INTRODUCTION TO THE
BERKELEY UNIGRAFIX TOOLS
Version 3.0

Carlo H. Séquin and Kevin P. Smith

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

This is a brief overview over the current status of the Berkeley UN/GRAFIX
tools. The various renderers, object generators and modifiers are introduced.
The UNIGRAFIX object description format that ties these tools together is
presented.

1. INTRODUCTION

Berkeley UNIGRAFIX provides simple graphics and modeling capabilities for 3-dimensional
polyhedral objects within the UNIX operating system. It can render mechanical parts or geometr-
ical manifolds in the style of engineering drawings, with visible edges displayed as solid lines
and faces shaded to enhance understandability of the drawing, rather than to make the objects
look ‘‘natural’’. This kind of output is primarily aimed at postscript printers or high-resolution
black-and-white dot-raster plotters. Altematively the objects can be viewed itercatively on SUN
or SGI workstations.

The Berkeley UNIGRAFIX system also comprises a set of generator programs that assist in
the creation of parameterized object descriptions such as gear wheels or architectural elements
(staircases, houses ...). There are programs that modify simple objects by truncating them, by
tessellating their faces, or by cutting holes into them; others place pyramids on all faces or
replace the edges of the object with thin prismatic solids.

Most of these programs focus on the design, representation, and rendering of mechanical
parts and on the creation and visualization of purely geometrical objects in 3 and 4 dimensions.
Some of these utilities are useful in the areas of robotics and computer vision. All tools are
loosely tied together by a simple descriptive ASCII format for the specification of the geometrical
objects. They run under the UNIX 4.2 and 4.3 BSD operating system.

This "system" was put together over the last several years by several Master’s Degree can-
didates and by many students taking a project-oriented graduate course in Geometric Modeling.!
The original goals were to give us the geometric modeling and rendering tools that were so con-
spicuously absent from the UNIX environment in the early 1980’s, but also to provide an educa-
tional experience for the many students interested in computer graphics.

Building such a large and potentially heterogeneous system at an university, where the
period during which a student contributes actively to the project ranges from a few months to a
few years, has its difficulties. How do you assure that the various pieces built by individuals will
hold together and do not become obsolete the moment the student leaves the university ? One
approach is to produce a very detailed overall system specification at the beginning of the project,
and then fill in the pieces over the years. However, in a field that moves as rapidly as the current
evolution in computer graphics and geometric modeling, this is not practical; the final system
would be obsolete by the time it is completed.

A better way is to create a modular set of building blocks that can be individually
developed at their own paces and that can be replaced by newer and better modules as these
become available. In this approach, the only thing that needs to be defined at an early stage is the
‘‘glue”’ that holds everything together. In our case this glue consists of the UNIX operating sys-
tem and of the UNIGRAFIX language. The latter is an intermediate descriptive format for the
specification of objects and scenes. All modules work to and from this format. Because of its
central role, we will discuss this language before we discuss some of the operational modules.

In a more recent attempt to find some "stronger glue" that could provide a tighter coupling
between various generators and tools, a set of abstract data structures has been created which
should be sufficient for the construction and integration of a variety of new tools and generators.
These data abstractions will be described in Section 3.

2. THE UNIGRAFIX LANGUAGE

The UNIGRAFIX language is a human readable, yet terse ASCII format for the description of
scenes composed of 3-D polyhedral objects in boundary representation, of 2-D planar faces with
arbitrary many holes, and of 1-D piecewise linear wire trains. The ASCII format makes possible
easy exchange of object descriptions over electronic networks and easy modification with any
text editor when an interactive graphics editor is unavailable or impractical to use. It also facili-
tates the development of programs that generate objects in a procedural manner. A detailed
description and discussion of the UNIGRAFIX language was presented in 1983.2 A few minor syn-
tax changes have been made since then to make parsing more efficient and to accommodate some
small language extensions. More recently, a more significant extension has been added to allow
interpolating curved surfaces.

Syntactically, a UNIGRAFIX file consists of statements, starting with a keyword and ending
with a semicolon. Statements consist of lexical tokens, separated by commas, blanks, tabs, or
newlines. The language is simple and has less than twenty different types of statements:

Table 1. UNIGRAFIX Syntax

vertices: v ID xyz[coloriD];
wires: w [ID}Y(viv2..wvn)(..)[coloriD];
flat face: f [ID1(viv2..vn)(..)[colorID]};
definitions: def deflD;

non-def-statements

end;

instances: i [ID])(deflD [transforms]);
arrays: a [ID](deflD | transforms)) size [transforms];
lights: 1 [ID] intensity [xy z];
color: ¢ colorID intensity { hue [saturation]] ;
include files: include filename | transforms];
comments: { [anything {nesting is OK} but unmatched {or }] }

2.1. Vertices, Wires, and Faces

Semantically, the vertices are the ‘comner stones’ of any UNIGRAFIX object description.
They are described by their absolute locations in 3-D space and are then used as fix-points to
define the position of ‘wires’ and ‘faces’ (edges). Rather than repeating absolute coordinates for
the end-points of edges or for comers of polygons, these latter constructs simply reference previ-
ously defined vertices by their identifiers (/D in Table 1). A piece-wise linear wire running
through 3-D space can be described with a single ‘wire’ statement that lists all the vertices at sub-
sequent joints.

In the case of ‘face’ statements, the edge train defined by the list of vertex-IDs within a sin-
gle pair of parentheses specifies a closed contour, so that it is not necessary to repeat the first ver-
tex in a contour. Face statements with multiple groups of parentheses can be used to describe
faces with several contours. Whether the contour encloses a hole or a separate patch of the face
depends on its orientation and on its placement with respect to the first contour. The first contour
must be an outer contour. Contours are not allowed to intersect. In all cases all the vertices refer-
enced by a single face must lie in a single plane.

2.2. Curved Edges and Patch Boundaries

Over the last three years, the UN/IGRAFTX language served its purpose well for objects and
scenes composed of linear geometrical primitives. To extend the range of applicability of UNI-
GRAFIX 10 objects with curved edges and surfaces, the UniCubix extension has been added to the
language.

We follow an approach introduced by Chiyokura3 which now forms the foundation of
Designbase, the solids modeler developed at Ricoh. In this system objects are entirely defined by
their edges and by the borders between the curved patches, both of which can be straight line seg-
ments or cubic space curves. The system automatically fits patches between these borders
guaranteeing Oth order continuity along edges and first order geometric (G1) continuity across the
borders between patches. Thus, once a satisfactory and unambiguous method of constructing
these patches has been defined, it is sufficient for the language to specify the exact shape of all
edge and border curves. For cubic curves this can be done with two additional Bezier points
each. This approach can of course be generalized to use more complicated construction rules for
the edges. For this reason, UniCubix gives the curvature information in explicit edge statements
(see below) rather than integrating it into the face statements. This also excludes duplicate, and
possibly conflicting, specification of that information in patches sharing the same border, and it
keeps the old UNIGRAFTX statements unchanged and makes this a straight upward extension.

Table 2. UniCubix Extensions

linear edge: el [ID])(vIv2);
linear border: bl [ID](viv2);
curved edge: ec {[ID])(vIv2 blx ny blz b2x b2y b2z }s
curved border: bc [ID](vIv2 be ny bIz b2x be b22)3

flat face: f [ID])(viIv2..vn)(..)[colorID]; {unchanged}
curved patch: p [ID}(vIv2v3[v4])[coloriD];

Since patches are uniquely determined by their borders, there would be no need for a spe-
cial patch statement. Nevertheless, we are planning to use a separate keyword for a curved patch
to distinguish from flat faces. The old face statement ‘f ..." will continue to be treated like a flat
polygon that does not necessitate any subdivision for rendering. The control vertices of all the
borders of such a patch must of course lie in the plane of the face. The tessellation of the adja-
cent curved patches determines into how many segments each edge of this flat face will be subdi-
vided.

2.3. Hierarchical Constructs

A building block definition capability exists with the statement pair : ‘def...end’. With this
construct, groups of statements can be associated with an identifier (defID in Table 1). Copies of
these definitions can then be placed at other locations in the scene through the use of ‘instance’
and ‘array’ commands. The definitions themselves are not part of the visible scene. Instances
and arrays take any homogeneous transformation for the placement of the (first) instance; in addi-
tion, the array statement needs the specification of an incremental transformation between subse-
quent array elements. While the definitions themselves must not be nested, the calling hierarchy
can be of arbitrary depth. The permissible transforms in the above specified places are of the

form:

Table 3. Transformations

—s? scale_factor for scaling in direction of coordinate axis
-t? translation_ amount for translation along coordinate axis

-? rotation_ angle for rotation around coordinate axis

-m? for mirroring in direction of coordinate axis
-M3 3x3 Matrix for linear 3-dimensional transformation
-M4 4x4 Marrix for homogeneous 3-D transformation

The ‘?’ should be replaced with ‘x’, ‘y’, or ‘z’ to denote in which direction to scale, mirror,
or translate, or about which axis to rotate; as a shorthand way of specifying scaling or mirroring
in ‘all’ dimensions, the ‘?’ can be replaced with ‘a’. When specifying a transformation in matrix
form, from 1 to 9 numbers (for ‘-M3’) or from 1 to 16 numbers (for ‘-M4’) may be specified.
The specified numbers replace the entries, by rows, in a unity matrix of degree 3 or 4, respec-
tively. Transformations are applied to the defined object in the order given. Arguments may be
integer or floating-point numbers.

2.4. Examples

To illustrate the correspondence between the ASCII description and the defined object, we
present a few simple cases. The first is the wire-frame of a cube:

Figure 1. Cube file

vXYZ 111,
vXY 11-1;
v XZ 1-11;
vX 1-1-1;
vYZ -111;
vY -11-1;
vZ -1-11;
vN -1-1-1;

wnear (NYXYXN);
w far (ZXZXYZYZZ);
wsides (XXZXYYZ)XYXYZ)(NZ); {4 separate wire segments}

The second is an equilateral solid triangular frame embedded in a cube frame so that its sym-
metry axis coincides with one space diagonal of the cube:

i 2 Tn file

vlA -54082 -0.4082 4.5917
viB 45917 0.4082 5.4082
viC -6.5917 0.4082 7.4082,
viD -7.4082 -0.4082 6.5917,
v2A 4.5917 -5.4082 -0.4082;
v2B 5.4082 -4.5917 0.4082;
v2C 7.4082 -6.5917 0.4082; <
v2D 6.5917 -7.4082 -0.4082;
v3A 04082 4.5917 -5.4082;
v3B 0.4082 5.4082 -4.5917;
v3C 0.4082 7.4082 -6.5917;
v3D 04082 6.5917 -7.4082 ;
(v1A viB v2B v2A);
(viC v1D v2D v2C);
(v2A v2B v3B v3A);
(v2C v2D v3D v3C);
(v3A v3B vIB v1A);
(v3C v3D viD vIC);
(vICv2Cv3C)(v3B v2B v1B); {face with triangular hole}
(v3Dv2D viD)(v1A v2A v3A); (face with triangular hole}

o T T T B T B T I SR IR I I I -

It is possible to mutually interlock four of these triangles if they are properly oriented. This
can be achieved with four separate instance calls or one single array call to the triangle, which is
assumed to reside in a file called ‘Triangle_file’. The previously defined cube, assumed to be in a
file ‘Cube_file’, has been scaled up by a factor of 7 to match the size of the triangles:

Figure 3. UNIGRAFIX Scene

def cube;
include Cube_file;
end;
def triangle;
include Triangle_file;
end;
iC(cube -sa7.0);
a T (triangles) 4 -1z90;

This example also demonstrates that faces with holes can be properly drawn, even if they
are interlocking, without the need to cut the faces into smaller pieces. Available rendering styles
include: full wire frame (Fig.1), wire frame with backface elimination, hidden lines removed
(Fig.2), and shaded faces with hidden parts removed (Fig.3). Faces can be rendered with or
without outlines. The latter contribute significantly to the crispness of the display when rendered
on a black-and-white device.

2.5. Light Sources and Color

To provide shading on the faces, light sources must be specified. These can be uniform
ambient lights or they can be directional. In the first case, all faces regardless of their orientation
are equally illuminated. In the latter case, the brightness is determined by the scalar product
between illumination vector and face normal.

On appropriate terminals, color renderings can be produced. To specify a color, we use a
double-cone model of color space. For each color, its lightess (intensity), its hue, and its satura-
tion must be given,; if the last one or two values are omitted, fully saturated colors or neutral gray
surfaces are inferred, respectively. As in the case of the vertex coordinates, the lengthy color
specification is not repeated for every face using that color; one simply references the correspond-
ing colorID (see Table 1.).

3. UG3 DATA STRUCTURES

Recently, in an attempt to both simplify and reorganize UNIGRAFIX, a set of libraries was
constructed to aid in the writing of UNIGRAFIX utilities. These libraries consist of routines for
reading UNI/GRAFIX files into organized data structures, manipulating the data structures in vari-
ous ways, and writing them back out into an ascii format.

Ug3 data structures store everything in the form of statements. There are vertex statements,
face statements, and even some abstract statments like an edge statement which is not defined in
the language, but is an important part of the general data structure. The structure is referred to as
a "winged-edge" data structure; if two faces share an edge, they will point to the same physical
edge in memory, and the edge will point to both of the faces.

The central structure is called a UGfile. It contains all of the statements that make up the
UNIGRAFIX object. As there are 17 different types of statements, the UGfile contains pointers to
17 doubly linked lists of statements. There is a list of verticies, a list of edges, a list of faces, and
SO on.

Every statement in a UGfile has so-called reference lists. These are lists that point to all
other statements that this statement refers to, and to all other statements that refer to this state-
ment. For example, assuming that edge e is an edge between verticies u and v. Then the edge
statement e will have pointers to vertex statements u and v on its FROM reference list. And the
vertex statements u and v will have edge statement e on each of their TO reference lists. These
reference lists are maintained in the form of arrays. To find all of the contour statements which
refer to a specfic edge, for example, you would search all of the entries in the edge’s TO reference
list (an example of this is in the "refer" document). As a general rule, if statement a makes refer-
ence to statement b, then a will be on b’s TO reference list, and b will be on a’s FROM reference
list.

The ug3 data structures and libraries have proven useful for quickly writing programs that
modify UNIGRAFIX objects. Recently, ugshrink was rewritten using ug3 data structures, and the
ug3 version ended up requiring less than one quarter of the code of the original version.

4. RENDERING

One of the original goals of UN/GRAFIX was the production of high-resolution black-and-
white output of publishable quality.2 The aim of our rendering routines was not to imitate glossy
photographs of real objects, but to render the objects in a clear way in the style of an engineering

-8-

drawing. In particular, it was found that the presence of outlines around each face greatly
enhances the clarity of the drawing and gives it a much crisper look when rendered on black-
and-white dot-raster plotters.

The selection of a high-resolution plotier as one of the main output devices of UN/GRAFIX
has strongly affected the choice of the algorithms for rendering and for hidden feature removal.
The widest plotter available to us measures 3 feet; a square plot of that size corresponds to about
50 million pixels. The resolution of this output medium rules out ‘ray casting’ as a practical
rendering technique. Moreover, these plotters need the output information one line at a time in
y-sorted order, thus strongly favoring a scan-line algorithm. Therefore, several high-resolution
renderers based on scan-line hidden-feature removal algorithms were developed during the early
1980s

More recently, with the emergence of more interactive UN/GRAFIX tools, some of the ear-
lier renderers were adapted for this new environment with different constraints. Also, in addition
to these renderers that run on most typical graphics raster output devices, we have recently
developed a renderer for the Silicon Graphics IRIS that makes use of the special hardware used
by this device. In the following the various renderers will be discussed briefly.

4.1. ‘ugshow’

This is the original rendering program of UNIGRAFIX 1. 2 1t is no longer used or supported,
though you may find references to it in some old code and reports.

4.2. ‘ugplot’

This renderer is an enhanced version of the ‘cross’ algorithm by Hamlin and Gear.? It is an
object space algorithm that can also return visible polygons at object resolution.’ In a single
scan-line sweep, the visible edge segments are determined and properly composed into the con-
tours of visible and invisible polygons. The algorithm concentrates on the edges in the scene,
analyzes all crossings in the given projection, and relies on the coherence of planar, nonintersect-
ing polygons to minimize the number of depth comparisons. It makes maximal use of object
coherence; this makes it very sensitive to small data inconsistencies, such as non-planar polygons
or intersecting faces.

4.3. ‘ugdisp’

With this renderer we have returned to the more robust approach of ugshow, however,
without incurring the penalty of the large dynamic data structure resulting from maintaining in
parallel all the face lists for each segment on the scan-line. An enhanced version of the ‘stack’
algorithm by Hamlin and Gear? has been used. Special features were added to render edges and
wires and to produce outlines around faces. Optional Gouraud shading has been included. The
renderer can even be run in a mode where extra depth comparisons are included so that intersect-
ing objects can be handled directly.®

44. ‘uq’

This is a special purpose renderer of the ‘UniQuadrix’ modeling and rendering program for
objects represented as the Boolean intersection of quadric and planar half-spaces. A language
very similar to the UN/GRAFIX format is used to define the half-space boundaries by their
coefficients. UniQuadrix uses implicit equations to represent the surfaces and boundaries of

-9.

objects throughout the rendering process. This permits a scan-line based algorithm very similar
to the one used in ugshow to quickly identify visible spans. An efficient incremental algorithm
shades pixels within spans.’

4.5. ‘ugray’

This UNIGRAFIX ray tracing renderer was completed as a Master’'s project by Donald M.
Marsh in 1987. In order to reduce the computational expense of general ray-tracing, uniform spa-
tial subdivision is used. A fast algorithm for inserting polygons into the spatial subdivision and
inexpensive shading and anti-aliasing routines have also been implemented. Rather than display-
ing an image immediately upon rendering, the image is saved in an intermediary format, ugrim,
which can then be displayed later on a variety of devices.

4.6. ‘ugiris’

This renderer runs only on the SGI IRIS 4D. It allows you to view and manipulate an
object in real-time. It takes advantage of the special hardware on the IRIS, including the full
screen z-buffer, 24 bits of color resolution, and hardware Gouraud shading, creating a highly
interactive exceptional interface for real-time object viewing.

5. SOME GENERAL UTILITIES

Because of the constraints inherent in some of the renderers discussed above and in some of
the filters to be presented in the next section, UN/IGRAFIX descriptions need sometimes be con-
verted to “‘simpler’’ descriptions, using only a subset of the expressibility of the full UN/IGRAFIX
descriptive format. A few ‘‘filter’’ packages provide such services.

5.1. ‘ugisect’

Most of the renderers described in the previous section rely in their hidden feature elimina-
tion algorithm on the fact that the faces are planar and do not intersect one another. Scenes that
contain intersecting objects need to be preprocessed once with ugis.ect8 to convert them to a UNI-
GRAFIX description with no intersecting faces before they can be rendered. Ugisect can handle
arbitrary collections of polygons without generating spurious edges that would subdivide
unnecessarily contiguous parts of planar faces. In addition, when true polyhedral solids are
involved, ugisect can also form set-theoretic operations, i.e., union, intersection, or difference of
two objects.

5.2. ‘ugxform’

This ‘“‘filter’’ program makes a global transformation on a UNIGRAFIX file by simply
transforming all vertices and instances at the top level of the scene hierarchy with the transforma-
tion specified on the command line. All other information is passed through unaltered. This util-
ity can be used to transform the scene so that the default viewing option produces an optimal
display. It can also be used to produce anisotropic (differential) scaling of vertex groups for use
in other objects.

-10-

5§3. ‘ugexpand’

This batch program expands instances and arrays recursively into their individual consti-
tuent parts. It produces a hierarchically flat description of vertex, wire, and face statements. This
form is needed by some of the modifier programs that cannot cope with a hierarchical description.
Optionally, the long and cumbersome hierarchical vertex names that may result in this process
can be replaced with new terse (and meaningless) identifiers. Another important option is to
merge all vertices within a distance epsilon of one another. This helps to avoid problems result-
ing from near intersections that may be created by numerical inaccuracies.

5.4. ‘ugvmerge’

This is another clean-up filter. It merges coinciding vertices that may cause trouble for pro-
grams such as ugplor. All vertex pairs that are separated by less than a specifyable tolerance eps
are merged into a single vertex. Unlike ugexpand, this filter uses the newer ug3 library.

6. THE UNIGRAFIX LIBRARY

A rendering system alone is probably unsatisfactory for most users when not complemented
by some tools to aid in the generation of interesting objects. Simple UNIGRAFIX objects can be
readily created with a text editor. Large, but regular objects can be generated by writing small
programs (in your favorite language) that produce the required ASCII files. The simple and terse
format of the UN/GRAFIX language as well as its hierarchical nature make both these approaches
quite practical.

6.1. Basic Polyhedron

The UNIGRAFIX library contains simple geometric primitives that are frequently used as the
starting point for the generation of objects. They comprise the Platonic solids in 3-D and 4-D
space. In addition, this library contains many of the archimedean solids and some of the objects
that are depicted in this manual.

6.2. Generator Programs

In the following we present some examples of programs that create UN/GRAFIX object
descriptions from scratch based on some user-supplied parameters or data files. These programs
have typically been developed by students as course projects in graduate courses on computer
graphics and solids modeling.

‘ugsweep’ sweeps a polygon through space with an arbitrary incremental transform between
steps and produces the surface of the swept-out volume.

‘mkworm’ creates properly mitred prismatic tube sections around piece-wise linear paths
through 3-D space. These paths are read in from an ‘ax’-file and can form closed loops but must
not include branches.

‘mktree’ outputs, in the above mentioned ‘ax-file’ format, the joint-coordinates of a tree-like
object based on the growth algorithm of Kawaguchi.? The shape of the generated structure can be
altered by a set of command-line options to make them resemble trees, shells, or corals.

‘mkstairs’ creates helical staircases or ramps according to a set of parameters. Each step is an
instance of a definition describing a single step or ramp segment with the proper geometry for a
smooth fit.

-11-

‘mkgear’ produces a UNIGRAFIX description of gear boxes based on the specification of posi-
tion and size, of gear wheels and shafts.

‘mkrobot’ is a generator program that reads the predefined parts of a robot arm from the file
~ug/lib/rbparts, takes the values of the various position parameters from the command line, per-
forms some checking on the size and ranges specified, and produces a UNIGRAFIX description of
the complete manipulator arm.

‘mkquasi® generates two or three dimensional quasiperiodic tilings based upon methods
described in a 1985 paper by J. E. S. Socolar.!0 The user may specify some or all parameters
using a special input file format.

‘ugsubd’ is a generic object generator. It creates a UNIGRAFIX representation of a parametric
surface (x(u,v), y(u,v), z(u,v)) defined by the user. The surface is approximated by a collection of
triangular facets which are generated through adaptive subdivision. This process produces good
representations of smooth surfaces.

6.3. Modifier Programs

Other programs start from an existing UNIGRAFIX description to produce a new object,
either by such processes as projection or truncation, or by modifying each individual face of the
polyhedral object in some specified way:

‘ugshrink’ separates the faces of a polyhedron and shrinks them individually by a specified fac-
tor with respect to the face center. It can also be used to cut similarly shaped holes into faces or
to produce concentric rings.

‘ugfreq’ subdivides triangular faces into a tessellation of similar, but smaller facets. The degree
of subdivision is specified by the ‘frequency’ parameter.

‘ugtess’ is a filter that tessellates the faces of an arbitrary unigrafix object into convex polygons
without creating any new vertices. An option exists to triangulate the faces instead.

‘ugstar’ constructs pyramid-shaped extrusions or intrusions on all faces of a polyhedron. The
tip of the pyramid lies at a parameterized distance on the face-normal through the face-center.

‘ugtrunc’ truncates the corners of a polyhedron. New vertices are formed either in the middle
of every edge or at a parameterized distance from the ends. These new vertices are then linked in
a circular manner around every old vertex to form the new faces. To guarantee planar truncation
faces, an approximate plane is first placed through all the vertices determined in the above
manner on the edges emerging from a particular vertex; then the truncation plane is moved
through the new vertex that minimizes the distance of the plane from the old vertex. Vertices
with emerging edges that occupy more than a half-space (saddle points) will not get truncated.

‘ugsphere’ projects all vertices radially from the origin onto a sphere of a given radius around a
specified center point. This is useful to construct geodesic domes.

‘ugpipe’ produces ball and cylinder descriptions in the UniQuadrix descriptive format. It starts
from standard UNIGRAFIX scene descriptions and converts all vertices into balls and all wire seg-
ments and face edges into cylinders. The output contains all of the quadric and planar descrip-
tions necessary to render the object with UniQuadrix.

‘ugdto3’ projects 4-dimensional vertex coordinates into 3-dimensional space. It applies to each
vertex the specified transformation. The default transformation is a parallel projection along the
w-axis, i.e., simply a removal of the w-component. Face, wire, color, and light statements are
passed unaltered to the output.

-12-

‘ugunwrap’ takes a polyhedral object and unwraps it into a flat plane. Afier unwrapping the
object, it is then possible to print it, cut it out, and fold it up so as to create the actual object.
‘ugfold’ is the reverse of ugunwrap. Given a file describing a net of polygons, it will generate a
UNIGRAFIX file describing the resulting polyhedron.

‘ugcontour’ takes an object described with triangular faces, and generates topological contours
along any specified axis.

‘ugcull’ is a program which reduces the number of polygons in a UN/GRAFIX model, making the
model cruder, but simpler.

‘uginterp’ generates quadratic interpolating patches over a polyhedron. The patches are
designed to fit so that they meet with G1 continuity.

‘uginbetween’ reads two or more UN/GRAFIX scenes, and interpolates between them, producing
a series of output scenes which may then be rendered to form a movie.

‘ugsoap’ generates minimal surfaces. Given an object with unpaired edges, it will deform the
existing surfaces in the object to generate a minimal area surface between all unpaired edges.

‘ugworm’ generates mitered prismatic tubes for a wire frame. This is like the mkworm genera-
tor program, except that it can handle intersections of more than one edge.

‘bump’ stands for Berkeley UNIGRAFIX Movie Package. Bump makes extensions to the
language having to do with time and motion, and can generate a sequence of movie frames.

6.4. Modifier Pipes

In typical UNIX style, the described filter and generator programs can be piped into one-
another to form powerful scripts. The examples below show how the objects were generated as
well as how they were rendered. Note the variety of objects that can be generated by starting
from some of the same very simple primitives.

Figure 4.
cat "ug/lib/dodeca | ugstar -h 3 t ugtrunc -t
0.9 1 ugtrunc -C -1 0.7 > {4

cat f4 illum | ugplot -ep -25 60 -100 -sa -dw
-sy 3 -sx 2.75

Figure 6.
cat “ug/lib/icosa | ugfreq -f2 | ugsphere |
ugshrink -f0.8 -H > f6

cat f6 ilum7 | ugdisp -ep -60 30 -100 -ab -
sa -sg -dw -sy 3 -sx 2.75

-13-

Figure

cat wire | ugsweep -n 9 -tx 6 -1z 30 -tx -6 -n
9 -tx -6 -rz -30 -tx 6 | ugxform -tx 6 -ty 6 |
ugshrink -f 0.8 | ugsweep -tz 10> 5

cat f5 illum | ugplot -ep -50 30 -100 -sa -dw
-sy 3 -sx 2.75

Figure 7.

cat "ug/lib/D4cube | ug4to3 -ep000 3 | ug-
pipe -1 0.3 -rc 0.15 > 7

cat f7 illum8 view8 | uq

-14-

Figure 8. Figure 9.

cat dodeca | ugworm -r 0.15 -n 6 > f8 cat “ug/lib/cube | ugshrink -f 1.3 | ugshrink

cat fB | ugplot -sa -ep -20 -2 -20 -sx 3 -sy 3 -H-10.6 | ugisect > f9

-dp cat f9 illumc ! ugplot -ep 6.5 5 -10 -ab -sa
-dw -sy 3 -sx 3

Figure 10. Figure 11.

cat icosa | ugtrunc -10.666 | ugunwrap | ug- cat cube | ugshrink -f 0.5 -H | ugsoap > f11
star-h 1.5 -N > f10 cat f11 | ugplot -ep -6 8 -10 -sa -ab -dp -sx 3
cat f10 | ugplot -ep 0 50 -30 -sa -sx 3 -sy 3 -sy 3

-dp

2, FBE Y oo
%’4& .

AT,
B
2 OOKY

-15-

7. INTERACTIVE VIEWING

In some sense, the UNIGRAFIX system construction has been started at the back end, provid-
ing the rendering programs first. Ugi, a prototype for an UN/GRAFIX interactive shell was written
in 1985. More recently the development of "hug", a more advanced shell has been started.

7.1. The Original Shell ‘ugi’

This interactive environment for the display of UNIGRAFIX scenes provided most of the old
UNIGRAFTX batch capabilities for scene manipulation, view specification, and display style within
a homogeneous interactive framework. It greatly enhanced the speed and ease with which UNI-
GRAFIX objects can be designed, viewed, and modified.

7.2. A Newer Interactive Shell, hug’

Hug is an emerging new interactive shell based on the ug3 data structures discussed in sec-
tion 3. It has been designed with two primary goals in mind. First, the UN/IGRAFIX data structure
representing the current scene is passed between the various tools and the renderers without ever
being converted into an ASCII format. The second goal has to do with the ease of adding new
tools to the shell. Any tool written using the ug3 data structures, and following a few simple con-
ventions can easily be added to the shell. Note that tools written prior to the ug3 data structures
can still be used in hug by converting the scene to and from ASCIL

7.3. A Shell for Curved Surfaces, ’uci’

Uci is an editing, viewing, and designing tool for UniCubix objects. It provides most of the
ugi capabilities for objects with curved edges and curved surface patches.

7.4. Animator

Animator is a graphical tool that runs only on an SGI IRIS. It allows users to interactively
view UNIGRAFIX objects and to dynamically apply certain UN/GRAFIX tools to them. The user
can interactively change the parameter value of a modifier tool and study its effect on the result-
ing object.

8. CONCLUSION

UNIGRAFIX privides an enhancement of the UNIX environment; it makes three main contri-
butions: First, it presents a terse ASCII-based language for the description of geometrical scenes
at the object database level.

Second, it provides an efficient rendering system for high-resolution views of polyhedral
objects. It produces hardcopy output in the style of engineering drawings, rather than refined
displays simulating photographic renderings of real objects.

Third, it offers a collection of generator and modifier programs and an interactive viewing
shells that make it easy for the user to create rather complex objects with a command-line pipe or
with a small shell script. The currently available utilities are primary aimed toward geometric
objects such as semi-regular polyhedra and lattices in three and four dimensions.

UNIGRAFIX is being made available to people for their own use and at their own risk.
These programs form in no way a "tumn-key system.” We believe they are a basis from which
others can start their own experiments, and perhaps a guide how such a system could look, once
all the parts have been honed to perfection.

-16 -

ACKNOWLEDGMENTS

The UNIGRAFIX system would never have come into existence without the dedicated effort

of many graduate students at U.C.Berkeley. Special pioneering contributions have been made by
Paul Strauss, Paul Wensley, Mark Segal, Nachshon Gal, Michael Natkin, and many students who
took the course CS285, "Procedural Object Generation” in the last few years. This development
has been supported at various times by Tektronix, Inc., Siemens Corporation, and Silicon Graph-
ics Inc..

References

1.

10.

C.H. Séquin, ‘‘Creative Geometric Modeling with UNIGRAFIX,”” Tech. Report
(UCB/CSD 83/162), U.C. Berkeley, Dec. 1983.

C.H. Séquin and P.S. Strauss, ‘‘UNIGRAFIX,"" Proc. 20th Design Automation Conf., pp.
374-381, Miami Beach, FL, June 1983.

H. Chiyokura, Solid Modeling System DESIGNBASE - Design and Implementation,
Addison-Wesley, Singapore, Spring 1988.

G. Hamlin and C.W. Gear, ‘‘Raster-Scan Hidden Surface Algorithm Techniques,’’ Com-
puter Graphics, vol. 11, no. 2, pp. 206-213, Summer 1977.

C.H. Séquin and P.R. Wensley, ‘‘Visible Feature Return at Object Resolution,”* Computer
Graphics and Appl., vol. 5, no. 5, pp. 37-50, May 1985.

N. Gal, ‘‘Hidden Feature Removal and Display of Intersecting Objects in UNIGRAFIX,"”
Master's Report, U.C. Berkeley, Jan. 1986.

G.K. Ressler, **UniQuadrix,” Master’s Report (UCB/CSD 85/240), U.C. Berkeley, June
1985.

M.G. Segal, ‘‘Partitioning Polyhedral Objects into Non-Intersecting Parts,”” Master’s
Report (UCB/CSD), U.C. Berkeley, Spring 1986.

Y. Kawaguchi, ‘‘A Morphological Study of the Form of Nature,’’ Computer Graphics (Sig-
graph’ 82 Conf. Proc.), vol. 16, no. 3, pp. 223-232, 1982.

Socolar, J.E.S., et al., Quasicrystals with arbitrary orientational symmetry, 1985. Phys Rev
B, 32:8. p 5547

