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Novel Routing Schemes for IC Layout
Part I: Two-Layer Channel Routing

ABSTRACT

We present new channel routing algorithms and theory that consider the characteristic
of net crossings. The routing strategy is based on parallel bubble sorting and river routing
techniques. A function named "POTENTIAL”, can be evaluated to indicate the required
channel height for .a given channel without actually carrying out the routing steps. Non-
Manhattan wires as well as overlapping wires are introduced. Preliminary results show that
a class of channel routing problems can be routed in height less than the Manhattan density.



1 Introduction

Channel routing is one of the most important phases of physical desigh of VLSI chips as
well as PC boards. Many breakthroughs [26, 9, 20, 7, 5, 2, 22, 10, 18, 24] in channel routing
theory and algorithms have been reported. The classical and well-studied model for channel
routing is the directional Manhattan routing model: one layer is used exclusively for vertical
wires , another is used for horizontal wires, and vias are introduced for each layer change.
The density of a channel gives a lower bound on the channel height. However, routing in
density is frequently difficult to achieve due to the complication introduced by the vertical
~ constraints. It is known that the restrictive routing problem with cyclic vertical constraints
does not have a solution [6] and in general, the Manhattan problem in the presence of vertical
constraints is NP-complete [13, 25]. -

In this paper, we propose new methods which perform successfully on practical chan-
nels and attempt to provide accurate and formal analysis on the quality of the solutions.
The approach was developed with an interest in the intrinsic complexity of channel routing
problems and their combinatorial structure. Two new routing models, the mins-swap model
and the overlap model are introduced. Non-Manhattan geometry as well as rectilinear wires
are used. The routing strategy is based on parallel sorting and river routing techniques
and is very different from the Manhattan .approach. In particular, vertical constraints no
longer exist. Furthermore, the solution produced by either model consists of a minimal set
of net crossings which leads to a small number of vias. To characterize and to evaluate the
performance of each model, a function called "POTENTIAL” is used. Intuitively, the "PO-
TENTIAL” function measures the degree of difficulty for a given channel routing problem.
Based on the performance analysis, we attempt to combine the strength of both models to
form a new hybrid router. The routing solution produced by our router has unambiguously
layer assignment and is design-rule correct. Finally, extensions to handle multi-terminal nets
and multi-layers will be discussed.

The remainder of this paper is organized as follows. In Section 2, we present the algorithm
and theory associated with the mini-swap model. The overlap routing model is introduced
and analyzed in Section 3. Section 4 describes the new hybrid router and its performance.
Routing results are presented in Section 5. Section 6 contains concluding remarks and
discussion on future work.

2 The Mini-Swap Model

The mini-swap model involves diagonal wires oriented in the +45° and -45° angles as well
as vertical wires. The routing strategy is based on parallel sorting techniques [1]. To char-



acterize the channel routing problem under this model, a function called "POTENTIAL"”,
originally defined for the parallel bubble sorting [21], is used. Intuitively, the "POTEN-
TIAL” function measures the degree of difficulty for a given channel routing problem. We
can mechanically evaluate the POTENTIAL function to compute the exact channel height
required to route the channel under the mini-swep model without actually carrying out the
routing steps. This feature makes this model very attractive since knowing the required
channel height in the placement stage is valuable.

Furthermore, we prove the solution is optimal under the mini-swap model. The routing
solution produced by applying the parallel bubble sorting technique can be unambiguously
wired using two interconnect layers. Unlike other Non-Manhattan routers [17] [16] [23] that
magnify both column and track spacing by a factor of /2 which implies the channel area
is doubled, this router ensures that the solution is design rule correct and does not magnify
spacing in either direction.

2.1 The Problem

A channelis a pair of vectors of nonnegative integers - TOP and BOT - of the same dimension.

TOP = t(1), t(2), ..... t(n)

BOT = b(1), b(2), ..... b(n)

We assume that these numbers are the labels of grid points located along the top and
bottom edge of a rectangle. Points having the same positive label have to be interconnected,
i.e. they define nets. A 100% routing completion is required and the objective is to minimize
the channel area and the number of vias.

Definition 1 A channel is dense iff t(z) # 0 and b(z) # 0 for all ¢, that is, every grid point
on the top and bottom boundaries is occupied by a terminal.

Definition 2 A non-trivial 2-terminal net is a net that has ezactly two terminals, one on
the top and another on the bottom.

Let { 1, 2, .... N } denote the set of nets. Then in a dense 2-terminal net channel, TOP
and BOT are permutations of { 1, 2, .... N }. Without loss of generality, we may assume
that nets are arbitrarily ordered on the bottom and are naturally ordered on the top. This
is stated as: )

Definition 3 A dense 2-terminal net (D2TN) channel routing problem is specified by:
TOP =128, ...... N '
BOT = a permutation of { 1, 2, .... N}
We denote the top and bottom terminals of net ¢ by (i,é,-).
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2.2 Definition of the Mini-Swap Model

The basic idea of the new model is to swap a pair of neighboring nets by two wires, one in the
+45° direction, another in the -45° direction ( Figure 1). We call such a swap a "mini-swap”.

Routing of a D2TN channel can be viewed as a vertical stack of steps. A step is a unit-
high horizontal strip which lies between two tracks. In each step, a set of mini-swaps is
performed simultaneously. If a net does not change position in a step, it simply propagates
to the next track by a unit vertical wire. An example is shown in Figure 2.

1 2 3 4

Z < sep3
., i
2
Y | =P
step 1
4 1 3 2
Figure 1. A mini-swap Figure 2. In each step, a set of mini-swaps occur

A solution for the D2TN channel routing problem in this model can be constructed in
a bottom-to-top step-by-step fashion . The final channel height is equal to the number of
steps required. Clearly, a D2TN channel routing problem can have many possible solutions
under the mini-swap model. Figure 3 shows 2 solutions to an instance of a D2TN channel.
To measure the performance of a routing strategy, we need to define the optimum solutions

under the mini-swap model.
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Figure 3. Two realizations of the same channel

Definition 4 The optimal solution of a two-terminal net channel routing problem under the

mini-swap model is one that has
(a) the minimum channel height and
(b) the shortest total wire length

In search of the optimum solution, the router must determine which pairs of nets to
swap in each step so that the final solution is optimum. In the example shown in figure 3,
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mini-swaps were performed only on pairs of nets that were not ordered. Is it possible that in
search of the optimum solution we may want to swap pairs that are already ordered? The
answer to this question is given in theorem 1 which states a necessary optimality condition.
Before we prove the theorem, we need the following definition.

Definition 5 A pair of nets is said to be "planar” if it is in the natural order on the bottom.
Otherwise, it is said to be ”intersecting”.

Theorem 1 A solution is optimal under the mini-swap model if it has the minimum number
of tracks and properties 1 and 2 hold:

(property 1) planar pairs do not intersect and

(property 2) intersecting pairs intersect only once

[proof] For the sake of contradiction, assume a solution S, has the mmnnum number of
: i J> .
> =%
-4 )]
1 J i j

Figure 4. Solution S Solution §*

tracks and some planar nets intersect twice. Then there exists a new solution S’ ( see Figure
4), which has the same number of tracks and no intersecting planar nets.

Clearly S’ has shorter total wire length than S, which implies that S is not optimal.

The proof for property 2 is similar. QED.

In other words, a router never needs to swap a pair of nets that are already in the natural
order to obtain an optimum solution. This implies that the set of mini-swaps that leads to
the solution corresponds to a minimal set of net crossings.

2.3 The Routing Strategy

The basic routing strategy is to construct a wiring path for each net in a bottom-to-top step-
by-step manner. In each step, the router selects a set of intersecting pairs to swap. Since
decisions made in the earlier steps can affect choices in later steps, choosing an appropriate
set of mini-swaps to perform in each step is crucial to the quality of the final solution.

We now describe a routing algorithm based on the parallel bubble sort [1}. In the first
step, nets located at odd grid points are compared with the net on their right. If the pair
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is an planar pair, the pair does not switch positions; otherwise, a mini-swap is performed.
The second step is identical to the first one, except this time nets located at even grid points
are compared with the net on their right. These two steps are repeatedly performed in this
order. The algorithm stops when for two consecutive steps, no pairs of nets switch places.
Once the algorithm terminates, the nets are ordered in the natural order. The algorithm
must terminate since each pair of nets can switch places only once. Let us demonstrate the
algorithm on the example shown in Figure 5.

1 2 3 4 5§
(62) )
..................... - e , / { spacing = 1
..................... . d ><
via -
Figure (6a) An impossible situation
5 4 3 (6b) A viaa is placed at the center of a vertical
Figure 5. Routing by odd-even transposition segment to ensure d > 1.

Layer assignment for the wiring path is trivial. Layer 1 is assigned to wires oriented
in the +45° angle; layer 2 is assigned to wires oriented in the -45° angle. Vertical wires
can be assigned to any layer since they do not cross any other wires. Vias are introduced
for layer changes between a +45° wire and -45° wire. Due to the odd-even transposition
procedure, the situation shown in Figure 6a could never happen: the +45° wire of a net
always connects to a -45° wire through a vertical segment as shown in Figure 6b. We place
a via at the midpoint of the vertical segment. This ensures that the wires satisfy the design
rule so that there is no need to magnify either the column spacing or the row spacing by /2.

Formally, let us denote the permutation of nets on track t by:

Al = (a)(1),a®)(2),......a)(N))
Then, A® = ( a(9(1), a®(2), ..... a®(N) ), where a©(i) = b(i), for all i. We also assume
there is an infinite number of auxiliary nets, represented by ........ a(-1), a(0), and a(N+1),

a(N+2),...., where for all ¢ > 0 and ¢ > 0,a¥)(}) = ~oco0 and for all i > N and ¢t > 0,
a)(i) = +oo. These auxiliary nets do not disturb the routing of regular nets at any time.
- For each track ¢ > 0 and each integer i, the net, a{)(i), at the ith grid point at track t is
given by:

if (i + t) is even , a®(i) = min(a(t-1)(i), at-1(i+1))

if (i + t) is odd , a(®(i) = max(at-1(i-1), a*-1)(i))

The dynamic behavior of this routing scheme is the same as that of the parallel bubble
sorter realized on a two-way infinite linear array. If, for every i, a{)(¢) < a®(¢ + 1) , then
A® is said to be sorted. The computing time of the parallel bubble system is the smallest t




such that A® is sorted. A router similar to ours has been developed independently by [8]
The main difference is that their method is based on the sequential bubble sort.

2.4 The POTENTIAL function

Since the routing scheme is a direct adaptation of the parallel bubble sort, a characterization
of the bubble system can also be used to analyze the routing process. In particular, we
are interested in the computing time of a parallel bubble system which corresponds to the
required height of the D2TN channel routing problem. A function called "POTENTIAL”,
first introduced by [21], proved to be very useful in evaluating the computing time of the
bubble system. This section defines the POTENTIAL function and reviews the theorem
‘proved by [21]. Before we introduce the POTENTIAL function, we need to define the
following four terms.

Definition 6 For each (%,5,t), where 1 < i,j < N, and t > 0, and the set of nets, S, we
define:

e ORDER(i,j t,S) is the number of indices p € S such that i < p < j and al)(i) < al)(p)
, or such that j < p < i and a¥(p) < a¥(3)

o NOTORDER(i,jt,5) is the number of indices p € S such that i < p < j and a¥(p) <
a®¥(i) , or such that j < p < i and a¥(:) < a¥)(p)

o MAXLT(i,S) = maz(0 U { ORDER(i,p,t,S) - NOTORDER(i,p,t,S) + 1| p € S,p < i
and a(i) < a®(p) } )

o MAXGT(it,S) = maz(0U { ORDER(i,p,,S) - NOTORDER(i,p,t,S) + 1| p € S,i <p
and a®(p) <a¥ (i)} )

We are now ready to define the POTENTIAL function.

Definition 7 For any position indezing i < N, and any t > 0, the function POTEN-
TIAL(,t) is defined as:
e When NOTORDER(3,1,t,S) = 0,
POTENTIAL(i,t) = NOTORDER(i,N,t,S) + MAXGT(t,S) -

e When NOTORDER(i,N,t,S) = 0,
POTENTIAL(i,t) = NOTORDER(i,1,t,5) + MAXLT(i 1,S)

o When NOTORDER(i,Nt,S) # 0 and NOTORDER(i,N;t,S) # 0,
POTENTIAL(it) = NOTORDER(i1,t,S) + NOTORDER(i,N;t,S) +
maz( 1, MAXLT(i,t,S), MAXGT(i.t,S) )
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The POTENTIAL function for the entire bubble system is defined by:
POTENTIAL(t) = maz(POTENTIAL(it) |1 <t <N )

Note that when both NOTORDER(},1,t,S) = NOTORDER(j,N,t,S) = 0, POTENTIAL(I,t)
= 0 from either (1) or (2). Hence the function is well defined. From the above definition, it is
clear that POTENTIAL(i,t) = 0 if and only if NOTORDER(1,1,t,S) = NOTORDER(i,N,t,S)
= 0. An immediate consequence of this fact is:

Fact 1 If POTENTIAL(t) = 0, then A® is sorted.
Fact 2 If POTENTIAL(i,t) = 0, then POTENTIAL(ir) = O for allr > ¢t
We now state the main theorem proved by [21].

Theorem 2 Ift > 1 and A® is not sorted, then
POTENTIAL(t+1) = POTENTIAL(Y) - 1

Corollary 2.1 The computing time of the bubble system is POTENTIAL(0) or POTEN-
TIAL(0)+1.

The salient feature of the bubble system is that the POTENTIAL value consistently
decreases by 1 per step. In other words, when POTENTIAL(0) = k, the required height
of the D2TN channel is k or k+1. The value of POTENTIAL(0) is defined solely by the
initial permutation A , without referring to the intermediate configurations A® for ¢ > 0,
that is we can mechanically and precisely evaluate the POTENTIAL function to compute
the number of tracks require to route the D2TN channel without actually carrying out the
routing steps. Another feature is that the decision of whether to swap a pair or not is
local and does not depend on the locations of the rest of the nets. This feature makes this
algorithm attractive in a parallel mode of operation. We also observe that the wiring path
for each net is monotonic in the vertical direction. :

2.5 The Main Theorem

The parallel bubble sort provides a simple routing strategy to produce a solution in the
mini-swap model. Given the initial value of the POTENTIAL function, we saw the bubble
scheme consistently decrease the POTENTIAL value by one until the target value zero was
reached. Do better algorithms exist for which the POTENTIAL value decreases rapidly ,
say, by more than 1 per step ? For the example shown in Figure 7, the first step of the
parallel bubble algorithm would switch the 2 pairs shown in 7a. But as many as 6 pairs
could have been switched (7b). In the following theorem, we prove a sufficient optimality
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condition for any algorithm under the mini-swap model. See Appendix A and B for detail

5 6 8 1 9 3 2 15 4 10 14 17 11 12 7 16 13

Figure (7a)

| | X | X |

S 6 8 1 9 3 2 15 4 10 14 17 11 12 7 16 13
Figure (7b)

of the proof.

Theorem 3 Potential value decreases at most by 1 per net per step under the mini-swap
model.

The following theorem gives a lower bound on the POTENTIAL function.

Theorem 4 For each net i, we define the displacement(i) as the horizontal distance between
its two terminals. Then POTENTIAL(0) > maz({displacement(i) |1 <i < N}).

2.6 Results and Comparison

Routing results of two D2TN channels are shown in Figure 8 and 9. Compared to the
Manhattan routers, our router has the following advantages:

e There is no need to deal with vertical constraints
e The required channel height, POTENTIAL(0), can be precisely computed

o For D2TN channels that have a POTENTIAL(0) value less than the Manhattan den-
sity, our router can out-perform any Manhattan routers

o Extra columns outside the channel’s span are never used
e Wirelength is expected to be shorter due to the use of diagonal wires

¢ Being a minimal crossing solution, we expect only a small number of vias is required.
We observed that most nets require zero or one via, whereas Manhattan routing typi-
cally requires at least 2 vias per net.

e It is inherently suitable for parallel mode of operations.



o In standard cell design, it is very difficult to optimize the assignment of pins to

feedthroughs when the objective function is the demsity. In our environment, one
would want to minimize the maximum displacement of a net. This can be easily done

by linear assignment.

Figure 8. A channel is routed three models shown in (a), (b), and (c). The results are tabulated in (d).

{a) Manhattan model

(b) Lodi’s diagonal model

(c) mini-swap model

1 2 3 4 5 6 1 2 3 4 S5 6 17
| I \; \ —————
goof ] ] ] @3 \ "'-‘._,. / K y
[ (] [ WESSIRN NN ™1 / \\ )”-\\ /
[ | S ) ] / / N
3 s 1 7 2 6
[ Yo (] Pooooes
. 1 (d) Comparison
T ' height 7 3 3
3 § 1 7 2 4 6
area 56 42 18
vias 20 4 0
Men | M @ 28
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Figure 9. A channel with density = 7 is optimally
routed in the mini swap model.

The diagonal model channel router proposed by [17] can complete routing of a D2TN
channel in maz({displacement(i) | 1 < i < N}) tracks. Although this number is smaller
than the channel héight required by our router (see theorem 4), the diagonal router [17]
magnifies both the column spacing and row spacing by root(2), which implies that the
channel area is doubled. Our router ensures that the wiring paths are design rule correct

and does not magnify spacing in either direction.
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2.7 Multi-Terminal Net

A multi-terminal net is partitioned into 2-terminal and 3-terminal subnets. The parallel
4bubble sort algorithm can easily handle 2- terminal subnets and 3-terminal subnets which
have a single destination point on TOP ( Figure 10a ). Routing the latter subnets corresponds
to sorting multiple copies of the same number ( see example in Figure 10a ). However, 3-
terminal subnets that have two destination points on TOP ( Figure 10b ) does pose a problem
to the sorting algorithm. To overcome this problem, we transform such a subnet into two 2-
terminal subnets, which can be handled by the parallel bubble sort, by introducing a pseudo
terminal next to the bottom terminal. Horizontal subnets with terminals on the same side
are routed by horizontal wires and do not participate in the parallel bubble sort.

Figure 10a. Parallel bubble sort can easily handle these types of subnets:
4 ®

R
Y
E “

Example:

‘o ¢ o
Figure 10b. 3-terminal subnet with two destination points are transformed
into two 2-terminal subnets by introducing a pseudo terminal

.\ o [ J
.
/

. Fe ~

.-.,\ ;’ D —— ":\'
~ . N, Fa
~ pseudo-terminal N
® . 5O

We artificially divide the channel into three regions: UPPER, MIDDLE, and LOWER.
A high level description of our routing algorithm is as follow:

step 1) Route S1 = { subnets with terminals on TOP only } in the UPPER region.

step 2) Route S2 = { submnets with terminals on BOTTOM only } in the LOWER region.

step 3) Introduce pseudo terminals

step 4) Use parallel bubble sort to route the remaining subnets, denoted by the set 53,
across the channel in the MIDDLE region.

The height of the UPPER ( LOWER ) region equals to the density of the set S1 ( 52)
since all terminals are on the same side, ie. no vertical constraints are present. The height
of the MIDDLE region is the initial POTENTIAL value evaluated with the set SS. The
required channel height, density(S1) + density(S2) + POTENTI AL(S3), can be precisely

computed.
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2.8 Concluding Remarks on the Mini-Swap Model

In section 2, we have proposed a new channel routing model, the "mini-swap” model. The
routing algorithm is based on the parallel bubble sorting technique. A function named "PO-
TENTIAL”, originally defined for characterizing the bubble system, can be evaluated to
compute the precise number of tracks required to route the channel. The function evaluation
of POTENTIAL for a given channel can be obtained without referring to the intermediate
routing steps. We have established necessary and sufficient optimality conditions for routing
under the "mini-swap” model. The final routing solution has an unambiguous layer assign-
ment and is design-rule correct. Our results show that a class of dense two-terminal net
channels can be routed in a height less than the Manhattan density. This method is also
extended to handle multi-terminal nets.

'3 An Overlap Model

3.1 Introduction

The results of the previous section show the advantages of using the mini-swap model for
routing channels whose POTENTIAL value is lower than or equal to the Manhattan density.
Using the mini-swap model to route channels with ”long” nets ( nets spanning a number
of columns which is larger than the Manhattan density), however, leads to unsatisfactory
results. How can we overcome this deficiency? Since theorem 3 confirmed that we could not
reduce the required channel height by cleverly selecting pairs to swap, the only alternative
that may lead us to a better solution is to to relax the constraint of pair-wise transpositions.
In other words, we shall allow long nets to swap with more than one net at a time so that
they may reach their target positions more rapidly. In this section, we introduce an overlap
model. The routing algorithm'is based on the river routing technique, in which, like the
mini-swap model, vertical constraints do not exist. To analyze the routing performance, the
POTENTIAL function again proves to be a useful tool in providing an upper bound of the
channel height. We also establish a lower bound of the channel height that incorporates the
relative ordering of the nets. For a subclass of CRP, this demonstrates that density is not
a tight lower bound. Unlike other overlap models [12, 19, 4] that used two or more vias per
net, the routing solution produced by our router can be wired using two interconnect layers
so that at most one via is required per net. Furthermore, all wires are monotonic in both
the horizontal and vertical directions.
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3.2 Algorithm for the Overlap Model

The basic idea of the new scheme is to allow long nets to swap with more than one net while
maintaining the integrity of net crossings. To improve the results of the mini-swap model,
the long nets must be given a better chance in swapping with other nets. At the same time,
we want to keep the number of net crossings minimal so that the number of vias will not
increase.

The routing algorithm is based on the river routing technique. A dense 2-terminal net
channel routing problem is specified in Definition 3. A net is said to be a right net if B(z) > i;
otherwise, it is said to be a left net (Figure 12). The basic idea of the overlap model is to
divide the nets into two disjoint subsets: SI = { right nets } and S2 = { left nets } and
routes each set independently. A top level description of the algorithm is given below:

step 1) Nets are divided into two sets: S1 = { right nets }; S2 = { left nets }
step 2) Sort S1 in decreasing order of their top terminals. Route S1.

step 3) Sort S2 in decreasing order of their bottom terminals. Route S2.

; 12345678
left net wed Bk B, Sorted Right Nets = { 8,7, 5,3 )
. — et = |
Jgightnet r | SomedLefiNets =(1,6,4,2)
B(G) BG) §3 254761
Figure 12. Figure 13. Routing in the overlap model

The solution for the D2TN channel routing problem is constructed in a bottom- to-top
net-by-niet fashion. Let us demonstrate the algorithm on the example shown in Figure 13.
The right nets are sorted and routed sequentially in a river routing fashion. The procedure
begins by constructing a rectilinear wiring path for the first right net. The path begins at
the bottom terminal and ends at the top terminal. The wiring path for the second right
net simply follows the path of the first right net and ends at its top terminal. This process
continues until all of the right nets are routed. All of the paths are monotonic in both the
horizontal and vertical directions. Step 3 is identical to step 2, except that this time the left
nets are routed.

Layer assignment for the wiring paths is trivial. For the right (left) nets, the vertical
segment attached to their bottom (top) terminals is assigned layer 2 (1) while the remaining
wire segments are assigned layer 1 (2), see Figure 13. A via is introduced for each layer
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change. Clearly, the routing paths for a pair of planar nets do not intersect and intersecting
pairs intersect only once. This that implies the routing solution contains a minimal set of

net crossings.

3.3 Performance Analysis

We establish four results associated with the overlap model: lower- and upper- bounds of
channel height, wire length and number of vias. The lower- and upper- bounds of the
channel height are derived by considering the permutation of nets. Suppose the D2TN
channel routing problem is specified as a pair of vectorss TOP = { 1, 2, ..., N} and
BOT = { b(1), b(2), ... b(N)} . Let us define the term NOTORDER and the function
POTENTIAL as in Definition 6 and 7.

Theorem 5 The lower Bound of channel height under the arbitrary overlap model is maz
NOTORDER(1,i,0,S1) + NOTORDER(i,N,0,52) |1<i< N

Proof: At each column i, the number of horizontal tracks required on layer 1 is at least
NOTORDER(,1,0,51). The number of horizontal tracks required on layer 2 is at least
NOTORDER(i,N,0,52). Since the layer 2 tracks must be stacked on top of the layer 1
tracks, this implies the height of the channel at column i is at least the sum of the two
terms. The overall channel height is then the maximum over all columns. =

The above lower bound is derived by considering the permutation of the nets. It is not
only a tighter bound than the Manhattan density, d, but also demonstrates that d /(L -1)
[14, 11} is not a universal lower bound under the unrestricted overlap models, where L is
the number of layers. The example in Figure 14 is routed by the overlap router in a height
equal to the lower bound, which is half of the Manhattan density. We prove in the following
theorem that, in contrast To the bubble system, the POTENTIAL value will decrease by
more than 1 per track (amortizedly) under the overlap model.

12345678

] density = 8

56781234
Figure 14.

Theorem 6 The upper Bound of channel height under the arbitrary overlap model is
POTENTIAL(0) + 2.
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nets is similar. m

3.4 Refinement of Routing Strategy

One weakness of the overlap routing method is its inefficiency in handling a consecutive
sequence of planar nets, as shown in Figure 15a. A modification of the routing procedure
to improve routing results in such situations is proposed. The basic idea is that instead of
routing all right (left) nets in one step, we route the right and left nets alternatingly until the
nets are sorted. The remaining nets are planar and can be optimally routed by the ”layer
per net” method (3, 15). The "layer per net” method states that, given 2 interconnect layers
and a set of planar nets, 1, 2, ... M, we assign the odd-numbered nets to layer 1 and the
even-numbered nets to layer 2, solve the two one-layer river routing problems that are thus
formed to yield the minimum width channel.

23 4567¢
M
[ 12345678
— | g ’
23456781 23456781
Figure 15a. Before refinement Figure 15b. After refinement

Refined Routing Algorithm for Rectih'near Overlap Model

step 1) Divide the nets into two sets: S1 = {right nets} and S2 = {left nets}
step 2 Sort right nets in decreasing order of their top terminals: S1 = { r1, r2, r3, ... }

step 3) Sort S2in decreasing order of their bottom terminals: S2 = { 11, 12,13, ... }

step 4) Alternatingly route the right and left nets, ie. route in the order: rl, 11, r2, 12, 3,
13, ... until the nets are sorted.

step 5) Route remaining planar nets by the ”layer per net” model

The example in Figure 15a is rerouted by the refined procedure to yield a much better
solution as shown in Figure 15b.
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8.5 Multi-terminal Nets and Side Nets

To extend the overlap routing algorithm to handle multi-terminal nets, we partition each
multi-terminal net into 2-terminal subnets and classify each subnet as a right net or a left
net. A 2-terminal subnet with one terminal on TOP and another on BOTTOM is said to
be a 2-sided subnet; otherwise, it said to be a I-sided subnet. The 2-sided subnets can be
categorized as left or right easily. However, the classification of 1-sided subnets is ambiguous
and may affect the quality of solution. In the following lemmas, we show that not all 1-sided
subnets can be classified either way.

Definition 8 Given I, a two-terminal 1-sided subnet:
o I is top-sided iff both terminals of I lie on TOP.

o I is bottom-sided iff both terminals of I lie on BOTTOM.

Lemma 2 Given a 1-sided subnet I,
i) I is top-sided and I intersects a right net = I must be a left net.
#) I is bottom-sided and I intersects a left net = I must be a right net.

iii) I is top-sided and I intersects another top-sided subnet J = I and J can not both be
right nets.

i) I is bottom-sided and I intersects another bottom-sided subnet J => I and J can not both
be left nets.

Proof:

i) Suppose for the sake of contradiction that net 2 is classified as a right net. Then by the
algorithm, net 2 must be routed before net 1 on layer 1. This shorts the two wires.

2- 1 2

1 2 1 2

L[ |
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ii) Suppose for the sake of contradiction that both net 1 and net 2 are classified as right nets.
Then the routing algorithm would route both nets on layer 1 and result in conflict.

iii) Similar to i).
iv) Similar to ii).

[
After applying Lemma 2 to the 1-sided subnets, most 1-sided nets in practical examples are

classified. The classification of the remaining 1-sided subnets is guided by local congestion
analysis. The left subnets and right subnets then are sorted independently by their terminal
positions and routed in the rivering routing fashion as discussed in section 3.2. We observe
this method for routing multi-terminal nets is straight-forward but not necessarily optimal.
Future work should investigate better strategy for handling multi-terminal nets.

In a channel routing problem, nets may exit the channel on either its left end or its right
end. Routing of these so-called side nets is done by the following procedure:

The analysis and theorems introduced for the D2TN channel routing problem in Section
3.2 can be generalized for the multi-terminal nets problem by replacing nets with subnets in
the equations.

3.6 Concluding Remarks on the Overlap Model
Compared to the Manhattan model, the overlal; model has the following advantages:
o There is no need to deal with vertical constraints

o For channels that have POTENTIAL(0) value less than the Manhattan density, our
model can out-perform any Manhattan routers

o Extra columns outside the channel’s span are never used

o Because it is a minimal crossing solution, we expect only a small number of vias to be
required. '

The overlap model is better than the mini-swap model in two respects: (1) It yields a
small channel area for channel with long nets. (2) Variable wire widths can be incorporated
easily. However, overlapping wires rhay increase crosstalk between signals and unlike the
mini-swap algorithm, the overlap algorithm is not suitable for parallel operations. . —- ...
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4 The Hybrid Router

We combine the advantages of the overlap and the miniswap models to form a new hybrid router.
This router pre-routes long nets using the overlap algorithm so that the amount of overlap-
ping wire is limited. The remaining nets, ie. relatively short nets, are routed by the miniswap
algorithm. The user can specify the maximum amount of overlap allowed.

4.1 Algorithm

The basic idea is as follows: When the channel is routed solely by the miniswaps, we know
the channel height is POTENTIAL(0). Suppose we pick some long nets which would cause
the mini-swap model to disgrace itself, and pre-route them using the overlap strategy. If the
resulting channel height is better than before, we can choose more long nets and continue the
process provided the maximum amount of overlap is not exceeded. A top level descriptio‘ﬁ.
of the algorithm is given below:

Forie—1lton—1do

i) pre-route i longest nets by the overlap model

amount of overlap = %,
calculate current channel height, t(i),
#(i) = ( tracks for pre-routes ) + ( POTENTIAL value of remaining channel )

ii) compare height to last iteration:
if (¢(1) < #(z — 1)) and ( max overlap is not exceeded )
t=t+1
coﬁtinue

else stop

After selecting a set of long nets, it is not necessary to pre-route them to their final
positions. It suffices to pre-route them to intermediate positions with the objective of min-
imizing the POTENTIAL value. Our aim is to simultaneously process the long nets and
to find an intermediate position for each net. Assignment of a net to a position should be
done in such a way that the displacement of that net is as small as possible. Using this
criterion, many nets may compete for the same position. To find a good assignment of nets
to positions, we use a linear bottleneck assignment approach. We build a complete bipartite
graph: G(V,U,E), with two sets of nodes. One set, V.= P(i),i = 1,...K, represents the nets;
the other set, U = 1,2,...K , represents the positions. K is the number of long nets. Edge (i,
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j) connects net node i to position node j. Edge (i, j) is labeled with cost c[i,j] indicating the
the POTENTIAL value of net i when it is assigned to position j. ( see Fig. 16). Standard
methods [25, 6, 21, 17) may be used to solve this problem. An example routed by the hybrid

router is shown in Figure 17.

12345 67 8 9 1011121314151617 1819 20
——

s (O T (T s
. . S e .ee :
® { ] b N
cost[i,j] L
o< °
.o I | d S : i
nets positons 185 15 203 9 7 6 11138 141017121 194 162

Figure 16. Linear assignment Figure 17. A channel is routed by the hybrid router in density.

4.2 Performance Analysis

Since the hybrid router is a combination of the mini-swap model and the overlap model, it
should perform at least as well as either model in the worst case. Given a channel routing
problem, if the algorithm terminates in the first ((N — 1)th) iteration, the solution has
purely mini-swaps (overlaps). Therefore, the mini-swap model and the overlap model can
be considered special cases of the hybrid router. We summarize the performance bounds of
the hybrid router in the following theorem.

Theorem 7 Lower Bound of channel height required by the hybrid router
= maz{ NOTORDER(i,1,0,51) + NOTORDER(i,1, N, S2)|1<i< N})

Upper Bound of channel height required by the hybrid router
= POTENTIAL(0) + 1.

5 Results

The hybrid router is implemented in the C language on a DEC3100 running Ultrix Worksys-
tem V2.1. Figure 18 shows the routing result of a channel with 48 nets. We have attempted
to run this example using other routers available[yacr,glitter] but they either failed to com-
plete routing or produced substantially worse results. Table I lists the channels tested with
100% routing completion in all cases. Several D2TN channels are routed in a height less than
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the density. Due to the simple heuristics used for routing multi-terminal nets, the difficult
channel was routed with 4 tracks more than the density. However, our result has 25% less
vias than (7, 22].

Table 1. Experimental Results

Example |density final height CPU

Ex1 8 7 0.1

Ex2 7 8 0.1

Ex3 4 3 0.1

Ex4 18 22 0.1

Ex5 4 5 0.1

Ex6 8 5 0.1

1 2 3 456 7 8 9 1011121314 1516817 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 35 30 40 41 42 43 44 45 46 47 48

2

T [ B [Rnarns, : [ Rt S st mtn s ot oo S S B S

B Sy § [ 3 LRR SRV |

45 28 26 .

T T ST S R T
Figure 18. Routing result of Ex4
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6 Conclusion and Future Work

In this paper, we propose new methods which perform well on practical channels and attempt
to provide accurate and formal analysis on the quality of the solutions. Two new routing
models, the mini-swap model and the overlap model are introduced. Non-Manhattan ge-
ometry as well as rectilinear wires are used. The routing strategy is based on the parallel
sorting and river routing techniques and is very different from the Manhattan approach. In
particular, vertical constraints no longer exist. Furthermore, the solution produced by either
model consists of a minimal set of net crossings which leads to a small number of vias. To
characterize and to evaluate the performance of each model, a function called "POTEN-
TIAL” is used. Intuitively, the "POTENTIAL” function measures the degree of difficulty
for a given channel routing problem. Based on the performance analysis, we attempt to
combine the strength of both models to form a new hybrid router. The routing solution pro-
duced by our router has unambiguously layer assignment and is design-rule correct. Finally,
a straight-forward extension to handle multi-terminal nets and and side-nets is proposed.
Preliminary results show that a class of two-terminal net channel routing problems can be
routed in height less than the Manhattan density. Future work should optimize the extension
to handle multi-terminal nets and multi-layers.
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A Proof of Theorem 3

For brevity of notation,

Let A = ( a(l), a(2),'.... . a(N) ) denote the permutation of
nets on track t.

Let A’ = ( a’ (1), a’'(2), .... , a'(N) ) denote the permutation of
nets on track t+1.

Let DELTA(i,j,t) = ORDER(i,3j,t) - NOTORDER(i,j,t) + 1

{Case 1.} When NOTORDER(i,N,t) = 0
POTENTIAL(i,t) = NOTORDER(i,l,t) + MAXLT(i,t) (AR7)

where MAXLT(i,t) = max({0} U (DELTA(i,j,t) | j < i, and a(i) < a(j)} )

{Subcase 1.1} If net at position i does not switch position at t,
NOTORDER(i,1l,t+1) = NOTORDER(i,1,t) (BB)
et J={ j | 1<=9<1i, a(i) < a(j) }

Let j be any memeber of J.
{Subcase 1.1a} If the net at position j switches position
with its right neighbor:
We have a(j+l) < a(j) and a(i) < a(j) at time t.
If a{(j+l) < a(i), then
NOTORDER (i, j+1,t+1) = NOTORDER(i, j,t)
Hence, DELTA(i,j+1,t+l) = DELTA(i,j,t) - 1
Otherwise, i.e. if a(j+1) > a(i), then
ORDER (i, j+1,t+1) = ORDER(i, j,t) and

NOTORDER (i, j+1,t+1) = NOTORDER(i, j,t)
Hence, DELTA(i, j+1,t+1l) = DELTA(i,j,t) .

{Subcase 1.1b} If the net at position j switches position
with its left neighbor:
We have a(i) < a(j) < a(j-1l) at time t.
Hence,
ORDER (i, j-1,t+1l) = ORDER(i, j, t)
NOTORDER(i, j-1,t+1l) = NOTORDER(i, j,t)
DELTA(i,3j-1,t+l1l) = DELTA(i, j,t)
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{Subcase 1l.1c} If the net at position j does not switch position:
Clearly, ORDER(i,3j,t+1) = ORDER(i,J,t)
NOTORDER (i, j,t+1) = NOTORDER(i,Jj,t)
DELTA(i, j,t+1l) = DELTA(i,],t)
Since in subcases 1l.la, 1l.1b and 1l.lc, DELTA(i,j,t)
decreases at most by 1, MAXLT(i,t) decreases at most by 1.
Substitute MAXLT(i,t) and (BB) into (AA), we can conclude
POTENTIAL decreases at most by 1 for subcase 1.1.
{Subcase 1.2} If net at position i switches position at t,
then it must switch with the net on its left since
NOTORDER(i,N,t) = 0.
Hence, we have NOTORDER(i-1l,1,t+l) = NOTORDER(i,1l,t) - 1 {CC)
Let J={ 31 1<=3<i, a(i) < a(j) }
Let j be any memeber of J.
{Subcase 1.2a} If the net at position j does not switch position
Then, ORDER(i-1,3j,t+l) = ORDER(i,j,t) and
NOTORDER (i~1, j,t+1) = NOTORDER(i,j,t) - 1
DELTA(i-1,3,t+1) = DELTA(I,J,T) + 1
{Subcase 1.2b} If the net at position j switches with rihgt neighbor
If a(j+l) < a(i) < a(j), then
ORDER(i-1,3+1,t+1l) = ORDER(i,j,t) - 1
NOTORDER (i-1, j+1,t+1l) = NOTORDER(i, j+1,t) - 1
DELTA (i-1, j+1,t+1l) = DELTA(4i, j,t)
Otherwise, i.e. a(i) < a(j+l1l) < a(j), we have
NOTORDER(i-1, j+1,t+1) = NOTORDER(i,j,t) - 1
DELTA(i-1, j+1,t+1l) = DELTA(i,j,t) + 1
{Subcase 1.2c} If the net at position j switches with left neighbor

We have a(i) < a(j) < a(j-1). Then
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ORDER (i-1,j-1,t+1) = ORDER(i, j,t)
NOTORDER(i-1, j-1,t+1l) = NOTORDER(i,j,t) - 1
DELTA(i-1,j-1,t+l) = DELTA(i,j,t) + 1
Since in subcases 1l.2a, 1.2b and 1.2c¢c, DELTA(i,j,t)
increases by 0 or 1, MAXLT(i,t) increases by 0 or 1. Sub-
stitute MAXLT(i,t) and (CC) into (RA), we can conclude
POTENTIAL decreases at most by 1 for subcase 1.2.
{Case 2.} When NOTORDER(i,1l,t) = 0
POTENTIAL(i,t) = NOTORDER(i,1l,t) + MAXGT(i,t)

The proof of this case is similar to that of {Case 1}.
{Case 3.} When NOTORDER(i,1l,t) = 0 and NOTORDER(i,N,t) = 0
POTENTIAL(i,t) = NOTORDER(i,1l,t) + NOTORDER(i,1l,t) + (**)

max{ 1, MAXLT(i,t), MAXGT(i,t) }

{Subcase 3.1} If net at position i does not switch position at t,

then,
ORDER(i,1,t+1) = ORDER(i,1l,t) (DD)
NOTORDER(i,1,t+1l) = NOTORDER(i,1,t) (EE)

Similar to the proof of {Subcase 1.1}, we can show

MAXLT (i,t+1) = MAXLT(i,t) or MAXLT(i,t) - 1 (FF)
MAXGT (i,t+1) = MAXGT(i,t) or MAXGT(i,t) - 1 (GG)

Substituting equations (DD), (EE) , (FF) and (GG) into
equation (**), we conclude POTENTIAL decreases at most
by 1 for {Subcase 3.1}.

{Subcase 3.2} If net at position i switches position with its

left neighbor, then,

ORDER (i-1,1,t+1) ~ ORDER(i,1,t) - 1 (HH)
NOTORDER (i-1,1,t+1) = NOTORDER(i,1,t) (1I)

Similar to the proof of {Subcase 1.2}, we can show
MAXLT (i-1,t+1) = MAXLT(i,t) or MAXLT(i,t) + 1 (JJ)

To see the changes in MAXGT(i-1,t+l), we again do a case
analysis.
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Let J' = { j | i <= j <N, a(3j) < a(i) }
Let j be any memeber of J’.

{Subcase 3.2a} If the net at position j does not switch
position

then,

ORDER (i-1, j,t+1) = ORDER(i,j,t) + 1
NOTORDER (i-1, j,t+1) = NOTORDER(i, j,t)
DELTA(i-1,3j,t+l) = DELTA(i,j,t) + 1

{Subcase 3.2b} If the net at position j switches position
with its right neighbor:

then,

a(j+1) < a(j) < a(i)

ORDER (i-1, j+1,t+1) = ORDER(i,j,t) + 1
NOTORDER (i-1, j+1,t+1) = NOTORDER(i, j,t) + 1
DELTA (i-1, j+1,t+1) = DELTA(i, 3, t)

{Subcase 3.2c} If the net at position j switches position
with its left neighbor:

then, a(j) < a(j=1) and a(3j) < a(i)

If a(j) < a(j-1) < a(i)
ORDER(i~1,3-1,t+1l) = ORDER(i,j,t) + 1
NOTORDER(i-1, j-1,t+1) = NOTORDER(i,j,t) - 1
DELTA(i-1,3-1,t+1) = DELTA(i,j,t) + 2

Otherwise, i.e. a(j-1) > a(i),
ORDER (i-1,j-1,t+1) = ORDER(i, j,t)
NOTORDER(i-1, j-1,t+1) = NOTORDER(i, j, t)
DELTA(i-1,3j-1,t+l) = DELTA(i, j,t)

Since in subcases 3.2a, 3.2b and 3.2c¢c, DELTA(i,j,t)

increases by 0, 1, or 2, MAXGT(i,t) increases by 0, 1 or

2. Substitute MAXGT(i,t), (HH), (II), and (JJ) into (**),
we can conclude POTENTIAL decreases at most by 1 for

{subcase 3.2}.

{Subcase 3.3} If net at position i switches position with its

right neighbor, the proof is similar to {Subcase 3.2}.

QED.
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B Proof of Theorem 4

For any net i, the top terminal of net i is in coluﬁn i, and
the bottom terminal is in, say, column j.
{Case 1} J >= 1i .
{Subcase 1.1} When NO?ORDER(i,N) = 0
Obviously NOTORDER(i,1l) != 0
Let S = { i+1, i+2, ...., N}
Let S1 S be the nets that have bottom terminals
in positions j+1; j+2, ...., N. Clearly,
[S1] <= N = j
Let S2 = S - S1 be the nets that have bottom terminals
in positions 1, 2, ...., j-1. Then
|S2] >= (N-i) - (N-j) = j - i = displacement (i)
POTENTIAL(i,t) = NOTORDER(i,1l,t) + MAXLT
= |S2| + MAXLT
> displacement (i) QED.
{Subcase 1.2} When NOTORDER(i,l) != 0 and NOTORDER(i,N) != 0
Let S = { i+l1, i+2, ...., N}
Let S1 S be the nets that have bottom terminals
in positions 1, 2, .... j - 1. Then
|S1] = NOTORDER(i,l) >= displacement (i)
POTENTIAL(i,t) = NOTORDER(i,1l,t) + NOTORDER(i,N,t) +
max( 1, MAXLT, MAXGT )
= |S1| + NOTORDER(i,N,t) + max( 1, MAXLT, MAXGT )
> displacement(i)'

The proof for {Case 2} is similar. QED.
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C Proof of Theorem 6

[ Proof ]}

Without loss of generality, the channel can be viewed as having
two. sections: the bottom section and the top section. 1In the
bottom section, the right nets are routed to their target posi-
tions; in the top section, the left nets are routed.

bottom section ( for routing right nets )

Let us consider the change in the POTENTIAL values of nets in
the bottom section. The proof is by Lemma I, II and III. The
main result of these three lemmas is that the POTENTIAL value

of every net decreases by at least 1 ( amortized ) per track

in the bottom section. The proof for the top section is similar.

Lemma I. In the bottom section, If NOTORDER(i, N, t) = 0,
then POTENTIAL(i,t+l1l) = POTENTIAL(i,t) - m
where m >= 1, unless

POTENTIAL(i,t) = 0 which implies POTENTIAL(i,t+1) 0.

[ Proof ]
When NOTORDER(i, N, t) = 0,
POTENTIAL(i,t) = NOTORDER(i,1l,t) + MAXLT(i,t)
= NOTORDER(i,1l,t) + max{ DELTA(i,j,t) } (AA)

{ Case 1 } Net i is a right net:
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Claim. Net i has reached its target position,
ie. POTENTIAL(i,t) = 0

[ proof )

Suppose for the sake of contradiction that net

i has reached position i’ < i. Now, there are
~{ N - i) nets which are greater than i.

These nets can not £ill up the positions in the

interval [ i’+l, N ]. Hence some net j < i is

in this interval. This contradicts the fact

NOTORDER(i, N, t ) = 0.

QED

{ Case 2} Net i is a left net and i crosses a net i’:
When i crosses a net,

NOTORDER(i,1,t+1) = NOTORDER(i,1l,t) - 1 (BB)

Let I ={ 3j | j<i, a(i) < a(j) }
Let j be a member of I.

By examining equations (AA) and (BB), we need
to show that DELTA(i,j,t) does not increase.

{ Case 2.1 } When j crosses another net:

If j propagates vertically upwards as
shown in Figure (a):

(a)
Then DELTA(i,j,t+l) = DELTA(i,j,t)

Else if j propagates horizontally to the
right as shown in Figure (b):
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Then there exist a net j’ > j such that
j* > i. Thus

ORDER (i, j,t+1) = ORDER(i,j’,t)
NOTORDER (i, j,t+1) = NOTORDER(i, j’,t)
DELTA (i, j,t+l) = DELTA(i,3j’,t)

{ Case 2.2 } When j does not cross another net:

If j is a right net as shown in Figure (c):
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then, DELTA(i,j,t+1) = DELTA(i,3’,t)
Else, ie, j is a left net as shown in Figure (d):
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Then there exists a right net j’ overlapping
with j ( else j would have been crosses by a
right net ) such that j’ > j. Hence,

In subcases (2.1) and (2.2), DELTA(i,j,t+1)
does not increase. Hence we conclude in
{Case 2}, POTENTIAL(i,t+l) = POTENTIAL(i,t) - m,

where m = 1 or 2.
QED

{ Case 3} Net i is a left net and i does not cross
another net as shown in Figure (e):

i

(e)

cmoegm®
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Lemma II.

Since i is a left net and NOTORDER(i,N,t) = 0,
net i can be routed to its target position at
the t’th track in the top section which reduces
POTENTIAL(i,t) to 0 ( see proof of Lemma 4 ).
This implies the amortized decrease in POTENTIAL
value of net i is greater than 1. Note: once
POTENTIAL(i,t+1) becomes zero, net i will be
dropped from analysis in future steps.

QED

In the bottom section, If NOTORDER(i, 1, t) = O,

then POTENTIAL(i,t+1l) = POTENTIAL(i,t) - m

where'm >= 1.,

[ Proof ]

In the bottom section, only a right net could satisfy
NOTORDER(i,1,t) = 0. By the routing algorithm, net

i would propagte horizontal toward right until another
right net i’, i’ > i is reached. Since NOTORDER(i,1,t)
= (0, the POTENTIAL value of net i is defined as
POTENTIAL(i,t) = NOTORDER(i,N,t) + MAXGT(i,t)

= NOTORDER(i,N,t) + max{ DELTA(i,j,t) } (CC)

{ Case 1 } Net i crosses k nets as shown in Figure (f):

k nets
f)
Thus,
NOTORDER(i,N,t+1l) = NOTORDER(i,N,t) - k (DD)

Let I={ 3| j<i, a(i) < a(j) }
Let j be a member of I.

By examining equations (CC) and (DD), we

We need to show DELTA(i,j,t) does not

increase more than k.

If MAXGT(i,t+1l) = 0, then
POTENTIAL(i,t+1l) = POTENTIAL(i,t) - k
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Else, MAXGT(i,3j,t+1l) > 0 corresponds to the
nets shown in Figure (g).

k nets ot least r nets >
s nets <.
(3)

Hence,

ORDER(i, j,t+1) - NOTORDER(i, 3j,t+1)
r - 8 . ’
(r+1)-(k+s)+(k-1)
ORDER(i, j,t) - NOTORDER(i, j,t)

+ (k=-1)

DELTA(i,3,t) + ( k = 1)

DELTA (i, j,t+1)

QED

{ Case 2 } When Net i does not cross any net,
NOTORDER(i,N,t+1l) = NOTORDER(i,N,t)
We need to show that DELTA(i, j,t) decreases.

If MAXGT(i,t) > 0 as shown in Figure (h):

Then

DELTA(i,j,t+1l) = ORDER(i, j,t+1) - NOTORDER(i, j,t+1)
= ( ORDER(i,j,t) =1 ) - NOTORDER(i,j,t)
= DELTA(i,j,t) - 1

Else if MAXGT(i,t) = 0 as shown in Figure (p):

—
i 4
(P)

)
4

This implies j’ < i and net i will cross j’ and jJ
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Lemma III.

in track t+l. Hence the amortized decrease in
the POTENTIAL value of net is 1. QED
In the bottom section, If NOTORDER(i, 1, t) != 0 and
NOTORDER(i, N, t) != 0
then POTENTIAL(i,t+1l) = POTENTIAL(i,t) - m
where m >= 1, unless

POTENTIAL(i,t) = 0 which implies POTENTIAL(i,t+l1l) = O.

[ Proof ]

When NOTORDER(i,1l,t) != 0 and NOTORDER(i,N,t) != O,
net i propagates vertically upwards on layer 2 in the
bottom section and

POTENTIAL(i,t) = NOTORDER(i,l,t) + NOTORDER(i,N,t) +
max{l, MAXLT, MAXGT} (EE)

{ Case 1 } 1If net i crosses another net, then

NOTORDER(i,1,t+1) = NOTORDER(i,1,t) -1 (FF)
NOTORDER(i,N,t+l) = NOTORDER(i,N,t) (GG)
By examining equations (EE), (FF) and (GG), we
We need to show DELTA(i,j,t) does not increase.
{ Case 1.1 } i is a right net

. To show the change in MAXLT,

letI={3j1I j>41i, a(i) > a(j) }.
Let j be a member of I.

(1.1A) If j crosses a net as shown in Figure (q):

s

¥ oA

Then 3’ > j > i. DELTA(i,j,t+l) = DELTA(i,j, t)
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(1.1B) if j crosses a net as shown in Figure (r):
t

R S QS S,

(r)

Then j’ > j > i. DELTA(i,j,t+l) = DELTA(i,j’.,t)
which implies DELTA(i, j,t+1l) does not increase.

(1.1C) If j does not cross any net as shown
in Figure (s},

3 *,

cedenmeogmae

()

then DELTA(i, j,t+1l) = DELTA(i,3j’,t)

From (1.1A), (1.1B) and (1.1C), we conclude
MAXLT (i,t) decreases by >= 0.

To show the change in MAXGT,

Let I’ = { 3 | j < i, a(i) < a(j) }
Let j be a member of I’.

(1.1D) If j crosses another net as shown in
Figure (u):

v

el e ops

(w)

Then, DELTA(i,j,t+l) = DELTA(4i, j,t)

'(i.lE) net j does dnot cross any net as shown
in Figure (v):

e,

7
- — f t
. ]|

(v)

If DELTA(i,j,t+l) <= 1, then done. Else,
ie. DELTA(i,j,t+1l) >= 2, then net j will
cross >= 2 nets in some track in the top
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section. This implies the amortized decrease
in the POTENTIAL value of net i is >= 1,

QED

{ Case 1.2 } i is a left net

The proof is analogous to { Case 1.1 }.

{ Case 2 } If net i does not cross any net, then

NOTORDER(i,1l,t+1) = NOTORDER(i,1,t) (HH)
NOTORDER (i,N,t+1) = NOTORDER(i,N,t) ‘ (I1)
By examining equations (EE), (HH) and (II), we
We need to show DELTA(i, j,t) decreases.
{ Case 2.1} i is a right net

To show the change in MAXLT,

let I={3jI| j>i, a(i) > a(3j) }.
Let j be a member of I.

(2.1A) If j crosses a net as shown in Figure (w):

(W)

Then j* > j > 1.
DELTA (i, j, t+1) ORDER (i, j,t+1) - NOTORDER(i,j,t+l)
ORDER (i, j,t) - (NOTORDER(i, j,t)+1)

DELTA (i, j,t) - 1

(2.12) If j crosses a net as shown in Figure (Xx):

)

Then j’ > j > 1.
DELTA(i, j,t+1l) = ORDER(i,j,t+1l) - NOTORDER(i,]j,t+1)
= ORDER(i,j,t) - (NOTORDER(i,Jj,t)+1)
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= DELTA(i,j,t) - 1
(2.1B) If j does not cross any net as shown
in Figure (y):
T

4 <

et —op

“ece P
-

+

<)

Then, DELTA(i,3j,t+1)

= DELTA(i,j,t)

= ORDER(i,3j,t) - NOTORDER(i,j,t)

= ORDER(i,3’,t) - ( NOTORDER(i,j’,t) + 1)
= DELTA(i,j%,t) - 1

From (2.1A) and (2.1B), we can conclude that
MAXLT (i,t) decreases by 1.
To show the change in MAXGT,

Let I' = { j | j < i, a(i) < a(j) }
Let j be a member of I'.

(2.1C) If j crosses another net as shown in
Figure (z):

Then j’ > i. Hence,

DELTA(i,j,t+1l) = ORDER(i,j,t) - 1 - NOTORDER(i, j,t)
= DELTA(i,3j,t) - 1

(2.1D) net j does not cross another net

Proof is similar to (1.1lE)

From (2.1C) and (2.1D), we can conclude that
MAXGT (i,t) decreases by 1.

QED
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