" ((:self)))

(:commented-lexeme ("ERROR" "comment") ((:self) (:sp 1) (:comment)))
(:lexeme "!=" ((:string "!=")))

(:lexeme "=" ((:string "=")))

(:lexeme ")Q ((:string "™)")))

(:lexeme "(" ((:string "(")))

(:lexeme "*" ((:string "*")))

(:lexeme "+" ((:string "+")))

(:lexeme ":=" ((:string ":=")))

(:lexeme "," ((:string ",™)))

(:lexeme ";" ((:string ";")))
(:commented-lexeme ("," "comment") ((:string ")y (:sp 1) (:comment)))
(:commented-lexeme (";" "comment") ((:string wim) (:sp 1) (:comment)))

(:lexeme "TRUE" ((:emstring "true')))
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:lexeme "THEN" ((:emstring "then")))
:lexeme "WHILE" ((:emstring "while")))
:lexeme "REF" ((:emstring "ref")))
:lexeme "OUTPUT" ((:emstring "output")))
:lexeme "INT" ((:emstring "int")))
:lexeme "INPUT" ((:emstring "input")))
:lexeme "IF" ((:emstring "if")))

:lexeme "FI" ((:emstring "fi")))

:lexeme "FALSE" ((:emstring "false")))
:lexeme "END" ((:emstring "end")))
:lexeme "ELSE" ((:emstring "else")))
:lexeme "DO" ((:emstring '"do")))

:lexeme "BOOL" ((:emstring "bool")))
:lexeme "BEGIN" ((:emstring "begin")))
:lexeme "id" ((:self)))
:commented-lexeme ("id" "comment") ((:self) (:sp 1) (:comment)))
:lexeme "integer" ((:self)))

:commented-lexeme ("integer" "comment") ((:self) (:sp 1) (:comment)))
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(:rule "idlist"
(”id" n,n)
((:child) (:child) (:sp 1)))

(:rule "stmts"
("statement" '";")
((:child) (:child) (:cr)))

(:rule "decls"
("declaration" ";")
((:child) (:child) (:cr)))

(:rule "program"

("BEGIN" "decls" ";" "stmts" "END")
((:startprog) (:child) (:cr)
(:in 1) (:child) (:child) (:cr) (:cr)
(:in 1) (:child) (:cr)
(:child) (:endprog)))

(:commented-rule "program"
("BEGIN" "decls" ";" "stmts" "END" “comment')
((:startprog) (:comment) (:cr) (:cr)
(:child) (:cr)
(:in 1) (:child) (:child) (:cr) (:cr)
(:in 1) (:child) (:endprog) (:child)))

(:rule "ref" ("REF" "mode") ((:child) (:sp 1) (:child)))
(:commented-rule "ref"
("REF" "mode" "comment")
((:child) (:sp 1) (:child) (:sp 1) (:comment)))
(:rule "plus"
("expression" "+" "expression")
((:child) (:sp 1) (:child) (:sp 1) (:child)))

(:commented-rule "plus"
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("expression" "+" "expression" "comment")
((:child) (:sp 1) (:child) (:sp 1) (:child) (:sp 1) (:comment)))

(:rule "times"
("expression" "*" "expression")
((:child) (:sp 1) (:child) (:sp 1) (:child)))

(:commented-rule '"times"
("expression" "#*'" "expression" "comment")
((:child) (:sp 1) (:child) (:sp 1) (:child) (:sp 1) (:comment)))

(:rule "ANNOTATE"
(n(n "expression" u)n)
((:child) (:child) (:child)))

(:commented-rule '"ANNOTATE"
(u(u "expression" u)u "comment")
((:child) (:child) (:child) (:sp 1) (:comment)))

(:rule "equals"
(u(u ”expression" ett "expression” n)u)
((:child) (:child) (:sp 1) (:child) (:sp 1) (:child) (:child)))

(:commented-rule "equals"

("(" “expression" "=" "expression" ")" '"comment")
((:child) (:child) (:sp 1) (:child) (:sp 1) (:child) (:child)
(:sp 1) (:comment)))

(:rule "not_equals"
(u(n ”expression" =N ”expression” u)n)
((:child) (:child) (:sp 1) (:child) (:sp 1) (:child) (:child)))

(:commented-rule "not_equals"

(" (" "expression" "!=" "expression" '")" "comment')
((:child) (:child) (:sp 1) (:child) (:sp 1) (:child) (:child)
(:sp 1) (:comment))) '
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(:rule "assignment"
("id" ":=" "expression")
((:child) (:sp 1) (:child) (:sp 1) (:child)))

(:commented-rule "assignment"
("id" ":=" “expression" "comment')
((:comment) (:cr) (:child) (:sp 1) (:child) (:sp 1) (:child)))

(:rule "if_then"

("IF" "expression" "THEN" "stmts" "FI")
((:child) (:sp 1) (:child) (:sp 1) (:child) (:cr)
(:in 1) (:child) (:cr) (:child)))

(:commented-rule "if_then"

("IF" "expression" "THEN" "stmts" "FI" “comment")
((:comment) (:cr)

(:child) (:sp 1) (:child) (:sp 1) (:child) (:cr)
(:in 1) (:child) (:cr) (:child)))

(:rule "if_else"
("IF" "expression" "THEN" "stmts" "ELSE" "stmts" "FI")
((:child) (:sp 1) (:child) (:sp 1) (:child) (:cr)
(:in 1) (:child) (:cr)
(:child) (:cr)
(:in 1) (:child) (:child)))

(:commented-rule "if_else"

("IF" "expression" "THEN" “stmts" "ELSE" "stmts" "FI" "comment')
((:comment) (:cr) (:child) (:sp 1) (:child) (:sp 1) (:child) (:cr)
(:in 1) (:child) (:cr)

(:child) (:cr)
(:in 1) (:child) (:child)) )

(:rule "loop"

("WHILE" "expression" "DO" "stmts" "END")
((:child) (:sp 1) (:child) (:sp 1) (:child) (:cr)
(:in 1) (:child) (:cr)
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(:child)))

(:commented-rule "loop"
("WHILE" "expression" "DO" "stmts" "END" "comment")
((:comment) (:cr) (:child) (:sp 1) (:child) (:sp 1) (:child) (:cr)
(:in 1) (:child) (:cr)
(:child)))

(:rule "input"
(HINPU‘I‘H nidu)
((:child) (:sp 1) (:child)))

(:commented-rule "input"
("INPUT" "id" "comment")

((:comment) (:cr)

(:child) (:sp 1) (:child)))

(:rule "output"
("QUTPUT" "expression'")
((:child) (:sp 1) (:child)))

(:commented-rule "output"
("OUTPUT" "expression" "comment")

((:comment) (:cr)

(:child) (:sp 1) (:child)))

(:rule "declaration'
("mode" "idlist") ((:child) (:sp 1) (:child)))

(:commented-rule "declaration"
("mode" "idlist" "comment'")

((:comment) (:cr)

(:child) (:sp 1) (:child)))
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B A Standard Back End

i;; —*- Mode: common-lisp; Package: ppp-std-back-end; -*-
;;; Copyright 1987-1990 by the Regents of the University of California.
;35 All rights reserved.

;;; PIPER:

;;; a simple PPP back end.

(provide "ppp-std-back-end")
(in-package "ppp-std-back-end")
(export ’(back))

(require "extensions")
(require "version")
(require "presentations')
(require "ppp-ext")

(shadoﬁing-use—package "extensions")
(use-package "text'")
(use-package "ppp")

(version:def-file-id "ppp-std-back-end.cl"
"Q(#)ppp-std-back-end.cl 26.1 7/23/90 15:05:09\
Copyright 1987-1990 by the Regents of the University of California")

...............................................................................

;3;; A back end. It respects/uses the variables
;33 compute-indent-level

i35 elided

;;3; and implements the functions

;555 elide

;555 self
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;555 in

;33 string
s SP

33 CT

;35 emstring
;5 startprog
;333 endprog

Remember that a back end function’s first argument is a tnode,
:::; that it is called with the cursor appropriately positioned, and
:3;; that it must return a pair of pointers.

o o e e
332

(define-back-end back)

(defun self-handler (tnode)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region
(Insert-Region (Create-Region-From-String
(string-for-tnode tnode))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun string-handler (tnode string)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region
(Insert-Region (Create-Region-From-String
string)
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun in-handler (tnode depth)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region (Insert-Region
(Create-Region-From-String
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(make-string
(* depth (variable Pan-Prettyprint-Indent-Width))
:initial-element #\space))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun sp-handler (tnode n)
(if (tnode-is-elided? tnode)

(cons nil nil)

(let ((region (Insert-Region
(Create-Region-From-String

(make-string n :initial-element #\space))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun cr-handler (tnode)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let* ((indent (or (getvar ’compute-indent-level tnode) 0))
(region (Insert-Region
(Create-Region-From-String
(string-concat
(string #\newline)
(make-string
(* indent
(variable Pan-Prettyprint-Indent-Width))
:initial-element #\space)))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun comment-handler (tnode)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region
(Insert-Region (Create-Region-From-String
(string-for-tnode
(ppp: :pprint-info-comment
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(otree:tnode-pp-info tnode))))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun startprog-handler (tnode)
(declare (ignore tnode))
(cons nil nil))

(defun endprog-handler (tnode)
(declare (ignore tnode))
(cons nil nil))

(defun emstring-handler (tnode string)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region
(Insert-Region (Create-Region-From-String string)
:no-copy)))

(region-set-font region 4)
(cons (region-first-item region) (region-last-item region)))))

(defun elide-handler (tnode oldrule)
(declare (ignore oldrule))
(if (and (not (otree:tnode-is-abstract-root? tnode))
(tnode-is-elided? (otree:tnode-parent tnode)))
(cons nil nil)
(let ((region (Insert-Region
(Create-Region-From-String ". . .")
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun tnode-is-elided? (tnode)
(cond
((otree:tnode-is-abstract-root? tnode)
(unless (otree:tnode-is-error-NT? tnode)
(getvar ’elide-node tnode)))
(t (or (unless (otree:tnode-is-error-NT? tnode)
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(getvar ’elide-node tnode))
(tnode-is-elided? (otree:tnode-parent tnode))))))

(add-back-end-function back #’self-handler :self)
(add-back-end-function back #’in-handler :in)
(add-back-end-function back #’sp-handler :sp)
(add-back-end-function back #’cr-handler :cr)
(add-back-end-function back #’comment-handler :comment)
(add-back-end-function back #’elide-handler :elide)
(add-back-end-function back #’string-handler :string)
(add-back-end-function back #’emstring-handler :emstring)
(add-back-end-function back #’startprog-handler :startprog)
(add-back-end-function back #’endprog-handler :endprog)

C A TgX Back End

;:; -*- Mode: common-lisp; Package: ppp-tex-back-end; -*-
;;; Copyright 1987-1990 by the Regents of the University of California.
;33 All rights reserved.

;33 PIPER:

;;; a PPP back end producing TeX source
(provide "ppp-tex-back-end")
(in-package "ppp-tex-back-end")

(export ’(tex))

(require "extensions")

(require "version")

(require '"presentations')

(require "ppp-ext")

(shadowing-use-package "extensions")
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(use-package "text")
(use-package "ppp")

(version:def-file-id "ppp-tex-back-end.cl"
"Q(#)ppp-tex-back-end.cl 26.1 7/23/90 15:05:12\
Copyright 1987-1990 by the Regents of the University of California)

...............................................................................

i3:; A tex back end. It respects/uses the variable
;;;; compute-indent-level

;333 elided

;;;; and implements the functions
;35 elide

;55 self

5555 in

;555 string

3335 SP

3335 CT

;335 emstring

;33 startprog

;353 endprog

::;; Remember that a back end function’s first argument is a tnode,
;3;; that it is called with the cursor appropriately positioned, and
;;;; that it must return a pair of pointers.

(define-back-end tex)

(defun elide-handler (tnode oldrule)
(declare (ignore oldrule))
(if (and (not (otree:tnode-is-abstract-root? tnode))
(tnode-is-elided? (otree:tnode-parent tnode)))
(cons nil nil)
(let ((region (Insert-Region
(Create-Region-From-String "$\\1ldots$")
:no-copy)))
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(cons (region-first-item region) (region-last-item region)))))

(defun self-handler (tnode)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region
(Insert-Region (Create-Region-From-String
(string-for-tnode tnode))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun string-handler (tnode string)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region
(Insert-Region (Create-Region-From-String
string)
:no-copy)))

(cons (region-first-item region) (region-last-item region)))))

(defun startprog-handler (tnode)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region
(Insert-Region (Create-Region-From-String
(format nil "\\obeylines™%"))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun endprog-handler (tnode)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region
(Insert-Region (Create-Region-From-String
(format nil "~%\\end~%"))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))
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(defun emstring-handler (tnode string)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region
(Insert-Region (Create-Region-From-String
(string-concat "{\\bf " string "}"))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun in-handler (tnode depth)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region (Insert-Region
(Create-Region-From-String
(indent-n depth))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun sp-handler (tnode n)
(if (tnode-is-elided? tmode)

(cons nil nil)

(let ((region (Insert-Region
(Create-Region-From-String

(make-string n :initial-element #\space))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun cr-handler (tnode)
(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region (Imsert-Region
(Create-Region-From-String
(string-concat
(string #\newline)
(indent-n
(or (getvar ’compute-indent-level tnode) 0))))

55



:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun comment-handler (tnode)

(if (tnode-is-elided? tnode)
(cons nil nil)
(let ((region

(Insert-Region (Create-Region-From-String
(string-for-tnode
(ppp: :pprint-info-comment
(otree:tnode-pp-info tnode))))
:no-copy)))
(cons (region-first-item region) (region-last-item region)))))

(defun indent-n (n)
(let ((string "))
(dotimes (i n)
(setf string (string-concat string "\\quad ")))
string))

(defun tnode-is-elided? (tnode)
(cond
((otree:tnode-is-abstract-root? tnode)
(unless (otree:tnode-is-error-NT? tnode)
(getvar ’elide-node tnode)))
(t (or (unless (otree:tnode-is-error-NT? tnode)
(getvar ’elide-node tnode))
(tnode-is-elided? (otree:tnode-parent tnode))))))

(add-back-end-function tex #’self-handler :self)
(add-back-end-function tex #’in-handler :in)
(add-back-end-function tex #’sp-handler :sp)
(add-back-end-function tex #’cr-handler :cr)
(add-back-end-function tex #’comment-handler :comment)
(add-back-end-function tex #’string-handler :string)
(add-back-end-function tex #’emstring-handler :emstring)

56



(add-back-end-function tex #’startprog-handler :startprog)
(add-back-end-function tex #’endprog-handler :endprog)
(add-back-end-function tex #’elide-handler :elide)

D Asple in Ladle

/* Copyright 1987-1990 by the Regents of the University of California.
A1l rights reserved.

PIPER: Language Description

Ladle definition for asple

L S N

*/

LANGUAGE asple

LEXICAL
space = { \t\n\"L} => IGNORE ;

comment = "/*" ~ “x/" => SCREEN ;

integer = {0-9}+ ;

id = {a-zA-Z}{a-zA-Z0-9}* ;

keyBEGIN = ’BEGIN’ 1IN id ;
keyBOOL = ’BOOL’ IN id ;
keyDO = ’pQ’ IN id ;
keyELSE = ’ELSE’ 1IN id ;
keyEND = ’END’ IN id ;
keyFALSE = ’FALSE’ 1IN id ;
keyF1I = 'FI’ IN id ;
keyIF = 'IF’ IN id ;
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keyINPUT = ’INPUT’ 1IN id ;
keyINT = 2 INT’ IN id ;
keyQUTPUT = ’0UTPUT’ IN id ;
keyREF = ’REF’ IN id ;
keyWHILE = ’WHILE’ 1IN id ;
keyTHEN = ’THEN’ IN id ;
keyTRUE = ’TRUE’ IN id ;
ABSTRACT

program = ’BEGIN’ decls ";" stmts ’END’ => program
decls = declaration + ";" => decls
stmts = statement + ";" => stmts

declaration = mode idlist => declaration

.
b

= 'BOOL’ => ANNOTATE/*IMPLICITx*/
| PINT’ => ANNOTATE/*IMPLICIT*/
| REF’ mode => ref

idlist = id + "," => idlist

b

statement = id ":=" expression => assignment

'IF’ expression *THEN’ stmts ’FI’ => if_then

»IF’ expression 'THEN’ stmts ’ELSE’ stmts ’FI’ => if_else
'WHILE’ expression DO’ stmts ’END’ => loop

»INPUT’ id => input

’OQUTPUT’ expression => output
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expression = constant => ANNOTATE/*IMPLICIT*/

| id => ANNOTATE/*IMPLICIT*/

| expression "+" expression => plus

| expression "*" expression => times

| "(" expression ")' => ANNOTATE

| "(" expression "=" expression ")" => equals

| "(" expression "!=" expression ")" => not_equals

»TRUE’ => ANNOTATE/*IMPLICIT*/

| FALSE’ => ANNOTATE/*IMPLICIT*/
| integer => ANNOTATE/*IMPLICIT*/

constant

3

CONCRETE

statement = transput
| ifthen
| ifthenelse
| assignment
| loop

b

transput = ’INPUT’ id
| ’OUTPUT’ expression

.
b

ifthen = ’IF’ expression ’THEN’ stmts ’FI’

.
s

ifthenelse = ’IF’ expression 'THEN’ stmts ’ELSE’ stmts ’FI’

.
3
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assignment = id ":=" expression

loop = ’WHILE’ expression ’'D0’ stmts ’END’

.

expression = top_expression

.

)

top_expression = factor
| expression "+" factor

2

factor = primary
| factor "*" primary

.

2

primary = id

| constant
| *(" expression ")"
| comparison
;
comparison = "(" expression "=" expression ")"
| "(" expression "!=" expression ")"

>
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