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Abstract

In an earlier paper [SJK90], we described a technique for the placement of small-cell ICs
subject to performance constraints that employsa a nonlinear wirelength function and a timing
model which uses a block-oriented representation of paths [NBHY89]. Given an initial feasi
ble solution, it can efficiently find an optimal solution for the wirelength function subject to
the timing constraints. However, finding an initial feasible solution by standard techniques is
computationally expensive, taking more than 15 hours for a problem with about 1400 modules.

In this paper, an algorithm that the finds the optimal solution for the formulation without
requiring an initial feasible solution is presented. As before, the timing constraints are implicitly
represented using a network and nonlinear programming techniques are used to minimize wire-
length subject to timing constraints. This allowscritical paths to dynamically adjust while the
placement changes to minimize wirelength. The solution of the nonlinear programming problem
yields an initial placement of cells which is followed by hierarchical partitioning techniques to
resolve the slot constraints.

Several new results are derived in this paper. In particular, the concept of a reduced forest
of timing constraints is introduced. It represents the structure inherent in timing constraints
and is the key to the efficiency of algorithms presented in the paper. Using reduced forests, the
muteness of the algorithm is proved under less stringent conditions than [SJK90].

The algorithm is shown to be effectiveon practical examples. For a circuit with 1418modules,
it is able to find an optimal solution in under 8 minutes of CPU time.

1 Introduction

As ICs are scaled to smaller dimensions, the performance of chips becomes dominated by wire

delay [SM82]. This underscores the need to develop tools that explicitly optimize performance

during physical design. Performance in physical design has been addressed by many researchers in

the past and can be grouped into two categories: net-based and path-based approaches. Physical

design is a net-based process, i.e., the physical design tools operate on nets and the objects to

which they connect. Timing is inherently path-based, i.e., the timing constraints that guarantee

certain performance criteria are imposed on paths (sequences of modules and nets) with well-defined

starting points and ending points.

Net-based approaches are discussed by [NBHY89], [DAD+84], [TSS86], [BY85], [0IS+86],
[MSL89], [WRA+78]. In some net-based algorithms, weights are assigned to nets to reflect the

criticality of paths which may be determined by a timing verifier statically or dynamically. In other

net-based approaches, a pre-timing analysis may be used to derive maximum bounds on the sizes



of the nets. In path-based approaches [JK89], [PK89], the path nature of timing constraints and

the physical representation of the IC are unified in a single formulation.

2 The Models

For the purpose of modeling timing behavior and physical layout, an IC may be viewed as a collec

tion of modules (or cells) interconnected by nets that attach to the modules at pins (or terminals).

Let M. = {mi, m.2,.. -,^a/}, Af = {»i, r^, ••-inN}i and V = {p\,P2, •••iPp} respectively denote
the sets of modules, nets, and pins. The modules can be categorized by function as: combinational,

synchronizing, primary input (PI), and primary output (PO). Let / represent the number of pri

mary inputs, and g represent the number of primary outputs; thus, there are M —f - g internal

modules where an internal module is defined to be inside the periphery of the chip with freedom to

move. The pins may be similarly categorized based on the classification of the cell to which they

attach. Moreover, the pins may also be classified as being input or output, depending on whether

they attach to the input or output of a cell. Nets have associated with them a set of modules and

a set of pins that they connect.

2.1 The Wirelength Model

The cost function used to evaluate a placement is of great importance since the accuracy of the

function in representing the true cost of the layout can have a dramatic impact on the effectiveness

of optimization techniques. In order to obtain an exact estimate of the cost, the chip should be

completely routed for each of the placements obtained during the sequence of optimizations. This

is impractical at best, because of the computational expense involved. Hence, approximations have

been proposed to estimate the cost of a layout.

2.1.1 Net length estimate

Let xp. and ypi denote the x and y coordinates of pin pi on the chip. The following estimator for
the length of net n is used:

Pi,Pj€n

The estimate Ln is the square of the Euclidean distance between the pins on net n. This approxi

mation may be inaccurate for chips with large modules because it assumes that every pair of pins on

a net is interconnected separately. However, for the type of ICs considered in this work, (small-cell

ASICs), the estimate has been shown to be accurate by [Hal70], [CK84] and [TKH88] and has been

widely used in practice.

It is assumed that the pins of a module are located at the center of the module and the module's

location is represented by a single (a:, y) coordinate that coincides with the center of the module on



the chip. Again, these are reasonable assumptions for small-cell ICs because module orientation is

not explicitly considered as part of the optimization process.

2.1.2 Total Wirelength

With the assumption that the pins on a module and the module share the same location, we can

write an expression for the estimate of the cost of a placement as

L=\ E. .<=«((*.-- x>f+(* - w)2) (2)

where c,j represents the numberofnets that modules m,- and rrtj share, (a;,-, y,) and (xjy yj) represent
the locations of mt- and rrij.

The effectiveness of this cost function has been researched in the past and [Hal70], [CK84] and

[TKH88] show that it is a reliable indicator of the final routed total wirelength of a placement.

2.1.3 Properties of the cost function

The modules are partitioned into two sets, fixed and movable. Fixed modules are 10 pads or

modules that have been assigned a location on the chip, for example, clock pads. Movable modules

have variable x and y coordinates. The cost function can then be rewritten using matrix notation

as

M* V) =5(xTBx +yrBy) +cTx +dTy (3)
where x is a vector of the x-coordinates of the module locations and y is a vector of the y-

coordinates. c and d are contributions from fixed modules. B is a symmetric matrix with

B = D - C (4)

where C = [ctJ] and D is a diagonal matrix with da = £j=i ctJ-.
[Hal70] has shown that if the modules cannot be partitioned into disconnected subsets, then

B is positive semi-definite. In addition, B is almost always sparse for practical gate-array and

sea-of-gate circuits. This enables efficient numerical techniques to be applied to the matrix.

2.2 Timing Model

This work restricts attention to one specific timing problem: the long path problem and ignores

the related short path problem. It could be extended to deal with both problems if necessary. It

is assumed that cell signal flow is unidirectional for every input-output conducting path in a cell.

Similarly, each net has a signal direction associated with its output pin. Associated with every

signal flow is a rising and falling delay that is a function of the corresponding cell and interconnect

delay models. A single delay value is calculated for each signal flow that is based on the rising and

falling transitions. The methods to be discussed are generalizable to the case of separate rising



and falling delays [HSC83]. Each synchronizing cell is assumed to have a clock pin, data-input

pins, and a data-output pin. In this paper, for simplicity of discussion it is assumed that edge-

triggered synchronizing elements are used. The method described are generalizable to the case of

level-sensitive latches.

The performance of a synchronous digital IC is inversely proportional to the circuit's cycle time

or clock period. The clock waveforms that define the clocking methodology are ultimately deter

mined by the circuit's critical paths. Informally, a pathis defined to be a sequence of interconnected

modules and nets with a well-defined starting point and ending point ( the starting and ending

points are represented by modules). Informally, a criticalpath is a path whose timing behavior

constrains the performance of the design.

2.2.1 Graph Representation of Chip Timing

Let the digraph £r(V, A) represent the integrated circuit in the physical/timing domain. Let the
vertex set V be in one-to-one correspondence with the sets of pins classified as: combinational,

synchronizing , primary input, and primary output. Arc weights <f(»i, Vj) denote the pin-to-pin

signal propagation delays for all (v,-, Vj) € A, and arc directedness represents the direction of signal
flow in the circuit. Also, let A1 and AE model the signalbehavior internal and external to all cells
respectively; thus, internal signal arcs represent cell signal flow while external arcs represent net

signal flow.

A = AIUAE (5)

Let {v\,..., v\f-g} represent the cell output pins in the circuit ( it is assumed that each net is
driven by a single-output pin and that primary inputs have no input pin and primary outputs have

no output pin ) and {vM-g+u-">Vp} correspond to the cell-input pins. Assume that pi is the
output pin of m,- and connects to n,-. In the event that a cellhas more than one output pin, the cell

may be replicated for each output with identical nets feeding each replicated cell and the location

of each copy of the cell is constrained to one location during physicaldesign. A path $, is defined

by the sequence (va,..., ve) of vertices that uniquely define the path.

Delay in an integrated circuit may be viewed as consisting of two components: cell delay and

net delay. Let the delay of module m; be characterized by

d(*i,«s)V (*,•,*) 6 A1 (6)

and let the delay of net nt- be characterized by

«*(*,-, ty)V(*,*,-) G AE (7)

The greater flexibility of this multiple-arc cell and net model permits more accurate modeling
than single cell and net delay models. This is particularly important when it becomes necessary

to model different pin-to-pin net delays for aggressively scaled technologies where interconnect

resistive contributions become significant.



Let E denote the set of vertices representing path end points that corresponds to the input

pins of primary outputs and the data-input pins of the synchronizing modules. Associated with

each path endpoint vertex is a required arrival time r,-. In a similar manner, let 5 denote the set of

vertices representing path starting points that correspond to the primary inputs and data-output

pins of the synchronizing modules. Associated with each path starting point vertex is an actual

arrival time a,-.

Path delay in the integrated circuit is computed by a block-oriented search [HSC83], i.e., delay

is determined in a breadth-first manner, beginning at the path starting points and terminating at

the path ending points. The worst-case actual arrival time aj is given by

aj = max{a;+ rf(vt-, vj) | V(ut-, Vj) GA} (8)

The required arrival times specified for the path end points may be propagated in a backward

breadth-first manner through the circuit so that requirements on the required arrival times for

vertices internal to the circuit may be determined. The required arrival time r,- is defined to be

r,- = minfo - d(viy Vj) | V(u,-, Vj) GA} (9)

Based on the calculation of actual arrival and required arrival times for all v,-, a slack Si may

respectively be defined as

S{ = Ti-Oi (10)

Slack values are useful in characterizing the timing behavior of a circuit. A negative value of s,- for

vt- indicates that a violation of a timing constraint has occurred.

Definition 1 The timing of the chip is said to befeasible if and only ifsi > 0, Vvt- G V.

A critical long path is defined as follows

Definition 2 A critical longpath II is a path $ in which the sequence of vertices (vai...,ve),

v, G S and ve G E comprising the path all have slack values less than or equal to zero. II =

{vi | Si < 0 V Vi G $}

Thus, a necessary and sufficient condition for the non-existence of long paths is Si > 0, V v,- G V.

The arcweights d(vi, Vj) for all (v,-, Vj) GAE are a function ofthe positions ofthe pins defining the
cells. Let Xi = (xk)T, "*fc Gn,- be the vector ofx locations of pinson net n;. Yi is similarly defined.
Proposition 1

Let rf(vj, Vj) = /(Xj,Yi), Vm* Gnt- be any convex function corresponding to the arc (u;,Vj). Then,
the timing constraints form a convex set.

Proof:

For each non-empty path II5e = vs -» vei v8 G 5, ve G E, let

d(II5e)= £ d(vi,Vj)



If there is no path from v9 to ve, let d(ILae) = —oo. The timing constraints are equivalent to

the following constraints:

d(ILae)<Te,VvaeS,VveeE

But d(TLae) is the sum of convex functions and is therefore a convex function. So, d(Uae) < Te
is a convex set. •

2.3 General Formulation

In this section, it is assumed that f(Xi,Y{) are convex delay functions associated with the arcs

of Dt> The problem of minimizing wirelength subject to timing constraints can be stated as the

following nonlinear program

minimize L (NLP)

subject to

flj > <*i + d(vi,Vj) V{yi,Vj) GA
aj < Te Vvj£E (U)
aj > T8 Vvj G 5

«*(»»*,•) = /(*«> ^) Vn.-G-A/'

where Te and Ta respectively represent the required arrival times at the path endpoints and the
actual arrival times at the path starting points whichare derivedfrom the performancespecifications

and the clocking methodology. Although the ideas in the algorithmdeveloped in this paper to solve
the performance-driven placement problem can be generalized to any convex delay function, it is
difficult to proveconvergence and terminationfor arbitrary non-linear convex delayfunctions. The

algorithms will be illustrated in the next section using a simple linear delay function for the arcs.

Theorem 1

// there exists at least one fixed module and the modules do not form disconnected subsets, then

xTBx and yTBy are positive definite.

Proof:

Let there be a fixed module at location (a, 6). Define C(i) = {mj\cij ^ 0}. Consider a module
mt connected to the fixed module. A term of the form c(xi - a)2 appears in the objective. The

expansion of this term includes the term ex2. Now suppose there exists a non-zero vector x' such
thatx/TBx' = 0. x'i must bezero in thatvector. Consider a term oftheform c,j(a:J-Xj)2, j GC(i).
This expression can be zero only if x{ = x'j. But this forces x'j = 0,Vj GC(i). Since the modules
form a connected graph (by assumption), this in turn forces all modules connected to C{i) to have
a zero x location. Proceeding in this manner, we have Ji=*2 = -= xm = 0> which is a

contradiction. That yrBy > 0 can be proved similarly. •



Corollary 1.1

Any relative minimum of NLP is also a globalminimum.

Corollary 1.2

The satisfaction of the Kuhn-Tucker first-order optimality conditions are sufficient for a point to

be a global minimizer of NLP.

Active constraints at a point are defined to be those constraints that are satisfied with equality.

Let A* denote the vector function (possibly non-linear) of the active constraints at a global mini

mum w* and VA* denote the associated Jacobian matrix. It is assumed that VA is well-defined

in the feasible region of the constraints. Corollary 1.2 states that there exist Lagrange multipliers

A satisfying

VL(w*) + ArVA* = 0

ArVA* = 0

A > 0 (12)

provided w* is a regular point of the constraints, i.e., at w * the matrix VA* has full rank.

2.4 Reducing the Size of the Active Set

Proposition 2

The active timing constraints and delay equations at the optimal solution w* can be replaced by an

equivalent set of active constraints which consists of equations for arcs on paths in Dt from vertices

in S to E.

Proof:

Let Ec = {vi G E\ai —T,}. In this discussion, consider external arcs. Internal arcs contribute only

to the right-hand side of an equation. If Ec ^ 0 there exists a forest of arcs ta such that

aj = ai + d(vi,Vj), V(u,-,Vj) G rA

For each arc (v,-, Vj) G ta, if Vj &Ec and Vj has no arcs in ta directed out of it, we can increase aj by
a finite positive value e without affecting the feasibility of the current solution. The solution remains

optimal because aj does not appear in the objective function. Thus, the equation corresponding

to (vj, Vj) can be deleted from the active set. If v,- has no other arcs in ta directed out of it, or all

the arcs directed out of u,- were deleted by the above process, we can delete the delay equation for

the output net associated with vertex Vj.

Similarly, if there is an arc (v,-, Vj) £ S with no arcs in ta directed into u,-, we can decrease a,-

by a finite positive constant e and make it inactive without affecting the feasibility or optimality.

Similar arguments can be made for the delay equations of the output net of a movable module with

no arcs in ta directed into it. This process of deleting timing and delay equations can be repeated

until the resulting forest rA is rooted in 5 and all the arcs terminate in Ec. If Ec is empty, then



all the constraints are removed by the process and the solution corresponds to the unconstrained

optimal solution of the objective function. •

The forest resulting from this reduction is called a reduced active forest (RAF). The significance

of this proposition is that in searching for an optimal solution, it suffices to look for solutions such

that the set of active arcs form trees rooted in 5 and terminating in E. This simplifies the algorithm

used for solving the optimization problem.

3 Specific Formulation for Linear Delays

This section describes a formulation that uses linear delay functions for the arcs in Dt and an

efficient representation for the resulting delay equations. The interconnect length estimate used

to determine a net's timing behavior (i.e., the arc delays for arcs in AE) is taken to be the net's
bounding-box for two reasons: (1) techniques exist that bound the size of a minimum rectilinear

Steiner tree (MRST) given the semi-perimeter of the net's enclosing rectangle and the number of

pins on the net [CH79] and (2) the net's bounding-box is easy to calculate using linear inequalities.

Let x,-, 2|, 2/,-, and y. be the extents of the bounding-box of n,-. Define constraints on x,- as

follows

x~i > Xj, Vmj G ni (13)

Xj is constrained as follows

Define z/,- as follows

Define y. as follows

Xj < Xj, Vmj £ ni (14)

Vi > Vj, Vmj £ Ui (15)

y. < yj, Vmj Gn,- (16)

These equations, along with the timing constraints defined in Equations 8 and 9 are sufficient

to ensure that the variables x,-, x,-, x/,-, and y. always correctly define the bounding-box of a net.

Let Ch and Cv denote the horizontal and vertical capacitance per unit length of the horizontal

and vertical interconnect wires respectively. Let Ri denote the output resistance of module m,-. The

delay ofnet n,- (and the arc weight d(vi,Vj)t(vi, Vj) 6 AE) is determined by the following equation

d(vi, vj) = Ri[Ch(xi - Xi) + Cv(yi - y.)] (17)

In order to model the equations for bounds on a net, a digraph is created. The digraph is

used in Section 3 of this paper to ensure linear independence in the specification of bounding-box

constraints. Let the digraph -Dfl(Vjg,yl£) represent the relationship between the net bounding-box

and the modules to which pins defining the net bounding-box are attached. Let the vertex set Vg

be in one-to-one correspondence with the variables defining the maximum and minimum x and y

extents of the net bounding-boxes and the x and y locations of the modules. The arc set As is

8



(•) (b)

Figure 1: The bounding-box graph, Db

in one-to-one correspondence with the constraints that define the extents of the bounding-boxes.

Figure 1(a) shows connected cells and nets and the corresponding digraph Db is shown in 1(b).

Notice that the arcs are directed from those vertices with larger values.

To simplify further discussion, the following notation is introduced. Let

Wee// =
X

y

be the combined vector of x and y coordinates of cell positions. Let wnet denote the vector of net

bounding-box variables and wptn the vertex actual arrival time variables. Then

w =

Wee//

W„et

W

Q =

ptn

is the 2M 4- 4N + P vector of all variables in the formulation of the problem. However, the extra

(4JV 4- P) variables corresponding to the net bounding-boxes and arrival times do not enter into

the cost function, so the value of the cost function at any point is unchanged and the sparsity of

the matrix representing the cost function is retained. Let

B 0 0 0

0 B 0 0

0 0 0 0

0 0 0 0



be the combined (2M + 4N + P) x (2M 4- 4JV 4-P) matrix for the cost function and let

b =

Then, the cost function can be rewritten as

L = -wTQw 4- brw (18)

The problem of minimizing wirelength subject to linear timing constraints be stated as:

minimize L (NLP)

subject to xi > X3 Vmj Gn,-, Vn,- GM
Xi < X3 Vmj Gn,*, Vnt- GAf

Vi > Vj Vmj G»t, Vn,- GAf

h < Vj Vmj Gn,-, Vn,- GA/"

a5 > a% + d(viy Vj) V(«s,v,-)6ii

°i < Te Vvj- G £

aj > Ta Vt;,- G 5

(19)

Theorem 2

T/ie system of equations represented by Db is non-singular if and only if Db has no cycles.

Corollary 2

Given a digraph Db representing a set of bounding-box constraints, an independent set of equations

forms a spanning tree on Db>

4 The Primal Algorithm

In order to simplify the discussion of the Dual Algorithm, the Primal Algorithm for solving NLP

is presented first. The algorithm follows a primal active set method [Lue84] but departs from
conventional techniques in the representation, activation and deletion of constraints and the activity

of variables.

Definition 3

An active critical path is a path such that all of its vertices have zero slack.

The algorithm proceeds as a sequence of major iterations. At major iteration fc, a feasible
point w<*) is known, whichsatisifies the active constraints with equality. A denotes the set indices
of constraints that are active. Let A(fc) denote the matrix of constraints that are active during

iteration fc, i.e., A^ denotes those constraints that are satisfied with equality. This includes both

path constraints and bounding-box constraints for nets that lie on active critical paths. For linear

constraints, VA = A, so the Kuhn-Tucker conditions reduce to:

10



VL(w*) 4-ArA* = 0

ATA* = 0

A > 0 (20)

Let I'M = {IIi,...,n*} be the set of active critical paths during iteration k. Let Afr C Af
denote the set of nets that form the critical paths. Let Ar Q A denote the set of arcs in Dt that

lie on the active critical paths. Let Er and 5p denote the starting and ending points of the active

critical paths. Each major iteration attempts to locate the solution to an equality constrained

problem formed by deleting the inactive constraints from NLP. This is done by shifting the origin

to wW and looking for a "correction vector" 6 that solves the following problem.

minimize h6TQ6 + 6TgW

subject to

Xi — Xj Vmj G«;, Vn,- GAfr

2U = xj Vmj Gni, Vn,- GAfr

Vi = Vj Vm^- Gni, Vn,- GAfr

h = Vj Vmj- Gn,-, Vn,- GAfr
= a,- 4- d(vi,Vj) V(v,-, Vj) G Ar

= Tc Vi;,- G -Er

a; = Ta VvjZSr

;(*) is the gradient vector at the current point, defined as

g<*) = VL(w<*)) = Qw<*) 4- b

(EP)

(21)

(22)

The solution to the above problem (EP) can be found by solving the Kuhn-Tucker conditions for

EP, which form a linear system of equations, corresponding to the Hessian matrix of the augmented

Lagrangian.
[ r\ atI T xlk) 1 T „lk) '

(23)

The step vector 6^ consists of three parts: £«//> the step vector corresponding to cell positions,
6net corresponding to the net bound variables and 6ptn corresponding to the arrival time variables.

The vector A is the vector of Lagrange multipliers for the constraints in A.

If £(*' is feasible with respect to the constraints not in A(*), i.e., a timing verification on the
graph yields a feasible timing graph, then the step is accepted and w(*+1) = wM 4- S^k\ li not,
then a line search is made in the direction of 6^kho find the best feasible point. The line search
procedures are explained in detail in following sections. At this point, it suffices to note that these

procedures return a step length parameter a^ such that

"Q AT"
A 0 A

=

0

w(*+i) _ w(*) + a(k)6(k)

11

(24)



minimizes L along the direction 6^ and w(*+1) is feasible with respect to all the constraints. If
a(*) < 1.0, a new constraint becomes active and this is added to the current active set A. If

£(*) = 0, and A} ' > 0, i = 1,..., |,A|, then by Theorem 1, we are at the optimal solution.
If

A<*) < 0 (25)

for some constraint q G A, it is possible to drop constraint q from A. After removing constraint <?,

the algorithm continues as before. If more than one constraint satisfies Equation 25, then select

«= axg T A«*> (26)

The flow of the algorithm may be summarized as follows. The algorithm starts with a feasible

point wW and an initial active set ofconstraints whose matrixis A (*). (Finding a feasible pointis
discussed in section 4.5.)

Algorithm

1. Given wt1) and an active set A, set the iteration index k to 1.

2. Solve (EP) for $(*).

3. If 6(*) = 0 and Aj ' > 0, Vi GA, stop. The optimal solution has been reached.

4. Find aW, a step length parameter and set w(*+1) = wM 4- cfflSW

5. If aW < 1 add some constraint(s) to A according to section 4.3

6. If A$ ' < 0 for some q, delete a constraint from A

7. Set k = k 4-1 and go to step 2

Definition 4

The unique arcs of a path are those arcs that are not part of any other active critical path.

Proposition 3

When a path becomes active, the equations for the unique arcs of the path can beaddedto the active

set simultaneously, i.e., the step vector need not be computed after adding each unique arc on the

path.

Proof:

Let the path be ft. Let there be q unique arcs in the path. Suppose we have added timing and

bounding-box constraints for t < q arcs to the current active forest r^, obtaining a new active

forest rA. Then, at least one of the following are present in t'a: (1) an arc (vi,Vj) G ft such that
Vi &S and v,- has no arcs in ta directed intoit, (2) an arc (vj, v'j) Gft such that such that v'j £ E
and v'j has noarcs in rA directed outward from it. Informally, when we have activated t < qunique
constraints, ft is disconnected because of the uniqueness of the q arcs. By Proposition 2, the forest

t'a can be reduced to r^, so the optimal solution for ta is also optimal for rA. •

12



Proposition 4

If the conditions of Theorem 1 are satisfied and at each non-terminal step aW •£ 0, the algorithm
given above terminates in a finite number of steps at the optimal solution w*.

Proof: The proof of this proposition follows the proof of the active set theorem in [Lue84]. After the

solution corresponding to an active set is found, since the step length is positive, the step results

in a strict decrease in the objective function. Thus, once the algorithm leaves an active set, it

never returns to it. There are only a finite number of reduced active forests. Associated with each

RAF, there are only a finite number of active sets corresponding to different active bounding-box

constraints. •

4.1 Line Search Procedure (1): Bounding-Box Constraints

Given £, and the current active set of bounding box constraints, this procedure computes ct\t the

maximum step length such that the cells defining the bounding-box for a net on an active critical

path change. Let Nr denote the set of nets that lie on some active critical path. Let 6xj denote

the computed step in the x direction for cell j and 6yj the step in the y direction. Let 6x„ denote
the step for the maximum x bound for net n and 6xn the step for the minimum x bound. 6yn and

6xn are similarly defined for the y direction.

For each net n G Nr, the procedure involves computing the parameters

at =

4-ce =

o» =

nun

mj G n

min

mj G n

min

mj G n

y mm
On =

mj G n

Xn -Xj

SXj -6xn

£n -Xj

Sxj -ten

Vn "Vi

hi ~hn

Rn -Vi

hi -6Un

ai =n€5?r {min(l,a*,of,af,at)}

(27)

(28)

(29)

(30)

(31)

4.2 Line Search Procedure (2): Timing Constraints

Given 6 and oti, this procedure computes the maximum step length aW such that the chip's
timing remains feasible, a^ is determined by performing a bisection timing verification (BTV).
The bisection timing verification is a combination of bisection line search and timing verification

and departs from conventional techniques in that the graph representation of the timing constraints

is used to compute a maximum feasible step.
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1. a — Qi

2. Update the cell positions based on a

3. Update the net bounding-box positions

4. Update the delays for all external arcs

5. Calculate the minimum slack in Dt

6. If the minimum slack < 0 (the step length is too long)

(a) o-aj2

(b) a —a —a

(c) While the absolute value of the minimum slack in Dt > 0, do

i. Update the cell positions based on a
ii. Update the net bounding-box positions

iii. Update the delays for all external arcs

iv. Calculate the minimum slack in Dt

v. <T = or J 2
vi. If the minimum slack > 1.0el6

A. a = a + o

vii. If the minimum slack < —l.Oe — 16

A. a = a — a

7. STOP

4.3 Activating a constraint

There are several conditions under which new constraints are added to the active set. These may

be listed as follows:

1. e*(*) = 1. No new constraint is added since the full step is feasible. The algorithm proceeds

to the next major iteration.

2. aW = ai < 1. In this case, a new bounding box constraint becomes active. Without loss of

generality, assume that d\ =| g*"Z$i Uf°r some net n- The constraint that becomes active
is xn > Xj. This constraint is added as an equality to A. If more than one net constraint

gives ct\ =| 6*nZss |, all of them are added to the active set.

3. ctM < «i. In this case, a new critical path becomes active. Severalconstraints corresponding
to timing constraints for unique arcs of the critical path and bounding-box equations for each

unique arc become active. By Proposition 3, we can add all the equations simultaneously to

the active set.
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Let ft = (va,... ,ve) denote the new critical path. Let Afn C Af denote the set of nets that
form the new critical path. Let Aq C A denote the set of unique arcs in Dt that lie on the

new critical path. For the critical path ft, the constraints that become active are

Xi — max{xJ-|m_7- Gn,}, Vn,- GA/q
"Si = min{zj'|mj' Gnt}, Vn,- GAJq
Vi = mxx.{yj\mj eni}, Vn,- GAfn
TJi = miii{xj\mj Gn,}, Vn,- GAfn (32)
aj = a,- 4- d(v;, v>) V(v,-, v,-) G An

ae = Te t>eG£n

a, = Ta va£ Su

4.4 Deleting a constraint

The strategy used to delete a constraint is to select the constraint with the most negative Lagrange

multiplier and remove it from the active set A. This selection is not invariant to scaling of the

variables in the problem, but since the Quadratic Program (QP) for placement is naturally well

scaled, the strategy works well. When deleting a bounding-box constraint from the active set, the

algorithm follows the usual active set method. Since the algorithm adds only the unique arcs,

when one timing constraint is deleted, following Proposition 2, equations for all the unique arcs

associated with a path are deleted.

5 The Dual Algorithm

One of the problems with the primal algorithm is that it requires an initial feasible solution. For

many practical examples, it is observed that finding an initial feasible solution using conventional

techniques like Phase-I of the Simplex method, a Big-M method [Mur83] or even an interior point

method [Kar84] takes a long time.

The version of the dual algorithm described in this paper does not require a feasible solution, and

can be implemented more efficiently [Idn80] than the primal algorithm. In tests on real examples,

the dual algorithm when started from an arbitrary infeosible point, found the optimal solution

faster than the corresponding primal algorithm started from a feasible point.

The dual algorithm is a modification of the procedure described by pdn80]. Like the primal

algorithm, the key differences are in the addition and deletion of equations. The general outline of

a dual active set method is as follows [GI83]. The method always maintains a "solved subproblem"

which is dual feasible i.e., primal optimal with respect to a subset of the constraints. The active

set for the solved problem is iteratively updated according to the following strategy.

1. Let the current solved subproblem be SP = 0.

2. Select a violated constraint, if any, say p.

15



3. Let VP = SP U {p}.

4. Solve VP.

5. If VP has no solution, terminate because the feasible region is empty; othewise we have a

new solved subproblem. Let SP = VP, go to step 2.

Let n+ denote an added (violated) constraint. Let N denote the matrix of currently active

constraints. The constraints are of the form:

Nx < b (33)

n+x < 6+ (34)

As shown in [Idn80], VP has no solution if the added constraint is linearly dependent on the con

straints in the active set and the following condition is satisfied:

Condition 1: There exists an r such that NTr = n+ and r < 0.

Suppose z is a allowable step direction for the above constraints. It follows that z must satisfy the

following condition.

Condition 2: Nz < 0; n+z < 0.

But n+ = rTN. Therefore,

n+ z —rTNz

But r < 0 and Nz < 0 imply that n+z > 0 which is a contradiction. Therefore, there is no

allowable direction such that Nz < 0 and n+z < 0 and therefore, the subproblem is infeasible.

By maintaining infeasibility multipliers as shown in [GI83] the above conditions can be checked

efficiently whenever a new constraint is added to the active set.

Note that unlike the primal method, there is a choice of which constraint to add in the dual

method. By modifying the above procedure, carefully selecting the added constraints and modifying

the definition of a subproblem, it is possible to prove finite termination (without the degeneracy

assumption) and solve the problem efficiently.

Definition 5

A subproblem corresponding to a reduced forest ta (RFPa) is defined as the subproblem of NLP

obtained by considering the timing and bounding-box constraints corresponding to ta and ignoring

all the other constraints.

Definition 6

A solved subproblem corresponding to a reduced forest ta (RFSPa) is defined as the reduced

active forest tsa <*nd solution vector w obtained byfinding the optimal solution for NLP subject

to the timing and bounding-box constraints corresponding to ta, t.e., by solving RFPa-
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Definition 7

In the following discussion, define a critical path ft to be the the set of timing and bounding-box

constraints for some path with nonpositive slack.

We will informally use ta to refer to both - a forest and the timing and bounding-box equations

for arcs in the forest. The notation is unambiguous for the purposes of explanation. The modified

dual active set algorithm proceeds as follows:

1. Solve the unconstrained problem corresponding to NLP. The current active forest is ta = 0.

2. Select a path ft with negative slack, if any.

3. Let t'a = ta Uft.

4. Solve the subproblem corresponding to ta ( RFPa)-

5. If RFPa has no solution, terminate because the feasible region is empty; othewise we have a

new solved subproblem. Let ta = tsa* go to step 2.

The details of the algorithm are described below. Let A(*) denote the matrix of constraints that
are active during iteration k, i.e., A(*) denotes those constraints that are satisfied with equality.
This includes both path constraints and bounding-box constraints for nets that lie on active critical

paths. Let T^ = {Hi,... ,11/} be the set ofactive critical paths during iteration fc, i.e., the reduced
active forest. Let Afr C Af denote the set of nets that form the active critical paths. Let Ar Q A

denote the set of arcs in Dt that lie on active critical paths. Let Er and 5p denote the starting

and ending points of active critical paths.

Let \W denote the Lagrange multipliers at iteration k. Let S\ denote the computed step
direction for the Lagrange multipliers.

1. Compute the unconstrained minimum.

w*1) = -Q-Xb

w1 is a dual feasible point for NLP. Set the initial active set A^ = 0 and the initial reduced
forest rW = 0. Set the initial Lagrange multipliers A*1) = 0. Let the current subproblem
SP = <b.

2. Solve the RFP.

Compute S{ the slack for each vertex of the reduced forest. Define

Define

sr(w) = min {si}

r(w) = max{r,j|rt-j- = a:,- - Xj,Vi Gnj,Vnj GNr}
i
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f(w) = max{/,j|/,j = Xj - a:,-,Vi Gn^Vn, GNr)
i —

w(w) = max{uij\uij = y,- -2/J,Vi Gnj,Vnj GiVr}

6(w)= max{6,-j|6,-j = yy - y,-,Vi Gnj,Vnj G#r}
i —

(a) If 3T(w) < 0 then timing constraints in ta are violated. The constraints to be added
to the active set are the timing and bounding-box constraints for unique arcs of the

violated path.

(b) If sr(w) > 0 and max(r(w),/(w),u(w),6(w)) > 0 then a bounding-box constraint for
some net in ta is violated. The constraint to be added is the violated bounding-box

constraint.

(c) If 5r(w) > 0 and max(r(w),/(w),u(w),6(w)) < 0 go to step 3.

(d) Compute the step directions Sw and6\ assuming theviolated constraint(s)is(are) active.

(e) Compute*i the maximum step before a Lagrange multiplier turns negative. Compute<2,
the maximum step such that the added constraint becomes active. Let t = min(ti,<2).

(f) Compute the infeasibility multipliers for the added constraint(s). For a bounding-box
constraint the procedure is straightforward. For timing constraints, by Proposition 3,

only one of the timing equations added to the forest needs to be checked for infeasibility.
If timing constraints axe added, wecan compute the infeasibility multipliers for the last
timing constraint added, check Condition 2 and stop if the constraints are infeasible.

(g) If t = *i drop the constraint corresponding to *i. Such a step is called a partial step
because the violated constraints still remain violated. The algorithm will try to add

them again during the next iteration.

(h) If t = <2 a constraint(s) is(are) added to the active set.

(i) Update w(*), A<*), r<*> and A<fc), set k = k4-1 and repeat step 2.

3. Define a new RFP.

(a) If max(r(w),/(w),u(w),6(w)) < 0, and sr(w) > 0 the current RFP is solved. Find a
path ft such that

sn(w) = minis,-}
vi€V

for every vertex v* Gft. If Sfc > 0, the optimal solution has been reached, terminate.

(b) If Sk < 0,add the timing andbounding-box equations for unique arcs offt to the reduced
forest ta and call the new forest ta. {t'a = ta Uft).

(c) Compute the step direction assuming ta is active.

18



(d) Only one of the timing equations added to the forest needs to be checked for infeasibility.

Therefore, at this step, we can compute the infeasilility multipliers for the last timing

constraint added, check Condition 2 and stop if the constraints are infeasible.

(e) If the constraints are feasible, compute <i the maximum step before a Lagrange multiplier

turns negative. Compute t2, the maximum step such that the added timing constraints

become active. Let t = min(ti,<2).

(f) If t = ti and ti corresponds to a bounding-box constraint, drop a bounding-box con

straint

(g) if t = ti and t\ corresponds to some active critical path equation, drop the timing

constraints for that path.

(h) If t = $2, add the timing and bounding-box equations corresponding to ft to the active

set.

(i) Update w(fc), A<*), I'M and A(fc>, set k = k4-1 and go to step 2.

Proposition 5

The dual active set algorithm defined above will find the optimum point in a finite number of

iterations or terminate when there is no feasible solution.

Proof:

Just before step 3 of the algorithmis executed, some subproblem of the original problemis solved
because the algorithmalways maintains dual feasibility. Every time that the step is executed, the
objective value increases, since it corresponds to a RFP containing a violated critical path not in

the previous RFP. Therefore, after solving an RFP we never return to the RFP again. There are
only a finite number of RFPs. The proof that solving an RFP is a finite process is identical to the

proof of finiteness of the dual algorithm in [GI83]. •

6 Experimental Results and Practical Considerations

Most of the computational effort in the algorithms described is in solving a linear system every

iteration. In a practical implementation of the primal and dual algorithms, fast techniques for
maintaining and updating matrix factorizations could be applied [GMW89].

A program that implements the primal and dual algorithms has been developed. It uses com

plete LU factorization at every iteration to solve the linear system rather than complex schemes
for updating the factors. To illustrate the speed-up in computation time obtained even with a
simplified implementation, the program was tested on a 210 cell industrial example that is part of
the control logicfor a 4-bit microprocessor and a 1418 cellgate-array. For the primal algorithm, an

initial feasible point wasfound using the Simplex method1. The results are compared to a standard

lFor the Primal Algorthm, initial feasible solution took 400 sec for exl and 9 hours for ex2 using Phase I of the
Simplex method
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Example cells nets nets

onCP

Primal (sec)
(see footnote)

Dual

(sec)
QP
(sec)

exl 210 170 59 30 8 850

ex2 1418 1161 133 8 min 7min >10hrs

Figure 2: Results obtained on DECStation 3100

Example %improvement
in wire delay

%increase in
Quad, wirelen

exl 50% 3%

ex2 5.5% 0.07%

Figure 3: Improvement in wire delay

eflBlcient Quadratic Programming (QP) package. In the 210 cell example the speed-up obtained by
the dual algorithm over standard QP is a factor of 10,while in the 1418 cell example the speed-up

is substantial. After 10 hours of running, the standard QP package had not found the optimal

solution for the 1418 cell array and it was terminated, while the dual algorithm found the optimal

solution in about 7 minutes of CPU time. The improvement in wire delay is 50% for the 210 cell

example with only 3% increase in quadratic wirelength over the unconstrained placement while

for the 1418 cell example, the dual and primal methods were able to obtain a 5.5% improvement

in wire delay with an increase of only 0.07% in quadratic wirelength. The results are shown in

Figure 2.

One of the reasons for the failure of standard QP techniques is that the problem is highly

degenerate. In tests on standard QP, it was observed that there are at least four active bounding-

box constraints for each net and the Lagrange multipliers for those constraints not on critical

paths have zero value. Similarly, for every pin, there is one active timing constraint - the one that

corresponds to the maximum in equation 8. Again, the multipliers for the timing constraints not on

critical paths are zero. The number of active variables in conventional techniques can be enormous.

For a typical problem with 1000 cells and 3000 nets, the number of active variables could be upto

18,000 and the active constraints could number 15,000. Using techniques described in the paper,

for the same typical example it is possible to reduce the number of active variables to about 2200

and the number of active constraints to a few hundreds.

Standard QP techniques activate arcs from the graph in some arbitrary sequence, leading to

many degenerate steps. Also, standard methods fail to recognize that only one timing constraint

for each primary output cell on a critical path leads to a non-degenerate step. On the other hand,

the algorithms presented above are able to recognize the path nature of the constraints through

the notion of a reduced forest, thereby avoiding degenerate steps.
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7 Conclusions

The ideas in this paper unify the physical and temporal aspects of IC design in a new theoreti

cal framework and appear to hold much promise for solving large scale problems efficiently. The

speed-up is obtained by operating on graphs and by recognizing the fact that we need only restrict

attention to those timing constraints and variables that are associated with a reduced forest. The

dual algorithm is to be preferred over the primal algorithm for solving large problems because it

does not require feasibility2, and can be implemented more efficiently. The algorithm provides

a "global placement" which can then be refined by successive partitioning. Each partition gener

ates constraints on cell positions. These constraints can be dealt with easily using the non-linear

programming approach outlined.
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