
Copyright© 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profitor commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

INDEXING TECHNIQUES FOR MULTI-DIMENSIONAL

SPATIAL DATA AND HISTORICAL DATA IN

DATABASE MANAGEMENT SYSTEMS

by

Curtis Philip Kolovson

Copyright © 1990

Memorandum No. UCB/ERL M90/105

14 November 1990

INDEXING TECHNIQUES FOR MULTI-DIMENSIONAL

SPATIAL DATA AND HISTORICAL DATA IN

DATABASE MANAGEMENT SYSTEMS

by

Curtis Philip Kolovson

Copyright © 1990

Memorandum No. UCB/ERL M90/105

14 November 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DEDICATION

For my parents, June and Melvln Kolovson.

ii

ACKNOWLEDGMENTS

First and foremost. I would like to thank my advisor, Professor Michael Stone-

braker, for having given me the opportunity to work with him. and for providing

indispensable guidance for this research. It has been a great privilege to have

worked with Professor Stonebraker, as he has taught me how to propose and pursue

research in the field of database management, how to write quality technical papers,

and how to give good presentations. Beyond these lessons. I have become a better

person for the experience of having worked with Professor Stonebraker, as he has

consistently maintained a very high standard of excellence for his students as well as

for himself. I have the utmost respect for you, Mike, and I am forever grateful for all

you have taught me.

I wish to thank the other members of my thesis committee. Professors Raimund

Seidel and Axle Segev. for reviewingthis dissertation. The other graduate students in

the database research group at UC Berkeley, including Spyros Potamianos. Wei

Hong, Anant Jhingran, Margo Seltzer, and Mark Sullivan provided helpful comments

on this work, as well as their friendship and good humor.

I also wish to thank my colleagues at Hewlett-Packard Laboratories for support

ing me throughout my PhD graduate school experience. I especially thank Dan Fish-

man and Marie-Anne Nelmat for supporting my application for the Hewlett-Packard

Laboratories Resident Fellowship Program.

Finally, I thank Mihaela for her love and support throughout the final ten

months of this endeavor.

ill

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGMENTS ill

TABLE OF CONTENTS iv

Chapter 1. INTRODUCTION 1

1.1 Overview 1

1.1.1 Indexing Spatial Data 2

1.1.2 Indexing Historical Data 3

1.1.3 Storing Information about Rules 5

1.1.4 Problems with Conventional Access Methods 6

1.1.5 Segment, Lop-Sided, and Mixed-Media Indexes 8

1.2 Outline of the Dissertation 9

Chapter 2. RELATED WORK 10

2.1 Introduction 10

2.1.1 Data Structures from Computational Geometry for Intervals 10

2.1.1.1 Segment Trees 11

2.1.1.2 Interval Trees 14

2.1.1.3 Priority Search Ttee 17

2.1.2 Spatial Database Indexing Techniques for Multi-Dimensional

Intervals 20

2.1.2.1 Indexing Line Segments using the Hough Transform 24

iv

2.1.2.2 Grid File 25

2.1.2.3 K-D-B Tree 27

2.1.2.4 R-Ttee 28

2.1.2.5 R+-Tree 31

2.1.2.6 R*-Tree 32

2.1.2.7 Z-Ordering, or Bit Interleaving 34

2.1.2.8 R-File 35

2.1.2.9 GBD-Tree 38

2.1.2.10 LSD-Tree 39

2.1.2.11 Buddy T^ree 42

2.1.3 Database Indexing Structures for Historical Data 44

2.1.3.1 Persistent Search Tree 46

2.1.3.2 Write-Once B-Tree 47

2.1.3.3 Time-Split B-Tree 49

2.1.3.4 AP-Tree, Nested ST-Tree. and Nested AT-Tree 52

2.1.3.5 The Time Index 54

2.1.3.6 Allocation Ttee 56

2.2 Summary 57

Chapter 3. SEGMENT INDEXES 58

3.1 Introduction 58

3.2 The Segment Index Approach 59

3.2.1 Tactics 60

3.2.1.1 Storing Index Records in Non-Leaf Nodes 60

v

3.2.1.2 Varying the Index Page Size 61

3.2.1.3 Skeleton Indexes 61

3.3 An Example Segment Index 62

3.3.1 SR-Tree 62

3.3.1.1 Insertion Algorithm 62

3.3.1.2 Node Splitting Algorithm 66

3.3.1.3 Search Algorithm 68

3.4 Skeleton Indexes 68

3.5 Performance Experiments 73

3.5.1 Results of Performance Experiments 75

3.6 Summary and Conclusions 94

Chapter 4. LOP-SIDED INDEXES 96

4.1 Introduction 96

4.2 Structure of a Lop-Sided Index 99

4.3 Limitations of Large Branching Factor In Unbalanced Binary Search

Trees 100

4.4 Node Splitting Dynamics: Splitting Down Versus Splitting Up 101

4.5 Structure of a Lop-Sided B+-Tree Index 104

4.6 Algorithms for a Lop-Slded B+-Tree Index 106

4.6.1 No-Shuffle Method 106

4.6.1.1 Insertion Algorithm 107

4.6.1.2 Node Splitting Algorithm 107

4.6.1.3 Search Algorithm 109

vi

4.6.1.4 Deletion and Underflow Algorithms 109

4.6.2 Skeleton Method 110

4.6.3 Shuffle Method 112

4.6.3.1 Splitting Algorithm 112

4.6.3.2 Deletion and Underflow Algorithms 114

4.7 Performance Study 114

4.7.1 Simulation of Lop-Sided B+-Tree Indexes 114

4.7.2 Performance Results from Simulation 117

4.8 Generalizations and Areas of Future Research for Lop-Slded

Indexes 128

4.8.1 Adapting to Non-Uniform Data Distributions 130

4.8.2 Minimizing the Impact of Shuffling 130

4.8.3 Choosing the Optimal Number of Partitions 131

4.9 Summary and Conclusions 133

Chapter 5. MIXED-MEDIA INDEXES 135

5.1 Introduction 135

5.1.1 Hypothesis 136

5.2 Vacuuming Algorithms for Indexes on Historical Data Relations ..„ 137

5.2.1 Definition: Data and Index Vacuuming 137

5.2.2 Assumptions 138

5.2.3 Two Vacuuming Algorithms 139

5.2.4 Index MD/OD-RT-1: The Single Root MD/OD R-TVee Index 139

5.2.5 Index MD/OD-RT-2: The Dual Root MD/OD R-Ttee Index 141

vii

5.2.6 Index OD-AT: The AllocaUon Tree Index 143

5.2.7 Branching Factors 145

5.3 Performance Experiments 146

5.3.1 Performance Results: As a Function of the Page Size 153

5.3.2 Performance Results: As a Function of the Number of Records

163

5.4 Summary and Conclusions 169

Chapter 6. CONCLUSION 172

6.1 Summary 172

6.2 Comparison with Other Research 175

6.3 Directions for Future Research 176

BIBLIOGRAPHY 179

viil

CHAPTER 1

INTRODUCTION

1.1. Overview

Many database applications require the ability to manage large collections of

spatial data objects, such as Geographic Information Systems (GIS) and Image Pro

cessing Systems [SAME89b]. In order to address this need, many researchers in the

field of database management are concerned with the support of large spatial data

bases and access methods for such databases. While interest in spatial data

management has existed for more than a decade IHERO80], a large number of propo

sals for spatial access methods and GIS systems have only recently appeared

[BLAN90. HUTF90. JAGA90a, JAGA90b. OHSA90, SEEG90, SHEN90, GUNT89,

HENR89, LOME89a. OOI87, OOI89, SALZ891. These proposals differ with regard to

the type of spatial data that may be indexed, the operations on the data that are sup

ported, and the method used for partitioning the space and for representing the spa

tial data.

Another Important class of database indexing structures involves-support for

historical data. Historical data are maintained by append-only database systems

which never overwrite or delete previous data values. Research in database manage

ment systems that support historical data has also been quite active [SNOD86], and

a number of access methods and storage organizations have been suggested for such

data [ELMA90, GUNA90, KOL089, LOME89b, ROTE87, AHN86. LUM85, DADA84].

Spatial data and historical data are closely related because historical data may be

represented by a special form of spatial data.

The subject of this thesis is Indexing techniques for providing efficient support

of spatial data and historical data in database management systems. The areas

Investigated Include Indexing techniques In support of the following:

(1) spatial data composed of intervals in multiple dimensions.

(2) non-uniform query distributions, and

(3) very large database archives which may span magnetic and optical disk media.

In the following sections, some requirements of modern database systems that

have motivated this research are discussed, and reasons why conventional indexing

methods do not adequately support these requirements are presented.

1.1.1. Indexing Spatial Data

Spatial data are characterized by multi-dimensional geometric objects. In the

two dimensional case, such a collection of objects may consist of points, lines, rec

tangles, polygons, circles, or arbitrary curves. In the three dimensional case, spatial

objects may also include boxes, spheres, or surfaces. Higher dimensional spatial

objects are also possible. The task of indexing spatial objects poses special problems

as compared to conventional database access methods which predominately deal

with one dimensional point data. The challenge Is how to organize an Index search

tree so that It partitions the data space in such a way that data which does not

satisfy the query Is efficiently pruned out of the search, and data which does satisfy

the query is retrieved with as few secondary storage accesses as possible. The spe

cial properties of spatial data that create difficulties for access method designers are

that spatial data may be multi-dimensional and may be overlapping. Multi-

dimensional data cannot be efficiently indexed by conventional single-attribute

Indexes such as B-Trees. Overlapping spatial data requires that an Indexing tech

nique either partition the data space into disjoint regions and replicate the index

records in each region that an object intersects, or else partition the space into (pos

sibly) overlapping regions.

1.1.2. Indexing Historical Data

In this section, it is assumed that historical data may be represented by

step-wise constant data ISHOS86. SEGE87J, i.e., data whose values change only at

certain time points, but otherwise remain constant. For example, bank account bal

ances may be classified as step-wise constant since the value of an account remains

constant between points in time at which deposits or withdrawals are posted. Step

wise constant data may be represented as step functions in the time domain. An

example of such data Is Illustrated in Figure 1.1 for employee salaries. In Figure 1.1,

employee salaries remain constant between raises. In addition, the type of temporal

databases that are assumed are rollback databases, as defined by [SNOD85]. In a

rollback database, records are stamped with the transaction commit time rather than

with the effective or valid time for the information.

The historical data may be represented in a geometric sense by a set of points

in (fc - 1) dimensions, and an interval in the time dimension. In Figure 1.1, k = 2 and

each data interval specifies a point in the salary domain and an interval in the time

domain. As an example of a case where k - 3. consider a set of historical data based

on employee salaries and job classifications. Such a collection of data may be

represented by a point in the salary and job classification domains, and an interval

in the time domain. Hereafter, when fc-dlmensional historical data is referred to, the

k specifies the dimensionality of the data, including the time dimension.

salary
($)

40k

30k

20k

JOk

Judy

Judy

Bob

Judy Earl

Earl

Earl

Joe

Judy Joe

Joe

Joe i

1984 1985 1986 1987 1988 1989

year

Figure 1.1: Historical data: Employee salaries as a function of time

K-dimensional historical data has special characteristics that are not found in

k-dimensional point data, k £ 2.

(1) Historical data intervals may overlap In the time dimension.

(2) Historical data is generally inserted in an append-only fashion, i.e.. no deletion

of data is performed, and the data are Inserted in (approximate) time-sorted

order.

(3) The expected query distribution over large historical databases is probably

non-uniform, i.e., queries on more recent historical data are likely to be more

frequent than queries on older historical data.

(4) The expected distribution of interval lengths of the line segments which

represent historical data is likely to be non-uniform. Tuples are inserted into a

historical data relation after having been deleted or updated (replaced) In a

current data relation. If deletions and updates of current data tuples are

modeled by a Poisson process, the expected interval lengths of the historical

data will be distributed exponentially. In that case, there will likely be mostly

short intervals and a small number of long intervals.

All of these characteristics must be taken into account when designing new access

methods for historical data.

1.1.3. Storing Information about Rules

Database systems that provide a rules system ISTON90, HANS90] require some

technique to efficiently determine the portion of the database that may be affected by

the execution of a rule. In particular, it is highly desirable that rules be processed in

such a way so that exhaustive searches of whole relations (or databases) for tuples

that are the target of some rule be avoided whenever possible. For example, suppose

there is a rule that states that If an employee is paid less or equal to $50,000 he

should have a steel desk, and if the employee is paid more than $50,000 he should

have a wooden desk. In the above example, two Intervals of salary were specified: (0,

50K] and (50K, »]• When a new employee is added to the EMP relation, the rules

system must determine what sort of desk that employee should have.

In a rules system, there may be a large set of such rules that each "may involve

an interval of attribute values. The problem arises as to how best represent a large

collection of interval data in a search structure so that subsequent point or Interval

queries may be processed efficiently. In the above example involving rules about

employee desk allocation, when a new employee is added to the EMP relation, a

potentially large number of salary intervals may need to be examined corresponding

to the set of rules that are associated with an employee's salary. In particular, there

may be several such rules In addition to those which deal with desk allocation. This

general problem was one motivating influence for the research Involving storing

interval data in an index that is covered in this thesis.

1.1.4. Problems with Conventional Access Methods

Conventional access methods are not well suited to indexing interval data.

Three conventional approaches are considered to illustrate this point. Suppose a

B+-Tree [COME79] is used to store Intervals using the following straightforward

method to Insert an Interval I. First, store Index records corresponding to the end-

points of / in the appropriate leaf nodes. Second, for each interval I, store an index

record corresponding to / with each point data leaf node entry that is contained by I.

This would clearly lead to an excessively large Index, since long intervals would

require a large number of redundant index records.

Another approach would be to use an area-based spatial access method, such

as the R-Tree [GUTT84] to store the intervals. However, long intervals would create a

great deal of inter-node overlap among the non-leaf nodes of the index, thus degrad

ing the search performance. This Is due to the R-Tree insertion algorithm which

inserts each spatial object into the node that requires the least area expansion to

accommodate the object, but nodes are allowed to overlap. An R-Tree index con

structed for a collection of short and longintervals would likely have a high degree of

overlap resulting from the long intervals. Search performance of such an index

would be degraded because R-Trees search all nodes of the index which intersect the

given search region. For no-overlap spatial indexes such as the R+-Tree [SELL87J,

the problem of index size would again be a problem due to the proliferation of redun

dant index records corresponding to long intervals.

A third approach would be to use a multi-dimensional point data index, such as

the K-D-B Tree [ROBI811, to store point data that represents the intervals. For

example, the intervals in Figure 1.1 may be mapped Into points in 3-space by

representing each interval by its 3 coordinates: (x^, x^, y). However, if a rectangle

Intersection query which requests all Intervals that overlap a rectangle specified by

[rxtou,, rxhigh* n/iou>. nihigh)> Is performed using a 3-dlmensional K-D-B Tree, the result

ing test for overlap is specified by: (-«> < x^w < rxhtgh and rxjou, < x^h < +°° and

n/iou, <: y < rytogh), which involves unbounded range searches in the xt^ and Xhjgh

dimensions of the transform space. Clearly such an index will provide poor search

performance on such queries.

In spatial databases, it Is possible that query distributions may be non-uniform.

For example, the most recent versions of a computer-aided design database are likely

to be accessed more frequently than older versions. As another example, the most

recent historical data (represented as spatial line segments) is likely to be more fre

quently accessed than older historical data. Although nearly all database indexing

schemes work well on both uniform and non-uniformly distributed data, all indexes

which are based on balanced multi-way search trees assume a uniform query distri

bution. As new spatial data types are included in database systems, a new challenge

to database index implementors will be to design indexing techniques that support

non-uniform query distributions.

With the rapidly expanding capacity of main memory and magnetic disks, as

well as the advent of large capacity optical disks, the sizes of databases and their

associated indexes are expected to grow substantially. Existing database indexing

methods were designed for magnetic disks, which are rewritable. These techniques

do not extend to write-once optical disk media. Database storage managers that

include optical disks in their architecture will require new indexing techniques which

8

may span both magnetic and either write-once or rewritable optical disk media.

The goal of the research presented in this thesis is to address the problems out

lined above, i.e., to improve the performance of spatial indexes for multi-dimensional

interval data. The next section presents the approaches taken In this research.

1.1.5. Segment, Lop-Sided, and Mixed-Media Indexes

Three major ideas comprise the approaches followed in this thesis: Segment

Indexes, Lop-Sided Indexes, and Mixed-Media Indexes. Each is outlined in turn.

The first approach is the exploration of Segment Indexes, i.e., indexing struc

tures that are specially adapted to indexing interval data in multiple dimensions,

including spatial data. The idea of Segment Indexes is to store each interval in the

highest level node of a multi-way, tree-structured index such that the interval spans

(covers) the region corresponding to the node, and all of its descendants.

The idea of Lop-Sided Indexes is that query distributions which are non

uniform in the indexed domain may be efficiently supported by tree-structured

indexes that are not necessarily balanced. To relax the balanced tree criterion so

that indexes may become lop-sided has not been explored for other than binary

trees. In the case of binary search trees, in the case of a static database, an

Optimum Search Tree [KNTJT73] may be constructed off-line by a dynamic program

ming technique. For the dynamic case, techniques such as Biased 2-3 Trees

IBENT851, D-TVees [MEHL84], and Splay Trees ISLEA85J involve complex restructur

ing algorithms. The Randomized Search Tree [ARAG891 is an elegant structure

which uses a strategy for balancing based on randomization. However, it is not clear

how these approaches may be extended to multi-way search trees. The research

presented on Lop-Sided Indexes considers the applicability of unbalanced n-ary

search trees for n substantially greater than 2.

Mixed-Media Indexes are oriented toward the problem of supporting very large

databases in which the associated Indexes may span magnetic and optical disk.

Several algorithms for dynamically constructing such indexes are presented.

1.2. Outline of the Dissertation

The remainder of this dissertation proceeds as follows. Chapter 2 presents a

survey ofwork related to the subject of this thesis. Chapter 3 describes the concept

of Segment Indexes, which are useful for historical data as well as spatial data con

sisting of arbitrary multi-dimensional Interval data. Chapter 4 explores the viability

and practicality of Lop-Sided Indexes, i.e.. multi-way tree-structured Indexes that

support non-uniform query distributions. Chapter 5 presents the concept of Mixed-

Media Indexes, which are useful for indexing large historical data relations that are

maintained in a temporaUy partitioned storage architecture. Chapter 6 summarizes

the results of this work and presents conclusions.

CHAPTER 2

RELATED WORK

2.1. Introduction

This chapter presents a survey of previous work that Is related to the research

presented In this thesis. Since the subject of this thesis Is the indexing of spatial

data consisting of multi-dimensional interval data as well as historical data for data

base management systems, the related work covers at least three areas, as follows.

(1) data structures for intervals that have been developed and studied in the field

of Computational Geometry,

(2) spatial database indexing techniques, and

(3) database indexing structures for historical data.

Researchers in each ofthese areas have contributed Important results to the general

problem of representing interval data in a data structure to improve the efficiency of

exact match (pomt query) or range (interval IntersecUon) queries over such data. The

following three sections survey the work in the three areas mentioned above.

2.1.1. Data Structures from Computational Geometry for Intervals

In the field of Computational Geometry, much work has been done on data

structures for representing line segment data that are based on binary search trees

IPREP85]. In this section, three such data structures will be briefly described. In

order to present the main concepts employed. Since these data structures are based

10

11

on binary trees, they are not practical for database indexing structures as they are

assumed to be wholly resident in main memory, as opposed to paged onto secondary

storage.

In the following discussions, the term span is used to refer to the total contain

ment of one interval by another. The definition is made precise below with respect to

two intervals. Si with endpoints [l\, rj and S2 with endpoints [l2, r2). Interval Si is

said to span interval S2 if li < l2 and r2 > r2. In all cases, an interval is assumed to

be closed on the left endpolnt and open on the right endpoint, l.e., an interval whose

left and right endpoints are I and r is the interval [I r). Unless otherwise indicated,

the discussion will be limited to the case of a set of intervals In one dimension, and

the query of interest is the one-dimensional interval intersection query, which for a

specified search interval S with endpoints [I, r) retrieves all the intervals that inter

sect S. Only the case of a static data collection is considered in the discussions of

the Segment Tree [BENT771. Interval Tree [EDEL80], and Priority Search Tree

[McCR85], i.e.. it is assumed that the entire set of data is known and preprocessed

before any searches take place. Most database applications involve dynamic collec

tions of data which must support interspersed insert, update, delete, and search

operations. While some generalizations of these data structures exist for the

dynamic case (EDEL82), they are not considered here in the interest of brevity.

2.1.1.1. Segment Trees

The Segment Tree JBENT77] Is a binary search tree which represents a set of

Intervals in one dimension, or line segments. Its main utility is for finding all the

intervals that contain a specified point. To store a set of n line segments in a Seg

ment Tree, the segment endpoints are stored in sorted order In the leaf nodes of a

binary tree. The binary tree structure is then built bottom-up as follows. A non-leaf

12

node of the tree represents the Interval whose endpoints are contained in its leftmost

and rightmost leaf nodes, respectively. Each segment S(. Utsn, is inserted into

the tree as follows. Starting from the root node. If St spans the mterval represented

by the root node, then S(Is added to the linked list of segments which span the root,

and the insertion is complete. Otherwise, the process is applied recursively to each

of the child nodes of the root, and to each of their children, etc. Each path of the

recursive descent is halted when a node is encountered which Is spanned by S(. or

which has an empty intersection with S(.

An example of a Segment Tree is illustrated in Figure 2.2 for the set of line seg

ments shown in Table 2.1 !.

Line Left Right
Segment EndDoint EndDoint

A 6 36
B 34 38
C 21 36
D 23 27

E 3 8
F 15 19
G 11 14

Table 2.1: Line Segments used in Examples

In this example and in the examples to follow Involving the Interval Tree and Priority

Search Tree, each line segment Is closed on the left endpoint and open on the right,

i.e., line segment A in Table 2.1 is [6. 36). In Figure 2.2. each leaf node is labeled

with its corresponding interval number and the leftmost endpoint of the interval,

node i, corresponds to the mterval [yt, yM). In addition, nodes are labeled with the

1This example was adapted from an example given in [SAME89a], as were the
examples of the Interval Tree and Priority Search Tree.

13

sets of line segments that cover their corresponding intervals. For example, the

mterval [23. 34) is labeled {A.C} because it Is covered by these line segments.

Each line segment Is stored at most twice at every level ofthe tree except at the

root level, e.g.. a line segment that spans the root node may appear twice at each

level below the root. Since the tree has log n levels, the storage required is

0(n log n). The time to construct the Segment Tree is 0(n log n). since the endpoints
are sorted prior to being inserted. The Segment Tree is well-suited to the task of
detecting all the segments that contain aspecified point, p. since it may be achieved
by asingle traversal from the root to the leaf node(s) that contain (or bound) p.

y[i]: 3 6 8 11 14 15 19 21 23 27 34 36 38
(A) (O) (F) (C) (D) (A.C)

Figure 2.2: The Segment Tree for the data contained in Table 2.1

The linked lists of every node encountered during this search are traversed, thus

obtaining the set of segments that contain p. The time to perform a query that
searches for all mtervals that mtersect a specified point is Odog n+JR). where Ris

the number of records returned by the query. The Segment Tree is not so well-suited

to the interval intersection query that searches for all intervals that mtersect a

14

specified mterval S, since to satisfy that query it Is necessary to Inspect every node in

each subtree whose corresponding mterval is spanned by S. Thus, to satisfy this

query a large portion of the index may need to be searched, and chaining the leaf

nodes together would not help since all of the non-leaf nodes whose corresponding

intervals Intersect S must also be searched.

2.1.1.2. Interval Trees

One of the disadvantages of the Segment Tree is that each line segment may be

associated with more than one node of the tree, i.e., an interval I is stored with every

node whose corresponding mterval is spanned by /. Also, as mentioned in the previ

ous section. Segment Trees are not well suited to processing the mterval intersection

query. A data structure which overcomes these problems is the Interval Tree

[EDEL801. The Interval Tree avoids having duplicate entries by associating each line

segment S with the nearest common ancestor (NCA) of all the intervals that are

spanned by S. For line segment S with endpoints [I r). the NCA of S is the lowest

level non-leaf node that contains I and r in its left and right subtrees, respectively.

An example of an Interval Tree is illustrated in Figure 2.3. In this figure, node 22 Is

the NCA of line segment A, which corresponds to the interval (6. 36).

6->21 36«-36

11 14 r
34 38

3 8V X'5 ^Vs ' / \

*fV tyV ty$ {f<\) Oy 34 36 38

JL J / L ../ \ / \ f\p
3 6 8 11 14 15 19 2

LTJ,--,LTJlTJLTJVLTJL-
23 27

r
E G F B

< h - c... . ,;

Figure 2.3: Interval Tree for data in Table 2.1

15

The leaf nodes of the Interval Tree are created in the same way as the leaf nodes

of the Segment Tree. i.e.. by sorting the endpomts of the line segments and removing

duplicates, and assigning each endpoint value to a leaf node. The value assigned to

each non-leaf node N Is the average of the maximum value of its left subtree and the

minimum value of its right subtree, and Is stored in a field called Value[N).2 Each

non-leaf node N contains a pair of linked lists that contam the sets of left and right

endpomts. respectively, of the mtervals for which N is the NCA. Elements of the left

and right endpoint lists are linked in ascending and descending order, respectively.

In Figure 2.3. these linked lists are denoted by dotted lines emanating from the non-

leaf nodes. For example, node 22 is the NCA of 16. 36) and [21, 36).

2Value [N] may actually be any arbitraryvalue between these two values, and the
average is therefore convenient.

16

A non-leaf node N is said to be active if its corresponding secondary structure is

nonempty or both of its child nodes have active descendants. Otherwise. N is inac

tive. Starting from the root, the active nodes are linked in a top-down fashion so that

the inactive nodes may be "skipped over" during searches. The active nodes are

linked by dashed lines in Figure 2.3, and the active nodes are enclosed by thick cir

cles.

To insert a line segment S with endpoints [I r). starting from the root, the

highest-level non-leaf node N such that I < Value(N) < r is found, and then the end

pomts of S are inserted into the linked lists of N. The following is an outline of the

algorithm for processing the mterval intersection query for a specified search mterval

S with endpomts [I r). Starting at the root node, the highest-level non-root node N is

found such that I< Value {N) < r. Then, starting from N, a search is made for Iin the

left subtree of N, and similarly a search is made for r in the right subtree of N. At

each active node encountered during the search, the linked lists are accessed to pro

duce the endpomts of the mtervals that intersect S. This algorithm reports all of the

line segments that mtersect S. and each intersecting mterval is reported once since it

is associated with only one node. An example of an Interval Tree search for the

mterval (1. r) is illustrated in Figure 2.4.

17

Figure 2.4: Example of an Interval Tree Search

All endpomt linked lists visited are marked with dotted lines, and all of the active

interior nodes visited (other than those explicitly shown) are marked by dashed lines.

An Interval Tree requires O(n) space since each mterval is stored only once, and

may be constructed in 0(n log n) time (due to sorting). The time to perform the one-

dimensional mterval mtersection query is O(log n + R), where R is the number of

records returned by the query.

2.1.1.3. Priority Search Tree

Another data structure that is useful for satisfying the interval intersection

query is the Priority Search Tree (McCR85]. This data structure was previously

18

referred to as a treap, to reflect that it is a hybrid of trees and heaps.3 A treap is a

heap with respect to the y coordinates, and is sorted in the x coordinate in the sense

that for a given path from the root to a leaf node L, the contents of all subtrees to the

left of the path are less than L and the contents of those to the right of L are greater.

The Priority Search Tree is good for performing a two-dimensional semi-infinite range

query, i.e. to find all spatial objects that mtersect the semi-infinite region specified by

\lx. rJ x [ly, oo]. The utility of this structure for the one-dimensional mterval mtersec

tion query follows from the observation that the interval (a, b) intersects the mterval

[c. d) if and only if a < d and c < b. Equivalently. these two mtervals mtersect if and

only if the point [c, d) lies within [-00, b) x (a. »]. Therefore, to find all one-

dimensional mtervals that mtersect line segment S with endpomts [I r). the Priority

Search Tree may be used to perform the semi-infinite range query [-«>, r) x (L «]• In a

Priority Search Tree, the boundaries of a set of mtervals [l<, r() are represented by a

corresponding set of points (l<. rt).

An example of a Priority Search Tree corresponding to the data in Table 2.1 is

illustrated in Figure 2.5. Each line segment [x, y) is treated as a point (xy) in a two-

dimensional space. The leaf nodes contain the x-coordinate values, while the inter

nal nodes contain the maximum y-coordinate values.

The term treap has since been abandoned by McCreight.

E A G F

(3.8) (6^6) (11.14) (15,19)

C27) 34

B

21 23

(34,38)

C D

(2136) (23.27)

Figure 2.5: Priority Search Tree for the data in Table 2.1

19

A Priority Search Tree is constructed as follows. First, all of the points

(representing the intervals to be stored in the tree) are sorted along their x coordi

nate, and are then stored in the leaf nodes of a balanced binary tree. Then, startmg

from the root, the value assigned to each non-leaf node N is the maximum y coordi

nate in the subtree rooted at N that has not already been stored at a shallower depth

in the tree. If no such point exists, the node is left empty.

To perform a semi-infinite range query [-oo, r) x (L H to find all the intervals that

intersect line segment [I r). the algorithm is as follows. Starting from the root, the

tree Is traversed until the NCA of [-~, r) is found at a non-leaf node N. Then, the fol

lowing algorithm is recursively applied to the subtree rooted at N. Let RS denote the

root of the subtree that is currently being searched, and let Py be the y coordmate of

the point associated with RS. If Py > I the following steps are performed:

20

(1) If Px < r, then P satisfies the query.

(2) If both RS and its right child are on the path from N to -«, then continue in the

right child of RS. Otherwise, if both RS and its left child are on the path from JV

to r, then continue in the left child of RS. Otherwise, continue in the two child

nodes of RS.

If Py < I the search path is terminated at the subtree rooted at RS since by the heap

property P is the point with the maximum y coordinate value in the subtree.

The Priority Search Tree uses O(n) space, and may be built in 0(n log n) time

(due to sorting). The time to perform the one-dimensional interval mtersection query

is 0(log n + R), where R is the number of records returned by the query.

2.1.2. Spatial Database Indexing Techniques for Multi-Dimensional Intervals

In the following sections, techniques for multi-dimensional spatial data indexing

are surveyed, specifically with regard to their application for indexing mterval data.

These techniques include the Hough Transform [JAGA90bl, Grid File [NIEV81], K-D-

B Tree [ROBI81I. R-Tree IGUTT841. R+-Tree ISELL87J. R*-Tree IBECK90J. Z-Ordering

[OREN84]. R-FUe [HUTF90]. GBD-Tree (OHSA90], LSD-Tree [HENR89], and the

Buddy Tree ISEEG90]. The technique which uses the HoughTransform is special in

that it is a technique specifically designed for line segment data where the line seg

ments may have an arbitrary orientation. However, once a certain transformation is

applied to the data, it relies on any one of the general-purpose multi-dimensional

range indexing methods, such as the other proposals covered in this section. In all

of these techniques, line segment data may be stored in one of three ways.4

4This dichotomy Is partly due to [SEEG88].

21

(1) Ordering technique: map multi-dimensional coordinates into a lower- dimen

sional space. For example, map two-dimensional points into one-dimensional

points by defining a total ordering on the points that may occur in the original

two-dimensional space.

(2) Transformation technique: map multi-dimensional objects into points in a

higher-dimensional space. For example, map the coordinates that characterize

each line segment in /c > 1 dimensions into a pomt in a 2 Jc-dimensional space,

and store those points in an index for multi-dimensional pomt data.

(3) Clipping technique, divide the space into pairwise disjoint cells, and store with

each cell a list of line segments that mtersect it.

(4) Overlapping cells technique, divide the space into (possibly) overlapping cells,

such that each mterval is entirely contained by one cell and each cell may con

tain a set of mtervals.

The ordering technique may be applied to any set of multi-dimensional pomt

data in order to transform the data Into a set of points in a lower dimensional space.

A common case is to define a total ordering on the original two-dimensional pomt

data space so that the (transformed) data has a well-defined one-dimensional order

ing. Once this ordering has been established, any conventional one-dimensional

pomt data mdexing structure, such as the B+-Tree, may be used to index the

(transformed) data. A disadvantage of this approach is that the imposed one-

dimensional ordering may be somewhat arbitrary, and data which are in "close" prox

imity in the original (two-dimensional) space may not be "close" in the (one-

dimensional) transform space, and vice versa.

The transformation technique may be applied in any multi-dimensional range

indexing structure that mdexes pomt data. Candidate mdexing structures for

22

multi-dimensional pomt data are the Grid File or K-D-B Tree. As an example of the

transformation technique, a one-dimensional mterval [a, b) Is mapped to a pomt

(a, b). Since a£b, the region in the transform space that contains points forms a tri

angle. One disadvantage of this approach Is that the point distribution in the

transform space Is skewed. i.e. only the upper-left triangle of the two-dimensional

rectangle that defines the transform space is populated, as illustrated by Figure 2.6

for the data in Table 2.1.5 Another mapping technique is to map an Interval [a, b)

into a point {c.al such that c and d are the centroid (center) and distance from the

centroid to the end of the interval (half-length), respectively. An example of this

mapping for the mtervals in Table 2.1 is illustrated in Figure 2.7.

10 20 30 40

Figure 2.6 (left) and Figure 2.7 (right)

20

half-
length 10-

Ea G F D
° i o ° i ° i ° it

B

10 20 30 40

centroid

It was suggested by [HINR831 that separatingthe location parameters from the exten

sion parameters results in a smaller embedding space, which Is filled more uni

formly. In order to find all intervals that contain a given query point, p. a conic

shaped region that is unbounded in the c (centroid) dimension must be searched.

Figures 2.6-2.9 were adapted from [SAME88).

23

For example. Figure 2.8 illustrates the search region for a pomt query on pomt

P = 24 for the mtervals of Table 2.1. All intervals containing P are in the boxed-in

region of Figure 2.8. The mterval mtersection query is handled similarly. Figure 2.9

shows the flat bottomed conic search region that must be searched to find all the

intervals in Table 2.1 that mtersect the search interval [25, 36). In both of these

examples, the search region was unbounded in the d (distance from centroid) dimen

sion.

An example of the third approach, the clipping technique, is the R+-Tree. A

drawback of these methods Is that information about each line segment has to be

stored several times in the index, once for each cell that the line segment intersects.

The choice of the cell size is crucial since a smaller cell size provides greater selec

tivity (resolution), but also has greater storage cost due to replicated information.

The fourth approach, the overlapping cells technique, is typified by the R-Tree

[GUTT84]. R-Trees have been shown to be a very good general-purpose multi

dimensional spatial access method [GREE89], are widely used [FROS90. SHEN90,

BECK90], and several variants have been proposed ISELL87. BECK90, HUTF90]. R-

half-
length io

10 20 P 30 40

centroid

half-
length io

10 20 30 40

centroid

Figure 2.8 (left) and 2.9 (right)

24

Trees do not partition the entire data space, but only that part of the space that con

tains spatial objects. The following proposals may be used for mdexing Une seg

ments using one of the three methods described above.

2.1.2.1. Indexing Line Segments using the Hough Transform

A proposal for indexing line segment data [JAGA90b] involves using a particular

transform technique for lines known as the Hough Transform [HOUG62J. The Hough

Transform of an arbitrarily oriented infinite line segment in two dimensions specified

by y = mx + b is simply the point [m, b) in the [m,b)-space, i.e.. a set of ordered pairs

whose horizontal coordinate specifies the slope of a line and the vertical coordmate

specifies the y-mtercept of a ime. Finite ime segments may be specified by their

Hough Transform (m. b) and their projection on the X axis (XpmJ), i.e.. the range xmin

to Xmax. Therefore, a set of arbitrarily oriented finite Une segments in {x, y) space

may be mapped into a set of parallel finite Une segments in (m, b, XproJ) space. This

set of line segments are then Indexed by a multi-dimensional range indexing tech

nique, such as one of the other mdexing techniques discussed in this section. This

approach can be used to satisfy such queries as to find aU Une segments that (1)

pass through a specified pomt, (2) Ue in the vicinity of a specified pomt, and (3) mter

sect a specified line segment, and several other generalizations of these queries. This

mdexing technique is general in that it may be appUed to arbitrarily oriented line

segment data in multiple dimensions, and was motivated by such diverse applica

tions as machine vision and PC board layout information. The main contribution of

this proposal is that it provides a way to transform arbitrarily oriented Une segments

mto a set of paraUel Une segments. However, this method stiU reUes on a multi

dimensional mterval indexing structure for the set of parallel Une segments in the

transform space.

25

2.1.2.2. Grid File

The Grid File INIEV81] Is a flat directory structured index, as opposed to a

tree-structured index, and is useful for indexing pomt data in k dimensions. Many

variations of the Grid File have been proposed, such as EXCELL [TAMM81], the

Multi-Level Grid File [WHAN85], the Multi-Layer Grid File [SIX88], and the General

ized Grid File [BLAN90]. With no loss of generaUty, a Grid File for the case of k equal

to two is described. The goal of the Grid File is to perform exact match queries on

pomt data with at most two disk accesses, and to handle range queries efficiently.

The Grid File Is composed of a grid directory consisting of grid blocks which are

stored in buckets (disk pages). There may be one or more grid blocks per bucket, but

all the grid blocks in a bucket must form a rectangle.

The grid directory maps grid blocks to buckets, and consists of a block map and

a set of linear scales. The mapping is such that the bucket regions have the shape of

a box. i.e.. a 2-dimensional rectangle. Several grid blocks may share a bucket, as

long as the union of these grid blocks forms a rectangle. The regions of buckets are

pairwise disjoint, and together they span the entire space. The block map is a 2-

dlmensional array containing an entry for each grid block, and each array element

may contain a pointer to a bucket. The linear scales are a set of 2 arrays which par

tition the domain in each dimension. The block map Is kept on disk, and the imear

scales are kept in main memory. An example showing the retrieval of a record in two

disk accesses using a Grid File is fflustrated in Figure 2.10.6 In Figure 2.10, the first

search argument is year = 1990 and the second is name = "Kolovson". The imear

scales are used to find the appropriate grid block, and then the block map is used to

Figure 2.10 was adapted from INIEV81].

26

find the appropriate bucket. In Figure 2.10. the block map entries contam bucket

numbers, e.g., bucket number 1 is labeled "Bl".

search argument: [1990, "Kolovson",...,]

1960 1970 1980 1990

I I I
A E K i P 1 2 3

I I JL I
1 2 ® 4

2000

©

Bl

B4

•Wh

B2 B3

B5

L
B6

-B8- -B*-

™

data record containing

i desired tuple

[1990. Kolovson,.. ..]

[1

[1

block map

Figure 2.10: Grid File

The first goal of the Grid File Is achieved. i.e., any record may be retrieved with

two disk accesses: one for the grid block and one for the bucket. Range query per

formance is highly dependent on the relationship between the grid block partitions

and the query mterval sizes, as weU as to the distribution and correlation of the .data.

The Grid File is a good mdexing structure for uniformly distributed data. However, if

the distribution of the multi-attribute keys are skewed, the index can waste large

amounts of space. Grid Files were shown to perform poorly on range queries com

pared to multi-dimensional B-Tree variations when the data was correlated and

non-uniformly distributed [KRIE84].

27

2.1.2.3. K-D-B Tree

The K-D-B Tree IROBI81] is analogous to a B-Tree, except that each node covers

a rectangular sub-region of a multi-dimensional space as opposed to a set of disjoint

intervals in a one dimensional space. The K-D-B Tree indexes pomt data in multiple

dimensions, and was one of the first balanced, multi-way, tree-structured mdexing

structures for multi-dimensional pomt data that supported exact match and range

queries. The K-D-B Tree has many similarities with a B+-Tree: it Is a balanced

multi-way tree, all data is stored in the leaf nodes, and aU non-leaf nodes contam

only mdex records which pomt to lower level nodes. Also like a B+-Tree. the mdex

adapts to the data inserted by means of node splitting. An example K-D-B Tree is

iUustrated in Figure 2.11. The dots in the leaf nodes represent the pomt data

records which are contained in the leaf nodes.

root node

Figure 2.11: K-D-B Tree

28

The K-D-B Tree assumes that leaf nodes can always be spUt using only one

dimension. There are examples where this assumption does not hold, such as the

example of [LOME89aJ showing the case where one fourth of the points fall on each

half axis (assuming a two-dimensional K-D-B Tree), as Ulustrated in Figure 2.12(a).

Another more frequently occurring problem that arises in K-D-B Trees is that the

spUtting of a higher level non-leaf node may propagate down to other non-leaf or leaf

nodes, as Ulustrated in Figure 2.12(b). In Figure 2.12(b). If the root node Is spUt vert

ically (as represented by the dashed ime), that vertical split would propagate down to

its two children requiring that they be split as weU. The problem is that any single

plane through the space represented by the mdex may split the space of one or more

descendant nodes. This downward split propagation not only adversely affects the

cost of insertions [GREE891. it also may reduce storage utilization [GREE89.

SALZ89].

(a) i (b)

Figure 2.12 (a) and (b): Problems in K-D-B Trees

2.1.2.4. R-Tree

The R-Tree [GUTT84] is a balanced, multi-way, tree-structured mdex for

representing spatial objects using minimaUy bounding rectangles in k dimensions.

29

k > 1. In this discussion, a two-dimensional R-Tree Is assumed. AU the pointers to

data tuples are stored in the leaf nodes, and the non-leaf nodes contain only index

records. At each level of the index, the region represented by a node minimaUy

encloses all of its descendants. Objects are stored only once in the index, but more

than one search path from the root to a leaf may need to be foUowed for a given

search rectangle, since the regions corresponding to nodes may overlap.

Figures 2.13(a) and 2.13(b) Ulustrate an example R-Tree structure and the spa

tial forms it represents.

Rl R2

R3 R4 RS R6 R7

Rl

R3

iR2 t
i
!'R6
ii

ii
it-._-._-7.

(t)

R4

R5

I

= -±L~
"IR7

"• I

' I
I I

l i _

0>)

ii
ii
ij
i!

. j!

Figure 2.13 (a) and (b): R-Tree

The node entries in Figure 2.13(a) are labeled with the rectangles they correspond to.

The geometric representations of those rectangles are shown in Figure 2.13(b). In an

R-Tree, the indexed spatial objects (rectangles, in the case of a two dimensional R-

Tree) may overlap, and so may the regions covered by the nodes of the mdex. An

30

indexed object may mtersect or be whoUy contained by more than one node.

The R-Tree is based on a heuristic optimization, which is to minimize the area

covered by the non-leaf nodes of the mdex. Minimizmg the amount of mter-node

overlap is not a goal of the original R-TTee insertion and node-spUtting algorithms.

The dual goals of minimizing area coverage and node overlap may sometimes be con

tradictory, as Ulustrated in Figure 2.147, so choosing to minimize area coverage only

is a reasonable strategy. Figure 2.14(a) shows four rectangles which must be spUt

between two nodes. I.e., the capacity of one node Is three rectangles in this example.

Figure 2.14(b) Ulustrates the splits that would be mduced by minimizmg the total

area covered by the bounding rectangles of the two new nodes. Figure 2.14(c) shows

the spUts that would be mduced by minimizmg the overlap between the boundmg

rectangles of the two new nodes.

i. 1--

i i ,
i i .

i i .

i UJ i

(a) (b) (c)

Figure 2.14: Possible spUts in an R-Tree

7Figure 2.14 was adapted from [SAME88].

31

The R-Tree has proven to be a very useful spatial data mdexing structure, and

is very widely referenced in the literature. Recently, it was referred to in [BECK901 as

follows:

"The most popular spatial access method for storing rectangles is the R-Tree... the R-
Tree is based on the point access method B+-Tree using the technique of overlapping
regions. Thus the R-Tree can be easily implemented which considerably contributes
to its popularity."

R-Trees have been successfuUy used in a large Geographic Information System data

base project [SHEN90J. The performance of R-Trees was shown to be quite good for

a variety of data distributions and query types, as compared with K-D-B Trees, R+-

Trees, and 2D-ISAM [GREE89]. Recently, many variations of the R-Tree have been

been proposed, including the R*-Tree [BECK90] and the R+-Tree [SELL871. Among

the strengths of the R-Tree are its slmpUcity and overall good performance. The

mam drawback to the original R-Tree is that overlapping nodes may hinder search

performance for range queries in some cases.

2.1.2.5. R+-Tree

The R+-Tree [SELL87] is simUar to both the R-Tree and the K-D-B Tree, and in

some aspects is more related to the latter than the former. The R+-Tree proposal

was to eliminate overlap among the non-leaf nodes by replicating mdex records in aU

the non-leaf nodes whose regions mtersect a spatial object. However, R+-Trees

require additional space to store the redundant records as compared to an R-Tree.

The R+-Tree may be thought of as an extension of K-D-B Trees to cover spatial

objects, as opposed to points. An Improvement over K-D-B Trees is that nodes of a

given level do not necessarily cover the entire space. However, the R+-Tree shares an

important disadvantage associated with the K-D-B Tree, namely, the problem of

downward spUt propagation. That is, the spUtting of a higher level node may pro

pagate downward to lower level nodes, smce overlap is strictly avoided. A

32

comparison between R-Trees and R+-Trees showed that R+-Trees performed slightly

better when the rectangles did not overlap and a smaU percentage of the space was

covered, and that R-Trees performed better when the rectangles overlapped and

covered most of the space, but the performance difference between the two mdexes

was not substantial [GREE89]. In addition, the complexity of an R+-Tree Implemen

tation is substantiaUy greater than that of an R-Tree. Also, the R+-Tree has the

problem of requiring chaining at the leaf level in order to handle the case when a leaf

is full, has an insert request, and all of its current entries overlap. Therefore, R-

Trees are generally favored over R+-Trees.

2.1.2.6. R*-Tree

The R*-Tree [BECK901 attempts to use four optimization heuristics simultane

ously, namely: (1) minimize the area covered by the non-leaf node regions. (2)

minimize the overlap among the non-leaf node regions, (3) minimize the margin (the

sum of the lengths of the edges of a rectangle) of the non-leaf node regions, and (4)

optimize the storage utilization. AU of these objectives may not be satisfiable simul

taneously. The third optimization objective is particularly noteworthy. For a fixed

area, the object with the smallest margin Is the square. Therefore, the third objective

may be restated as attempting to keep the aspect ratio (the ratio of the horizontal to

the vertical edge) as close to 1 as possible. This heuristic may keep the index data

clustered in multiple dimensions, and thus could improve the search performance of

the index smce inter-node overlap would usually be reduced. This approach

attempts to avoid the occurrence of node regions which are long in one dimension

and short in another.

The changes to the original R-Tree are mainly in the insertion and split rou

tines. In addition, the R*-Tree uses the notion of forced reinserts to periodicaUy

33

redistribute the data in the mdex. Their strategy is that the first node overflow at

each level triggers the reinsertion of p entries from the overflowing node, where p is a

parameter (they suggest p =30% of the node cardinaUty). This may cause a spUt in

the node which caused the overflow if aU entries are reinserted into the same node.

Otherwise, splits may occur in one or more other nodes, or no spUts may occur.

In their experiments, they compared the R*-Tree to Guttman's original R-Tree

for both the linear and quadratic cost split algorithms, and to a variant proposed by

Greene [GREE89] for mdexing several rectangle data distributions and several query

types. Other experiments also compared aU of the R-Tree variants to the Grid FUe

for indexing pomt data. In aU cases, the R*-Tree was shown to be superior.

The modifications suggested for the insertion and split routines to attempt to

optimize their suggested four criteria appear to be sound and merit further experi

mental evaluation. The idea of forced reinsertions may be loosely considered as a

compromise between the packing algorithm for R-Trees originally proposed in

[ROUS85] which is a static method, and the original (dynamic) R-Tree. The packing

algorithm of [ROUS85] requires that the entire set of data be Inserted at once so that

it may be optlmaUy "packed" into an efficient R-Tree. The original R-Tree only per

formed reinserts when a node became under-full resulting from deletions. The

forced reinserts of the R*-Tree incrementally reorganize portions of the mdex over

time, though not guaranteeing any optimal mdex organization. The authors claimed

that the R*-Tree had the best search and insertion performance as compared to aU

the other R-Tree variants, and stated that the forced reinserts actually Improved

insert performance by reducing the number of splits.

34

2.1.2.7. Z-Ordering, or Bit Interleaving

The idea of the Z-Ordering IOREN84]8, or bit interleaving, is a simple idea to

utUize conventional single attribute mdexing structures to index data whose key is

composed of more than one attribute, and is an example of the ordering technique

that maps multi-dimensional points into points in a lower dimensional space. The

term Z-Ordering refers to the space filling curve that is traced out by a straightfor

ward application of this method, i.e., bit interleaving using alternating bits in two

dimensions, as iUustrated in Figure 2.15.

Figure 2.15: Z-Order

The pattern in Figure 2.15 suggests a sequence of Z's. The general technique con-

8The concept of the Z-Order is also attributed to [MORT66], and is sometimes
referred to as the Morton Order.

35

sists of transforming a multi-attribute key into one (combmed) mdex key space com

posed of the interleaved bits of the keys of several attributes, and then indexing this

new bit-interleaved key in a conventional one-dimensional mdex, such as a B+-Tree

[COME79]. In this scheme, the method that the bits of the various attributes are

interleaved is fixed. The simplest example of bit mterleavmg of two attributes whose

types have equal size (in bits) is to alternate the bits from each attribute, i.e., the odd

bit positions in the combmed key are taken from the first attribute and the even bit

positions come from the second attribute.

The idea of Z-ordering is to Impose a one-dimensional total ordering on a

multi-dimensional space. Since the decisions that determined the ordering (which

are implemented by the chosen mterleavmg method) may not be optimal over the

entire combmed key space, or the assumptions that led to the decision may have

changed over time, a new ordering may be desired at some pomt. An example of this

is that a certain interleaving method may lead to objects which are In close proximity

m the (original) two-dimensional space may be far apart in the (transform) one-

dimensional combmed key space. In order to change the bit mterleavmg method of

an existing mdex which uses this approach, aU of the combmed keys would have to

be recomputed and thus the entire mdex would need to be completely reconstructed.

Smce it is generaUy desirable that mdexes not require such periodic reorganization,

this technique is only of marginal utility as it applies to data whose distributions of

aU the attributes to be indexed are either known in advance or may be fairly accu

rately estimated.

2.1.2.8. R-File

The R-FUe IHUTF901 is another variant of the R-Tree, and its name is somewhat

of a misnomer, as it would seem to suggest that it is a closer variant of the Grid FUe

36

than the R-Tree. which is not the case. This discussion assumes a two-dimensional

R-FUe for mdexing rectangles. The main difference between the R-FUe and the R-

Tree is in the split procedure, and the technique used for encoding the regions that

correspond to nodes. The goal of the R-FUe Is to avoid cUpplng spatial objects so

that an object is associated with at most one node, and also to avoid overlap among

the node regions. The spUt procedure of the R-FUe works as foUows. Nodes are suc

cessively halved, and the split dimension is alternated in a cycUc fashion. However,

rather than creating two nodes which are each half the size of the original node, the

two nodes created are one of the two halves, plus the original node itself. The half-

node chosen is the one that divides the rectangles most evenly between the half-node

and the original. A rectangle is stored in the smallest of the nodes within which it

lies entirely. Once a node is spUt between itself and one of its halves, it may subse

quently be split between itself and its other half. To iUustrate this scheme. Figure

2.16(a) contains 9 rectangles which are to be indexed by both a Grid FUe (Figure

2.16(b)) and an R-FUe (Figure 2.16(c))9.

Figure 2.16 was adapted from [HUTF90J.

(»)

E c-.1

1 I

A-

u

c

l-l
(b)

BB B

(c)

Figure 2.16: 9 rectangles (a) stored in Grid FUe (b) and in R-FUe (c)

37

In both cases, it is assumed that the capacity of a node is 3. Note that in this exam

ple, the entire data space node was split between itself and its left half, and later

between itself and its right half.

Another departure from the R-Tree is that rectangles and non-leaf node regions

are encoded by a pair of numbers representing the level of splitting and the Z-order

node number, as opposed to storing the actual rectangle boundaries. For the exam

ple of Figure 2.16(c), the nodes that contain rectangles are specified by the following

pairs of level and node numbers: 0-0, 1-0, 1-1, and 2-2.

Performance experiments compared the R-FUe to an R-Tree, and the results

showed that the R-FUe had search performance that was approximately 10%-20%

better than the R-Tree. However, primarily due to their region encoding scheme, the

fanout of an R-FUe node was 80 (number of chUdren per non-leaf node) as compared

38

to 56 for the R-Tree. where both had a page size of 1 Kb. Amore fair and meaningful

comparison would be to have compared the R-FUe to the R-Tree usmg the same page

layout, and hence the same branchmg factor. In addition, only one data set was

used in their trials: 48.000 rectangles from a geographic database, consistmg of

"many very smaU rectangles and few large ones", and the data set had a cover quo

tient10 of 5.78. The query regions ranged from 0.25% to 5% of the data space.

Another drawback to the R-FUe as compared to the R-Tree is that the R-FUe

partitions the entire space, whereas the R-Tree only mdexes that part of the data

space that is populated. Therefore, for very non-uniform data distributions, the R-

File wiU perform very poorly. This characteristic is something that the R-FUe shares

with the Grid FUe.

2.1.2.9. GBD-Tree

The GBD-Tree [OHSA90] is another area-based spatial access method. simUar

to the R-Tree and also to the R-FUe, and its name stands for Generalized BD-Tree.

Unlike the BD-Tree [OHSA83] which is a binary tree, the GBD-Tree is a balanced

multi-way tree that stores spatial objects in a hierarchical tree of minimal boundmg

rectangles, like an R-Tree. In this discussion, a two-dimensional GBD-Tree is

assumed. Like the R-FUe. the GBD-Tree spUts node by successive halving and varies

the dimension of splitting in a cycUc fashion. Another simUarity to the R-FUe is the

use of a special encoding scheme to map regions Into Index node subdivisions which

is simUar to the Z-ordering. If a data rectangle overlaps more than one node region,

it is stored only in the node that contains the rectangle's centroid. As in the R-Tree.

10 The cover quotient is defined as the sum of the rectangle areas divided by the
area of the data space, which is an aggregate measure of overlap among the rectangle
data.

39

each non-leaf node entry contains a minimum bounding rectangle which bounds the

union of its descendant nodes, and as in an R-Tree these non-leaf node regions may

overlap.

The only advantage that the GBD-TTee offers over an R-TTee is that insertions

and deletions may be processed more efficiently due to the encoding scheme and

because each object is only stored in the node that contains its centroid. These

features enable the GBD-Tree to descend a unique path from the root to a leaf for an

insertion or deletion of a specified rectangle. However, no apparent advantage is

gained with respect to search performance with respect to an R-Tree. The question

remains as to whether their cyclic halving spUtting scheme wiU provide good search

performance results. Unfortunately, the performance experiments focussed

exclusively on storage utilization and a comparison of frisert performance with the R-

Tree. The most Important comparison, that of search performance as compared to

the R-Tree. was conspicuously omitted. This index also has the drawback of parti

tioning the entire data space simUar to the R-FUe. in contrast to only mdexing the

area covered by the data itself, as is done by the R-Tree.

2.1.2.10. LSD-Tree

The LSD-Tree [HENR89] is simUar to the K-D-B Tree, except that it is

specifically designed to mdex both multi-dimensional pomt and spatial objects. It

uses the transformation technique to map spatial objects Into multi-dimensional

points, but the authors claim that they have avoided the pitfaUs that have been attri

buted to using a straightforward appUcation of the transformation technique. i.e.. the

transform space contains non-uniformly distributed sets of points and often requires

a semi-infinite search (one end of a search mterval along a dimension is unbounded)

m the transform space to process a finite rectangle query. In this section, a 2-

40

dimensional LSD-Tree Is described for storing rectangle data. The transformation

technique maps a rectangle mto a pomt in 4-space by choosing the 4 coordinates of

the lower left and upper right comer points to represent a 2-dimensional rectangle.

Smce the lower bound is always less than the upper bound of the side of each rec

tangle, the points for the rectangle sides only occupy the region on the upper left side

of the main diagonal in the transform space, as was Ulustrated in Figure 2.6.

The LSD-Tree is novel in several respects. It consists of an approximately bal

anced binary tree which is paged onto secondary storage. The paging algorithm

ensures that the number of pages traversed along any two paths from the root to a

leaf node differs by at most one. However, dependmg on the page size, the height of

the balanced binary tree on that page may contam several levels, so the depth of the

leaf nodes are guaranteed to be within a range of 0 to k levels, where k is the max

imum height of the largest balanced binary tree that may fit on one page.

The mdex uses either a data dependent or a distribution dependent split stra

tegy. The former is the conventional spUtting algorithm that divides the split node by

its median value. The latter chooses the spUt dimension and value mdependent of

the values of the objects in the node. An example of this strategy is to spUt a cell

mto two ceUs of equal areas, which would be appropriate if the distribution of the

objects was uniform. The LSD-Tree stands for Local Split Decision Tree, smce the

decision of how to split a node can be chosen on a locaUy optimal basis, i.e.. optimal

with respect to the node to be split and mdependent from other existing node boun

daries. Figure 2.17(a) shows a possible data space partition of a 2-dimensional

LSD-Tree, and Figure 2.17(b) shows the LSD-Tree associated with the data space

41

partition of Figure 2.17(a)11. In Figure 2.17(b), each non-leaf node is labeled with the

dimension and value of the spUt that separates its two chUdren, and each leaf node

is labeled with the bucket number corresponding to the bucket numbers shown in

Figure 2.17(a).

80

60

40

20

0

B4 B9

Bl

B3 B7

B61BB

B2-8
0 20 40 60 80 x

(a) Bl B4 B9 B2 B6 B5 B8 B3 B7

(b)
Figure 2.17: (a) partitioned data space associated with (b) LSD-Tree

The distribution dependent spUt strategy is used to avoid the skewed data dis

tribution that results from the transformation technique. The distribution dependent

spUt strategy adaptively spUts the transform space dependmg on the area of the data

rectangles in the index. If most of the data rectangles are small compared to the

data space then the transform points tend to be located in a thin strip above the

diagonal, and therefore the transform space is spUt so that the two new nodes con

tam equaUy long parts of the diagonal. On the other hand, if the transform points

are more uniformly distributed, then the triangular transform space Is spUt mto two

node such that each one has approximately half the area of the original node. The

11 Figure 2.17 was adapted from [HENR89].

42

method used to avoid the unbounded search problem inherent with the transforma

tion technique is to restrict the search in each dimension to the greatest extent of an

inserted mterval In each dimension.

The authors reported a small number of experimental results which compared

the range query performance of the LSD-Tree to the Multi-Layer Grid FUe [SIX88],

which showed the LSD-Tree had a sUght advantage.

2.1.2.11. Buddy Tree

The Buddy Tree Is described as "a compromise of the R-Tree and the Grid FUe.

but Is fundamentally different from each of them" (SEEG90). The Buddy Tree com

bines the buddy system described in the Grid FUe paper (NIEV81] with the basic con

cept of the R-Tree, except that it avoids overlap among the non-leaf nodes, and it

also avoids the downward spUt propagation problem that arose in the K-D-B Tree

and R+-Tree. In the [k-dimensional) Grid FUe buddy system, a bucket can merge

with exactly one adjacent buddy in each of the k dimensions. The assignment of grid

blocks to buckets is such that buddies can always merge if the total number of

records fits mto one bucket.

The Buddy Tree uses the transformation technique of mapping spatial objects

mto pomts in a higher dimensional space. For rectangles, the transformation

method Is to map the 4 coordmates of the lower left and upper right pomts of the

rectangle into a point in 4-space. As pointed out in the discussion of the LSD-Tree,

these points (in the transform space) are highly correlated and occupy only a smaU

part of the transform space, yet the Buddy Tree is said to perform weU on such dis

tributions.

The mdex Is buUt by successively halving each node that overflows such that

the spUtting dimension is chosen in cycUc order. This method is used in order to

43

maximize the number of possible merge candidates ("buddies") when a merge opera

tion Is caUed for (If a node becomes under-utilized following a sequence of deletions).

This method also eliminates the possibility of downward spUt propagation, smce a

spUt value can always be chosen that wiU not cause lower level nodes to be spUt as a

result of the higher spUt. For example. Figure 2.18 shows the growth of a Buddy

Tree with a node capacity of 412. In Figure 2.18(a), the data node in the upper right

region of the directory node has overflowed (the node marked with O has just

overflowed). In Figure 2.18 (b), the directory node overflows, and In Figure 2.18 (c)

the result is a Buddy Tree of height two. Downward splits are avoided smce a node

region can always be divided in half, and smce aU nodes are divided using the halv

ing approach, it is always possible to separate (physically split) a higher level node

along a previous (logical) split boundary.

12

(a)

(b)

•

0

l-.l
E3 *

1

•
.

•
•

•
113

/

/

/

/

/ / \

3

•

E3 M
•

Figure 2.18(a,b,c): Growth of a Buddy Tree

Figure 2.18 was adapted from [SEEG90].

44

The Buddy Tree uses a technique to increase the fanout of the non-leaf nodes.

The idea is to use a d-dimensional grid with a dynamically varying resolution for

each node. Rectangles are represented by two 2-dimensional pomts specifying the

lower left and upper right corners of the rectangle. Instead of storing the two two-

dimensional pomts as an R-Tree does, each of the pomts Is transformed using a

hash function mto a single value, so that only two hash values (rather than four

coordinates) are stored. The hash function used is the bit-interleaving (Z-ordering)

scheme of [OREN841. This approach increases the non-leaf node fanout substan-

tiaUy, and may be appUed to any tree-structured mdex. In their implementation of a

two-dimensional Buddy Tree, the fanout increased by a factor of 3. and the factor

would increase for higher dimensions.

Although their performance experiments showed the Buddy-Tree to be generally

superior to the Grid FUe. hB-Tree [LOME89a], and the BANG FUe (FREE87J for a

variety of query types and data distributions, the comparison Is somewhat mislead

ing because their node fanout was increased by a factor of 3 usmg a hashing func

tion, and that same technique was not applied to the other mdexing schemes of their

comparison study.

2.1.3. Database Indexing Structures for Historical Data

Research In database access methods for indexing historical data has recently

become active. The earnest work consisted of very simple ideas, which wiU only be

briefly described. [LUM84] suggested a file organization in which historical tuples

are chained in such a way that newer versions pomt to older versions. This

approach would result in extremely bad performance if a query requests data far in

the past. [AHN86J suggested several file organizations for historical data, including

the accession list in which each object has a small directory to access its versions

45

based on time, which is an Improvement over the file organization of ILUM84]. Ann's

approach for secondary mdexing was to use a conventional mdex, such as a B+-Tree,

augmented with mdex record fields containing the endpomts of the mtervals for

which the indexed tuple was vaUd. In addition, he limited his consideration to

mdexes contained only on magnetic disk. The size of such an Index would likely

become prohibitively large and so would not provide good search performance and

would also consume vast amounts of magnetic disk space. For these reasons, his

approach would be of limited utUity.

The more recent proposals have generaUy fallen mto one of two categories:

those that assume that current data are stored separately from historical data, each

with their own access methods and (possibly) on different storage media. Such a

storage system has been referred to as a temporally partitioned store [AHN88]. The

motivations for this storage architecture are that:

(1) current data are likely to have a higher query access frequency, and thus access

to it should be optimized, and

(2) append-only historical data archives wUl tend to become quite large, and there

fore are most likely to be stored on lower cost optical disks.

The other category that these proposals faU mto is that of indexing structures

which do not presume a temporaUy partitioned store. These may be further subdi

vided mto mdexes that are to be exclusively contained on optical disks (particularly

on write-once optical disks), and indexes that are stored entirely on magnetic disk

and assume that the amount of historical data does not exceed some maximum

threshold size.

The six proposals surveyed below span the categories outlined above. The

Write-Once B-Tree [EAST86J and the AUocation Tree [VnT85] are optical disk only

46

schemes. The Time Index (ELMA901 assumes that the historical mdex resides on

magnetic disk, and only grows to a maximum threshold size. The Time-Split B-Tree

(LOME89b] assumes a temporally partitioned storage architecture. The AP-Tree.

Nested ST-Tree, and Nested AT-Tree [GUNA90J may be employed In either an aU

magnetic disk storage system or one composed of magnetic and optical disks. The

Persistent Search Tree (SARN86J may be used In a storage system composed of aU

magnetic, magnetic and optical, or all optical disks. Each of these proposals are

reviewed below.

2.1.3.1. Persistent Search Tree

The Persistent Search Tree (SARN861 was proposed as a useful data structure

for the Planar Point Location Problem, which is the problem of determining the

polygon containing each query pomt. The Persistent Search Tree Is also applicable

for mdexing historical data smce it supports a sequence of time-stamped updates.

Queries to the structure are made with an extra parameter t denoting time, and the

result of such a query is the same as if the query had been made at time t The Per

sistent Search Tree Is based on the notion of limited path copying. The idea of

(unlimited) path copying Is to copy only the nodes in which changes are made. This

impUes that aU nodes which pomt to a changed node must also be copied. The effect

of path copying is to create a set of search trees, one per update, which have dif

ferent roots but share common sub-trees. A drawback of path copying is its non

linear space usage. A search tree usmg the path copying method that contains n

records and has had m updates may be searched (for a specified record and time) in

time Odog m + log n). but requires 0(m log n) space.

Path copying may be eliminated if nodes are allowed to become arbitrarily "fat".

Usmg this approach, changing a pointer In a node is accompUshed by simply adding

47

a new pointer to the node along with the new time stamp. Thus, each node consists

of a key and a set of chUdren pointers. A search tree that uses "fat" nodes and no

path copying requires only 0(m + n) space, but queries take Oitlog m)[log n)) time.

The advantages of both of the above methods (the logarithmic query time of

path copying and the linear space requirement of the 'Tat" node technique) may be

combmed by aUowlng nodes to grow only up to certain amount, i.e.. to use "limited"

path copying. The idea is to allow each node to hold k pointers in addition to its ori

ginal two, where k is some constant. When attempting to add a new pointer to a

node, if the node is full, it gets copied, and a pointer to that new node Is InstaUed in

the parent of the copied node. Therefore, copying propagates up the tree untU a

node with a free slot is reached, or else the root node is copied. This technique is

referred to as the Persistent Search Tree, and it has been shown that this data struc

ture requires O(m) space and that queries take Odog m + log n) time [SARN86].

2.1.3.2. Write-Once B-Tree

The Write-Once B-Tree (WOBT) [EAST86] is an indexing structure for historical

data which utUlzes the path copying technique and was primarily designed for a

write-once storage medium, such as a write-once read-many (WORM) optical disk.

The WOBT is simUar to a B+-Tree, except that mdex records are augmented with

timestamps to indicate when the record was inserted (and hence became valid), and

nodes are spUt either according to their temporal values or data attribute values.

The main emphasis of this index is to keep the most recent versions of records in a

smaU number of nodes, enabling search of the current data (or data within a narrow

time window) to be efficient. The WOBT always performs a time split i.e.. the spUt

value is the current time. Sometimes the WOBT simultaneously performs both a

time split and a key split (a key split is a spUt based on a non-temporal attribute

48

value). Whether a spUt is by key and current time or by current time alone, only the

most recent versions of index entries are copied to the new nodes. An example of a

WOBT node split by key and time is iUustrated in Figure 2.19(a) 13.

50

SO Joe 60 Pete 70 Miry 70 Sue

Now insert: 90 Alice

50 50 70

50 Joe 60 Pete 70 Mary 70 Sue

SO Joe 60 Pete

70 Sue 90 Alice

(»)

so

60 Joe 60 Pete 60 Mary 90 Sue

Now insert: 90 Alice

so SO

60 Joe 60 Pete 60 Mary 90 Sue

,,

60 Mary 90 Alice

(b)

Figure 2.19 (a) and (b): SpUtting in a WOBT

The storage medium is assumed to be a WORM optical disk, and thus Figure 2.19(a)

shows that the old node remains in the database. If there have been many updates,

the number of current versions may be so small that there are not enough current

records to make two new nodes. In this case only one new node is constructed, con

sisting only of the current versions. Figure 2.19(b) Ulustrates a time split WOBT

node. The node splitting poUcy of the WOBT is summarized as foUows.

(1) Always perform a time spUt, usmg the current time as the spUtting time.

13 Figure 2.19 as adapted from [LOME89b|.

49

(2) Perform a key split whenever a fraction / or more of the overflowing node con

sists of current data [fis a parameter)14.

The policy of time-domain-only spUtting accompUshes the desired effect of con

centrating the current data in a smaU number of nodes. However, this also leads to

many records having redundant copies in the mdex. In addition, usmg a WOBT on a

WORM optical disk wUl waste a great deal of space, smce each new entry must use

an entire block.

2.1.3.3. Time-Split B-Tree

The Time-SpUt B-Tree (TSBT) [LOME89b. LOME901 is an adaptation of the

WOBT for a temporaUy partitioned storage architecture [AHN881. As in the WOBT.

mdex records are augmented with timestamps to indicate the time that the record

was mserted (and thus became valid). A relation that is contained in a temporally

partitioned store is divided between a current data relation and a historical data rela

tion, each with its own access methods and (possibly) separate storage media. As

records are deleted or updated in the current data relations, they are mcrementally

migrated to the historical data relations. In the case of the TSBT, migration is done

one node at a time.

The flexibility offered by the rewritabUity of the magnetic disk portion of the

TSBT aUowed changes to be made to the spUtting policy of the WOBT in order to

Improve storage utilization and control the fraction of redundant records. The TSBT

differs from the WOBT in that (l)ina time spUt, nodes may be spUt using any time

after the last spUt time (as opposed to only usmg the current time as the spUt value),

14 Values suggested for / are between 1/2 to 3/4 the capacity of a node
(EAST86J. [LOME90] used /= 2/3 when they compared the WOBT to their Time-
SpUt B-Tree in a simulation study.

50

and (2) nodes may be spUt by attribute value and not by time. In the case of time

spUts, the older versions of records are written mto the historical database whUe the

newer versions are kept in the current database. The versions of records that are

valid across the split time must be present in both the historical and current data

bases.

A spUt entirely by key would be appropriate If the full node contained only new

records, i.e., aU are the result of insertions and none are the result of updates. Smce

it would not make sense to make a time split in this case, a split by key is performed.

A time split in a TSBT may be performed usmg a particular time T as the split

ting value. The Time-Split Rule is as foUows.

(1) AU entries with time less than T go in the old node.

(2) AU entries with time greater than Tgo in the new node.

(3) For each key used in some entry, the entry with the largest time less than or

equal to Tmust be In the new node. i.e.. the version valid at the spUt time must

be m the new node.

This method of spUtting forces some redundancy, as all records which persist

through the split time T have copies in both nodes. Two splitting poUcies were sug

gested (LOME90I. and were compared to the original WOBT splitting poUcy (WOB

PoUcy), described in the previous section. The Time-of-Last-Update Policy (TLU) is

as foUows:

(1) Always perform a time spUt unless there Is no historical data, and use the time

of last update as the spUtting time.

(2) Perform a key spUt whenever two thirds or more of the overflowing node con

sists of current data.

51

The TLU policy was chosen because if some insertions are done after the last update,

this policy avoids carrying those insertions into the historical node because they do

not Uve across the time split.

The other split policy is the Isolated-Key-Split Policy (IKS), as follows:

(1) Perform a time split only when not doing a key split, and use the time of last

update as the spUtting time.

(2) Perform a key spUt whenever two thirds or more of the overflowing node con

sists of current data.

The IKS poUcy is so called because it tends to perform more (isolate) key spUts than

the TLU policy, which reduces both the expansion cost?5 and the fraction of redun

dant records in the mdex.

Much work was done in [LOME90] to analyze the fraction of redundant records,

space utUization for single version and multi-version data, and the file expansion

cost for the WOB. TLU, and IKS splitting poUcies. Their analysis assumed a uniform

data distribution, and a uniform probability of update (so the length of the historical

time mtervals was also urUform). These assumptions simplified their analysis, but

are not necessarily reaUstic in practice, and therefore more distributions should be

considered, such as exponential.

No analysis or experimental results were presented which measured the search

performance of this mdex. A conspicuous omission in their work has been the lack

of experimental evidence to show how weU this mdex performs in terms of search

performance, and to compare its performance to that of other candidate indexing

15 The expansion cost is defined as the cost per (version of) record added to
expand the file, in terms of disk accesses, i.e., the number of disk accesses to insert
an mdex record.

52

approaches. From the design of this Index, it appears to be optimized only for

snapshot queries, i.e., queries as of a specific time t in the past, or within a narrow

time window.

2.1.3.4. AP-Tree, Nested ST-Tree, and Nested AT-Tree

The proposal of (GUNA901 contains a taxonomy of query types on historical

data. Four query types are defined: (1) STQueries Involve a conjunction of a time-

invariant primary key and either a pomt or mterval of time; (2) AT Queries involve

time-varying attribute values and tune: (3) T Queries only Involve time: and (4) Mul

tidimensional Queries which may involve arbitrary conjunctions on relational attri

butes. Four distinct time specifications are defined: the current time ("now"), an

arbitrary pomt. an arbitrary mterval [ts, Ul or the whole Ufespan of the entity. A

time pomt may also be specified by special symbols Ts or TE, which specify the

beginning or ending times, respectively, of the time mterval attributes of tuples in a

relation.

Three mdexing structures are proposed: the Append-Only Tree (AP-Tree). the

Nested ST-Tree. and the NestedAT-Tree. The AP-Tree is simUar to a B+-Tree. except

that it grows in a left-to-right fashion In order to exploit the time-sorted insert order

ofhistorical data. Unlike a B+-Tree the depth ofthe right-most leafnodemay be less

than that of the other leaf nodes. Another difference between the AP-Tree and B+-

Tree is that the former has forward and backward links between non-leaf nodes and

their chUd nodes as weU as between sibling leaf nodes, whereas the latter have only

one-way links (from higher to lower level nodes and from left to right siblings, respec

tively). The AP-Tree is used as a nme subindex (an index on the time mtervals

corresponding to tuples) in each of the nested mdexes, which are described below.

53

The Nested ST-Tree is proposed for handling ST-Queries where the primary

qualification is on the time-invariant primary key, hereafter referred to as the surro

gate. The Nested ST-Tree consists of a superindex that mdexes the surrogate, which

is organized as a B+-Tree in which each leaf entry has two pointers associated with

it: one to the current tuple and one to the root of a time subindex. The time

subindexes are a set of AP-Trees on the time attributes.

The Nested AT-Tree Is proposed for handling AT-Queries, and consists of a B+-

Tree superindex on a time-varying non-key (TVN) attribute, and AP-Tree subindexes

on the time attributes. However, smce the TVN attribute is not a primary (unique)

key, tuples that qualify on It are likely to overlap over their associated time mtervals.

To address this problem, several schemes are suggested for partitioning tuples with a

given TVN attribute (or a range of the TVN attribute) over the time dimension in an

attempt to minimize overlap. In the Nested AT-Tree, the leaf nodes of the time

subindexes contain pointers to buckets that are pointer pages, which in turn contam

pomters to disk pages. In the event of a pomter page becoming fuU, overflow pomter

pages are chained together. A stated objective is to minimize the amount of pomter

page overflow and the duplication of tuple pomters in the pomter page buckets.

The Nested ST-Tree was compared to two alternatives: (1) a B+-Tree indexing a

concatenation of the surrogate and the time attributes, and (2) a B+-Tree indexing

the surrogate values only where the associated time attributes are stored in a acces

sion list pointed to by each leaf entry. Their search performance experiments showed

that the second of the two alternatives was the most efficient on the average.

The Nested AT-Tree was not compared to other competing mdexing approaches,

but experiments were carried out to compare the various time dimension partitioning

algorithms. Whereas the time partitioning algorithms are potentiaUy useful, the

54

Nested AT-Tree would appear to suffer from the extra level of indirection introduced

by the pointer pages (between the time subindex and the data tuples), and this

Inefficiency may be further exacerbated when the pointer pages are chained together

as overflows occur. The additional index page accesses introduced by the pomter

pages may hinder the performance of this index as compared to other mdexing tech

niques.

2.1.3.5. The Time Index

The Time Index [ELMA90] is a rather simple scheme, and is suggested for a

storage architecture in which a single mdex is used for both current and historical

data, and this mdex is completely contained on magnetic disk. The assumption is

made that the amount of historical data contained in the mdex Is never allowed to

grow beyond a certain maximum threshold size before It Is purged from the database

(presumably onto optical disk or magnetic tape, at which pomt it disappears from the

mdex!). The Time Index approach Is to store the endpomts of the historical data time

mtervals in a standard B+-Tree. To reduce the amount of data stored in each leaf

node, the complete list of active mtervals is stored only in the first index record on a

node, and then subsequent records store Incremental changes. For indexing both

the time dimension and a non-temporal attribute, the authors suggest a two-level

index, e.g., a B+-Tree on the non-temporal attribute, where the leaf node entry of

each non-temporal attribute pomts to a B+-Tree on the temporal attribute. Their

performance experiments compared search query performance usmg the accession

list file organization (each object has smaU directory to access its versions based on

time) [AHN861. clustering (all versions of an object are clustered on disk blocks), and

the Tune Index combmed with each of these file organizations. They also performed

tests usmg Time Indexes with larger leaf page sizes. Their comparisons showed that

55

using the Time Index was better than not using the Time Index, which is neither an

interesting nor surprising result. The database consisted of 1000 objects, and ver

sions were added based on an exponential distribution for interarrtval times. No

other Information is provided about the size of the database, the mean of the

exponential distribution, or the length of the mterval queries. It appears that only a

small fraction of the database was accessed by each interval query.

The problem with their approach Is that if there are a large number of long

mtervals. the amount of data that would be required to be stored In the leaf nodes

would increase substantially, thus making the index very large. Also, the mdex

would become very large in size and yet only a small fraction of the more recent data

would likely be accessed. The authors rejected the notion of having separate mdexes

for the current data relations and historical data relations of a temporaUy partitioned

storage system and claimed that their indexing structure is intended for both current

and historical data. However, later they say the following:

"Because the append-only nature of such a temporal database will eventually lead to
a very large file, we assume that a purge {L) operation is available. This operation
purges allversions rwith r.vaHd_t1me.t^ < tp by moving those versions to some form of
archival storage, such as optical disk or magneUc tape."

Therefore, what they are actuaUy proposing is an mdexing structure for a combmed

current and historical data relation whose span of history is finite. In fact, they have

proposed an mdex for a current data relation in a temporaUy partitioned storage

architecture and have ignored the task of indexing the historical data relation!

The authors pointed out the special properties of temporal data represented as

a sequence of mtervals: there is no total ordering of the data, smce it is composed of

Intervals with two endpomts such that the mtervals may overlap, a large number of

long and short mtervals can exist at a particular time pomt, and the data space is

unbounded to the right as opposed to being fixed. They further claimed that a

56

spatial access method based on regions, such as the R-Tree. are unsuitable for

mdexing mtervals representing historicaldata because the mtervals are Ukely to have

a high degree of overlap which would pose problems for conventional spatial access

methods which mdex data based on minimally enclosing rectangular regions, and

the data space is continually expanding to the right so that traditional mdexes which

assume a fixed data space may not be suitable. However, the authors did not con

sider modifying spatial access methods to address these problems. Furthermore,

their performance experiments merely showed that their mdex was better than no

mdex, as opposed to some other mdexing scheme. A more interesting experiment

would have been to compare their approach to one of the spatial access methods,

which would have substantiated their out-of-hand rejection that spatial access

methods are not useful for mdexing historical data.

2.1.3.6. Allocation Tree

The Allocation Tree IVITT85] Is an mdex for a write-once optical disk that was

primarily designed for efficiently locating the most recently allocated block on a

write-once medium. The author also claimed that It is a suitable indexing structure

for historical data. The mdexing structure may be classified as a pointer fUl-in

method [RATH84], i.e.. it impUcitly assumes that disjoint pieces ofa write-once opti

cal disk page may be written, so that pomter fields may be fiUed In after an initial

portion ofa page has been written. Currently, most WORM optical disks do not pro

vide such a facUity.

The basic idea of the AUocation Tree is that it Is a linked Ust of successively

taller multi-way trees, where each sub-tree is grown In a top-down fashion. Data

records may be stored both in the non-leaf and leaf nodes, and the records are time-

stamped so that the mdex may be searched according to its temporal attributes.

57

This mdex was not expressly optimized for a historical data mdexing structure,

but it does provide the necessary functionaUty. The author provided no experimental

evidence to support the merit of this mdex. This thesis compares the search perfor

mance of this mdex to an alternative approach in Chapter 5.

2.2. Summary

This chapter has surveyed the previous work that has been done in the field of

data structures and database mdexmg techniques that support the indexing of mter

val data, spatial data, and historical data. Data structures for mdexing interval data

have been proposed in the field of Computational Geometry, and most of those pro

posals are based on binary search trees. Spatial data mdexing techniques may be

categorized as falling mto one or more of the following approaches: the ordering tech

nique, the transformation technique, the clipping technique, and the overlappmg

ceUs technique. Historical data mdexing methods are based on variations of the

path copying technique or on methods involving nested mdexing structures.

CHAPTER 3

SEGMENT INDEXES

3.1. Introduction

In this chapter, new techniques are proposed for mdexing mterval data in K

dimensions, K>1, which are based on a set of extensions to existing database

Indexing structures. These extensions may be applied to multi-attribute spatial data

mdexing structures such as R-Trees. In this chapter, the notions of Segment Indexes

and Skeleton Indexes are presented as techniques for mdexing multi-dimensional

mterval data. In addition, a comprehensive set of experimental results are reported

which show the performance characteristics of these indexing techniques.

Interval data may be characterized by a set of ordered pairs [I u) that specify

lower and upper bounds in K dimensions, K > 1, i.e., [[l\, u\), (I2. U2) dk> "fc)l- To

buUd efficient structures to mdex such a collection of data, this work proposes to

combine aspects of a memory resident data structure (the Segment Tree [BENT77])

from Computational Geometry with those of a class of disk oriented indexing struc

tures from Database Management Systems to provide efficient mdexing techniques

for multi-dimensional mterval data in a database environment where only a smaU

portion of the Index may reside in main memory at a given time. As an example,

aspects of the Segment Tree are merged with features of the R-Tree [GUTT84]. and

the resulting mdexing structure is referred to as the Segment R-Tree, or more suc

cinctly as the SR-Tree. The R-Tree Is a K-dimensional variation of the B-Tree

58

59

[BAYE72] which indexes data consisting of mtervals in K dimensions, K £ 1. Both

the R-Tree and SR-Tree may be used for indexing Une segment data (mtervals in one

dimension) or spatial data (mtervals in K dimensions. K > 1).

This chapter proceeds as foUows. Section 2 presents the tactics and motivation

for this work. Section 3 describes the algorithms used by the SR-Tree. Section 4

presents the notion of adaptable pre-constructed mdexes. which are referred to as

Skeleton Indexes. Section 5 discusses the results of performance experiments which

compare the performance of the SR-Tree and Skeleton SR-Tree presented in Sections

3 and 4, respectively, to that of the R-Tree. Section 6 contains a summary and con

clusions.

3.2. The Segment Index Approach

The Segment Tree data structure [BENT77] stores ime segments in a binary tree

by storing the segment endpomts in the leaf nodes, and then associates each seg

ment with the highest level node N that spans the values corresponding to the left

and right chUdren of N. A segment Si is said to span another segment S2 if

Si.lowJimit<S2.lowJimit and Si.highJimtt'ZS2.highJimiL The work of this

chapter Is concerned with adapting Segment Trees to Sepmenf Indexes, i.e., to extend

the Segment Tree strategy from binary trees in main memory to multi-way trees

which are paged onto secondary storage.

The motivation for Indexing Une segment data in a database system were men

tioned m Chapter 1, i.e., to improve the performance of spatial mdexing structures,

to provide an efficient mdexing technique for historical data, and to efficiently mdex

one-dimensional mtervals and pomt data in a single mdex. This following section

presents the tactics used to convert a paged, multi-way, tree-structured database

mdex mto a Segment Index.

60

3.2.1. Tactics

This research proposes three major modifications to tree-structured mdexes to

support efficient search operations on multi-dimensional interval data:

(1) Index records may be stored in non-leaf nodes.

(2) The mdex node size may vary.

(3) The mdex may be pre-constructed based on an estimate of the input distribu

tion, and later made to adapt to the actual input data.

Each of these tactics are further explained in the following sections.

3.2.1.1. Storing Index Records in Non-Leaf Nodes

The first tactic is to allow mdex records to be stored In both non-leaf and leaf

nodes, as opposed to only In the leaf nodes as Is conventionally done. Intervals are

placed m non-leaf nodes according to a certain criterion: namely, an mterval I is

stored in the highest level node N of a tree-structured mdex such that J spans at

least one of the mtervals represented by JVs chUd nodes. By organizing mtervals in

this way, an mdex Is weU-sulted to processmg queries that request aU mtervals that

contain a given pomt, or that mtersect a given range.

In addition, there are advantages to this approach that are specific to certain

spatial indexing techniques, such as the R-Tree and R+-Tree. As explained in

Chapter 2, R-Trees allow overlap between node regions and do not partition the

Input data, whereas R+-Trees disaUow overlap among the node regions but do parti

tion the input data if the data intersects more than one node region. If R-Trees were

able to store "long" intervals In higher level nodes, there would be less node overlap

because the leaf nodes would contain mostly "short" mtervals. Overlappmg nodes

degrade search performance in R-Trees. smce aU non-leaf nodes that intersect a

61

given search region must be searched. The problem with storing "long" mtervals in

leaf nodes is that doing so tends to exacerbate the overlap problem by elongating the

nodes that contain them. SlmUarly, If R+-Trees were aUowed to store "long" Intervals

in higher-level nodes, the lower-level nodes would have fewer replicated index

records (fewer partitioned mtervals). Storing a "long" mterval in a higher level node

as a single mdex record Is more space efficient than the R+-Tree approach of break

ing it up mto many sub-intervals and storing them in a set of leaf nodes.

3.2.1.2. Varying the Index Page Size

To support the first tactic, it may be desirable to have larger node sizes at suc

cessively higher levels in a tree-structured mdex. Since external index records

(pomters to data records) and internal node branches (pomters to other mdex nodes)

share space on a non-leaf node in a Segment Index, a non-leaf node with a large

number of externalmdex records wUl have reduced fanout. In order to maintain high

fanout m such an mdex, it is desirable to increase the size of a node at each succes

sively higher level of the mdex.

3.2.1.3. Skeleton Indexes

A Skeleton Index Is an adaptable pre-allocated mdexing structure which is buUt

using estimates of the mput size (number of tuples) and value distribution. After the

Initial mdex is constructed, the Index dynamically adapts to the input data. The

motivation for Skeleton Indexes is to provide a more regular decomposition of the

regions covered by the non-leaf nodes of the mdex. so that "long" intervals wUl be

more Ukely to span lower level nodes, as discussed in Section 2.1.1 of this chapter.

62

3.3. An Example Segment Index

The central concept underlying Segment Indexes Is that mtervals which span

lower level nodes may be stored in the higher level nodes of an mdex. The manner in

which this may be applied to a particular mdexing structure depends both on the

original structure and the type of data being mdexed. In this section, the design of

one Segment Index is presented by describing the required modifications to the algo

rithms for Insertion, node-spUtting, and search operations. The mdex Is based on

the R-Tree, and may be used for mdexmg historical data or spatial data.

3.3.1. SR-Tree

The SR-Tree is defined as the Segment Index adaptation of the R-Tree mdex. In

this section, the insertion, node spUtting, and search algorithms utilized by the SR-

Tree are described. The algorithm descriptions given below are extensions to the ori

ginal R-Tree algorithms as presented in [GUTT841. which are not repeated here.

With no loss of generality a two-dimensional SR-Tree (K = 2) is described. Exten

sions to the cases of K = 1 or K > 2 are straightforward.

3.3.1.1. Insertion Algorithm

To insert an mdex record R into an SR-Tree. the index is searched top-down,

depth-first, beginning with the root node. Each branch mdex record B (which con

tains a pointer to a chUd node) of a node JV is tested to determine if the region of the

node pointed to by B is spanned by R If it is, then R Is a spanning indexrecord, and

it is Inserted onto node N and linked to the Ust associated with B. and the insertion

of the record Is completed. For each branch mdex record, there is a list of its span

ning mdex records. If R is a 2-dimensional rectangle as opposed to a 1-dimensional

segment, then R is a spanning mdex record if it spans Fs region in either or both

dimensions.

A non-leaf node containing a spanning segment is iUustrated in Figure 3.1.

entry El for
nodeB

region

corresponding

to node B

segment, "SI",

spanning node B

(node B's (segment Si's

coordinates stored in coordinates stored in

El of node A) E2 of node A)

Figure 3.1: SR-Tree storing a spanning segment

node A
entry E2 for

segment SI

63

In this figure, node A contams a branch mdex record labeled E1 which contains a

pomter to chUd node B. Since segment S1 spans the region covered by node B, but

not that of node A, SI Is stored in a spanning mdex record labeled E2 on node A,

and E2 is linked to the list of spanning Index records of branch index record El.

A spanning Index record spans the region covered by a child of some node N on

which it is stored and therefore cannot span the region of N itself. However, a span

ning mdex record may extend beyond a boundary of N (the parent of the spanned

node) in one or more dimensions. If that Is the case, the data item is cut into a span

ning portion and one or more remnant portions, and the remnant portion(s) are

inserted mto the mdex usmg the same msertion algorithm that was appUed to the

64

original record.

An example of a segment cut mto spanning and remnant portions is Ulustrated

in Figure 3.2. In this figure, the original segment spans node C. but not Cs parent

(node A). However, smce the segment does extend beyond one border of Cs parent

node, the segment Is cut mto a spanning portion (which spans node C and is fully

enclosed by Cs parent), and a remnant portion (which extends beyond the boundary

of Cs parent). Smce the remnant portion does not span any node, it Is stored in leaf

node E.

The alternative to cutting mdex records mto spanning and remnant portions is

to stretch nodes to minimally enclose their spanning mdex records, but this has the

disadvantage of degrading the search performance of the mdex due to mcreasmg

node overlap. The disadvantages of cutting mdex records are: (1) the space overhead

of storing potentially more than one mdex entry per data item, and (2) the need to

search the entire index for related spanning/remnant mdex records when modifying

a single (logical) mdex record. However, these disadvantages are usually not

significant because (1) the need for cutting index records arises only in the infre

quent event that a spanning mdex record is not already enclosed by the parent of a

spanned node, and (2) historical data mdexes only need to support msertion and

search operations, thus obviating the need for modifying mdex records.

planar
representation

lroot
/

^l
D

a
E

hierarchical
root

representation -i r-

*

Dspanning .
portion

y \
B c E

original segment

remnant

portion

65

Figure 3.2: Cuttmg a segment mto spanning and remnant portions

If the mdex record R to be Inserted does not span any of the regions of the

branches on the root node, the branch B is chosen that requires the least area

expansion to fully enclose R1 The insertion algorithm is recursively appUed to the

node pointed to by the selected branch B. If the recursive descent of the mdex

reaches a leaf node L, the mdex record R to be mserted does not span any non-leaf

nodes and wUl be mserted on node L. After the mdex record R is inserted on node L,

the region covered by each non-leaf node encountered during the recursive descent

is expanded (if necessary) to minimally enclose the newly inserted mdex record.

'The strategy of selecting the branch requiring least area expansion is the same
as that employed by the original R-Tree, which attempts to rninlmlze the total area
covered by the union of the non-leaf node regions.

66

The algorithm stated above for msertion is not complete, as it requires one

further enhancement to deal with the possible demotion (moving to a lower level

node) of spanning mdex records. This possibUity arises if a node whose region has

expanded due to the insertion of a new mdex record breaks former spanning rela

tionships, thus requiring the demotion of one or more (former) spanning mdex

records. That is, if a node was recently expanded to accommodate a new object, that

expansion may have increased the region of the node in such a way that mtervals

which previously had spanned the node before the expansion no longer do after the

expansion. To handle segment demotions, each node that has been expanded is

checked to determine whether It has any demotable spanning mdex records (I.e.,

formerly spanning mdex records which no longer span any branch on the node).

Each such demotable mdex record is removed from its node and reinserted mto the

mdex.

3.3.1.2. Node SpUtting Algorithm

When a node in an SR-Tree has every entry In use and an attempt is made to

insert a new entry onto that node, the node is said to overflow. When a node

overflows, it is split into two nodes and its original contents are distributed between

the two new nodes. For leaf nodes, the algorithm for node splitting is identical to

that of the orlgmal R-Tree algorithm. For non-leaf nodes, there are two differences

with respect to the orlgmal R-Tree node spUtting algorithm. The first difference is

that an R-Tree node may overflow due to an attempt to insert a new branch onto an

already full node, whereas an SR-Tree node may overflow due to an attempt to Insert

either a new branch or a spanning mdex record onto an already full node. The

second difference is that if a set of branch entries (pomters to chUd nodes) are

transferred to a new sibling node as a result of a spUt, the spanning mdex records

67

that are linked to those branches must also be "carried over" to the new sibling node.

The process of spUtting a non-leaf node in an SR-Tree is Ulustrated in Figure

3.3.

before
split:

after
split:

Bl B3

S3
SI

B2 DA

S4
S2

B5

1 1

Bl

SI

A \

S2

B5

1 1

B3

S3

I34

S4

Figure 3.3: Splitting a non-leaf node in an SR-Tree

The top of Figure 3.3 shows a fuU node (before bemg split), where some entries are

branches (labels begin with B) and the other entries are spanning segments (labels

begm with S). The bottom of Figure 3.3 shows the two resulting nodes after the spUt

of the original node. In this figure, the branches are distributed according to the R-

Tree node spUtting algorithm, and the spanning segments are then transferred to the

node that contains the branch that they are linked to.

The algorithm stated above for node spUtting is not complete, as it requires one

further mechanism to handle the possible promotion (moving to a higher level node)

of spanning mdex records. This issue arises when a node N is spUt and its contents

68

are distributed between Nand its new sibling, N-sibling. Spanning mdex records on

these two new nodes may need to be promoted to their parent node, smce after the

spUt some spanning mdex records may span Nor N-sibling. To process mdex record

promotions, after a node N is spUt. all spanning mdex records on these nodes are

checked to determine if they span the region of N or N-sibling. Each one that does is

removed from its node, mserted onto its parent node, and linked to the branch of the

node which it spans.

3.3.1.3. Search Algorithm

The SR-Tree search algorithm is simUar to that of the orlgmal R-Tree. The

search algorithm is passed a search rectangle S. and the queryconsists of finding aU

rectangles that mtersect S. The algorithm descends the mdex depth-first, descend

ing only those branches that mtersect the given search rectangle S untU the qualify

ing data records are found in a set of leaf nodes. In addition, at each node encoun

tered during the search of the mdex. all spanning index records are examined to

determine if they have a non-zero mtersection with S. Smce spanning mdex records

contained by a node N are whoUy contained by N, aU spanning mdex records that

have a non-zero mtersection with S are guaranteed to be found by the search algo

rithm.

3.4. Skeleton Indexes

The standard R-Tree and SR-Tree Insertion algorithms begm with a single node,

and perform splits as nodes overflow, similar to a B-Tree. The main strategyused by

R-IYees. and hence SR-Trees, with regard to mdex record placement and node split

ting decisions is to nilnimize the total area covered by the union of the non-leaf node

regions. This algorithm is not always optimal for the SR-Tree, however, smce the

shapes (i.e., the horizontal-to-vertical aspect ratios) of the regions covered by the

69

non-leaf nodes are difficult to control. The two difficulties for the SR-Tree that arise

as a result of this problem are that (1) nodes may have regions whose aspect ratios

are extremely large or smaU, thus reducing the potential for "long" intervals to span

lower level nodes, and (2) nodes may have a high degree of overlap. Both of these

problems are sensitive to the order of msertion. In particular, they may be partiaUy

aUeviated by applying a packing algorithm, such as that suggested by [ROUS85].

However, such an approach Is a static method which requires that aU of the data be

avaUable before the mdex is constructed. Since the SR-Tree is designed to be a

dynamic mdex, an alternative solution to the two aforementioned problems is to use

a pre-aUocation scheme which we refer to as the Skeleton SR-Tree.

.\

•_*_, » . w <L » . -X- * _JC_ . *

Figure 3.4: A Skeleton SR-Tree

A Skeleton SR-Tree Is an SR-Tree mdex which pre-partltions the entire domain

mto some number of regions. If the mput data Is uniformly distributed, partitions

should be of equal size at each level of the index, as iUustrated in Figure 3.4. The

70

number of levels and sub-regions at each level depend on estimates of the number of

records to be mserted, the mput data distribution, and the node branching factor at

each level. At each level, the branchmg factor of a node depends on the node size

and the number of node entries that are reserved for branch entries (as opposed to

spanning index records). Once a Skeleton Index Is buUt. It Is populated by inserting

index records in any order.

A Skeleton SR-Tree is buUt in a top-down fashion as follows. First, the number

of nodes at each level of the mdex is computed, based on the node fanout at each

level. The fanout at each level Is a function of the node size and the number of node

entries that are reserved for node branch entries, as opposed to spanning mdex

records. The number of entries on a node that are reserved for branches may be

some fraction of the avaUable entries, e.g. 1/2. 2/3. or 3/4. and is chosen based on

the expected number of spanning mdex records. Assuming the fanout at each level

is stored in an array caUed fanout the number of nodes at each level and number of

levels are computed by the foUowing loop (using pseudo-C notation):

n = numberjofjtuples;
/• number_of_tuples is the expected... •/
/* ...number of tuples to be inserted */

level = 0;
/* level zero is the leaf level */

whUe (n > 1)

}

number^ofjnodesievei - <
n =s numberjofjfxodesieuei,
level- level + 1;

n I fanouUeuei

numberjofjievels - level:

In the calculation above, the reason why the number of nodes at each level is

rounded up to be a number whose square root Is integral is so that the Index may be

initially constructed with an equal number of partitions in each dimension. primarUy

71

for slmpUcity. Therefore, the number of partitions in each dimension at level i is the

square root of the number of nodes at level L2 Once the number of levels and number

of nodes at each level of the mdex are computed, each dimension of the mdex is

pre-partitioned based on the expected distribution of the mput in each dimension. If

the mput data distribution is known in advance, it may be specified by a histogram

for each dimension. Given such a set of histograms, the mdex is constructed one

level at a time, in a top-down fashion. At each level of the mdex. information from

the histograms and the number of partitions per dimension are used to determine

the partition values in each dimension of the mdex.

The Skeleton SR-Tree scheme described above works weU when the mput data

distribution is either uniform or has a known distribution. An example showing the

partitioning of a Skeleton SR-Tree root node based on a given non-uriiform distribu

tion is Ulustrated in Figure 3.5.

When the mput data distribution is unknown, one approach is to assume uni

formly distributed data and buUd the corresponding uniform Skeleton Index, and

later adapt it to the actual data through node splitting and merging.

2We have assumed a two-dimensional Skeleton SR-Tree. If the number of
dimensions were D, D > 2, then we round-up the number of nodes at each level so
that their D-th roots are integral.

data

density

function

provided

as input

partitioning

of root

node

based on

data

density

5%

45%

45%

5%

Figure 3.5: Partitioning a Skeleton SR-Tree root node based on
a given non-uniform distribution

72

An alternative approach to starting with a uniform Skeleton Index Is to use a tech

nique which wUl be referred to as distribution prediction The idea of distribution

prediction is to buffer the first T tuples in main memory, and compute a histogram of

the initial mput data in each dimension, and then construct a Skeleton Index based

on those histograms. In the performance experiments described in the next section,

values of T as smaU as 5-10% of the expected number of tuples inserted worked

weU.3

3 Smce the input data in the experiments were generated usmg random number
generators, it is to be expected that distribution prediction would be highly effective
in those cases.

73

Smce distribution prediction may not always predict the exact data distribution.

Skeleton Indexes must be adaptable. In particular, high-density regions must

become finer grained, and sparsely populated regions must become coarser grained

High-density regions are made finer grained through conventional node spUtting. as

m the SR-Tree. Sparsely populated regions that are spatially adjacent are merged, or

coalesced The frequency of checking for nodes to coalesce may be a parameter (e.g..

after every I insertions), and additional measures may be used to restrict the nodes

that are potential candidates for coalescing. For example, statistics may be collected

to keep track of the L least frequently updated non-empty nodes, and only those

nodes may be candidates for coalescing. The combination of mdex pre-construction

based on distribution prediction and subsequent fine-tuning usmg node spUtting

and coalescing has proved to work weU in practice, as demonstrated in the following

section.

3.5. Performance Experiments

A series of experiments were carried out to compare the performance of R-Trees,

SR-Trees. Skeleton R-Trees. and Skeleton SR-Trees. The SR-Trees reserved 2/3 of

the non-leaf node entries for branches to lower level nodes, thus reserving 1/3 of the

entries to store spanning mdex records. The Skeleton Indexes used distribution

prediction by computing histograms in two dimensions based on the first 10.000

tuples, plus node spUtting and coalescing. The search for nodes to coalesce was trig

gered after every 1,000 Insertions among the 10 least frequently updated non-empty

nodes. The node size at the leaf level was 1 Kb, and was doubled at each successive

level for all of the mdex types.

There were eight types of mput distributions, and for each type, two data sets

were used: one containing 10s tuples and one with 2 x IO5 tuples. In aU cases, the

74

range of mput data values was between 0 and IO5 in two dimensions. The mput dis

tribution types are summarized below.

Interval data distributions (Y-values: points; X-values: mtervals):

11. Uniform Y-value & uniform size distribution Y-values: uniformly distributed

over (0, 1051; X-values: mterval center-points uniformly distributed over (0.

IO5], difference between mterval endpomts unUbrmly distributed over [0, 1001.

12. Exponential Y-value & uniform size distribution Y-values: exponentially distri

buted with parameter p = 7000; X-values: same as II.

13. Uniform Y-value & exponential size distribution Y-values: same as II; X-values:

mterval center-points unUbrmly distributed over 10, 1051. difference between

mterval endpomts exponentiaUy distributed with parameter p = 2000.

14. Exponential Y-value & exponential size distribution Y-values: same as 12; X-

values: same as 13.

Rectangle data distributions (X- and Y-values: mtervals):

Rl. Uniform center-point and uniform size distribution X- and Y-values: interval

center-pomts uniformly distributed over 10, 105J. difference between mterval

endpomts uniformly distributed over [0, 100).

R2. Exponential center-point & uniform size distribution Y-values: mterval center-

points distributed exponentiaUy with parameter p = 7000; X-values: mterval

center-points uniformly distributed over [0, 1051; X- and Y-values: difference

between interval endpomts uniformly distributed over (0, 100].

R3. Uniform center-point and exponential size distribution X- and Y-values: mterval

center-points uniformly distributed over (0, IO5], difference between mterval

endpomts exponentially distributed with parameter p = 2000.

75

R4. Exponential center-point & exponential size distribution Y-values: mterval

center-points distributed exponentiaUy with parameter p = 7000; X-values:

mterval center-points unUbrmly distributed over (0, IO5]; X- and Y-values:

difference between mterval endpomts exponentiaUy distributed with parameter

p = 200.

In each experiment, the entire set of data was mserted In random order, and

then a number of random searches were performed over the mdex. where the search

argument was a query rectangle of area 1.000.000. The horizontal-to-vertical aspect

ratio of the query rectangle (hereafter referred to as the query aspect ratio, or QAR)

varied over 0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 100, 1000, and 10000.

For each QAR, 100 random search rectangles were generated whose center-points

were uniformly centered over the domam and each was used to perform a search of

the mdex. During each search, the number of mdex nodes accessed was recorded.

FoUowmg each set of experiments, for each mdex type and value of QAR the average

number of nodes accessed per search was calculated.

3.5.1. Results of Performance Experiments

Graphs 3.1 and 3.2 show the search performance results (as measured by the

number of mdex nodes accessed) of the four mdex types on the mterval data distri

butions II and 12 containing 10s tuples, respectively.

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
UNIFORMLY DISTRIBUTED DATA (100.000 TUPLES)

AS A FUNCTION OFTHE QUERY ASPECT RATIO

X Axis =horizontal/vertical query aspect ratio Gog base 10)
Y Axis = averagenumber of nodes accessed per search

460t j-2-- ! !-

402r~f~~!-~4~
345 "V-t"-|---f•

288"

230t"-y"
172t fr

115

58

0

\:
-He

•4-3-2-101234
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

Graph 3.1: Line segment data; Interval length distribution:
Uniform [0.100]

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR 100.000
EXPONENTIALLY DISTRIBUTEDON VERTICAL DIMENSION)

TUPLES. AS A FUNCTION OFTHE QUERY ASPECT RATIO

X Axis =horizontal/vertical query aspect ratio Gog base 10)
Y Axis = averagenumber of nodes accessed per search

340t r2-! ! ! ! ! !—i

-3-2-10 1 2
- Non-Skeleton R-Tree

—-• Non-Skeleton SR-Tree
— Skeleton R-Tree
— Skeleton SR-Tree

Graph 3.2: Line segmentdata;
Interval lengthdistribution: Uniform [0. 100]

76

77

The vertical axes of these graphs plot the average number of mdex nodes accessed

per search, and the horizontal axes plot the logarithm (base 10) of the QAR In these

graphs, both of the non-Skeleton Indexes had identical performance, and the Skele

ton Indexes had nearly identical performance. This is because all of the mtervals

were relatively "short" (uniformly distributed over [0. 100]), and therefore there were

no spanning segments to differentiate the SR-Tree from the R-Tree's performance

characteristics. Both of the non-Skeleton Indexes performed much worse than the

Skeleton Indexes in the vertical QAR range (log of QAR less than zero, hereafter

referred to as the VQAR range). This Is because the non-Skeleton Indexes exhibited

a great deal of horizontal overlap smce the data consisted of horizontal segments,

whereas the Skeleton Indexes exhibited much less overlap. In Graph 3.1. in the hor

izontal QAR range (log of QAR greater than zero, hereafter referred to as the HQAR

range), the Skeleton Indexes performed better than the non-Skeleton Indexes. In

Graph 3.2, the Skeleton Indexes performed better than the non-Skeleton Indexes up

to a QAR of 1.000. In Graph 3.2 in the HQAR range above 1.000. the non-Skeleton

Indexes had a slight advantage. The difference in performance between the Skeleton

and non-Skeleton Indexes was much greater in the VQAR range than in the HQAR

range. The reason for this and the cross-over effect in Graph 3.2 is that the non-

Skeleton Index non-leaf nodes covered regions that were mostly horizontal, resulting

from the preponderance of vertical splits which was a direct result of the type of data

bemg mdexed, i.e., horizontal Une segments. Most R-Tree (and SR-Tree) node splits

were vertical because horizontal ime segment data exhibits overlap in the horizontal

dimension, but none In the vertical dimension, thus making vertical splits the only

viable choice in most cases. This characteristic gave the non-Skeleton Indexes a

slight advantage in the HQAR range above 1,000 in the case of exponentially distri

buted data (Graph 3.2). but also a large disadvantage in the VQAR range.

78

The reason why there was a "cross-over" in performance between the non-

Skeleton and Skeleton Indexes in Graph 3.2. but not in Graph 3.1. is due to the

varying extent to which the entire space was covered by overlapping nodes in the

case of the non-Skeleton Indexes. In Graph 3.2, the exponential Y-value distribution

caused the Skeleton Index partitions to be "short" at the low end and "long" at the

high end of the vertical dimension, while the non-Skeleton Indexes had a high con

centration of mostly horizontal overlappmg non-leaf node regions in the low end of

the vertical dimension. For very horizontal queries (QAR > 1,000), the mostly hor

izontal, highly overlappmg non-leaf nodes of the non-Skeleton Indexes provided

slightly better performance than the somewhat less horizontal and mostly non-

overlapping regions of the non-leaf nodes of the Skeleton Indexes. The cross-over

effect was not present in Graph 3.1. in which the experiments mvolved uniformly

distributed data values. In that case, smce the data was more "spread out", the total

area covered by highly overlapping non-leaf nodes in the non-Skeleton Indexes was

greater than in the case of the exponentiaUy distributed data experiments in which

the overlappmg nodes were more concentrated in the lower end of the vertical dimen

sion.

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
UNIFORMLY DISTRIBUTED DATA (100,000 TUPLES)

AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis =horizontal/vertical query aspectratioGogbase 10)
Y Axis = averagenumber of nodes accessedper search

740r

"-4 -3-2-10 1 2
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

Graph 3J: Line segment data:
Interval length distribution: Exponential(2000)

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR 100.000
EXPONENTIALLY DISTRIBUTED ON VERTICAL DIMENSION)

TUPLES, AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspectratio Gogbase 10)
Y Axis = average number of nodes accessed per search

560i «-=-i 1 1 1 1 1—T

490

420

350

280

210

.V»4
V i

..i.|
\ •

--U
\!
\ •-
:v

"-4 -3 -2 -1 0 1 2 3 4
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
*— Skeleton R-Tree

Skeleton SR-Tree

Graph3.4: Line segment data:
Interval length distribution: Exponenual(2000)

79

80

Thus, given a uniform distribution of query rectangle center-points, the performance

of the non-Skeleton Indexes was degraded due to overlappmg nodes to a greater

extent in the case of the uniformly distributed data (Graph 3.1) than in the case of

the exponentially distributed data experiments shown in Graph 3.2.

Graphs 3.3 and 3.4 show the results for the exponential mterval length distri

butions. These graphs show that the Skeleton SR-Tree substantially outperformed

the Skeleton R-Tree in the VQAR range. This was because there were many span

ning segments to differentiate the Skeleton SR-Tree from the Skeleton R-Tree. The

Skeleton Indexes only marginally outperformed the non-Skeleton Indexes in the

HQAR range in Graph 3.3 because the mostly horizontal node regions of the non-

Skeleton Indexes aided their performance in this range, though they were also gen

erally hampered by overlap. In Graph 3.4, there Is the same cross-over effect as In

Graph 3.2 in the very high HQAR range, and the reason for it is the same as stated

m the discussion of Graph 3.2. The difference in performance between the SR-Tree

and R-Tree was only slight in the non-Skeleton Index case, smce the regions covered

by the non-leaf nodes of the non-Skeleton Indexes were mostly horizontal in both

cases, thus allowing few spanning segments to be stored in the higher level nodes.

Graphs 3.5-3.8 correspond to the same mput distribution types as those in

Graphs 3.1-3.4, except that the number of tuples was 2 x IO5 Instead of IO5.

Graphs 3.5-3.8 differ from Graphs 3.1-3.4 principally in the magnitude of the

results.

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
UNIFORMLY DISTRIBUTED DATA (200.000 TUPLES)

AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspect ratio Gog base 10)
Y Axis = average number of nodes accessed per search

800i

"-4 -3-2-10 1 2
Non-Skeleton R-Tree
Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

Graph 3.5: Line segment data;
Interval length distribution: Uniform [0, 100]

"^f

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
EXPONENTIALLY DISTRIBUTED DATA (200.000 TUPLES)

AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspect rauo Gog base 10)
Y Axis = average number of nodes accessed per search

500i r— • • • • •—*

438'

"-4 -3-2-10 1 2
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

Graph 3.6: Line segment data;
Interval length distribution: Uniform [0,100]

81

82

The results of Graphs 3.1-3.8 show that Skeleton SR-Trees are a good choice

for mdexing horizontal ime segment data, as would be typical of historical data. This

structure offered the best overall performance for rectangular queries over a broad

QAR range. The Skeleton Indexes outperformed their non-Skeleton counterparts to a

great extent in the VQAR range and to a lesser extent in the low HQAR range. The

SR-Tree outperformed the R-Tree only in the case of the Skeleton Indexes, particu

larly m the VQAR range. Non-Skeleton Indexes were only superior to Skeleton

Indexes in the high HQAR range when the distribution of the Y-values was non

uniform.

Comparing the results of the experiments that mvolved exponentially distri

buted Y-values (Graphs 3.2 and 3.4) with those of the uniformly distributed Y-values

(Graphs 3.1 and 3.3). the Skeleton Indexes usmg distribution prediction with node

splitting and coalescing performed well in both cases. As one would expect, the

experiments Involving exponentially distributed data always had lower average node

accesses per search than the ones involving uniformly distributed data, smce the

search rectangles were uniformly distributed over the data domam.

Graphs 3.9 and 3.10 show the search performance results of the four Index

types on the rectangle data distributions Rl and R2 containing IO5 tuples, respec

tively.

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
UNIFORMLY DISTRIBUTED DATA (200.000 TUPLES)

AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspectratio Gogbase 10)
Y Axis = average number of nodes accessed per search

1400

"A -3-2-10 1 2
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

3 4

Graph 3.7: Line segment data;
Interval length distribution: Exponcntial(2000)

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
EXPONENTIALLY DISTRIBUTED DATA (200.000 TUPLES)

AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspectratio Gogbase 10)
Y Axis = average number of nodes accessed per search

1000:

-3-2-10 1 2
Non-Skeleton R-Tree

•• Non-Skeleton SR-Tree
- Skeleton R-Tree
* Skeleton SR-Tree

Graph 3.8: Line segment data;
Interval length distribution: Exponenual(2000)

83

84

In Graph 3.9, both of the non-Skeleton Indexes had identical performance, and the

Skeleton Indexes had nearly identical performance, as was the case in Graphs 3.1

and 3.2. This is because all of the mtervals were relatively "short" (uniformly distri

buted over (0, 1001), and therefore there were no spanning rectangles to differentiate

the SR-Tree from the R-Tree's performance characteristics. In Graph 3.9. the Skele

ton Indexes greatly outperformed the non-Skeleton Indexes, and all of the mdexes

provided nearly symmetric performance over the QAR range.

Graph 3.10 shows the results of the four index types on the rectangle data dis

tribution R2 that featured mterval center-points that were exponentially distributed

in the vertical dimension, and an mterval length distribution that was uniform over

10, 100]. This graph again shows that the Skeleton Indexes out-performed the non-

Skeleton Indexes, and the Segment Indexes performed virtually the same as the

non-Segment Indexes. In this graph, both the non-Skeleton and Skeleton Indexes

had performance curves that were slightly asymmetrical. An interesting pomt is that

the asymmetry was reversed in each of the two cases, i.e., the non-Skeleton Indexes

performed better in the HQAR range, and the Skeleton Indexes performed better in

the VQAR range. These asymmetric results were due to the mput distribution con

sisting of center-points distributed exponentially in the vertical dimension, and uni

formly in the horizontal dimension. This distribution resulted in non-Skeleton

Indexes that favored HQAR queries over VQAR queries, similar to the results shown

in Graphs 3.1-3.8. The reason for these results are that most of the non-leaf nodes

were mainly horizontal, which is analogous to the experiments mvolvmg Une segment

data with exponentially distributed Y-values.

The asymmetry of the Skeleton Index results, on the other hand, was due to the

reduced fanout among the non-leaf nodes in the lower end of the vertical dimension,

which resulted from the majority of spanning rectangles bemg concentrated in these

85

nodes. This caused HQAR queries to perform worse, particularly those in the lower

vertical half of the search space. This "reversed asymmetry" was also present in the

experiments involving the line segment data with exponentially distributed Y-values

(Graphs 3.2 and 3.6), but was less noticeable because the poor performance of the

non-Skeleton Indexes in the VQAR range was the dominant feature of those graphs.

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
UNIFORMLY DISTRIBUTED DATA (100.000 TUPLES)

AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspect ratio (log base 10)
Y Axis = average number of nodes accessed per search

200T

-4-3-2-1 0 1 2
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

Graph 3.9: Rectangle data;
Interval length distribution: Uniform [0. 100]

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR 100.000
EXPONENTIALLY DISTRIBUTED (IN VERTICAL DIMENSION)

TUPLES, AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/verticalquery aspect ratio Oog base 10)
Y Axis = average number of nodes accessed per search

"-4 -3 -2 -1 0 1 2 3 4
- - Non-Skeleton R-Tree

Non-Skeleton SR-Tree
*—" Skeleton R-Tree

Skeleton SR-Tree

Graph 3.10: Rectangledata;
Interval length distribution: Uniform [0,100]

86

87

Graph 3.11 shows the results of the four index types on the rectangle data dis

tribution R3 that featured uniformly distributed interval center-points and exponen

tially distributed interval lengths. This graph clearly shows the superiority of the

Skeleton SR-Tree over all of the other three indexes, and the improvement provided

by Skeleton R-Trees over the non-Skeleton Indexes. In this set of experiments, large

spanning rectangles were stored in non-leaf nodes which provided the Segment SR-

Tree with a large performance improvement with respect to the other indexes.

Another interesting point about these results is that the Skeleton SR-Tree out

performed the Skeleton R-Tree, but among the non-Skeleton Indexes there was no

significant difference in performance between the SR-Tree and R-Tree. This was due

to the small number of spanning rectangles that were present in the non-Skeleton

SR-Tree, since the non-Skeleton SR-Tree had non-leaf nodes with large regions

which reduced the likelihood of large rectangles spanning lower level nodes.

Graph 3.12 contains the results of the experiments involving distribution R4 of

105 tuples.

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
UNIFORMLY DISTRIBUTED DATA (100.000 TUPLES)

AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical queryaspectratio Oog base 10)
Y Axis= averagenumberof nodes accessedper search

288T"

~-4 -3-2-10 1 2
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

Graph 3.11: Rectangle data;
Interval length distribution: Exponential(2000)

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR 100.000
EXPONENTIALLY DISTRIBUTED ON VERTICAL DIMENSION)

TUPLES, AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspectratio (log base 10)
Y Axis = average number of nodes accessed per search

lOOi r2-! ! ! ! ! !—i

"•4 -3-2-10 1 2
- - Non-Skeleton R-Tree

Non-Skeleton SR-Tree
— Skeleton R-Tree

Skeleton SR-Tree

Graph 3.12: Rectangle data;
Interval length distribution: Exponential(200)

88

89

In this distribution, the interval center-points were exponentially distributed in the

vertical dimension. In this graph, the Skeleton Indexes out-performed the non-

Skeleton Indexes. This graph is similar to Graph 3.10 which featured data with

interval lengths distributed over [0, 100], largely because the exponential interval

length distribution had a parameter p =200, as opposed to a value of 2000 used in

the earlier experiments involving exponential interval lengths. The reason for the

smaller value of J3 in this experiment was because Segment Indexes are inherently

not well-suited to highly overlapping rectangle data such as a set of rectangles with

an exponential interval center-point distribution as well as a highly exponential

interval length distribution. This highly overlapping rectangle data contains a greatly

concentrated number of spanning rectangles in one (the lower) end of the region. As

previously discussed, the Segment Index implementations used a static partitioning

of the fraction of branch entries on a node. In particular, 2/3 were dedicated to

branch entries, and 1/3 for spanning index records. A static partitioning is a rea

sonable approach, since it ensures a minimum branching factor, and it eliminates

the performance overhead and complexity of changing the partitioning dynamically.

Whether the partitioning is static or dynamically controlled, it is necessary to main

tain a certain minimum fanout (branching factor) per node to provide adequate

search performance. Therefore, if the ratio of spanning index records to branch

records greatly exceeds that of the original partitioning ratio, the performance of the

index is negatively impacted due to a large increase in the number of non-leaf nodes

that are necessary to accommodate the spanning index records. In particular, these

"extra" nodes will have a large number of spanning index records and a small

number of branch index records. In general, the Segment Indexes performed well

when indexing highly overlapping rectangle data sets provided that the interval

length distributions were not excessively non-uniform. This problem is compounded

90

as the dimensionality of the data increases. In the case of hyper-rectangular data

(Intervals In K>2 dimensions) with highly non-uniform center-point and interval

length distributions, there is a greater potential for the spanning Index record to

branch index record ratio to be large, since a data item may be stored in a spanning

index record if it spans a child node in any dimension.

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
UNIFORMLY DISTRIBUTED DATA (200,000 TUPLES)

AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspectratio Oogbase 10)
Y Axis = averagenumber of nodes accessed per search

360l ' ' ' ' • ' .!

315

270t

225

180f

135

90j

45

0

\

Vi

t

i /

f"/v
i /

•*rV-
!/

i

-4 -3-2-10 1 2
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

3 4

Graph3.13: Rectangle data;
Interval length distribution: Uniform [0, 100]

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR 200.000
EXPONENTIALLY DISTRIBUTED ON VERTICAL DIMENSION)

TUPLES, AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspect ratio (log base 10)
Y Axis = average number of nodes accessed per search

_ i—^^™--^__--i- i i i

"•4 -3-2-10 1 2
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

Graph 3.14: Rectangle data;
Interval length distribution: Uniform [0,100]

91

92

Although Segment Indexes have difficulty dealingwith rectangular data which is

both highly non-uniform in its spatial location and interval lengths, such data collec

tions pose problems for all spatial indexing structures. Any collection of data that is

both highly overlapping and highly variable in length is difficult to index efficiently.

R-Trees would suffer from massive overlap, and R+-Trees would become prohibitively

large due to partitioning large rectangles into many small components. The idea of

an index is to efficiently partition data that is itself readily partitionable. When the

data to be indexed lacks partitionability. it is difficult if not impossible to devise a

suitably efficient indexing structure for the data.

Graphs 3.13-3.16 correspond to the results of Graphs 3.9-3.12. except that the

data sets contained 2 x 105 tuples for each of the data distributions R1-R4. rather

than 105 tuples. The results of the experiments involving data sets of size 2 x 10s

for each of the distributions R1-R4 were qualitatively similar to those in Graphs 3.9-

3.12. and differed only in that the magnitude of the results were larger.

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR
UNIFORMLY DISTRIBUTED DATA (200,000 TUPLES)

AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspect ratio Gogbase 10)
Y Axis = average number of nodes accessed per search

525i

'-4-3-2-101234
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
—— Skeleton R-Tree

Skeleton SR-Tree

Graph 3.15: Rectangle data;
Interval length distribution: Exponential(2000)

SEARCH PERFORMANCE OF 4 INDEX TYPES FOR 200,000
EXPONENTIALLY DISTRIBUTED ON VERTICAL DIMENSION)

TUPLES. AS A FUNCTION OF THE QUERY ASPECT RATIO

X Axis = horizontal/vertical query aspect ratio Oogbase 10)
Y Axis = average number of nodes accessed per search

"-4 -3 -2 -1 0 1 2 3 4
— Non-Skeleton R-Tree

Non-Skeleton SR-Tree
Skeleton R-Tree
Skeleton SR-Tree

Graph 3.16: Rectangle data;
Interval length distribution: Exponential(200)

93

94

3.6. Summary and Conclusions

A novel way of storing multi-dimensional interval data by modifying a class of

database indexing structures that are based on paged, balanced, multi-way. tree-

structured indexes has been described. Aspects of the Segment Tree memory

resident data structure were combined with the R-Tree database indexing structure

to index large collections of multi-dimensional interval data. This index was referred

to as the Segment R-Tree. or SR-Tree. The SR-Tree was further enhanced by a pre-

allocation and pre-partitioning scheme which was referred to as a Skeleton SR-Tree.

The Skeleton SR-Tree refinement to the basic SR-Tree is to pre-construct an index

that provides an initial decomposition of the space to be indexed based on a given or

estimated data distribution. The Skeleton SR-Tree adapts to the actual data distri

bution using splitting to handle node overflow and adjacent node coalescing for node

underflow and thus the index is completely dynamic. i.e.. it may adapt to any data

distribution. Performance results comparing R-Trees. SR-Trees. Skeleton R-Trees.

and Skeleton SR-Trees were presented which demonstrate that the Skeleton SR-

Trees provide a substantial performance improvement over conventional indexing

techniques for both rectangle and line segment data. These results suggest that for

spatial access methods which are based on the overlapping cells technique, such as

the R-Tree. the Segment Index variation of that access method would perform best

when using the Skeleton Segment Index variant.

Skeleton Segment Indexes were shown to work well in most cases, i.e.. when

the data consists of line segment data or spatial data that is not simultaneously

highly non-uniform in spatial location and interval length. The excluded case is not

likely to be a severe limitation, since rectangular data that is highly non-uniform in

both spatial location and interval length exhibit a high degree of overlap, and there

fore are inherently difficult for any spatial data structure to index efficiently.

95

Furthermore, in most applications such data distributions are unlikely to occur in

practice.

CHAPTER 4

LOP-SIDED INDEXES

4.1. Introduction

Indexing techniques for database management systems that are based on

multi-way search trees are almost invariably balanced tree structures. A good exam

ple of such an index is the B-TYee (BAYE72] or one of its variants, such as the B+-

Tree [KNUT73. COME79]. The design of tree-structured indexes based on balanced

trees resulted from an assumption that the frequency of access is at least approxi

mately equal for all tuples in the indexed relation. While this assumption of a uni

form query distribution may be appropriate for many applications, there may be cases

in which information on the probabilities of access for a particular key is known or

may be estimated with high probability. If the entire set of data to be indexed were

made available at once, the problem of constructing an optimal, multi-way search

tree index would be straightforward. However, for most applications database index

ing structures must be dynamic, allowing insertions concurrently with search opera

tions. The subject of dynamic, lop-sided (unbalanced), multi-way, tree-structured

indexes is subject of this chapter.

The concept of optimal multi-way search trees, or what will hereafter be referred

to as lop-sided trees has been much studied for the case of a small node branching

factor fa, particularly for the case of b = 2, e.g.. the Optimal Search Tree (KNUT73).

The subject of unbalanced trees has generally not been considered for values of fa

96

97

significantly larger than 2. as would be typical of a multi-way tree with a high degree

of node fanout. Such trees are typical of the data structures which are useful for

database system indexes that are paged onto secondary storage. Current database

systems have universally adopted balanced multi-way tree-structured indexes, such

as the B-Tree. not only because of the aforementioned uniform access query distribu

tion assumption, but also since because the number of levels of a "typical" database

indexing structure is in the range of 3-5. For example, a database containing 10

gigabytes of data may be indexed by a 4-level B+-Tree with a node (page) size of 8 Kb.

In order for a lop-sided index to perform better than a balanced index, it would have

to contain a substantial fraction of the most recently accessed data in a sub-tree

whose number of levels was less than that of a balanced index that contained the

entire set of data.

Since the capacity of a balanced tree index grows exponentially in the number

of levels. i.e., at a rate proportional to bh where fa is the node branching factor and h

is the height of the index in levels, balanced tree indexes are generally useful

because the number of levels grows as the logb(n). where n is the number of tuples

indexed. For balanced tree indexes that are built using large node sizes (such as 8

Kb), b may be in the range of 250-500. for an index record size between 16-32 bytes,

respectively. Therefore, the height of a balanced index with a large node size grows

rather slowly, as illustrated in Table 4.1 for various node (page) sizes, an index

record size of 16 bytes, a node header of 12 bytes, and node utilizations of 69% and

ipo%. The capacity of an index with 69% utilization is of interest because empirical

evidence resulting from the performance experiments reported later in this chapter

involving B+-Trees showed that the average node utilization was 69% when inser

tions (but no deletions) were performed. This result closely corresponds with the

approximate estimate of 66% given in [BAYE72].

Page Index Index Index

Size Height Capacity Capacity
(Kb) (levels) (69% util) (100% util)

1 43 63

2 1849 3969

3 79507 250047

4 3.4188e+06 1.5753e+07

5 1.47008e+08 9.92437e+08

6 6.32136e+09 6.25235e+10

7 2.71819e+ll 3.93898e+12

2 1 88 127

2 2 7744 16129

2 3 681472 2.04838e+06

2 4 5.99695e+07 2.60145e+08

2 5 5.27732e+09 3.30384e+10

2 6 4.64404e+ll 4.19587e+12

2 7 4.08676e+13 5.32876e+14

4 1 176 255

4 2 30976 65025

4 3 5.45178e+06 1.65814e+07

4 4 9.59513e+08 4.22825e+09

4 5 1.68874e+ll 1.0782e+12

4 6 2.97219e+13 2.74942e+14

4 7 5.23105e+15 7.01102e+16

8 1 354 511

8 2 125316 261121

8 3 4.43619e+07 1.33433e+08

8 4 1.57041e+10 6.81842e+10

8 5 5.55925e+12 3.4842le+13

8 6 1.96797e+15 1.78043e+16

8 7 6.96663e+17 9.09801e+18

Table 4.1: Index Capacities for Various Node Sizes

98

With the recent advent of optical disk storage technology, it has become cost-

effective to maintain large historical data archives on-line. Large historical data

archives have precisely the characteristics that make lop-sided indexes advantageous

over balanced indexes. In particular, the amount of data will tend to be very large,

and the distribution of queries over such data is likely to be highly non-uniform, e.g..

queries on more recent historical data are likely to occur more frequently than

99

queries on older historical data.

The remainder of this chapter proceeds as follows. Section 2 describes the

structure of a lop-sided index. Section 3 explains the limitations of a large branch

ing factor in optimal unbalanced binary search tree techniques. Section 4 defines

the concepts of upward and downward node splitting, which are the mechanisms for

dynamically constructing a lop-sided index. Section 5 and 6 present the structure

and algorithms for a lop-sided B+-Tree index, respectively. Section 7 describes a

performance study that was carried out which compared the performance of a lop

sided B+-Tree to a balanced B+-Tree for a range of non-uniform query distributions,

and presents the results from that study. Section 8 discusses generalizations and

future research issues related with the lop-sided index concept. Section 9 contains a

summary and conclusions.

4.2. Structure of a Lop-Sided Index

A balanced tree has some number of levels from the root to a leaf node. One

approach to building a lop-sided tree is to combine a number of balanced sub-trees

in a configuration that constitutes a lop-sided tree, as illustrated in Figure 4.1. This

approach was followed in this research, since the overriding constraint is that a lop

sided index must perform as well or better than a balanced index on at least some

non-uniform query distributions. Given this constraint, the height of the most fre

quently accessed sub-tree(s) must be less than the height of a corresponding bal

anced index, and their capacities must be large enough to contain some subset of

the most frequently accessed records. These two requirements are best served

simultaneously by constructing a lop-sided tree consisting of some number of bal

anced sub-trees of height h-1 which contain the most frequently accessed records,

where h is the height of the corresponding balanced index.

100

Figure 4.1: Lop-sided Index

4.3. Limitations of Large Branching Factor in Unbalanced Binary Search Trees

There have been several approaches for optimal weighted binary search trees,

such as the Optimal Binary Search Tree (KNUT73). BB(a)-Tree (NIEV73). Splay Tree

(SLEA85]. and the Randomized Search Tree [ARAG89]. The difficulty with extending

such schemes to multi-way. b-ary trees for fa > 2 is that a substantial amount of tree

reorganization would be required whenever a node was moved from a lower to a

higher level of the tree, or vice versa. The problem of unbalanced b-ary search trees

for large b is a new challenge, which has been overlooked until now since balanced

multi-way indexes have adequately served database systems until recently. With the

advent of massively larger on-line storage archives, however, balanced tree indexes

are no longer the ubiquitous solution for nearly aU collections of data, as they once

were considered to be (COME79).

101

4.4. Node Splitting Dynamics: Splitting Down Versus Splitting Up

In balanced, multi-way, tree-structured indexes such as B-Trees, the data are

stored in the leaf nodes, and the index grows in a bottom-up fashion using the con

ventional technique of upward splitting. Upward splitting is illustrated in Figure 4.2,

and works as follows. When a node N is full and an attempt is made to store a new

item on that node, the node is split and replaced by a new instance of itself AT and a

new sibling node AT, and the original contents of node N plus the new item to be

inserted which caused N to overflow are evenly distributed between AT and AT'.

Finally, a new branch pointer for AT' is installed in the parent node P of node A/. If

there is no room in P for the branch pointer for AT', node P is also split and the split

ting of N is said to have propagated upward. In general, splits may propagate up to

the root node, in which case the height (number of levels) of the index increases by

Before Split:

parent of

full node

full node

(about to split)

After Split:

split node

parent of

split node

> ' new sibling
i i

i i of split node

Figure 4.2: An upward split

102

one.

Upward splitting has many virtues, most notably that it maintains a balanced

tree structure, it automatically partitions the higher-level nodes of the index accord

ing to the input data distribution, and it results in an index that is approximately

66% utilized on the average when no deletions are performed (BAYE72J.

The alternative to upward splitting is downward splitting, which is illustrated in

Figure 4.3. In a downward split, the branch pointer in the parent node P of the split

node N is replaced by a pointer to a new non-leaf node NP, which acts as the new

parent of N. Then, the sibling pair AT and AT' resulting from the split of N are

installed as the children of node NP.

When upward splitting does not propagate up to the root node, it does not

influence the number of levels in the tree. When upward splitting does propagate up

to the root node, it adds one level to all search paths from the root to a leaf node. On

the other hand, a downward split only adds one level along some subset of search

paths from the root to a leaf node.

Downward splitting does not share the virtues of upward splitting, i.e.. it does

not provide any of the following benefits: balanced tree maintenance, automatic

higher-level node partitioning, or minimum node utilization maintenance. It is due

to these shortcomings that downward splitting is generally not applied to tree-

structured database indexes. Downward splitting does have one important redeem

ing feature, however, namely that it provides a mechanism for the dynamic growth of

a lop-sided index.

If both upward and downward splitting are to be used in the evolution of an

index, the question arises as to how to determine whether a given node split should

be performed upward or downward in order to produce a lop-sided index with a

Before Split:

parent of
full node

full node
(about to split)

After Split:
parent of
split node

i~ i new non-leaf

split node

node introduced

_*

i , new sibling
' i of split node

Figure 4.3: A downward split

103

specified desired degree of lop-sidedness. If the decision to split a node up or down

is to be made dynamically based on local information (i.e., on information contained

only in the node N to be split, ATs parent, and possibly a small number of ATs siblings

or children), the index may occasionally require reorganization to maintain the

desired degree of lop-sidedness. Even if global information is used, the correct deci

sion of whether to split up or down cannot be made with certainty without knowing

the future input data distribution. Therefore, some form of lop-sided tree reorganiza

tion is required in order to maintain a properly lop-sided index, i.e., one that main

tains the desired degree of lop-sidedness as the size of the index changes.

In the following sections, algorithms for three variations of a lop-sided B+-Tree

are described. The first variation does no tree reorganization, the second pre-

allocates an initial indexing structure to reduce the potential necessity of

104

reorganization, and the third performs a limited type of reorganization when neces

sary. These variations will be referred to as the no-shuffle, skeleton, and shuffle

methods. All three variations share a common data structure, which is presented in

the next section.

4.5. Structure of a Lop-Sided B+-Tree Index

The structure of a lop-sided index version of a B+-Tree is presented in this sec

tion. As in the original B+-Tree, there are two types of nodes: non-leaf nodes and

leaf nodes. These node types are illustrated in Figure 4.4.

The non-leaf nodes contain disk address pointers to other nodes, either to non-

leaf nodes or to leaf nodes, and each such pointer is part of an index record which

also contains a key value range. In addition, each non-leaf node N in the lop-sided

B+-Tree contains auxiliary information consisting of ATs depth (in levels) from the root

node, and ATs partition number. Assuming the probability distribution function of

Non-leafnodes

(NL)

NL

y
/ v\

N.

L L

Figure 4.4: Leaf and Non-leaf Nodes

Leaf

nodes

(L)

105

query values is known, partitions are used to divide the indexed domain into equal

sized intervals so that the information contained in a specified query probability dis

tribution function (QPDF) may be used to distinguish between nodes which are

expected to be frequently accessed from those which are not. The number of parti

tions is controlled by a parameter, NPARTS, which determines the number of ranges

of query values that may be assigned distinct probabilities according to the QPDF,

and the partition size is determined by dividing the difference between the maximum

and minimum values of the indexed domain by NPARTS. The partition number of a

non-leaf node N refers to the partition that the interval corresponding to A7 maximally

intersects.

Leaf nodes are always at the lowest level of a path that descends from the root,

and each stores a set of index records which contain a key value and a tuple

identifier (a tuple ID, or TID, is a disk pointer to a page containing the associated

tuple). The fundamental difference between the structure of a lop-sided B+-Tree and

a normal (balanced) B+-Tree is that the latter is a balanced tree, whereas the former

is not constrained to be balanced.

One additional piece of bookkeeping information is required in order to main

tain a lop-sided index, namely, a table containing the capacities of a balanced index

with branching factor equal to that of the lop-sided index at each of various levels

and fill factors, as exemplified by Table 4.1. This information is used to estimate the

height that a balanced index would have if one were used to index the same amount

of data contained in the lop-sided Index. Hereafter, this table will be accessed by a

function heightJbai[Ntuples), which given a number of tuples {Ntuples), returns the

height of a balanced index that could accommodate Ntuples records.

106

4.6. Algorithms for a Lop-Sided B+-Tree Index

This section describes the algorithms for node insertion, splitting, search, and

deletion for the lop-sided B+-Tree whose structure was presented in the preceding

section, for each of the methods of tree reorganization: no-shuffle, skeleton, and

shuffle.

4.6.1. No-Shuffle Method

The no-shuffle lop-sided index is the simplest form of the lop-sided index, since

it does no reorganization if the lop-sidedness of the index with respect to a balanced

index cannot be maintained in its present configuration. This method was explored

to understand its limitations in order to refine the indexing algorithms to cope with

the reorganization problem.

The fundamental goal of this index is to use the specified query distribution to

distinguish between high-frequency access (HFA) nodes and low-frequency access

(LFA) nodes. HFA nodes have a higher, than average probability of access, and LFA

nodes have a lower than average probability of access. HFA nodes are kept within

height_bal{Ntuples) - 1 levels (distance from the root node in number of levels) as

long as possible.

While upward and downward splits are used in the same index, once an upward

split is undertaken and propagates up to a higher level, if the higher level node splits

then that node is also split upward. This policy decision was made in order to avoid

the complexity of propagating upward splits that may trigger downward splits, or vice

versa. Also, before an upward split is undertaken, a check is made to determine if

the upward split would cause a propagation up to the root. This check is easily

made during the depth-first traversal of the index to the node targeted for insertion

that will initiate the splitting process. The purpose of this check will be made

107

apparent in the discussion of the node splitting algorithm.

4.6.1.1. Insertion Algorithm

The index begins with a single leaf node. When the first leaf node overflows. It

is split upward, and the new root node is a non-leaf node. The index continues to

grow by upward splits until the number of non-leaf node record entries becomes

greater than or equal to NPARTS. At that time, the auxiliary information in the index

is initialized, and is thereafter maintained by the splitting algorithm, which may

decide to split up or down. For each non-leaf node N, the auxiliary information con

tains ATs depth from the root, and ATs partition number which specifies which por

tion of the indexed domain N maximally intersects. All insertions are performed fol

lowing the conventional B+-Tree algorithm, i.e.. choosing at each non-leaf node the

branch in the tree whose range contains the value being inserted. When a leaf node

is reached, an index record is inserted, and the count of records on that node is

incremented by one. If the leaf node is full, it is split The split algorithm is

described in the next section.

4.6.1.2. Node Splitting Algorithm

The node splitting algorithm of the lop-sided B+-Tree controls the degree of lop-

sidedness of any particular part of the index. When a node N splits, the auxiliary

information contained in node N is used to decide whether N should be split up or

down. This decision is made as follows. The first piece of information that is used in

this decision is the depth(N), i.e. the depth of node N. which is contained in the auxi

liary information part of the node. The second determining factor in the up-or-down

splitting decision is whether N is in a HFA node or a LFA node. Assuming node N is

in partition £. and that the QPDF is specified by a given probability distribution func

tion F, N is defined to be a HFA node if:

108

Prick <Q<>bi) = F(fa() - F[ck) > 1 / A/PARTS

where a< and b(are the lower and upper limits of partition number i respectively.

Otherwise, N is a low-frequency access node. In other words, a node is an HFA node

if its query access probability is higher than the average for all partitions, and is a

LFA node otherwise.

The third determining factor is whether or not an upward split would propagate

up to the root, which is calculated during the depth-first traversal of the index. This

determination is made by checking each node accessed along the path from the root

to leaf node N to determine if all nodes along the path were full. If they all were full,

then the split_up_to_root flag Is set to TRUE, and FALSE otherwise.

The information consisting of depth{N], the classification of N as either an HFA

or LFA node, and the setting of the split_up_to_root flag are then used to decide

whether N should be split up or down. The decision is based on a goal of keeping

HFA nodes within heightJ)al(Ntuples) - 1 levels for as long as possible. The decision

is made as follows (in pseudo-C notation):

if (N is an HFA node) then
if (split_up_to_root is FALSE) then

split up
else /* split_up_to_root is TRUE •/

if (depth(N) < height_bal(Ntuples) - 1) then
split up

else

split down
else /• N is LFA node •/

split down

If N is an HFA node, it is split up. unless an upward split would propagate to the root

and ATs depth is at least one less than the height of a balanced tree containing the

same number of records, in which case it is split down. The reason for splitting an

HFA node down in this case is to allow the leaf nodes that are still at a depth less

than heightJbal[Ntuples) to remain shallower than the height of a balanced tree for

109

as long as possible. The reason for splitting an HFA node N up when split_up_to_root

is TRUE and depth (A/) < heighLbal[Ntuples) - 1 is that splitting up in this case will

maintain A7 within heightJbal{Ntuples) - 1 levels from the root even though the index

will grow in height by one level as the root must be split up.

The general strategy is that HFA nodes are split up and LFA nodes are split

down, except for the special cases mentioned above. The reasoning behind this stra

tegy is that upward splitting does not cause the depth of any leaf to change unless

the root splits, in which case the depth of all leaf nodes increases by one. Downward

splitting, on the other hand, only increases the depth of a subset of leaf nodes.

Therefore, downward splitting is most applicable for LFA nodes, and upward splitting

is suited for HFA nodes.

4.6.1.3. Search Algorithm

The lop-sided B+-Tree search algorithm is identical to that of the original B+-

Tree search algorithm, with the exception that the number of node accesses per

search is not equal in all cases, but varies with the depth of the leaf node accessed.

If a balanced B+-Tree index containing the same number of tuples as a lop-sided

B+-Tree has height h, in the lop-sided index the HFA nodes would generally be at a

depth of h-1 or h, whereas LFA nodes would generally be at a depth of h of h+1.

4.6.1.4. Deletion and Underflow Algorithms

To delete a record from a lop-sided B+-Tree, the record is found using the

search algorithm, and then the record is marked as being empty, and the record

count on the node is decremented by one. The deletion algorithm is similar to the

insertion algorithm, except that rather than dealing with the possibility of node

overflow which is handled by splitting the node, when deleting a record the possibil-

110

ity of node underflow arises. Node underflow is defined as a node whose record

count has gone below a certain threshold minimum utilization parameter. Typical

minimum utilization parameter settings are 1/2 or 1/3.

To handle node underflow, the inverse of the splitting algorithm is performed.

Following a deletion. If the utilization of the node N that contained the deleted record

goes below the minimum utilization parameter, the contents of node N are

transferred into its adjacent sibling node S at the same depth as N which has the

fewest entries, as long as this transfer would not result in an overflow of node S. If

the node S would overflow If It were merged with N, rather than transferring the con

tents of N to S. the contents of both N and S are evenly distributed between the two

nodes.

The underflow algorithm for node underflow stated above is not yet complete, as

underflow may propagate up the tree. After the above algorithm is applied. If N was

merged into a sibling node S, if S*s parent node P underflows as a result, the

underflow algorithm is applied to P and its least utilized adjacent sibling. This pro

cess may propagate all the way up to one level below the root node, whose minimum

number of children may be as low as two. If the number of children in the root node

becomes one, the root node is replaced by its (only) child.

4.6.2. Skeleton Method

The skeleton method of lop-sided indexes has similarities to the Skeleton

Indexes of Chapter 3. The application of the skeleton approach in this context Is

that given an estimate on the amount of data to be indexed, the lop-sided index may

be pre-constructed based on this estimate so that the maximum number of HFA

nodes may be stored at a depth less than that of a balanced Index. This is accom

plished by pre-constructing an index so that there is a sufficient number of levels for

Ill

the LFA nodes to populate without filling the capacity of the HFA nodes. In addition,

the resolution (range ofvalues that divide the index key domain among the high-level

nodes) of the intervals in each of the non-leaf nodes reflect the capacity of the sub

trees which together constitute the initial configuration of the pre-allocated nodes.

The algorithms from the no-shuffle method are used without modification In the

skeleton method lop-sided Index. The only refinement is the pre-allocation of the

index, which is performed as follows.

The estimated number of tuples, Etuples, is used to determine the height of a

balanced index if one were used to index the data, by the function

heighU>al[Etuples). The specified query distribution is then analyzed by dividing the

index key domain into NPARTS, and classifying the partitions into HFA and LFA par

titions. The Etuples value is then divided by the expected node occupancy of 0.69

times the branching factor (b) to obtain Enodes, the estimated number of nodes in

the index. Then, the estimated number of LFA nodes is calculated by:

Elfa =Enodes x number °^LFA P"***™
J NPARTS

and the estimated number of HFA nodes is:

Ehfa =Enodes x [1 - number tf &*£*****}J *-'«•'"" ix A/PARTS

After these calculations, a root node is pre-allocated. and then Elfa nodes are pre-

allocated at a depth of up to height_bal[Etuples) + 1, in a configuration corresponding

to the query distribution (based on the partition classifications). Similarly, Ehfa

nodes are pre-allocated at a depth of up to height_bal[Etuples) - 1. Finally, the inter

val values in each of the descendant node branch pointers contained in the non-leaf

nodes are filled in to reflect the distribution of data contained in the index. Based on

the values of Etuples, Elfa, and Ehfa, and the configuration of the index (which was

112

based on the query distribution), the values of the intervals that correspond to the

data contained in each node are initialized.

This strategy results in an index that has a greater capacity to accommodate

HFA nodes that are at a shallower depth than the height of a balanced Index as com

pared to a no-shuffle method lop-sided Index. This is because lop-sided indexes lose

their advantage over a balanced index when the capacity of the "one level closer" por

tions of the index that contain the HFA nodes are exceeded. By pre-allocating the

index based on an estimate of the number of tuples and the query distribution, the

interval ranges in the root node for the HFA nodes can be pre-determined such that

only the amount of data that will fit within heightJbal[Etuples) - 1 levels may be

accommodated.

4.6.3. Shuffle Method

The shuffle method lop-sided Index periodically performs a limited form of tree

reorganization to maintain the lop-sidedness of the index. This is accomplished by

shuffling a set of nodes to a greater depth in the tree to make room for more entries

at the shallower depth. For example, an example of a node N being shuffled down

one level is illustrated in Figure 4.5.

The algorithms for insertion and search for the shuffle method lop-sided B+-

Tree index are the same as those for the no-shuffle method lop-sided B+-1Vee. The

splitting and underflow algorithms are modified, as described in the following sec

tions.

4.6.3.1. Splitting Algorithm

The modification to the no-shuffle splitting algorithm for the shuffle method

lop-sided Index occurs in the second else clause below.

Before
Shuffle:

After
Shuffle:

_zr r\

''NodeN

NodeN

Figure 4.5: Shuffling a Node

113

if (N is a HFA node) then
if (split_up_to_root is FALSE) then

split up
else /* split_up_to_root is TRUE */

If (depth(N) < height_bal(Ntuples) - 1) then
split up

else
shuffle a child of root down to a depth 1 node

else /* N is LFA node */
split down

When the splitting node N is a HFA node, split_up_to_root is TRUE, and

depth (A/) > heightJ)al [Ntuples) - 1, rather than splitting N down as was done in the

no-shuffle method, a child of the root is shuffled down to a node at depth one. This

may in turn cause a child of the depth one node to be shuffled down to a depth two

node, etc. In the worst-case, d shuffles will propagate from the root to a leaf node at

depth d, where the root is defined to be at depth zero.

114

4.6.3.2. Deletion and Underflow Algorithms

The deletion algorithm is unchanged from that of the no-shuffle lop-sided index.

The underflow algorithm has one modification. Rather than restricting the potential

candidates for merging to be the adjacent sibling nodes at the same depth as N. the

candidates may also include adjacent sibling nodes that are one level higher or lower

than the depth of N.

4.7. Performance Study

In order to test the ideas presented above, simulations of the lop-sided B+-TVees

which employ the no-shuffle, skeleton, and shuffle methods were constructed, and

their search performance characteristics were measured. Adescription of the perfor

mance experiments and the experimental results generated from them are presented

in the following sections.

4.7.1. Simulation of Lop-Sided B+-Tree Indexes

Lop-sided indexes were simulated by implementing the algorithms stated above

for insert, node splitting, and search. The input parameters were the node (page)

size, the index record size, and the maximum threshold depth (MTD) within which

the lop-sided index attempts to maintain HFA nodes. The input parameters used in

each of the experiments are reported in the next section which presents the results

of the performance experiments.

In all of the simulation experiments, the observed average node occupancy

counts were approximately 69%* times b, where b is the branching factor of a node

1This agrees with the estimate given in (BAYE72]: "In an index without deletions
overflows will increase the storage utilization in the worst cases to about 66%." In
the experiments reported here, the storage utilization was approximately 69%.

115

which is calculated by dividing the node size minus the size of the node header by

the size of an index record. For comparison purposes, the number of levels of the

corresponding balanced index was also computed.

The amount of indexed data was varied so that the size of each lop-sided index

ranged from Just over the capacity of a balanced index whose height was that of the

maximum threshold depth (MTD) parameter, to that of the capacity of a balanced

index whose height was equal to MTD + 1. The domain of the indexed data was uni

formly distributed over [0, 105]. The number of partitions, NPARTS, used to divide

the index key domain into HFA and LFA partitions was empirically chosen to be 100.

This value for A/PARTS provided good results, and the resulting partition size was

therefore 1000. Recall that the purpose of partitioning is to divide the indexed

domain into probability "buckets" for the purpose of transforming the continuous

QPDF into a series of discrete partitions for distinguishing HFA/LFA nodes. The

tradeoff of choosing A/PARTS is that the partition size should be small enough to

accurately reflect the continuous QPDF, and yet large enough so that the maximal

intersection between the intervals corresponding to nodes and the set of partitions

may be determined efficiently. In particular, it is desirable that each node intersect a

small number of partitions.

QUERY DISTRIBUTION FUNCTIONS OF
QUERIES USED IN EXPERIMENTS

X Axis = percentage of indexed data
Y Axis = cumulative probability(Pr(Q <=q))

1.0"

0.9f

0.8

0.7-

0.6-

0.5'

0.4

0.3-

0

0.1

0.0

«-4>^

+-...4.

x:*' i i i
. <^A—•»••—y—t-

.A \7*./v ! : i i i

~.%L ••:'!.&..! 1 i i~i 1.

^tu:tj::t:j::|:
2J<.~^~.< + f—-j \—4; \ j \

./.j \ 4. \....\ \—4. j. j-

'0 10 20 30 40 50 60 70 80 90100
uery distribution#1
uery distribution #2
uery distribution#3
uery distribution#4
[uery distribution #5
uery distribution #6

Graph4.1: Query Distribution Functions

RELATIVE SEARCH PERFORMANCE IMPROVEMENT OF
LOP-SIDED INDEXES AS A FUNCTION OF THE UNUSED

CAPACITY OF L-TH LEVEL OF BALANCED INDEX

X Axis =unusedcapacity of L-th level of balanced index (percent)
Y Axis = relative search performanceimprovement (percent)

30r

"0 10 20 30 40 50 60 70 80 90100
^uerydistribution #1
{uerydistribution #2

lery distribution #3
lery distribution #4
iery distribution #5
lery distribution #6

Graph42: L = 5, Threshold level =4, no-shuffle method.

116

117

The six query distributions which were used in the performance experiments

are illustrated in Graph 4.1. Graph 4.1 contains the cumulative probability distribu

tion functions for the six query distributions, i.e.. for a random variable Q, the pro-,

bability that Q£ q, where q is a givenpoint on the index key domain. The six query

distribution ranged from the arithmetic progression query distribution (defined in

Equation 4.1) to the full-tat maximally lop-sided distribution that always searches

for data contained in one partition of the index key domain. For example, if the most

frequently accessed queries occur in the first partition, the probability distribution

function for the full-tilt query distribution would be: {1. 0. 0, 0. ...}. The arithmetic

progression query distribution was calculatedby solving the following for x.

E (zL)xx=l 4.1£j npartitions

The four distributions between the arithmetic progression query distribution and the

full-tilt distribution were generated by linear extrapolation between the arithmetic

progression and full-tilt distributions.

Once the six query distributions were generated, for each query distribution,

100 random point queries were performed on the lop-sided index according to the

specific query distribution, and the relative performance improvement (or degrada

tion) provided by the lop-sided index with respect to the corresponding balanced

Index was calculated and recorded.

In the next section, the results of the performance experiments are presented.

4.7.2. Performance Results from Simulation

The lop-sided tree simulations were used to compare various lop-sided indexes

to their balanced Index counterparts.

Node

Size

(Kb)

Branch

Size

fbvtes)

Maximum

Threshold
DeDth

Branching
Factor

1 16 4 43

4 16 3 176

8 16 2 354

Table 4.2: Simulation Parameters

118

In all of the experiments, it was assumed that the root node of either the bal

anced or lop-sided index was buffered in main memory, which effectively reduced the

number of accesses per search for all the index types by one. In practice, it is likely

that more than Just the root nodes would be buffered. However, in the interest of

making a fair comparison between the two index types, only the root node was

assumed to be buffered.

In Graphs 4.2-4.10, the performance improvement (or degradation) provided by

the lop-sided index relative to a corresponding balanced index is plotted as a func

tion of the unused capacity of an L-level balanced index, where L was set to 5. The

maximum threshold depth (MTD) parameter of the lop-sided index was set to 4. The

graphs were plotted in this way because this showed the difference in performance

between a lop-sided and a balanced index over an entire cycle, i.e.. over the range of

the amount of indexed data that would fill a L-l level balanced index to a L level bal

anced index. When the balanced index would grow to L+l levels, the cycle shown in

the performance graphs would repeat, albeit with different magnitudes. A succes

sion of three such cycles are presented in Graphs 4.2-4.4, 4.5-4.7. and 4.8-4.10.

respectively.

In this and all of the graphs discussed in this section, the six query distribu

tions are labeled 1 through 6, where query distribution 1 corresponds to the

119

arithmetic progression query distribution, and query distribution 6 corresponds to

the full-tilt query distribution.

The input parameters to the simulations which were used in the experiments

are given below in Table 4.2.

Graphs 4.2-4.4 show the performance results for lop-sided indexes with a max

imum threshold number of levels of 4 for the no-shuffle, skeleton, and shuffle

methods, respectively. In Graph 4.2, the no-shuffle lop-sided index provided an

improvement over the balanced index when the unused capacity of the fifth level of

the balanced index was greater than 50%. When the number of tuples exceeded that

amount, the capacity of the most frequently accessed nodes that were maintained

within a depth of four levels became exceeded, and the HFA nodes were split down.

At that point, the root node was split down because the HFA nodes exceeded their

capacity at a depth of four, and the index essentially was transformed into a five-

level balanced index.

RELATIVE SEARCH PERFORMANCE IMPROVEMENT OF
LOP-SIDED INDEXES AS A FUNCTION OF THE UNUSED

CAPACITY OF L-TH LEVEL OF BALANCED INDEX

X Axis = unusedcapacity of L-th level of balanced index (percent)
Y Axis = relativesearch performance improvement(percent)

30i

; i

-•£
+r~

^"-Jivf
.. ^ v : : :
;*'•**< \ 1 4"

r : : : :
>- i >r ..t •: : : i :

r:..i..yf:~*»r\—i—<—-i—^—<•

,#{44444
#44
a

'6 10 20 30 40 50 60 70 80 90100
jery distribution #1
jery distribution #2

juery distribution #3
/uery distribution #4
Juery distribution #5
aerydistribution #6

Graph43: L = 5. Threshold level =4. skeleton method.

RELATIVE SEARCH PERFORMANCE IMPROVEMENT OF
LOP-SIDED INDEXES AS A FUNCTION OF THE UNUSED

CAPACITY OF L-TH LEVEL OF BALANCED INDEX

X Axis = unused capacity ofL-th level of balanced index (percent)
Y Axis « relative search performance improvement (percent)

30l—!—:—!—:—:—:—:—:—r

-5

•10i
•15 ,L,

y f \ \ i :
yrVT"-r—TT'T
*-

/rffrrt-20

-25-

-30
0 10

•*•—I"—^-^—f

20 30 40 50 60 70 80 90100
jery distribuuon #1
jery distribuuon #2
jery distribution #3
jery distribuuon #4

Juery distribuuon #5
Juery distribuuon #6

Graph4.4: L » 5, Threshold level =4, shuffle method.

120

121

However, while the unused capacity of the fifth level of the balanced index was

greater than 50%, the relative performance improvement provided by the lop-sided

index was as much as 25%. since the height of the balanced index was five and some

fraction of HFA nodes were maintained within a depth of four, and the root node

access was not counted in either case due to the assumption that it is buffered in

main memory.

Graph 4.3 shows the results of the skeleton method experiments. In these

experiments, the initial pre-constructed index configuration was based on an

estimated number of tuples equal to the capacity of a five-level balanced index. The

performance improvement relative to a balanced index that was provided by the

skeleton lop-sided index were proportional to the query distributions in Graph 4.1,

ranging between 0 and 25%.

Graph 4.4 shows the results of the shuffle method experiments. In Graph 4.4.

the results are the same as in Graphs 4.2 and 4.3 when the unused capacity of the

balanced index was at least 50%. Below that point, the performance improvement

gradually diminished due to a downward split in a child of the root node that caused

the LFA part of the index to grow down by one level. Although three of the query dis

tributions experienced a negative performance Impact over part of the balanced index

capacity range, the three most lop-sided query distributions experienced a perfor

mance improvement over the entire range.

Graphs 4.5-4.7 correspond to Graphs 4.2-4.4, except that the height of the bal

anced index is four and the maximum threshold depth of the lop-sided index is

three.

RELATIVE SEARCH PERFO^ANTE ^PROVEMENT OF
LOP-SIDED INDEXES AS A FUNCTION OF THE UNUSED

CAPACITY OF L-TH LEVEL OF BALANCED INDEX

X Axis = unusedcapacity ofL-th level ofbalanced index (percent)
Y Axis = relative searchperformance improvement (percent)

30-f~t"

25"4-4-

20

15- —|—|—|—j—13—-r—-|—-|—-|~

10"4-4~j~

5

"0 10 20 30 40 50 60 70 80 90100
lery distribution #1
lery distribuuon #2
jery distribution #3

Juery distribution #4
)uery distribution #5
Juery distribution #6

Graph 4S: 1 =4,Threshold level=3, no-shuffle method.

RELATIVE SEARCH PERFORMANCE IMPROVEMENT OF
LOP-SIDED INDEXES AS A FUNCTION OF THE UNUSED

CAPACITY OF L-TH LEVEL OF BALANCED INDEX

X Axis s unused capacityofL-th level of balanced index (percent)
Y Axis s relative searchperformance improvement (percent)

35i

10 20 30 40 50 60 70 80 90100
luery distribution #1

lery distribution #2
lery distribution #3
jery distribution #4

Juery distribution #5
jery distribution #6

Graph4.6:L =4, Thresholdlevel =3, skeletonmethod.

122

123

Similarly, Graphs 4.8-4.10 correspond to Graphs 4.2-4.4, except the balanced index

height is three and the lop-sided index maximum threshold depth is two. The

results in these sets of graphs are qualitatively similar to Graphs 4.2-4.4, except the

maximum relative performance improvement is 33% in Graphs 4.5-4.7 and 50% in

Graph 4.8-4.10, reflecting the height of the indexes in the respective cases.

Comparing the results of Graphs 4.2-4.10. the skeleton method provided the

best overall results, followed by the shuffle method, and then the no-shuflle method.

These results are to be expected, since given a reasonably accurate (i.e., to within an

order of magnitude) estimate of the number of tuples to be indexed, the skeleton

method can always outperform either of the other methods, since both the no-shuflle

and shuffle methods suffered from downward split expansion which resulted in lop

sided indexes that were in part equal to or beyond the depth (I) of a balanced index

when the percentage of unused capacity of the L-th level of the balanced index

reached 50%.

RELATIVE SEARCH PERFORMANCE IMPROVEMENT OF
LOP-SIDED INDEXES AS A FUNCTION OF THE UNUSED

CAPACITY OF L-TH LEVEL OF BALANCED INDEX

X Axis = unused capacityofL-th level of balancedindex (percent)
Y Axis = relative searchperformance improvement (percent)

35i

'0 10 20 30 40 50 60 70 80 90100
— Query distribution #1

Query distribution #2
~—" Query distribution #3

Query distribution #4
—— Query distribution #5

Querydistribution #6

Graph4.7: L = 4, Threshold level = 3. shuffle method.

RELATIVE SEARCH PERFORMANCE IMPROVEMENT OF
LOP-SIDED INDEXES AS A FUNCTION OFTHE UNUSED

CAPACITY OFL-TH LEVELOF BALANCED INDEX

X Axis s unused capacityofL-th level of balanced index (percent)
Y Axis =relative search performance improvement (percent)

50

40

30

20

10

: i i

-j—j—{—4 —r-**1*

....!..-t—i—*—1 —\—\..—i- • •Jw

—4——t—t—i—1 —-1—•<••..L.-•-:•

..-..-f

0 10 10 30 40 50 60 70 80 90100
lery distribution #1
lery distribution #2

Juery distribution #3
Juery distribution #4
Juery distribution #5
Juery distribution #6

Graph 4.8: L = 3, Threshold level = 2, no-shuffle method.

124

125

The results of Graphs 4.2-4.10 were normalized in the sense that the relative

performance improvement was plotted as a function of the unused capacity of an L-

level balanced index. Those graphs do not indicate how much data may be stored in

a sub-tree of height L-1 as comparedto a balanced tree of height L. To address that,

the ratio of the capacity of the portion of a lop-sided index that may be contained

within a maximum depth of L-1 to the capacity of a L-level balanced index is plotted

in Graph 4.11, and this ratio is referred to as the (L-l)-to-L ratio. Graph 4.11 is

plotted as a function of the fullness of the L-th level of the balanced index, for vari

ous branching factors. This graph shows that the (L-l)-to-L ratio sharply decreases

within the first 20% of the L-th level of the balanced index, and it decreases gradu

ally from that point until the L-th level of the balanced index is filled. Graph 4.11

also shows the effect of the branching factor. The higher the branching factor, the

(L-l)-to-L ratio is more highly skewed.

This graph graphically illustrates that lop-sided indexes are particularly well-

suited to query distributions that obey the well-known 80-20 rule. The 80-20 rule of

thumb is an approximation to realistic distributions that have been commonly

observed in commercial applications IKNUT731. This rule states that 80% of the

queries access 20% of the database. The same applies to the most active 20% of the

database, i.e.. 64% of the queries access 4% of the database, etc. For query distribu

tions that obey the 80-20 rule, a substantial portion of the most frequently accessed

data may be maintained within a depth of L-1 levels in a lop-sided index.

The results In Graph 4.11 do not depend on the value of L, but rather only on

the branching factor, b. The formula for computing the results in Graph 4.11 was:

(b - 1) x bL~2
bL~l +/x(bL-bL_1)

which reduces to:

*-b

126

1

l+/x(b-l)

where /Is the fraction of fullness of the L-th level of a balanced index.

RELATIVE SEARCH PERFORMANCE IMPROVEMENT OF
LOP-SIDED INDEXES AS A FUNCTION OF THE UNUSED

CAPACITY OF L-TH LEVEL OF BALANCED INDEX

X Axis =unusedcapacity of L-th level of balanced index (percent)
Y Axis =relativesearch performance improvement (percent)

10 20 30 40 50 60 70 80 90100
£uery distribution #1
Juery distribution #2

jery distribution#3
jery distribution #4

Juery distribution #5
lery distribution #6

Graph 4.9: L =3, Threshold level =2, skeleton method.

RELATIVE SEARCH PERFORMANCE IMPROVEMENT OF
LOP-SIDED INDEXES AS A FUNCTION OF THE UNUSED

CAPACITY OF L-TH LEVEL OF BALANCED INDEX

X Axis = unusedcapacity of L-th level of balanced index (percent)
Y Axis = relative searchperformanceimprovement (percent)

60i —

"0 10 20 30 40 50 60 70 80 90100
lery distribution #1
lery distribution#2

Juery distribution #3
Juery distribution #4
juery distribution #5
jery distribution #6

Graph4.10: L =3, Thresholdlevel = 2. shuffle method.

127

128

Graphs 4.12-4.14 show the fullness of the L-th level of a balanced index, as a

function of the L-level balanced Index capacity, for various branching factors. These

graphs were plotted using a logarithmic scale, and the X-axes were labeled with the

logio of the balanced index capacities. Graphs 4.12-4.14 show the growth rates of

L-level balanced indexes for values of L equal to 3, 4, and 5, respectively. These

graphs illustrate that the growth rate is directly related to the branching factor,

which follows from the fact that the growth rate is proportional to bL, where b is the

branching factor. Within each graph, however, the growth rates are linear since L Is

constant. The plots appear non-linear due to the horizontal logarithmic scale.

In the next section, generalizations to the lop-sided index are examined.

4.8. Generalizations and Areas of Future Research for Lop-Sided Indexes

Generalizations to the design of lop-sided indexes presented in the previous

sections are possible. One important generalization would be self-adapting lop-sided

indexes for non-uniform query and data distributions. Other topics for future

research related to lop-sided indexes are (1) the issue of minimizing the impact of

shuffling nodes (between or across levels) on insertion performance in lop-sided

indexes that use the shuffle method, and (2) choosing the optimal number of parti

tions for determining the HFA and LFA nodes.

RATIOOF(L-1) LEVELLOP-SIDED TO L LEVEL t vtt,c,„
BALANCED INDEX CAPACITIES, AS A FUNCTION OF FULLNESS

OF L-TH LEVEL OF BALANCED INDEX

X Axis = fullness ofL-th level ofbalanced index
Y Axis =ratioof (L-1) level lop-sided toL level balanced capacities

lOOl

— Branching Factor = 25
Branching Factor= 50

—— Branching Factor = 100
Branching Factor = 150

— Branching Factor= 250
Branching Factor» 350

Graph 4.11

FULLNESS OFL-TH LEVELOFBALANCED INDEX, AS A
FUNCTION OFL LEVELBALANCEDINDEX CAPACITY

X Axis = log base 10 ofL level balancedindex capacities
Y Axis = fullness ofL-th level of balanced index

l.Oi

"34567
— Branching Factor= 25

Branching Factor= 50
"— Branching Factor = 100

Branching Factor = 150
"^~ Branching Factor= 250

Branching Factor= 350

Graph4.12:L=3

129

130

4.8.1. Adapting to Non-Uniform Data Distributions

Up to now, the assumption driving the design of lop-sided indexes has been

that the query distribution is non-uniform and known in advance, and the data dis

tribution is uniform. The case of the non-uniform data distribution may be further

subdivided into two cases: (a) the data distribution is known in advance, and (b) the

data distribution is not known in advance. Case (a) may be dealt with in a straight

forward manner, since if both the data and query distributions are known in

advance, the skeleton method may be used.

To deal with case (b), mechanisms for dynamic tree reorganization, such as the

shuffling method presented earlier, can be applied directly to maintain the desired

degree of lop-sidedness for any data distribution. Particularly in this case, the over

head of shuffling may be justified. The goal of minimizing this overhead is discussed

in the next section.

4.8.2. Minimizing the Impact of Shuffling

The shuffle method lop-sided index "shuffles" a node from a higher-level high-

frequency access non-leaf node to a lower-level low-frequency access non-leaf node.

This may result In a series of shufflings from higher to lower level nodes, with inter

mediate sideways shuffUng within a level, i.e., nodes may need to be moved from

left-to-right (or vice versa) within a level in order to make room for nodes being

shuffled down from a higher level. Sideways shuffling would occur in the event that

all the nodes at the level which the first shuffled-down node was moved to were full.

The worst case of cascading shuffles occurs when the data Is inserted in increasing

order, and the most frequently accessed data values are some percentage of the larg

est values. In that case, there will be a continuous cascading of nodes from the HFA

to LFA nodes throughout the entire index. This scenario is not a contrived case. For

131

example, in the case ofhistorical data, the data is inserted in time-sorted order, and

the most likely querydistribution is the onethat most frequently accesses recent his

torical data. Therefore, the problem of the insertion performance Impact caused by

cascading shuffles needs to be addressed, or else a scheme that either avoids or

minimizes shufflingmust be devised. Although some form of shuffling seems inevit

able in a dynamic lop-sided index, more research is required to investigate whether

more clever schemes are possible.

4.8.3. Choosing the Optimal Number of Partitions

As discussed in the description of the performance study, the choice of the

number of partitions parameter. JVPARTS, used in the experiments was arrived at by

empirical trials. This parameter controls the number of subdivisions of the indexed

domain that are used in conjunction with the query probability distribution function

for classifying nodes as being either high-frequency access or low-frequency access

nodes. A systematic method for choosing the optimal number of partitions would be

desirable. Such a method would have to take into account the query probability dis

tribution function, the maximum and minimum values of the indexed domain, the

index node cardinality, and the expected number of tuples.

FULLNESS OF L-TH LEVEL OF BALANCED INDEX. AS A
FUNCTION OF L LEVEL BALANCED INDEX CAPACITY

X Axis = log base 10 ofL level balanced index capacities
Y Axis = fullness of L-th level of balanced index

l.Oi

5 6 7 8 9
— BranchingFactor = 25

Branching Factor= 50
—— Branching Factor= 100
——• BranchingFactor » 150
~"~ Branching Factor « 250

Branching Factor s 350

Graph 4.13: L =4

10

FULLNESS OF L-TH LEVEL OF BALANCED INDEX, AS A
FUNCTION OF L LEVEL BALANCED INDEX CAPACITY

X Axis = log base 10 ofL level balanced index capacities
Y Axis = fullness of L-th level of balanced index

1-0' Hi)

"5 6 7 8 9 10 11
— Branching Factor =» 25

Branching Factor= 50
— Branching Factor» 100

Branching Factor= 150
— Branching Factor= 250

Branching Factor=* 350

Graph4.14:L=5

12

132

133

4.9. Summary and Conclusions

This chapter has presented the notion of lop-sided indexes to support queries

that are non-uniform in the Indexed domain. Large optical disk-based historical

data archives have changed the assumptions oftraditional database Indexing by (1)

vastly increasing the amount ofdata in a single database, and (2) the expected query

distribution on historical data will usually be a highly skewed query distribution.

These query distribution characteristics would be best served by lop-sided indexes,

since they are well-suited to indexing a very large collection ofdatathat are accessed

in a non-uniform manner.

Simulations of lop-sided B+-Tree indexes were implemented, and the perfor

mance of the indexes was measured with respect to a corresponding balanced B+-

Tree index counterpart. Over a range of non-uniform query distributions, lop-sided

indexes provided a significant performance improvement over balanced indexes.

Three methods were designed to either avoid or handle the potential problem ofindex

reorganization: the methods were designated (1) no-shuffle. (2) skeleton, and (3)

shuffle. The no-shuffle method avoids index reorganization as does the skeleton

method, but the latter uses an estimate of the number of tuples to be indexed in

order to reduce the likelihood that reorganization will be required. The shuffle

method performs index reorganization, but has the undesirable potential problem of

cascading shuffles, which would greatly reduce insertion performance. The simula

tion performance experiments showed that skeleton lop-sided indexes provided the

best overall performance, followed by shuffle and then no-shuffle indexes.

Possible topics for future research in this area are: (1) lop-sided indexes which

adapt to dynamically changing query distributions, i.e., to use query statistics to

estimate future query distributions so that lop-sided indexes may adapt to recent

134

and possibly changing query distributions, as opposed to being restricted to static

query distributions; and (2) to find ways to minimize or avoid the insertion perfor

mance impact of cascading shuffles.

CHAPTER 5

MIXED-MEDIA INDEXES

5.1. Introduction

The previous chapters have focused on Segment Indexes to improve spatial

access methods and Lop-Sided Indexes for non-uniform query distributions. Non

uniform query distributions are particularly likely to occur when large historical data

archives are maintained. In this chapter, mixed-media indexes are investigated. A

mixed-media index is an index which may span magnetic and optical disk. With the

advent of both write-once read-many (WORM) and rewritable (WMRM) optical disk

technology, support for large historical data archives in a database management sys

tem has now become cost-effective. The motivation for a mixed-media index is that

as data archives on optical disks become very large, so do their associated indexes.

Storing the archive indexes entirely on magnetic disk may be too costly, while storing

them entirely on an optical disk may be too inefficient, resulting from the limitations

of data structures that may be maintained on a write-once medium and the slow

access times of optical disks as compared to magnetic disks.

Although rewritable optical disks are presently available, WORM optical disks

remain a desirable, and in some cases, an essential storage medium. For example,

some banking and financial applications may require that an immutable audit trail

be maintained. Other advantages of WORM optical disks over rewritable optical

disks include: (1) WORM optical disks are less expensive than WMRM optical disks;

135

136

(2) WORM optical disks are available in very large capacities, e.g., 12 inch platters

that store 6.4 Gb per platter, as compared to 5 inch WMRM optical disks that store

650 Mb per platter; (3) WORM optical disks have faster write transfer times by about

a factor of 2, since WMRM optical disks require a separate zero write pass to clear

the block contents to be overwritten. For these reasons, this chapter will primarily

focus on indexing techniques for WORM optical disks, although the techniques and

ideas apply equally well to WMRM optical disks.

Since WORM optical disk block contents may not be modified after their initial

writing, the issue arises as to how best organize a historical database archive and

associated indexes on such a write-once storage medium, given that the contents of

the historical data archive are not known in advance and the archive grows incre

mentally over time.

5.1.1. Hypothesis

The hypothesis that motivated the set of experiments which are the subject of

this chapter is that suitably designed mixed-media or composite index structures,

i.e. indexes which may span magnetic and optical disk, will outperform an index

structure that is contained entirely on optical disk in terms of search performance,

and may approach or equal the performance of an index that is entirely contained on

magnetic disk. The two principal advantages of allowing Indexes for historical data

relations to span magnetic disk (MD) and optical disk (OD) media, as opposed to

being exclusively restricted to either medium, are:

(1) improved search and insert performance as compared to indexes that are com

pletely contained on optical disk, and

(2) reducing the cost per bit of disk storage required for indexes as compared to

storing historical data indexes entirely on magnetic disk.

137

This work investigates the performance of four indexing strategies for supporting his

torical database archives. A simulated workload was used to drive implementations

of these strategies and produce performance statistics regarding Indexes that were

contained in each of three storage media environments: (1) a historical data index

stored entirely on magnetic disk, (2) a historical data index stored entirely on optical

disk, and (3) a historical data index that may span magnetic disk and optical disk.

The first environment was included in the tests to provide a basis of comparison

with the performance of the mixed-media and OD-only schemes, and for that

environment the original R-Tree index (GUTT841 was employed. The index structure

selected for the second environment was based on the Allocation Tree index [VTTT851.

For the third environment, two page movement policies for migrating historical data

base indexes from magnetic disk to an optical disk-based archive were implemented.

These page movement policies were previously proposed in ISTON87], and were util

ized by the index structures for the third environment mentioned above which were

two variations of the R-Tree index.

The remainder of this chapter proceeds as follows. Section 2 outlines two algo

rithms for migrating indexes on historical data relations from a magnetic disk to an

optical disk. Section 3 presents the results of the performance tests which compared

each of the four indexing techniques. Section 4 contains a summary and conclu

sions.

5.2. Vacuuming Algorithms for Indexes on Historical Data Relations

5.2.1. Definition: Data and Index Vacuuming

The term vacuum is defined as the transfer from magnetic to optical disk of

pages containing either historical data records or index records that reference histor

ical data records. Since the focus of this research is on indexing structures for

138

historical archives as opposed to the physical lay-out of the data contained in the

archives, the use of the term vacuum in this chapter will specifically refer to the

transfer of index pages from MD to OD.

5.2.2. Assumptions

There are many alternatives to managing current and historical data in a data

base management system. No assumptions are made regarding the particular

underlying database management system in the performance experiments, other

than to assume that current and historical data are each maintained in separate

relations, referred to as current data relations and historical data relations, respec

tively. Updating or deleting a current data tuple results in a historical data tuple

being appended to the historical data relation, whereas inserting a new tuple

appends that tuple in a current data relation and has no effect on historical data

relations. Current and historical relations may have separate and possibly different

indexes associated with them. The Justification for this is that there should not be

an adverse impact on the performance of operations on current data relations intro

duced by the support of historical data relations. Also, the queries that are per

formed against the current and historical relations may be different, which would

favor having different indexes on each of the relations. However, it may be advanta

geous to allow "recent" historical data to remain in the current data relation on mag

netic disk until such time as a system process transfers a collection of such histori

cal tuples to the historical relation on optical disk. Current data relations and their

associated indexes reside on magnetic disk, whereas historical data relations are

contained on optical disk. Given this storage architecture, queries on current data

are satisfied by searching indexes on the current data relations, whereas queries on

historical data may require searching indexes on both the current and historical data

139

relations.

5.2.3. Two Vacuuming Algorithms

Two index vacuuming algorithms which were proposed in [STON871 have been

implemented for this study. Both of these algorithms produce variations of an R-

Tree index which spans magnetic and optical disks. An R-Tree was chosen as a

basis from which to design such indexes, since it provides fast access to multi

dimensional spatial data objects. As discussed in Chapter 1, historical data may be

represented in a multi-dimensional space, in which time is one dimension. As a

baseline comparison, the two R-Tree variations were compared to the original R-Tree

contained on magnetic disk, which is hereafter referred to as the Single Root MD

R-Tree, or more succinctly as the MD-RT index. The original R-Tree was presented

in Chapter 2. The index structures compared in this study are described in the fol

lowing sections.

The following two MD/OD R-Tree indexes are R-Trees which may span mag

netic and optical disk, i.e., their nodes may be stored either on magnetic or optical

disk.

5.2.4. Index MD/OD-RT-1: The Single Root MD/OD R-Tree Index

The Single Root MD/OD R-Tree Index is constructed from a standard R-Tree by

the following simple vacuuming algorithm. Whenever the R-Tree index on magnetic

disk reaches a threshold size near its maximum allotted size, the Vacuum Cleaner

Process (VCP) moves some fraction of the oldest leaf pages (left-most leaf pages in the

time domain, assuming the time domain is the horizontal dimension and increases to

the right) to the archive. This fraction, VjCANDTDATES, is a tunable parameter

which determines the fraction of leaf nodes that are migrated onto optical disk

140

storage per vacuuming operation. If the value of V_CANDIDATES is too high, some

leaf nodes may be vacuumed that would otherwise receive new tuples and would

thus lead to poor storage utilization. If the value of VjCANDIDATES Is too low. each

vacuuming operation may transfer only a small number of nodes, thus requiring a

higher frequency of vacuuming. The optimal choice of V_CAA/D2DATES is a complex

optimization problem which depends on the width (in the time dimension) of the

active insertion window, which is defined below. Historical data is Inserted in

approximately time-sorted order, and nodes that fall within the active insertion win

dow are continuing to receive historical data, as opposed to nodes which contain

older historical data and are therefore out of the active insertion window, which are

said to be inactive. The width of the active insertion window is a function of the rate

at which the time attributes of the inserted data increase with respect to the vacu

uming frequency, and is bounded by the magnetic disk space allotted to the index.

In the performance experiments reported in this chapter, V_CANDIDATES was set to

25%, i.e., up to 25% of the oldest leaf nodes on magnetic disk were candidates for

vacuuming during each index vacuuming operation of the VCP. This value of

V_CANDIDATES was chosen as a result of empirical tests.

Following the vacuuming of the leaf nodes, the VCP then vacuums all of the

ancestor nodes of the vacuumed nodes that point entirely to nodes on the archive.

This non-leaf node vacuuming is applied recursively to all of the higher level nodes,

except to the root node which is never a candidate for vacuuming.

An example of a MD/OD-RT-1 index is illustrated in Figure 5.1. This figure

shows an R-Tree that has each of its nodes marked with either an M to signify that

the node resides on MD, or an O to mean that it resides on OD. As this figure illus

trates, a substantial portion of the nodes that contain the oldest data (i.e., leftmost in

the time domain, assuming the time domain is the horizontal axis and increases to

141

M

O M

r\
O O o M

V , ^ *• . r-Jl , *> ^ ^ _JL
o o o o o o M M

Figure 5.1: Single Root MD/OD R-Tree

the right) may reside on OD.

5.2.5. Index MD/OD-RT-2: The Dual Root MD/OD R-Tree Index

The Dual Root MD/OD R-Tree Index consists of a pair of R-Tree indexes, both

rooted on magnetic disk. The first R-Tree is contained completely on magnetic disk,

and the second is rooted on magnetic disk and has its lower levels on optical disk.

The Dual Root MD/OD R-Tree Index is constructed from a standard R-Tree by the

following vacuuming algorithm. The VCP is invoked when the size of the first R-Tree

index on magnetic disk reaches its maximum allotted size. When first invoked, the

VCP vacuums all of the first R-Tree's nodes, except its root node, to the optical disk

and allocates a root node on magnetic disk for the second R-Tree. Then, a new R-

Tree is constructed on magnetic disk as new historical data index records are

inserted into the index. Subsequently, each time the VCP is invoked, it vacuums all

of the first R-Tree's nodes except the root node, and inserts the immediate descen

dants of the first root into the corresponding level of the second R-Tree on magnetic

142

disk. As more vacuuming operations occur, the number of magnetic disk nodes of

the second R-Tree will increase, due to conventional R-Tree node splitting which may

propagate up to the root node. Over time, there would continue to be two R-Trees.

The first would be completely on magnetic disk and periodically archived. Insertions

are made to the first R-Tree while searches are performed by descending both R-

Trees.

An example of a MD/OD-RT-2 index is illustrated in Figure 5.2. In that figure,

the first R-Tree is entirely on MD, and may grow to a finite size, at which time it is

vacuumed to OD, and merged into the second R-Tree which has its lower levels

residing on OD and its root node on MD.

First R-Tree ,_
Ai

Mr A1

/ \ / \
M M M M

Second R-Tree
hi

0 C)

/ \ / \
0 0 0 0

1 \ /\ I \ J\
0 0 0 0 0 0 0 0

Figure 5.2: Dual Root MD/OD R-Tree

143

5.2.6. Index OD-AT: The Allocation Tree Index

The version of Allocation Trees implemented for this performance study is the

first of the two types that Vitter described in (VITT85], which is similar to a data

structure developed by Rathmann [RATH84). Allocation Tree records are inserted in

a breadth-first manner, and the tree is searched in a depth-first manner. A simple

characterization of Allocation Trees is a linked list of increasingly deeper depth-first

search trees, where each successive search tree is one level deeper than its predeces

sor in the list.

An example of an Allocation Tree with a non-leaf node branching factor b = 3 is

illustrated in Figure 5.3. In that figure, the nodes represent allocated OD pages, and

the arrows are the index records that point to other allocated pages. This structure

was primarily designed for efficiently locating the most recently allocated page on a

ROOT

2 3 6 7 J 10 11 12 , 17 . 2° . 22 25 29 31 34 37 39z i o / s w 11 \z 16 18 21 24 26 30 33 35 38

Figure 5.3: Allocation Tree

144

write-once medium. Starting with a pointer to node 1, the most recently allocated

page may be retrieved with approximately 2 x logb(n) page accesses, where n is the

number of allocated pages and b is the non-leaf node branching factor. This point is

evident in Figure 5.3, which shows that in the worst case the tree traversal from root

1 to the most recently allocated node must first climb logb(n) nodes to reach the

highest node (along the top of the structure illustrated in Figure 5.3). and then must

descend logb(n) nodes to reach the most recently allocated leaf node.

The Allocation Tree requires either that fractions of an OD page may be written,

or else pages that have not yet had their index records filled in (the fringe of the most

recently allocated non-leaf pages which do not yet point to other OD pages) are buf

fered in main memory and on MD until they are completely filled. Since most if not

all WORM ODs do not allow partial writing to a page, unfilled pages will usually have

to be buffered, thus making the supposed OD-only Allocation Tree really another

case of an MD/OD index, albeit with only a small fraction of pages on MD. For the

purposes of this study, Vitter's "partial OD page write" assumption was adopted so

that the Allocation Tree would qualify as an OD-only index.

Allocation Trees store data records within the non-leaf nodes of the index struc

ture. R-Trees, on the other hand, may store either actual data or else data page

pointers in its leaf nodes depending on whether the index is being used as a primary

or secondary index, respectively. In order to make meaningful comparisons of the

performance characteristics of these two indexes, both indexes must store either

data records or data page pointers. In the performance experiments the latter was

done, thus making both the Allocation Trees and R-Trees secondary indexes. There

fore, the Allocation Trees had data page pointers, hereafter referred to as data

records of 32 bytes (two 4-byte words forTmin and Tmax, one 4-byte tuple identifier,

145

and 20 bytes for a key descriptor and value)1. These are to be distinguished from

index records which point to other Allocation Tree nodes on the archival optical disk

medium.

All leaf nodes in Allocation Trees contain data records only, whereas all non-leaf

nodes may contain both data records and index records. Thus, in this sense Alloca

tion Trees are unlike B-Trees or R-Trees. both of which store index records in non-

leaf nodes, and data records in the leaf nodes. In Allocation Trees, any proportion of

data to index records in the non-leaf nodes Is permitted, except that there must be at

least two index records per non-leaf page2. Five percentages of index records in the

non-leaf nodes were used In the performance tests: 2%, 25%, 50%. 75%. and 100%.

5.2.7. Branching Factors

Five page sizes were tested for each of the indexing structures. Logical pages

were assumed to be physically contiguous on one track on either the magnetic or

optical disks, and therefore could be read In one I/O operation on either type of disk.

The maximum possible branching factors (the maximum number of index records

per non-leaf page) for the Allocation Tree and R-Tree indexes are shown in Graph

5.1.

*A 32 byte data record was also used In the R-Tree experiments, so that the
search performance comparisons between R-Trees and Allocation Trees would be
fair.

2Strictly speaking, at least one is required, but a minimum of two provides
reasonable search performance, since otherwise the index degenerates into a linked
list.

BRANCHING FACTOR OF NONLEAF NODES FOR ALLOCATION
TREE AND R-TREE, AS A FUNCTION OF PAGE SIZE

X Axis=page size(bytes)
Y Axis =branching factor

)24 2048 4096 8192 16384
— Allocation Tree, 100% index/0% data in internal nodes

Allocation Tree, 75% index/25% data in internal nodes
Allocation Tree, 50% index/50% data in internal nodes
R-Tree

—— Allocation Tree, 25% index/75% data in internal nodes
Allocation Tree, 2% index/98% data in internal nodes

146

Graph 5.1: Branching Factors of R-Tree and Allocation Tree Non-Leaf Nodes

5.3. Performance Experiments

The performance experiments were carried out by constructing indexes for two

collection of rectangles which were created using a random number generator for

both the time domain {Tmin and Tmax) and data fields {Vmin and Vmax). These syn

thetic data relations were constructed so that the time domain intervals were approx

imately sorted with respect to the time domain, and that the data interval values

were not correlated with the time interval values. This was done in order to model

the characteristics of a historical data relation. In the experiments, it was assumed

that the historical data was inserted in order of its Tmax fields, where Tmax

represents the time that the transaction which either deleted or modified an existing

tuple (which causes the former value of the tuple to be inserted into the historical

147

archive) committed.

The number of index records generated ranged from 30,000 to 100,000. By

convention, the horizontal rectangle coordinates represented values in the time

domain, and the vertical coordinates represented some interval of a data (i.e., non-

temporal) domain. In the case of both the R-Tree and Allocation Tree indexes, for the

first data relation, the time range intervals were generated as follows. Tmfn0 and

Tmaxo were initialized to zero, and then each time range interval limit pair, Tmini

and Tmaxt, were separately incremented from its predecessor by a random value uni

formly distributed over [103, 1041 while satisfying the constraint that Tmini < Tmaxi.

For each rectangle, the other two (vertical) coordinates, VminL and Vmaxi, were gen

erated by assigning each a random value from a uniform distribution over [0.

2.0e+09], such that Vrntrii < Vmax:t. Therefore, for the first data relation, the domain

of the indexed data was (0, 2.0e+09) in the vertical dimension, and [0.

5500 x nrecords] in the horizontal dimension, where nrecords was the number of

records inserted, and the average increment of the time dimension per inserted

record was: ((104 - 103) / 2) + 103 = 5500.

For the second data relation, the time range intervals Tmini and Tmaxt were ini

tialized to zero and each was separately Incremented from its predecessor by a ran

dom value uniformly distributed over [104, 3 x 104] such that Tmini < Tmax^ For

each rectangle, the vertical (data) coordinates, Vmini and Vmaxi, were generated by

assigning each a random value from a uniform distribution over [0. 105]. such that

Vmini < Vmaxi. Therefore, for the second data relation, the domain of the indexed

data was [0. 105) in the vertical dimension, and [0, 2 x 104 x nrecords] in the hor

izontal dimension, as the average increment of the time dimension per inserted

record was: ((3 x 104 - 104) / 2) + 104 = 2 x 104.

148

Two-dimensional R-Trees may be used to index rectangles, lines, or points,

since either dimension may index interval or point data. Interval indexes in two

dimensions are required for indexing rectangle data. Historical indexes on time

intervals and point data Is likely to be a common variety in practice. For example, an

index on salary histories of employees would be an index over a collection of histori

cal point data, where the points represented employee salaries. Such an index could

be used to efficiently satisfy queries such as:

retrieve (EMP.name)
using EMP(1988. 1989)
where EMP.salary = 10000

to find all the names of employees who were active at some time within the time

interval represented by [1988. 1989] and whose salary was $10,000.

Another variety of historical data may consist of a historical archive of interval

data Such a data collection would require an index over interval data in both the

time and some other (non-temporal) dimension. In this study, intervals in two

dimensions, i.e. rectangles, were chosen as the data type for indexing, because such

spatial data poses a greater challenge to any indexing structure, and the case of

indexing intervals in one dimension and points in the other dimension is a special

case of indexing interval data in two dimensions.3 The following query provides an

example in which an index on historical interval data would be useful.

retrieve (CITY, name)
using CnY[21 June 1990. 23 September 1990]
where CnY.dlurnal_temperature_range
overlaps [90° F. 100° FJ

3 The choice of interval data over point data for the non-temporal attribute did
not have a significant effect on the experimental results, since the dominant features
of the data relations were that the temporal data was approximately sorted and the
non-temporal data was not correlated with the temporal data.

149

This query finds the names of all cities whose diurnal (daily) temperature range ever

fell within 90° to 100° F during the Summer of 1990.

Each of the four index types described above were compared in terms of their

search and insert performance, as well as index space requirements. To measure

search performance, a large number of random interval searches were generated over

the entire data domain contained in the index.

Each performance test consisted of two phases, an insert phase and a search

phase. Each test program began with an empty index. During the insert phase, an

input data file was read and an index was constructed for that data. Insert perfor

mance was measured for the last 10% of the records, when the index was nearly its

final size. During the search phase, a series of 100 random searches was performed.

The following queries were used to generate the random search query sequences (in

SQL):

Query 1:
select *

from test_relation
where tmax >= rand_.time_min

and tmin <= rand_time_max;

Query 2:
select •
from test_relation
where tmax >= rand_time_min

and tmin <= rand_timejnax
and vmax >= rand_val_min
and vmin <= rand_val_max;

In both queries, tmin, tmax, vmin, and vmax were attributes of test_relation. The

rand_time__min/max and randjval_min/max correspond to randomly generated

search intervals, respectively. Query 1 generated a random search interval and

Query 2 generated a random search "rectangle", i.e. a two-dimensional search space

composed of two search intervals. The random search intervals were generated by

150

creating a random interval with a length that was uniformly distributed over the

range [0, 50%] of the difference of the maximum and minimum values of the index

records in each dimension. Each query was repeated 100 times using different ran

dom search arguments, and each sequence of searches was repeated for all of the

index types. This series of 100 query executions retrieved approximately 20% and

10% of the index records when processing Query 1 and Query 2, respectively.

Four sets of experiments were performed, two each for data relation 1 and data

relation 2. In the first set, the page size of the index was varied, using sizes of 1, 2.

4, 8, and 16 Kb, where in each of these tests the number of index records was

50,000. In the Allocation Tree tests, for each page size the percentage of space in the

non-leaf nodes used for index records (%IR) was varied over 2%, 25%, and 50%.

Values of %IR greater than 50% were not used in the experiments because the

search performance of the Allocation Trees diminished as the %IR was increased. In

the second set of tests, the number of index records was varied while using a page

size of 1024 bytes. These tests were repeated with indexes consisting of from 30.000

to 100,000 records, in increments of 10,000 records. The third and fourth sets

corresponded to the first and second, except that the input data was from data rela

tion 2 rather than data relation 1. In the tests involving the MD/OD R-Tree indexes,

the size of the magnetic disk area usable for the index was 256 Kb. The choices for

the number of records and the size of the magnetic disk area usable for the index

were dictated by the limited amounts of magnetic disk space that were available for

conducting the experiments. Although these parameter values may be small with

respect to "realistic" historical data indexes, they were large enough for analyzing the

performance characteristics of the indexes.

A subset of the performance experiments reported in the following two sections

were originally presented In [KOL089]. The implementation of the R-Tree variations

151

was later improved and those original experiments were repeated using the new R-

Tree code. In addition, the experiments were expanded for this chapter to include

the 2% and 25% index record tests of the Allocation Tree, and the entire set of exper

iments was repeated for data relation 2.

AVERAGE NO. OF PAGES READ PER SEARCH EXECUTING QUERY 1
USING ALLOCATION TREE AND R-TREE, AS A FUNCTION OF PAGE SEE

X Axis = pagesize (bytes)
Y Axis = average numberof pages readper search

lUvX/

2048 4096 8192 16384
- OD-AT, 50% index/50% data in internal nodes

OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension of index

^^ MD/OD-RT-2, utilizing one dimension of index
MD-RT, utilizing one dimension of index

Graph 52: number of records = 50,000; data relation 1.

AVERAGE NO. OF PAGES READ PER SEARCH EXECUTING QUERY 2
USING ALLOCATION TREE AND R-TREE. AS A FUNCTION OF PAGE SEE

X Axis = page size (bytes)
Y Axis = average number of pages read per search

lOOOi

2048 4096 8192 16384
OD-AT, 50% index/50% data in internal nodes
OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension of index

~"~ MD/OD-RT-2, utilizing one dimension of index
MD-RT, utilizing one dimension of index

Graph S3: number of records = 50,000; data relation 1.

152

153

5.3.1. Performance Results: As a Function of the Page Size

The set of graphs to be discussed first are all plotted as a function of the page

size. Graphs 5.2 and 5.3 show the average number of index pages read per search to

find all the qualifying index records, for all of the R-Tree variations and for Allocation

Tree indexes which had 2%, 25%, or 50% of the non-leaf node space used for index

records.

The curves in Graphs 5.2 and 5.3 show the performance data collected for one-

dimensional and two-dimensional searches performed on data relation 1 correspond

ing to Query 1 and Query 2, respectively. These graphs show the performance of

each of the indexes in terms of the average number of pages accessed per search, as

a function of the page size for a database consisting of 50,000 records. The curves

for the Allocation Tree indexes are the same in both graphs, since the same number

of index pages were read when an Allocation Tree was used as the access path to

execute either Query 1 or 2. i.e., all the records that satisfied the given time range

search argument were examined when executing either query. The curves for the

first two R-Tree variations (MD-RT and MD/OD-RT-1) were identical, and the curve

for the third R-Tree variation (MD/OD-RT-2) was very close to the first two, so much

so that all three appear as one thick line.

AVERAGE NO. OF PAGES READ PER SEARCH EXECUTING QUERY 1
USING ALLOCATION TREE AND R-TREE, AS A FUNCTION OF PAGE SIZE

X Axis = page size (bytes)
Y Axis = average number of pages read per search

IOOOt

2048 4096 8192 16384
OD-AT, 50% index/50% data in internal nodes
OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension of index

—— MD/OD-RT-2, utilizing onedimension of index
MD-RT, utilizing one dimension of index

Graph5.4:number ofrecords = 50,000;datarelation2.

AVERAGE NO. OF PAGES READ PERSEARCH EXECUTING QUERY 2
USING ALLOCATION TREE AND R-TREE, AS A FUNCTION OF PAGE SIZE

X Axis = page size (bytes)
Y Axis = average number of pages read per search

10001

2048 4096 8192 16384
OD-AT, 50% index/50% data in internal nodes
OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension of index

^— MD/OD-RT-2, utilizing one dimension of index
MD-RT, utilizing one dimension of index

Graph 5.5:numberof records =50,000; datarelation 2.

154

155

The curve for the R-Tree performance was slightly lower in Graph 5.3 In all of the

search performance graphs, all three of the R-Tree curves were essentially equal and

were lower than the curves for the Allocation Trees. The fact that the three R-Tree

variations provided nearly the same performance is not surprising, and was related

to both the order of insertion and the vacuuming frequency and quantity. Since the

data was inserted in time-sorted order and only a small fraction of the "oldest" nodes

on magnetic disk were vacuumed at a time, all of the Insertions were performed onto

MD resident pages. For the case of MD/OD-RT-1, inserts were not attempted on

pages that had been vacuumed to OD, since those pages contained "old" data and

hence were inactive with regard to receiving present or future inserted data. For the

case of MD/OD-RT-2, the historical data R-Tree evolved into an Index that had

nearly identical search characteristics as the original MD-RT R-Tree that was entirely

on MD. (for Query 2) than in Graph 5.2 (Query 1), because the second dimension of

the index provided a slight reduction in the average number of pages accessed. The

difference between the R-Tree performance between Queries 1 and 2 shown in

Graphs 5.2 and 5.3, respectively, was very slight due to the fact that the data caused

the higher level node regions to have good search resolution in the (horizontal) time

domain, and poor resolution in the (vertical) data domain. That is, the regions of the

higher level nodes tended to be very "tall and skinny", i.e., with respect their

domains, the average high level node regions were short in the horizontal domain

and long in the vertical domain. This was due to the insertion order of the data,

which was sorted in the temporal dimension and random in the non-temporal

dimension.

In Graphs 5.2 and 5.3, the three Allocation Tree variations performed with

approximately the same performance, except at a page size of 1 Kb. At the page size

of 1 Kb, the best search performance was inversely proportional to the fraction of

156

non-leaf node entries used for index records, i.e., the best performance was provided

by the 2% index records per non-leaf node index, followed by the 25% and then 50%

indexes, respectively.

PERCENTAGE OF NODES ALLOCATED ON MAGNETIC
OR OPTICAL DISK, AS A FUNCTION OF PAGE SIZE

X Axis = page size (bytes)
Y Axis = percentage of nodes allocated on magnetic or optical disk

IOOt : r

90 —

80™

70™

60™

50™

40-

30™

20™

10 —

1024 2048 4096 8192 16384
- - MD/OD-RT-1: % of nodeson magneticdisk

MD/OD-RT-1: % of nodes on optical disk
MD/OD RT-2: % of nodes on magnetic disk under root 1
MD/OD RT-2: % of nodes on magnetic disk under root 2
MD/OD RT-2: % of nodes on optical disk (under root 2)

Graph 5.6: number of records = 50,000; data relation 1.

UUBOl^li^ ^+,*w.rr..n.

—+—

PERCENTAGE OF NODES ACCESSED PER SEARCH ON MAGNETIC
OR OPTICAL DISK FOR QUERY 1, AS A FUNCTION OF PAGE SIZE

X Axis = page size (bytes)
Y Axis =percentage of nodes accessed per search onmagnetic oroptical disk

)24 2048 4096 8192 16384
— MD/OD-RT-1: percentof nodes on magnetic disk

MD/OD-RT-1: percentof nodes on opucal disk
MD/OD-RT-2: percentof nodes on magnetic disk under root 1
MD/OD-RT-2: percent of nodes onmagnetic disk under root 2

—~ MD/OD-RT-2: percentof nodes on opucal disk (underroot 2)

Graph 5.7: number of records = 50,000; data relation 1.

157

158

This result is not so straightforward, however. On the one hand, by storing a greater

amount of data in non-leaf nodes, fewer page accesses are necessary to satisfy

queries. On the other hand, a very low degree of index records in non-leaf nodes

reduces the fanout, thus degenerating the index Into a list structure as opposed to a

tree. Since the Allocation Tree idea is basically to construct a list of trees, excessive

reduction of the fanout transforms the index from a list of trees into a list of lists. As

was shown in Graph 5.1, the branching factor (fanout) of the 2% index record Alloca

tion Tree is quite low, compared to the other Indexes.

Graphs 5.4 and 5.5 correspond to Graphs 5.2 and 5.3, except that the indexed

data was data relation 2. Graphs 5.4 and 5.5 are strikingly similar to Graphs 5.2

and 5.3, i.e., the rankings among all of the index types remained the same, and dif

fered only in that the average number of pages accessed per search was slightly less

in Graphs 5.4 and 5.5 than in Graphs 5.2 and 5.3, and the Allocation Trees had a

greater decrease in page accesses as compared to the R-Trees. The domain of data

relation 1 was characterized by a "long" data span and a "short" time span, whereas

data relation 2 had a short data span and a long time span. Furthermore, the aver

age time interval span per data record was relatively short in data relation 1 and long

in data relation 2. Since the R-Trees had better time resolution than data resolution,

and the Allocation Trees had only time resolution, by reducing the data span of the

indexed data, and hence, the random queries which were generated, it is to be

expected that both indexes would perform better than in the experiments involving

data relation 1.

PERCENTAGE OF NODES ACCESSED PER SEARCH ON MAGNETIC OR OPTICAL
DISK FOR QUERY 2, AS A FUNCTION OF THE PAGE SEE

X Axis = page size (bytes)
Y Axis =percentage of nodes accessed per search onmagnetic oroptical disk

90

80

70

60

50

40

30

20

10™™:

it>24 2048 4096 8192 16384
— MD/OD-RT-1: percentof nodes on magnetic disk

MD/OD-RT-1: percent of nodes on opucal disk
MD/OD-RT-2: percentof nodes on magnetic disk tinder root 1
MD/OD-RT-2: percent of nodes onmagnetic diskunder root 2

—— MD/OD-RT-2: percentof nodes on opucal disk (underroot 2)

Graph5.8: number of records= 50,000;datarelation 1.

AVERAGE NO. OF PAGES READ PER INSERT USING ALLOCATION
TREE AND R-TREE. AS A FUNCTION OF PAGE SIZE

X Axis = page size (bytes)
Y Axis = averagenumber of pages read per insert

2048 4096 8192 16384
- - OD-AT, 50% index/50% data in internal nodes

OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension of index

~"~ M D/OD-RT-2, utilizing one dimension of index
MD-RT, utilizing one dimension of index

Graph5.9: number of records= 50,000; datarelation 1.

159

160

The Allocation Trees had a greater improvement than the R-Trees In the data relation

2 trials because the R-Trees had nodes which overlapped in the time domain,

whereas the Allocation Trees had no overlap. The remaining graphs in this section

are from the tests that involved data relation 1, since the results from data relation 2

were similar.

Graphs 5.2 through 5.5 compare the indexes in terms of absolute numbers of

disk accesses. i.e., each magnetic or optical disk access was counted as one access,

and no weighting factor was assigned to either type of access, though the access

speeds of optical disks may be slower than that of magnetic disks by a factor of 3 to

7 [HP89, LMSI87J. Since the Allocation Trees were wholly contained on optical disk

and the MD-RT R-Tree was wholly contained on magnetic disk, these indexes per

formed disk accesses that were exclusively on optical or magnetic disk, respectively.

For each of the mixed-media R-Trees, Graph 5.6 shows the percentage of pages that

were allocated on magnetic and optical disk. In Graph 5.6, the percentage of mag

netic and optical disk pages are shown for the single root MD/OD R-Tree. For the

dual root MD/OD R-TVee, the percentage of magnetic disk pages is broken down

between the magnetic disk pages under each of the two roots. This graph shows that

the percentage of optical disk nodes for both indexes remained fairly constant at

approximately 90%. In the dual root MD/OD R-Tree with a page size of 16 Kb, the

percentage of optical disk pages increased to close to 100%. Since the data con

tained in this graph was gathered only after the entire index was built, it was to be

expected that the curves would show some variation depending on the amount of

data inserted since the last vacuuming. In the dual root MD/OD R-Tree with a page

size of 16 Kb, the last vacuuming occurred just before the index reached its final

size, thus leaving a small percentage of nodes on MD. Also in the dual root MD/OD

R-Tree, the percentage of MD nodes under root 2 was very small In all cases.

161

showing that the MD portion of the R-Tree only required a small amount of MD

space.

SEE OF ALLOCATION TREE AND R-TREE INDEXES,
AS A FUNCTION OF PAGE SEE

2100

X Axis= pagesize (bytes)
Y Axis = sizeofindex (kilobytes)

000 **™™-

1900

1800

1700

1600

Si024 204i 4096819216384
- - OD-AT, 50% index/50% data in internal nodes

OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension ofindex

*— MD/OD-RT-2, utilizing one dimension of index
MD-RT, utilizing one dimension of index

Graph 5.10: number of records = 50,000; data relation 1.

AVERAGE NO. OF PAGES READ PER SEARCH EXECUTING
QUERY 1 USING ALLOCATION TREE AND R-TREE, AS A

FUNCTION OF THE NO. OF RECORDS

X Axis = number of records
Y Axis = averagenumber of pagesread per search

20001

30600 40000 50000 60000 70000 80000 90000 1OO0O0

OD-AT, 50% index/50% data in internal nodes
OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension ofindex
MD/OD-RT-2, utilizingone dimension of index
MD-RT, utilizing one dimension of index

Graph5.11: page size = 1024 bytes; data relation 1.

162

163

Graphs 5.7 and 5.8 show the percentage of the average number of MD and OD

pages accessed per search for each of the mixed-media R-Trees for Queries 1 and 2,

respectively. These graphs are similar to Graph 5.6, except that the OD curves are

slightly higher, as is the curve for the MD portion of the dual root MD/OD R-Tree.

These differences reflect that most of the queries were satisfied by OD nodes, since

about 90% of the data resided on OD, and the queries were uniformly distributed.

Graph 5.9 shows the average number of pages read per insert using each of the

index types. Although search performance is considered paramount to insert perfor

mance, these results are important because they show that the performance of the

Allocation Tree with 2% of its non-leaf node entries used for index records had very

poor insert performance, particularly when the page size was less than 8 Kb. These

statistics were collected during the last 10% of the insertions, when the index was

nearly its final size. Since the 2% Index record Allocation Tree had a low branching

factor, many pages had to be accessed in order to add new records when the index

grew from 45000 to 50000 records.

Graph 5.10 shows the size of each of the indexes in units of Kb. The R-Trees

were approximately 23% larger than the Allocation Trees. However, R-Trees provided

substantial search performance improvement, as was made evident by Graphs 5.2

through 5.5 for several page sizes.

5.3.2. Performance Results: As a Function of the Number of Records

In the second set of experiments, the page size was fixed at 1 Kb, and the

number of records was varied from 30000 to 100000, in increments of 10000.

AVERAGE NO. OF PAGES READ PER SEARCH EXECUTING
QUERY 2 USING ALLOCATION TREE AND R-TREE. AS A

FUNCTION OF THE NO. OF RECORDS

X Axis = number of records
Y Axis = average number of pages read persearch

20001

30000 40000 50000 6000070000 80000 90000100000

- - OD-AT, 50% index/50% data in internal nodes
OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension of index

^~ M D/OD RT-2, utilizing one dimension of index
MD-RT, utilizing one dimension ofindex

Graph 5.12: pagesize = 1024bytes;datarelation 1.

AVERAGE NO. OF PAGES READ PER SEARCH EXECUTING
QUERY 1 USING ALLOCATION TREE AND R-TREE, AS A

FUNCTION OF THE NO. OF RECORDS

X Axis = number of records
Y Axis = average number of pages read persearch

2000

30000 40000 50000 6000070000 80000 90000100000

- - OD-AT, 50% index/50% data in internal nodes
OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension of index

"—" MD/OD-RT-2, utilizingone dimensionofindex
MD-RT, utilizing one dimension ofindex

Graph5.13: page size = 1024bytes; datarelation2.

164

165

The search performance results for Queries 1 and 2 are given in Graphs 5.11 and 12

for data relation 1 and Graphs 5.13 and 5.14 for data relation 2, respectively. There

are five similarities to the results shown In Graphs 5.2 through 5.5. (1) The curves

for the Allocation Trees for both queries are the same. (2) The difference between the

R-Tree curves between the two queries for each data relation are slight, where the

curves from Query 2 are marginally lower than those from Query 1. (3) The three R-

Tree variations had approximately the same search performance in terms of the aver

age number of pages accessed per search. (4) The R-Tree variations outperformed

the Allocation Tree variations, the latter of whose rankings were the 2%, 25%, and

50% index record per non-leaf node variations. (5) The curves from the experiments

involving data relation 2 were slightly lower than those for data relation 1. The

remaining graphs in this section pertain to the experiments involving data relation 1,

as the results from data relation 2 were similar.

Graph 5.15 shows the percentage of MD and OD pages for each of the two

mixed-media R-Tree indexes. Again, depending on the time of last vacuuming before

the index reached its final size, the MD and OD portions fluctuated around 10% and

90%, respectively. Graphs 5.16 and 5.17 show the percentages of the average

number of MD and OD pages accessed per search for each of the mixed-media R-

Trees for Queries 1 and 2, respectively. These graphs show that the majority of the

accesses were to OD nodes, since the OD curves are higher in these graphs than in

Graph 5.15. This Is to be expected, since 90% of the nodes were on OD, and the

query distributions were uniform.

AVERAGE NO. OF PAGES READ PER SEARCH EXECUTING
QUERY 2 USING ALLOCATION TREE AND R-TREE, AS A

FUNCTION OF THE NO. OF RECORDS

X Axis = number of records
Y Axis = average number of pages read per search

20001

30000 40000 50000 60000 70000 80000 90000 100000

- - OD-AT, 50% index/50% data in internal nodes
OD-AT, 25% indcx/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1,utilizing one dimension of index

-— MD/OD-RT-2, utilizingone dimension of index
MD-RT, utilizing one dimension of index

Graph 5.14: page size = 1024 bytes; data relation 2.

PERCENTAGE OF NODES ALLOCATED ON MAGNETIC OR
OPTICAL DISK, AS A FUNCTION OF THE NO. OF RECORDS

X Axis a number of records
Y Axis = percentage of nodes allocated on magnetic or optical disk

1001

70

60

SO

40

30

20 •»•-----r-

3$60O 40000 50000 60000 70000 80000 90000 100000
MD/OD-RT-1: percent of nodes on magnetic disk
MD/OD-RT-1: percent of nodes on optical disk
MD/OD-RT-2: percent of nodes on magnetic disk under root 1
MD/OD-RT-2:percent of nodes on magnetic disk under root 2

—"~ MD/OD-RT-2: percent of nodes on optical disk (under root 2)

Graph5.15: page size = 1024 bytes; data relation 1.

166

167

Graph 5.18 shows the average number of pages accessed per insert. This graph

along with Graph 5.9 of the varying page size experiments clearly shows that the 2%

index record per non-leaf node version of the Allocation Tree had very poor insert

performance. The notable feature of these graphs is that the Allocation Trees with

2% index records in the non-leaf nodes required a larger number of accesses per

insert, especially with page sizes less than 8 Kb. The results of the search perfor

mance and Insert performance experiments together point out the trade-off of the

percentage of index records in the non-leaf nodes of Allocation Trees. A lower per

centage provides better search performance but has more costly inserts, whereas a

higher percentage provides better insert performance but worse search performance.

As previously mentioned, the number of non-leaf node entries used for index records

should be at least 2 to provide reasonable search performance, for otherwise the

trees degenerate into lists. Therefore, the percentage of non-leaf node entries used

for index records should be maintained above a certain minimum to guarantee good

search perfonnance, where that percentage would depend on the page size. From

the experiments, it appears that a good balance can be achieved by having 10% to

25% of non-leaf node space used for Index records.

Graph 5.19 shows the sizes of all of the indexes as a function of the number of

records. Both the R-Trees and Allocation Trees showed a linear growth rate, and the

R-Trees were larger by approximately 25%. However, the R-Trees provided substan

tial search performance improvement, as was made evident by Graphs 5.11 through

5.14 for several data relation sizes.

PERCENTAGE OF NODES ACCESSED PER SEARCH ON MAGNETIC OR OPTICAL
DISK FOR QUERY 1, AS A FUNCTION OF THE NO. OF RECORDS

X Axis = number of records
Y Axis = percentageof nodes accessedper searchon magnetic or optical disk

IOOt

90

80 1 i j.

7o| -!• \ j"
«H + \ »•

SO

40

30

40000 50000 60000 70000 80000 90000 100000

— MD/OD-RT-1: percent of nodeson magneticdisk
MD/OD-RT-1: percentof nodes on opucal disk
MD/OD-RT-2: percentofnodes on magnetic disk underroot 1
MD/OD-RT-2: percent of nodes on magneticdisk underroot2

—— MD/OD-RT-2: percentof nodeson opucal disk (underroot2)

Graph5.16: page size = 1024bytes; datarelation 1.

PERCENTAGE OF NODES ACCESSED PER SEARCH ON MAGNETIC OR OPTICAL
DISK FOR QUERY 2, AS A FUNCTION OFTHE NO. OF RECORDS

X Axis = number of records
Y Axis =percentage of nodesaccessed persearch on magnetic or optical disk

IOOt

80

70

60

so

40

30

20

3OX0 40000 50000 60000 70000 80

— MD/OD-RT-1: percent of nodes on magneticdisk
MD/OD-RT-1: percentof nodes on opucal disk
MD/OD-RT-2: percentof nodes on magnetic disk underroot 1
MD/OD-RT-2: percentof nodes on magnetic disk under root 2

— MD/OD-RT-2: percentof nodes on opucal disk (underroot 2)

Graph5.17: page size = 1024bytes; datarelation 1.

100000

168

169

5.4. Summary and Conclusions

Two indexing structures which spanned magnetic and optical disk media were

shown to have superior search performance compared to an indexing structure that

was completely contained on optical disk, and these indexes had search performance

equal to that of an Index that was entirely contained on magnetic disk. The test

database relations used in this study were constructed to reflect the properties of a

historical data archive, namely, that the data in the time domain was inserted in

approximate time-sorted order and the data (non-temporal) attributes were not corre

lated with the time attributes. Two data relations were indexed, one with a relatively

long data domain and short time domain with short time ranges per record, and the

other with a relatively short data domain and long time domain with long time ranges

per record.

The two mixed-media indexing structures which were shown to be useful for

indexing historical data relations were variations of the R-Tree index. Both varia

tions had search performance that was identical to an R-Tree that was wholly con

tained on magnetic disk, and all outperformed the Allocation Trees while maintaining

approximately 90% of their nodes on optical disk. The Allocation Tree, which had

100% of its nodes on optical disk, provided search performance that was inferior to

that of the R-Trees. The results for the two data relations used as Input and the two

queries used In the search experiments were similar.

AVERAGE NO. OF PAGES READ PER INSERT USING ALLOCATION
TREE AND R-TREE, AS A FUNCTION OF THE NO. OF RECORDS

X Axis = number of records
Y Axis = average number of pages read per insert

20 l I

i» — ...h 4 4

14-

12

10

3O0O0 40000 50000 60030 70000 80000 9000o"io0000
- - OD-AT, 50% index/50% data in internal nodes

OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1, utilizing one dimension of index

—— MD/OD-RT-2, utilizing one dimension of index
MD-RT, utilizing one dimension of index

Graph5.18: page size = 1024 bytes; data relation 1.

SEE OF ALLOCATION TREE AND R-TREE INDEXES,
AS A FUNCTION OF THE NO. OF RECORDS

4100

X Axis = number of records
Y Axis = size of index (kilobytes)

9$000 40000 50000 60000 70000 80000 90000 100000
- - OD-AT, 50% index/50% data in internal nodes

OD-AT, 25% index/75% data in internal nodes
OD-AT, 2% index/98% data in internal nodes
MD/OD-RT-1
MD/OD RT-2
MD-RT

Graph5.19:page size = 1024bytes; data relation 1.

170

171

While the results of this performance study are promising, future research is

needed to explore the performance of mixed-media indexes over a broader collection

of data types and distributions, relation sizes, insertion orders, and vacuuming fre

quencies and quantities other than those used in these experiments. In addition,

write-once variations of indexing structures other than the R-Tree should be

explored, and comparisons with alternative mixed-media approaches, such as the

Write-Once B-Tree [LOME89b], should be investigated.

CHAPTER 6

CONCLUSION

The focus of this work has been the design and analysis of Indexing structures

and techniques for historical data, and more generally for improving the performance

of a class of spatial access methods. Section 1 summarizes the results presented in

Chapters 3-5. Section 2 provides a comparison of this work with other research.

Finally, Section 3 discusses possibilities for future research on indexing techniques

for historical and spatial data in a DBMS.

6.1. Summary

In Chapter 3. the notion of Segment Indexes was introduced. The idea of Seg

ment Indexes is to combine the basic concept of the Segment Tree [BENT77] with

that of a class of database indexing structures which are based on balanced, multi-

way, tree-structured indexes. The primary motivation for combining these

approaches was to index data that represents historical data by a set of intervals In

the time domain. However, such an approach may also be extended to apply to

multi-dimensional Interval data, such as rectangles In two dimensions, and hyper-

rectangles in d dimensions, d > 2. The essential idea of Segment Indexes is to store

a spatial object In the highest level node that the object spans (covers) in some

dimension. In order to make this idea work in traditional database Indexing struc

tures, certain modifications to those indexes were required. Those modifications

included (1) allowing data to be stored in non-leaf as well as leaf nodes, (2) allowing

172

173

the page size in the index to be variable, and (3) allowing the index to be partially

pre-allocated based on an estimate of the data distribution. The first modification

was a departure from conventional indexes which normally store data records only in

the leaf nodes. The second modification was required since without it the data

records stored in the non-leaf nodes would reduce the number of node entries avail

able for index records, and would thus diminish the fanout of those nodes. The idea

of the second modification was to allow higher level non-leaf nodes to be larger than

their descendants. The third modification was to construct so-called Skeleton

Indexes, which are pre-allocated and pre-constructed Indexes that are based on esti

mates on the amount of data to be indexed, and its distribution. By building Skele

ton Indexes and then later adapting them to the actual input data, the resulting

index would have better search performance characteristics as compared to a similar

index that was built "from scratch". These ideas were incorporated into the R-Tree

index (GUTT84], and through the result of performance experiments were shown to

be sound. In particular, the Segment R-Tree provided substantially better perfor

mance as compared to R-Trees for both line segment and rectangle data.

In Chapter 4, the concept of Lop-Sided Indexes was presented. The motivation

for Lop-Sided Indexes is to support queries that are non-uniform in the index key

domain. In particular, for historical data indexes, it is likely that queries on more

recent historical data will occur more frequently than queries on older historical

data. However, the utility of Lop-Sided Indexes extends to any database application

that will generate a non-uniform query distribution. Another motivating influence is

the advent of large capacity optical disks, which have changed the assumptions

about what are typical database relation sizes. Since historical data relations are

likely to be stored on optical disks and will become quite large, their indexes must be

quite large as well. For such large indexes, it is no longer true that a balanced index

174

would only require at most a small number of levels, such as 3 or 4. The chapter

Included a report of a simulation study of Lop-Sided Indexes based on the B+-Tree,

using three different approaches to the problem of dynamically reorganizing the

index as it evolves. These three approaches were designated (1) no-shuflle, (2) skele

ton, and (3) shuffle. The first approach did no reorganization, the second con

structed an initial Lop-Sided Skeleton Index based on estimates of the input data

distribution and quantity, and the third performed a limited amount of index reor

ganization to maintain the proper degree of "lop-sidedness". The Lop-Sided B+-Tree

was implemented, using each of these approaches to reorganization, and the results

showed that the skeleton technique provided the best overall performance (assuming

the estimates were reasonably accurate), followed by the shuffle method and then the

no-shuflle method. In all cases, the performance of Lop-Sided B+-Trees relative to

standard B+-Trees was shown to be as good or better, for a range of non-uniform

query distributions.

In Chapter 5, the notion of Mixed-Media Indexes was introduced. The idea of

mixed-media indexes is that historical data may be contained in a temporally parti

tioned store such that the current data and their associated indexes are maintained

separately from the historical data and their associated indexes, possibly on different

media. In particular, historical data and indexes may be contained in large archives

on optical disk. For such a storage architecture, one approach to indexing a histori

cal data relation is to build a composite or mixed-media indexing structure that has

some component on magnetic disk and some component on optical disk. The idea

was to allow the magnetic disk portion to grow until its size reaches a threshold

upper limit, and at that time portions of the Index are migrated, or vacuumed, to opt

ical disk. Two alternative mixed-media R-Trees were compared to a magnetic disk-

based R-Tree, and an optical disk-based Allocation Tree (VTTT85]. The results of

175

these experiments showed that the mixed-media R-Trees had search performance

that was as good as the magnetic-disk based R-Tree in terms of the number of pages

accessed per search, and always performed better than the Allocation Tree by the

same measure.

6.2. Comparison with Other Research

Research in spatial data structures for database indexing has become quite

active, and has become a significant field in its own right. This thesis contributes to

this field in several respects.

In Chapter 3, the idea of Segment Indexes showed how a concept from the Seg

ment Tree binary tree data structure could be generalized for a multi-way tree, and

could be adapted in an area-based spatial access method. This technique is useful

for both line segment and rectangle data. In addition, the notion of adaptable Skele

ton Trees is a method for pre-partitioning the data space so that indexes that use the

technique of overlapping minimally bounding rectangles will have better multi

dimensional resolution. This technique provides much of the benefit of the static

packing scheme of IROUS851 or the periodic reorganization scheme of 'forced rein

serts" of [BECK90], and is more of a dynamic approach since it adapts to the actual

input data.

In Chapter 4, the Lop-Sided Indexes were shown to be a successful extension of

multi-way search trees for non-uniform query distributions. To date, no proposals

have specifically addressed the problem of indexing large databases for such non

uniform query distributions, largely because the uniform query distribution assump

tion is widely accepted, and until recently it was believed that indexes based on bal

anced multi-way trees would almost never exceed more than some small number of

levels, such as 3 or 4. The advent of optical disks that make It possible to store large

176

historical data archives overturns both of these assumptions simultaneously. Ironi

cally, some proposals [ELMA90. LOME89b) did mention that query distributions on

historical data would likely be non-uniform, but none have considered relaxing the

balance criterion for tree structured indexes.

In Chapter 5. the mixed-media index approach is similar in some respects to

the Time-Split B-Tree (TSBT) [LOME89b, LOME90], in that both the approach pro

posed in this thesis and the TSBT assume that the historical index spans magnetic

and optical disk. The difference is that the TSBT migrates index nodes to optical

disk one-at-a-time when a node splits, whereas the approach of Chapter 5 was to

have several Indexing nodes transferred simultaneously to optical disk by an asyn

chronous daemon process. In other respects the TSBT is fundamentally different

from the mixed-media R-Tree indexes presented in Chapter 5. For example, the

TSBT indexes time intervals by keeping the start time timestamp in the index

records, and therefore a large number of redundant index records will probably be

required in many cases. Also, since the TSBT is a balanced tree, it is likely to have

several levels as the size of the historical archive becomes large. This problem is

compounded by the redundant data contained in the index. The ideas developed in

Chapter 5 would successfully extend to a TSBT as well as to the Time Index

[ELMA90], assuming a non-uniform query distribution.

6.3. Directions for Future Research

The idea of Segment Indexes was shown to be applicable to R-Trees. While the

approach of Segment Indexes generalizes to a class of multi-way, tree-structured

spatial access methods, it remains to apply this approach to other indexing struc

tures. For example, it would be interesting to apply the Segment Index approach to

other variants of the R-Tree. such as the R*-Tree [BECK90J or the R-File [HUTF901.

177

The concept of Lop-Sided Indexes was successfully combined with the B+-Tree,

to produce Lop-Sided B+-Trees. This approach may apply to any tree-structured

multi-way index, particularly one in which the index records may be totally ordered

in the index key domain. Such is not the case in certain area-based spatial access

methods, such as the R-Tree. Further research should be devoted to determining

what other indexes would benefit from the Lop-Sided Index approach.

Mixed-media indexes were applied to R-Trees, and may certainly be applied to

other area-based spatial access methods that index historical data. In those experi

ments, the performance of the mixed-media R-Trees was essentially equal to that of

the R-Tree maintained entirely on magnetic disk, in terms of the average number of

nodes accessed per search. Further research is required to determine under what

conditions these three R-Tree variations differ in search performance. In addition,

the approach of vacuuming index nodes periodically from magnetic to optical disk

may be applied to other spatial access methods that are used in a temporally parti

tioned storage architecture, and other vacuuming algorithms may be devised.

Supporting spatial and historical data in database management systems adds

new functionality that is either desired or required by many database applications,

and in addition it may also benefit the database system itself. In particular, subsys

tems that deal with concurrency control, crash recovery, rules, and synchronization

of distributed databases may be able to use the spatial or historical attributes of data

or meta-data to their advantage. Further research is required in these areas.

The results of the research contained in this thesis indicate that new access

methods for spatial and historical data are worth implementing in a database sys

tem. More generally, existing spatial access methods for multi-dimensional interval

data can be improved upon. All of the indexing techniques presented in this thesis

178

are straightforward and are not difficult to Implement.

Database management systems that provide support for spatial and historical

data expand the possible domain of database applications. This thesis has contri

buted to some of the problems posed to designers and implementors of such sys

tems. In the future, database system prototypes may be built that utilize the tech

niques presented in this thesis, and applications may be developed that access large

spatial databases and historical data archives. In such a system, the techniques

presented here may be refined further, and performance comparisons can be made

based on a variety of queries over large quantities of actual spatial and historical

data.

BIBLIOGRAPHY

[AHN86] Ahn, Ilsoo. "Performance Modeling and Access Methods for Temporal

Database Management Systems". PhD Thesis, Department ofComputer

Science. University of North Carolina. August 1986.

[AHN881 Ahn. I., and Snodgrass. R "Partitioned Storage for Temporal Data

bases", Information Systems, Vol. 13, No. 4, 1988.

[ARAG891 Aragon, C, and Seidel. R "Randomized Search Trees". Proceedings of

the 30th Annual IEEE Symposium on Foundations of Computer Science,

October 1989.

[BAYE72] Bayer, R. and McCreight. E. "Organization and Maintenance ofLarge

Ordered Indexes", Acta Informatica, Vol. 1, No. 3. 1972.

[BECK90] Beckmann. N.. Kriegel, H., Schneider, R, Seeger. B. "The R*-Tree: An

Efficient and Robust Access Method for Points and Rectangles".

Proceedings of the 1990 ACM SICMOD International Conference on

Management of Data, June 1990.

[BENT771 Bentley. J. "Algorithms for Klee's Rectangle Problems". Computer Sci

ence Department. Carnegie-Mellon University, Pittsburgh. 1977.

IBENT85] Bent. S.. Sleator. D., Tarjan. T. "Biased Search Trees". SIAM Journal on

Computing, Vol. 14. 1985.

[BLAN90] Blanken. H.. Ijbema. A.. Meek. P.. van den Akker. B. "The Generalized

Grid File: Description and Performance Aspects". Proceedings of the

IEEE Sixth International Conference on Data Engineering, February

179

180

1990.

ICOME791 Comer, D. "The Ubiquitous B-Tree". Computing Surveys, Vol. 11. No. 2.

June 1979.

IDADA841 Dadam, P.. Lum. V.. Werner. H. "Integration ofTime Versions into a

Relational Database System", Proceedings of the Tenth International

Conference onVery Large Data Bases, August 1984.

[EAST86] Easton, M. "Key-Sequence Data Sets on Indelible Storage". IBM Journal

ofResearch and Development, Vol. 30, No. 3, May 1986.

[EDEL801 Edelsbrunner, H. "Dynamic Rectangle Intersection Searching", Institute

for Information Processing, Report 47. Technical University ofGraz. Aus

tria, 1980.

[EDEL82] Edelsbrunner. H. "Intersection Problems in Computational Geometry".

PhD Thesis. Report 93.Technical University of Graz. Austria, 1982.

[ELMA90] Elmasri. R, Wuu, G.. Kim. Y. "The Time Index: An Access Structure for

Temporal Data", Proceedings ofthe Sixteenth International Conference on

Very Large Data Bases, August, 1990.

[FREE87] Freeston, M. "The BANG File: A New Kind ofGrid FUe". Proceedings of

the 1987 ACM SIGMOD International Conference on Management of

Data, May 1987.

IFROS901 Frosh. R "A Method ofAccessing Large Spatial Databases". Proceed

ings of theCIS 1990 Symposium, March 1990.

[GREE89] Greene. D. "An Implementation and Performance Analysis of Spatial

Data Access Methods". Proceedings of the IEEE Fifth International

Conference onData Engineering, February 1989.

181

(GUNA90J Gunadhi, S.. Segev. A. "Efficient Indexing Methods for Temporal Rela

tions". Submitted to IEEE Knowledge and Data Engineering, 1990.

IGUNT89] Gunther, O. "The Design of the Cell Tree: An Object-Oriented Index

Structure for Geometric Databases", Proceedings of the IEEE Fifth Inter

national Conference on Data Engineering, February 1989.

IGUTT84] Guttman. A. "R-Trees: A Dynamic Index Structure for Spatial Search

ing", Proceedings of the 1984 ACM SIGMOD International Conference on

Management ofData, June 1984.

(HANS901 Hanson. E.. Chaabouni, M., Kim, C, Wang, Y. "A Predicate Matching

Algorithm for Database Rule Systems", Proceedings of the 1990 ACM

SIGMOD International Conference on Management ofData, June 1990.

[HENR89] Henrich. A., Six. H.. Widmayer. P. "The LSD Tree: Spatial Access to

Multidimensional Point and Non-Point Objects", Proceedings of the

Fifteenth International Conference on Very Large Data Bases, August,

1989.

[HERO80] Herot. C. "Spatial Management of Data", ACM Transactions on Data

base Systems, Vol. 5, No. 4, December 1980.

[HINR831 Hinrichs. K.. Nlevergelt. J. "The Grid File: A Data Structure Designed

to Support Proximity Queries on Spatial Objects", Proceedings of the

IVC83 {International Workshop on Graph-Theoretic Concepts In Com

puter Science), Trauner Verlag. Linz. Austria. 1983.

(HOUG62J Hough. P. "Method and Means for Recognizing Complex Patterns". U.S.

Patent No. 3069654. 1962.

[HP891 Hewlett-Packard Co. "Rewritable Optical Disk Library System Technical

Reference Manual", HP Part No. 5959-3540, Edition 2, December 1989.

182

[HUTF901 Hutflesz. A., Six, H., Widmayer. P. "The R-File: An Efficient Access

Structure for Proximity Queries". Proceedings of the IEEE Sixth Interna

tional Conference on Data Engineering, February 1990.

[JAGA90a] Jagadish. H. "Spatial Search with Polyhedra". Proceedings of the IEEE

Sixth International Conference on Data Engineering, February 1990.

[JAGA90b] Jagadish, H. "On Indexing Line Segments". Proceedings of the Sixteenth

International Conference on Very Large Data Bases, August, 1990.

IKNUT73] Knuth, D. The Art ofComputer Programming, Vol. 3. Sorting and Search

ing, Addison-Wesley, Reading. MA, 1973.

[KOL089] Kolovson, C. Stonebraker, M. "Indexing Techniques for Historical

Databases", Proceedings of the IEEE Fifth International Conference on

Data Engineering, February 1989.

[KRIE84J Krlegel. H. "Performance Comparison of Index Structures for Multikey

Retrieval". Proceedings of the 1984 ACM SIGMOD International Confer

ence on Management ofData, 1984.

[LMSI87] Laser Magnetic Storage International Co.. "LaserDrive 1200 Intelligent

Digital Optical Disk Drive User Manual". LMSI Co.. Colorado Springs,

CO. 1987.

[LOME89al Lomet. D.t Salzberg. B. "Access Methods for Multiversion Data".

Proceedings of the 1989 ACM SIGMOD International Conference on

Management ofData, June 1989.

[LOME89b] Lomet. D.. Salzberg. B. "A Robust Multi-Attribute Search Structure".

Proceedings of the IEEE Fifth International Conference on Data Engineer

ing, February 1989.

183

[LOME90] Lomet, D., Salzberg, B. "The Performance of a Multiversion Access

Method", Proceedings of the 1990 ACM SIGMOD International Conference

an Management ofData, May 1990.

[LUM841 Lum, V., Dadam, P., Erbe, R, Guenauer, J.. Plstor. P.. Walch. G..

Werner, H.. Woodfill. J. "Designing DBMS Support for the Time Dimen

sion". Proceedings of the 1984 ACM SIGMOD International Conference on

Management ofData, June 1984.

[LUM85] Lum. V., Dadam. P., Erbe. R, Guenauer, J.. Plstor, P., Walch. G.,

Werner, H.. Woodfill. J. "Design of an Integrated DBMS to Support

Advanced Applications", Proceedings of the International Conference on

Foundations ofData Organization, May 1985.

[MEHL84] Mehlhorn. K. Sorting and Searching. Springer. 1984.

(MORT661 Morton. G. "A Computer Oriented Geodetic Data Base and a New Tech

nique in File Sequencing". IBM Ltd.. Ottawa, Canada, 1966.

[McCR85] McCreight, E. "Priority Search Trees", SIAM Journal on Computing, Vol.

14. No. 2. May 1985.

[NIEV73J Nievergelt, J., Reingold. E. "Binary Search Trees of Bounded Balance",

SIAM Journal on Computing, Vol. 2, 1973.

[NIEV81J Nievergelt, J., Hlnterberger, H., Sevclk, K. "The Grid File: An Adapt

able. Symmetric Multikey File Structure". Trends in Information Process

ing Systems, Proceedings of the Third ECI Conference, Lecture Notes In

Computer Science 123. Springer Verlag. 1981.

[OHSA831 Ohsawa. Y.. Sakauchl. M. "BD-Tree: A New N-Dimensional Data Struc

ture with Efficient Dynamic Characteristics", Proceedings of the Ninth

World Computer Congress, JFIP83, 1983.

184

[OHSA901 Ohsawa. Y.. Sakauchl. M. "A New Tree Type Data Structure with

Homogeneous Nodes Suitable for a Very Large Spatial Database".

Proceedings of the IEEE Sixth International Conference on Data Engineer

ing, February 1990.

[OOI871 Ooi. B.. McDonell. K.. Sacks-Davis. R "Spatial K-D Tree: An Indexing

Mechanism for Spatial Database". Proceedings of the Eleventh Interna

tional Computer Software and Applications Conference [COMPSAC),

October 1987.

IOOI891 Ooi. B.. Sacks-Davis. R. McDonell. K. "Extending a DBMS for Geo

graphic Applications". Proceedings of the IEEE Fifth International Confer

ence on Data Engineering, February 1989.

[OREN84] Orenstein, J.. Merrett, T. "A Class of Data Structures for Associative

Searching", Proceedings of the Third ACM SIGACT-SIGMOD Symposium

on Principles ofDatabase Systems, April 1984.

IPREP85] Preparata. F., Shamos, M. Computational Geometry, An Introduction,

Springer-Verlag, New York, 1985.

[RATH84] Rathmann, R "Dynamic Data Structures on Optical Disks", Proceed

ings IEEE Computer Data Engineering Conference, April 1984.

(ROBI81] Robinson. J. "The K-D-B Tree: A Search Structure for Large Multidi

mensional Dynamic Indexes". Proceedings of the 1981 ACM SIGMOD

International Conference on Management ofData, June 1981.

IROTE87] Rotem, D., Segev. A. "Physical Organization of Temporal Data",

Proceedings of the IEEE Third International Conference on Data Engineer

ing, February 1987.

185

[ROUS85] Roussopoulos, N., Leifker, D. "Direct Spatial Search on Pictorial Data

bases Using Packed R-Trees". Proceedings of the 1985 ACM SIGMOD

International Conference on Management ofData, June 1985.

[SALZ89] Salzberg, B., Lomet, D. "Robust Index Structures for Large Spatial

Databases", College of Computer Science. Northeastern University,

Technical Report NU-CCS-89-16, 1989.

(SAME881 Samet, H. "Hierarchical Representations of Collections of Small Rec

tangles", ACM Computing Surveys, Vol. 20, No. 4, December 1988.

[SAME89a] Samet, H. The Design and Analysis of Spatial Data Structures,

Addison-Wesley, Reading, MA, 1989.

[SAME89b] Samet, H. Applications of Spatial Data Structures: Computer Graphics,

Image Processing, and GIS, Addison-Wesley, Reading, MA, 1989.

(SARN861 Samak. N., Tarjan. R "Planar Point Location Using Persistent Search

Trees". Communications of the ACM, Vol. 29, No. 7, July 1986.

[SEEG881 Seeger, B., Krlegel. H. 'Techniques for Design and Implementation of

Efficient Spatial Access Methods", Proceedings of the Fourteenth Interna

tional Conference on Very Large Data Bases, August, 1988.

ISEEG90] Seeger, B.. Krlegel, H. "The Buddy-Tree: An Efficient and Robust

Access Method for Spatial Data Base Systems". Proceedings of the Six

teenth International Conference on Very Large Data Bases, August,

1990.

[SEGE871 Segev. A., Shoshani. A. "Logical Modeling of Temporal Data". Proceed

ings of the 1987 ACM SIGMOD International Conference on Management

ofData, May 1987.

186

ISELL87) Sellis. T., Roussopoulos, N.. Faloutsos. C. "The R+-Tree: A Dynamic

Index for Multi-Dimensional Objects", Department of Computer Sci

ence. University of Maryland. Technical Report CS-TR-1795. February

1987.

ISHEN90] Sheng. J.. Sheng. O.. "R-Trees for Large Geographic Information Sys

tems in a Multi-User Environment", Proceedings of the Twenty-Third

Annual IEEE Hawaii International Conference on Systems Sciences, Vol

II, Software Track, January 1990.

[SHOS861 Shoshanl, A.. Kawagoe, K. 'Temporal Data Management", Proceedings

of the Twelfth International Conference on Very Large Data Bases,

August. 1986.

[SIX881 Six. H.. Widmayer. P. "Spatial Searching in Geometric Databases".

Proceedings of the IEEE Fourth International Conference on Data

Engineering, February 1988.

[SLEA851 Sleator. D.. Tarjan. T.. "Self-Adjusting Binary Search Trees". Journal of

the ACM, Vol. 32. 1985.

[SNOD851 Snodgrass. R. Ahn. I. "A Taxonomy of Time in Databases". Proceedings

of the 1985 ACM SIGMOD International Conference on Management of

Data, June 1985.

ISNOD861 Snodgrass. R. "Research Concerning Time in Databases: Project Sum

maries", ACM SIGMOD Record, Vol. 15. No. 4. 1986.

[STON87J Stonebraker. M. "The Design of the POSTGRES Storage System",

Proceedings of the Thirteenth International Conference on Very Large

Data Bases, September, 1987.

187

[STON901 Stonebraker, M„ Jhingran, A., Goh, J., Potamlanos, S. "On Rules, Pro

cedures, Caching and Views in Data Base Systems", Proceedings of the

1990 ACM SIGMOD International Conference on Management of Data,

June 1990.

[TAMM81] Tamminen, M. "The EXCELL Method for Efficient Geometric Access to

Data", Acta Polytechnica Scandinavica, Mathematics and Computer Sci

ence Series No. 34. Helsinki, Finland. 1981.

rvTTT851 Vitter, J. "An Efficient I/O Interface for Optical Disks", ACM Transac

tions on Database Systems, Vol. 10. No. 2, June 1985.

[WHAN85] Whang. K.. Krishnamurthy, R "Multilevel Grid Files". IBM Thomas J.

Watson Research Center. Research Report RC 11516 (#51719),

November 1985.

	ERL-90-105 (1 of 2)
	ERL-90-105 (2 of 2)

