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ABSTRACT

We present a new mcthodology for CPU performance cvaluation bascd on
thc concept of an abstract machinec model and contrast it with benchmarking.
The modcl consists of a sct of absiract paramcters represcnting the basic opera-
tions and constructs supportcd by a particular programming language. The
modcl is machinc-indcpendent, and is thus a convenicnt medium for comparing
machincs with different instruction scts. A special program, called the machine
characterizer,. is used to mcasure the cxccution times of all abstract paramcters.
Frequency counts of paramctcr cxccutions are obtained by instrumenting and
running programs of intcrest. By combining the machine and program character-
izations we can and do oblain accuratc cxccution time predictions. This abstract
modcl also pcrmits us to formalize concepts like machine and program similar-
ity.

A widc varicty of computcrs, from low-cnd workstations 10 high-cnd super-
compulcrs, have been analyzed, as have a large number of standard benchmark
programs, including thc SPEC scicntific benchmarks. We present many of these
results, and usc them to discuss variations in machinc performance and
wcaknesses in individual benchmarks. We also present somce of our results in
cvaluating oplimizing compilers.

Introduction

Comparing the CPU performance of different machincs is a problem that has confronted
designers and uscrs for many ycars. Nowadays, thc most widcly uscd mcthod is benchmarking.
It consists of running a sct of programs and mcasuring their cxecution times [Pric89, Hinn88].
The advantage to benchmarking is that it yiclds mecasurements of rcal programs running on rcal
computers. There arc scveral shortcomings o benchmarking, however, one of which has been
the problem that many standard benchmarks, ¢.g. Dhrystonc [Wcic84], arc considered Lo be sub-
stantially unrcprescntative of ‘normal’ workloads. Two cfforts 1o crcalc a sct of realistic
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benchmarks arc the SPEC [SPEC89] and Perfect Club [Cybe90] suitcs. However, cven when a
sct of benchmarks is carcfully assembled, there arc some limitations to the technique [Worlg4,
Dong87): 1) It is very difficult to cxplain benchmark results from the characteristics of the
machines. 2) It is not clcar how to combinc individual mcasurements to obtain a mecaningful
cvaluation of various systcms. 3) Using benchmark results it is not possiblc to predict and/or
extrapolaltc the expected performance for arbitrary programs. 4) The benchmarks may still not be
representative, and/or may not do the kind of computation (c.g. intcger vs. floating point)
expected. 5) The large variability in the performance of highly optimized computers is difficult
to characterizc with benchmarks.

Another approach to machine performance cvaluation is to model the machine at the
instruction sct level. This approach suffers from scveral problems: (a) It is very difficult to con-
struct an accuratc modcl of machinc operation, including all pipclinc dclays. (b) A very large
numbcr of parameters arc needed for such a model. (¢) The frequency of machinc opcrations
may be hard to know or cstimatc.

We can consider benchmarking and machine modcls as being located at opposite cxtremes
of a spectrum. Machinc modcls arc limited by their complexity and machine specificity. One the
other hand, benchmarking lacks any kind of model, and without it, it is not possible to predict or
cxplain benchmark results.

Our particular approach and the subjcct of this paper has been to develop a new methodol-
ogy which aticmpts to overcome the limitations of both benchmarking and machine modcls,
whilc retaining their particular advantages. Our solution, which we call Abstract Machine Per-
formance Characterization, consists of building a machinc-independent modcl based on the sct of
operations uscd in source programs. Beccausc the model is machinc-independent, it applics to all
compuler systems running that programming language, independent of their particular instruction
scts.

Machinc characterization is accomplishcd by mcasuring the cxccution time of individual
paramelers via ‘narrow spectrum” benchmarking. This produces a vector of measurements for all
the abstract operations that dciermine the cxccution time of programs. We characierize programs
by the number and type of abstract operations they cxccute. Using the sct of measurements from
the machincs and programs, both cxpresscd in terms of the same abstract modcl, it is simple to
combinc these to produce exccution time estimates for arbitrary machinc-program combinations.
Exccution time can also be dccomposed in terms of what the programs docs and how the machine
performs with respect to individual operations. This relation between machine characterization,
program characicrization, and cxccution time can be cxpressed with following cquation.

n
TA,M = Coa Z CiP, =Cia CaPy M

i=1
where Py=<P P,y - ,P,> represents the machinc characicrization,
Cpo=<C,,Cy, - +,C,> and C,,, represent the program characterization, and Ty y the cxccu-

tion time of program A on machinc M. A graphical rcpresentation of this process can be scen in
figure 1.

It is impontant to stress that we don’t consider our approach and benchmarking to be incom-
patiblc. On the contrary, we regard our approach as a morc general methodology cncompassing
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Figure 1: Thc process of characierization, analysis and prediction. There exists one perfor-
mance vector (Pyg) for cach machine, and a sct of statistics (Cy and Cy,yq) for cach
program. Exccution time cstimatcs arc obtaincd by merging the machinc charactenza-
tions with the program staustics.

benchmarking and building on it. The abstract machinc model has scveral advantages not present
in benchmarking or machinc models. Some of these are: 1) A single benchmark (thec machine
characterizer) is used to completely characterize the performance of a machine, instcad of using a
large sct of benchmarks that only provide unrclated obscrvations of performance. 2) It is possiblc
to comparc different architcctures or implementation of the samc architecture in a machine
indcpendent way, and to study how different machines react to the most time-consuming scctions
of the program. 3) Machincs can be compared at many different levels: individual abstract opera-
tions, functional units, programs, and workloads. 4) The machinc abstract model can be used to
casily sclect, from a large sct of machincs, thosc which satisfy some performance requircments.
5) Making a detailed analysis of benchmarks helps to understand thosc machine features that they
test. 6) Benchmarking rcal machines is a limc consuming activity; running N benchmarks in M
machincs requirc N -M steps. In contrast using the abstract machinc modcl requires only N +M
machine and program characterizations!.

1 Although we still need to produce N -M predictions, the amount of work require 1o do this is ncgligible.
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In what follows we discuss the abstract machinc modcl in morc dctail, showing how it is
used 1o characterize and compare machines, programs, and optimizing compilers. We give meas-
urements for rcal machines and programs, and discuss the significance of some of the results.
Then we present metrics for program and machine similarity. These allow us 10 quantify the
extent to which performance on two machines will be proportional across a range of programs.
We finish by presenting some of the work we arc doing in characierizing optimizing compilers.
We notc that this paper is only a short summary overview of our work on this topic; further infor-
mation can be found in [Saav89, Saav90, Saavo1l].

The Abstract Machine Model

Every programming language can be vicwed as dcfining an abstract machine model, as
specificd in its language constructs and basic opcrations. Thereforc, a programming language
allows us to consider different machines as emulators of a single abstract machine. Exccution
time depends only on the compiler and the underlying machine and thus programming languages
provide an idcal vehicle for building machinc-indcpendent models.

In our rescarch, we have focussed on performance in a scientific environment, and have
therefore built our model around the Fortran language; despitc its antiquity, Fortran is still the
most widely uscd programming language for scicntific applications. A similar abstract modcl
could be created for most other algorithmic languages. In order to distinguish as much as possi-
ble between the compiler and the underlying machine, we have initially considered only unoptim-
ized codc; at the cnd of this paper, we discuss and cvaluate optimizing compilcrs.

Our Fortran abstract machinc modcl contains 109 paramcters. Each can be classified in onc
of the following broad catcgories: arithmetic and logical, procedure calls, array references,
branching and itcration, and intrinsic functions. For cxamplc, there arc individual parameters for
each of the arithmetic operations (add/subtract, multiply, division, and exponcntiation), for cach
data type (rcal, intcger, and complex), and in most cascs for cach precision (single, double). We
decided which parameters to include in our modcl in an itcrative manner. Initially we associated
paramecters with obvious basic opcrations, and after a first version of the sysicm was running, new
parameicrs were incorporated to distinguish between different uscs and exccution times of the
‘samc’ abstract opcration in thc program. This was mainly the result of detecting a significant
crror between our predictions and real exccution times. Thus, the number of parameters has
increasced from 74 in {Saav88], 1o 102 in [Saav89], and to 109 currcntly. Although cvery basic
operation in Fortran is characterized by some parameter, we have made simplifications in opera-
tions which were rarcly exccuted in the benchmarks we used.

We can illustrate how the abstract paramciers of the model relate to characicristics of the
machines and programs with an cxample. The following code fragment represents onc of the
most executed basic blocks found in the NAS Kemcls [Baii85].

DO 110 I =1, L
C(I,K) = C(I,K) + A(I,J) * B(J,K) + A(I,J+1) * B(J+1,K) +
1 A(I,J+2) * B(J+2,K) + A(I,J+3) * B(J+3,K)
110 CONTINUE



A static analysis of the code decomposes the statcments into abstract operations and associates
these with a unique basic block. Hence the four lincs of code can be ‘compiled’ into the set of
abstract opcrations shown in table 1.

Opers. Mnem Description
1 LOIN | DO LOOP initialization and bounds check
1 SRDL | storc of a double precision real
4 ARDL | double precision floating point add
4 MRDL | double precision floating point multiply
10 ARR2 | references to 2-D array elements
6 ADDI | add between an indcx and a constant
1 LOOV | DO LOOP ovcrhead: increment, check, branch

Table 1: Stauc statistics for onc of the loops in the NAS Kemels.

By supplemcenting the static analysis given above with dynamic counters indicating the
number of times cach basic block is executed, we obtain a count of the number of times each
operation occurs. Given the time for cach opcration, we can then compute the execution time of
this source code fragment.

Time =N Tyon + N2 (Tsppr +4Tappr + 4 Tyror + 10T ppp2+ 6 Tappr + Troov)-

N, corresponds to the number of times that the basic block containing the loop executes, and N,
is the number of times that the body of the loop cxeculcs.

Machine Characterizer

The machine characterizer (MC) consists of 109 ‘software experiments’ thalt measure the
performance of cach individual abstract paramcter. The MC is written as a Fortran program and
runs from 200 scconds, on machines with good clock resolution, to 2000 seconds on machincs
with 1/60’th or /100'th sccond rcsolution. We have run the MC on many different machines
ranging from low-cnd workstations 10 supercomputcrs. Each cxperiment trics to mcasure the
exccution timc that cach parameter takes (o excculce in ‘typical’ Fortran programs. This typical
exccution time was obtaincd by looking at rcal programs and also by modifying those e¢xperi-
ments that were identificd as generating the biggest error in our predictions.

The gencral approach to measuring the cxccution times of paramcters has been (o time two
versions of a loop, one with the parameter of interest in it, and one without. The main difficulties
in measuring the performance of abstract paramcters lic in their very small execution times, rang-
ing from nanoseconds to hundreds of microscconds and the crudencss of the timing tools avail-
able in most machincs; clocks normally have a resolution of only 1/60th or 1/100th of a second.
Accuracy is obtaincd by running through thc loop many times, and then running the overall loop
test itsclf many times. Some paramelers can’t be mcasured quite so casily, and must be derived
as the diffcrence of other operation times [Saav89]. Despite a carcful statistical approach 1o thesc
measurcments, there are some residual sources of crror: the resolution, overhcad and intrusive-
ness of the mcasuring tools; extcmal cvents like interrupts, multiprogramming and 1/0 activity;
variations in the hit ratio of the memory cache, and paging [Clap86].



From Basic to Reduced Parameters

Vector Py in eq. 1 corresponds to the characterization of machine M in terms of the Fortran
basic operations. It represents our fundamental measurcment of performance, and from it, all
predictions and metrics are computed. Unfortunately, it is very difficult to understand the mean-
ing of an 109 element vector. For this reason we have defined a set of seventeen ‘reduced’
parameters that consolidate the original 109. The reduced parameltcrs are obtained from the basic
oncs by aggregating thosc that exercise a similar functional unit in the processor and assigning
them weights according to how frequently they are exccuted by programs.

Reduced Parameters

1 mcmory bandwidth (single) 10 double precision arithmetic
2 mcmory bandwidth (doublc) 11 intrinsic functions (single)
3 integer addition 12 intrinsic functions (double)
4 intcger multiplication 13 logical opcrations

5 intcger arithmetic 14 pipclining

6 floating point addition 15 procedure calls

7 floating point multiplication 16 addrcss computation

8 floating point arithmetic 17 iteration

9 complex arithmetic

Table 2: The scventeen reduced parameters. Integer and floating point arithmetic refer to all
arithmetic operations, except addition and multiplication.

Table 2 shows the list of the seventeen reduced parameters. Most of the parameters deal
with arithmetic characteristics, as would be expected for a language like Fortran. There are
hardware, software, and hybrid paramcters. Hybrid parameters arc those that are implemented in
hardware on some machinc and in softwarc on others. Paramcters characterizing hardware func-
tional units are: integer addition and multiplication, logical opcrations, procedure calls, looping,
pipclining, and memory bandwidth (single and doublc precision). Pipclining comprises the dif-
ferent types of Foriran ‘goto’ statcments. Softwarc characieristics are represcnicd by (intrinsic)
trigonometric functions (single and double precision). Floating point, double precision and com-
plex arithmetic, and address computation belong to the hybrid class.

A very convenient graphical way of representing the reduced parameters is to use a modi-
fied version of Kiviat graphs. Here the absolute or normalized valucs of the parameters are plot-
ted on a logarithmic scalc around a circle. In this way wc can convey very effectively how dif-
ferent machines distribute their performance. We call these figurcs pershapes (performance
shapes), and cach system has a unique pershape. Figure 2 shows the pershapes for 2 supercom-
puters, 2 mainframes, 11 workslations and scveral implementations of the VAX architecture. The
performance differences between two compilers or the impact a floaling point co-processor are
clearly reflected in the different pershapes. For example, in figure 2 we sec how the use of two
diffcrent Fortran compilers determine the pershape, as in the casc of the fort and f77 compiler on
the VAX-11/785. In a similar way, the impact of using a floating point co-processor is clearly
scen on the pershapes for the Sun 3/260 (the onc with the co-processor is indicated by an ).



12 15 AT ¢
137 ia 14 13

14
VAX-11/785 fon VAX-11/785177 VAX-11/780

10 VAX 11/780

i

SUN 37260 (f) SUN 3260 IBM PC-R17/135 SUN 3/50

Figure 2: Performancc of the reduced paramcters with respect to the VAX-11/780. The con-
centric circles represent .1, 1, 10, and 100 times faster. The closcst a performance shape
(pershape) is to a circle, the closest the machine is 1o a VAX-11/780 in terms of how
both machines distributed their performance along different computational modes.

We can trace the evolution of performance in workstations by looking at the pershapes. If
we comparc the pershapes for the VAX-11/780 and the Sun 3/50, wc scc that for floating point
arithmetic (single and doublc precision), complex arithmetic, intrinsic functions, and logical
operations the Sun 3/50 had worse performance than the VAX-11/780. Even in the Sun 3/260
with a co-processor (SUN 3/260 (f) in the figure), singlc precision and complex arithmetic lagged



behind that of the VAX-11/780. However, newer workstations, such as the IBM RS/6000 530,
show almost two orders of magnitude improvement with respect to the Sun 3/260 in floating
point and complex arithmetic. In contrast the performance improvement in integer and similar
operations has been of only one order of magnitude.

Pershapes can be uscd to compare the relative performance of machines, and determine the
extent to which they are similar. The idca is that two similar machincs A and B will execute any
arbitrary program P, K times faster on A than B. For dissimilar machines, for one program A
may be faster, and for another, B may be faster. We definc machine similarity (or pershape simi-
larity) as the distance between two different performance shapes. We have created a similarity
metric, shown below in equation (2), which is based on the 17 reduced parameters, and that has
the right properties [Saav89].

| % | %, 2y 12
dX.Y)=| — ¥ |log(—)—— X log(-") @
n-1,2 i P j
X =<xy,Xq, -, X, > and ¥ =<y,,¥,, " ,y,> are two reduced performance veclors in (0, )"

represcnting the pershapes of machines My and My. We can sec that this metric has the desired
similarity property. Consider two machines A and B, such that for every program P the ratio
between their respective exccution times is always a constant K. From eq. (2) we can see that, in
this situation, their pershape distance is zero. Conversely, if the distance between two machines
is very large, then their pershapes are very different and the spectrum of benchmark execution
time ratios is large, independently of whether the machincs have a similar average performance
ornot. A more formal discussion about the propertics of this metric can be found in [Saav89].

Most Similar Machines Least Similar Machines

machine machine distance machine machine distance
001 j| MIPS M7R2000 DEC 3100 0.186 170 || IBM RS/6000 530 | Sun 3/260 1.758
002 {| VAX 8600 VAX-11/785 77 0.229 169 || IBM RS/6000 530 | Sun 3/50 1.669
003 || Sun 47200 Sun 4/110 0.243 168 || MIPS M/2000 Sun 3/260 1.658
004 || Sun 37260 Sun 3/50 0.290 167 || DEC3100 Sun 3/260 1.645
005 || Sparcstation | DEC 3100 0326 166 || Sparcstation | Sun 3/260 1.605
006 {| MIPS M2000 Sparcstation | 0.373 165 |1 MIPS M/2000 Sun 3/50 1.598
007 || Sparcstauon | Sun 4/110 0378 164 || CRAY Y-MP/8128 | Sun 37260 1.583
008 || Sparcstation | Sun 47200 0.391 163 || DEC3100 Sun 3/50 1.573
009 || Amdahl 5880 VAX-11/185 {17 0422 162 || NEC SX-2 Sun 3/50 1.535
010 || VAX-11/78S fort VAX-11/785 177 0.426 161 || CRAY Y-MP/8128 | Sun 3/50 1.527
011 || IBM RS/6000 530 | DEC 3100 0.442 160 || Sparcstation | Sun 3/50 1.521
012 || IBM RS/6000 530 | MIPS M/2000 0.445 159 || VAx-11/785 font Sun 3/260 1.519
013 || DEC 3100 Sun 4/110 0.453 158 || NEC SX-2 Sun 37260 1.477
014 || Motorola M88k Sun 4200 0.456 157 || VAX-11/785 fort Sun 3/50 1.443
015 Ji DEC 3100 VAX-11/785 font 0.462 156 || 1BM 3090/200 Sun 2/260 1.438
016 || MIPS M/2000 Sun 47200 0.462 155 || IBM 3090/200 Sun 3/50 1.425
017 || MIPS M/2000 Sun 4/110 0.468 154 || Sun 4/110 Sun 37260 1.399
018 || IBM RS/6000 530 | Motorola M88k 0.485 153 || Motorola M88k Sun 37260 1370
019 || DEC 3100 Sun 4/200 0.495 152 {| Sun 47200 Sun 3/260 1344
020 || VAX 8600 VAX-11/780 0.499 151 || Sun 4/110 Sun 3/50 1.326

Table 3: Pairs of machines with the smallest and largest pershape distance.

Pershapes and pershape distance can be used to compare and understand machine perfor-
mance. For example, 1) normalized pershapes allow us to identify, relative to a particular




machine, the strengths and limitations of different machines. 2) We can observe the performance
evolution of different implementations of the samc architecture, and measure changes over time.
3) We can measure how advances in technology affect the way machine designers allocate
resources to improve berformance and identify those dimensions that are given more importance.
4) Pershapes metrics can be defined and used to cluster machines. In particular, machine similar-
ity is a measurement of the potential variability of benchmark results between two machines.
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Figure 3: A clustering diagram based on machinc distances. In order to make the figure more
understandable, machines with very small pershape distances are depicted as a single
unit.

In table 3 we give the list of the twenty smallest and twenty largest pershapes distances for
the pairs of machines in figure 2. As expected, machines with similar characteristics, like the
VAXes, show small distances, but there are also other interesting results. The Sparcstation I has
a smaller distance to the DEC 3100 (a MIPS Co. RC2000 and RC2010 based machine) and
MIPS M/2000 than to the any of the other two Sun 4 modcls.

Figure 3 shows the clustcring of machincs with respect to their distances. The distance
between clusters represent the average of all distances between pairs of elements in the clusters.
The figure illustrates the close similarity of modern RISC microprocessors. The supercomputcrs
have performance distributions that are significantly different than those of the other machincs;
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only the NEC SX-2 and the IBM 30907200 have a relatively small distance. A more complete
exposition of pershapes and their metric can be found in [Saav89).

Program Characterization

One of our main arguments is that program characterization is important for CPU perfor-
mance evaluation. Knowing the static and dynamic statistics of programs is what explains why a
machine executes some programs faster, but others morc siowly. There is an underlying assump-
tion, by people who use benchmarks, that large real programs with a long execution times are
always better for benchmarking purposes. In some cases this assumption is false and conclusions
draw from these programs can be quite mislcading. It is by making a detailed analysis of pro-
gram execution that we discover what it is that a program mcasurcs and how to interpret its
benchmark results.

Our program charactcrizer works similarly 10 most exccution profilers {[Powe83]. It does a
static analysis of the source code at the basic block level and instruments the program with
counters to measure, at run time, the number of times that each block is executed. Compiling the
instrumented program and running it gives the dynamic counts. By combining the static statistics
and the dynamic counts, we can compute the dynamic statistics and other interesting quantities.
Merging the machine characterizations and the dynamic statistics allows us to make exccution
time predictions.

The programs we usc in this paper to illustratc program characterization come from the
SPEC suitc [SPEC89]. The SPEC (System Performance Evaluation Cooperative) benchmarks
are the results of an effort from computer manufacturers to asscmbie a suite of realistic and
interesting benchmarks. Thesc programs have been sclected from a large sample of public
domain applications. Currently the benchmark suite consists of ten programs, 6 in Fortran and 4
in C, covering scicntific and system applications. Plans are underway to extend the suite to 30
programs, including some which measure I/O performance. Other efforts of SPEC have focused
on the development of a methodology for measuring and reporting benchmark results. Their per-
formance metric, the SPECmark, appears to correlatc well with rcal performance. A major con-
tribution of the SPEC group has been in raising the level of discussion between machine
manufacturers with respect to machine performance. However, the SPEC people have focused
mainly in devising better ways to measurc machine performance, and have given littic attention
to the problem of explaining how and why machinc performance is achieved, although this situa-
tion appears to be changing [SPEC90]. In this paper, and in [Saav90}, we present some results of
our analysis of the SPEC Fortran benchmarks; Pncvmatikatos and Hill [Pnev90] report on cache
miss ratio for the four C SPEC benchmarks.

Figure 4 shows machine-independent dynamic statistics for the SPEC Fortran programs.
The statistics we present are for the complete program, but in our sysiem it is equally easy to
limit them to individual subroutines or arbitrary groups of basic blocks. Figure 4 contains four
graphs, each focusing on some particular aspect of the programs: the type of statements exccuted,
the data type and precision of arithmetic and logical operations, the structure of the opcrands, and
the distribution of blocks executed. From figurc 4a, we sec that the most executed statements are
assignments and DO LOOPs. However, the number of branches in spice2g6 is inordinate com-
pared with the other benchmarks. The graph for arithmetic and logical operations (4b) is
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Figure 4: Dynamic statistics for the SPEC benchmarks. In 4d, the number at the bottom of
each bar represcnts the basic blocks in the benchmark.

dominated by double precision floating point arithmetic, with the exception of spice2g6 (using
model greycode) in which integer arithmeltic represents more than 80% of all operations. As we
explain below, this is more a feature of the model used than the ‘normal’ behavior of spice2g6.

The most interesting graph is 4d, the onc giving the distribution of operations with respect
to basic blocks exccuted. At the bottom of each bar we indicatc the number of basic blocks in
each program. In programs fpppp, tomcatv, and matrix300, five blocks contain more than 85% of
all operations. In fact for matrix300, a single basic block, containing a single statement, accounts
for 99.8% of all opcrations. The situation is not much better for nasa7 or spice2g6. Spice2g6
represcnts a good example of a large program (18000 lines in 6044 blocks) that has a very large
execution time (> 20000 scconds in a VAX-11/780), but where only five basic blocks account for
morc than 50% of all operations. The first four basic blocks arc containcd in less than 10 lines.
From the number of blocks, we see that tomcatv and matrix300 arc very small programs (43 and
67 blocks). This is corroborated by the number of lines, 183 and 149 respectively (excluding
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comments). These results underline the importance of taking into account, especially when we
compute statistics from benchmark results, that some programs mcasure only very few things,
while others have more complex executions. This is evident in the SPEC results for the Stardent
3010 [SPEC90]. For this machine the SPECratio results, excluding matrix300, range from 14.7
to 62.92. However, the SPECratio for matrix300 is 108.5. It is risky to draw conclusions from
these numbers without knowing what each benchmark measures.

tomcatv matrix300
@. OO, OO O %% OO
benchmark bipole digsr mosamp2 toronto

Figure 5. Chernoff faces for the SPEC Fortran benchmarks and six additional circuits for
spice2g6. Each face is determined by 23 program characteristics.

When we analyze benchmarks in terms of a large number of characteristics, it is always use-
ful 10 be able to classify them into diffcrent groups or clusters. A similar approach as the one we
described for machine similarity can be used to classify benchmarks, although the properties we
want to impose on the the metric are diffcrent. In [Saav90] we define a metric to benchmark
similarity. In this paper we will present a more graphical approach using Chemoff faces to iden-
tify similar programs [Cher73]. A Chemoff face is a graphical method of mapping multidimen-
sional data to facial features3. It has been observed that Chernoff faces are very useful for clus-
tering, because humans have an extremely acute ability to recognize faces. In figure 5 we show
examples of Chernoff faces. Each of the faces consists of 23 characteristics which include many
of the measurements we showed in figure 4. The six faces in the upper row are for the SPEC
benchmarks (spice2g6 is labeled as greycode; the name of the circuit). On the lower portion of
the figure we show Chemoff faces corresponding to six additional circuit models for spice2g6. If
we focus only the first row we sce that there arc strong similarities between tomcatv and
matrix300, and to a lesser degree between these two and fpppp and nasa7. On the other hand
doduc and greycode show little resemblance to any of the other four faces.

2 The SPECratio is defined as the ratio between the execution time of the measured machine and the exe-
cution time of the VAX-11/780.

3 Standard Chemoff faces do not have hair and can be used to represent up to 20 parameters; we have
made them hairy to accommodate 3 more paramelters.
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Interesting observations can be made on the Chemoff faces for the seven models of
spice2g6. These arc represcnted by the lower faces plus greycode. From these we immediately
notice that five of the seven faces are extremely similar. Only bipole and greycode look different,
but even here the difference from greycode 10 the other models is more conspicuous. We already
mentioned that spice2g6 using greycode is dominated by integer arithmetic and not by double
precision floating point operations. Although it is not clear from the Chemoff faces, the other cir-
cuit models arc dominated by double precision arithmeltic, as users of this benchmark normally
assume. Another difference between the seven circuits is that greycode requires two order of
magnitude more time to exccute. We have looked in some detail at the execution of greycode
and found that what this model is measuring is more the performance limitations of the data
structures in spice2g6 when it analyzes large circuits, than the behavior of CAD algorithms.

Our study of the SPEC Fortran benchmarks indicates that there are some significant
improvements that can be made to the suitc. In particular, two of the benchmarks, matrix300 and
spice2g6, have problems. The current model for spice2g6 should be replaced with a different
model with a more interesting execution pattern. As we mentioned, the greycode model makes
spice2g6 behave as an integer benchmark and not as double precision floating point. Further-
more, a small number of simple basic blocks dominate most of the execution time. A better
model should test a larger fraction of the program and exercise more of the main CAD algo-
rithms. The benchmark model which contains several small circuits would be a good choice.
Additional circuits could be added to increasc its execution time.

With respect to matrix300 we think that it should be rcplaced by a linear algebra application
which spends a significant fraction of time in LINPACK routines other than SAXPY. As our
statistics show, in matrix300, 99.8% of the operations are in a single basic block. This makes this
benchmark a potential temptation for compiler writcrs to superoptimize. Once a suite of bench-
marks cstablishes itsclf as a de facto ‘standard’, compiler writers and machine designers exten-
sively analyze them and incorporate in their new machines and compilers changes which pro-
duce, for that particular suite, the largest improvements in the exccution time. If the benchmarks
are too simple or do not represent real workloads, the apparent improvements will not translate in
actual gains for users’ applications. The best way to prevent this is by knowing what each bench-
mark mcasures and rcplacing those that are inadcquatc.

Execution Time Prediction

Any execution time model needs to be able to makc accurate exccution time predictions for
real programs in order to be considercd credible and useful. It is only by comparing the predic-
tions to actual measurcments that we can quantify the accuracy of the model, region of validity,
and robustness. Once we have validated the model we can use it to predict execution times, to
study how sensitive the execution time is 1o changes in the workload, 1o assess the impact of new
algorithms, etc.

We have predicted and compared exccution time predictions for a large set of programs and
machines, and we have found that our predictions are quite accurate. For a sample of more than
244 machine-program combinations, using 20 machincs and 28 programs, we have found that
55% of the predictions lie within 10% of the real exccution time, 80% within 20%, and 94%
within 30%. In figurc 6 we show two graphs, that for two machines (IBM RS/6000 530 and
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Figure 6: Comparison between real execution times and predictions for the IBM RS/6000 530
and VAX 3200.

VAX 3200) and the six SPEC Fortran programs, present a comparison between actual execution
times and predictions. The exccution times range from less than 100 seconds to more than
15000.

Benchmark results are often reduced to a single number representing the absolute perfor-
mance of the machine or its relative performance with respect to a bascline machine. A common
approach in benchmarking is to compute the geometric mean of the cxecution times normalized
by the results of the VAX-11/780. This is the approach taken in the SPEC benchmarks. Here we
will show, using thc same performance metric, how close the single number performance esti-
mates computed using our predictions and those obtained from real execution times are.

In table 4 we present both the actual and predicted geometric means for twelve machines
ranging from the CRAY X-MP to the Sun 3/50. All programs were executed in scalar mode and
without optimization, which accounts for the fact that many of our figures are smaller than
reported SPECmarks. In all cases the difference between the predicied and real value is less than
6%; the average is +0.22%. Clearly, our methodology yields good predictions of relative perfor-
mance.

Considerable improvement over the figures we report can be obtained by enabling compiler
optimization. For example, the execution time for benchmark tomcatv decreases from 196.1 to
36.1 seconds on the IBM RS/6000 530 when optimization is enabled. In the next section we will
see that much of the high performance on thc IBM RS/6000 series depends on its highly optimiz-
ing compiler.



Cray X-MP/48 | IBM 3090/200 | Amdah! 5840 | Convex C-1 [BM RS/6000 530 | Sparcsuation |

actual mean 26.25 33.79 6.47 1.36 16.29 11.13
prediction 26.07 227 6.71 6.99 15.69 10.58
difference +0.69% —4.50% +371% -5.03% -3.68% —4.94

Motorola 88k MIPS M/2000 VAX 8600 VAX-11/785 | IBMRT-PC/125 Sun 3/50
acwal mean 14.24 13.88 587 2.01 095 0.69
prediction 15.34 13.70 5.63 2.12 0.99 0.72
difference +7.72% -1.30% -4.09% +5.47% +4.21% +4.35%
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Table 4: Real and predicted geometric means of normalized benchmark results. Execution
times are normalized with respect 1o the VAX-11/780.

Compiler Optimization

Thus far, we have presented our lincar model as if a given source program were simply and
directly translated into the corresponding machine code. In reality, compilers optimize the code,
even when the optimizer is nominally inactive (optimization level 0). Including the effect of
optimizations in our analysis is a difficult problem and is currendy under study; we summarize
some of the issues and results in this section.

The problem of evaluating the effects of compiler optimizers can be broken down into three
subproblems. 1) The experimental detection of which optimizations can be applied by the optim-
izer —i.e. what can the compiler optimizer do. 2) The measurement of the performance improve-
ment that a particular optimization will produce in a program. 3) The measurements of the possi-
ble optimizations present in the source code. Each is discusscd below.

The first point is similar to machine characterization, but instcad of measuring the perfor-
mance of some operation, we are interested in detecting which optimizations can be applied by
the compiler and in which cases. This may appcar as an easy task, but unfortunatcly, in many
compilers, optimizations are implemented ad-hoc; e.g. a given transformation may be used for
only one data type and not another, although the transformation is typc indcpendent [Lind86].

We have written a benchmark program to detect scalar optimizations in Fortran compilers;
sec [Aho86] for a discussion of compiler optimization. It contains experiments that. check
whether individual optimizations can be detected inside a basic block (local) and across basic
blocks (global). We also test that the optimizations work on intcgers, rcals, and mixed (integer
and real) expressions. All optimizations we detect are machine independent.

In table 5 and 6 we present a summary of the results found for eight Fortran compilers for
local optimizations; see [Saav91] for further discussion. In addition to ‘no’ or ‘yes' that represent
the obvious situations when the optimizer cannot detect any opportunity or detects all instances,
we also use ‘marginal’ and ‘partial’. Marginal is used when the optimization is only detected in
some special cases. Partial means that the oplimization is detected in most, but not all situations.
For example, if an optimization is applied on expressions containing integers or reals, but not
when both are present, we use ‘partial’. If it is only applicd on one data type we use ‘marginal’.



compiler constant common code copy dcad code
folding subcxpr clim motion propagation | climination
Ulinix F77 1.1 no parual marginal parual no
Mips F77 1.21 -02 parual yes ycs partial ycs
Mips F77 1.21 -O1 marginal ycs no marginal no
Sun F77 -O3 marginal ycs yes no ycs
Sun F77 -02 marginal ycs ycs no partial
Sun F77 -0l no no no no no
Ultrix Fort 4.5 ycs yes yes yes ycs
Amdahl F77 2.0 no no no no no
CRAY CFT774.0.1 ycs ycs ycs ycs ycs
IBM XL Fortran 1.1 yes parual yes partial yes
Molorola F77 2.0b3 || marginal yes ycs no no

Table 5: Summary of the cffectivencss of compilers in applying local optimizations (1 of 2).
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compiler strength address inline loop
reduction | calculation | substitution | unrollin

Ultnx F77 v.1 partial marginal no no
Mips F77 1.21 -0O2 ycs ycs marginal yes
Mips F77 1.21 -0O1 no yes no no
Sun F77 -03 partial marginal no ycs
Sun F77 -02 partial no no ycs
Sun F77 -O1 no no no yes
Ultrix Fort 4.5 yes yes no no
Amdahl F77 2.0 no no no no
CRAY CFT774.0.1 yes ycs ycs yes
IBM XL Fortran 1.1 yes yes partial yes
Motorola F77 2.0b3 parual no no no

Table 6: Summary of the cffcctivencss of compilers in applying local optimizations (2 of 2).

Inlinc substitution can be uscd o illustratc how tricky is to cvaluatc an optimizing compilcr.
Calls to lcaf proccdures, thosc that do not call other procedurcs, can be climinaticd, and potcntial
oplimization cxposcd, by inscrting the callec’s code at the point of call, aftcr making a propcr
substitution for the formal paramciers. In table 6 wc scc that our test detecied that three com-
pilers have some ability to inlinc proccdurcs, but only the CFT77 compiler takes full advantage
of it. In the casc of MIPS 77 1.21, thc compiler docs not perform an actual inlinc substitution.
The only transformation donc is that thc compiler docs not usc a ncw stack frame for the Icaf pro-
cedure, but instcad exccution is carricd out on the caller’s frame. In contrast, a real inline substi-
tution is donc by IBM XLF 1.1, but here the inscrtion of unnccessary cxtra codc obscurcs optimi-
zations that inlining should have cxposcd. Only the CFT77 compiler was abicd (o detect all
optimizations present after proper inlining.
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The second subproblem mentioncd above deals with quantification of the pcrformance
benefits of individual transformations. Several studics have tried to measure the performance
effect of some algorithms for code improvement {Cock80, Chow83]. Most have been carried out
in the process of engineering an optimizing compiler and performance evaluation has not been its
main driving force; [Rich89] is an exception. In addition, some of the studies have used a set of
small programs with a very regular structure like matrix multiplication, FFT, Baskett puzzle, etc,
in which the execution time is significantly reduced by applying one or two transformations.

compiler average | std.dev.
Ultnix F77 1.1 .7781 .1295

Mips F77 1.21 -02 5117 .1898
Mips F77 1.21 -O1 .8420 0564

Sun F77 -03 5230 | 2421
Sun F77 -02 5537 | 2038
CRAY CFT7740.1 || 5640 | 2933
IBM XL Fortran 1.1 || 2849 | .1381

Motorola F77 2.0b3 .6869 1404

Table 7: Average decrease (the ratio between optimized and non-optimized execution time)
produced by several optimizers and levels of optimization observed on the Perfect Club
benchmarks.

The third subproblem refers to the amount of optimizabic code present in real applications.
Detecting which optimizations are done by optimizers and mcasuring their performance effects is
only part of the problem; we also need to know the extent to which programs contain optimizable
code. The measurement of optimization opportunities in programs could potentially be done by
modifying an existing highly optimizing compiler.

Although the last two problems are important, and cach will require a significant effort to
solve them, in our rescarch we have adopted a differcnt strategy. We have used a suite of large
scientific programs 1o measure the average improvement produced by different optimizing com-
pilers, and have also used these results to investigate the amount of correlation found between
optimizers. Table 7 gives results with respect to the average change (ratio of final to initial) in
execution time obtained when optimization is enabled. We also give the standard deviation. It is
important to realize that a larger reduction in execution time docs not necessarily mean that the
optimization is better, but only that the improvement to the original object code was more signifi-
cant. A code gencrator that produces very bad code before optimization will yield a larger reduc-
tion in execution time after optimization.

An interesting question to consider is whether different compilers correlate in their ability
to improve the execution time of individual programs. First, recall that we can predict execution
times for nonoptimized programs. Now, if we find that there exist a significant corrclation
between two optimizers, then knowing how much one optimizer reduces execution the time will
allow us estimate the reduction of the other optimizer. Thus, this give us a way of predicting exe-
cution times before and after optimization. In Figurc 7 we show, for those compilers in table 7,
graphs of execution time reductions for all pairwise combinations of compilers. We include the
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Figure 7: Correlation between execution time improvements of various optimizing compilers.
Each graph includes the best linear fit.

best linear fit to the set of points.

As expected there is a positive correlation between all optimizers; on the average more
improvement by one compiler means morc improvement in the other. All the coefficicnts of
correlation, except three, are greater than .6300. However only those for graphs 1, 2, 3,5,6, 11,
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and 12, are statistically significant at a level of 0.025. An analysis of the code produced by the
optimizers on our suite shows that the optimizations having the most effect are: 1) Reducing the
number of loads and unnecessary stores by keeping temporaries in registers. 2) The elimination
of expensive address computations by computing a base address before the first iteration and
updating it with an add in all subsequent iterations. 3) Moving invariant code outside the inner-
most loops.

Several problems arise when we deal with compiler optimizers and attempt to measure their
effects. The first is that most optimizations cannot be measured in isolation. It is common that
the opportunity to apply some optimization is the result of a previous transformation, and in some
cases the first transformation may not necessarily improve the execution time of the program. A
second problem is machine-dependent optimizations. Proposing a general framework for the
evaluation of optimizers hampers our ability to evaluate machine-dependent optimizations. Most
of these optimizations do not have an equivalent in other architectures, and it may be argued that
these transformations are not really optimizations of the source code, but deal with the efficient
usc of the machine resources. However, some attempt should be made to measure the effect of
machine-dependent optimizations and compare their effectiveness against those that are
machine-independent.

IBM RS/6000 530 & IBM XLF 1.1 MIPS M2000 & MIPS {77 1.21 Sparcstation [ & Sun {77
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Figure 8: The effect of register allocation for three different machine-compiler combinations.
The numbers on the x-axis arc the logarithm base 2 of the number of variables that the
optimizer must consider as candidates for registers.

A machine-dependent optimization that we have aticmpted to measure is register allocation.
The speedup obtained by this optimization depends not only on the quality of the algorithm, but
also on the number of registers and the time differential between using a register as opposed to
loading the value from the cache or memory. Even when the program docs not show opportuni-
ties for optimization, the optimizer improves the code by doing peephole optimization, so it is not
possible to measure the register allocation speedup in isolation. Nevertheless, it is possible 1o
detect the range of improvement derived from this optimization. We have written tests where the
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only opportunities for improvement are register allocation and pecphole optimization. By
increasing the variables referenced inside a loop, while keeping everything else constant, we
make it more difficult for the optimizer to keep all variables in registers. As a smaller fraction of
variables are kept in registers, the optimized exccution time tends to get closer to the non-
optimized version.

We present results for three machine-compiler pairs in figure 8. Each graph shows how
much optimization changes the execution time as a function of the logarithm of the number of
distinct variable referenced inside the main loop. The results indicate that the gap between
optimized and non-optimized execution times decreases as the number of variables increases; this
is clearest for the IBM XLF compiler. The IBM RS/6000 contains in addition to 32 integer and
32 floating point registers, register renaming to prevent stalling, and a very effective register allo-
cation algorithm. The MIPS {77 and Sun {77 compilers show similar improvement from register
allocation, but the effect of increasing the ‘size’ of the basic blocks is more steep for the Sun £77
optimizer.

Conclusions

We have presented a new model for CPU performance characterization and discussed some
of its more prominent features. The main advantage of this approach is that it permits one t0
model performance using a machine-independent model that is applicable to arbitrary uniproces-
sors. Machines are characterized with respect to set of abstract parameters that are measured
experimentally. Likewise, using the same model, dynamic statistics of programs are obtained.
These statistics represent the behavior of the program at exccution.

By combining the machine and program characlerizations, it is possible to predict with
good accuracy execution times for arbitrary large programs over a wide spectrum of machines. In
addition, it is possiblc to combine individual measurcments into a sct of reduced parameters that
better represent hardware or software components. This permits us to identify the performance
strengths and weaknesses of machines. We have defined abstract concepts like machine and pro-
gram similarity that further increasc our insight about how machines and programs behave.
Currently we are extending our study to include the improvement produccd by the usc of optimiz-
ing compilers. We believe that the results we have obtained with the abstract machine model
gives ground to our optimism that a much complete and insightful methodology than benchmark-
ing exists in comparing the performance of different machines.
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