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ABSTRACT

A helical resonator plasma source is a resonant, slow wave, plasma-loaded structure consisting of

a cylindrical plasma surrounded by a helical coil which, in turn, is surrounded by a grounded coaxial

cylinder. Such sources can be efficiently matched to an external power source and can operate at low

gas pressures. We employ a developed sheath helix model, in which the cylindrical geometry is

unfolded into a rectangular geometry and the RF current in the helix wires is replaced by a continuous

current sheet, to obtain the dispersion characteristics (P versus co, where p is the axial wavenumber and

co is the frequency) for the slow waves, their electric and magnetic fields, and the scaling of the disper

sion and fields with source parameters and geometry. We use a quasistatic approximation to obtain the

fields in a cylindrical structure and including plasma collisions. These results are then used to calculate

the stochastic heating, which dominates at low pressures, and the ohmic heating, which dominates at

high pressures. We determine the resulting plasma density, loaded resonator Q, and source coupling.

The theory is compared to some preliminary experimental results.



I. INTRODUCTION

Plasma discharges are extensively used in the semiconductor industry for etching, sputtering and

deposition processes, and their use has become critical for VLSI production. The current generation of

parallel plate "diode", triode and downstream etchers is just adequate for present production devices and

may not be suitable for submicron fabrication.

A variety of plasma sources are being investigated for advanced processing applications. We are

studying a promising new plasma source, the helical resonator, which is well suited for advanced etch

ing and CVD applications, because of its favorable ion bombardment characteristics and its ability to

operate at pressures as low as 10"5 Torr. Helical resonator plasmas operate at ordinary radio frequen

cies (3-30 MHz), use simple inexpensive hardware, require no matching network and exhibit high Q

(600-1500 typically without the plasma present) and a high characteristic impedance (Z0). These reso

nators are a type of slow wave structure. As shown in Fig. 1, the source consists of a coil of prescribed

diameter, pitch and length which is surrounded by a grounded coaxial cylinder. The composite struc

ture becomes resonant when an integral number of quarter waves of the RF field just fit between the

two ends. When this condition is satisfied, the intense electromagnetic fields within the helix can sus

tain a plasma with negligible matching loss down to very low background gas pressure.

In recent experiments1"3, a rudimentary helical resonator etching apparatus was operable to as low

a pressure as 10"s Torr. At 0.1 mTorr pressure, a resonator discharge achieved a selectivity of more

than 70:1 over silicon oxide and more than 1.7:1 over trilevel resist while anisotropically etching 0.25 \i

undoped poiysilicon gates across 100 mm wafers.2-3 A resonator was also used for downstream deposi

tion of high quality Si02 and p-SiN (plasma "silicon nitride") using an auxiliary RF supply to maintain

controlled ion energy.2"3 In another hot wall resonator configuration, dielectric films were deposited on

wafers placed inside the plasma — with a furnace contained within the resonator and with no internal

electrodes.2"3 Helical resonators have been used for etching in the past —in this case chemical species

from a high pressure (~1 Torr) discharge were used for downstream (isotropic) stripping.4 However the

special properties and versatility of helical resonator plasma sources have only come to light recently,

when it was demonstrated that this structure can operate well at low pressure and generates ion
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bombardment with characteristics that are especially effective for selective anisotropic etching of submi-

cron features.

To understand the control parameter space, consisting of pressure, RF power, source length,

plasma, helix, and outer cylinder radii, winding pitch angle, and excitation frequency, we must explore

source operation both experimentally and theoretically and develop predictive models. A first step is to

understand the helical slow wave modes in the source and their interaction with the plasma. We do this

in three parts. First, we obtain the dispersion, P versus co, and the relationship among the field quanti

ties in the approximation of a cold, collisionless plasma and a "developed sheath helix" model, in which

the r.f. current in the helix wires is replaced by a continuous current sheet ("sheath") and the cylindrical

(r,0,z) geometry is unfolded into a rectangular (x,y,z) geometry ("developed"). This is a standard

analysis technique for treating helical systems5 that retains most essential engineering physics. We use

the results to explore the variation of propagation and resonance length with the variation of device

parameters and plasma density. We then apply these results to a cylindrical system to calculate the

electron heating due to bulk ohmic heating' and surface stochastic heating and obtain a relationship

between plasma density and power absorbed, for a given resonant device and neutral gas pressure.

These results are used to calculate the coupling to the plasma and show that a matched condition is

easily achieved. Finally, we compare the predictions, qualitatively, with some early experimental

results.

II. COLD PLASMA, DEVELOPED SHEATH HELIX MODEL

A. Model Equations

The developed sheath model is shown in Fig. 2. The cylindrical (r,B,z) system is "unfolded" to

give the rectangular (x,y,z) system, with x and y playing the roles ofr and 9, respectively. The sys

tem is uniform along y. The plasma thickness is a, the helix radius is b, and the outer conductor

radius is c. The helix is modeled as an anisotropic sheet having infinite conductivity in the / direction

and zero conductivity in the t direction, where the / and / directions make an angle y with respect to

the y and z directions, respectively (see Fig. 2).

-3-



We assume wave solutions varying as expy(cor -pz) for all field components. The axial fields

satisfy the two dimensional Helmholtz equation

d2Etldx2 - P2£r + k% = 0, (1)

d2Htldx2 - p2//z + k2Ht = 0 , (2)

where k = (0/co is the free space wavenumber. We seek symmetric solutions in x for the longitudinal

fields in the plasma, corresponding to the symmetric fields in r for the cylindrical system. We also

require that the tangential E-field components vanish at the outer conductor surface. Integrating (1) and

(2) and using these conditions, we obtain

Eza = A cosh/?ax , (3)

HM =B cosh/?a* , (4)

Ea = C cosh/>0 (x-a) + D sinhp0(x-a), (5)

HA -E coshpo{x-a) + F smhp0{x-a), (6)

Eze =Gsinhp0(x-c) , (7)

HK = H coshpo (x-c) . (8)

Here the subscripts a, b, and c refer to the plasma, plasma-helix, and helix-wall regions, and where pa

andp0 are the transverse wavenumbers in the plasma and-vacuum regions, respectively:

p2 = P2 - k\ , (9)

A? = P2 - k2 . (10)

where

co2
eP=l--7 (11)

CO2

is the plasma permittivity, cop = (e2nlz0m)y2 is the electron plasma frequency, e and m are the (posi

tive) electron charge and mass, n is the electron density, and e0 is the free space permittivity. For slow
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waves, p2 > k2 and hence p2> 0 in both the plasma and the vacuum.

The transverse fields are obtained from the axial fields as:

/B dEz

=3icoM.£^
y p2 dx ' (13)

j cos dEz

where p and e are the transverse wavenumber and permittivity appropriate to the particular region (a, b,

or c) and y. is the free space permeability.

The boundary conditions at the plasma surface x = a are that the tangential field components £z,

Ey, Hz andHy arecontinuous. Using (3) - (6) along with (13) and (15), weobtain

C =A zoshpaa , (16)

Fpa =Bp0 s'mhpaa , (17)

E =B coshpaa , (18)

and

Dpae0 = Apbepsinhpaa (19)

At the helix surface x =b, the / and t components of the fields are given in terms of the y and

z components as:

Ei = Ey cos \\f + Ez sin \j/, qq)

£f =-£y sin\|/ + Ez cosy , (21)



Hi = Hy cosy + Ht siny , (22)

Ht = -Hy sin\|/ + Ht cos\y. (23)

The boundary conditions at the helix surface are as follows: Because of the infinite conductivity

of the surface in the / direction,

Eu, = Elc = 0 . (24)

Because of the zero conductivity in the t direction,

Elb = £te . (25)

There is no magnetic field discontinuity along the / direction because the surface current Kt = 0.

Hence, we obtain

Hm~Hk. (26)

Finally, the magnetic field discontinuity in the t direction yields a surface current component in the /

direction:

Kt^Ht-Hu; . (27)

Inserting (20) - (23) into (24) - (26), we obtain the four equations:

-jcon[E sinhp0(b-a) + F coshp0(b-a)]cosy (28)

+ p0 [C coshp0(b-a) + D sinhp,,(b-a)]siny = 0 ,

j<a\iH cosy = p0G sin\j/ , (29)

j coji [E sinh p0(b-a) + F coshp0(b-a)] sin y (30)

+ p0 [C coshp0(b-a) + D smhp0(b-a)]cosy =

j coji// sinh p0(b-c) sin \|/ + p0 G sinhp0(b-c) cos \|/,

jcoe0 [C sinhp0(b-a) + D coshptf(6-a)]cos\\f (31)

+ p0 [£ coshp0(b-a) + F sinhp0(6-a)]sin\|/ =
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j coe0 G coshp0 (b -c) cos y + p0 H coshp0 (b-c) sin \j/.

Equations (16) - (19) and (28) - (31) are eight linear, homogeneous equations for the eight coefficients

A through H. For a non-zero solution set, the determinant of the coefficient matrix [A] must vanish:

det[A] = 0. (32)

This yields the dispersion relation p(co) for the modes. Knowing p for a given co, we arbitrarily choose

a mode amplitude such that A = 1. This normalizes Ex = 1 at x = 0. Next, we evaluate the

coefficients B through H. From these, we obtain the amplitudes of all the electric and magnetic field

components as a function of x. The surface current Kt is evaluated using (27).

B. Results and Discussion

The coefficient matrix was verified and (32) was solved to obtain the dispersion relation using the

symbolic algebra computer system macsyma. A computer code helk was written to evaluate the

dispersion relation, the coefficients, the fields, and the surface current. The standard source parameters

werechosen to correspond approximately to an experimental device:

[ref]

a = 3 cm,

6=5 cm,

c = 10 cm,

L = 30 cm,

\\f - 0.1 radians,

We consider the propagation at moderate plasma density, n = 109 cm"3, at high density, n = 10n cm-3,

as well as without plasma.

Figure 3 gives p versus / =co/2rc with n as a parameter. For comparison, the upper and lower

solid lines show a wave following the geometrical helix pitch,

PA c.tanxj/ ' (33)

and a light wave po =2nf/c0, respectively. Without aplasma, there is only one mode ofpropagation,



with p somewhat smaller than pA; ie, the wave velocity co/p is somewhat larger than c0 tan\j/. As n

increases, the wave speeds up, and, as n -»oo, co/p-»c0. We call this the "coax" mode because, as we

will see, for large n the plasma is at a high voltage with respect to the outer cylinder.

A second mode appears when n is such that f2>f2, where

fp = cop/2rc = 90QOJn . (34)

For fp =/ =20 MHz, we find np = n = 4.8 x 106 cm"3. This is a low density compared to n > 109

cm"3 for typical discharge operation. Hence, both modes coexist during typical operation. The wave

velocity for the second mode is always smaller than the helix velocity c0 tan\|/. The mode appears as a

resonance P-»©o at n - npt and the wave slows down as n increases. We call this the "helix" mode

because, for large n, the plasma and outer cylinder are at nearly the same voltage, and the helix is at a

high voltage with respect to them both.

At high densities, the axial wavenumbers for the two modes are very different. For example, at

n as 1011 cm"3, p(coax) = 0.5 m"1 and p(helix) = 5.5 m"1. Since the source length L is chosen to be

roughly a quarter wavelength at the helix geometrical pitch, %L = n/2, the coax mode is not resonantly

excited fP(coax) < pA]. However, this mode does play a role in source operation at start-up; ie, when

n - 0, the coax mode is near resonant excitation (see Fig. 3). However, during typical source operation

(n > 109 cm"3), only the helix mode is resonant, and it dominates the source operation. We concentrate

on the coax mode for n =0 and the helix mode for n > 0 in the results that follow.

As an example, for L = 30 cm and pL = rc/2, we obtain p = 5.2 m"1. Then from Fig. 3, we find

the resonant frequencies for source operation: / = 34 MHz at n - 0, / =18 MHz at n = 109 cm-3,

and / = 21 MHz at n = 1011 cm"3. The resonant frequency in the experiments, with the plasma

present, was, in fact, found to be approximately at 20 MHz.

Figure 4 shows the magnitude of the field components versus x for the coax mode at start-up

(n = 0) and the helix mode during source operation (n = 109 cm"3 and n - 1011 cm-3). Positive fields

(+1 or +j) are indicated as solid lines through the computed values. We see that Ex is the dominant

electric field component outside the plasma. Further, Ex is nearly independent of x within both the

plasma-helix and helix-wall regions. This is true because paa ««: 1 and p0c <: 1; ie, the fields appear



to be quasistatic. For the helix mode, we also find that

b e

JEX dx + \EX ax =0. (35)

Thus, the plasma surface at a and the conducting wall surface at c have roughly the same voltage.

Inside the plasma, Ex is very small because Ex(plasma) - Ex(vacuum) z0lzp and z0lzp < 1.

£, and Ey for the helix mode are peaked at the helix, and both fall to zero as x ->c. £z within

the plasma is roughly constant, while Ey is roughly linear with x. Within the plasma, £z >Ey at low

density, but Ey > Et near the plasma edge at high density; both fields are larger than £x. From the

ordering of these field components, we conclude that Ex is critical for stochastic heating by the oscillat

ing discharge sheath, while Ey and £, play critical roles for ohmic discharge heating.

Ht is roughly constant in both the plasma-helix and helix-wall regions. We observe that the net

axial magnetic flux is roughly zero:

a b c

fadx+fadx+JHtdx^Q. (36)
0 a b

Hy has the same general shape as £x [compare (12) and (15)], except that Hy within the plasma does

not change sign or suffer a reduction in magnitude due to the discontinuity in permittivity, as did Ex.

Finally, Hx has exacdy the same shape as Ey [compare (13) and (14)].

Figure 5 shows Ex just outside the helix (x =5.1 cm) versus /, and Fig. 6 shows the surface

current Kt versus /. The characteristic impedance Z0 can be determined from these data. If there are

N turns in the coil, then

Zo=N^I~- (37)

For example, at n = 1011 cm"3 and / =20 MHz, we find Ex =2000 and K, = 15. For N =48, we

obtain Z0 = 1100 Q.

Figure 7 shows the fields just outside the helix, the axial wavenumber p, and the surface current

K, as the plasma thickness a varies from 3to 4.9 cm (helix position =5cm). We see aresonance in p

as a->b; thus, the presence of a gap between the plasma and the helix is essential to source operation.
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Figure 8 shows the fields, p andKt as the outer conducting wall position c varies from 5.5 to 10

cm. There is litde effect on the dispersion characteristics. The wall is useful for RF shielding but

plays little role in source operation over this range of variation in position.

Figure 9 shows the fields, p and K, versus the plasma density n, with the frequency / as a

parameter. The resonance and subsequent disappearance of the helix mode atfp =f is clearly seen in

the dispersion characteristics.

HI. CYLINDRICAL QUASISTATIC MODEL

A. Fields and Dispersion Relation

In the previous section, for the helix mode at typical discharge densities, we observed from the

numerical results that:

(a) The transverse mode structure is quasistatic, k < p, and the transverse dimensions are such that

paa < 1 andp0c «*: 1.

(b) The net axial magnetic flux is approximately zero.

(c) The electric fields are small within the plasma, and the voltage between the plasma and the outer

wall is approximately zero.

In addition, (12) - (15) correcdy yield the transverse fields and (20) - (23) the / and t field com

ponents when r and 0 are substituted for x and y respectively. Under these conditions, we can deter

mine the fields, the dispersion relation, and the characteristic impedance for the helix mode in a cylindr

ical resonator containing a dissipative plasma (see Fig. 1) as follows:

From (a), Hza = Hzh and HK arc independent of r. Using (16), we obtain

H* - Hlc = Ke , (39)

and from (b), we find that

Kb2Hzb + n(c2-b2)IIcz = 0 . (40)

Solving (39) and (40), we obtain
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c*-b2Hja - Hjb = 5—Kq , (41)

H„ = jKQ. (42)

Applying Faraday's law to a circular path r < b,

2jcr£e = -jayutr2Hz ,

we obtain

*.-£.-^f"^Jr,r. (43)

Similarly, we obtain

r 7cop, b2 „ c2-r2

We note from (13) and (14) that

Hr =--^-£9 .
CO|A

It follows also from (a) and (c) that Er has an inverse r in the vacuum regions:

(45)

trb ~ rln(ft/fl) ' (46>

£ V
rc r\n(c/b) '

where V is the helix voltage amplitude. Integrating (12) then yields

E Pq Vin(rla)
tb ;p \n(bta) *

£ A>2 Vln(c/r)
7P ln(c/6)

We note from (12) and (15) that

11.

(47)

(48)

(49)



The normal component of the displacement vector is continuous across the plasma-vacuum inter

face:

ZpEn(r=a) = z0Era(r=a) .

For subsequent use in calculating the power dissipated due to ohmic and stochastic heating, we include

collisional effects in the plasma dielectric, modifying (11) to

*P =e0
co2

co(co+yv) J '

where v is the electron momentum transfer frequency. Using (51) and (46) and neglecting the displace

ment current in the plasma [the "1" in (51)], we obtain

co2 a In(bla)

Actually, Era - Ii(par), where lx is the modified Bessel function. Hence Era - r to first order in par.

We then obtain

E 8 ^Cco-yv) V r
cop2 a\n(b/a) a ' <52>

Similarly, Eta ~ l0(par) - l+p2r2/4. Using this expansion along with (52) in (12) and integrating, we

obtain

£ 2C0(C0-7V) V
ta " yPco2a a\n(b/a) ' <53>

Equations (41) - (50) and (52) - (53) give the quasistatic fields in terms of V and K%.

The dispersion relation p(co) and the characteristic impedance Z0 follow from the boundary condi

tions (24) and (27). From (24), we obtain

Ezb = -EQb coty

at r = b. Using this, together with (43) and (48), we obtain

., coup c2-b2 „ .V={£ c2 K^ cotV • (54)

12-
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From (27), we obtain

HBc - H&b = Kg = tetany .

Using (46) and (47) in (50) and inserting the result into (55), we obtain

coe.

where

K* = V-
P6

82 =
c2-b2

2c2

1 + l
hi(cfb) ki(b/a)

Inserting (56) into (54) and using (10) for p2, we obtain the dispersion relation

P2 = g2k2coi2y + k2 ,

1 1

ln(c/b) \n(bla)

coty.

(55)

(56)

(57)

(58)

We note that this dispersion relation is equivalent to replacing the plasma by a perfect conductor for the

TM part of the mode (£z = 0), but allowing Hz to penetrate the plasma (c0f<op >• a). For the usual

ordering \|/< 1, the first term in (57) dominates. The quantity g is a correction factor for p of order

unity with respect to a geometrical helix wave; ie, p = g$h. As an example, for a = 3 cm, b =5 cm,

and c = 10 cm, we find g = 1.13. Comparing the result of (57), using the specific g from our exam

ple, to the exact dispersion characteristics for the developed helix in Fig. 3, we find that the result for p

is close to, but somewhat smaller than, the result for the case n = 1011 cm"3, as expected.

For a helix having N turns in length L, we have KqL = NI, where / is the helix current ampli

tude. Using this in (56), we obtain the characteristic impedance

-WFf- (59)

where

c =
1 1

In (c lb) ln(b/a)
(60)

is a geometrical factor. For a, b and c given previously, we find £= 0.33. For our example, with

N = 48 turns, we obtain Z, = 995 H.
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The axial structure of the fields is determined by the boundary conditions at the source ends. For

a short circuit at z = 0 and an open circuit at z = L, we superimpose two positive and negative travel

ing waves of equal amplitudes to obtain

where

(o(co~/v)
E" =~e' «? ' <61)

Eo. = es . (62)

to(to-/v)

«r = . " >—sin pz , (64)
a \n(bla) a v '

eQ =-jVmgkjsm$z , (65)

2/ Vm
e* = ra i ?ui \ C0SPZ • (66)Pa a ln(b/a) v y

and Vm is the helix voltage amplitude at the open circuit z = L. In writing (65), we have substituted

(56) into (43) and used the first term in (57) for p2.

The resonance condition is given by

P(co)L = nil. (67)

Given L and using (57), we obtain the resonant frequency co.

B. Ohmic and Stochastic Power

The r component of the RF current in the plasma is given by Jr = ycoep£ra, or, using (51) and

(61),

Jr =ycoe„er . (68)

The ohmic power per unit volume due to the Er field ispr = -jRe(/r*£r), or, using (61) and (68),
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1 CO . ,7

co;

Similarly, we obtain

/e = e<
co-

V+/C0 e&

P* = 2g» 2P 2 lee|2v.

A =j®t0ez ,

1 CO . .9

CO*

(69)

(70)

(71)

(72)

(73)

Integrating (69), (71), and (73) over the plasma volume, we obtain the ohmic power dissipated in

the plasma due to each field component:

12
1 co2 %a2L
2 co„ a In(bla)

P& - -re0v
na2L

28oVco2co2(co2+v2) 62(5 m) 4

D 1 co2
2 co*

4L

Tea

na2L
a In(bla) ^

(74)

(75)

(76)

We note that Pr and Ps are inversely proportional to n, while />e is direcdy proportional to n. For typ

ical helical resonator parameters, PQ is comparable to the other components only at the highest densities

(n > 1011 cm"3) and lowest pressures (v < co). Wc also note that

Pj_ _32Ll
Pr' n2 a2*

Therefore, the dominant electric field component for ohmic heating is Ez

The stochastic heating power per unit length is given by6"7

•15-
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where

Vrtae — *V<stoe ~" iXsfoe

so
2/3

J™ = sin Pz
a\n(bla)

is obtained from (68), s0 is the self-consistent ion sheath thickness, XD - (z0Tjens)1'2 and ns are the

electron Debye length and the density, respectively, at the plasma-sheath edge, and ue = (SeT^nm)1*2

is the mean electron speed. The sheath thickness is found from the ion flux equation

1/2

ensuB -Ktzc
2e_
M

ma

c2

(78)

(79)

(80)

where uB = (eTeIM)1'2 is the Bohm (ion sound) velocity and V is the DC self-bias voltage across the

sheath, given by

V^KccV,, , (81)

where Vrf is the RF voltage amplitude across the sheath. Vrf is related to the maximum RFhelix vol

tage amplitude by continuity of Jr:

KrfVr/
sQ a\n(b/a)

sinpz . (82)

The dimensionless K factors for a self-consistent collisionless sheath arc6"7 Ksloc = 0.34, Kt ~ 0.82,

Krf ~ 1.2, and K& = 0.83.

Solving (80) - (82) for Vrf and s0, with ns taken to be constant in z, we obtain

where

Vrf =Kr/msin4Pz ,

2„22Kfr
rfm " K 02„2TK^e ns lt

KdcVn

Krfa In(bla)

is the maximum RF voltage amplitude across the sheath, and

•16-
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*0
2/3

= 2l/6K;m KdcVrf
1/2

(85)
V. J

Inserting (85) and (86) into (79) to eliminate sq/Xd and V*ln2, we find Sstoc ~ Vrfm cos4Pz. Integrat

ing this over z, we obtain the stochastic power

where

Pstoe = Cstoc W«^r/m2iraL ,
e

3 K**K% _

We also note from (82) and (83) that

Jo = *o« sin3 pz ,

where

*rfm „ . b
son - ——Krfa In —

" m a

(86)

(87)

(88)

(89)

We compare the ohmic power Pohm = Pz to the stochastic power by letting n = ns(n/ns) in (76)

and using (84) in (76) to eliminate V2fns:

co2eflm «* L'Pohm =Cohm——va (K/./mT<r)1/2^^T2rtaL ,
n a'

where

21/2 K2f
ohmSZ tc2"^2^""0'33

From (86) and (91), we obtain

Pohm va L2 ns
Psioc ue a2 n lV*~ J

1/2

(90)

(91)

(92)

We note the inequalities (TeIVrfm)m < 1 and L2la2 > 1, which tend to cancel in (92). At low gas

pressures, value «1, and stochastic heating dominates, while the converse holds at high pressures.
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IV. POWER ABSORPTION AND COUPLING

The unloaded helical resonator is a naturally high-Q structure. If the resonator is matched

through a coupling to an external power source the fields build up until the internal dissipation is equal

to the supplied power. The coupling of energy to a plasma is relatively efficient both at low neutral

pressure through the process of stochastic heating in the sheath, and at high pressure through ohmic

heating in the bulk (glow) plasma. Because the resulting unloaded Q is relatively low, almost all of the

power is deposited in the plasma when matched to the external source. Furthermore, the matching con

dition is easily achieved for the loaded Q.

For a given coupling that matches the Q with the plasma present, the resonator without the

plasma is strongly overcoupled. Furthermore, as seen in Sec. II, the resonant frequency of the device

shifts significandy with the plasma present Thus, during startup, most of the power is reflected.

Experimentally, this is not found to be a problem, as the normal operating power levels generate

sufficient fields to create a plasma which builds up to the resonant, matched condition.

In this section, we treat separately both the low pressure case, in which stochastic heating dom

inates, and the higher pressure case where ohmic heating dominates. Actually, the two energy transfer

mechanisms combine to determine the overall heating rate in a discharge. In its relation to the external

driving field Er, the stochastic sheath heating is similar to the heating in a capacitive RF discharge.

The ohmic heating in the helical resonator is much stronger than in a capacitive discharge, because it is

driven by a different and larger electric field component Ez, and therefore it becomes important at

lower pressures.

The electron temperature and plasma density profile are determined by the balance between ion

generation and loss to the plasma container wall. For low pressures, the electron temperature is uni

form and die volume ionization rate in the bulk plasma is vizrt, where viz = Kizp is die electron-neutral

ionization frequency, Kiz is the rate constant and is a function of Tt alone, p is the neutral pressure,

and n is the average bulk plasma density. Ions are lost radially to the wall, by free flow at the lowest

pressures, \{ >af and by ambipolar diffusion at higher pressures, X, < a, where X,- is the ion-neutral

mean free path. For A.,- a constant, independent of ion energy, and for an ion thermal velocity
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"n < uDi» the ion drift velocity, the diffusion coefficient is not a constant but is inversely proportional

to uot. Godyak and Maximov8 have determined the ion transport for a cylindrical plasma column under

these assumptions, obtaining the approximate results

2.2 uB

(4+ alXi)1v«* = „. -* Nl/2 (93)

and

08
Tii • (94)flo (4+alXi)

where n0 is the on-axis plasma density. Equation (93) determines Te given the pressure p. The density

profile n(r) is found to be relatively flat near the axis and to drop sharply near the plasma-sheath edge.

Thus we take n0 = n, the average bulk density. Hence, (94) determines the ratio n5/n.

Equation (93) is easily solved numerically for Te, which we illustrate for argon in Fig. 10. How

ever, here we take a simpler analytic approach in which we assume that the electron temperature is

known, and use electron power balance to obtain the plasma density. This procedure gives reasonable

results, because the exponential rate of ionization with electron temperature tends to freeze the tempera

ture in a narrow range, within which the electron power balance is quite insensitive. For the case in

which the stochastic sheath heating is dominant, the electron power balance depends only on the edge

density, and therefore we do not require the solution (94) for the density ratio. In the ohmic heating

case, both the average density and the edge density are required, so that (94) is required to obtain an

complete solution.

A. Stochastic Heating

As in a capacitive RF discharge, the density at the plasma-sheath edge (beginning of the ion

sheath) and the ion sheath thickness are found by solving the electron energy balance. The electron

power leaving the discharge is

Pe = ensuBEc 2naL , (95)

which when equated to the stochastic power (86) yields ns. Using ns in (84) and (89), we then can
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evaluate s0m and Vm, respectively. For example, assuming a reasonable value of Te =4 eV, we obtain

ns = 1.00xl07Kr/m cm"3

Vm = 11.8 V?Im volts (96)

jo™ = 0.156Vrx/m cm.

Consider the device dimensions used in the analysis of the propagation and fields of our previous

sections. Using the value of a typical Vrfm that might exist, Vrfn = 700 V, we obtain from (96)

ns = 7.0 xlO9 cm"3, Vm ~ 1610 V, and Som = 0.80 cm. The total power absorbed by the electrons is

then obtained from (95) to be P, ~ 8.4 W. The power Pt delivered to the ions is generated from the

same flux, but multiplied by (V)z = K^iV^, rather than 8C. Averaging (83) over z yields

(V)z = jK^Vrfn. The total power absorbed by the plasma is then Prf = Pe + P( ~ 51 W.

From the field solutions we can obtain the energy stored in the helical resonator and therefore the

resonator Q. The dominant field is the vacuum radial field, both between the helix and the plasma and

between the helix and the outer conducting wall. The time-averaged stored energy is

L (b e

WT =2WE =jz02njdz jrdr \Erb l2 +\rdr \En I2 .

Using (46) and (47) with V - Vm sin Pz gives

WT^nz0V„
1 1

\n(bta) \n(clb)
(97)

Using the value of Vm ~ 1610 V for ourexample in (97), we obuiin WT = 3.7 x 10"5 J. For a resonance

frequency of f0 = 20 MHz and Prf =51 W, we then have the unloaded Q,

Qu =-Jf~L =90
' rf

(98)

At match the loaded resonator Q, including the external loading, is half this value, QL ~ 45. The half

power bandwidth is f0lQi ~ 0.44 MHz. This value is consistent with the experimental observation that

at a power level of 50 watts, a source frequency shift of 0.5 MHz produced a significant change in

plasma parameters1-3. Wc note that the Q is sufficiently high to have a clear resonance, but the system
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is not overly sensitive to small frequency shifts in the resonance.

The pressure regime for which stochastic heating dominates is found using (92). For nsfn = 0.4,

which is the low pressure limit of (94), we find for our example with argon gas [A* = (300p)-1] that

v = 4x 109p and, hence, Pstoe > Pohm for p < 2.3 mTorr.

B. Ohmic Heating

Calculation of the energy deposited by ohmic heating is similar to that for stochastic heating,

once the average density n is known. However, there is an additional complication in the energy bal

ance in that the energy loss depends on the edge density ns, thus requiring the use of (94) to relate n to

ns. In fact, this problem is also hidden in the previous solution in determining the resonant frequency.

This latter effect is rather small, and we have neglected it.

For the electron energy balance, we equate (90) to (95), which yields an expression for n as a

function of Vrym andp:

n =2.9xlOnpVr}2cm-3.

Inserting n = n0 in (94) yields ns. In the high pressure limit alXi > 1and for argon, we obtain

ns =7.8xl0V/2Vr}/2cnr3'

which is valid for p > 4 mTorr. Using this in (84) yields

Km=330p1/Vr}2 volts,

and using (89), we obtain

*o«=5.6xlO-V1/4t/r}2cm.

For example, choosing p =0.1 Torr and Vrfn = 100 V, we obtain n =2.9xlOn cm"3,

ns =2.5xlO10 cm"3, Vm =1860 V, and s0m =0.10 cm. The electron power from (95) is Pe =30 W,

the ion power is Pt = (jKdeVrfnlEc)Pe or /»,- =22 W, and hence Prf =52 W.
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C. Coupling

Power can be very simply coupled from an external circuit to the resonator, and the condition for

a match (critical coupling) can be obtained approximately from a perturbation analysis. Consider the

RF generator and its transmission line to have characteristic impedances Zs, with one side of the

transmission line connected to the helix at the tap position zT and the other side connected to the outer

shield, as shown schematically in Fig. 1. Since the helix characteristic impedance Z0 given in (59) is

typically large compared to ZSt we expect a match to occur with the tap made near the shorted end of

the helical resonator, where the voltage is small and the current is large.

From perturbation theory, the conductance seen at the position of the tap is

r - 1PrfGt ~Tf~P • (")

where Prf is the total RF power dissipated and

V> = Vm sin Pz (!00)

is the helix voltage at the tap. For a match we require GT =Zf1. Substituting (100) in (99) and

expanding for Pzr «« 1, we obtain

Km2p2zr2 =2PrfZs . (10i)

For our stochastic heating example with p=izl(2L) =0.052 cm"1, Prf =51 W, Vm =1610 V and

choosing Zs = 50 Q, we obtain zT =0.85 cm, corresponding to a tap between one and two turns, which

was, in fact the approximate position found experimentally for efficient power transfer1'3.

This research was supported by Department of Energy Grant DE-FG03-87ER13727 and by

National Science Foundation Grant ECS-8517363.
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FIGURE CAPTIONS

Fig. 1. Schematic of a helical resonator plasma source.

Fig. 2. Developed sheadi model of helical resonator source.

Fig. 3. Axial wavenumber p versus frequency / for the coax and helix modes, with density n as a

parameter. (O) helix mode, n = 109 cm"3; p) helix mode, n = 1011 cm"3; (+) coax mode,

n = 0; (A) coax mode, n = 109 cm"3; (x) coax mode, n = 10n cm"3.

Fig. 4. Magnitude of the field components versus position x. The solid lines denote a phase of +1

for Eyt Et and Hx and a phase of+j for Ex, Hy and Ht. (O) helix mode, n = 109 cm"3; p)

helix mode, n = 10n cm"3; (+) coax mode, n = 0.

Fig. 5. Magnitude of Ex just outside the helix (x =5.1 cm) versus frequency /. The phase of Ex is

+/. (O) helix mode, n = 109 cm'3; p) helix mode, n = 1011 cm"3; (+) coax mode, n = 0;

(A) coax mode, n = 109 cm"3; (x) coax mode, n = 1011 cm"3.

Fig. 6. Magnitude of surface current Kx versus frequency /. The phase of Kx is +j. (O) helix mode,

n = 109 cm"3; p) helix mode, n = 1011 cm"3; (+) coax mode, n = 0; (A) coax mode,

n = 109 cm"3; (x) coax mode, n = 1011 cm"3.

Fig. 7. Magnitude of the fields just outside the helix (x =5.1 cm), the axial wavenumber p, and the

surface current Kt versus the plasma thickness a. (O) helix mode, n = 109 cm"3; p) helix

mode, n = 10n cm"3; (+) coax mode, n = 0.

Fig. 8. Magnitude of the fields just outside the helix (x = 5.1 cm), the axial wavenumber p, and the

surface current Kt versus the outer conducting wall position c. (O) helix mode, n = 109

cm"3; p) helix mode, n = 1011 cm-3; (+) coax mode, n = 0.

Fig. 9. Magnitude of the fields just outside the helix (x =5.1 cm), the axial wavenumber p, and the

surface current Kt versus the density n, for the helix mode with the frequency / as a parame

ter. (O)/ = 5 MHz; P)/ =10 MHz; (+)/ = 20 MHz; (x)/ = 40 MHz.

Fig. 10. Electron temperature Te versus pressure p for an argon plasma with plasma radius a = 3 cm.
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