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Abstract

A two period model is considered. In period 1 the electric power company
offers for sale a set of contracts (/>i,Pi),(/>2jP2)-— Each consumer must
select one contract k and d units of energy for which she pays pkd. The
company must deliver d units of energy in period 2 with probability pk\ the
service may be interrupted with the complementary probability 1 —pk. The
problem is to design the optimal set of contracts to maximize social welfare
when demand and supply may be random and when customers suffer a
welfare loss due to service interruption. The best design is shown to be a
solution to an optimal control problem. The results contrast sharply with
previous work on the problem of pricing electric power in the face of random
supply or demand. Approximate estimates of welfare loss resulting from
selling electric energy at a fixed price are obtained.

lWork supported by NSF grants ECS-8715132 and IRI-8902813



1 Introduction

The current method of allocating electric energy among different consumers
and end uses on the basis of fixed prices is inefficient, and there are long
standing proposals to increase efficiency by bringing closer together the
marginal value of demand for energy and the marginal cost of energy gen
eration. Recent moves towards deregulation and technological innovations
favoring small-scale generation plant have renewed interest in these propos
als. Although there is no reliable quantitative estimate of the inefficiency,
there is a presumption that it is high. This presumption is based on three
distinguishing technological features of the electric energy system.

First, unlike natural gas or oil or coal, it is very expensive to store elec
tric energy. So, unlike in those industries, it is not possible to operate the
generation plant at a minimum cost point and meet demand fluctuations
out of 'inventories' of stored energy. Second, it is not possible for the sup
plier to curtail consumption by limiting supply (leading to rationing via
queues or black markets as in other commodities) since the dynamic stabil
ity of the electric energy system can be maintained only if there is always
enough generation 'reserve' capacity to meet unexpected increases in de
mand. Third, generation technology is suchthat the marginal cost of supply
during daily peaks in demand is several times larger than the daily average
cost. These three features suggest that with a fixed price scheme the gap
between marginal supply and demand, and hence the resulting inefficiency,
is quite large.

One scheme to close this gap is that of spot pricing. The idea is to re
vise the price frequently, say each hour, to the value where instantaneous
marginal demand and cost are equated. This scheme was generally recom
mended by Vickrey [1] who called it "responsive pricing." The specifics for
the caseof electric energy were worked out by Caramanis et al [2] and Bohn
et al [3].

There is regular and frequent spot trading of 'bulk* or 'wholesale' energy
among interconnected power generationcompanies, so that company A will
meet its customers' current demand with power imported from company
B if the latter is cheaper than A's own current marginal generation cost.
(Of course, these transactions are subject to the overriding constraint of
maintaining system stability.) However, aside from some very small-scale
experiments no attempt has been made to implement spot pricing at the
retail level.



A spot pricing scheme is impractical today. It presupposes the means
to communicate pricing information in 'real time', as well as the means
whereby customers can automatically and correctly adjust, in response to
spot price changes, their level of power consumption and its distribution
among alternative end uses such as air-conditioning, lighting, etc. The nec
essary communications infrastructure is not yet in place. And few except
the largest customers have installed the 'smart meters' and computers to
manage their energy use. Until such infrastructure is built, a more practical
scheme might employ future prices: the power company announces prices a
day (or week) in advance and customers will then have the lead time to ad
just their demand. The announced future price would depend on forecasts of
some of the determinants of supply (e.g. scheduled generator 'down' times)
and demand (e.g. weather).

Future prices can much more easily be implemented than spot prices, see
Ahistrand [4]. For example, tomorrow's prices could today be communicated
by telephone, published in newspapers, and broadcast over radio and TV.
However, future prices do not resolve an important problem. Recall that
a price is announced in period 1 (today) for energy to be delivered and
consumed in period 2 (tomorrow). In the interim there can be significant
fluctuations in supply or demand that were unanticipated in the forecast.
Consequently, a future pricing regime will require maintaining 'on-line' a
significant reserve capacity. This will be less than needed under the current
fixed price regime, but it will be considerably larger than under spot pricing.

An early proposal that addressed this was made by Brown and Johnson
[5]. That proposal combines future prices with rationing. In the scheme the
price for period 2 and the level of energy generation is set to equate marginal
cost of supply (assuming no uncertainty) to the marginal value of expected
demand, based on the period 1 forecast. If it turns out, as will often be the
case, that the actual period 2 demand exceeds the period 1 forecast, then
a sufficient number of customers will have their electricity cut off. Turvey
[6] criticized this scheme for failing to recognize the cost of rationing borne
by frustrated customers. He argued that higher prices leading to reduced
demand and hence reduced rationing are preferable.1

Turvey's emphasis on the cost of rationing is well-taken. However, rais-

lIn this respect Turvey echoes Vickrey's argument for higher prices on grounds ofwel
fare benefits gained from resulting reduction in 'congestion' in telephone systems, trans
portation, etc.



ing prices introduces its own distortion. There must be a balance between
raising prices to reduce rationing-caused losses and lowering prices to in
crease welfare gains from increased consumption. Crew and Kleindorfer [7]
attempt this balance by deducting from the Brown-Johnson social welfare
measure the loss due to rationing, given by the term

Rationing loss = E L(D(p) - S(p)) (1)

Here D and 5 denote the random aggregate demand and supply for electric
energy, L is a loss function, p is the unit price for energy, and E stands
for mathematical expectation. The 'welfare optimizing' price maximizes the
usual 'consumer plus producer surplus' minus this rationing loss term. This
price could be higher than the Brown-Johnson price, in accordance with
Turvey's observation, but the need to ration customers will still remain
although fewer customers will be rationed.2 This specification of the loss
is theoretically unsatisfactory since there is no reason why rationing losses
suffered by individual customers should add up to a function of aggregate
excess demand as in (l).3

The Brown-Johnson and Crew-Kleindorfer analyses suffers from another,
apparently unnoticed defect. Both implicitly assume that when there is
excess demand, customers suffering electricity cuts will be those whose
marginal utility is less than the marginal utility of those who will continue
to receive service. It is quite clear that a power company cannot obtain such
information.4

In summary, future pricing schemes must take into account rationing
loss, and they must ration on the basis of information that can be available.
The scheme of interruptible service contracts proposed here incorporates
both aspects. The operation of the market can be described as a two step
process with the help of Figure 1. Throughout our analysis only the supply
is considered to be random, and customer preferences are deterministic.
Step 1. At the beginning of period 1 the company announces a set of

2Moreover, it is argued in §4.1 that if interruptible service contracts are permitted,
then it is efficient to lower prices.

3The situation is not similar to the casein which consumersurplus is identified with the
area under the aggregate demand curve; the aggregate loss is indeed the sum of individual
losses, but there does not seem to be any practical rationing scheme in which the aggregate
loss is a function of excess demand.

4Visscher [8] criticized the Brown-Johnson rationing scheme for its lack of theoretical
justification; see also their reply [9].



contracts

(Pk,Pk), &= 1,2,...

Each customer t chooses one contract k(t) and a quantity d(t) for which
she pays Pk(t)d(t)' (We suppose that energy is measured in kWh and price
is in dollars/kWh, so her bill is in dollars.) The understanding is that in
period 2 the company will deliver d{t) kWh of energy to our customer with
probability puty With the complementary probability 1 —pk{t) s^e vr^-
receive no electricity. Thus pk is the guaranteed reliability or availability of
service if the fcth contract is purchased.5 Note that it is immaterial whether
the customer selects the quantity d(t) in period 1 or 2; it is important that
k(t) is selected in period l.6
Step 2. At the beginning of period 2 the company finds out the actual value
ofenergy supply, 5(w). Here u denotes the sample point or contingency. The
company now decides which customers to ration. This decision is represented
by the 0-1 valued function Rw(t). If Rw(t) = 0 customer t will not receive
service, if it is 1 she will receive d(t) kWh of energy. The company's decision
must meet two constraints:

53 Ru,(t)d(t) < 5(w), for all u; (2)
t

Prob {w | iZw(t) = 1} = pk(t)y for all t (3)

Equation (2) is a physical constraint which says that the total energy deliv
ered cannot exceed the available supply for each contingency. Equation (3)
is the social obligation to fulfill every customer's contract.

In §2 we formulate a welfare function and determine the allocation of
energy to each customer which maximizes this function. We show that the
structure of the optimal contracts is remarkably simple. In §3 we formulate
the notion of market equilibrium for our market and relate the equilibrium
to the welfare-maximizing allocation. In §4 we draw out some implications of
the preceding analysis. Results of extended models that permit randomness
in supply and inhomogeneous customers are announced in §5.

Interruptible service contracts and related topics are studied in Chao et
al [12], Chao and Wilson [13], and Oren et al [14]. This study in part is
inspired by that work from which it differs in two respects. Our rationing

5Although we use 'reliability' and 'availability' interchangeably, these terms are distin
guished in power engineering [10, 11].

6In §5.1, where we introduce random demand, the customer selects her demand in
period 2 after her random preference is revealed.



mechanism is differently specified.7 Their specification of the customer's
rationing loss is not explicit. The different specifications require different
technical argument as well.

2 Maximum social welfare

The structure of optimal contracts is obtained indirectly by formulating a
welfare maximization problem. In §3 it is shown that the optimum can be
sustained as a market equilibrium.

2.1 Problem formulation

We first model the supply side. The total energy available (in period 2)
to the company is a random variable taking values s; > 0 with probability
7T; > 0, i = 1, ...,n. The set of values {(s»,tt;)} is known in period 1, but
which contingency s,- occurs is revealed only at the beginning of period 2.
We also assume that the variable cost of energy supply (chiefly fuel cost) is
zero. Non-zero variable cost is discussed in §5.

We now model consumer welfare. The demand of any individual con
sumer is assumed to be infinitesimal compared with the total demand of all
consumers. This permits us to model the set of customers as a continuum
indexed by t € [0, l].8 Suppose consumer t is allocated energy d(t) with
reliability p(t). The net benefit to customer *, not including her electricity
bill, is given by

w{t) = p(t) U(d(t)) - [1 - p(t)] L(d(t)) (4)

The interpretation is that if t actually consumes energy d(t) her utility is
U(d(i)), and since this occurs with probability />(*), the first term in (4) is
the expected utility. But if service is interrupted she suffers a disutility of
L(d(t)), and since that happens with probability [1 —/>(<)], the second term

rTheir mechanism is insufficiently precise. Their analysis is conducted assuming each
consumer demands exactly one unit of energy, with the understanding that a consumer
needing two units (say) is treated as two consumers. But this appears to permit 'cheating'.
For instance a customer may purchase one unit of energy with reliability pi and another
unit with reliability pi. The customer can then use the cheaper unit when it is available
and the more expensive unit when the cheaper one is not available. This objection is
withdrawn if measures are taken to prevent such cheating.

8With this convention the total number of customers is 1, so the supplies a,- are mea
sured in average kWh per customer.



measures the expected rationing loss. The disutility will generally depend
on d(t) since the customer planned on using that amount.9 It is assumed
that

17(0) = 1(0) = 0; U\d) > 0, U"{d) < 0; L\d) > 0, L'\d) > 0

These are standard assumptions: U is strictly concave, L is convex, and
both are increasing.

The total social welfare is obtained by summing everyone's welfare,

W= / w(t)dt = / {p(t) U(d(t)) - [1 - p{t)] L(d(t))}dt
Jo Jo

We are assuming that all consumers have the same utility function. (§5
discusses heterogeneous customers.)

We now consider the allocation problem. In period 1 each t is allocated
a pair (/>(*), d(t)). At the beginning of period 2, the contingency is revealed.
Suppose it is a,-. It must then be decided which if any customers are to be
rationed. This is given by a rationingfunction R,• : [0,1] —• {0,1} defined as

rationed in contingency i„ , v_ f 0 if t is rati
' [ 1 otherwise

The rationing function must satisfy the physical constraint

•l

L Ri(t)d(t)dt < Si for all i
o

which simply says that supply meets rationed demand. The rationing func
tions must also meet the obligation to fulfill the contracts

n

5^7T, Ri(t) = p{t) for all t
t=i

The welfare maximization problem is to find functions d, i2i, ...,£„ sub
ject to these two constraints so as to maximize total welfare W. This can
be reformulated as an optimal control problem. Introduce the 'state' vector
x and the 'control' vector 2,

x(t) = (*!(*),.., *„(*)), z(t) = (rf(t), r(*))

Imagine that t is running a business. Her failure to receive the planned energy d(t)
will cause a loss of L(d(t)) from the waste associated with unused labor and materials.



where r(t) = (ri(t),...,rn(t)), r,-(t) = ir,\R,(<)- Then the problem can be
reformulated as

max W= / w(t)dt = / {/>(*) Z7(rf(*))- [1 - p(t)] L(d(t))}dt (5)

subject to

x(t) = —d(t)r,(t), t e [0,1], t = 1,..., n (6)
7Tt-

x;(0) = 0, 3,(1) < st-, i = 1,...,n (7)
n

d(*) > o, n(t) e {o,7r,}, ,>(*) = J2 r«W (8)
i

The Maximum Principle [15] gives necessary conditions for a solution of
(5)-(8). However we are interested in sufficiency. Define the Hamiltonian

*Wr, p) =£ r,-l7(«0 - [1 - £ r,]X(d) - [£) w]rf (9)
l li

H is defined for all d > 0, r,- € {0, *•,-}, /!,• > 0.

Theorem 1 (Sufficiency) Suppose there exist p.* > 0 and 5* such that
for all d and r

H{d,r,pm)<H* (10)

Then the maximum social welfare

n

W* = max W < H* + £) *,•/£«,• (11)
l

Moreover, if there is a feasible control z* = (d*,r*) stic/i that

H(<r(t),r*(t),f) = JT, /$[*,• - *?(!)] = 0, /or all i (12)

tfien £/iis control is optimal.

Proof

Let z be any feasible control and x the corresponding state 'trajectory'.
From (5),(6),(9) we get

W= J1 H{d{t),r(t)ip*)dt +y^Mi'iCW*)*
< JT* +E7rl//Ja:l(l)<5r* +E7rl^5l- (13)



The two inequalities follow from (10) and (7). The second part of the asser
tion follows since (12) gives equality in (13). E

Condition (12) will later be interpreted as a market equilibrium. Let
H(t) = JT(d*«, r*(t), p*). From (4),(9)

*

Interpret £r*(*)/J* as the price of one kWH of energy with reliability
!>?(*). Then [£i r^(t)p^]d*(t) is the energy bill of customer t and E(t)
is fs expected utility net of expenditures on energy. E(t) is fa consumer
surplus. The first part of (12) asserts that every consumer ends up with the
same surplus IT*, and (10) says that at the prevailing prices no customer
can purchase energy to obtain a surplus larger than E*. The second part
of (12), p*[si —ar*(l)] = 0, is the complementary slackness condition. As
we will see later, it implies that at the prevailing prices the power company
cannot increase its profits by offering a different set of contracts. Thus the
two parts of (12) give conditions for consumer equilibrium and producer
equilibrium. Lemma 1 is proved in the appendix.

Lemma 1 W* > 0 in (11). E* > 0 in (10). If z* = (dm,r*) is optimal,
then d*(t) > 0 for all t.

2.2 Optimal allocation

We give an algorithm to find E*,p*,z* satisfying (10) and (12). The algo
rithm also finds the optimal structure of contracts. A contract may offer
any reliabilitylevel Sl€j tt,- where J C {1,...,n} is any set of contingencies.
Thus a company may offer up to 2n different contracts. We will show that
an optimal structure includes at most n contracts.

For d > 0, p > 0, p > 0, define the function

h(d,p,p) = p U(d) - [1 - p] L(d) - pd (14)

This is the surplus derived by a consumer who purchases d units of a (p, p)
contract (i.e. with reliability p and a price of p dollars/kWh).

Fix a level of consumer surplus E > 0. Define the bid price p(p) =
p(p\E) as the maximum that a consumer is willingto pay per unit of energy
with reliability p if she is to attain surplus E. That is

/ \ _ j max{j? > 0| there exists d> 0with h(d,p,p) > E} . .
\ undefined if there is no d> 0with h(d,p,p) > E ^ '



From (14) p —• h(d, p, p) is increasingin p for d, p fixed. Hence p(p) is defined
on a set of the form 1 > p > pmin(,E). Also let

d(p) = d(p;E) = argrnax A(d,p,p(p)) (16)
a>0

Thus d(p) is the amount of energy the consumer will purchase at the bid
price. Lemma 2 is proved in the appendix.

Lemma 2 (1) p(p) is strictly increasing, differentiable, and convex over
P > Pmin' ft) p(p] E) is strictly decreasing andd(p; E) is strictly increasing
in E.

Part (1) says that, with a fixed surplus, consumers will paymore for more
reliable service.10 Part (2) says that, at a fixed reliability level, consumer
surplus will increase only if price of energy goes down and their consumption
goes up.

For future reference note that

p(pmin(E);E) = 0ioTE>0 (17)

To see this, let p = pmi„(E), d = d(p; E), and suppose p = p(p; E) > 0.
Then

p U(d) - [1 - p] L(d) =pd + E>E

Hence there exists p</5, d = d > 0 and p = 0 such that p U{d) - [1 -
p] L(d) > E. But this contradicts the definition of pmin.

Algorithm

Step 0 Order the contingencies in decreasing order of severity,

O < Si < ... < sn

and define reliabilities 1 = Pi > ... > pn = ^n by

Pm^zZ 7r»

Step 1 Pick a trial consumer surplus E > 0. Let 1 < k < n be such that

P\ > ... > Pk > Pmin(E) > Pk+1

10The lemma does not say whether the consumption of energy goes up or down with
reliability; indeed examples with both behaviors can be given.

10



and consider the k contracts (pi,Pi),...,(pjt»/>fc) where

Pm = P(pm; E), m = 1,..., k (18)

By Lemma 2(1) we must have p\ > ... > pk-\ > Pk > 0. Let

dm = d(pm;E), m=l,...,fc (19)

Observe that although these k contracts are all distinct (each offers a dif
ferent reliability), every consumer is indifferent between them since they all
yield the same surplus E. See Figure 2.
Step 2 We calculate the number of customers that can be assigned one
of these A; contracts in amounts given by (19) without violating the supply
constraint.

Define numbers 0 = to < t\ < ... < tk as follows.

. . . &m ~~ 5m—i .
% = Im-11 j , m =!,...,«— 1

. . , Sk ~ Sfc-1 . f . . -
tk = *Jb—1 + 3 if *Jfc-l > 1

dk

But if *a._i < 1, then

= f tfc-x +a^L ifpfc>0
k \ min{l, tk-i +a-±=g=±} if Pk =0

Above so = 0. Thus consumer t 6 [*m_i, tm) is assigned contract (pm, pm) in
the amount dm, m = l,...,fc. This assignment is feasible, i.e. all customers
are assigned, if and only if tk = 1. As the next lemma asserts we can increase
tk by decreasing E.

Lemma 3 There is a unique consumer surplus E* for which tk(Em) = 1.

Proof

By Lemma 2(2), dm = d(pm\ E) is strictly decreasing in E. Hence the tm
are also strictly decreasing. Also pk = p(pjt; E) is strictly decreasing in E.
The result follows from the construction of the tm. (Note: In the lemma,
the number of contracts k = k(E) depends on E and decreases with E.) •

The proof of Theorem 2 is in the appendix.

11



Theorem 2 Let E' be such that tk(B") = 1. Define the control z'(t) for
t 6 [<m-l,<m), n* = l,-,k, by

d*(t) =dm, r?(i) =| J' JJ
771

Pm — Pm+1..* — r™ rm+i _ -. /01\P>m = Z » TO = l,...,7l (21 j

t»/iere pk+i = ... = pn = 0. ThenE*,p*tr* satisfy (10) and (12) so that z*
is optimal.

We summarize the results of this section. Suppose s\ < ... < sn are the
supply contingencies. Then

1. The optimal contracts are (pi,Pi)>—>(Pn»Pn)« The reliabilities are
fixed by the supply contingencies, pm = ]Ct>m '•"•• That is, the mth
contract guarantees delivery under contingencies m, m + 1,..., n.

2. The prices are determined by a single parameter E, pm = p(pm;2T),
which also determines the demand dm = d(pm; E). For a given 5",
these prices and demands depend only on customer preferences, U
and L.

3. If k is such that p* > pmin(E) > pjb+i, then customers will only
demand the first k contracts. The remaining prices pk+i = ••• = pn =
0.

4. The company 'produces' Dm = (tm —tm_i) dm units of energy with
reliability pm. Moreover Dm = sm —sm_i if m < fc —1, i?fc < 5jfe —Sk-i
(with equality if pfc > 0), and Dfc+i = ... = Dn = 0. The revenue
received by the company is

n n

X>m£m =£>,7^; (22)
m=l i=l

This follows from (21).

3 Market equilibrium

A market equilibrium is a feasible allocation of contracts that simultane
ously maximizes consumer surplus and company profits. We have discussed
consumer surplus already. We need to model company profit opportunities.

12



3.1 Company profit

Suppose the market consists of the n contracts (pi,Pi),...,(pn>Pn)« The
company can 'package' its contingent supplies into many different 'bundles'
of contracts. It will choose that bundle which maximizes its revenue which

equals profit since we have assumed zero cost of supply.
We determine the feasible bundles that the company can supply. A

bundle is denoted A = (Ai,...,An) and contains, for each m, Am kWh of
energy with reliability pm. This reliability can be achieved by providing Am
kWh from $i with conditional probability i2(l,m), Aro kWh from «2 with
conditional probability i£(2, to), and so on. To obtain reliability p m, it must
be that

iriR(lim) + ... + TTnR(n,m)> pm = ]£ 7T;, m=l,...,n (23)
t>m

and 0 < R(i, m) < 1. (This permits 'randomized' rationing; if this is ex
cluded then R(i,m) = 0 or 1.) The bundle A must also satisfy the supply
constraint,

R(i,l)Ai + ... + R(i,n)An<Si, z=l,...,n (24)

The revenue received from A is

n

Revenue = ]£ PmAm
m=l

The company will produce that bundle which maximizes its revenue
subject to (23), (24). This is a nonconvex programming problem.

Lemma 4 For every feasible bundle A,

n

X) VmAm < ^ KilASi (25)
m=l is=l

Moreover, equality is achieved by the bundle (i?i,...,i?n) in (22).

Proof

Rewrite (23) as
^2 7Tti2(z, m) > Y, ""if1 - R(h ™>)]
i<m »>m

13



Since 0 < R(i, to) < 1, each term above is nonnegative, and since p\ > ... >
P-n ^ 0> we can conclude that

J2 Ai*^r,J2(i,TO) > ^2 a*Jtt,[1 - R(i,m)]
»<m i>m

or

]r//j7Tt-£(i,TO) > ]£ fiti ~ Pm
i=l t=m

where the equality follows from (21). Multiply (24) by p*iri and add,

n n n n

^M?*^; >J] Am^p*7rti2(i,TO) >^ Ampm
i=sl m=l i=l m=l

to prove (25). The second assertion follows from (22). •

3.2 Equilibrium

We now define market equilibrium.

Definition Contracts {(pm»Pm)}> consumer demand t —• (to(£), d(f)), and
a producer bundle A = {Am}, form a market equilibrium if:

1. A meets the aggregate consumer demand, i.e. for each to

Am > / d(t)dt
J{t:m(t)=m}

2. (m(t),d(t)) maximizes consumer surplus, i.e. for each t

(m(t), d(t)) = argmax pm U(d) - [1 - pm] L(d) - pmd
m,a

3. A maximizes company revenue ]£pmAm.

Theorem 3 The contracts, consumer allocation, and producer bundle given
in Theorem 2 form a market equilibrium.

4 Implications

We draw out some theoretical and practical implications of the preceding
analysis.

14



4.1 High prices to prevent rationing

Vickrey and Turvey argue for higher prices to reduce demand and rationing
loss. Suppose that demand fluctuations can be reflected as supply contin
gencies as we have done here.11 Then their argument calls for offering a
single contract (pw,Pt>)> where pv = p\ = 1. The company can produce only
Si of this 'firm' energy. So each consumer's demand must be such that

Ud(si) = pv

By contrast, with interruptible service contracts, the number of cus
tomers with the firm energy contract (pi,pi) is t\ and their demand is
^1 = -si/ti > s\. Moreover the price is given by

V^) =Pi

Comparing these two relations shows that p\ < pv. Thus interruptible
service contracts leads to a lower price than the Vickrey-Turvey price.

Notice also that under their recommendation, in contingencies 2,..., n,
the company will have unused excess capacity of S2 —«i, ...,s„ —S\. The
expected unused capacity is12

n

Excess =^2ffi(si —Si)

For electric power, the Excess can be large since it seems that -K\ is much
smaller than 1, and S\ is much smaller than the average capacity, 2 *&%»

Of course an interruptible service contract presupposes the means to
provide such service. For electric power this seems easy: appropriate signals
to turn off and on a customer's power supply could be sent over a telephone
or by modulating a power line carrier wave.

4.2 Meaning of interruptible service

A contract (p,p) stipulates that power may not be delivered with probability
1 —p. Service contracts with such specification are not to be found in the
real economy. This seems to be so for two reasons. First, a customer can

"This is shown in §5.1.
l2This formula suggests that a practical measure of inefficiency is px Excess, where p is

some price per kWh.
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not tell how frequently in fact her service will be cut off since probability is
an ensemble concept. Second, such contracts may encourage the company
to turn off service with probability greater than 1 —p since it will be very
difficult to challenge.

Much more frequent in the real economy are contingency contracts stip
ulating that service will not be delivered under such and such objectively
verifiable conditions. Fortunately, the contracts proposed here are of this
type: service interruption depends on the realization of supply s(u) = s,-
which can be specified in terms of such and such failure in generation.13

4.3 Alternative implementations

In considering a (p,p) contract, a customer presumably evaluates her ex
pected surplus

p U(d) - [1 - p] L{d) - pd

Typically 1 —p will be quite small, L(d) will be quite large, and it will be
difficult to calculate the expected loss [1 —p] L(d) with confidence. In any
case, after the unlikely event of service interruption the customer will feel
very differently than before it. One way of compensating against this is for
the customer to purchase an insurance contract whose face value is L{d) and
whose premium is [1—p] L(d). Such a contract is actuarially sound and the
customer is less likely to feel differently before and after an interruption.14

A similar effect can be reached by a market in which an interruptible
contract is replaced by a pair of contracts: a firm energy contract sold to
the customer and a 'call option' sold by the customer to the company under
which the latter can purchase back the energy in period 2 (tantamount to
an interruption) at a fixed 'strike' price.

4.4 Role of reserve capacity

In the current fixed price regime, a power company maintains 'dispatchable'
capacity on-line in order to meet unexpected demand increases.15 This ca
pacity is expensive. With interruptible service contracts, the power company
can instead turn off service to some customers. In effect, a fraction of the
consumer load becomes dispatchable, the amount of reserve capacity needed

l3For an account of such an experimental program by PacificGas & Electric Company,
see Ahlstrand [4],

14For deeper discussion of insurance schemes see Oren [16].
I5tDispatchable' means that powercan be increased quickly.
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is correspondingly decreased, and the lower cost is passed on to consumers
as lower prices. Some power companies have introduced analogous schemes:
for example, lower prices are charged to consumers who permit the company
to turn off their air-conditioners.

4.5 Contract design

This involves selecting the number n of contracts, and the reliability and
price of each contract. From its generation plant data the power company
can obtain the next period's availability curve

S(p) —max {s | Prob {supply >$}>p}, 0 < p < 1

S(p) decreases with p. The number n and the reliability levels 1 = p\ >
... > pn are obtained by selecting a decreasing 'staircase' curve under the
availability curve. See Figure 3 for an example with n = 3. A measure of
inefficiency is given by the area between the two curves. As n is increased,
this area can be reduced. But this must be balanced against the cost of
implementing a large number of contracts.

To find the correct price for each contract is much more difficult. One
could try estimate the preference functions U and L. Alternatively, the
company selects a trial set of prices and adjusts them until an equilibrium
is established. Such adjustment schemes need study.

A more accurate estimate of the loss in welfare resulting from a smaller
set of contracts can be obtained by doing more' work. Let S(p) be the
availability curve defined above; fix n and probabilities T\, ...,7rn. Say that
a supply list s = (<si, ...,sn) is feasible if for each m

sm < S(7Tm + ... + xn)

Let W*(s) and p%(s) > ... > Pn(s) > 0 be the optimum values correspond
ing to the supply contingencies given by s. It is not difficult to see that
W* is concave in s and increasing in each coordinate; moreover, the vec
tor (7ri^i(s),...,7rn/z*(s)) is the super-differential of W* at s, see Tan [17].
Hence if s' is another feasible list we have

EJ-XW(»i - A) < w-W - w"V) < £*.X(*')(* - *S)
i $

Now fix m and consider s' with s'j = Sj for j ^ m and s'm = sfm^1 = sm_i.
s' is feasible; moreover, the contract with reliability p m is not offered under
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sf since its supply sm —s'm_x = 0. Thus there is one less contract in s' and
the inequality above simplifies to

xm/C(s)0sm - 5m_0 < W*{s) - W\s') < *mp\s')(sm - sm-i)

which provides a better estimate of the welfare loss due to dropping contract
m.

5 Extensions

We consider several extensions of the simple model analyzed above.

5.1 Random demand

Suppose the supply is fixed at $o but the preferences during period 2 are
random with n possible sample values: (UU,LJ), u = 1,..., n.16 The market
operates as follows. In period 1, the company announces contracts {(pkiPk)}
as before. Customer t selects one contract k = k(t). At the beginning of
period 2 her random preference w is revealed to customer t, and she demands
d kWh so as to

max pk Uu(d) - [1 - pk] Lu(d) - pkd
d

The company then selects a rationing function Ru(t) as before.
The general analysis with arbitrary preferences is complicated, see Tan

[17]. However, one special case is easy. Suppose the preferences are given
by the functions:

Ui(d) = U(d - fc), Li(d) = L{d - ft), i = 1, ...,n

'where the random values

ft > 6 > - > ft, > 0

occur with probabilities 7Ti, ...,7r„,and the functions L and U are as before.17
It can be shown that again the optimal set of contracts is of the form
(Pi>Pi),—»(pmPn) where pm = £f>m7r,-. Suppose, using the notation of

16Imagine that the shift in preferences depends on the weather in period 2.
17Under this specification the demand functions corresponding to each pair (Ui, Li) are

'horizontal' shifts of each other.
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Theorem 2, that tm —<m_i customers are assigned contract (pm,Pm)- It is
easy to see that <ift > *2^2—

It now follows that the structure of the optimal contracts is identical
to the case with deterministic preferences (U,L) and random supply with
values

si = so - <ift < ... < sn = Sq —tn£n

occurring with probabilities xi, ...,7rn.
The cases of random demand and independent random supply can be

combined. Suppose the random supply takes values s\t ...,$m with probabil
ities 7/1, ...,r/m. Then the problem is equivalent to deterministic preferences
(Z7,£), and random supply with values si —Uj£j, i = 1, ...,m, j = 1,..., n,
occurring with probabilities n^j.

5.2 Heterogenous consumers

So far all customers had identical preferences (17, L). Suppose instead that
there are TJ customers with deterministic preferences (UJ,L*), j = 1,...,/
and T1 + ... + Tl = 1. Suppose supply is random with values s\ < ... < sn
with probabilities 7Ti,...,7rn as before. It again turns out that the optimal
structure contains n contracts (pi,pi),...,(Pn>Pn) where pm = ]£,->„,*•,• de
pends only on supply conditions as before. The prices pi > ... > pn are
determined by consumer bid prices. However, consumers in different groups
have different bid price curves, and the algorithm for determining the correct
prices is much more complex, see Tan [17].

5.3 Variable supply cost

We have assumed that the variable cost of supply is zero. (Variable cost
consists largely of fuel cost.) Suppose now that there is a constant variable
cost of c dollars per kWh. This introduces only a minor change in the
formulation. The welfare function (5) is replaced by

J\[p(t) U(d(t)) - [1 - p(t)] L(d(t))}dt - jf' cp{t)d(t)dt
where the last term is the variable cost. The rest of the argument of §2 goes
through with obvious changes. The optimal contracts now take the form
(pi>Pi)i—,(Pn,Pn), where pm = pm + PmC Again pm is given by (21) and
pmc is the expected variable cost. It is customary to call pm the 'scarcity'
price.
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Suppose more generally that the variable cost during contingency i is
c;.18 The situation is now more complicated. The optimal structure still
contains n contracts. Moreover, the reliabilities of these contracts is again
given by an ordering of the random events except that it may no longer
coincide with the ordering of the magnitudes s,\ Indeed the ordering now
also depends on the demand, see Tan [17].

6 Conclusions

The airline and telecommunications industries were dramatically reconfig
ured by the increased competition following deregulation. Few predicted, for
example, that the minimal cost airline operations would be based on the now
familiar 'hubbing' strategy. It would be foolhardy to suggest how compet
itive forces might reshape the electric power industry. Judging from these
two cases, however, it seems safe to expect that one outcome will be the
increased differentiation of electric power service. This paper contributes
to the study of one dimension of differentiation, namely the reliability of
service delivery. It seems obvious that there is a large efficiency gain to be
made by recognizing the diversity ofcustomers and end uses and 'packaging'
electric power to exploit this diversity.

The traditional approach of building new generation capacity to meet
increased demand is not as viable and this may lead to perceived 'short
ages'. Interruptible services, spot prices, and time of use prices are related
approaches to 'demand management' that can relieve these shortages. This
is an additional reason for studying such schemes.

Power system operations have the goal of meeting demand efficiently
without jeopardizing system security. In this formulation demand is as
sumed exogenous, efficiency essentially means increasing the output power
of the generators with least variable cost, and security is the ability of the
system to maintain stability following a fault. The dropping of customer
load is a measure of last resort taken to maintain security. Under an inter
ruptible service regime, this would be common practice and it will induce
a major change in power system operations. In effect, customer load will
enter economic dispatch (and security) calculations on the same footing as
generation since a change in either can be measured in dollar values. These
topics need to be carefully researched so that future changes can be met

18This is usually the case since generation plant consists ofdifferent technologies with
varying fuel cost.
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with knowledge and confidence.

Appendix

Proof of Lemma 1

The control d(t) = mini s,- > 0 and p(t) = 1 or r,(*) = 7r,-, is feasible and
gives welfare W = U{xmn 5,) > 0. Hence W* > 0.

If d*(t) = 0, then W* = 0. So there must exist at least one customer
r with d*(r) > 0. Also, since E(0,0,1**) = 0, we must have E* > 0. The
map d —• E(d, r,p*) is strictly concave. Since d*(r) > 0, this implies

Em = E(d*(T),r*(T),p*) > 0

Finally, since E(d, r*(t), p*) = 0 if d = 0, we must have d*(t) > 0. •

Proof of Lemma 2

For p > pmin (15) and (16) imply the two relations

E = p U(d(p)) - [1 -• p] L(d(p)) - p(p)d(p)

p Ud(d(p)) - [1 - p] Id(d(p)) - p(p) = 0

Differentiating the first relation with respect to p and using the second
relation gives

d(p)

which shows that p is differentiableand strictly increasing. (Here and below
subscripts denote partial derivates, Ud = dU/dd, etc.)

For each d > 0 define the function p —• P(p; rf), with rf as parameter, by

p(p.d)=PUW-[l-P]L(d)-H
d

This is an affine function of p, and since by (15), p(p) = swpdP(p;d), it
follows that p(p) is convex. This proves (1).

It is obvious that p(p]E) is strictly decreasing in E. Also, from (14)
we see that h(d,p,p) is strictly concave in d and so d(p;E) is the unique
solution of

pUd(d)-[l-p]Ld(d) = p(p;E)

The left hand side is strictly decreasing in d. Since p is strictly increasing
in E, it follows that rf(p; E) is strictly increasing in E, proving (2). •
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Proof of Theorem 2

Under z* customer t € [tm-i,tm) obtains reliability

1 i>m

and energy d*(t) = dm> Hence by (19) she gets surplus E*. Moreover, from
(20) and the construction of the *m,

x*(l) = s^ i< k

_ym _ J =sk ifpfc =M]fe>0
Xk{1) " \ <sk -dPk =P% =0

*m(l) = X%(l)<Sm, Mm = 0> ™>*

Hence (12) is satisfied. It remains to show that (10) holds, i.e.

E* = max E(d,r,p*)
d,r

By Lemma 2(1) p(p) is convex in p, hence

„* _ PJPm+l) - PJPm+2) ^ P(pm) - p(pm+l) .
^rn+1 — " ~ S — Mm

Pm+1 — Pm+2 Pm — Pm+1

and so

Pi > ... > Pn (26)
Now suppose (<£+,r+) maximizes

H(d, r, „•) =E n U(d) - [i - E n] UA - (E fr¥ (27)
t t »

Since the term involving r; in (27) is linear in r,-, it follows that

V(d+) +I(d+) -tfd+ I>I* Tt : l' (28)
Now let m = min{i | rf = 7r,} and consider the control value (d,f) given by

d = d+; fi = TT,-, i > m and r,- = 0, i < m

It is straightforward to verify using (26), (28) that

E(d+,r+,p*) = E(d,r,p*)

But from (20) we see that

(d,r) = (d*(t),r*(t)), te[tm-utm)

which shows that E" is the maximum value of the Hamiltonian. D
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