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Abstract

This thesis presents a varietyof techniques to minimize circuit delay during the translation

of a set of Boolean equations into a list of connected logic gates that can be used for the

manufacturing of combinational digital circuits. This translation process is called technol

ogy mapping. The first contribution of this work is to present an optimal algorithm to

implement a Boolean circuits that can be represented as trees using an extension of known

tree covering algorithms. The second and more important contribution of this work is an

in-depth analysis of fanout optimization. The fanout problem is the problemof distributing

a signal to several destinations, where the signal maybe required at different times,in order

to minimize the overall delay. This work presents the most detailed theoretical study of the

complexity of fanout optimization published so far, and a spectrum of heuristics to solve

the fanout problem under realistic delay models. This thesis also introduces a simple algo

rithm that can be used to apply fanout optimization to an entire network. This algorithm

yields an optimal application of fanout optimization in terms of delay, while keeping area

increase of the circuit to a low value. To study the integration of tree covering and fanout

optimization, this workintroduces a technology independent delay model that characterizes

precisely suboptimalities due to inbalances in a network. This is the first technology inde

pendent delay model that models the delay through a node as a function of the arrival time

distribution at a node. This delay model can be used to derive analytically optimal solutions

in simple cases, which can be used to measure the suboptimality of heuristics. An extension

to tree covering is then suggested, and shown to provide significant delay reductions for a

relatively heavy cost in area. Finally this work investigates technology independent delay

optimization techniques based on partial or total collapsing of logic, and shows that further

delay reductions can be achieved with these techniques possibly at a higher cost in area.

Prof. Robert K. Brayton
Thesis Committee Chairman
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Chapter 1

Introduction

1.1 Overview

Books are not made to be believed,
but to be submitted to examination.

— UMBERTO ECO, The Name of the Rose (1980)

Logic synthesis is the process of transforming a set of Boolean equations into

a network of gates that realizes the logic and minimizes some cost function. The cost

function can be area, delay, testability or power consumption. Most often than not, it

is a combination of these factors. For simplicity and efficiency* logic synthesis is usually

decomposed in two phases: a technology independent phase, whose main objective is to
simplify the logic; and a technology dependent phase, also called technology mapping, whose
main role is to implement the logic using well characterized logic gates realized in a given

technology [8].

The main focus of this thesis is to develop techniques to reduce circuit delay during

the technology dependent phase oflogic synthesis. Despite this focus ofdelay optimization,

other costs are not ignored. In particular, some care has been given to limit the increase in

circuit area whenever possible.

Technology independent delay optimizations are just as important as technology

dependent delay optimizations. However, since they are performed at a higher level, they
cannot be used with great accuracy until technology independent delay models and tech

nology mapping algorithms of reliable performance are developed. Since high level delay
models axe still the subject of current research, technology independent delay optimizations

1



2 CHAPTER 1. INTRODUCTION

are only a topic of secondary priority in this research. Much work remains to be done in

this area.

The technology mapping algorithms presented in this work rely on two main tech

niques: tree covering and fanout optimization. Tree covering algorithms were first stud

ied Aho et al. [2, 3, 1] in the context of code generation for expressions, and were later

adapted to technology mapping by Keutzer [24, 27] and Rudell [14, 36]. If the objective

is to minimize circuit area, tree covering algorithms produce good quality results and are

straightforward to use. However if the objective is to minimize circuit delay, tree covering

needs to be extended even to generate optimalsolution for trees. This extensionis discussed

in chapter 2.

Tree covering alone tends to generate poor quality implementations in terms of

delay, because most circuits are not trees but directed acyclic graphs. The signal available

at the output of a tree needs to be distributed to several destinations. Such a signal is

called a fanout signal. With tree covering alone, the circuitry used to distribute a fanout

signal to its destinations is implemented by default with a wire. In first approximation, if
n is the number of destinations of a fanout signal, the delay through this wire is of order

0(n). Using a simple buffer tree, this delay can be reduced to O(logn). It is thus very
important, to minimize delay, to be able to insert buffer trees to reduce the delay incurred

by the distribution of fanout signals. This optimization, called fanout optimization [5], is

the main focus of chapter 3.

Tree covering can be formulated as the problem of minimizing delay through a

fanin node, i.e. a node with several inputs but only one output. In a very similar way,

fanout optimization can be formulated as the problem ofminimizing delay through a fanout
node, i.e. a node with one input and many outputs. To minimize delay through an entire

circuit, we need to coordinate the useof tree covering and fanout optimization on the fanin

and fanout nodes that compose the circuit. This global optimization problem is the focus

of chapter 4.

These techniques provide a solid set of technology mapping algorithms on which we

can rely to measure the effect of technology independent optimizations. Chapter 5 contains

the results of some empirical studies of the effect of technology independent optimizations

on the qualityof the final, technology mapped implementation of a circuit. Finally chapter 6

summarizes the main results of this work.

In the remainder of this chapter we give the main definitions and notation used
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throughout this thesis, and a description of the abstraction we use to model the physical

behavior of circuit components.

1.2 Terminology and Notation

1.2.1 Mathematical Notation

By convention we use the letters n and m to denote integer valued constants, and

the letters i, j and k to denote integer valued variables, usually indices. We use the letters

a, 6, c to designate real valued constants, and x, y, z, t, r and p to designate real valued

variables. Occasionally, we also used upper case letters.

We use other letters to designate certain quantities in specific contexts. In partic

ular 6, g and s are used as indices in a library of gates; 6 is usually denotes a buffer and

a a source, i.e. a gate.used at the root of a tree. We use a, /3 and 7 as constants that

characterize the delay through a gate of a gate library. We also commonly use d to denote

the number of buffers in a library, and n to denote the number of destinations of a fanout

signal.

We use En to denote the group of permutations of a set of n elements. In that

context, (7 is used to denote an element of S„, i.e. a permutation. We use tt to denote the

natural projectionfrom a Cartesianto oneofits components. Forexample, ic a '• Ax B —> A,

where fl\A((a,&)) = a. 11 denotes the field of real numbers, and 11+ the subset of 1Z formed

of the nonnegative real numbers.

1.2.2 Combinational Logic

We also use the letters x, y, z to denote Boolean variables. We denote the Boolean

and with a "." or with a space if the meaning is clear. We denote the Boolean or with a

u+n and the negation with a bar over the expression to be negated. For example we would

write x + y = x.y.

A combinational logic circuit can be specified as a set of Boolean equations, with

no cyclic dependencies, of the form yj = fj(x\,...,xn), where si,...,sn and yj denote

Boolean variables and /, a Boolean function. There is a one-to-one mapping between a set

of Boolean equations with no cyclic dependencies and a Boolean network, i.e. a directed

acyclic graph graph G = (V,E), in which a logic equation is associated to each node.
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PRIMARY OUTPUTS

v fanout node

fanin node

PRIMARY INPUTS

Figure 1.1: A Boolean Network

Boolean networks form a natural, very general, multi-level representation of a piece

of combinational logic. Other representations of combinational logic, such as two-level sum-

of-products [7, 37] or binary decision diagrams [10] are more useful in some contexts, but

are more limited in terms of the class of functions they can express in a reasonable amount

of space.

Some of the nodes of a Boolean network are distinguished as primary inputs and

primary outputs, and represent respectively the inputs and outputs of the corresponding

circuit. The fanin of a node v of a Boolean network is the set of nodes u whose output is

directly connected to an input of v. Similarly, the fanout of a node v is the set of nodes

u that have an input directly connected to the output of v. A node that has a fanout

containing only one element is called a fanin node; a node that has a fanin containing only

one element is called a fanout node. A Boolean network can always be decomposed into a

network of fanin and fanout nodes, in such a way that a fanin node is only connected to

fanout nodes, primary inputs or primary outputs, and a fanout node is only connected to
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fanin nodes, primary inputs or primary outputs, as illustrated in Figure 1.1.

1.2.3 Physical Modeling

We model a technology as a reasonably small library of gates implementable in

that technology. These gates are the only circuit primitives we claim to use. In addition, we

suppose that these gates are fully characterized by a combinational logic function and a set

of delay equations. This excludes latches and CMOS transmission gates. We also suppose

that every interconnection of gates yields a valid circuit. This fails for ECL (different

voltage levels; dot products) or in the presence of fanout limits. Taking care of latches or

taking fanout limits into account can easily be done by a simple extension of the algorithms

presented here.

Our algorithms can handle gate libraries composed of up to a few hundred gates,

which is good enough to handle industrial CMOS standard cell libraries. Some of the

most popular gates in standard cell CMOS technologies are 2-input NAND gates, that

implement the function out = a.b\ inverters, that implement the function out = a; XOR

gates, that implement the function out —ab -f ab; and-or-invert and or-and-invert gates, as

for example, AOI22, that implements the function out = a^ + &i&2« A given logic function

can be implemented by several gates of different sizes and delay characteristics. The role of

the technology mapper is to select not only a logic function that corresponds to a gate in

the target library, but also to select the appropriate gate for a given logic function.

Gate Area In standard cell technology, we use grid counts to measure the area of a gate

or cell. The grid count is the width of a cell relative to a standard design rule. Grid count is

directly proportional to standard cell area before routing [31]. If a wellcharacterized router

is used for layout, grid count is a good estimate of final chip area.

Gate Delay To model gate delay, we use a simple linear delay model. This model char

acterizes the delay from an input pin i to the output pin of a gate g using a linear equation

of the form a»i5 +0i,g 7- The coefficient a^g models the intrinsic delay through the gate; the

coefficient (3i,g models the load dependent delay; 7 is the capacitive load at the output of

the gate, which is estimated by looking at the output connections of the gate. The model

also distinguishes between rise and fall delays. If capacitive loads are restricted to be within

a small range of values, and if delay coefficients were determined for that range of values,
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this model is a reasonable first approximation, within 10% of actual delays [29]. Gate level

delay models used in the industry are usually more complex that this linear, 0-order model.

Industrial models usually rely on a simple first-order non-linear delay model, that computes

the delay and its slope, i.e. a discretized version of the first derivative of the delay. A

well-tuned version of this model can estimate physical delays within a few percent.

To estimate the capacitive load at the output of a gate g, we add the capacitive

loads of the input pins of the gates driven by g to a additional term representing the delay

through the wires.

Arrival Times, Required Times and Slack Given arrival times at the primary inputs

of the network, the arrival time at the output of any gate in the network is defined as the

latest possible moment a transition may occur at the output of that gate. We use static

timing analysis to compute arrival times, i.e. we assume that all paths through the logic

can be activated. Techniques to detect false paths exist [33] but are too computationally

expensive to be of practical use during technology mapping. In addition, one of the goals

of technology mapping for delay is to make a large number of paths critical, reducing the

need for more sophisticated delay estimators.

Given required times at the primary outputs of a network, we can also compute

the required time at the outputs of any gate of the network by propagating required "times

throughout the network. The slack at the output of a gate is denned as the difference

between the required time and the arrival time at that output.

Technology Independent Models The lit.eral count is a good technology indepen

dent estimator of circuit area. The literal count of a Boolean network is the sum of the

literal counts of each of its nodes. The literal count of a node is the number of literals

appearing in a factored form representation of the logic function of the node. A literal is

a term of the form x or x, where x is a variable and x is the Boolean negation of x. For

example, if the logic function of a node is: x1(32+1?) + x\x±, the literal count of this node

is 5. Literal count correlates well with circuit area [31].

Finding reliable technology independent estimators of circuit delay is still the

subject of current research, despite recent advances [43]. Simple models based on the

number of levels of logic with or without a corrective term for multiple fanouts are usually

very unreliable. Good delay estimators are crucial to the accuracy and consistency of
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technology independent delay optimization algorithms.
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Chapter 2

Delay Optimization with Tree

Covering

The most constant difficulty in contriving the engine
has arisen from the desire to reduce the time

in which the calculations were executed

to the shortest which is possible.
— CHARLES BABBAGE (1837)

2.1 Introduction

The problem of delay minimization of an arbitrary Boolean network is difficult in

general. Ideally, we would like to find a network of gates that is functionally equivalent to a

Boolean network and has minimum delay. For a given Boolean network, the number of such

implementations is theoretically infinite. Even if we restrict ourselves to implementations of

bounded size, the number of such implementations is still very large and there is no known

method to explore the solution space efficiently. All the practical methods developed so far

consist in modifying an initial representation of a Boolean network using transformations

that preserve the behavior of the network and reduce the cost of its implementation.

Since the problem is so complex, it is in practice divided into two phases: a

technology independent phase and a technology dependent phase, also called technology

mapping. The purpose of the technology independent phase is to provide a Boolean network

equivalent to the original circuit which can be implemented efficiently by the technology

mapping algorithms. The role of the technology mapper is to compute a network of gates of
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late — rewrite late

3>
rewrite

Figure 2.1: Example of Rules

minimum cost equivalent to a given Boolean network. The simplifying assumption we make

about the technology mapper is that the structure of the network of gates it computes is

derived from the structure of the Boolean network it takes as input. The technology mapper

is not expected to modify the structure of the network drastically: such transformations are

best left to the technology independent phase, not because doing so yields better results,

but because it corresponds to a natural separation of concerns, and a simpler overall design.

The first technology mappers were rule-based (LSS [13], SOCRATES [19]), i.e.

based on local transformations called rules. Examples of rules are given in Figure 2.1.

Rules can be used to implement unimplemented logic, or simply to improve the quality of

an already implemented set of gates. Rule-based systems are quite flexible and can gen

erate circuits of good quality in terms of either area or delay. They can also be used in

a postprocessing phase to improve the quality of a circuit generated by other algorithms.

Unfortunately, rule-based systems suffer from two severe limitations: rules are library de

pendent and only local optimizations are possible in polynomial time.

An attractive alternative to rule-based technology mappers is the use of a divide-

and-conquer strategy, where the network is partitioned into the largest pieces that can be

handled with efficient, optimum, library independent algorithms. The most important of

these algorithms is tree covering. Given a tree, expressed with simple primitives (e.g. 2-

input NAND gates and inverters), tree covering can find a minimum cost covering of the

tree by gates of a library. This covering can then be extracted to form an implementation of
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the tree. This implementation is not in general a minimum cost implementation of the tree

because it is a function of the decomposition of the tree into primitives, and also because

in some cases the minimum cost solution cannot be expressed as a tree cover (i.e. when a

minimum delay solution requires the introduction of buffers between gates, or when the use

of Boolean identities is required to identify a match). However, tree covering usually yields

good quality implementations, and has the merit of being very fast.

Tree covering was originally developed for code generation in retargetable compil

ers [1]. It was first introduced in the context of technology mapping by Keutzer [24] for

producing minimum area implementations. There has been some earlier attempts to extend

tree covering to produce minimum delay implementations, but these techniques were either

ad hoc [26] or were not implemented [36]. In this chapter we introduce an elegant solution

to the problem of optimal tree covering for delay, and present and discuss experimental

results comparing this solution with simpler but suboptimal techniques.

Optimal tree covering can be solved in time linear in the number of nodes in the

tree. The complexity of tree covering as a function of the number and size of the gates in

the library depends on which tree pattern matching algorithm is used. The fastest pattern

matching algorithms build an automaton that summarizes all possible patterns matched

by gates in the library. At the cost of some preprocessing time, these algorithms avoid

having to traverse the same substructures several times. A good overview of tree pattern

matching algorithms can be found in [20]. The fastest algorithms are based on a bottom

up traversal of the trees, but they have the largest space requirements. An interesting

way to reduce this space overhead can be found in [11]. No technology mapper has been

based on bottom-up tree covering. The second fastest algorithms are based on top down

string matching techniques [1]. These algorithms were used in Dagon [24]. In contrast,

misll technology mapper [14] uses a more conventional but slower matching algorithm,

that simply enumerates all patterns and requires little preprocessing. For simplicity, we use

the slower matching algorithm used in misll. The choice of the matching algorithm has no

influence on the quality of the final result and thus has no influence on our experimental

results.

The rest of this chapter is organized as follows. In section 2.2 we review the basic

tree covering algorithm for minimum area and show how it can be directly extended to

minimize delay if load values are supposed to be constant. Then in section 2.3 we show

how to extend this algorithm to take exact load values into account. This extension was
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originally suggested by Rudell [36] and implemented by us [42] using load discretization.

We present a new method that relies on a functional representation of achievable arrival

times at a node v as a function of the load at the output of v. In section 2.4 we review

three main factors that limits the optimality of tree covering for delay, and discuss how these

limitations could be overcome. In section 2.5 we present several techniques that can be used

to reduce the area of tree cover under a delay constraint. One of these techniques consists

in extending tree covering further to directly minimize area under a delay constraint, at the

expense of more computation time. We present an adaptive time discretization algorithm

to perform this task. This algorithm was already described in [36, 42]. Finally we present

and discuss our experimental results in section 2.6 and summarize the main results of this

chapter in section 2.7.

2.2 Tree Covering

The use of tree covering algorithms for technology mapping was originally pro

posed by Keutzer [24]. The basis of this technique is to decompose the circuit into trees,

and use tree covering on each of the trees separately. Tree covering algorithms were ini

tially developed for code generation [2, 1]. They are based on fast tree pattern matching

techniques, and use dynamic programming to implicitly enumerate all solutions efficiently.

Tree covering worksvery well for additive cost functions, and more generally whenever the

minimum cost cover of a tree rooted at a node is only function of the cost of the' matches

at that node and the cost of the subtrees. This is the case in code generation and logic

synthesis for minimum area when we ignore non linear effects (pipelining, caching in code

generation; placement and routing in logic synthesis).

The tree covering problem can be described as follows:

• Given a tree T and a set of tree patterns P, representing the gates of a library, and

a cost associated with each gate,

• Find a cover of the tree T of minimum cost.

To allow the use of tree pattern matching algorithms, we need to represent both the tree

and the logic functions associated with the gates in a common set of primitives or base

functions. In misll and DAGON, this set of primitives is composed of only two types

of elements: 2-input NAND gates and inverters, misll also adds extraneous inverters to
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N0R2 0AI21

Figure 2.2: Example of Decomposition into Primitive Gates

allow the pattern matching algorithm to choose in which phase subfunctions should be

implemented. An example of such a decomposition for a NOR gate and a A0I21 gate is

given in figure 2.2. The network is decomposed in a similar fashion into primitive gates.

We suppose that we have at our disposal an algorithm to enumerate all matching

tree patternsm at a given node v of treeT. We call this set match(v, P). Associated with a

given pattern m in match(v, P), we have a gate g(m) and a list of nodes v» 6 in{m), which

correspond to the nodes of T matching the inputs of m. An example of such a matching is

given in figure 2.3.

In general, the cost of a match depends on some contextual information that is

function of both the children and the parent nodes of given node v of the tree. While

for area minimization the cost of a match only depends on the children nodes, for delay

minimization, or area minimization under a delay constraint, the cost function also depends

on information provided by the parent node (load values, required times). We present here

a general formulation of the cost function that cover all three types of optimization.

To formulate this cost function, we use a generic variable / to denote the contextual

information derived from the parent nodes. The minimum cost tree cover at a node v,

cost(v, I), is the minimum cost of a cover of the subtree rooted at v for a given I.

To evaluate the cost of a pattern m in match(v, P) we need a cost function

cost(m, I) that depends on the cost of the gate g(m) associated with the pattern and the

costs cost(vmii,Imii), where the nodes vm,» G inputs(m) are the nodes in the tree matching
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Figure 2.3: Example of Pattern Matching

the inputs of m, and Jm,j is the contextual information derived from J that is propagated

through m to node VilTn. For example, 7m,i may be the load of gate g(m) at input pin i, in

which case it is independent of J; or it can be the required time at i/i,m derived from the

required time at v.

To be able to use a dynamic formulation of the minimum cost covering problem

we suppose in addition that the function cost(m,I) = cost{g(m)1[cost(vm,i,Im,i)iVmtt 6

inputs{m)\ is monotonic non-decreasing. We can thus use the principle of optimality to

assert that there exists a minimum cost cover at a node v which is made of a gate g

matching at node v and minimum cost covers of the subtrees rooted at the input pins of g.

It is easy to see by induction that in one bottom-up traversal of the tree, from the leaves

to the root, an algorithm can obtain a minimum cost cover. A sketch of this algorithm is

given in Figure 2.4, where the function select(v, I) records the best pattern matching at

node v as a function of the contextual parameter I.

This formulation relies on our ability to manipulate functions of J as data and in

particular to compute the minimum of two such functions. In the case of area minimization,

there is no contextual information to propagate: area(m) = cost(m,I) and area(v) =
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procedure minjcost(v, P)

for w in children(v) do minjcost(w, P) od;

for m in match[y, P) do

cost(m,I) = co5t(^(m),[cost(tJi,m,Ii,m),i;iim € inputs(m)]);

od;

cost(v, I) := mmrngmatcfc^.p) cost{m, I);
select(v,I) := axgmuvng^tcAtt/.p) cost(m, I)

end 7ron.cost

15

Figure 2.4: Tree Covering for Minimum Cost

cost(v,I) are simply numbers. More specifically:

area(m) = area(g(m))+ ^ area(vitTn) (2.1)
Wt,m€*npu*5(m)

In the case of delay minimization, if we ignore the differences between loads and use a

nominal load value 70 at the output of each gate, there is no contextual information to

propagate either. In that case the cost function arrival(m) = cost(m,I) becomes:

arrival(m) = max (awm) + ^a(m)lo + arrival(vitTn)) (2.2)
«i,m€tnpti*4(m)

However if we want to take actual load values into account, cost(m,I) and cost(v,I) are

non constant functions of i\ We will see next how they can be computed efficiently.

2.3 Handling of Load Values

To compute an exact minimum delay cover we need to take load values into ac

count. Load information is propagated top down, from the root to the leaves of the tree.

Therefore load values have to be represented as contextual information. In that case the

cost function depends on the load 7 at the output of a node:

arrival(m,j) = max (cwm) + Pi,g(m)7 + arrival{vi%m,^m)) (2.3)
«t,mStnputj(m)

where 7i,m denotes the load on pin i of gate g(m).
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Cost functions are now dependent on the load 7. We need to find a representation

of these functions that allow us to compute their minimum as in Figure 2.4. We propose here

three different representations. The first two use staircase functions, the third piece-wise

linear functions.

2.3.1 Uniform Discretization

The simplest non constant representation of the cost functions is to use staircase

functions, where the limits of the intervals are fixed and independent of the nodes. This is

simple to implement but relatively inaccurate unless the discretization intervals are made

fairly small, which is computationallyexpensive. This method was originally suggested by

Rudell [36].

2.3.2 Adaptive Discretization

A better approach is to adapt the discretization intervals to each node. In one

precomputationphase, onecan determine all the possible load values at a nodeby examining

all matches at every node. These values can then be used to determine the boundaries of

discretization intervals. Since it is guaranteed that no other value is possible at an internal

node, this method is exact. If the number of intervals grow too large, they can be easily

reduced by merging the smaller intervals with their neighbors,for a smallexpected reduction

in precision. This method was used in [42].

2.3.3 Functional Abstraction

Adaptive discretization has two drawbacks: it requires the precomputation of all

possible load values at each node, which is roughly as time consuming as performing the

tree covering itself; it does not work at the root of the tree, where the number of all possible

load values grows exponentially and the range grows linearly with the number of fanouts of

the root node.

A more general and more elegant method consists in going up one level of abstrac

tion, by storing at each node a junction that gives, for any given load value, the optimum

choice of a gate at this node. The main difficulty is to find a data structure adapted to the

representation of such a function. We first list which operations are needed on this data
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structure, and then show these operations can be efficiently implemented using.piece-wise

linear functions.

We have to be able to perform efficiently the following operations:

• representation of gate delays: given a gate g, matching at node v, and arrival times

a* at the inputs ofthe gate, we should be able to compute a function f(nf), where 7 is

the load at the output of node v, that gives the arrival time at the output of g when

g has to drive a load of 7.

• computation of the minimum of two functions: given two functions / and g of one

variable 7 representing the load at the output of a node v, we need to be able to

compute the function h(i) = min(/(7),^(7)).

• finding the minimum solution: in addition, h = mm(f,g) should be represented in

such a way that we can tell, for a given value of 7, whether the minimum is realized

by / or g. If h represents the minimum of all the functions representing the arrival

times for all gates matching at a node v, we should be able to determine from h not

only the best arrival time, but also a gate that realizes the best arrival time.

Given these three operations, wecan obtain a minimum delay tree cover by applying directly

the algorithm of Figure 2.4. In the remaining of this section, we show how these three

operations can be implemented efficiently using piece-wise linear functions within our delay

model. For more complex delay models, piece-wise linear functions may not suffice. In that

case, a more complex data structure would need to be used.

Piece-Wise Linear Functions A piece-wise linear function is a continuous function,

formed of a finite sequence of connected, linear segments. We only consider piece-wise

linear functions defined on 7£+, so we can always suppose that the support of each segment

is of the form (pi,p2), with p\ G11+ and p2 € 11+ U{+00}. We represent each segment by

a tuple of the form: {xi,yi,sx,pi), where (xx,yt) axe the coordinates of the leftmost point

of the segment, s» is the slope of the segment, and px is a pointer to an object that will

be specified later. Strictly speaking, this representation is incomplete, because it does not

specify the right bound of the segment, but it is not intended to be used in isolation.

We represent a piece-wise linear function / as an array of tuples representing the

connected segments forming /: {xi,yi, Si,px)\<i<n, such that 0 = xi < X2 < . •. < xn, and,
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for 1 < t < n - 1, yi+i = ft + (s»+i - x*)5*- All segments but the last one are finite: the

right bound of the ith segment for i < n is given by Xi+\.

Representation of the Arrival Time Function at the Output of a Gate Given

arrival times (<it)i<»<n at the input pins of a gate g, the arrival time at the output of g

as a function of the load at the output of g is given, in our delay model, as the maximum

of n linear functions, one per input pin. This maximum is a piece-wise linear function,

which is represented, as indicated in the previous paragraph, by a finite sequence of tuples:

(*n>yn»5n»p)i<n<N- The pointer p is independent of n and points to a record containing

information pertaining to gate g. This information is needed to retrieve a description of

gate g in case the selection of g yields the earliest arrival time.

Computation of the Minimum of Two Piece-Wise Linear Functions The mini

mum of two piece-wise linear functions f\ and /^ can be computed in time 0(n\ + nj) where

Tti is the number of segments contained in /». The algorithm bears some similarity with a

well-known linear time algorithm used for merging two sorted lists of data.

The algorithm scans implicitly all values of H+ from 0 to +00, and keeps track of

the best segment at each point. In practice the number of points that need to be visited

does not exceed the total number of segments, n\ -fnj. The algorithm maintains two indices

i\ and %2 pointing to the currently active segments, and a scan point x, initially set to 0. As

an invariant of the algorithm, z is guaranteed to lie within segment i\ of /1 and segment i-i

of f%. The next value of x is the leftmost of the following three points: the rightmost limit

of segment i\ of f\, the rightmost limit of segment ij 0^/2 a-ad the intersection of ij and

iii provided that this intersection lies to the right of the current value of x. The current

value of x and the next value of x determine a segment. This segment is a copy of ti of f\

or i2 of /2 on that range, whichever is the lower on that range of values, x is then updated

to its new value, and i\ or t2 is incremented as necessary. The algorithm terminates when

all segments have been visited.

Finding the Optimum Solution By computing the minimum of all the functions rep

resenting the arrival times for all gates matching at a node v, we obtain a piece-wise linear

function / representing the best arrival times realizable at v for any load value. For a

given load value 7, we simply perform a binary search on the array of tuples (xi,yi,3i,pi)
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representing / to identify the segment to which 7 belongs. Once this segment is identified,

we use the pointer pi to retrieve the gate that realizes the minimum.

The actual implementation is slightly more complex than what we have just de

scribed, because a gate may match at a node in several different ways, and we need to keep

track with px not only of a choice of a gate but also of a choice of a matching.

2.4 Limits to the Optimality of Tree Covering for Delay

2.4.1 Initial Decomposition

The initial decomposition of a tree in simple primitives (i.e. 2-input NAND gates

and inverters) is required before tree covering can be used. The principle of tree covering

is to decompose the target tree and gates into the same set of primitives so that functional

matching is replaced by the simpler problem of pattern matching. Since gates represent

small logic functions, it is feasible to enumerate all patterns that represent a gate. This

number can be reduced further by exploiting the symmetry of some inputs.

Unfortunately, for the tree itself, it is not practical in general to enumerate all

possible decomposition in simple primitives. We choose one decomposition, and the result

depends in general on the quality of this decomposition. Ideally, an adequate choice should

be made as a function of the arrival times at the leaves of the tree. In the absence of this

information, we simply generate a balanced decomposition of the nodes of the tree. This

is not in general the best choice. Before we can discuss better decompositions, we need to

cover the material of chapter 4. We will come back to this problem in chapter 5.

2.4.2 Suboptimality of Pin Assignment

During tree matching, the symmetry of gate inputs is exploited to reduce the com

putational overhead of the algorithm. All patterns that a gate can match are enumerated,

but all possible assignments of gate inputs to pattern inputs are not. When the inputs

are equivalent, only one assignment is tried. For area minimization, logically equivalent pin

assignments have all the same cost, so there is no need to consider more than one. However,

for delay minimization, this is not the case, since the delay through a gate is pin dependent

in general.

For example, a 3-input NAND gate is represented by only one pattern, but has
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>>u
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gate delay (pin to output)

v1 ->f = 1.2 ns
v2->f = 1.1 ns
v3->f = 1.0 ns

Figure 2.5: Example of Suboptimal Pin Assignment

3! = 6 possible pin assignments. Only one out of the six possible pin assignments is tried by

the tree pattern matching algorithm. This can lead to suboptimal choices. In the example

of Figure 2.5, the critical input is assigned the slowest pin v\. For any preassigned choice

of input ordering, there is always a simple circuit configuration for which this choice is

suboptimal. We propose in this section a simple algorithm to correct this problem.

To optimize pin assignment during tree covering, we can proceed as follows. First,

in a preprocessing step that can be done once and for all on the library, we identify the

sets of pins that are functionally equivalent and therefore interchangeable. Then, for each

gate during pattern matching, we consider eachof the equivalent sets of pins separately and

reorder them in order to decrease delay.

If we use constant load values, the problem of optimal pin assignment can be solved

in time O(nlogn) where n is the number of pins in the set. In that case the problem can

be reduced to the following discrete optimization problem: if a» is the arrival time at node

Vi and dj the delay through the gate from pin j, the problem is to find an assignment of

nodes to pins that minimize the total delay. Let Sn be the set of permutations of a set of n

elements, and for o € En, let o(i) be the image by the permutation cr of element i. The pin
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assignment problem can the be formulated as the following discrete optimization problem:

min max a+ + d-a)

An optimal solution can be computed by ordering the ax and the dj by increasing size and

using the permutation a(i) = n - i + 1. However, if we take pin load values into account,

the problem has the following form, where ax denotes the arrival time at node vx and a,-, Pi

and 7j are delay coefficients derived from the delay model:

min max (a* + A *7<r(i) + <*«,(;))

This problem canstillbe solved optimally bydynamic programming in time 0(2 n). Though

exponential, this algorithmis still practical formost libraries sincethe number of equivalent

pins of any given gate usually does not exceed eight in CMOS technology.

2.4.3 Rise and Fall Delays

So far we have ignored the fact that in our delay model we distinguish between rise

and fall delays. This means that arrival times are characterized by a pair of real numbers:

(a,., a/) instead of a single number. To decide which of two solutions is better, we need to

decide which of two pairs of arrival times is "faster". We use the following criterion to make

this decision:

(or,af) < (bT,bf) if max(ar,a/) < max(6r,6/)

This selection is not guaranteed to be optimal in general but works well in practice. It

outperforms the other obvious choice:

/ \ /i i \ -r Or + at br + b*(ar,af)<(br,bf) if —^±<—^-L

2.5 Minimizing Area under a Delay Constraint

We can also use the dynamic programming algorithm of Figure 2.4 to find a min

imum area cover under a delay constraint. The delay constraint is expressed as a required

time at the root of the tree, and is propagated down the tree as a contextual value, to

gether with load values. In that case the cost function is of the form cost(m,7,r) where 7
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represents the load and r the required time at the output of a node:

cosi(m,7,r) = {area(m),slack(m,'y,r)}

area(m) = area(g(m))-r ^ area(vitm)
«t,m€*nputa(m)

slack(m,7, r) = r - arrival(m,7, r)

arrivalim,7,r) = max (<*i,$(m) + ft,s(m)7 + arrival(vitm, 7i,m> f*t,m))
vi,m€inputs(m)

where r;,m is the required time at input node V{t7n propagated from required time r at node
v through gate g(m). To minimize area under a delay constraint, we take into account in

the cost function both the area and the slack (the slack is the difference between required

time and arrival time). At each intermediate node the minimum areasolution is selected if

it meets the delay requirement (that is, if its slack is nonnegative); otherwise, the minimum

delay solution is chosen.

2.5.1 Adaptive Discretization of Required Times

To implement this algorithm,weneed to discretize the required times. Enumerat

ing all possible required times at a node is not feasible in this case, because required times

not only depend on the match just above a node but on all the possible combinations of

matches above the node up to the root of the tree.

To control the run time of the algorithm, we enforce a limit on the number of

discretization intervals at each node, which is an integer-valued parameter r specified by

the user. The discretization intervals are obtained by first computing a range of interesting

values for the required time at each node and then dividing this range into equal intervals.

The range of interesting values for the required time at a node v is determined as

follows. Let 7 be a possible load value at node v. Let aj^fi/) be the minimum arrival
time achievable at node v with a load of 7 at its output, and a^Tea{v) the arrival time at v

of a minimum area cover of the subtree rooted at v for that same load value. Any required

time outside the interval [al.lay(v),alrea{v)] does not need to be considered. Indeed, if
the required time at node v is less than «3eioy(v)» no cover of the subtree rooted at v can
meet the timing requirement; in that case, the minimum cost cover is the minimum delay

cover for this subtree. If the required time is greater than aZrea(v), we can just choose the

minimum area cover for this subtree.
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2.5.2 A Greedy Approach to Area Recovery

If we neglect the inaccuracies introduced by the discretization of required times,

the previous algorithm is optimum, though relatively complex. A simpler approach to area

recovery consistsin computing at each node the minimumdelayand minimum area solution.

To select the cover, we can then use a simple top down traversal of the tree starting from

the root. Each time a gate is selected, we propagate the required time through its pins.

The required time at the root of the tree is simply the minimum achievable arrival time.

To select a cover for a subtree, we choose the minimum delay solution unless the minimum

area solution is fast enough. This approach knows no compromise: it never chooses an

intermediate solution in terms of area that would be acceptable in terms of delay; but is

fast and simple.

2.5.3 Area Recovery by Optimal Inverter Selection

Another effective approach to reducing the complexity of area recovery is to con

centrate on special cases. The most obvious candidates are inverters. Inverters are the

most frequently used gates in circuits, and selecting the best inverter to minimize delay at

any given point in the network can be done very simply by enumerating all choices and

selecting the best. There is a simple and optimal algorithm that applies inverter selection

to minimize delay through a mapped network. A mapped network is a Boolean network

where each node represents a gate.

The algorithm proceeds as follows: it visits the nodes of the network in topological

order from the root to the leaves. Each time an inverter is encountered, it is replaced by an

inverter that has minimum delay in this context. The optimal choice depends on the drive

at the input and the load at the output of the inverter. If applied to a network obtained

from a minimum delay cover, this optimization has no effect. However it can be used to

speed up networks obtained from the minimum delay tree covering algorithm that assumes

that all load values are identical.

More importantly, inverter selection can be used for area recovery. Given a mapped

network, with a required time at the root (either specified by the user, or taken as being

equal to the arrival time at the root of the tree), we can traverse the network from the root

to the leaves and apply the following optimization each time an inverter is encountered. If

there is a smaller inverter that could be used at the node without making the slack negative



24 CHAPTER 2. DELAY OPTIMIZATION WITH TREE COVERING

at that node, the smallest such inverter is used in place of the current one. This algorithm

is greedy in the sense that it does not necessarily make the best use of the available slack

to recover area. However it is guaranteed to never worsen delay, and, as we will see in the

results section, is quite effective in practice.

2.5.4 Area Recovery by Optimal Gate Selection

There is no reason to perform optimal gate selection on inverters only. The inverter

selection algorithm can be extended to all gates that come in different sizes and strengths

in the library. This provides a cheap and simple way to recover area after tree covering

without hampering the fullpowerof tree covering for delayminimization. This optimization

is likely to be very effective for large libraries.

2.6 Experimental Results

Circuits are usually not trees: they have several outputs, inputs are shared among

several functions, and there may be several paths from one node to another. To assess the

amount of improvement we can expect from the algorithms proposed in this chapter, we

need to measure their effect in isolation on trees. To that effect, we generated three Boolean

functions, nor32, balanced and unbalanced, that can be represented as trees:

• nor32, a 32 input NOR gate.

• balanced, a balanced binary tree with 64 inputs. Internal nodes are alternatively

computing a Boolean AND or a Boolean OR, with inverters inserted randomly.

• unbalanced, an unbalanced binary tree with 32 inputs, where every node has at most

one child that is not a leaf. Internal nodes are alternatively computing a Boolean

AND or a Boolean OR, with inverters inserted randomly.

The results of these experiments are also sensitive to the gate libraries being used. To take

this effect into account, we performed our experiments with four different CMOS standard

cell libraries of various origins:

• MCNC, a public domain library available from MCNC. It is distributed with the IWLS'89

benchmark suite [32] under the name lib2. It is composed of 29 gates. Inverters ap-
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pear in 3 different strengths; all the other gates in one strength only. Gate delay

information is pin dependent.

• CMOS12 is a library from AT&T. It is composed of 189 gates, mostly AOI and OAI

gates. Only a few gates appear in different strengths. Gatedelays are onlyavailable for

the slowest pins; all pins are assigned the worst case delay, which is too conservative.

• LIBRARY3 is an industrial library. It is composed of 80 gates. Most gates come in

different strengths, and delay information is pin dependent. The library contains 4

different sizes of inverters.

• LIBRARY4 is another industrial library. It is composed of 99 gates. Like the previous

library,most gates come in different strengths and delay information is pin dependent.

It provides a wider selection of strengths for commonly used gates than LIBRARY3.

Forexample, it contains 9 different sizes of inverters instead of 4, and 4 different sizes

of 2-input NAND gates instead of 2.

In the following sections, we report and discuss results by library. We provide detailed

experimental results for the first two libraries, and only summary information for the re

maining two. Forclarity, we use the following acronyms to refer to the various tree covering

algorithms studied in these experiments:

• HA refers to minimum area tree covering.

• MDCL refers to minimum delay tree covering using a constant load value.

• MDCLIS refers to minimum delay tree covering using a constant load value, followed

by optimum inverter selection. Inverter selection is done using the algorithm of sec

tion 2.5.

• MDEL refers to minimum delay tree covering using exact load values.

• MDELIS refers to minimum delay tree covering using exact load values, followed by

optimum inverter selection.

, • MADC refers to minimum area tree covering under a delay constraint.

Since MDCL is not optimum for delay, MDCLIS can outperform MDCL both in terms of area

and delay. On the other hand, MDEL being optimum for delay, MDELIS can only improve

over MDEL in terms of area.
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circuit MA MDCL MDEL MADC

area delay area delay area delay area delay

nor32 53 5.14 93 5.31 73 5.12 53 5.14

balanced 133 6.15 177 4.71 161 4.69 167 4.69

unbalanced 75 20.70 111 16.32 95 16.31 106 16.61

Table 2.1: Comparison of Tree Covering Algorithms with library MCNC

MA:

MDCL

MDEL

MADC

area

delay

Minimum Area

Minimum Delay with Constant Loads
Minimum Delay with Exact Loads
Minimum Area under a Delay Constraint
total cell area

measured in nanoseconds

2.6.1 Results with the MCNC Library

In table 2.1 we show the results obtained by using minimum area tree covering,

mJTMTniiTn delay tree covering, minimum delay tree covering with constant loads and tree

covering for miTiiTnnm area under a delay constraint, where the delay constraint is the

minimum delay achievable by tree covering.

The results indicate that MDEL tree covering does not lead to a significant delay

reduction over MDCL for this library: only 1%. However, the reduction in area is more

substantial: 15%. This can be explained by the fact that using constant load values in MDCL

underestimates the cost of stronger and larger gates, that have higher input loads. The

penalty of using gates stronger than the optimum has a first order effect in terms of area.

In termsof delay, a higher input loadis partially compensated by a stronger drivecapability,

leading to a second order effect on delay. MADC tree covering does not lead to consistent

results. This is due to the fact that MADC relies on an older implementation than MDEL, that

discretizes load values instead of using piece-wise linear functions. Discretization of arrival

times is another source of inaccuracy. Overall MADC reduces area by 6% and increases delay

by 1% relative to MDEL.

Table 2.2 shows the effect of optimal inverter selection when used after tree cover

ing. Inverter selection has noeffect on trees built with MDEL. However it improves noticeably

the quality of the covers obtained with MDCL. The benefit of MDELIS over MDCLIS is only of

7% in area for no gain in delay, down from 15% and 1% respectively for MDEL vs. MDCL.
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circuit MDCLIS MDELIS

area delay area delay

nor32 93 5.31 73 5.12

balanced 153 4.52 161 4.69

unbalanced 96 16.32 95 16.31

Table 2.2: Effect of Optimal Inverter Selection with library MCNC

MDCLIS: Minimum Delay with Constant Loads, with optimum Inverter Selection
MDELIS: Minimum Delay with Exact Loads, with optimum Inverter Selection
area total cell area

delay measured in nanoseconds

circuit V[A MDCL MDEL MADC

area delay area delay area delay area delay

nor32 53 4.57 189 3.79 234 3.70 174 4.00

balanced 142 6.92 574 4.72 446 4.46 478 4.46

unbalanced 75 26.10 351 17.90 241 17.36 175 17.89

Table 2.3: Comparison of Tree Mapping Algorithms with library CMOS12

MA:

MDCL

MDEL

MADC

area

delay

Minimum Area

Minimum Delay with Constant Loads
Minimum Delay with Exact Loads
Minimum Area under a Delay Constraint
total cell area

measured in nanoseconds
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For one example, MDCLIS actually outperforms MDELIS in terms of delay. This anomaly

can be explained by the difficulty on handling rise and fall delays optimally, as explained

in section 2.4.3. The anomaly disappears if we modify the library to make all rise and fall

delays equal, or if we modify the comparison function used to compare pairs of rise and fall

arrival times.

2.6.2 Results with the CM0S12 Library

We repeated the previous experiments, using the CMOS 12 library. The results are

reported in table 2.3 and table 2.4. The results are essentially similar to those reported in

the previous section. MDCL tree covering increased area by 355% for a decrease in delay of
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circuit MDCLIS MDELIS

area delay area delay

nor32 189 3.79 234 3.70

balanced 430 4.46 430 4.46

unbalanced 189 17.70 193 17.36

Table 2.4: Effect of Optimal Inverter Selection with library CM0S12

MDCLIS: Minimum Delay with Constant Loads, with optimum Inverter Selection
MDELIS: Minimum Delay with Exact Loads, with optimum Inverter Selection
area total cell area

delay measured in nanoseconds

30% over MA. On average, MDEL tree covering outperformed MDCL by 13% in areaand 4% in

delay. Again, using exact loadvalues during delay minimization had some effect on area but

only a second order effect on delay. MADC tree covering obtained more satisfactory results

with this library. Compared with MDEL tree covering, it achieved a reduction ofareaof 17%

for an increase in delay of 4%.

For this library, inverter selection also improves the quality of MDEL tree covers in

terms of area, by 8%. The effect of inverter selection on MDCL tree covers is more significant,

to the point that MDCLIS tree covering actually outperforms MDELIS in terms ofarea by 8%

for a cost in delay of only 1%.

2.6.3 Results with the LIBRARY3 Library

We repeated the same experiments with library LIBRARY3. MDEL tree covering

outperformed MDCL by 10% in area and 1% in delay. After inverterselection, the advantage

was only of 4% in area and 1% in delay for MDELIS over MDCLIS. Inverter selection reduced

the area of MDEL covers by 7%.

2.6.4 Results with the LIBRARY4 Library

We repeated the same experiments with library LIBRARY4. For that library, which

is much richer than LIBRARY3 in terms of number of inverters, MDEL tree covering outper

formed MDCL by 56% in area and 24% in delay. After inverter selection, the advantage was

reduced to 21%in area and 8% in delay for MDELIS over MDCLIS. Inverter selection improved



2.7. CONCLUSION 29

the area of MDEL covers by only 3%.

2.7 Conclusion

The main conclusion from this experiments is somewhat disappointing: taking load

values into account during minimum delay tree covering (method MDEL) does not lead to a

very significant decrease in delay over the simpler tree coveringmethod that uses constant

loads (method MDCL). The main advantage of MDEL over MDCL is actually more in terms of

area. By ignoring the effect of larger input loads, MDCL tend to favor gates that are larger

than necessary. Choosinglarger gates than necessary has a direct effect on area but only a

second order effect on delay, since the cost of higher input loads is partially compensated

by an increase in drive capability.

Another interesting experimental result is that most of the advantage of using

MDEL over MDCL can be obtained by the use of optimal inverter selection after tree covering.

Overall, MDEL remains the best tree covering algorithm for delay, but using MDCL followed

by optimal inverter selection is a very attractive choice if simplicity of implementation and

cpu time are an issue. It will be interesting to see the effect of extending optimal inverter

selection to optimal gate sizing as a postprocessing phase after tree covering.

Minimizing area under a delay constraint is not very effective and is computation

ally expensive. We strongly recommend a divide and conquer approach to this problem:

first, use a fast tree covering algorithm that minimizes delay only, to obtain a minimum

delay solution. Then, use, in a postprocessing phase, either an inverter selection algorithm

or a gate sizing algorithm to recover area at no delay cost. This approach of area recovery

is suboptimal, but leads rapidly to good quality circuits. If area is more of a concern, it

is always possible to use minimum area tree covering, possibly as a postprocessing phase

after delay optimization, on parts of the tree that are not time critical. Trying to find a

good cover under an area and a delay constraint is too complex and time consuming: it

is more efficient to start with a minimum delay cover, and modify it in a postprocessing

optimization phase to recover area in a greedy fashion whenever possible.
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Chapter 3

Fanout Optimization

Mathematicians are like Frenchmen:

whatever you say to them they translate into their own language
and forthwith it is something entirely different.

— GOETHE

3.1 Introduction

The objective of fanout optimization is to build circuits that do not compute any

function but simply distribute a signal to one or more destinations at a minimum cost. If

the cost to minimize is area, the problem is of very little interest at the logic design level,

since a wire is the best we can do. The problem is only interesting if we are to minimize

delay or area under a delay constraint. The focus of this chapter is to find methods to

perform this optimization efficiently.

Fanout optimization is important for several reasons. First, it can reduce delay

often quite dramatically. If the output of a gate is connected to n fanout stems, in first

approximation the delay through the gate is of order 0(n). By building a simple buffer tree

at the output of the gate, we can reduce this delay to 0(log7i). In addition, if we know

the individual times at which the signals are required at each destination, we can build a

buffer tree that delivers earlier the early required signals, which has the potential of further

decreasing the delay through the entire circuit. Ideally, a fanout algorithm should be able

to take advantage of the slack available at some outputs to increase the slack at the initially

more critical outputs, to achieve an equilibrium point where all outputs are equally critical.

This is usually not achieved in practice due to the discrete nature of delay optimization at

31
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this level.

The basic optimization techniques on which fanout optimization relies, buffering,

gate resizing, critical signal isolation, are not new. There is a vast literature on timing
optimization techniques that covers these optimizations [34, 17, 21, 4, 13]. What is original

in the fanout optimization approach originally due to Bennan, Carter and Day [5], is the
ideaofcombining thesetechniques intoa single algorithm. The main limitation of Berman's

work is that it did not propose a very practical approach to apply a fanout algorithm to an

entire circuit. It turns out that we can use a simple technique due to Hoover, Klawe and

Pippenger [22] to solve this problem, as suggested by Fishburn [15]. We have extended this

technique to recover area after delay minimization.

Fanout optimization can also be used to enforce fanout constraints imposed by

a technology. Though in this work we ignore fanout constraints or load limitations, they

can be handled by a simple modification of our algorithms, for example by modifying the

cost functions to make gates infinitely slow as soon as their load constraints are violated.

Another reason for using fanout optimization to enforce load limitations is to control the

accuracy of gate-level delay models. The main source of inaccuracy of these models is the

presence of large capacitive loads at gate outputs.

In some situations, fanout circuits with reconvergence can yield faster circuits than

fanout trees, e.g. when the loads at the sinks are very high, such as for the output pads

of a chip. These situations can be handled by tree-based fanout algorithms if we replace

sinks with large loads by a number of virtual sinks with smaller loads before applying

the algorithm. In this work we suppose that large loads are split among several virtual

destinations or handled by special purpose circuitry, and we only consider fanout circuits

that have no reconvergence, i.e. that are trees.

There is an interesting duality between- tree covering and fanout optimization as

can be seen in figure 3.1. For delay minimization, tree covering aims at minimizing the

arrival time at the root of a tree given arrival times at its leaves, while fanout optimization

aims at maximizing the required time at the root of a fanout tree given required times at

its leaves. In terms of complexity, fanout optimization is, for all but the simplest delay

models, NP-complete. But we can make, from an optimum fanout algorithm, a one pass

algorithm that optimizes the fanout problems of a circuit and yields a minimum delay

implementation, in the sense that there is no way to modify one or more of the fanout trees

of this implementation in order to decrease delay. In contrast, tree covering itself is of linear
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PRIMARY OUTPUTS

PRIMARY INPUTS

A

fanout optimization

tree covering

Figure 3.1: Duality of Tree Covering and Fanout Optimization

33

complexity, but extending it to a globally optimum algorithm is a difficult problem since it

subsumes optimum DAG covering, which is NP-complete.

In section 3.2 we give a precise definition of the fanout problem and fix the ter

minology and notation for the rest of this chapter. In section 3.3 we give an overview of

what is currently known about the complexity of the fanout problem, and how the delay

model influences the complexity. In section 3.4 we present a spectrum of delay optimization

algorithms for the fanout problem of increasing complexity and accuracy. In section 3.5

we describe succinctly what needs to be done to handle fanout problems where sinks are

of different polarities. In section 3.6 we present a set of simple delay optimizations that

can be used to improve the quality of an existing fanout tree. These optimizations take a

narrow view on the problem to be optimized. By analogy to software compilation, we call

them peephole optimizations. They are fast, simple to implement, effective at recovering
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area, and can be applied to any fanout tree, independent of its origin. In section 3.7 we

show how we can apply a fanout algorithm to an entire circuit and explain in what sense

the resulting circuit implementation is optimal with respect to fanout optimization. This

technique can also be used in postprocessing phase to recover wasted area in parts of the

circuit that are not critical for delay. Finally in section 3.8 we present our experimental

results, and in section 3.9 we summarize the main results of this chapter.

3.2 Definition of the Fanout Problem

We give here the most general definition of the fanout problem that we consider

in our work. Possible extensions to this definition include the use of several sources, the use

of reconvergent fanout circuits and the presence of load limitations.

Fanout Problem for Minimum Delay

• Given a library C of buffers and inverters, and for each b € C its input load 7&, its

load dependent delay 0b and its intrinsic delay oe&;

• Given the source s of a signal X, with its drive capability (3S;

• Given n destinations or sinks, with separate required times rx, loads lx and polarities

Pi',

• Find a tree of buffers and inverters that distributes the signal X to all the sinks and

maximizes the required time at the source.

Fanout Problem for Minimum Area under a Delay Constraint We can extend this

definition to the problem of finding a fanout treeof minimumarea undera delay constraint.

The delay constraint is specified as an arrival time a specified at the source. The constraint

is that the required time at the source should not be less than the specified arrival time.

3.3 Complexity of the Fanout Problem

The complexity of the fanout problem depends on the delay model. For a very

simple delay model, under which the delay through a buffer is constant equal to 1 and the

fanout is constrained to be less than some constant value A:, the fanout problem for delay can
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be solved in linear time using a technique called combinational merging [18]. Unfortunately,

as soon as the delay model takes loadvalues into account,even if allrequired times areequal

and only one type of buffer is used, the fanout problem for delay becomes NP-complete.

There is thus little hope of finding a polynomial time algorithm to solve the fanout problem

optimally with delay models of the level of complexity of the ones commonly used for CMOS

standard cells.

Berman et al. proved that the fanout problem for minimum area under a delay

constraint is NP-complete under a simple delay model where gates are represented by a

finite number of virtual gates with fixed fanout and constant delay. Unfortunately, the

proof of this result is not very satisfactory since it requires the existence of buffers in an

unrealistically wide range of sizes and delays.

In this section we present a few complexity results for the fanout problem under

various delay models. To keep things simple, we ignore the issue of phase assignment: we

suppose that all sinks require the signal with the same polarity as produced by the sourceand

that only buffers are available in the library. For a simple delay model, the fanout problem

can be solved optimally in time 0(?ilogn) using combinational merging. We present this

algorithmin section 3.3.1. We use combinational mergingas a heuristicin one of our fanout

optimization algorithms, but it is not optimum in general for more complex delay models.

In section 3.3.2 we study the fanout problem for a slightly more complex delay model, for

which we only have partial results. In section 3.3.3, we show that if we allow non constant

load values at the sinks, the fanout problem for delay becomes NP-complete. This is the

first complexity result for the fanout problem for minimum delay without the addition of

an area constraint. Finally in section 3.3.4 we review briefly Berman's complexity result.

This overview is not complete unfortunately. Many complexity issues are left un

resolved. However our main purpose is to provide solid evidence that the fanout problem is

difficult to solve exactly for complex delay models, in order to justify our use of approximate

algorithms. In that sense, our goal has been achieved.

3.3.1 Constant Delay Model

In the constant delay model, the library contains only one buffer. The delay

through this buffer is constant equal to one delay unit when the fanout does not exceed

some threshold k, and is infinite otherwise. For that delay model, the combinational merging
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Let 5 be a set of nodes with an individual required time associated with each node.

Initially 5 contains all the sinks with their required times.

Sort 5 by decreasing required times.

While \S\ > 1 {

At the first iteration, r = \S\mod(k - 1). If r < 2, r = r + (k - 1)

At all remaining iterations, r = k.

Remove the first r nodes of 5, (vi,...,vT), with the largest required times.

Make the r nodes {v\,..., vT) the fanouts of a new node v.

Set the required time of v to be mini<j<r required(vx) - 1

Add v to 5

}
The only remaining node in S is the root of an optimal fanout tree.

Figure 3.2: Combinational Merging

algorithm, dueto Golumbic [18], finds a minimum delay fanout tree in timeO(nlogn) where

7i is the number of sinks. Moreover this tree is guaranteed to be of minimum area among

all trees of finite delay. The algorithm is outlined in figure 3.2.

It is possible to prove that if (r\,.. .,rn) are the required times at the sinks, the

required time at the root of an optimal fanout tree is given by the following formula [22]:

rTOOt —

Ki<n

(3.1)

3.3.2 Unit Fanout Delay Model

In this section we introduce a slightly more realistic delay model. The library still

only contains one buffer, but this time the delay through the buffer is equal to the number

of its fanouts. This means that the load dependent delay coefficient of the buffer is 1, its

intrinsic delay is 0, and the loads of all the gates 1. This model is similar to but simpler

than the unit fanout delay model used in misll, which assumes a delay of 1 -I- 0.2 *n where

n is the number of fanouts of the buffer, i.e. it assumes an intrinsic delay of 1 and a load
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dependent delay of 0.2 for a buffer.

Equal Required Times We can solve the fanout problem for minimum delay exactly

for this delay model if all the required times at the sinks are equal. As we will see shortly,

even this simple case is not completely straightforward. We will make use of the following

definitions:

Definition 1 A 2-3 tree is a tree T such that any intermediate node of T has a fanout of

2 or 3.

Definition 2 Let V(T) be the set of paths from the root to a leafin a 2-3 tree T, and let

p be such a path. Let xp and yp be the number of nodes of fanout 2 and 3 respectively on

that path. The weight of path p is defined as follows:

w{p) = 2x*x3t* (3.2)

The weight of a 2-3 tree is the maximum weight on any of its paths:

w(T) = max w(p) (3.3)

The delay of a path and the delay through a tree are defined similarly:

d(p) = 2xp-rZyp (3.4)

d(T) = max d(p) (3.5)

Since we suppose that all required times are equal, maximizing the required time at the

source of the fanout tree is equivalent to minimizing the worst path delay through the tree,

i.e. the quantity d{T).

Definition 3 A 2-3 tree is a simple 2-3 tree if all nodes at the same level have the same

fanout. In particular, in a simple 2-3 tree, all the leaves are at the same distance from the

root.

It is easy to see that all paths of a simple 2-3 tree have equal weight, and that the number

of leaves of a simple 2-3 tree T is equal to w(T).
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Figure 3.3: Splitting a Node Does not Increase Delay

Theorem 3.3.1 Let (hih) be a pair of integers that realizes the minimum of the quantity

2x+ Zy subject to the constraint2*3y > n. LetT be a simple 2-3 tree with I2 levels of nodes

of fanout 2 andl3 levels of nodesof fanout 3. Then T has minimum delay among all fanout

trees with n leaves or more. Its delay is given by the following expression:

d(T) =Zh+l if Zh<n<^xZh
d(T) =3/i +2 if i x Zh <n<2x Zh

h+ld(T) = 3/i + 3 if 2 x Zh < n < 3

The proof of theorem 3.3.1 relies on the following two lemmas.

lemma 3.3.2 There is an optimal fanout tree that is a 2-3 tree.

Proof Let T be an optimal fanout tree. Its nodes with fanout equal to 1 can be eliminated

without modifying the fanout of other nodes and without increasing the delay through the

tree. We will show that its nodes with fanout greater than 3 can be split into nodes with

strictly smaller fanouts without increasing the delay through the tree, with the transfor

mation shown in figure 3.3. A node u with a fanout / of 4 or more can be replaced by

three nodes v, w\ and 102 j such that v is directly connected to the parent of u, and has w\

and W2 as children. Two children of the children of u are made children of w\, while the

remaining ones are made children of W2. If r is the earliest required time of any child of u,
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the required time at u is r —/. In the worst case the earliest required time of a child of wi

is r and the required time of w\ is r - 2. Similarly, in the worst case the earliest required

time of a child of tU2 is r and the required time of tt/2 is r —(/ —2). Thus the required time

at v is no worse than min(r -2,r-/ + 2) + 2 = r-/, since / > 4. •

Lemma 3.3.2 shows that we can find a 2-3 tree that is an optimal fanout tree. The following

lemma shows that we can restrict our attention further to simple 2-3 trees.

lemma 3.3.3 Let T be a 2-3 tree. There is a simple 2-3 tree T' that is at least as fast as

T and has at least as many leaves as T.

Proof Let T be a 2-3 tree and let l(T) be the number of leaves of T. The proof proceeds

in two steps. We first show that l(T) < w(T) for any 2-3 tree, and then we show that for

any 2-3 tree T there is a simple 2-3 tree T' such that d(T') < d(T) and w(T') = w{T). This

would prove the lemma, since for any simple 2-3 tree T', l(T') = w(T').

To prove that l(T) < w(T), we proceed by induction on the height of T. The

result is obviously true for trees of height zero, since the number of leaves and the weight

are both equal to 1 in that case. Let us suppose that the result is true for all 2-3 trees of

height h - 1 > 0. Let (Ti,...,Tjb), with k = 2 or k = 3, be the subtrees of T that are the

fanouts of the root node of T. By induction hypothesis, l(Tx) < w(Tx). Moreover we have

KT) = Ei<i<*'ffi) and w(T) = kx maxi<i<*w(T0. Thus l(T) < w(T).

We can build a simple 2-3 tree T' such that d(T') < d{T) and w(T') = w(T) as

follows. Let p be a path of T such that w(p) = w(T), and let T' be a simple 2-3 tree with xp

levels of nodes offanout 2 and yp levels ofnodes offanout 3. Wehave w(T') = w(p) = w(T)

and d(T) = d(p) < d(T). m

Proof [of theorem 3.3.1] According to the previous two lemmas, we only need to consider

simple 2-3 trees. The optimal simple 2-3 tree is the simple 2-3 tree T that minimizes d(T)

subject to the constraint that l(T) > n, where l(T) is the number of leaves of tree T. For

a given simple 2-3 tree T, with a: levels of nodes with fanout 2 and y levels of nodes with

fanout 3, we have: d(T) = 2x + Zy and l(T) = w(T) = 2* x 3y. Thus the problem of finding

an optimal simple 2-3 tree is reduced to the problem of finding a pair of integers (x, y) that

is solution of the following discrete optimization problem:

min2x + Zy with 2X x 3y > n (3.6)
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We will first show that there is always a solution of 3.6 that is such that 0 < x < 2. For

any pair (x, y) of integers, let d(x,y) = 2x + 3y and l{x,y) = 2s x Zy. If x > 3, we have:

d(x-3,y+2) = 2(x-3) + 3(y + 2) = 2 x-{• Zy = d(x,y)

l{x - Z, y + 2) = 2X"3 Z**2 > 2s Zv = /(x,y)

In other words, if x > 3 and (x,y) is an optimum solution, we can replace (x,y) by (x -

Z,y + 2) without loss ofoptimality. Let us suppose that n > Zh, for some integer h. Then
we have 2X 3y > Zh. Since x < 2, we must have y > h - 1. In addition, if y = h - 1,

then x = 2 and <£(2,/i - 1) = Zh + 1. If y = h, then x > 1, and d{x,h) > Zh + 2. If

y > h, then d(x, y) > 3/t + 3. Thus (2, /i - 1) is an optimum solution for n in the range:

Zh < n < l(2,h- 1) = | x 3*. If n > § x Zh, then y > /t and x > 1. The minimum
delay solution satisfying these constraints is (l,h), and d(l,h) = Zh + 2. This solution is.

optimum for n is the range: | x Zh < n < 1(1, h) = 2 XZh. Jf n > 2x Zh, then the next
minimum delay solution is (0,h+ 1), that has a delay of d(0, h+ 1) = Zh + 3. This solution

is optimum for n in the range 2 x 3fc < n < Z(0, h+ 1) = 3fc+1. •

Arbitrary Required Times We are not awareof any polynomialtime algorithm to solve

the minimum delay fanout problem for arbitrary required times under the unit fanout delay

model. We conjecture that this problem is not NP-complete and that such an algorithm

exists.

Area Minimization under a Delay Constraint We conjecture that the problem of

finding minimum area fanout tree under a delay constraint for arbitrary required times and

the unit fanout delay model is NP-complete.

3.3.3 Unit Fanout Model with Varying Sink Loads

The difference between the unit fanout model of the previous section and the unit

fanout model with varying sink loads used in this section is that we now allow sink loads to

take any positive rational value. There is still only one buffer in the library, and its drive

capability is 1, its intrinsic delay 0 and its input load 1. Under this delay model, we will

prove that the fanout problem for minimum delay is NP-complete even if we restrict the

sink required times to be all equal. We will also prove that the fanout problem for minimum

area under a delay constraint is NP-complete even if we restrict sink loads to be integers.
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Fanout Problem for Minimum Delay

Theorem 3.3.4 Given a fanout problem for the unit fanout model with rational sink loads

and a constant D, the following decision problem is NP-complete: is there a fanout tree

such that the delay through thefanout tree is less than or equal to D. The problem remains

NP-complete even if the required times at the sinks are all equal.

The decision problem is clearlyin NP. To proveit is NP-complete, we willexhibit a polyno

mial time reduction of 3-partition to it. For clarity, we restate here the 3-partition problem

[16]:

Theorem 3.3.5 (3-Partition) Given a finite set A of Zm elements, an integer valued

bound B, and an integer valued size s(a) for each element a of A, such that s(a) satisfies

B/4 < s(a) < B/2 and such that Y,aeA 3(a) = mB> ^*c following decision problem is NP-

complete: can A be partitioned into m disjoint sets S\,...,Sm such that for 1 < i < m

The nature of the constraints is such that if a solution exists, the sets Sx contain exactly 3

elements.

A decision problem is NP-complete in the strong sense if, unless P = NP, there

is no polynomial algorithm to solve the decision problem even if we restrict the problem

to instances where the numbers appearing in an instance are bounded by a polynomial

function of the size of the instance. Equivalently, a decision problem is NP-complete in the

strong sense if it cannot be solvedby a pseudo-polynomial algorithm, i.e. an algorithm that

is polynomial in the size of the instance and the magnitude of the numbers appearing in

the instance. NP-complete problems that are not strongly NP-complete derive their NP-

completeness from the presence of exponentially large numbers in the formulation of their

instances. PARTITION [16] is an example of an NP-complete problem that is not strongly

NP-complete: it can be solved in pseudo-polynomial time by dynamic programming. When

the numbers appearing in the instances of a problem are derived from finite precision phys

ical parameters, as is the case for fanout optimization, it is not realistic to suppose the

presence of exponentially large numbers in problem instances. In other words, to be rele

vant, proofs of NP-completeness of fanout problems need to show NP-completeness in the

strong sense, by derivation from a strongly NP-complete problem. Our NP-completeness
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proofs are based on 3-partition, which is oneof the simplest strongly NP-complete problems

[16].

The proof of theorem 3.3.4 relies on the following lemma:

lemma 3.3.6 (Restricted 3-partition) 3-partition remains an NP-complete problem even

if we restrict the number of elements of an instance to be a power of 3, i.e. of the form

Zm = 3\

Proof Let A be an instance of 3-partition. We will exhibit an instance A' of restricted

3-partition that is equivalent to A. A' is constructed as follows. It has Zh elements, where

h = flog3(3m)]. The first 3m elements of A' are a copy of the elements of A, with their size

multipliedby 9. The remaining Zh - Zm elements of A' are groupedin triplets, of respective

sizes (ZB + 1,ZB + 1,32? - 2). And B' is taken to be equal to 92?. Suppose that A has a

3-partition. Then the first 3m elements of A' can be grouped together in triplets of total

size 92?. The remaining Zh - Zm elements can be kept together as they were created, in

triplets of total size 92?. Thus A' has a 3-partition. Conversely, if A' has a 3-partition,

the sum of the sizes of any triplet (31,32,33) in this 3-partition is equal to 9B, and is thus

divisible by 9. If any of these elements comes from an element of A, then all of them do,

otherwise the sum of their sizes would not be 0 modulo 9. Thus a 3-partition of A' yields

a 3-partition of A. m

Proof [of theorem 3.3.4] We only need to exhibit a polynomial time reduction of 3-

partition to the fanout problem for instances of 3-partitions such that 3m = Zh. Let A
be such an instance of 3-partition. We create Zh = 3m sinks, one per element of A, and

assign to the sink corresponding to element a of A the load 1 + s(a)/K where K is an

arbitrary integer such that K > Z/2B. All required times are taken to be equal and D is

set to be equal to Zh + B/K. Clearly, this specifies a fanout problem for our delay model,

and the construction can be done in time polynomial in the size of the instance A. We need

now to prove that decision problem A is equivalent to this fanout problem.

Suppose that A has a solution. Then we can group the elements of A in triplets

Si,. ••,5m, such that £a€5i 5(a) = B for 1 < i < m. We can then build a 3-tree with h
levels and Zh leaves, such that the sinks corresponding to the elements of S{ are siblings

of each other. Any node of the tree at level h - 1 has a fanout of 3, and the load it
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drives is equal to 3 + B/K since Eo€s< 3(a) = B- Thus the total delay through the tree is
Z(h -1) + Z+ B/K = D, which proves that the fanout decision problem has a solution.

Conversely, suppose that the fanout decisionproblem has a solution. There is then

a fanout tree whose delay is no greater than D. From lemma 3.3.2, which still holds if the

loads at the sinks are allowed to be larger than 1, we can assume without loss of generality

that this fanout tree is a 2-3 tree. Let T be the 3-tree with Zh leaves and a depth of h, with

sinks allocated to its leaves in some arbitrary way. Since the load of any sink is less than

1 + B/2K, the load of buffers at level h - 1 does not exceed 3(1 + B/2K) < 3 + 1. Thus,

the delay through T is smaller than Zh + 1. Since no other 2-3 tree can drive Zh outputs of

load 1 or more in less than Zh+1, T is the only possible 2-3 tree that realizes the minimum

delay fanout tree. Thus there is an assignment of sinks to leaves of T such that the delay

through T is no larger than D = Zh + B/K. This means that the sinks can be 3-partitioned

into triplets whose aggregate load is equal to 3 + B/K. This is equivalent to saying that A

can be 3-partitioned. •

Fanout Problem for Minimum Area under a Delay Constraint

Theorem 3.3.7 Given a fanout problem for the unit fanout model with integer sink loads,

a delay constraint D and a constant A, Hie following decision problem is NP-complete: is

there a fanout tree such that the delay through the tree is less than or equal to D and its

area is less than A ? The problem remains NP-complete even if the required times at the

sinks are all equal.

Proof This decision problem is clearly in NP. To prove it is NP-complete we will again ex

hibit a polynomial time reduction of 3-partition to it. From a given instance A of 3-partition,

we build an instance of the fanout problem as follows: we create 3m sinks, one for each

element of A, having for loads the values (m + l)3(a). The area constraint is A = m and

the delay constraint is D —m + (m + 1)2?. All required times are taken to be the same.

To show that both problems are equivalent, we first note that if a fanout tree is such that

less than m gates are directly connected to the sinks, there must be at least one gate which

fanouts to 4 or more sinks. Given the constraint that s(a) > 2?/4, the load at this gate

must be greater than (m + 1)(2? + 1) > m-\- (m-r 1)2?. Thus to be able to meet the delay

constraint, all m gates that the fanout tree is allowed to contain under the area constraint

must be to used to drive sinks. Moreover, each of them has to drive exactly 3 sinks. In
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that case, the delay constraint will be met if and only if the loads are equilibrated, that is

if and only if A can be 3-partitioned. •

3.3.4 Berman's Delay Model

Berman et al. used a different delay model in their work [5]. In their model, gates

have a fixed fanout and delay. This is equivalent to saying that the load at the output of a

gate is equal to the number of fanouts, and the delay through a gate is a piece-wise linear

function of the load, with a threshold value above which the delay through a gate becomes

infinite. Under this delay model they show that the fanout problem for minimum area

under a delay constraint is NP-complete, but their proof relies on unrealistic assumptions

on gate size and gate delay parameters, which weakens their result. More specifically, they

suppose a library containing gates with the following area and delay characteristics, where

N and K are given integer-valued parameters: a gate with delay 1, fanout limit of 1 + y

and area (NK)3, and, for %= 1,..., K, a gate with delay 2iV2if + i, fanout limit 2 and area

{NK)2 - Zi.

3.4 A Spectrum of Fanout Optimization Algorithms

In what follows, we present a list of fanout optimization algorithms, sorted in order

of increasing complexity. Each of the algorithms is analyzed in terms of its computational

complexity and optimization ability. All of these algorithms have been implemented and an

empirical analysis of their efficiency is given in section 3.8. These algorithms can introduce

buffers, inverters, or a combination of both. However, to simplify the presentation, we

suppose that only buffers are used, and the source and the sinks are all of the same polarity.

We postpone the problem of correct phase selection until section 3.5. We first introduce

some notation that are used in the rest of this section.

3.4.1 Notation

We use r, possibly with indices, to denote required times; a to denote intrinsic

delay, /3 drive capabilities and 7 loads. The number of sinks is n, and the number of buffers

or inverters in the library C is d. The letter 6 designates a buffer. We use @a to designate

the drive capability of the source, and beta\, the drive capability of the buffer 6. The input
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load of a buffer is 7&.

We suppose that, in a preprocessing step, the sinks have been sorted in order of

increasing required times, and their required times are denoted (r\,. ..,rn). In particular,

the following equation holds: rx = minj>irj. Similarly, their loads are denoted (71,... ,7n)>

in the same order. We also precompute the quantities 7j,„ = £t<Jfe<n7fc- The quantities

7itj = Y,i<k<j Ik arethen available inconstant time as 7t,n-7j+i,n. The entire preprocessing
can be done in time 0(71 logn) and is necessary in all of our algorithms, except the first two

(buffer selection and two-level fanout tree selection ignoring required times).

3.4.2 Buffer Selection

The buffer selection algorithm is a very rudimentary fanout optimization algo

rithm. It does not build any fanout tree; it simply sizes existing buffers optimally. If a

fanout tree is implemented as a wire, this algorithm has no effect. Buffer selection can also

be used inside trees as was done in chapter 2.

For a given buffer selection 6, the algorithm computes the required time at the

input of the buffer. If 7*0 is the required time at the output of the buffer, and 71,n the load

at the output of the buffer, the delay through the buffer is a& + A>7i,n and the required time

at the input of the buffer is r0 - aj> -&7i,n. Unfortunately this quantity does not take into

account the delay due to the input load of the buffer, which should be taken into account

to make an optimal buffer selection. So we subtract from the required time at the input of

the buffer the load dependent delay /3,7& corresponding to the time it takes the source gate

to drive the buffer input. The algorithm selects a buffer that maximizes this quantity as

shown in Figure 3.4. The algorithm works in time O(d-rn) where d is the number of buffers

in the library and n the number of sinks. The computation of 7*0 is not actually necessary

and is given in Figure 3.4 for clarity.

3.4.3 Two-Level Fanout Trees Ignoring Required Times

One of the main reasons why fanout optimization is necessary is to reduce large

loads created by large fanouts. The simplest way to do so is to insert a two-level tree of

buffers at multiple fanout points in the circuit, where a two-level tree is defined as follows:

Definition 4 A tree is a two-level tree if any leaf of the tree is separated from the root of

the tree by exactly one intermediate node.
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algorithm bufferjselection

r0 = ri = min\<i<nri

bopt = argmaxj€jc(r0 - ab - /3&7i,n -A-n)

end buffer-selection

Figure 3.4: Optimal Buffer Selection

The two-level fanout tree algorithm which ignores required times is given in Figure 3.5 and

explained in detail in the rest of this section.

Two-Level vs. Multi-Level In general, the optimal number of levels of such a tree is

a logarithmic function of the ratio between the load 7i,n and the drive capability j3a of the

source of the signal. In practice, however, this ratio never grows large enough to justify the

use of more than one level of buffers, i.e. of two-level buffer trees. This can be checked by

a simple back-of-the-envelope computation. To make things concrete, we use delay values

from the MCNC library lib2 [32] and round to the nearest number with one significant

digit. We suppose for a buffer a drive capability of 2.0, an intrinsic delay of 0.3, and a

load of 0.1, a drive capability of 4.0 for the source and a load of 0.1 for each of the sinks.

The delay values obtained with no buffer tree, with a two-level buffer tree, and the best

multi-level buffer tree are reported in table 3.1 for a varying number of sinks. A number of

fanouts in the range of 10 to 20 is typical, above 50 is rare. The largest number we have

observed was 198.

As the data indicates, the gains obtained by using more than one level of buffers

is only substantial for very large fanouts, and in any case is negligible compared to the

gains obtained by introducing one levelof buffers. In addition, in practice, libraries contain

buffers of several strengths, which makes the two level fanout trees competitive in an even

larger range of fanouts.

Buffer Selection A two-level fanout tree is composed of one level of intermediate buffers.

For simplicity, we enforce the restriction that all intermediate buffers are of the same

strength (or buffer type). This allows us to compute in constant time a good approxi

mation of the number of intermediate buffers required. This computation is done once for
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# sinks 10 15 20 25 30 40 50 100 200

no opt 4.0 6.0 8.0 10.0 12.0 16.0 20.0 40.0 80.0

two-level 2.1 2.5 2.9 3.3 3.5 3.9 4.3 6.1 8.3

multi-level 2.1 2.5 2.8 3.0 3.0 3.2 3.4 4.1 4.5

Table 3.1: Fanout Trees: Two-Level vs. Multi-Level

# sinks: number of sinks; all required times are equal
no opt: delay with no fanout optimization
two-level: delay with one level of buffers (e.g. two-level fanout trees)
multi-level: delay with the best multi-level fanout tree
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each buffer type 6 in the library.

We first compute the total load of all the sinks, 7i,„, and then we determine the

optimum number Jfej^ ofintermediate buffers needed for a two-level fanout tree, supposing
that all buffers are of type band the load is equally divided among the intermediate buffers.

This minimization problem can be formulated as a quadratic minimization problem and

can be solved exactly in constant time, using the following two formulas:

k^ = argimn(/3s7&A: +ft^)

kb /&7l,n
LV P>n J i

IPb1l,n
V &76

(3.7)

(3.8)

Sink Assignment The number of intermediate buffers to be used is computed by suppos

ing that the loads are equally divisible among all intermediate buffers. This is not the case in

general. Unfortunately, even if the number of intermediate buffers is given, assigning sinks

of varying loads to these buffers is a difficult problem. It is equivalent to multiprocessor

scheduling, which is known to be NP-complete (see [16] page 238).

To perform sink assignment, we use a simple greedy algorithm that allocates the

next sink to the intermediate buffer that has been assigned the least amount of load so

far. The best results are obtained if the sinks are sorted in order of decreasing loads. This

assignment is made for each buffer type 6, but only for k^ intermediate buffers. The best
solution is then retained.

Complexity The number of intermediate buffers is of the order of y/n. The best fit

algorithm spends y/n time to determine where how to assign each sink. Moreover this
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algorithm twoJeveLno.requiredJimes

sort the sinks by decreasing load values (71. •••. 7n)

compute 7i,„ = £i<»<„ 7i
foreach b 6 C {

*& - v -ffir
foreach 1 < %< k^ load[i] = 0.0
foreach 1 < i < n {

jx =argmin^^k load\j]
load\ji] = load\jx] + 7»

• as8ign[i] = jx

}

}
end twoJeveLno-requiredJimes

Figure 3.5: Two-Level Fanout Tree Ignoring Required Times

computation is done once for each buffer type. Thus, in total, the complexity of this

algorithm is 0(d n1*5).

3.4.4 Two-Level Fanout Trees Taking Required Times into Account

The previous algorithm ignores sink required times. Though it can handle non

constant load values, it does not perform very well in the presence of wide variations in

required times. It is possible to compensate for this deficiency by taking required times

into account during sink assignment. To do so we still use a best fit, greedy algorithm but

instead of assigning a sink to the intermediate buffer that has so far the least amount of

load to drive, we assign a sink to an intermediate buffer in such a way that the required

time at the source of the fanout tree is decreased the least by this assignment. If all required

times are equal, these two greedy algorithms produce the same result. In the preprocessing

phase, we sort the sinks in order of increasing required times, and, in case of ties, in order

of decreasing loads. The complexity of this algorithm is also 0(d n1-5). The algorithm is

sketched in Figure 3.6.
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algorithm twoJeveLwiihjrequiredJimes

sort the sinks by increasing required times (ri,..., rn)

compute 7i,„ = Ei<»<n7t

foreach b € C {
Ub _ /ff&7l.n
*<** - V "?^r
foreach 1< i < fcjpt {

}

required[i] = 0.0;

/oad[i] = 0.0;

}
foreach 1 < i < n {

foreach 1 < j < k^ {
required[i, j] = min(ri - 0f,load[j], required[j]) - /3&7i

}
ji = argmax1<;<Jbbj)t required[i, j]
required[jx] = reguired[i, j<]

/oad[;'i] = load\jx] + 7i

aa«tgn[t] = ji

}

end two.leveljwithjrequiredjimes
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Figure 3.6: Two-Level Fanout Tree Taking Required Times into Account

Optimality

lemma 3.4.1 The greedy sink assignment algorithm is not optimal. This is still true even

if all sink loads are equal and all required times are integer valued.

Proof A counter example is given in figure 3.7. •

We use the greedy sink assignment algorithm because it can handle non constant required

times as well as non constant loads. However, if all loads and all buffer drives are equal, and

if we assume for simplicity that all required times are integer valued, we can solve the sink

assignment problem in time O(7ilogn). This result is achieved by using a decision procedure

that can decide in linear time whether there exists a sink assignment that can produce a
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3 4 4

0 ) ( 1

greedy assignment

Figure 3.7: The Greedy Sink Assignment Algorithm is Not Optimal

given required time at the source of the fanout tree. An 0(n logn) optimal algorithm can

be derived from this decision procedure by using binary search.

lemma 3.4.2 Given k identical buffers, with drive capacity equal to 1, n sinks, with loads

equal to 1 and integer required times, and an integer constant D, the following decision

problem can be solved in linear time: is there a sink assignment such that the required time

at any of the buffers is no less than D ?

Proof We assume that the sinks are sorted in order of increasing required times. By

convention we will use the letters i and j as sink indices, and b as a buffer index. We have:

1 < 6 < k. We first prove that there is an optimal sink assignment that assigns consecutive

sinks to each buffer. Let a be an optimal sink assignment. Let R% = min»><r(j)=& r^. The

required time of buffer bis equal to R% - \{i,<?(i) = b}\. Without loss of generality, we can

always suppose that the buffers are sorted in order of increasing At,, i.e. if 6 < b' then Rb <

Rbi. If sinks arenot assigned consecutively byo, there exists a pairofsinks, (sx, Sj) such that

a(i) < a(j) and rx > rj. Interchanging the sinks sx and Sj does not change the loads of the

buffers, does not decrease the value ofR^x) since a(i) < a(j) and thus R^x) < R„(j) < rj,
and does not decrease the value of R„(j) since rx > rj > R<,(jy By interchanging pairs of
sinks that are assigned out of order, we can therefore obtain a sink assignment that is

no worse than the original optimal assignment and is such that each buffer is assigned

consecutive sinks in required time order. We can thus limit our attention to consecutive

assignments.

With the following algorithm, we can decide in linear time whether there exists a

consecutive assignment such that the required time at the input ofeach buffer is at least D.
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Ifsuch a consecutive assignment exists, it assigns to thefirst buffer the sinks (s\,..., sXl -1)
where i\ is the first indexfor which the required timeat the input ofthe first buffer becomes

less than D. It assigns the remaining sinks to the remaining buffers recursively using the

same principle. More precisely, it assigns to the bth buffer the sinks (3j6-l,...,Sjh-i) where
the finite sequence (ib)o<6<Jfe is determined by the following recurrence equations:

io = 1

*6+i = min{i, rXh - (i - %) < D}

The required time at the inputofbuffer bis given by the expression r»b_1 - (i& - ib-i) since
all sink loads are equal to 1 and the drives of the buffers are all equal to 1. The answer to

the decision problem is "yes" if and only if any ib exceeds n. •

3.4.5 Combinational Merging

The previous two algorithms are very limited in the kind of fanout trees they can

produce. These structures are sufficient for most practical fanout sizes only if the required

times at the sinks are close to each other. This is not often the case. To be able to obtain

faster fanout trees, it is desirable to explore a larger set of fanout structures than just

two-level trees.

Combinationalmerging is a simple, 0(n logn) algorithm which has the ability to

generate a rich setoffanout tree structures. Unfortunately, it relies on the characteristics of
a simple delay model, and needs to be adaptedheuristically to a more complex delay model.

The basic step of this algorithm, illustrated in Figure 3.2, is simple. We first suppose that

the sinks have been sorted in order in increasing required times (ri,...,rn). We take a

group ofsinks with the largest required times (r*,..., rn), make them the children of a new

buffer node and remove them from the list of sinks. We then compute the required time

at the new buffer node, and merge it with the sorted list of sinks. This transformation is

applied until k becomes equal to 1. In that case the source is used to drive the remaining

sinks directly, unless insertering a buffer between the source and the sinks yields a faster

circuit.

With our delay model, there are twoquestions to be answered before combinational

merging can be used: how k should be chosen, and which type 6 of buffer should be used.

We use a heuristic that computes &= £& as a function of 6, and we select the best b using
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algorithm bottomjupjanoutj,reejconstrvction

sort the sinks sx by increasing required times (ri,

while n > 1 {

foreach 1 < t < n compute 7»,n = E»<j<n H
foreach b € C {

,rn)

}

Lb __ /£b7i.»
*«p* - V TnT
kb =maxji, 1<i<7i,7i,n >Jr^j
reguired[6] = rt6 - &7k6ln - o» - /3,7ft

}
6= argmax?g£ reqi**red[jj]

k = kb

create a new buffer node v of type &

attach the sinks (a*.,..., sn) to v

remove the sinks (s&,..., an)

compute the required time of v: rv = minjb<i<n rx - /?&7*,n —<*b

add v in order to the list of remaining sinks (*i,..., Sk-i)

set n = As

attach the only remaining sink to the source node

end bottomjitp^fanoutJreejeonstruction

Figure 3.8: Combinational Merging as Fanout Algorithm

some cost function. For each buffer b, we compute k^ as in equation 3.7. We take kb such
that the sum of the loads of the sinks of index kb to n just exceed the quantity J^. We

Kopt

then create a new buffer of type b, connect it directly to a new copy of the source, and

make it drive the kb sinks with largest required times. We compute the required time at

this new source, and select the buffer type b that maximizes this required time, and use kb

for k. This algorithm is given in Figure 3.8.

The choice of this heuristic can be motivated as follows. For a given 6, we need

to determine an adequate value for k. A choice based on taking a r£- fraction of the total
*opt

remaining sink load appears reasonable, since, in the case where all required times are equal,

it leads to a two-level tree that is close to the optimum fanout tree. To compute k^, we
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suppose that the buffers are driven by the source gate; this is too restrictive in general and

is likely to lead to suboptimal results. Yoshikawa et al. [44] recently proposed an extension

of this algorithm, based on branch and bound techniques, that does not suffer from this

limitation.

Complexity The complexity of this algorithm can be analyzed, provided that we make

the following simplifying assumption: at each step of the algorithm, the number of sinks is

decreased by cty/n for some constant a. If we suppose that all sinks have the same load,

and all loads and all drive capabilities are equal, wehavek^ = y/n, and k = n +1 —\y/n~\.

If we simply suppose that all sink loads are equal to some nominal value 7, we have:

k=71 +1- IVnylffi I• To make things more concrete, we computed the quantity Jz$f
for all three inverters of the MCNC library, using as source a 2-input NAND gate and as sink

the input of a 2-input NAND gate. The actual values of this coefficient were 0.76,1.64 and

3.04. The larger the buffer is, the larger this coefficient is, since increasing the size of the

buffer has the effect of decreasing the load dependent delay coefficient /3b and increasing the

input load 7&.

Thus each step of the algorithm is guaranteed to reduce the number of sinks by

cty/n, where a is a constant depending on the library, the drive of the source and the loads of

the sinks. Inserting a new sink takes O(logn) time and recomputing the quantities 7t,„ take

0(7i). Each step is done d times, once per buffer. In total, the complexity of the algorithm is

0{dn f{n)) where /(x) = min{A:, gk(x) < 1} with g{x) = x - cty/x and gk(x) = ^A:"1(^(x)).

Using the result of the following lemma, we deduce that the complexity of this algorithm is

Oidn1-5).

lemma 3.4.3 Asymptotically, f(n) does not exceed \-\fn:

HmsupZW > 1 (3.9)
n-»+oo y/n a

Proof First we note that / is unchanged if we modify g so that g(x) = 0 for all values of x

satisfying x < a2. For any given n > a2 we have, since the sequence gl(n) is monotonically

nondecreasing:

*•> =• n^-jfo) (3-10)
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< nII (l - f) (3-11)
l<»<Jb N '

<«(l-£)k (3-12)
Using the inequality (1 - £)* < e valid for all x > 1, we can derive, for any given real

number c > 0, the following inequality:

r«v?rig^(n) < n(l--j=) (3.13)

<.(l.^.)"* 0.14)
< ^ (3.15)

This inequality is also valid for 0 < n < a2, since in that case \ey/n] > 1, and thus

0(71) = 0 < ~. By applying this inequality to ~ we obtain:

*r«^(£) * £ <316>
Since g is monotonic nondecreasing, we deduce from the previous two inequalities:

5r«/si+rV3fi(n) < JL. (3.17)

By induction we obtain, for any k > 1:

fill \<V^\ (n) < _»_ (3.18)

In particular, ifk—f^p], we have -^ < 1, which proves that:

pu^l-i

/w * £ h/Ji (3-19)
We can deduce from this inequality that:

/(«) * ~|f(i+V3;) (3-2°)
< 1+!SI»+^/5ge-<* (3.21)

< 1+!S»+ _*/»,. (3.22)
ea 1 - e 3
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Since eis arbitrary, we can select it to be equal to £ffi- We then obtain:

t& < ,-*/»+»-'/«+ /"1/4l?f" v (3-23)

We obtain finally:

fin) wo ma. 7i-1/4lognlimsup^ < Urn n-1/2 + Ti-1/4 + —t _JA. N (3.24)

< 1 (3.25)
a

3.4.6 Fanout Optimization based on XT-Trees

The main weakness of the combinational merging algorithm is that it relies on a

simple-minded heuristic to determine which type ofbuffer to use and how manysinksamong

those with the largest required times should be grouped under one buffer. In this section,

we propose a new fanout algorithm that realizes a compromise between the two-level fanout

tree algorithms and the combinational merging algorithm. This new algorithm is based on

LT-trees, a restricted class of fanout trees that is described below.

Likethe two-level algorithms, the XT-tree algorithm only considers a subset of the

set of all possible fanout trees. This subset is smallenoughfor the algorithm to be practical,

but large enough to allow the algorithm to perform not only buffering of large capacitive

loads, but also, like the combinational merging algorithm, critical signal isolation. The LT-

tree algorithm has the additional advantage of using dynamic programming both to select

the shape of the tree and the types ofbuffers to be used at intermediate nodes: it gets much

of its ability to generate fast fanout trees from the tight connection between gate selection

and pattern selection. In that sense, it is a direct analog of tree covering algorithms.

In the rest of this section, we give a definition of XT-trees, describe and analyze

the fanout algorithm based on XT-trees for delay minimization, and show how it can be

extended to perform area optimization under a delay constraint, using the same technique

as the one we used with tree covering.

XT-Trees XT trees are designed to be just complex enough to allow for critical signal

isolation and buffering of large capacitive loads. A recursive definition of the set of XT
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a leaf

is an LT-tree

•

a two-level tree

is an LT-tree
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a tree whose root has one child

being an LT-tree, the others, leaves,
is an LT-tree

Figure 3.9: Definition of XT-trees

trees is given below. Figure 3.9 illustrates this definition. When an XT tree is used as a

fanout circuit, its root corresponds to the source of the signal, and its leaves to the sinks.

If the tree is composed of a single leaf, the source and the sink are not distinguished here.

In the actual circuit, they would be distinguished, and connected by a wire.

Definition 5 (l) A leaf is an LT tree.

(2) A two-level tree is a LT-tree.

(3) Let T be a tree rooted at r such that one child of r is an LT tree and all the other

children of r are leaves. Then T is an LT tree.

In a XT-tree, there is at most one intermediate node that has more than one

intermediate node as a child. If there is no such node, the XT-tree is terminated according

to case (1) of the definition, and is called a XT-tree of type 1. If there is such a node, the

node is the root of a two-level tree which terminates the XT-tree. In that case, the XT-tree

is of type 2. Examples of type 1 and type 2 XT-trees are given in Figure 3.10. In the

example of type 2, the intermediatenode with more than one intermediate node as a child

is highlighted.

Theorem 3.4.4 The number of LT-trees of type 1 is equal to (d + l)n~2, where n is the

number of sinks and d the number of buffers in the library.
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tree of type 1 tree of type 2

Figure 3.10: Examples of XT-trees

Proof A XT-tree of type 1 is entirely determined by the number k of intermediate nodes of

the tree, the number of leaves attached to eachintermediate node, and the buffer selected at

each intermediate node. For a given k, we can represent the topological structure of a XT-

tree by a unique k-tuple of integers (xi, <, x*) satisfying: 1 < xx < X2 < ••. < Xfc < n - 2,

where leaves xj -I- 1 to Xj+i are the leaves connected to the jth intermediate node (by

convention we set xj.+i to be equal to to). In particular, leaves 1 to xi are connected to the

root node, and leaves x*. + 1 to to are connected to the last intermediate node of the tree.

The inequality x* < n —2 is there to guarantee that the last intermediate node is connected

to at least 2 sinks, as required by the definition of type 1 XT-trees. The number of such

k-tuples of integers is equal to the number of distinct ways of choosing k elements among

n- 2

k

nodes, there are exactly dk possibleassignmentsof buffers to intermediate nodes of the tree.

In total, the number of distinct XT-trees of type 1 is given by the formula:

71 —2, i.e. In addition, for a given topological structure with k intermediate

to- 2
dk = {d+l)n~2 (3.26)

The XT-tree based algorithm explores implicitly, using dynamic programming, all

XT-trees of type 1. For XT-trees of type 2, the XT-tree based algorithm only considers those

trees whose two-level subtrees are derived from the two-level algorithm of section 3.4.4. In
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Figure 3.11: Suboptimality of XT-Trees with Consecutive Sink Ordering

other words, for every XT-tree of type 1, the algorithm only considers one XT-tree of type 2,

for a total search space of size 2(<J+l)n~2. If we ignore tree patterns, then the size of

the search space is 2n_1. This is only a small fraction of the total number of rooted trees
. / 2to

with to leaves, which is at least of the order of the Catalan numbers T(to) = ^^ I
V n

(the Catalan numbers give the number of ways to fully parenthesize a string of n symbols).

Using Stirling's formula, we can easily deduce that T(to) is asymptotically equivalent to

The XT-tree based algorithm only considers assignments of sinks to leaves of the

XT-trees that are such that sinks with larger required times are placed further from the

root of the tree. This is partially justified by the following fact:

lemma 3.4.5 // sink loads are all equal, there is an optimal LT-tree such that the sinks

with larger required times are placed further from the root.

Proof When loads are equal, exchanging two sinks that are out of order in a XT-tree can

only increase the required time at the source of the tree. •

Unfortunately, for arbitrary load values, the optimal XT-tree may require that sinks are

placed out of order, as can be checked by inspection in the example of Figure 3.11.
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Selection of XT-Trees with Dynamic Programming The XT-tree based algorithm

selects the best XT-tree for a fanout problem by dynamic programming, under the restric

tions presented in the previous paragraph, namely that the two-level subtrees of XT-trees of

type 2 are restricted to be trees generated by the two-level fanout algorithm of section 3.4.4

and the sinks appear in the tree in order of increasing required times. From now on, we

suppose that these restrictions are enforced, and we willonly speak about XT-trees without

additional qualifications.

The XT-tree based algorithm works as follows. As with previous algorithms, we

first preprocess the sinks by sorting them in order of increasing required times and compute

the quantities 7j,„ = 2»<j<n 7j« Then we precompute all the two-level trees that will be
considered as subtrees of candidate XT-trees. This precomputation is done by calling the

two-level fanout algorithm of section 3.4.4 on a fanout problem composed of a source and

to - k + 1 sinks. The source is a buffer 6 from the library, or, if A: = 1, the source s of

the original fanout problem. The sinks are the to - k + 1 sinks with largest required times,

(sfc,.. .,sn). This computation is done for all values of k between 1 and to, and, for k > 1,

all buffers in the library. For each pair (k,g) in {(1,a)} U([2,..., to] x C), we keep in a table

the required time requiredtwo-teveiik, g] achievable by the two-level fanout algorithm. The

tree itself does not need to be stored at this point: it can be recomputed if needed.

Each pair (k,g) in {(l,s)}U ([2,...,to] x C) specifies a fanout subproblem, of

source g and sinks (a*.,.. .,.sn). The algorithm relies on dynamic programming to com

pute by induction on k, k varying from to to 1, an XT-tree that achieves the maximum

required time for each fanout subproblem {k,g). For a given pair (k,g), an optimal XT-tree

T(jfc^) can be obtained byselecting the best of the following (to - k)d + 1 configurations:

(1) for some sink index I > k and buffer type b, the root of T^) is directly connected to

sinks (ski..., st~i) and to a buffer of type 6. The subtree connected to the buffer 6 is

an optimal XT-tree T^tb) for the subproblem (I, b). Since the algorithm proceeds by

induction from to to 1, T(itb) has already been computed and is available.

(2) Tfag) is a the two-level tree precomputed for pair (k,g).

The algorithm is detailed in Figure 3.12. The best required time achievable for a pair {k,g)

is stored in the table required[k,g]. To keep track of the optimal configuration selected for

(k,g), we simply need to store a flag, usejtwoJevel[k,g], to decide whether a two level tree

is used or not; and, in the case a two level tree is not used, an index, next[k,g], which is
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algorithm ItJree^computation

sort the sinks s» by increasing required times (ri,..., rn)

foreach 1 < i < n compute 7<,n = £«,<„ 7j
required[n +1,0] = +co;

for k = n to 1 {

foreach $ such that (Jb,$) € {(1,s)} U([2,..., n] x £){

required[k, g] = required^„_je„ej [A, g];

tise_tu;oJei/eJ[fc, g] = true;

foreach (/, 6) € {(n + 1,0)}U[2,..., n] x £ such that I > k {
required = min(r«, required]},b] - ot&) - /3$(7& + 7Jb,n - 7i,n);
if (required > reqttired[fc, g]) {

regutred[A, g] = required;

uae_iiwoJeve/[Aj, g] = false;

next[k,g] =

gate[k,g] = 6;

}

}

}

}
end Itdreejcomputation

Figure 3.12: Fanout Optimization with XT-Trees

the index ofthe first sink not directly attached to theroot ofT^j, and, ifnext[k,g] < to, a
buffer type, gate[k,g], which is the type of the unique buffer attached to the root of T^,g)'

An example of computationof these entriesis given in Figure3.13. To compute the required

time of a configuration other than a precomputed two-level tree, we start with the required

time of the selected subproblem (/,&), regttired[/,6]. This required time is not exactly the

required time at theinput ofT(i,b)- it does not take into account the intrinsic delay ofbuffer
b. To obtain the required time at the input ofT(j|0), we need to subtract from required[l, b]
the intrinsic delay aj> of buffer 6. The required time at the output of the root of T^tg) is then

the minimum between the earliest required time of a sink connected to the root of T(k,g)>

which is rjfe, and the required time at the input of T(j>6), which is required[l,b] - a^ To
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Figure 3.13: Illustration of XT-Tree Algorithm

obtain the required time required[k,g], we need to subtract from min(rfc, required[l,b] -a&)

the load dependent delay /3g(76+7jfe,n ~7l,n) but wedo not include the intrinsic delay of gate

g. fb is the load of buffer 6 while 7fc,n - 7j,n is the sum of the loads of the sinks attached

to the root of T(k,g)- The required time required[k,g] is actually the best required time

achieved for any possible choice of (i, 0), with / > g.

Complexity of the Algorithm The precomputation of two-level trees requires no more

than d x to calls to the two-level fanout algorithm, for a total cost of 0(d2 to2,5). The

computation, in the main algorithm, ofa entry for a pair (k,g) requires 0(d x to) operations.

Since there are 0(d x to) such pairs, the total cost of the main part of the algorithm is

0(d2 to2). Overall, the complexity of the XT-tree based algorithm is thus 0(d2 to2-5).

Allowing Nodes with No Leaves It can be helpful in practice to allow some intermedi

ate nodes in a XT-tree to bear no leaves. For example, this gives the algorithm the freedom

to generate a sequence of buffers of increasing sizes to drive large loads when needed, as for

example at the root of a two-level tree. This can be implemented as a direct extension of

the dynamic programming algorithm of Figure 3.12, by computing, for each triplet {k,g,l),

with 0 < I < X the optimal XT-tree Tkt9ti for sinks fc to to with source g and I or less

intermediate nodes with no leaves connected to them. Tk,g,i can only be composed of a

buffer attached to the tree Tk,g,i-i or a buffer attached to the tree Tk',gj. for some k' > k. If
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we allow up to X- 1 intermediate nodes to bear no leaves, the complexity of the algorithm

becomes 0(X d2 to2,5).

Minimization of Area under a Delay Constraint The XT-tree based algorithm can

be modified to minimize area under a delay constraint. To do so, we use the same technique

as the one we used on tree covering in chapter 2. The only important difference between

XT-tree based fanout optimization and tree covering is that the role of required times and

arrival times is reversed. The modified algorithm works as follows. Instead of selecting a

minimum delay XT tree for every pair (k,g), we select a minimum cost XT-tree Tk,g,a for

every triplet {k,g,a), where a is an arrival time. The cost of each tree evaluated by the

algorithm is of the form (A, r), where A is the area of the tree and r the required time at

the source of the tree. When two trees are compared, the tree with smaller area is selected,

unless its required time is smaller than the arrival time a, in which case the tree with larger

required time is selected.

To make this algorithm practical, arrival times need to be discretized. If r is the

number of discretization intervals used for arrival times, the complexity of the algorithm

becomes 0(t d? to2,5). Better results can be obtained by discretizing the values of a in

(k,g, a) within bounds dependent on the value ofk and g. That techniquewasalsodescribed

in chapter 2 and can be applied here without modification..

3.4.7 Other Fanout Algorithms

Other fanout optimizations have been proposed, by Berman et al. in [5] and Singh

et al. in [40]. None of these algorithms are optimal, since they all rely, as the XT-tree

algorithm does for XT-trees of type 1, on ordering sinks by required times. All of these

algorithms produce trees that have the following property: there exists a depth-first search

order of the nodes of the tree that visits the leaves in order of increasing required times.

We give in Figure 3.14 an example of a fanout problem that cannot be solved optimally

with such trees, even with the simple unit-fanout delay model of section 3.3.2. It is to be

noted that the suboptimality of these algorithms has nothing to do with the fact that the

fanout problem is NP-complete for some delay models. It is actually not known whether

the fanout problem is suboptimal for the unit-delay model.
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Optimal Buffering (Unit-DelayModel)

Figure 3.14: Fanout Problem Unsolvable with Consecutive Sink Ordering

Berman's Algorithms Berman et al. presented two algorithms for the fanout problem.

One complex algorithm, also based on dynamic programming, which can be seen as a

generalization of our XT-tree based algorithm, and one much simpler algorithm, called the

two-group algorithm.

The XT-tree algorithm only allowstrees that have at most one buffer in the fanout

of any buffer. Since this condition is too restrictive to produce good quality results, we have

relaxed it somewhat by allowing fanout trees to contain one balanced fanout tree as a subtree

if it helps reducing delay. Berman's algorithm relaxes the restriction of having at most one

buffer in the fanout of any buffer using a different technique. The algorithm allows any

number of buffers in the fanout of a buffer, from 1 to some limit k, and uses dynamic

programming to select this number optimally. By restricting the sinks to be ordered by

increasing required times, the dynamic programming algorithm can be made polynomial,

though with a large exponent: 0(kn3), if we ignore buffer selection. If we want to take

buffer selection into account with our delay model, a direct modification of this algorithm

yields a complexity 0(n2 dk (to + d)). The dk term comes from the fact that we have dk
possible ways of assigning buffers to k inputs. If A: = 1, we obtain the bound 0(n2 d2)

because the term to2 dk to disappears in that case. This is the complexity of the XT-tree

based algorithm if we do not use two-level trees.

The two-group algorithm algorithm was introduced by Berman et al. as a more

practical alternative to fanout optimization. This very simple algorithm tries all possible
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decomposition of the sinks into two groups of sinks with consecutive required times, and,

for each group, supposes that all required times and all loads are equal to select a balanced

tree out of a set of precomputed trees. The precomputation can be done once and for all

for a given library, so the run time of the two-group algorithm is essentially 0(n). This

simple algorithm is fast but unlikely to generate results of the same quality as the algorithms

proposed earlier.

Singh's Algorithm Singh's algorithm [40] uses a divide-and-conquer strategy in which

the set of fanout signals is partitioned into subsets, and the process is recursively applied

on the smaller problems. It can be seen as the recursive application of the two-group

algorithm of Berman et al., and bears some similarity with the technique used by Paulin

et al. to decompose gates with large fanins [35]. Singh's algorithm builds a fanout tree in

a top-down fashion, in contrast with combinational merging, which works bottom-up. The

partitioning of the fanout signals is based on a greedy procedure that determines the kind

of re-distribution of the fanout signals (based on the required times and load distributions)

that results in the greatest saving at the current step. The algorithm is able to generate

a balanced fanout tree if the signals are required at similar times and a skewed tree if the

signals are required at widely different times. The complexity of this algorithm is 0(d2 to2).

3.5 Handling Differing Polarities

Handling Inverting Buffers In some technologies, like CMOS standard cells, nonin-

verting buffers are made of a juxtaposition of two inverting buffers. For delay optimization,

it is thus always preferable to use inverting buffers. Inverting buffers offer more possibilities

for optimization, and in the worst case can always be combined to reproduce the delay

characteristics of noninverting buffers. There is no major difficulty in handling inverting

buffers. We simply need to keep track of the polarity of the signal at the output of a buffer

and accept a connection with a sink only if the polarities match.

Sinks Required under Both Polarities In real circuits, a signal is often needed under

both polarities. It is possible to extend all previous algorithms to handle this situation

simply by separating the sinks into two groups, one for each polarity, and using the source

of the signal to distribute the signal to one group, and an inverter connected to the source to
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distribute the signal to the other group. When inverting buffers areused, we do not specify
which group ofsinks is directly connected to the source, since connecting the source to the

sinkswith inverted polaritiesmay yield a faster solution. We actually try both assignments

and keep the best solution.

Treating Both Polarities Simultaneously The XT-tree based algorithm and Singh's

fanout algorithm can handle signals of differing polarities directly, at an increased compu

tational cost. This approach yields in general better results that the technique suggested

in the previous section but is too expensive to be applied to large fanout problems.

The XT-tree algorithm only needs an extra indexvariable to keep track of positive

and negative sinks independently. Since the two-level algorithms cannot handle sinks of

different polarities, the precomputation of two-level trees is done independently, for a total

cost of0(d2 max(TO,p)2*5), where p is thenumber ofsinks ofpositive phase and to the number
of sinks of negative phase. The cost of the rest of the computation is 0(d2 npmax(n,p)),
for a total cost of 0{d2 max.(n,p)mvx(np,mzx(n,p)1's)). When treating sinks of different

polarities simultaneously, Singh's algorithm becomes 0(d3 n2 p2) [40].

3.6 Peephole Optimizations for Area and Delay

3.6.1 Motivation

Many local optimizations on fanout trees can be performed independently of the

fanout algorithm used to produce them. Implementing these optimizations as a postpro

cessing phase on fanout trees has several advantages:

• the local optimizations only have to be implemented once, instead of once per fanout

algorithm.

• the fanout algorithms can be made simpler. This is particularly true for area min

imization under a delay constraint, which can be done quite effectively by local op

timization. That way, the fanout algorithms can simply be implemented for delay

minimization only.

• good quality results can be obtained efficiently by the combined effect of a simple and

fast fanout algorithm and a simple and fast local optimization algorithm.
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0

This corresponds to a general approach for solving NP-complete problems approximately

that has often be found effective in practice: first computing an initial solution with a

global greedy algorithm, and then improving this solution with local optimizations. This

organization is commonly used in optimizing compilers. It is also at the basis of the best

known heuristics for combinational problems such as the Traveling Salesman Problem.

In the rest of this section we first present an optimal algorithm to perform buffer

selection on a fanout tree, under the constraint that the topological structure of the tree

remains unchanged. This optimization is usefulafter all our fanout optimization algorithms,

since none guarantee optimal gate selection. Then we present several local optimizations to

decrease the area of a fanout tree under a delay constraint.

3.6.2 Optimal Buffer Selection

Fanout algorithms do not guarantee in general that the buffers in the fanout trees

they produce are selected optimally. For example, the two-level algorithm enforces all inter

mediate buffers to be of the same type which is not necessarily the best possible solution;

the combinational merging algorithm selects buffers heuristically, without complete knowl

edge of the local structure of the tree in whichthe bufferis inserted. By performing optimal

buffer selection on the fanout trees resulting from these algorithms, we can decrease delay at

times significantly. In addition, the computational cost of performing optimal gate selection

is very low: 0(d2 m), where m is the number of edges in the tree, and d the number of

buffers in the library. The cost of performing optimal gate selection is thus only a fraction

of the cost of building a fanout tree in the first place. Thus there is no reason not to perform

optimal gate selection on every fanout tree.

Optimal buffer selection can be implementedwith a simple algorithm that proceeds

from the sinks to the root of a fanout tree, and selects, at each intermediate node, a

buffer that maximizes the required time at the parent of that node. In contrast with tree

covering, it is not enough to simply select a buffer that maximizes the required time at a

node, because a later required time for a subtree usually means a higher load to drive for

that subtree. Selecting the largest possible required time for a subtree can slow down the

signal going to the other subtrees sharing the same parent. It is possible, using dynamic

programming, to compute for each subtree the required time required[b] achievable by

using a buffer of type b at the root of the subtree. To do so, we proceed as follows.
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Let v be an intermediate node of the tree, with nodes (vi,...,vn) as children. For each

buffer b6 C, we have already computed by induction the best required times required[vx, b]

achievable for the subtrees rooted at v^ 1 < i < n if b is selected at node vx. To compute

required[v,b], we simply need to find an assignment of buffers to nodes (v\,.. .,vn), i.e. a
function / : {1,...,to} -• {1,...,d}, that maximizes the required time at v, given by the

following expression:

required[v,b] = min required[vx, 6/(i)] - fa 2l 7&/(i) ~ a& (3.27)
l<»<n

To compute / by exhaustive enumeration would require O(dF) operations. It is

not uncommon to have libraries with d of the order of 10, so this brute force approach is not

practical. In the next subsection, we present an 0(d to) algorithm to compute the optimal

solution of equation 3.27. To compute gate selection for an entire tree, we need to apply

this algorithm d times to each intermediate node, for a total costof 0(d 2m), where m is the

number of edges in the fanout tree. The number of edges in a tree is equal to the number

of nodes of the tree minus one.

A Fast Butler Assignment Algorithm

This assignment problem we are attempting to solve can be reformulated as follows:

given two to x d matrix of numbers rXtj and lxj such that, for any given i, rij and lxj are

monotonically non decreasing in j, find an assignment / : {1,...,to} —• {l,...,d} that

maximizes the quantity:

gain(f) = rf -If where (3.28)

h = £ km (3-30)
l<t<n

The rxj represent the required times required[vx, bj] and the lxj the load values 7^.. The

load values are actually independent of i, and, without loss of generality, we can suppose

that they are sorted in increasing order. Thus the /»,j are monotonically non decreasing

in j. If the rx%j are not monotonically non decreasing in j, there would be a pair (ii, J2)

of indices such that, for a some i, lx%jv < lxj7 and r^ > r^. For i, j\ would always be

a superior choice than jV We can therefore replace rxj7 by r^ and lxj7 by lij^ without
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affecting at least one optimal assignment to the problem. We can iterate this replacement

until the monotonicity condition is satisfied by the rxj.

We define a distance between two assignments / and g as follows:

<Kf>9) = £ 1/W-sMI (3-31)
l<»<n

In particular, d(f,g) = 1 if and only if / and g differ on only one index, and the difference

of value on this index is only one.

The optimum assignment algorithm is outlined in Figure 3.15. The algorithm

computes a sequence of assignments (/fc)i<Jb<iC> for some K < dn, suchthat d(/fc+i, fk) = 1,

and such that there is a &o» 0 < ko < K for which fj^ is optimal, /o is initialized to be such

that fo(i) = 1 for all1 < i < to. Given fk, the computation of fk+i only takes constant time.

To compute fk+i from /*, the algorithm finds an index ik that is critical for the current

assignment, i.e. an index that minimizes the quantity rXtfk(x) for 1 < i < to. fk+i is then

defined as being equal to fk for all indices different from ik and equal to /*(ifc) + 1 on ik- If

fk(ik) = d and thus cannot be incremented, the algorithm terminates the computation of

the sequence {fk)- The total number of incrementing steps cannot exceed dn.

To find the optimal assignment fkQ, the algorithm works backwards, from /# to

/o, in order to exploit the fact that the cost of assignment /t, gain(fk), can be com

puted in constant time from the cost of /fc+i, but not conversely. To compute gain(fk)

in constant time from <7<mto(/a.+i), the algorithm keeps track of the intermediate quantities

rfh = mini<K„rii/ji(i) and //„ = Ei<i<n'»,/*(»)' aad U8e the fact that rh = r*fc.A(*«.) and
lfh = lfh+l -TXhjh(ih)+i+rikjh(Xh). This guarantees that k0 can be computed in0{nd) time.
Finally constructing /*,, from /o given fc0 takes 0(nd) time.

Theorem 3.6.1 The algorithm of Figure 3.15 is optimum.

The proof of the theorem relies on the following lemma:

lemma 3.6.2 Let f and g be two assignments, such that:

f{i) < g(i) for alll<i<n (3.32)

f(io) = g(io) for iQ = arg min rif/(i) (3.33)
l^tvn

Thengain(f) > gain(g).
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algorithm optimaLbufferjtusignment

set / to be such that: f(i) = 1 for all 1 < i < n.

Jb = l;

do{

to = argmini<i<n »•*,/(•)

if /(to) = d break

f(io) = f(io) + U i[k] = iol * = A+ 1;

}
A = ft — lj KQ = Ii}

r = mini<i<nr<,/(i);

' = El<i<n '«,/(»)'
gain = r —/;

for Jfe = K - 1 to 0 {

/«*]) = /M*D -1;

r = r*M./M*])» ' = ' - kk),Mk])+i + ^W./W*l)«
if (r —/ > gain) {

«o = k] gain = r —I;

}

}

for « = 1 to «0 /(**) = /fob) + 1;
end optimaLbuffer.assignment

69

Figure 3.15: An Optimum Assignment Algorithm

Proof By the monotonicity hypothesis on the arrays rxj and Utj, (3.32) implies that

r/ < rg and // < lg, and (3.33) implies that rf = rt0i/(io) = r^^j > rg. Thus r/ = rg and

J/ < Jg> which implies that gain(f) > gain(g). u

Proof [of theorem 3.6.1]

We only have to prove that one of the assignments {fk)o<k<K produced by the al

gorithm is optimal. Let g be an optimal assignment, and let Ik = {i|l < i < n,g(i) < fk(i)}-

Let ko be the largest index for which Ik = 0. We will use the previous lemma to prove that

gainifko) >gain(g).

Since 7*0 = 0, /fco(i) < g(i) for all 1 < i < to, thus condition (3.32) is satisfied. If
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k0 = K we know that there is an index to such that /k"(*o) = d and rt0l<j = rjK, since that is

the termination condition of the first phase of the algorithm. Thus io = arg mini<;<n ri,fic(i)'

Moreover, since /tf(t0) < g(io) and /ir(io) = d, we have /if(to) = g(i0), which proves

that condition (3.33) is satisfied. If k0 < K, we know that there is an index t0 such

that t0 = argmini<i<„ri)/fco(i) and such that /*o+i(i) = /fco(0 i* *£ *o and /jfeo+i(t0) =
Ao(*o) + 1. Since I*,, is empty, Iko+i contains at most one element: to- Since k0 is the
largest index for which h is empty, we have 1^+1 ^ 0- Thus Iko+i = {to}- Consequently

Ao(*o) + 1 = /*o+i(*o) > 9(io) > /fco(io)- This proves that /^(to) = ^(to), and thus that
condition (3.33) of the lemma is satisfied. •

3.6.3 Area Recovery under a Delay Constraint

If the fanout problem is given with a delay constraint, our objective is to find a

fanout tree with minimum area that meets the delay constraint. The fanout algorithms we

have presented so far can only minimize delay. We have suggested in section 3.4.6 a way

to extend the XT-tree based algorithm to minimize area under a delay constraint. Other

fanout algorithms could also be extended to support this optimization,but each algorithm

will have to be modified separately (e.g. the XT-tree algorithmis the only one to be based

on dynamic programming). In addition, it is likely to be difficult to extend the fanout

algorithms to minimize area under a delay constraint in an efficient and accurate way.

Fortunately, there are simpler ways to recover area. Though not optimal, the techniques

we present in the following paragraphs are very effective in practice and straightforward to

implement.

Selecting the Best Fanout Tree We have at our disposal several fanout optimization

algorithms, based on inverter selection, two-level trees and XT-trees. Even if used for

minimizing delays, these algorithms are going to produce fanout trees of differing area

and delay. Our first area recovery technique simply consists in computing the fanout trees

generated by allfanout algorithms at our disposal, and selecting the minimum area tree that

meets the delay requirement. This technique is effective because the two-level algorithm

often generates trees that are fast enough and usually smaller than the trees produced by

the XT-tree algorithm. In addition, this technique also detects the case where the delay

constraint can be met with no buffering at all.
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Partial Collapse The second heuristic we use, which is also very effective at recovering

unnecessary area, consists in partially collapsing minimum delay fanout trees. This tech

nique is particularly useful on XT-trees or trees generated by combinational merging. The

algorithmperforms partial collapses as follows. Given a fanout tree and a delay constraint,

i.e: an arrival time at the root of the fanout tree, the "tree is visited from the root to the

sinks in order to compute the arrival times at every intermediate node. Then the tree is

visited in reverse order, from the sinks to the root. At each intermediate node v, the algo

rithm computes the required time at v that would be obtained if v were connected directly

to all the sinks driven by the subtree Tv rooted at v. If this required time is larger than the

arrival time at v, Tv is collapsed into v: all buffers contained in T„ are eliminated and the

sinks of Tv are directly connected to v.

Buffer Selection We also use a modified version of the optimal buffer selection algorithm

of section 3.6.2. This algorithm is not optimal: it does not find the buffer assignment that

would minimize area under a delay constraint, but is fast, simple and easy to implement.

The modification is done as follows: given an arrival time at the root of the tree, for each

intermediate node v and for each buffer type 6, we want to compute an achievable arrival

time at v if node v is assigned a buffer of type b. This arrival time is taken to be the

arrival time obtained on the fanout tree after the buffer at node v has been replaced by

6, without changing the rest of the tree; it is clearly an achievable, but not necessarily an

optimal arrival time at node v with buffer 6. The suboptimality comes from the fact that

we do not know what is the optimal buffer assignment for the siblings of v given that v is

assigned 6, and it would be too time consuming to compute it for all values of 6. Given

this achievable arrival time at v for a given choice of buffer 6, to perform buffer selection

we use the algorithmof section 3.6.2, modified to select the minimumindex k for which fk

guarantees a nonnegative slack at v. This computation is done for each value of b and the

result is stored at node v. The buffer selection for node v is done when the parent node of

v is visited.

3.7 Global Fanout Optimization

We have only discussed so far algorithms to optimize a given fanout problem. It

is time to introduce a technique that can be used to apply a fanout algorithm to an entire
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algorithm onejpass^lobaLfanout-optimization

foreach node v visited in topological order fromoutputs to inputs {

if v is the root of a tree {

apply fanout optimization to the fanout problem rooted at v

} else {

propagate the required time at the output of v to the inputs of v

}
end one.pass-globaLfanout-optimization

Figure 3.16: A One-Pass Optimal Global Fanout Algorithm

circuit. In section 3.7.1 we present such a technique and show that it is optimal with respect

to delay minimization. In section 3.7.2 we extend this technique to recover area under a

delay constraint. For area minimization under a delay constraint, this technique is not

optimal but is very efficient in practice.

3.7.1 A One Pass Approach

To apply a fanout algorithm to an entire circuit, we use a simple procedure intro

duced by Hoover et al. [22]. This procedure, described in Figure 3.16 and illustrated in

Figure3.17, consists in visiting the nodes ofa circuit in topological order, and at eachnode

v doing the following:

• if v is the root of a tree, v is also the root of a fanout problem. In that case, we

replace the existing fanout tree rooted at v by the result of the fanout optimization

algorithm applied at the fanout problem rooted at v.

• otherwise, we simply propagate the required times of the outputs of v to the input

of v. More specifically, if (i/i,.. .,vn) are the fanouts of v, the required time r at the

output of v is the minimum of the required times of (v\t..., vn); the load 7 at the

output of v is the sum of the loads of (t>i,..., vn). The required time r* at input pin

t of node v is then given by the following equation: rx = r - cti - #7, where cti is the

intrinsic delay and @x the load dependent delay of the gate at node v for input pin i.

The algorithm of Figure 3.16 is optimal in the following sense. Let N be a com

binational network, X = (1/1,... ,vm) be an arbitrary list of possibly repeated tree roots of
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PRIMARY OUTPUTS

\/ fanout optimization

PRIMARY INPUTS

Figure 3.17: Applying Fanout Algorithms in One Pass From Outputs to Inputs

N and F a fanout algorithm. The pair (F, L) defines a global fanout algorithm as follows:

first, compute the required times at all nodes in N. Then, for k = 1 to k = m, apply the

algorithm F to the fanout problem rooted at Vk and recompute the required times at all

nodes in N wherever necessary. We define the cost of (F, X) as a n-dimensional vector:

cost(L,F) = {r{Pi),l<i<n} (3.34)

where the nodes pi, 1 < i < n, are the primary inputs of N, and r(v) designates the required

time at node v. We say that the n-dimensional vectors x and y satisfy the inequality x < y

if and only if X{ < yi for all 1 < i < n.

Theorem 3.7.1 Let F be a fanout algorithm with the following two properties:

1. it never replaces a fanout tree by one with worse delay.
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2. the fanout trees it produces are such that the required times at the root of the trees are

a non decreasing function of the sink required times.

Let Xo = (vi,.. .,vm) be a topological order of the tree roots of N starting from primary
outputs, and let L bean arbitrary list of tree roots. Then cost(F, X0) > cost(F, X). Moreover

if F is an optimal fanout algorithm, the result of (F, Xo) is optimal with respect to fanout

optimization in the sense that no modification of the individual fanout trees can reduce the

delay through the network.

Proof We will prove by induction that the required time rp^Vk) obtained at Vk with

(F, Xo) is no less than the required time rp^k) obtained at Vk with (F,X). Let k = 1.

Since the nodes in Xo are sorted in topological order, there is no tree root in the transitive

fanout of v\. The required times at the sinks of the fanout problem rooted at v\ are entirely

determined by the boundary conditions on the network. Thus r(v\), after application of

(F,X) or (F,X0), can only take two values: the value r0(i>i) of the required time at Vi

before F is applied to fanout problem rooted at v\, and the value ri(vi) after F is applied.

Property (1)guarantees that ri(vi) > 7*0(1/1). Since rF,L0(vi) - T(vi) we nave r(F,L0){vi) ^

r(F,L)(vi)' Now let us now suppose that we have proved that r^F,L0)(vi) > r(F,L)(vi) f°r au'
1 < t < k. Since F can only increase the required time at a node, rF,Lo(vi) is tne largest

required time at node Vi, 1 < t < k observed at any intermediate step of computation

of (F, X) or (F, Lq). Since the required times at the sinks of node Vk+i are monotonic

non decreasing functions of the required times r(vi) for 1 < t < k, and do not depend on

the required times at nodes vx for t > k + 1, the fanout problem rooted at node Vk+i is

given with the largest required times observed during the execution of (F,X) or (F, Xo)

when r(vt) = rFtL0{vx) for 1 < i < k. From this fact and property (2), we deduce that

r(F,L0)(vk+i) > r(F,L)(vk+i)i which proves the first part of the theorem.
The second part of the theorem is proved in a similar fashion. Let T be a circuit,

Tgpt a version of T that is optimal with respect to fanout optimization, and let Tf be the

result of applying to T an optimal fanout algorithm F to all tree roots in topological order.

Since only fanout optimization has been performed in both cases, Topt and Tf have the

same tree roots. We will prove by induction that ry^^Vjfc) < rTF(vk) for all 1 < k < m,
where (vi,...,vm)i<;<m is a topological ordering of the tree roots. The result is true for

k = 1, since the required times at the sinks of vi are the same in both trees, and F is an

optimal fanout algorithm. Let us suppose that the result holds for 1 < i < k. By induction
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*

hypothesis, the required times at the sinksof tree root Vk+i are no worsein Tf than in Top*.

Since F is optimal, rr<vt(vjb+i) < TTp(yk+\). •
The importance of theorem 3.7.1is to prove that any lack of optimality in fanout

optimization is due to the lack of optimality of the fanout optimization algorithms, not to

the procedure we use to apply the fanout algorithms to the entire circuit. In particular,

there is no need to develop fast, incremental techniques to extract critical path information

that would be used to guide the fanout optimization. This simple algorithm based on one

topological traversal does as well in termsofdelay as any other morecomplicated technique.

Duality with Tree Covering An interesting question to ask at this point is why a

similar algorithm of applying tree covering in topological order, this time from inputs to

outputs, is not optimal for tree covering. The reason is that tree covers for trees that are

on disjoint paths from primary inputs to primary outputs do interact, which is not the case

for fanout trees. For example, in Figure 3.17, the choice of a coverfor tree A influences the

required times at the sinks of fanout tree 5, and thus the delay through fanout tree 5, and

thus the arrival times at tree B. There is no such coupling between the solutions of fanout

problems that are not on a common path from inputs to outputs. This why theorem 3.7.1

holds for fanout optimization and the equivalent theorem does not hold for tree covering.

3.7.2 Global Area Recovery under a Delay Constraint

The main weakness of the optimal procedure described in the previous section is

that it can be too wasteful in area. It optimizes all tree roots for minimum delay, with no

consideration for the necessity of such an optimization. We now introduce a technique to

recover area at no cost in delay. This technique works with arbitrary required times at the

primary outputs and arbitrary arrival times at the primary inputs of a network.

To recover area at no delay cost after fanout optimization, we proceed as follows.

We first save at each tree root the arrival time achievable after fanout optimization. We

then reapply the fanout optimizer to each fanout problem, visited in topologicalorder. This

time we call the fanout optimizer to minimize fanout tree area under the constraint that

the required time at the root of the tree is no less than the arrival time at the root of the

tree. To perform this optimization, we use the techniques described in section 3.6.3.

With this simple algorithm, we can recover, at no delay cost, most of the area

wasted by the first phase of fanout optimization. Unfortunately this algorithm is not opti-
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mal, for two reasons: first because it relies on a fanout algorithm that itself is not optimal;

second because by visiting nodes in topologicalorder, it uses the slack availableon any given

path as early as possible. A more equilibrated use of the slack can lead, at least in some

cases, to a smaller circuit with the same delay. Despite these limitations, this technique is

very effective at recovering area, as can be seen from the results of section 3.8.3.

3.8 Experimental Results

To provide some experimental evidence of the efficiency of fanout optimization, we

gathered a set of 25 benchmark circuits from several origins. These circuits are relatively

large, ranging from 119gates to 2557gates, and are described in more detail in section 3.8.1.

We present overall performance results in section 3.8.2 and a more detailed analysis of the

effect of various optimizations in section 3.8.3.

3.8.1 Circuit Descriptions

Our set of benchmark circuits come from four sources: MCNC, ISCAS, Intel and

AT&T. The MCNC benchmarks were put together during the International Logic Synthesis

Workshop 1989 [32] and are publicly available from MCNC. They are themselves from

severalorigins, though complete information wasnot always available on each of them. The

ISCAS benchmarks were originally testing benchmarks. The Intel and AT&T circuits come

from these companies. No details concerning their functionality were provided. Table 3.2

contains some general information on the 25 benchmark circuits, including the number

of primary inputs and primary outputs, the number of literals in factored form, and the

number of gates needed to implement the circuits when technology mapped for minimum

area using the MCNC library lib2. We also indicate briefly the function of the circuit if

known. If it is not known, we simply used the word logic to characterize the circuit.

3.8.2 Overall Performance of Fanout Optimization

We measured the effect of applying fanout optimization to our set of benchmark

circuits after the circuits were mapped for minimum area. The effect of combining minimum

delay tree covering with fanout optimization will be discussed in the next chapter.
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circuit circuit function origin # pis # pos # lits # gates

C1355 error correcting ISCAS 41 32 1064 510

C1908 error correcting ISCAS 33 25 1497 349

C2670 ALU and control ISCAS 233 140 2075 505

C3540 ALU and control ISCAS 50 22 2936 740

C5315 ALU and selector ISCAS 178 123 4386 1080

C6288 16-bit multiplier ISCAS 32 32 4800 2371

C7552 ALU and control ISCAS 207 108 6144 1688

alu4 logic MCNC 14 8 1278 418

ampbpreg logic AT&T 117 88 3318 1137

ampbsm logic AT&T 75 66 2578 795

amppint2 logic AT&T 85 66 3372 513

ampxhdl logic AT&T 62 40 3742 365

apex6 logic MCNC 135 99 904 438

des data encryption MCNC 256 245 6346 2557

dflgrcbl logic Intel 108 65 623 179

fconrcbl logic Intel 62 35 459 129

frg2 logic MCNC 143 139 2014 727

k2 logic MCNC 45 45 2930 1172

kcctlcb3 logic Intel 81 44 415 137

pair logic MCNC 173 137 2426 944

rot logic MCNC 135 107 869 403

sbiucbl logic Intel 40 35 591 144

tfaultcbl logic Intel 77 35 659 119

vda logic MCNC 17 39 1423 586

x3 logic MCNC 135 99 1345 486

Table 3.2: General Information on the Benchmark Set

77

circuit function:

origin:

# Pis:
# Pos:
# lits:
# gates:

simple description of the logic fnnction of the circuit, if available
origin of the circuit
number of primary inputs
number of primary outputs
number of literals in factored form as computed by misll
number of gates to implement the circuit using misll technology
mapper in minimum area mode with the MCNC library lib2
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circuit min area fanout opt gain

area delay area delay area delay

C1355 990 27.16 1119 24.25 1.13 0.89

C1908 1086 35.04 1236 29.55 1.14 0.84

C2670 1420 28.42 1478 22.14 1.04 0.78

C3540 2201 45.24 2421 34.27 1.10 0.76

C5315 3171 39.94 3352 30.78 1.06 0.77

C6288 6777 120.37 7340 101.08 1.08 0.84

C7552 4660 69.47 5084 28.55 1.09 0.41

alu4 1486 47.17 1724 31.84 1.16 0.68

ampbpreg 2741 59.85 2891 39.40 1.05 0.66

ampbsm 1478 25.78 1615 18.05 1.09 0.70

amppint2 1021 22.45 1136 12.31 1.11 0.55

ampxhdl 751 24.73 865 13.38 1.15 0.54

apex6 1505 17.74 1565 13.40 1.04 0.76

des 6452 107.12 7358 17.84 1.14 0.17

dflgrcbl 615 12.83 630 11.01 1.02 0.86

fconrcbl 467 15.18 481 13.82 1.03 0.91

frg2 1738 37.91 1893 14.95 1.09 0.39

k2 1972 32.80 2189 20.56 1.11 0.63

kcctlcb3 449 11.50 469 10.20 1.04 0.89

pair 3200 25.85 3482 17.80 1.09 0.69

rot 1387 30.18 1444 21.49 1.04 0.71

sbiucbl 471 22.18 514 18.89 1.09 0.85

tfaultcbl 375 9.91 400 8.41 1.07 0.85

vda 1118 23.76 1324 16.75 1.18 0.70

x3 1653 22.40 1754 11.45 1.06 0.51

aver - - - 1.09 0.66

Table 3.3: Effect of Fanout Optimization on Circuits Optimized by misll

min area: minimum area technology mapping with MCNC library Ub2
fanout opt: minimum area technology mapping followed by fanout optimization
gain: gain in area or in delay obtained by using fanout optimization
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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Effect on Optimized Circuits Before technology mapping, we optimized each circuit

using misll technology independent simplification and factorization algorithms, as is nor

mally done in logic synthesis. We then compared the area and delay of the circuits after

technology mapping for minimum area, with and without fanout optimization. The results

are reported in Table 3.3. We can observe a wide variation in delay reductions, ranging

from 9% to a factor of 6, while the area increases ranged from 3% to 18%. On average,

fanout optimization reduces delay by 34% for a area increase of 9%.

Effect on Unoptimized Circuits Logic simplification is usually beneficial both in terms

of area and delay, while logic factorization can decrease circuit area by sharing common

subexpressions at the cost of larger fanouts and extra levels of logic. Because we ran our

experiments on circuits that were optimized by misll, there is the possibility that fanout

optimization was effective on these circuits simply because it corrects the fanouts introduced

by factorization. To check for this possibility, we ran the same experiments on the same

circuits, but this time before the circuits were optimized bymisll. The results are reported

in Table 3.4. Though for some circuits, such as C1355 and C6288, fanout optimization was

more effective on optimized circuits, on average fanout optimization was more effective on

unoptimized circuits, reducing delay by 44% for an area increase of 10% instead of 34%
and 9% respectively. From this experiment we can conclude that factorization is not the

main factor contributing to large fanouts. Actually, technology independent optimization

can have the overall effect of reducing the impact of fanout optimization.

3.8.3 Detailed Performance Analysis

In this section, we perform a more detailed analysis of our fanout optimization

algorithms. We first describe the effect of inverter sizing, then the effect of buffering with

no critical signal isolation, the effect of peephole optimization and the effect of area re

covery. Finally we compare our fanout optimization algorithm to Singh's algorithm [40].
All experiments use the optimized version of our benchmark circuits and minimum area

technology mapping with the MCNC library lib2.

The Effect of Inverter Optimization Inverter optimization is a simple optimization

that consists in solving a fanout problem by introducing one inverter if there is a sink that

needs the signal in a different polarity than provided by the source, and sizing this inverter
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circuit min area fanout opt gain

area delay area delay area delay

C1355 1662 30.59 1757 27.65 1.06 0.90

C1908 1405 35.76 1633 27.10 1.16 0.76

C2670 1928 43.78 2052 25.19 1.06 0.58

C3540 2719 51.69 3106 36.85 1.14 0.71

C5315 4369 40.60 4587 32.05 1.05 0.79

C6288 7094 123.87 7801 113.28 1.10 0.91

C7552 6386 72.45 6816 28.16 1.07 0.39

alu4 1543 47.17 1807 30.79 1.17 0.65

ampbpreg 3901 101.72 4112 47.11 1.05 0.46

ampbsm 3017 43.40 3504 20.29 1.16 0.47

amppint2 2232 31.23 2562 10.86 1.15 0.35

ampxhdl 1471 32.95 1698 13.02 1.15 0.40

apex6 1548 15.55 1607 12.95 1.04 0.83

des 11023 114.56 12288 16.70 1.11 0.15

dflgrcbl 604 13.05 634 9.89 1.05 0.76

fconrcbl 467 15.18 481 13.82 1.03 0.91

frg2 2949 52.10 3246 12.27 1.10 0.24

k2 5055 48.25 6264 14.28 1.24 0.30

kcctlcb3 457 11.50 477 10.20 1.04 0.89

pair 3636 30.93 3982 17.81 1.10 0.58

rot 1438 30.17 1495 21.90 1.04 0.73

sbiucbl 505 22.46 576 18.90 1.14 0.84

tfaultcbl 367 9.94 394 8.41 1.07 0.85

vda 2474 29.79 3185 11.95 1.29 0.40

x3 2056 20.76 2138 11.48 1.04 0.55

aver - - - - 1.10 0.56

Table 3.4: Effect of Fanout Optimization on Unoptimized Circuits

min area: minimum area technology mapping with MCNC library Ub2
fanout opt: minimum area technology mapping followed by fanout optimization
gain: gain in area or in delay obtained by using fanout optimization
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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circuit min area inv opt gain

area delay area delay area delay

C1355 990.00 27.16 992.00 26.87 1.00 0.99

C1908 1086.00 35.04 1090.00 34.51 1.00 0.98

C2670 1420.00 28.42 1422.00 27.30 1.00 0.96

C3540 2201.00 45.24 2205.00 42.81 1.00 0.95

C5315 3171.00 39.94 3177.00 38.45 1.00 0.96

C6288 6777.00 120.37 6780.00 118.02 1.00 0.98

C7552 4660.00 69.47 4661.00 62.83 1.00 0.90

alu4 1486.00 47.17 1491.00 44.19 1.00 0.94

ampbpreg 2741.00 59.85 2743.00 58.88 1.00 0.98

ampbsm 1478.00 25.78 1482.00 23.69 1.00 0.92

amppint2 1021,00 22.45 1023.00 21.69 1.00 0.97

ampxhdl 751.00 24.73 754.00 23.59 1.00 0.95

apex6 1505.00 17.74 1507.00 15.79 1.00 0.89

des 6452.00 107.12 6453.00 94.97 1.00 0.89

dflgrcbl 615.00 12.83 616.00 12.15 1.00 0.95

fconrcbl 467.00 15.18 467.00 14.79 1.00 0.97

frg2 1738.00 37.91 1741.00 36.83 1.00 0.97

k2 1972.00 32.80 1973.00 31.88 1.00 0.97

kcctlcb3 449.00 11.50 449.00 11.04 1.00 0.96

pair 3200.00 25.85 3207.00 23.58 1.00 0.91

rot 1387.00 30.18 1390.00 29.66 1.00 0.98

sbiucbl 471.00 22.18 471.00 21.99 1.00 0.99

tfaultcbl 375.00 9.91 376.00 9.70 1.00 0.98

vda 1118.00 23.76 1121.00 21.86 1.00 0.92

x3 1653.00 22.40 1654.00 22.02 1.00 0.98

aver - - - - 1.00 0.95

Table 3.5: Effect of Inverter Optimization on Circuits Optimized by misll

min area: minimum area technology mapping with MCNC Ubrary Ub2
inv opt: minimum area technology mapping followed by inverter optimization
gain: gain in area or in delay obtained by using inverter optimization
area: area of the circuit (MCNC Hb2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains

81
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optimally for delay. In the area recovery phase, if the inverter is not critical for delay,
it is replaced by a smaller inverter. The effect of this simple optimization is reported in

Table 3.5. Inverter optimization can achieve a 5% decrease in delay at negligible cost in

area. Inverter optimization can achieve 15% of the total delay decrease obtainable with

fanout optimization.

Fanout Optimization with No Critical Signal Isolation The two main fanout opti

mizations combined in our algorithms axe buffering and critical signal isolation. To deter

mine what is the relativeimportance of these twooptimizations, we measured the effect of

fanout optimization limited to buffering. For the buffering algorithm, we use the algorithm

of section 3.4.3, which restricts itself to two-level fanout trees. This algorithm ignores re

quired times but takes load values into account. The results obtained with this algorithm

are reported in Table 3.6. Using this simple algorithm, we obtained a delay reduction of

23% for a cost in area of only 3% in average. Buffering alone accounts for 68% of the total

delay reduction we can obtain with fanout optimization, for only a third of the cost in area.

A Lower Bound on the Effect of Fanout Optimization Fanout optimization can

reduce delay only at multiple fanout points. Using critical signal isolation, it is possible

to deliver a signal at a multiple fanout point with no overhead, provided that the other

signals are required sufficiently late, which is not always the case. Thus a lower bound on

the effect of fanout optimization can be determined by computing the arrival times of all

signals ofa network, ignoring the effect ofmultiple fanouts. Toperform this computation at

a multiple fanout point, we simply replace the sum of the sink loads by their average. The

results of this computation are reported in Table 3.7 and compared with the delay values

obtained with fanout optimization. Only delay values are reported. The data indicate that

on average, fanout optimization operates within 12% of this lower bound. This result also

provides a lower bound on the effect of source duplication, since source duplication can

only decrease the delay through fanout nodes. Source duplication can still be a helpful

technique, but its overall effect can only be secondary in comparison to the effect of fanout

optimization.

Peephole Optimization We presented in section 3.6 several algorithms to improve the

quality of a fanout tree after it has been built. To determine the effect of these peephole
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circuit min area buffering gain

area delay area delay area delay

C1355 990 27.16 1054 26.29 1.06 0.97

C1908 1086 35.04 1119 33.34 1.03 0.95

C2670 1420 28.42 1441 25.15 1.01 0.88

C3540 2201 45.24 2247 39.60 1.02 0.88

C5315 3171 39.94 3220 36.26 1.02 0.91

C6288 6777 120.37 6870 111.65 1.01 0.93

C7552 4660 69.47 4758 35.64 1.02 0.51

alu4 1486 47.17 1565 40.53 1.05 0.86

ampbpreg 2741 59.85 2815 49.92 1.03 0.83

ampbsm 1478 25.78 1524 20.62 1.03 0.80

amppint2 1021 22.45 1052 15.62 1.03 0.70

ampxhdl 751 24.73 806 15.33 1.07 0.62

apex6 1505 17.74 1519 15.72 1.01 0.89

des 6452 107.12 6818 21.27 1.06 0.20

dflgrcbl 615 12.83 621 11.50 1.01 0.90

fconrcbl 467 15.18 477 14.52 1.02 0.96

frg2 1738 37.91 1834 21.05 1.06 0.56

k2 1972 32.80 2017 26.75 1.02 0.82

kcctlcb3 449 11.50 449 11.04 1.00 0.96

pair 3200 25.85 3341 20.48 1.04 0.79

rot 1387 30.18 1427 24.98 1.03 0.83

sbiucbl 471 22.18 482 21.31 1.02 0.96

tfaultcbl 375 9.91 381 9.33 1.02 0.94

vda 1118 23.76 1159 19.59 1.04 0.82

x3 1653 22.40 1690 13.23 1.02 0.59

aver 1.00 1.00 1.03 0.77 1.03 0.77

Table 3.6: Effect of Buffering on Circuits Optimized by misll

min area: minimum area technology mapping with MCNC library Ub2
buffering: minimum area technology mapping followed by buffering alone
gain: gain in area or in delay obtained by using buffering
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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circuit fanout opt lower bound ratio

delay delay delay

C1355 24.25 20.53 0.85

C1908 29.55 24.56 0.83

C2670 22.14 19.74 0.89

C3540 34.27 28.86 0.84

C5315 30.78 27.01 0.88

C6288 101.08 83.74 0.83

C7552 28.55 24.48 0.86

alu4 31.84 27.08 0.85

ampbpreg 39.40 34.24 0.87

ampbsm 18.05 15.97 0.88

amppint2 12.31 11.00 0.89

ampxhdl 13.38 11.43 0.85

apex6 13.40 12.55 0.94

des 17.84 15.71 0.88

dflgrcbl 11.01 9.71 0.88

fconrcbl 13.82 13.54 0.98

frg2 14.95 12.06 0.81

k2 20.56 18.46 0.90

kcctlcb3 -10.20 8.75 0.86

pair 17.80 16.00 0.90

rot 21.49 18.22 0.85

sbiucbl 18.89 17.77 0.94

tfaultcbl 8.41 7.75 0.92

vda 16.75 15.45 0.92

x3 11.45 10.40 0.91

aver - - 0.88

Table 3.7: A Lower Bound on the Effect of Fanout Optimization

fanout opt:
lower bound:

ratio:

delay:
aver:

mi-mmum area technology mapping with fanout optimization
minimum area technology mapping ignoring fanout to compute delay
ratio between lower bound and delay realized with fanout optimization
delay of the circuit (MCNC Hb2 data in nanoseconds)
geometric average of the gains
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circuit min area no peephole gain

area delay area delay area delay

C1355 990 27.16 1209 24.25 1.22 0.89

C1908 1086 35.04 1324 29.64 1.22 0.85

C2670 1420 28.42 1500 22.14 1.06 0.78

C3540 2201 45.24 2587 33.97 1.18 0.75

C5315 3171 39.94 3565 30.78 1.12 0.77

C6288 6777 120.37 7512 101.72 1.11 0.85

C7552 4660 69.47 5388 29.13 1.16 0.42

alu4 1486 47.17 2010 31.90 1.35 0.68

ampbpreg 2741 59.85 3003 39.44 1.10 0.66

ampbsm 1478 25.78 1694 18.18 1.15 0.71

amppint2 1021 22.45 1233 12.31 1.21 0.55

ampxhdl 751 24.73 921 13.53 1.23 0.55

apex6 1505 17.74 1610 13.44 1.07 0.76

des 6452 107.12 8013 17.84 1.24 0.17

dflgrcbl 615 12.83 647 11.01 1.05 0.86

fconrcbl 467 15.18 489 13.82 1.05 0.91

frg2 1738 37.91 1973 15.03 1.14 0.40

k2 1972 32.80 2325 20.56 1.18 0.63

kcctlcb3 449 11.50 479 10.20 1.07 0.89

pair 3200 25.85 3638 17.86 1.14 0.69

rot 1387 30.18 1484 21.47 1.07 0.71

sbiucbl 471 22.18 543 18.98 1.15 0.86

tfaultcbl 375 9.91 405 8.41 1.08 0.85

vda 1118 23.76 1466 16.77 1.31 0.71

x3 1653 22.40 1815 11.51 1.10 0.51

aver - - - - 1.15 0.66

Table 3.8: Effect of Fanout Optimization without Peephole Optimization
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min area:

no peephole:

gain:
area:

delay:
aver:

minimum area technology mapping with MCNC library Ub2
minimum area technology mapping followed by fanout optimization
with no peephole optimization
gain in area or in delay obtained when using no peephole optimization
area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay of the circuit (MCNC Ub2 data in nanoseconds)
geometric average of the gains
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optimizations, we ran the fanout optimizer after having deactivated them. The results of

this experiment are reported in Table 3.8. In terms of delay, the impact of peephole opti

mization is negligible. This was to be expected, since our most powerful fanout optimization

algorithm does buffer selection optimally. However, in terms of area, peephole optimiza

tion reduces the cost of fanout optimization from 15% down to 9%, which is a valuable

contribution to the overall performance of the fanout optimizer.

Effect of Area Recovery After using fanout optimization for delay, we use a second

pass on the network to recover area in fanout trees that are not critical for delay. The

overall result is an average increase in area of only 9%, but it is not clear how much of this

limited increase in area is due to area recovery or to the fact that fanout optimization for

delay itself does not increase area significantly. To evaluate the effect of area recovery, we

ran the fanout optimizer without area recovery. The results are reported in Table 3.9. Area

recoveryreduces the average cost in area of fanout optimization dramatically, from 51% to

9%. In addition, as predicted, area recovery does not increase circuit delay.

Comparison with Singh's Algorithm We compared the results obtained with our

fanout optimizer to the results obtained with Singh's algorithm. To perform a fair com

parison, we interfaced Singh's* algorithm to our fanout optimizer, in such a way-that it is

called in the same order and on the same data than our fanout algorithms. The results

are reported in Table 3.10. On most examples, the results are quite similar. Our fanout

algorithm does consistently better than his in terms of delay, with an average reduction of

12%; but it does consistently worse than his in terms of area, with an average increase of

4%.

3.9 Conclusion

Fanout optimization is an important delay optimization technique, that can reduce

delay often quite dramatically for a very moderate cost in area. It is an essential component

of any logic synthesis system that claims to optimize delay. It is an important optimization

for other reasons as well. In particular it can be directly adapted to make sure that fanout

constraints imposed by a technology are satisfied.

Optimizing a fanout problem is, for most delay models, a difficult problem. In-
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circuit min area no area recov gain

area delay area delay area delay

C1355 990 27.16 1362 24.25 1.38 0.89

C1908 1086 35.04 1647 29.59 1.52 0.84

C2670 1420 28.42 1995 22.08 1.40 0.78

C3540 2201 45.24 3572 34.27 1.62 0.76

C5315 3171 39.94 4929 30.78 1.55 0.77

C6288 6777 120.37 10887 101.09 1.61 0.84

C7552 4660 69.47 6959 28.68 1.49 0.41

alu4 1486 47.17 2573 31.85 1.73 0.68

ampbpreg 2741 59.85 4209 39.46 1.54 0.66

ampbsm 1478 25.78 2219 18.05 1.50 0.70

amppint2 1021 22.45 1483 12.31 1.45 0.55

ampxhdl 751 24.73 1116 13.45 1.49 0.54

apex6 1505 17.74 2347 13.40 1.56 0.76

des 6452 107.12 9360 17.75 1.45 0.17

dflgrcbl 615 12.83 815 11.01 1.33 0.86

fconrcbl 467 15.18 653 13.82 1.40 0.91

frg2 1738 37.91 2465 14.95 1.42 0.39

k2 1972 32.80 3412 20.56 1.73 0.63

kcctlcb3 449 11.50 605 10.20 1.35 0.89

.pair 3200 25.85 5002 17.80 1.56 0.69

rot 1387 30.18 2151 21.52 1.55 0.71

sbiucbl 471 22.18 806 18.89 1.71 0.85

tfaultcbl 375 9.91 508 8.41 1.35 0.85

vda 1118 23.76 1846 16.75 1.65 0.70

x3 1653 22.40 2344 11.54 1.42 0.52

aver 1.00 1.00 1.51 0.66 1.51 0.66

Table 3.9: Effect of Fanout Optimization without Area Recovery
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mm area:

no area recov:

gain:
area:

delay:
aver:

minimum area technology mapping with MCNC library Ub2
minimum area technology mapping followed by fanout optimization
without area recovery
gain in area or in delay obtained when using no area recovery
area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay of the circuit (MCNC Ub2 data in nanoseconds)
geometric average of the gains
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circuit fanout opt Singh's alg gain
area delay area delay area delay

C1355 1119 24.25 1012 26.37 0.90 1.09

C1908 1236 29.55 1182 31.48 0.96 1.07

C2670 1478 22.14 1460 23.05 0.99 1.04

C3540 2421 34.27 2301 37.95 0.95 1.11

C5315 3352 30.78 3251 33.12 0.97 1.08

C6288 7340 101.08 7003 110.29 0.95 1.09

C7552 5084 28.55 4713 57.88 0.93 2.03

alu4 1724 31.84 1592 35.82 0.92 1.12

ampbpreg 2891 39.40 2824 44.71 0.98 1.13

ampbsm 1615 18.05 1539 20.18 0.95 1.12

amppint2 1136 12.31 1083 14.12 0.95 1.15

ampxhdl 865 13.38 818 14.09 0.95 1.05

apex6 1565 13.40 1537 14.27 0.98 1.06

des 7358 17.84 6784 20.01 0.92 1.12

dflgrcbl 630 11.01 623 11.33 0.99 1.03

fconrcbl 481 13.82 472 13.89 0.98 1.01

frg2 1893 14.95 1841 16.75 0.97 1.12

k2 2189 20.56 2029 24.20 0.93 1.18

kcctlcb3 469 10.20 456 10.30 0.97 1.01

pair 3482 17.80 3357 19.94 0.96 1.12

rot 1444 21.49 1427 22.11 0.99 1.03

sbiucbl 514 18.89 487 20.59 0.95 1.09

tfaultcbl 400 8.41 385 8.90 0.96 1.06

vda 1324 16.75 1217 17.80 0.92 1.06

x3 1754 11.45 1699 14.86 0.97 1.30

aver - - - - 0.96 1.12

Table 3.10: Comparison with Singh's Algorithm

fanout opt: minimum area technology mapping followed by our fanout algorithm
Singh's alg: minimum area technology mapping followed by Singh's algorithm

without area recovery
gain: gain or loss in area or in delay obtained by Using Singh's algorithm
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Hb2 data in nanoseconds)
aver: geometric average of the gains
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stead of trying to find one fanout algorithm that would be applicable in all contexts, we

recommend the approach we have been following, of developing a spectrum of simple but

efficient fanout optimization algorithms based on different approaches: balanced trees, LT-
trees, combinational merging, top-down traversal. These algorithms are efficient enough to

make it practical to try them all on every fanout problem to retain the best solution in

all cases. In addition, some optimizations can be shared by all fanout algorithms if done

during a postprocessing optimization phase on fanout trees. These optimizations do not

affect delay, but can contribute significantly to area reduction.

The most important contribution of this chapter is to have demonstrated that,

at least in the context of fanout optimization, there is a simple way of applying a fanout

optimization algorithm to an entire network that is optimum in terms of delay and very

efficient in terms of area. This is a significant improvement over past methods which rely on

the identification and incremental improvement of critical paths. Our method is guaranteed

to produce the best delay achievable with a given fanout optimization algorithm and requires

only two passes on the network. In addition it achieves significant delay reduction for a very

moderate cost in area, observed in our experiments to be no more than 10% on average.

To minimize area under a delay constraint, we did not modify any of the fanout

algorithms to do so. Rather, we simply apply every fanout algorithm to each fanout problem,

and selected among the fanout trees so obtained that met the delay constraint, one with

minimum area. Area reduction is achieved simply by using a spectrum of fanout algorithms,

including some that have can only produce fairly simple fanout trees.
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Chapter 4

Combining Tree Covering and

Fanout Optimization

It is not necessary to hope to undertake
nor to succeed to persevere.

— GUILLAUME d'ORANGE

4.1 Introduction

In the previous two chapters, we covered separately two important delay opti

mization techniques: tree covering and fanout optimization. The purpose of this chapter

is to study the problem of integrating these two optimizations. Figure 4.1 illustrates how

we have applied so far these optimizations. In gray are fanin trees, the parts of a circuit

where we apply tree covering to perform gate selection. In white are fanout trees, where we

apply fanout optimization. We can always combine tree covering and fanout optimization

as follows: we first use tree covering to implement the fanin trees, in one pass from primary

inputs to primary outputs. We then apply fanout optimization, in one pass from primary

outputs to primary inputs. We can run an additional fanout optimization pass to recover

area, but we will ignore area recovery for the moment. The question we would like to answer

in this chapter is: are there better ways to apply tree covering and fanout optimization to

a network that would lead to significant speed improvements?

We first introduce some definitions and terminology used in the rest of this chapter.

We partition a Boolean network into fanin trees and fanout trees. We group each tree into

91
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PRIMARY OUTPUTS

PRIMARY INPUTS

V

A

fanout optimization

tree covering

Figure 4.1: Combining Tree Covering and Fanout Optimization

a node. To each fanin tree corresponds a fanin node, and to each fanout tree corresponds

a fanout node. Fanin nodes are specified by a Boolean function that can be implemented

as a tree. Fanout nodes are simply specified by a source and a set of sinks. The polarity of

these sinks is usually not known before the fanin trees are implemented. Fanin nodes can be

implemented by tree covering, or by some form of restructuring followed by tree covering.

In this work, we only use tree covering, but the theoretical part of this chapter remains

valid if we use restructuring in addition to tree covering. Fanout nodes are implemented

using fanout optimization. In each case, we suppose that the implementation attempts

to minimize delay for a given set of arrival times for fanin nodes or required times for

fanout nodes. An implementation that is such that all delays from the leaves of the tree

to the root of the tree are equal is called a balanced implementation. We use unbalanced

implementations to compensate for the imbalance in arrival times or required times. The

problem we study in this chapter is the problem of finding a good order of application

of tree covering (possibly with restructuring) and fanout optimization to minimize delay.
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We call this problem the tree-based delay optimization problem, since it is the problem of

minimizing delay while respecting the tree boundaries of a Boolean network.

In section 4.2 we formulate the tree-based delay optimization problem as a con

vex optimization problem. This formulation is only valid for a continuous version of the

constant delay model of section 3.3.1. By abstracting away the discrete nature of delay

optimization in our setting, this formulation allows us to compute analytically the mini

mum delay implementation of a few simple circuits. We can then use these examples to

detect potential sources of suboptimality in tree-based delay optimization algorithms. In

this section we exhibit a circuit that has the following property: for any constant a > 0,

there is an implementation of this circuit whose delay is a delay units worse than an optimal

implementation and is such that all paths are critical and all fanin nodes and all fanout

nodes are implemented optimally. Such an implementation cannot be optimized by any

greedy application of tree covering or fanout optimization in any order. Due to physical

constraints, this example is only realistic for a limited range of values of a. Nevertheless it

indicates clearly the limitations of greedy delay improvement strategies.

This example is based on an initial implementation where arbitrarily unbalanced

implementations of fanin and fanout nodes compensate each other exactly. We can easily

avoid this problem by starting with a balanced initial implementation. To do so, we im

plement all fanout trees using a balanced configuration prior to the first application of tree

covering. This technique is described in section 4.3. The main difficulty in building these

balanced fanout trees is to handle sink polarities properly. Since the fanout trees are built

before an implementation of fanin trees is available, sink polarities are not known. This

phase assignment problem has an important impact on the quality of the final implemen

tation.

Once we have built an initial implementation, we can iterate tree covering and

fanout optimization until we reach a local minimum. In section 4.4, we present a simple

iterative scheme that we can use to perform this iteration. This scheme consists in iterating

tree covering and fanout optimization passes on the network, using at the ith iteration the

delayinformation computed at the (i— l)th iteration. Our experimental results indicate that

there is almost no advantage in performing more than one iteration with this method. To

estimate the optimality of the final result, we applied this optimization scheme to another

simple circuit for which we can compute the optimal solution for a simple delay model.

On this circuit also the iterative algorithm converges almost immediately, and the result
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Figure 4.2: Suboptimality of Tree-Based Optimization

obtained after one iteration is within a few percent of the optimum solution. This example

also suggests an improvement of the iterative algorithm, which converges more slowly but

reaches a solution that is within a fraction of a percent of the optimum. We conclude

section 4.4 by a brief overview of a new approach to tree-based minimization proposed by

Yoshikawa et al. [44].

The results of the section 4.4 are a strong indication that we are reaching the limit *

of what can be achieved with tree-based delay minimization. The purpose of section 4.5

is to propose two techniques to minimize delay that do not preserve tree boundaries but

are nevertheless simple variations of the tree covering and fanout optimization algorithms

proposed so far. The first of these techniques, tree duplication, allows the duplicationof

a fanin node to implement the node both in positive and negative phases. In tree covering,

one phase is selected, and the other phase is provided by an inverter. With tree duplication,

both phases are implemented as separate trees, possibly with partial overlap. The rationale

behind this heuristic is to make available to the fanout optimizer the earliest possible source

for each polarity, possibly reducing by one the number of buffers on a critical path. Another

factor makes this optimization attractive: the possibilityof avoiding unnecessary duplication

during the area recovery phase of fanout optimization. The second of these techniques, tree

overlap, is more radical. It allows tree covering to ignore tree boundaries. The example of

Figure 4.2 illustrates why allowing overlaps between trees can help reducing circuit delay.

The circuit shown in this example can be implemented as shown in solid lines, with three
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2-input NAND gates and one inverter. Or it can be implemented as suggested by the
dotted lines, with two 3-input NAND gates. The second implementation is significantly
faster, and in that case happens to use less area. In general, however, allowing overlaps
tend to increase area. If the example of Figure 4.2 is modified to have a fanout of 10,

the implementation with ten 3-input NAND gates will still be faster, but would use more

area than an implementation with eleven 2-input NAND gates and one inverter. This

optimization has the effect of moving logic across fanout points in a manner reminiscent of

retiming [30].

The results obtained in this chapter indicate that we are reaching a limit to what

we can expect from tree-based technology mapping algorithms in terms of delay optimiza

tion. This opens the way to the next chapter, where we examine the effect of technology-

independent optimizations that can modify the global structure of a network.

4.2 Theoretical Analysis of Tree-Based Delay Minimization

In this section, we present an abstract formulation of the tree-based delay min

imization problem, as a convex optimization problem. This formulation is obtained by

abstracting away the discrete nature of our algorithms, but uses delay equations directly

derived from the exact solution of fanout problems using the constant delay model of sec

tion 3.3.1 and in that sense represents a reasonable continuous approximation of the discrete

problem we are seeking to solve.

We first show how we model the effect of tree covering (with restructuring) using

a convex function, derived from combinational merging [18]. Then using symmetry we

apply this model to cover fanout optimization. Using these models, we can formulate the

tree-based covering problem as a convex optimization problem. We use this formulation

on a simple circuit to compute the optimum implementation for that circuit, and exhibit

a class of implementations of that circuit that cannot be improved using greedy tree-based

optimization algorithms.

4.2.1 Modeling Tree Covering

To model the effect of tree covering and restructuring on a fanin node, we use a

function f(a\,.. •,an) that represents the arrival time achieved by an optimal implementa

tion of a fanin node v at the output of v given arrival times (a\t... ,an) at the inputs of
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v. If the Boolean function computed by fanin node v is a Boolean and of n inputs, and

if the library is composed of and gates of constant delay equal to 1 and fanin k, where k

lies between 2 and some limit t, the optimal implementation of v can be obtained using

combinational merging. Moreover, the function / can be computed exactly in that case,

and is given by the following formula [18, 22]:

/(ai,...,<xn) = logt £ f
Ki<n

(4.1)

To be able to use optimization techniques from real analysis, we need to approximate / by

a differentiable function. We use the following approximation, obtained by dropping the

ceiling function and setting for convenience t —e. A different choice of k would only have

for effect of scaling the delay numbers by a multiplicative constant.

/(«!,...,o„) = log £ «-* (4.2)
l<t<n

This approximation ignores the discrete nature of tree covering and restructuring, and the

added irregularity of fanin nodes with asymmetric logic functions. However it captures the

essence of fanin tree balancing. It produces a delay of logn for balanced arrival times, and,

for unbalanced arrivaltimes, allowslate signals to traverse a fanin node for less delay at an

extra cost for the other signals. Moreover, the model has not been chosen arbitrarily, but

derived directly from the optimal solution of a fanin problem for a simple delay model. In

addition, this model has the following important property:

lemma 4.2.1 The function f given by equation 4-2 is convex.

Proof The function / is obtained by composition of infinitely differentiable functions, and

is thus infinitely differentiable over Un. To prove that it is strictly convex, we will show

that its Laplacian is strictly positive at any point of the space. We first define the following

coefficients:

(4.3)
*' = (£2=1 e*»)2

A simple computation yields the following equalities:

dx{dxj

d2f A— = -oa + ^ott
dx{'

fc=i
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We deduce from these equations, and from the fact that a# = aji, the following inequality,

which proves our result:

i,3 J »»J »iJ

*<j

4.2.2 Modeling Fanout Optimization

To model the effect of fanout optimization, we use a function g{r\,.. .,rn) that

represents the required time achieved by an optimal implementation of a fanout node v

at the input of v given required times (ri,.. .,rn) at the outputs of v. If the fanout node

v has n outputs, and the library is composed of buffers of constant delay equal to 1 and

fanout k, where k lies between 2 and some limit t, the fanout problem is the exact analog

to the simplified fanin problem used in the previous section. One problem can be deduced

from the other by changing the direction of propagation of signals. As a consequence, the

optimum solution can be computed for this problem as follows:

g(ru>--,rn) = -
Ki<n

(4.4)

The continuous approximation of g is obtained in the same fashion as the continuous ap

proximation of / in the previous section:

g(ru.-.,rn) = -log £ e~ri (4.5)
l<»<n

It is easy to check that g is concave, since / is convex and g(x) = —f(—x).

4.2.3 Formulation as a Convex Optimization Problem

Given a continuous model of the delay through fanin nodes and fanout nodes as the

result of tree covering and fanout optimization, we can proceed to formulate the tree-based

delay optimization problem as a global optimization problem. We assume that the Boolean

network to be optimized is decomposed into fanin nodes and fanout nodes. Without loss of
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generality, we can suppose that the fanin nodes and fanout nodes are maximal, in the sense

that a fanin node is never connected to another fanin node, nor a fanout node to another

fanout node. If it were not the case, i.e. for example if two fanin nodes were connected, the

input node could always be collapsed into the output node.

We divide the edges or wires of the network into four sets: PI, PO, LEAF and

ROOT. Each wire only connects two nodes. Multiple fanouts are handled exclusively

through fanout nodes. The PI wires are wires directly connected to primary inputs. As

sociated with each of the PI wires is an arrival time. Arrival times are represented as a

vector a of arrival times, of dimension \PI\. Similarly, the PO wires are the wires directly

connected to primaryoutputs. Associated with each PO wireis a required times. Required

times are represented as a vector r of dimension \P0\. The LEAF wires are the wires that

connect an output of a fanout node to an input of a fanin node. Arrival times on these

wires are represented by a vector x of dimension \LEAF\. Finally the ROOT wires are

the wires connecting the output of a fanin node to the input of a fanout node. Figure 4.3

illustrates these definitions.

For each fanin node, we suppose that we have at our disposal a function that

computes the best achievable arrival time at the output of the node, for any feasible imple

mentation of the node. This function only depends on x and a. To simplify the notation,

we designate by / the vector of such functions, and we keep implicit the dependency on the

vector of arrival times a, considered constant. Thus / :K\leaf\ _> n\PO\ x ftl*ooT|. All

the components of / are convex functions.

We note -kpo the orthogonal projection ofavector of ftlp°l x K\ROOT\ onto ftlpo',
and similarly vroot designates the projection onto 7£|flOOT|. For a given assignment of
arrival times x at the LEAF wires, irpo(fW) designates the best achievable arrival times

at the primary outputs of the network. For 1 < p < +oo, |x|p designates the quan

tity (5ZJ=izJ)p, and x+ designates the vector of components (max(xfc, 0))i<jt<n. The
total amount by which an implementation fails to meet its timing requirements is given

by |(tfpo(/(aO) - r)+\u and the maximum amount by which a requirement fails is given

by \(irpo{f(x)) - r)+|oo- ^ botn cases, the convexity of the components of / implies the

convexity of the cost function.

Similarly, for each fanout node, we suppose that we have at our disposal a function

that computes the best achievable required time at the input of the node, for a given set of

required times at the outputs. This function only depends on x and the constant vector r.
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Figure 4.3: Partition of Edges

As for primary input arrival times, to simplify notation, we keep implicit the dependency

on the primary output required times. We designate by g the vector of these functions:

g : Tl\LEAF\ _, >fc\PI\ x ^\ROOT\^ A LEAF wire assignment x is realizable if it satisfies the

following inequalities: n\pi\{g(x)) > a and n\R00T\(9(x)) > *\ROOT\(f(x))-
In total, we have formulated the tree-based delay minimization problem as the

following optimization problem:

mm

x e v)LEAF\

|(7r|F0|(/(x))-r)+|

K\Pl\(g{x)) > a
t\root\(9{x)) > n\ROOT\(f(x))

Each constraint in the problem if of the form g > f, where g is a concave function and

/ a convex function. The set of points satisfying the constraints is thus convex, and the

problem has been expressed as the problem if minimizing a convex function over a convex

set.
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Figure 4.4: A Simple Example

4.2.4 A Simple Example

We now proceed to use this formulation in order to compute an analytical solution

to the tree-based delay minimization problem for the simple circuit of Figure 4.4. The delay

function associated at each fanin node is given by equation 4.2 and by equation 4.5 for the

two fanout nodes.

We are interested in computing the best pairs of arrival times realizable at the

outputs of this circuit, i.e. in finding all the sets of points (ri,^) that are realizable arrival

times for the circuit of Figure 4.4, and minimal for the partial ordering on vectors denned

by: x < y iff X{ < y{ for all 1 < i < n. In other words, we are interested in the pairs

of realizable arrival times (ri,^) such that ri and T2 cannot be improved simultaneously.

Such sets of optimal points are often studied in microeconomics and called Pareto optimal

points. These points must satisfy the following equations:

n = log(eXl + eX2)

T2 = log(e13 + ex<)

ai = - log(e ~Xl + e -x3)

a-2 = - log(e ~12 + e -1)

where (01,03) are given arrival times at the inputs of the network. To simplify the compu-
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tation, we perform the following substitution of variables:

Ri = eri

Ai = eai

Xi = eXi

The problem is then to reduced to finding the minimal pairs (Ri, R2) satisfying the following

two equations:

Ri = X\ -f- X2
A^Xi , A2X2

M.2 = „ P
X\ —A\ X2 —A2

The minimal points must be such that (fy}-,!^) and (|§2-,§§J) are colinear, otherwise
it would be possible to decrease both Ri and R2 and still stay in the feasibility region.

The first vector is equal to (1,1) and the second vector to (tx^ZTF» (x2^a7)^' Tllus the
minimal points are characterized by the equation:

Xi _ X^
Ai A2

A parametric representation of the set .ofminimum points is then readily available, using

T = X± as parameter. The range of T is 1 < T < 00.

^2 = ^(^ +^2)
An equivalent closed from is given by:

-log(e-ri +e"r') = log(eai+eaa)

This closed form indicates that the behavior of this circuit is equivalent to the behavior of

a single fanout node with an input arrival time of log(e°l + e°2).

4.2.5 Suboptimal Local Minima

With the example of the previous section, we can exhibit a family of circuit imple

mentations for the same network that are arbitrarily far from the optimum solution, but yet

have the property that every node, taken in isolation, is configured optimally with respect
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to the rest of the network. In other words, any algorithm that works greedily by changing

the circuit implementation one node at a time or a group composed of a fanin node and its

fanout node at a time, can enter a global implementation where every single node or group

appears optimal with respect to the rest of the circuit, but the overall delay through the

circuit is arbitrarily far from the optimal solution.

This family of implementations is parametrized by one parameter, designated as

a. Given a, we consider the following wire assignment to the circuit of Figure 4.4, where

we now suppose that the arrival times and the required times are all equal to 0:

X! = log(l + ea) (4.6)

x2 = log(l + e-a) (4.7)

*3 = log(l + e-a) (4.8)

*4 = log(l + ea) (4.9)

Since we have:

\og(e-Xl + e"X8) = - log(e-sa + e"s*)

(d= "log!—^- +
l + e<V

= 0

this leaf wire assignment is optimal with respect to the two fanout nodes. The best pri

mary output arrival times achievable with this wire assignment are equal, for both primary

outputs, to the value:

log(eXl+eX3) = log(e*3+ex«)
m

= log(l + ea + l + e~a)

= log2 -I- log(cosh(a))

which can be made arbitrarily far from an optimal solution. Solutions arbitrarily far from

the optimum are not realized in practice due to physical limitations. This result simply

indicates that greedy tree-based delay optimization algorithms are unable to recover from

certain initial implementations, no matter how suboptimal these implementations are.

In addition, if we take as initial implementation an implementation where the

fanout nodes are implemented optimally relative to the wire values given by equations 4.6
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to 4.9, and the fanin trees areimplemented arbitrarily, a one passapplicationof tree covering

to this implementation will produce a configuration that cannot be optimized any further

and whose distance to the optimal solution is given by equation 4.10. Only if the initial

implementation is balanced would the result be optimal.

4.3 Selecting the Initial Implementation

Before improving a network implementation, we need to generate one. Since our

incremental improvement algorithms are not very powerful, the quality of the final result is

very sensitive to the quality of the initial point. To compute an initial implementation, we

perform tree coveringon the entire network, using a heuristic to estimate the arrival times

at the output of fanout nodes. The quality of the initial implementation is very sensitive to.

the quality of this heuristic. From the previous section, we know that it is important not

to introduce artificial imbalances in the initial implementation, because they are a source

of suboptimality that cannot alwaysbe eliminated by incremental improvement algorithms.

Therefore a heuristic to estimate arrival times at the output of fanout nodes should estimate

these arrival times to be equal for all the outputs of a given fanout node.

There are still many ways to estimate balanced arrival times, and the following

questions remain to be answered:

• what should be the delay through a fanout node?

• should the delay be sensitive to signal polarity?

• should the delay be sensitive to variations in sink loads?

These questions arise from the fact that the heuristic is to be used during tree covering.

Since the implementation of fanin nodes is not known at this point, neither the polarity

nor the load at the outputs of fanout nodes is known when the delay estimation heuristic

is called.

A Simple Fanout Delay Estimation Heuristic We present in this paragraph a simple

delay estimation heuristic that performs consistently better than its variants. With this

heuristic, we estimate the arrival time at the output of a fanout node v as follows. We

first compute the best arrival time achievable at the input of v by tree covering. This

information is available because tree covering proceeds in topological order from primary



104 CHAPTER 4. COMBINING TREE COVERING AND FANOUT OPTIMIZATION

inputs to primary outputs. Then, if n is the number of fanouts of v, we build a balanced

fanout tree with n sinks to implement v. The fanout tree is selected by the balanced tree

algorithm presented in section 3.4.3. The loads of the sinks are taken to be all equal to

some generic value (we use the input load of a minimumsize 2-input NAND gate).

The computation of this fanout tree is done twice, once by supposing that all sinks

are of positive polarity, once by supposing that all sinks are of negative polarity. Among

these two trees, the fanout tree with the earlier output arrival time is stored at node v, and

the other tree is discarded. The fanout tree stored at node v in this fashion is called Tv.

We use Tv to compute the arrival time at any output of v.

When tree covering is applied to a fanin node in the fanout of v, we need to

compute the arrival time at gate inputs p connected to v. To do so, we compute the delay

through the fanout tree Tv stored at v, adding to the load driven by the buffer connected

to p the difference between the load at p and the generic sink load value we used to build

Tv. This computation is done irrespective of the polarity of p.

Taking Sink Polarity into Account We modified the heuristic described in the previous

paragraph to take sink polarities into account. This modification was done as follows: we

stored with fanout tree Tv at each fanout node v the polarity of the signals available at its

outputs. Since Tv is a balanced tree, all outputs have the same polarity. When the input

pin p of a gate requires the signal under the polarity provided by Tv, we compute the arrival

time at p as before. When the signal is required under the opposite polarity, we add an

inverter delay to the arrival time obtained from Tv. We measured the effect of this modified

fanout delay heuristic on the quality of circuit implementations obtained after one pass of

tree covering followed by two passes of fanout optimization, one for delay and one for area

recovery. As show in Table 4.1, taking sink polarity into account yields circuits that are on

average 11% slower and 2% larger.

By taking polarities into account at this stage, we introduce an artificial bias in

favor of polarity X over polarity X. In doing so we tend to eliminate tree covers that

would have chosen polarity X if X and X were available with the same arrival time, before

we can determine whether later passes of fanout optimization could provide a signal of X

at less cost than X plus an extra inverter delay. In the absence of such information, it

is more important not to introduce any bias than to try to be consistent with a feasible

implementation of a fanout tree.
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circuit no polarity polarity gain

area delay area delay area delay

C1355 1192 24.21 1204 25.99 1.01 1.07

C1908 1358 28.24 1381 29.62 1.02 1.05

C2670 1796 20.86 1809 21.66 1.01 1.04

C3540 2857 32.88 2906 37.28 1.02 1.13

C5315 3693 29.31 3789 32.08 1.03 1.09

C6288 8272 95.47 8932 109.69 1.08 1.15

C7552 5322 27.83 5303 29.98 1.00 1.08

alu4 1977 29.24 1984 31.31 1.00 1.07

ampbpreg 3289 35.56 3422 42.43 1.04 1.19

ampbsm 1875 16.55 1930 19.51 1.03 1.18

amppint2 1353 11.29 1390 11.92 1.03 1.06

ampxhdl 1059 12.90 1022 13.85 0.97 1.07

apex6 1912 11.29 1905 12.41 1.00 1.10

des 8632 16.08 8598 17.40 1.00 1.08

dflgrcbl 730 10.39 725 11.03 0.99 1.06

fconrcbl 537 11.00 578 13.88 1.08 1.26

frg2 2367 13.17 2204 14.85 0.93 1.13

k2 2755 16.87 2887 19.69 1.05 1.17

kcctlcb3 557 9.26 597 9.75 1.07 1.05

pair 3956 16.40 3978 19.41 1.01 1.18

rot 1651 19.17 1724 20.67 1.04 1.08

sbiucbl 599 15.66 641 17.47 1.07 1.12

tfaultcbl 439 6.80 483 7.92 1.10 1.16

vda 1522 13.31 1620 15.06 1.06 1.13

x3 2033 10.97 2075 12.65 1.02 1.15

aver - - - - 1.02 1.11

Table 4.1: Effect of Taking Polarities Into Account in Fanout Delay Heuristic

no polarity: fanout delay heuristics ignores polarities
polarity:
gain:
area:

delay:
aver:

fanout delay heuristics takes polarities into account
increase in area or in delay obtained by taking polarities into account
area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay of the circuit (MCNC Ub2 data in nanoseconds)
geometric average of the gains
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*

Using a Wire as a Balanced Fanout Tree A wire is the simplest balanced fanout tree

we could use to estimate the arrival time at the output of fanout nodes. Unfortunately,

the use of a wire as an delay estimator at a fanout node yields implementations of poorer

quality, as shown in Table 4.2, with a degradation of 9% in delay and 3% in area. As in the

previous paragraph, these results were obtained by using the fanout delay heuristic during

an initial pass of tree covering, and completing the implementation of the circuits by two

passes of fanout optimization, one for delay and one for area. By using a linear delay model

at a fanout point, we introduce artificial imbalances in the implementation, in particular in

the presence of nodes with large fanouts.

Conclusion In summary, we found that the best delay heuristic estimates the delay

through a fanout node using a balanced fanout tree and ignores sink polarities. This

heuristic also takes into account variations in sink loads, though we have not assessed

the effectiveness of this technique, on the ground that it is straightforward to implement

and we expect it to have only a second order effect on delay. In the results presented in the

remainder of this thesis, we apply this heuristic during the initial tree covering phase.

4.4 Global Optimization Schemes

In this section we present two iterative delay optimization algorithms. The first

algorithm, presented in section 4.4.1, simply iterates tree covering and fanout optimization.

We call it the simple iterative improvement algorithm. Experimentally this algorithm con

verges very rapidly, and the result obtained after one iteration is almost as good as the

final result. Unfortunately these experiments do not provide any information about the

optimality of the final result. To gain some insight into possible sources of suboptimality,

we introduce in section 4.4.2 a simple network for which we can compute an optimal imple

mentation under the continuous delay model of section 4.2. We simulate the effect of the

simple iterative improvement algorithm on this network under the continuous delay model.

The solution obtained by this algorithm is suboptimal, but only within a few percent of the

optimum solution. Finally, in section 4.4.3 we discuss briefly a new technique proposed by

Yoshikawa et ai [44] to perform iterative improvements that uses an different approach.

4.4.1 Iterative Improvement
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circuit logarithmic linear gain

area delay area .delay area delay

C1355 1192 24.21 1283 26.55 1.08 1.10

C1908 1358 28.24 1374 30.84 1.01 1.09

C2670 1796 20.86 1810 21.28 1.01 1.02

C3540 2857 32.88 2824 37.97 0.99 1.15

C5315 3693 29.31 3907 30.85 1.06 1.05

C6288 8272 95.47 8723 107.51 1.05 1.13

C7552 5322 27.83 5754 29.85 1.08 1.07

alu4 1977 29.24 2017 30.93 1.02 1.06

ampbpreg 3289 35.56 3330 38.52 1.01 1.08

ampbsm 1875 16.55 1995 17.52 1.06 1.06

amppint2 1353 11.29 1388 12.16 1.03 1.08

ampxhdl 1059 12.90 1064 13.46 1.00 1.04

apez6— 1912 11.29 2029 13.46 1.06 1.19

des 8632 16.08 8659 17.92 1.00 1.11

dflgrcbl 730 10.39 725 10.39 0.99 1.00

fconrcbl 537 11.00 564 12.38 1.05 1.13

frg2 2367 13.17 2440 13.42 1.03 1.02

k2 2755 16.87 2775 18.13 1.01 1.07

kcctlcb3 557 9.26 567 10.77 1.02 1.16

pair 3956 16.40 3923 20.46 0.99 1.25

rot 1651 19.17 1722 19.26 1.04 1.00

sbiucbl 599 15.66 616 16.90 1.03 1.08

tfaultcbl 439 6.80 443 8.24 1.01 1.21

vda 1522 13.31 1571 14.66 1.03 1.10

x3 2033 10.97 2207 11.42 1.09 1.04

aver - - - - 1.03 1.09

Table 4.2: Effect of Using a Logarithmic vs. Linear Delay Estimate
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logarithmic: use a logarithmic model to estimate delay through fanout node
linear: use a linear delay to estimate delay through fanout node
gain: increase in area or in delay obtained by using a linear delay estimate
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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circuit one iter three iters gain

area delay area delay area delay

C13S5 1192 24.21 1182 24.61 0.99 1.02

C1908 1358 28.24 1342 27.81 0.99 0.98

C2670 1796 20.86 1768 20.92 0.98 1.00

C3540 2857 32.88 2835 32.49 0.99 0.99

C5315 3693 29.31 3760 28.77 1.02 0.98

C6288 8272 95.47 8413 94.20 1.02 0.99

C7552 5322 27.83 5135 26.89 0.96 0.97

alu4 1977 29.24 1974 29.06 1.00 0.99

ampbpreg 3289 35.56 3283 35.23 1.00 0.99

ampbsm 1875 16.55 1917 16.15 1.02 0.98

amppint2 1353 11.29 1329 11.00 0.98 0.97

ampxhdl 1059 12.90 1069 12.54 1.01 0.97

apex6 1912 11.29 1800 11.38 0.94 1.01

des 8632 16.08 8407 16.09 0.97 1.00

dflgrcbl 730 10.39 727 10.39 1.00 1.00

fconrcbl 537 11.00 531 11.00 0.99 1.00

frg2 2367 13.17 2363 13.27 1.00 1.01

k2 2755 16.87 2778 16.82 1.01 1.00

kcctlcb3 557 9.26 553 9.28 0.99 1.00

pair 3956 16.40 3931 16.29 0.99 0.99

rot 1651 19.17 1671 18.79 1.01 0.98

sbiucbl 599 15.66 634 14.93 1.06 0.95

tfaultcbl 439 6.80 440 6.52 1.00 0.96

vda 1522 13.31 1542 13.50 1.01 1.01

x3 2033 10.97 2011 10.99 0.99 1.00

aver - _ 1.00 0.99

Table 4.3: Effect of Iterative Improvement

one iter: one iteration of tree covering and fanout optimization
three iters: three iterations of tree covering and fanout optimization
gain: gain in area or in delay obtained by using iterative improvement
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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algorithm HerativeJmprovement

foreach node v visited in topological order from inputs to outputs do {

if if node is fanin node {

apply tree covering

} else {

apply fanout optimization, taking all required times to be equal

}
do{

foreach fanout node v visited in topological order from outputs to inputs do {

apply fanout optimization

}
foreach fanin node v visited in topological order from inputs to outputs do {

apply tree covering

}
} until network delay does not decrease

foreach fanout node v visited in topological order from outputs to inputs do {

apply fanout optimization in area recovery mode

}
end HerativeJmprovement

Figure 4.5: A Simple Iterative Improvement Algorithm

The simple iterative improvement algorithm is sketched Figure 4.5. After an initial

implementation has been built with tree covering, using the heuristic of section 4.3 to

estimate delay through fanout nodes, the algorithm iterates fanout optimization and tree
m

covering. As long as fanout optimization is done in topological order from outputs to inputs,

fanout problems do not interact with each other, and the optimal solution with respect to

fanout optimization can be achieved. During tree covering however, we need to evaluate

the delay through fanout nodes. For that purpose, we use the fanout trees built at the

previous fanout optimization pass. In this case, we need to take into account the polarity

at which a signal is needed at a gate input, otherwise we obtain worse results. The results

obtained by this algorithm after three iterations are reported in Table 4.3 and compared

with the results obtained with only one iteration. The advantage of iterating is negligible

on average, with a decrease in delay of 1% for no cost in area. In some examples, the delay
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Figure 4.6: A More Complex Example

actually increases. This can be explained by the imprecision introduced by different rise

and fall delays. There is no observable decrease in delay after the third iteration.

4.4.2 Optimality of Iterative Improvement

The example of section 4.2.5 shows a suboptimal implementation that cannot

be improved by our iterative improvement algorithm. However, the heuristics we use to

compute the initial implementation finds the optimal solution after the first iteration for

this example. In other words, this example does not showany evidence that our approach is

suboptimal. In this section, we study a similar but more complex example, and detail how

the iterative improvement algorithm works on this example. Using the same delay model

and hypotheses as in section 4.2.5, and solve the minimization problem analytically.

A More Complex Example As with the previous example, we are interested in com

puting the set of points (ri,r2, r3) that are realizable for given values (a\, a2) of the arrival

times, and dominated by no other solutions, i.e. the Pareto optimal points of this delay

minimization problem. We use the circuit in Figure 4.6. To simplify the algebraic manipu-
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lations, we perform the following substitution of variables:

Ri = eri

Ai = eai

Xi = eSi

The Pareto optimum points satisfy the following equations:

Ri

R*

Rz

Ci

C2

Cz

Xi+X2

Xs -r Xq

X7 + Xs

JL_ J_ J 1_
X\ X$ X$ A\

X2 X4 X& A2
11 1 •

Xq Xf Xz -r X4
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Since the optimization problem we are trying to solve in convex, the Pareto optimal points

have a simple characterization. For each Pareto optimal point p, there is a hyperplane H

containingp such that all points satisfying the constraints (Ci, C2, C3) are on the same side

of the hyperplane H. That is, for each Pareto optimal point p there is a triplet (a, 6, c) such

that p is a solution of the following convex optimization problem:

mm

X

aRx(X) + bR2{X) + cR3(X)

d(X) = 0,1 < i < 3

Thus at a Pareto optimal point, there is a linear combination of (dR\,dR2,dRj) that is a

linear combination of [dC\,dC2, dCz). In our example, this condition is equivalent to saying

that the following matrix is of rank 2:

/ _1_ 1

xi
0

1

xi
o\

1

xi
0 1

"xi 0 1

xi

\ °
1 1 1

xi
JL

(X3+X4)' (X3+X4)3 X} J

In turn, since the Xi have a range limited to the interval [0, +00) this condition is equivalent

to the following set of equations:

X\X§X% = X2.X5A7
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X^Xq = Xs(X3 + X4)

X4X7 = X%\X$ + X4)

which is equivalent to:

X1X4 = X2X$

X3XS = Xs(xz + X4)

X4X7 = Xa(Xz + X4)

We can derive from these equations a parametric representation of the set of Pareto points

for this example. We take as parameters the following quantities:

T = —

*4

u = -L
x2

The Pareto points are characterized by the following parametrized representation:

T+l
Rx =

R2 =

R* =

U
3(2T + 1)

(3£-±-*)
3(r + 2)

The values of the intermediate variables can be rederived from the following equations:

-L = u
X

XA 3 Ui A2 )

Xs 3T Ui i2 /

Xs 3 \A2 Ax J
Xi = TX2

X3 = TX4

Xs = (l +i)*5
X7 = (1 + T)X8
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init optimum />=0.0 p=0.5 p=0.9

<*i a2 arrival arrival # iter arrival # iter arrival # iter

0.0 0.0 2.398 2.485 1 2.402 12 2.398 79

2.0 0.0 3.885 3.968 3 3.899 13 3.892 84

4.0 0.0 5.805 5.885 2 5.821 17 5.813 79

Table 4.4: Iterative Improvement vs. Optimal Assignment

init: arrival times at the primary inputs
optimum: optimum solution (derived analytically)
p = xi iterative algorithm with rate r» = 1 —p*
arrival: worst case arrival time at the primary outputs
# iter: number of iterations to reach convergence within 10 ~4

In particular, the Pareto optimal point satisfying R\ = R2 = R3 is characterized by the

following two equations:

(T+l) (IT 1 \
+4)Ui A2)U =

{IT

Application of the Iterative Algorithm We applied our iterative algorithm to this

example with three different pairs of values for the arrival times: (0,0), (2,0) and (4,0).

The results are reported in Table 4.4, under the column p = 0. In all cases, the iterative

algorithm converges very rapidly, but the solution is not optimal.

Closer inspection of the solution produced by the algorithm reveals a reason why

the algorithm does not converge towards an optimal solution. When arrival times at the

primary inputs are equal, the iterative algorithm compensates the imbalances introduced

by the long path through nodes 3 and 5 entirely at node 5, while the optimal solution

distributes the compensation of the imbalance between node 0 and node 5. A similar

phenomenon occurs with unbalanced arrival times at the primary inputs. The iterative

algorithm attempts to correct imbalances in a greedyfashion, whichis suboptimal in general.

To determine whether the greedy compensation of imbalances is the only source

of suboptimality in the iterative algorithm, we performed the following experiment. We

modified the iterative algorithm to limit the rate r at which imbalances are corrected during

a giveniteration. A rate of r = 50% would mean that only half of the imbalance is corrected
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by the algorithm. We modified the iterative algorithm to use a rate of r» = (1 - pl) at the

ith iteration, where 0 < p < 1. The original algorithm corresponds to the special case

of p = 0. By decreasing r towards 0, the iterative algorithm is given more opportunity

to distribute imbalance corrections properly throughout the network, at the cost of more

iterations. The results for p = 0.0, p = 0.5 and p = 0.9 are given in Table 4.4.

The results obtained with p = 0.0 confirm our earlier experimental results that the

simple iterative improvement algorithm converges very rapidly. In all cases, the results for

p = 0.0 after only one iteration (our default iterative improvement algorithm) are within

2.5% of the optimum. By increasing p, we were able to improve further the quality of the

final result at the cost of more iterations to reach a good quality result. For p = 0.9, the

results after one iteration are only within 27% of the optimum, while the results after 100

iterations are within 0.2% of the optimum in all three examples.

These results provide, in a limited way, some solid evidence of the effectiveness of

our simple iterative improvement algorithm, and confirmation that one iteration is sufficient

to obtain good quality results.

4.4.3 Criticality Based Iteration

Yoshikawa et al. [44] have suggested a different technique to perform iterative

improvement, based on the criticality of nodes. Their approach borrows the notion of e-

critical subnetwork from Singh et al. [41]. The e-critical subnetwork of a Boolean network,

for a given value of € > 0, is the subnetwork composed of the nodes and edges whose slack is

within €of the slack on a critical path. If e = 0, the e-critical subnetwork is simply composed

of the set of critical paths of the network. If all paths of the e-critical subnetwork are sped

up by some constant 6, we can only guarantee that the circuit is sped up by min(e,S). The

choice of 6 is a tradeoff between the amount of computation to be done to optimize the

network and the amount of improvement to be expected at each iteration.

Their algorithm alternates between two optimizations. The first optimization com

putes a minimum weight node cutset through an e-critical subnetwork, where the weights

are used to direct the cutset on nodes with higher potential for delay reduction. The sec

ond optimization computes a minimum weight cutset across a region outside the e-critical

subnetwork. In their approach, a node groups together a fanin node and the fanout node

connected to its outputs.
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Their main result is that by alternating between cutsets chosen within an e-critical

subnetwork and cutsets taken outside an e-critical subnetwork, they obtain better results

than by optimizing cutsets only chosen within an e-critical subnetwork. In their exper

iments, they obtained 36% improvement by alternating cutsets vs. 28% by using only

critical cutsets. The reason why this phenomenon occurs can be explained as follows in

the case of fanout optimization. A non-critical path may have a slack of 0.5 units of delay,

which is enough to make it non-critical, but may be insufficient to allowa different selection

of a fanout tree that would make the critical path faster. By optimizing the non-critical

path, we may be able to increase the slack to 1 unit of delay, which may be sufficient to

allow the selection of a different fanout tree that would make the critical path faster. A

similar phenomenon can also occur in the case of fanin optimization.

Their results provide an additional justification of our global approach to iterative

improvement. By isolating critical subnetworks and concentrating the effort of the local

optimizers on critical nodes, global optimization algorithms produce lower quality results

because they do not exploit fully the slack that could be made available on non critical parts

of the circuit. Our approach, which does not distinguish at all between critical and non

critical paths, has, in addition to its simplicity, the advantage of avoiding this problem. Its

only drawback is that it may optimize more than necessary; but we have provided enough

evidence in this work that area reclamation after delay optimization can be effective to

maintain area increases within reasonable limits.

4.5 Beyond Tree-Based Optimization

In the previous section, we provided some evidence that we have reached the

limits of the reductions we can obtain with tree-based delay optimization algorithms. In

this section, we propose two additional delay optimization techniques that do not respect

tree boundaries but are nevertheless simple modifications of tree-based delay optimization

algorithms.

The first of these optimizations allows the duplication of fanin trees in order to

provide the output of a fanin node in both polarities. This is achieved by implementing

a fanin node with the fastest tree independently for each polarity. This optimization is

discussed in section 4.5.1. We have implemented a simple version of this optimization and

we provide experimental results.
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The second of these optimizations, presented in section 4.5.2 allows the overlap

of the implementation of fanin trees as shown in Figure 4.2 in order to reduce delay. This

optimization can decrease delay significantly, but may lead to substantial area increases.

4.5.1 Phase Optimization by Tree Duplication

We showed in section 4.3 the role of phase assignment on the quality of tree-based

delay optimization. By biasing tree covering in favorof a givenpolarity, wecould slowdown

a circuit by an average 11%. By using a heuristic that attributes the same arrival times

to signals of different polarities, we essentially make sure that the best phase is used for

any given tree in the absence of any accurate information concerning the arrival times of

signals. If all signalsat the output of a fanout node are required with the same phase, there

is no problem. This is not the case in general. If a signal is required under both polarities,

at least one critical sink will receive the signal delayed by one inverter.

The problem occurs because we limit ourselves to one covering per fanin node. If

we allow tree duplication, we can cover each fanin node twice, each cover producing the

signal in a different polarity. These two trees may overlap and share some logic if there is

no advantage in duplicating them further. This optimization has two advantages:

• in the case of small fanouts with signals needed in different polarities, it can remove

one inverter delay if both trees can produce the signal with similar arrival times.

• for large fanouts, it decreases the need for deeper fanout trees by providing an addi

tional source that can provide signals to one half of the sinks.

On the other hand, this optimization has two potential drawbacks: it may be wasteful in

area and it doesnot preservetestability [38]. Unnecessary logicduplication can be controlled

easily using the same technique that we use during fanout optimization. In the first pass

of fanout optimization, we select the best solution at each node, which may require the use

of tree duplication on the source node. In the second pass of fanout optimization, the area

recovery pass, we can eliminate one cover of the source node if this transformation does

not slow down the circuit. Removing redundancies is a more time consuming operation,

but can only decrease delay and area, provided that there are no false paths in the circuit

[33, 25],

We have implemented a simple version of this optimization. Our implementation

has the following limitations: it does not take into account the cost of tree duplication in
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circuit nodup dup gain

area delay area delay area delay

C1355 1192 24.21 1555 22.54 1.30 0.93

C1908 1358 28.24 1553 26.40 1.14 0.93

C2670 1796 20.86 1885 20.38 1.05 0.98

C3540 2857 32.88 3024 33.22 1.06 1.01

C5315 3693 29.31 4086 28.69 1.11 0.98

C6288 8272 95.47 9485 92.66 1.15 0.97

C7552 5322 27.83 5894 27.02 1.11 0.97

alu4 1977 29.24 2052 30.55 1.04 1.04

ampbpreg 3289 35.56 3333 34.90 1.01 0.98

ampbsm 1875 16.55 2004 16.05 1.07 0.97

amppint2 1353 11.29 1357 11.48 1.00 1.02

ampxhdl 1059 12.90 1128 12.35 1.07 0.96

apex6 1912 11.29 1951 10.73 1.02 0.95

des 8632 16.08 9047 16.15 1.05 1.00

dflgrcbl 730 10.39 755 9.19 1.03 0.88

fconrcbl 537 11.00 587 10.62 1.09 0.97

frg2 2367 13.17 2445 13.24 1.03 1.01

k2 2755 16.87 2958 16.12 1.07 0.96

kcctlcb3 557 9.26 563 8.47 1.01 0.91

pair 3956 16.40 4047 16.24 1.02 0.99

rot 1651 19.17 1651 18.73 1.00 0.98

sbiucbl 599 15.66 609 15.19 1.02 0.97

tfaultcbl 439 6.80 439 6.80 1.00 1.00

vda 1522 13.31 1618 13.28 1.06 1.00

x3 2033 10.97 2035 10.57 1.00 0.96

aver - - - - 1.06 0.97

Table 4.5: Effect of Tree Duplication

nodup: tree covering and fanout optimization without tree duplication
dup: tree covering and fanout optimization with tree duplication
gain: gain in area or in delay obtained by using tree duplication
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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terms of extra fanout loads at the inputs of a fanin node; it uses a simple-minded allocation

of sinks to the two sources made available by tree duplication; and it does not perform

redundancy removal after tree duplication.

Given two sources, 5 and ~B, providing the same signal under differing polarities,

for a fanout node, we perform fanout optimization as follows. We partition the sinks into

two sets: the set P of sinks with positive polarity, and the set N of sinks with negative

polarity. We try all 4 possible assignments of P and JV to S and ~B and perform fanout

optimization in all 4 cases; i.e. weconsider implementing the problemwith S alone, S alone,

or both 5 and 5. The best solution with smallest delay is retained. In case of equality, the

solution which uses only one source is chosen and one tree is discarded.

We have implemented this optimization, and report the results of our experiments

in Table 4.5. We achieved an averagedelay reduction of 3% for a average area increase of

6%. Additional delay reductions should be achievable by using a better sink assignment

algorithm, and a more flexible tree duplicationpolicy, allowing in particular the duplication

of sources of the same polarity.

4.5.2 Allowing Overlaps between Trees

Wegavein Figure 4.1 an exampleof a circuit that couldbe mapped more efficiently

if overlaps between trees were allowed. Howeverit is not clear how much delay improvement

could be obtained in general by allowingfanin trees to overlap. We performed an experiment

to answer this question.

Since misII tree covering algorithm is based on direct pattern matching, it is a

simple matter to modify it to allow overlaps between trees. If overlaps between trees are

allowed, the number and position of multiple fanout points can be modified arbitrarily

by the covering algorithm. If a point p is originally a multiple fanout point, we predict

the arrival time at p using the heuristics of section 4.3. Otherwise, the arrival time at p is

predicted as if p had a fanout of 1, even if its fanout may increase due to an overlap between

trees.

The effect of allowingtree overlaps is reported in Table 4.6. The reduction in delay

obtained by allowing tree overlaps is significant: an average of 9%. However, as predicted,

this reduction in delay comes with a heavy price in area: an average increase of 44%. These

results indicate that better delays can be achieved by relaxing the constraints imposed by
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circuit no overlap overlap gain

area delay area delay area delay

C1355 1192 24.21 1743 21.96 1.46 0.91

C1908 1358 28.24 2042 25.69 1.50 0.91

C2670 1796 20.86 2693 17.88 1.50 0.86

C3540 2857 32.88 4461 31.04 1.56 0.94

C5315 3693 29.31 6108 26.50 1.65 0.90

C6288 8272 95.47 15083 86.18 1.82 0.90

C7552 5322 27.83 8959 26.19 1.68 0.94

alu4 1977 29.24 3289 29.10 1.66 1.00

ampbpreg 3289 35.56 5026 30.10 1.53 0.85

ampbsm 1875 16.55 2702 14.62 1.44 0.88

amppint2 1353 11.29 1710 9.49 1.26 0.84

ampxhdl 1059 . 12.90 1489 11.46 1.41 0.89

apex6 1912 11.29 2288 10.53 1.20 0.93

des 8632 16.08 14254 15.88 1.65 0.99

dflgrcbl 730 10.39 901 9.53 1.23 0.92

fconrcbl 537 11.00 669 8.77 1.25 0.80

frg2 2367 13.17 3183 11.51 1.34 0.87

k2 2755 16.87 4146 15.01 1.50 0.89

kcctlcb3 557 9.26 740 8.17 1.33 0.88

pair 3956 16.40 5214 15.58 1.32 0.95

rot 1651 19.17 2168 17.30 1.31 0.90

sbiucbl 599 15.66 873 15.35 1.46 0.98

tfaultcbl 439 6.80 527 6.57 1.20 0.97

vda 1522 13.31 2390 11.96 1.57 0.90

x3 2033 10.97 2650 10.72 1.30 0.98

aver - - - - 1.44 0.91

Table 4.6: Effect of Allowing Tree Overlaps

no overlap: tree covering and fanout optimization without tree overlaps
overlap
gain:.
area:

delay:
aver:

tree covering and fanout optimization allowing tree overlaps
gain in area or in delay obtained by allowing tree overlap
area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay of the circuit (MCNC Ub2 data in nanoseconds)
geometric average of the gains
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tree-based delay optimization, but more work is required to control the penalty in area.

Combining tree overlap with the tree duplication algorithm of section 4.5.1 has no effect,

since allowing overlaps allows in particular the duplication of trees in different phases.

Limiting Overlaps It is possible to reduce the increase in area by limiting the overlap

between trees. A simple way to enforce this limit is to allow overlaps to take place only

over nodes that have a fanout of K or less, for some constant K. This simple technique

is an efficient way to reclaim area because most of the delay reduction can be obtained by

allowing overlaps over nodes with small fanouts, and a large fraction of the area increase is

due to overlaps allowed over nodes with large fanouts. The results of allowing tree overlaps

only on nodes with five or fewer fanouts is reported in Table 4.7. By limiting overlaps, we

achieved an averagedelay reduction of 8% for a cost in area of 28%.

4.6 Conclusion

We have provided an abstract framework for understanding tree-based delay opti

mization, and formulated the tree-based delay optimization problem as a convex optimiza

tion problem. Unfortunately, we do not have an analytic formula for the functions to be

optimized. Also With the number of variables in the problem being usually large even for

medium size circuits, it seems impractical to use this formulation directly. Instead we pro

posed a simple iterative technique that is guaranteed to produce solutions that cannot be

improved by local transformations of the circuit. Unfortunately, we were able to exhibit a

class of circuits showing that locally optimum implementations with respect to local circuit

transformations can be arbitrarily far removed from the optimum solution. Even though

the physical limitations of our model make this impossible in practice outside a fixed range

of values, these examples strongly suggest that algorithms based on iterative improvement

by local transformations are very limited in their optimization power. Finding an efficient

optimization technique that would exploit directly the convexity of the search space remains

an open problem.

On the practical side, we have shown experimentally the effect of heuristics to

estimate the arrival time at a multiple fanout point; in particular, we have shown that

these heuristics should give at the first application of tree covering the same delay for both

signal polarities, while the actual delay value is less critical to the quality of the result. We
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no ov<

overlap-5
gain:
area:

delay:
aver:

circuit no overlap overlap-5 gain

area delay area delay area delay

C1355 1192 24.21 1967 22.20 1.65 0.92

C1908 1358 28.24 1890 26.59 1.39 0.94

C2670 1796 20.86 2400 20.53 1.34 0.98

C3540 2857 32.88 3799 31.51 1.33 0.96

C5315 3693 29.31 5494 26.56 1.49 0.91

C6288 8272 95.47 14534 87.28 1.76 0.91

C7552 5322 27.83 8254 26.98 1.55 0.97

alu4 1977 29.24 2542 28.24 1.29 0.97

ampbpreg 3289 35.56 4255 30.45 1.29 0.86

ampbsm 1875 16.55 2229 14.24 1.19 0.86

amppint2 1353 11.29 1473 9.92 1.09 0.88

ampxhdl 1059 12.90 1244 11.82 1.17 0.92

apex6 1912 11.29 2213 10.23 1.16 0.91

des 8632 16.08 9869 16.12 1.14 1.00

dflgrcbl 730 10.39 879 9.41 1.20 0.91

fconrcbl 537 11.00 667 9.55 1.24 0.87

frg2 2367 13.17 2437 11.95 1.03 0.91

k2 2755 16.87 3891 15.10 1.41 0.90

kcctlcb3 557 9.26 684 8.09 1.23 0.87

pair 3956 16.40 4565 15.30 1.15 0.93

rot 1651 19.17 1997 17.17 1.21 0.90

sbiucbl 599 15.66 820 15.00 1.37 0.96

tfaultcbl 439 6.80 527 6.57 1.20 0.97

vda 1522 13.31 2057 12.20 1.35 0.92

x3 2033 10.97 2312 10.62 1.14 0.97

aver - - - - 1.28 0.92

Table 4.7: Effect of Limiting Tree Overlaps

erlap: tree covering and fanout optimization without tree overlaps
tree overlaps over nodes with five or fewer fanouts
gain in area or in delay obtained by allowing limited tree overlaps
area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay of the circuit (MCNC Hb2 data in nanoseconds)
geometric average of the gains
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delay
minimum area

: minimum area + fanout

2.0

minimum delay + fanout

1.0

minimum delay + overlap + fanout

area

1.0 2.0

Figure 4.7: Area / Delay Tradeoff

have also proposed to use logic duplication to provide a signal in both phases at a multiple

fanout point and shown that this technique can lead to additional delay reductions at little

cost in area. More work needs to be done to preserve the testability of the circuit during

this transformation.

In total, we have provided severalmethods to perform technology mapping, which

provide a wide tradeoff between delay and area:

• minimum area tree covering with no fanout optimization.

• minimum area tree covering with fanout optimization.

• minimum delay tree covering with fanout optimization.

• minimum delay tree covering with limited overlaps and fanout optimization.

The average effect of these four methods in indicated in Figure 4.7. In area, all data are

relative to the minimum area mapping. In delay, the data relative the minimum delay tree

covering with overlaps and fanout optimization.



Chapter 5

Technology Independent Delay

Optimizations

Monde nouveau, tu m'appartiens!
Sois done a moi, 6 beau pays!

Monde nouveau, tu m'appartiens!
Sois done a moi!

— GIACOMO MEYERBEER, L'Africaine

5.1 Introduction

In the previous chapter, we presented severaltechniques for the efficient integration

of tree covering and fanout optimization and provided empirical evidence of the efficiency

of some of these methods. The purpose of this chapter is to examine the effect of technology

independent logictransformationson circuit delay. We do not introduce any new technology

independent algorithms to reduce delay. The originality and interest of this study comes

from the fact that we now have at our disposal an efficient technology mapper on which

we can rely to estimate delay. Similar data previously reported in the literature are usually

of limited accuracy because they do not take into account the corrective effect of powerful

optimization techniques such as fanout optimization.

The first step of this empirical study is to measure the effect of literal count min

imization on circuit delay and area. Literal count minimization has been used as the main

objective of technology independent optimization in logic synthesis because it correlates

well with final circuit area [31]. The effect of literal count minimization is to simplify and
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factorize the logic. By eliminating logic, simplification helps both in terms of delay and in

terms of area. However factorization usually trades off delay for better area. We present in

section 5.2 empirical data that confirms that literal count minimization has unpredictable

effects on delay.

Since our objective is to minimize delay more than area, we should control the

use of factorization, and concentrate our efforts on logic simplification instead. We have

not explored fully the modification of the many technology independent transformations

available in a logic synthesis tool such as misll, but we examine in section 5.3 the effect

of a controlled use of a few of these transformations that could lead to a substantial area

reduction at a much smaller cost in delay than uncontrolled literal count minimization.

However if delay is our principal objective, we should be able to produce fast

circuits simply by flattening the logic. To flatten the logic, we collapse the Boolean network

into a graph with only one level of nodes. Each of the nodes has a function associated with

it that can be represented in sum-of-product form. In other words, collapsing to one level

of nodes can be seen as collapsing to two levels of logic if no fanin or fanout limitation is

enforced. Collapsing only helps in reducing delay for a certain set of circuits. For many

circuits, collapsing introduces such a large amount of logic duplication that even delay

increases. Nevertheless, when it applies, collapsingis a simple and very efficient technology

independent delay optimization technique. We discuss the effect of collapsing in more detail

in section 5.4.

Since network collapsing is such an effective technique at reducing circuit delay, it

is worth investigating whether partial collapsing can be used when total collapsing is not

practical. To decide which parts of a network should be collapsed, we use an algorithm

developed by Lawler et al. [28]. Lawler's algorithm can be viewed as the technology

independent analog of the extension of tree covering allowing overlaps between trees that

we introduced in section 4.5.2. The main drawback of this algorithm is that it tends to

increase area, but some of this area can be recovered by using the controlled literal count

reduction techniques presented in section 5.3.

There has been some previous work in the areaof logic restructuring for delay. The

most notable effort in this direction was speedup, by Singh et al. [41], which performs local

collapsing and factorization in order to reduce the number of levels of logic a signal has to

traverse while controlling the increase in area incurred by collapsing. The work by Fishburn

[15] is based on a similar idea, though the restructuring is performed differently. Another
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technique, that is more efficient in terms of area but more computationally intensive, was

proposed by Chen and Muroga [12]. This technique consists in exploiting the observability

don't care set at a node to remove connections on the critical path. Berman et al. propose

similar methods [6]. We present our adaptation of Lawler's algorithm in section 5.5 and

compare it to speedup.

In the remainder of this section, we use the technology mapper to measure the area

and delay of a circuit. For technology mapping, we use tree covering in delay minimization

mode, followed by fanout optimization. We use the heuristic of section 4.3 but we do not

allow overlaps between tree covers.

5.2 Effect on Delay of Minimizing Literal Count

We measured the effect of literal count minimization on circuit area and circuit

delay after technology mapping. The results are reported in Table 5.1. All circuits were

optimized using mis II standard algebraic script [9] except C2670, which was optimized

manually. As is apparent in the table, the circuits obtained from Intel (dflgrcbl, f conrcbl,

kcctlcb3, sbiucbl, tfaultcbl) were already optimized, and little gain was achieved for

this circuits. On average, minimizing literal count decreased area by 28% for no cost in

delay. However, a more careful inspection of the data indicates that the effect on delay of

literal count minimization is unpredictable, varying from a decrease of 22% to an increase

of 26%, though the larger increases in delay correspond to significant decreases in area.

Obviously the techniques used in misII to reduce literal count are quite powerful.

Unfortunately if they are used without discrimination, they may lead at times to substantial

delay increases. This unpredictable behavior is undesirable and more work needs to be done

to control the effect on delay of these optimizations.

5.3 Performance-Oriented Logic Simplification

A simple way to reduce circuit area without having to pay for an increase in delay

is to reduce the literal count by using simplification only. A better way would be to allow,

in addition to simplification, factorization along non critical paths. However, to perform

this optimization reliably, we need a good technology independent delay estimator, and

none is available at present. We have experimented with a simple mis11 script, shown in
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circuit paw opt gam

area delay area delay area delay

C1355 1764 26.14 1192 24.21 0.68 0.93

C1908 1835 26.71 1358 28.24 0.74 1.06

C2670 2399 24.76 1796 20.86 0.75 0.84

C3540 3513 35.87 2857 32.88 0.81 0.92

C5315 5285 31.13 3693 29.31 0.70 0.94

C6288 8178 114.62 8272 95.47 1.01 0.83

C7552 7326 28.75 5322 27.83 0.73 0.97

alu4 2107 27.76 1977 29.24 0.94 1.05

ampbpreg 4607 45.36 3289 35.56 0.71 0.78

ampbsm 3840 19.32 1875 16.55 0.49 0.86

amppint2 3347 9.48 1353 11.29 0.40 1.19

ampxhdl 1990 11.42 1059 12.90 0.53 1.13

apex6 1963 10.98 1912 11.29 0.97 1.03

des 15166 16.15 8632 16.08 0.57 1.00

dflgrcbl 732 9.08 730 10.39 1.00 1.14

fconrcbl 537 11.00 537 11.00 1.00 1.00

frg2 4265 10.90 2367 13.17 0.55 1.21

k2 7616 13.34 2755 16.87 0.36 1.26

kcctlcb3 555 9.26 557 9.26 1.00 1.00

pair 4347 18.03 3956 16.40 0.91 0.91

rot 1758 19.44 1651 19.17 0.94 0.99

sbiucbl 634 15.97 599 15.66 0.94 0.98

tfaultcbl 433 7.04 439 6.80 1.01 0.97

vda 3799 11.58 1522 13.31 0.40 1.15

x3 2627 9.30 2033 10.97 0.77 1.18

aver - - - - 0.72 1.00

Table 5.1: Effect of Literal Count Minimization

raw: minimum delay technology mapping of unoptimized circuits
opt: minimum delay technology mapping of circuits optimized by misll
gain: gain in area or in delay obtained by literal count minimization
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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simplification script

sweep

decomp -q

eliminate -1100 1

simplify -1

127

Figure 5.1: misll Logic Simplification Script

Figure 5.1. This script applies several commands [9, 8]:

• sweep: this command eliminates nodes with no fanin or no fanout. It simply removes

from a network unnecessary nodes.

• decomp -q: this command factorizes nodes in a simple way with no concern for crit

icality. It is only used to break large nodes into smaller ones so that the other com

mands can run in a reasonable amount of cpu time.

• eliminate -1 100 -1: this command collapses a node into its fanout. The collapsing

is only done if the node has a single fanout, and if the size of the resulting node does

not exceed 100 cubes. The role of this command is to ensure that nodes are large

enough for simplification to have some effect, but not too large so that simplification

takes a reasonable amount of cpu time.

• simplify -1: this command runs espresso [7, 37], a two-level logic minimizer. The

minimizer is given some information about the structure of the network, that allows it

to simplify the logic function at a node in the context of the other nodes in the network.

In particular,when simplifying a node v, the minimizer is allowed to change the inputs

of v if it simplifies the logic function at v. The -1 option limits the minimizer to using

as inputs of v only nodes that are closer to the primary inputs than v. This restriction

guarantees that the number of levels of logic in the network is not increased by the

minimizer.

We measured the effect of the simple simplification script of Figure 5.1 on circuit area and

delay after technology mapping. The results are reported in Table 5.2. The average effect of

the simple simplificationscript is an areareduction of 9% and a delay reduction of 2%. The
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circuit raw simplified gain

area delay area delay area delay

C1355 1764 26.14 1274 20.45 0.72 0.78

C1908 1835 26.71 1796 26.13 0.98 0.98

C2670 2399 24.76 2079 23.78 0.87 0.96

C3540 3513 35.87 3339 33.25 0.95 0.93

C5315 5285 31.13 4471 30.65 0.85 0.98

C6288 8178 114.62 7016 108.04 0.86 0.94

C7552 7326 28.75 6294 27.06 0.86 0.94

alu4 2107 27.76 1992 28.46 0.95 1.03

ampbpreg 4607 45.36 4412 43.89 0.96 0.97

ampbsm 3840 19.32 2945 16.97 0.77 0.88

amppint2 3347 9.48 3101 10.68 0.93 1.13

ampxhdl 1990 11.42 1542 11.78 0.77 1.03

apex6 1963 10.98 1956 11.25 1.00 1.02

des 15166 16.15 14430 16.19 0.95 1.00

dflgrcbl 732 9.08 740 9.08 1.01 1.00

fconrcbl 537 11.00 534 11.00 0.99 1.00

frg2 4265 10.90 3388 12.40 0.79 1.14

k2 7616 13.34 7620 13.62 1.00 1.02

kcctlcb3 555 9.26 555 9.26 1.00 1.00

pair 4347 18.03 4002 16.91 0.92 0.94

rot 1758 19.44 1671 19.67 0.95 1.01

sbiucbl 634 15.97 626 15.67 0.99 0.98

tfaultcbl 433 7.04 433 7.04 1.00 1.00

vda 3799 11.58 3511 11.55 0.92 1.00

x3 2627 9.30 2433 9.51 0.93 1.02

aver - - - - 0.91 0.98

Table 5.2: Effect of Simplification without Factorization

raw: minimum delay technology mapping of unoptimized circuits
simplified: minimum delay technology mapping of simplified circuits
gain: gain in area or in delay obtained by simplifying circuits
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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fiuctuations in delay are less severe than with the standard script, varying from a reduction

of 22% to an increase of 14%. The average reduction in area obtained by simplification

alone is roughly a third of the reduction in area obtainable with the standard script. This

is a heavy price to pay for a more controlled effect on delay.

5.4 Effect of Collapsing to Two Levels of Logic

A simple way to improve the performance of a circuit is to collapse it to two

levels of logic. Unfortunately this technique has its limitations: for a large class of circuits,

the area penalty is too large for collapsing to be practical. Nevertheless in some cases

collapsing yields significant delay reductions for an acceptable increase in area. We were

able to collapse 16 out of our 25 benchmark circuits. On each of the collapsed circuits we

run misll simplify -1 command to simplify the logic at each node after collapsing. The

results after technology mapping are reported in Table 5.3.

5.5 Partial Collapsing for Delay Minimization

5.5.1 Lawler's Algorithm

Some circuits cannot be collapsed into two levels of logic without a large area

penalty. Howeverit is often possible to collapse these networks partially in order to reduce

delay at a more moderate cost in area. To perform partial collapsing, we need an algorithm

that determines which groups of nodes are to be collapsed into single nodes in order to

decrease delay the through the network.

Unfortunately we do not have at out disposal a reasonably accurate technology

independent delay model, such as the one proposed by Wallace et al. [43]. As a rough

measure of delay, we use the number of logic levels a signal has to cross. To limit the

inaccuracy of this delay model, we only apply it after having decomposed a network into

simple gates. These simple gates are any of the four 2-input gates that can be represented

as a 2-input NAND gate with possibly inverters at the inputs, representing one of the four

following Boolean functions: a + b, a + 6, a + 6 or a + b.

To form the groups, we use a clustering algorithm due to Lawler that minimizes

the number of levels of logic in the network after collapsing of the groups subject to the

constraint that each group is formed of at most K nodes. This algorithm generates possibly
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circuit opt collapsed gain

area delay area delay area delay

C1355 1192 24.21 * * - -

C1908 1358 28.24 * * - -

C2670 1796 20.86 * * - -

C3540 2857 32.88 * * - -

C5315 3693 29.31 * * - -

C6288 8272 95.47 * * - -

C7552 5322 27.83 * * - -

alu4 1977 29.24 3595 14.22 1.82 0.49

ampbpreg 3289 35.56 4055 10.55 1.23 0.30

ampbsm 1875 16.55 3352 9.49 1.79 0.57

amppint2 1353 11.29 3263 9.56 2.41 0.85

ampxhdl 1059 12.90 3770 11.39 3.56 0.88

apex6 1912 11.29 3011 9.56 1.57 0.85

des 8632 16.08 * * - -

dflgrcbl 730 10.39 915 7.23 1.25 0.70

fconrcbl 537 11.00 875 7.73 1.63 0.70

frg2 2367 13.17 7128 10.64 3.01 0.81

k2 2755 16.87 7902 12.08 2.87 0.72

kcctlcb3 557 9.26 1126 6.39 2.02 0.69

pair 3956 16.40 19143 14.22 4.84 0.87

rot 1651 19.17 * * - -

sbiucbl 599 15.66 1830 11.26 3.06 0.72

tfaultcbl 439 6.80 713 5.53 1.62 0.81

vda 1522 13.31 4544 9.95 2.99 0.75

x3 2033 10.97 3027 9.56 1.49 0.87

aver - - - - 2.15 0.70

Table 5.3: Effect of Collapsing to Two Levels of Logic

opt: minimum delay technology mapping of circuits optimized by misll
collapsed: minimum delay technology mapping of the collapsed circuits
gain: gain in area or in delay obtained by collapsing circuits
area: area of the circuit (MCNC Ub2 data divided by common divisor 464)
delay: delay of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
*: circuit not collapsible to two levels of logic
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algorithm Lavjler-clustering.algorithm

{ /* labeling step */

foreach node v visited in topological order from inputs to outputs {

if/anin(v) = 0 then L= 0else L= ma3Ctt6/antn(v) label(u)
k —|{u, u € transitiveJanin{y), label(u) = L}\

ifk>K label(v) = L + 1 else label(v) = X

}

}
{ /* clustering step */

foreach node v visited in topological order from outputs to inputs {

if fanoui(v) = 0 then L—oo else L= ™inu6yanoui/ *label(u)
if label(v) < L {

create a new cluster c

c = {-u} U{u € irans#£ue_/amn(t>), Ja6e/(u) = label(v)}

}

}
{ /* collapsing step */

foreach cluster c {

root(c) = {v€c, label(v) < max.u(.fanou1{v) label(u)}
foreach v € root(c) {

collapse into v all nodes in c Dtransitive-fanin{v)

}

}

}
end Lawler-dustering-algorithm

Figure 5.2: Lawler's Algorithm
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Figure 5.3: Example of Clustering

overlapping clusters, and clusters that have more than one output, requiring extra logic

duplication during collapsing. For these reasons, this clustering algorithm usually increases

circuit area. In the next subsection, we describe Lawler's algorithm in more detail.

Lawler's algorithm determines a minimum delay clustering of a network under the

constraint that each cluster does not exceed a global capacity constraint K. The delay

through a cluster is assumed to be the same for all clusters, and the size of a cluster is

the number of nodes it contains. Lawler's algorithm can handle more general clustering

problems, but the present formulation is sufficient for our purpose. Lawler's algorithm

proceeds in two steps: a labeling step and a clustering step. We have added a third step to

do the collapsing of the clusters. The algorithm is described in Figure 5.2.

The labeling step proceeds as follows. We visit the nodes in topological order, from

inputs to outputs. For each node v, we compute the largest label L of any of its fanins. If

v does not have any fanin, L is taken to be equal to 0. We then compute the number k of

nodes in the transitive fanin of t; that are of label L. If k exceeds K, the label of v is set

to be L + 1, otherwise it is set to be L. In the clustering step the nodes are visited in the

reverse order, from outputs to inputs. If the label of a node v is less than the labels of all the
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nodes in its fanout, a new cluster is created, containing v and all the nodes in the transitive

fanin of v with the same label as v. The collapsing step collapses the nodes of a cluster

together. Some duplication is introduced within a cluster if a cluster has several outputs.

One node is created per output, and every node of cluster contained in the transitive fanin

of two more output nodes of a cluster is duplicated. Duplicating is also introduced across

clusters, since a node may belong to several clusters as shown in Figure 5.3.

An example (from [28]) shows the application of the algorithm in Figure 5.3. In

that example K, the cluster size limit, is set to 3. The labels are indicated inside the nodes

and the clustering is shown by endrclings. As can be seen in this example, the algorithm

may replicate some nodes. The labeling and dustering parts of the algorithm operates in

0(KN2), where N is the total number of nodes in the network and K the maximum size

of a cluster. The time complexity of the collapsing part is dependent on the logic function

obtained at each node.

As can be observed in Figure 5.2 and Figure 5.3, Lawler's algorithm bears a strong

similarity to tree covering with overlaps. The labeling step is the analog of the forward

dynamic programming pass of tree covering. The dustering step is the analog of the gate

selection pass of tree covering. In both algorithms, the nodes of the network are visited

in the same order. In other words, the Lawler's dustering algorithm can be thought as a

technology independent tree covering algorithm allowing overlaps, and in that sense is a

natural extension of the algorithms we presented in the previous chapter. It suffers from

the same problem as the tree covering algorithm allowing overlaps, as it often causes large

area increases. More work needs to be done in this area to determine whether these area

increases are necessary to reduce delay.

5.5.2 Effect of Clustering on Delay

In this section we examine the effect of the clustering algorithm on our set of

benchmarks. We apply the dustering algorithm using the script of Figure 5.4. Most of the

commands in this script have been introduced earlier. The new commands are:

• techjdecomp -o 2: this command decomposes the network into 2-input NAND gates

possibly with inverters at one or both of the inputs.

• resub -a -d: applied to a network decomposed into 2-input NAND gates, this com

mand detects if two copies of the same node are present in the network. If it is the
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clustering script {

sweep

decomp -q

tech_decomp -o 2

resub -a -d

sweep

reduce.depth -S 8

eliminate -1

simplify -1

}

Figure 5.4: misll Clustering Script

speed-up script {

sweep

decomp -q

speed-up -d 6 -m unit

}

Figure 5.5: misll Speed-up Script

case, one copy is removed and the fanout of the remaining node is increased by the

fanout of the removed node.

• reduce.depth -S 8: this command performs a dustering and a collapseof the clusters

using Lawler's algorithm. The maximum duster size is set to 8. The actual cluster size

used in the smallest duster size with which the algorithm can get the same number of

logic levels as with a cluster size limit of 8. Since the number of logic levels can only

decrease as the cluster size limit is increased, we can find the smallest cluster size for

a given number of logic levels by binary search. In addition, the search only needs to

execute the labeling step of the clustering algorithm and is thus very fast.

The results of clustering on area and dday of drcuits optimized for minimum
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circuit opt clustered gain

area delay area delay area delay

C1355 1192 24.21 1597 20.19 1.34 0.83

C1908 1358 28.24 1743 25.97 1.28 0.92

C2670 1796 20.86 2517 19.40 1.40 0.93

C3540 2857 32.88 4856 30.29 1.70 0.92

C5315 3693 29.31 5703 28.02 1.54 0.96

C6288 8272 95.47 10811 77.43 1.31 0.81

C7552 5322 27.83 8000 24.19 1.50 0.87

alu4 1977 29.24 2929 27.66 1.48 0.95

ampbpreg 3289 35.56 4703 20.67 1.43 0.58

ampbsm 1875 16.55 2693 13.25 1.44 L 0.80

amppint2 1353 11.29 1704 9.48 1.26 0.84

ampxhdl 1059 12.90 1389 11.65 1.31 0.90

apex6 1912 11.29 2559 10.44 1.34 0.92

des 8632 16.08 11992 17.39 1.39 1.08

dflgrcbl 730 10.39 879 10.18 1.20 0.98

fconrcbl 537 11.00 669 9.32 1.25 0.85

frg2 2367 13.17 2955 10.56 1.25 0.80

k2 2755 16.87 4857 14.48 1.76 0.86

kcctlcb3 557 9.26 853 6.57 1.53 0.71

pair 3956 16.40 5396 15.17 1.36 0.92

rot 1651 19.17 2169 16.05 1.31 0.84

sbiucbl 599 15.66 917 14.41 1.53 0.92

tfaultcbl 439 6.80 562 5.65 1.28 0.83

vda 1522 13.31 2301 12.32 1.51 0.93

x3 2033 10.97 2510 10.54 1.23 0.96

aver - - - 1.39 0.87

Table 5.4: Effect of Clustering with a Maximum Cluster Size of 8
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opt: minimum dday technology mapping of drcuits optimized by misll
clustered: minimum delay technology mapping of the clustered circuits
gain: gain in area or in dday obtained by clustering drcuits
area: area of the drcuit (MCNC Ub2 data divided by common divisor 464)
delay: dday of the drcuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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circuit opt speedup gain
area delay area delay area delay

C1355 1192 24.21 2203 21.21 1.85 0.88

C1908 1358 28.24 1895 26.49 1.40 0.94

C2670 1796 20.86 1836 19.98 1.02 0.96

C3540 2857 32.88 3309 33.92 1.16 1.03

C5315 3693 29.31 4712 23.52 1.28 0.80

C6288 8272 95.47 9247 95.36 1.12 1.00

C7552 5322 27.83 5849 26.19 1.10 0.94

alu4 1977 29.24 2009 27.03 1.02 0.92

ampbpreg 3289 35.56 4338 22.46 1.32 0.63

ampbsm 1875 16.55 2041 15.29 1.09 0.92

amppint2 1353 11.29 1341 11.37 0.99 1.01

ampxhdl 1059 12.90 1023 12.55 0.97 0.97

apex6 1912 11.29 2068 9.83 1.08 0.87

des 8632 16.08 8767 16.40 1.02 1.02

dflgrcbl 730 10.39 716 10.39 0.98 1.00

fconrcbl 537 11.00 507 12.20 0.94 1.11

frg2 2367 13.17 2555 11.83 1.08 0.90

k2 2755 16.87 2696 16.30 0.98 0.97

kcctlcb3 557 9.26 564 9.19 1.01 0.99

pair 3956 16.40 5655 16.94 1.43 1.03

rot 1651 19.17 2100 16.11 1.27 0.84

sbiucbl 599 15.66 677 13.94 1.13 0.89

tfaultcbl 439 6.80 453 6.97 1.03 1.03

vda 1522 13.31 1625 12.83 1.07 0.96

x3 12033 10.97 2226 11.17 1.09 1.02

aver - - - - 1.12 0.94

Table 5.5: Effect of the speed_up Command

opt: minimum dday technology mapping of circuits optimized by misll
speedup: minimum dday technology mapping after speedjip
gain: gain in area or in dday obtained using speedjip
area: areaof the drcuit (MCNC Ub2 data divided by common divisor 464)
delay: dday of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
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literal count is given in Table 5.4. Clustering achieves an average dday reduction of 13%
for an average area increase of 39%. This technique performs better than tree covering

with overlaps in. both area and delay. For comparison, we alsogive in Table 5.5 the results

obtained using misll speedjup routine. The script we used to run the spee&jip routine is

indicated in Figure 5.5. Thereis noneed to use mostof the commands in the previous script

because the speedjip command performs its own decomposition into simple gates and area

recovery. The speedjip command decreased dday by only 6% on average, for a moderate

increase of 12% in area. In addition, speedjip does not perform very consistently: it

actually increases the dday of 7 out ofour set of 25 benchmarks. In contrast, the clustering

algorithm increased delay in only one of the examples for a higher cost in area.

5.5.3 Area Recovery and Clustering

In this section we present two techniques to reduce the area increase due to clus

tering. The first technique is a modification of the labeling step of the clustering algorithm.

The second technique is based, on redundancy removal.

Area Efficient Labeling Procedure Lawler's dustering algorithm forces the duplica

tion of nodes in two cases. First, when a node bdongs to more than one cluster, it is

duplicated in order to provide one copy per duster. Secondly, when a cluster has several

output nodes (vi,..., Vk), all nodes in the duster bdonging to the transitive fanin of two

or more of the nodes (v\,..., v*) need to be duplicated. Equivalently, we can consider than

a duster than has several output nodes is itself duplicated, one copy per output node. The

duplicated nodes that, in a given copy, do not have any fanout can be removed.

Lawler's algorithm has the property of attributing to each node the smallest possi

ble labd that respects the duster size constraint. In some cases a node can be attributed a

larger label without violating the cluster sizeconstraint and without causing the maximum

node labd to increase. An example of a situation where relabeling can occur is given in

Figure 5.6. The effect of increasing the labd of a node may be to remove an output node

from a multiple output duster, and so doing to reduce logic duplication.

We use a simple greedy heuristic to increase node labels. This heuristic is outlined

in Figure 5.7. It is used after the labelingstep and before the clustering step of the algorithm

of Figure 5.2. The heuristic visits the nodes of the network in topologicalorder from outputs

to inputs. At each node v, the maximum label value is supposed to be available. If v is a
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,.•££>.

relabel

Figure 5.6: Example of Rdabeling for Area

primary output, this value is simply the largest labd value computed in the labeling step.

If v is not a primary output, this value is guaranteed to be available when v is visited by

the topological orderingof the nodes. The labd of each node is given this maximum value.

Then the largest labd value the inputs of v could have without fordng an increase of the

labd of v is computed. This value is propagated to the inputs of v.

The effect of the rdabeling heuristic is illustrated in Table 5.6. Relabeling reduces

the average increase in area caused by dustering from 39% to 31%, and actually reduces

dday by an additional percentage point, yidding an average dday reduction of 14%.

Redundancy Removal Clustering and collapsing may introduce a large number of re

dundandes. By removing these redundandes we can only reduce area and delay, assuming

a static dday modd. In the presence of false paths, i.e. paths in the circuit that cannot

propagate any signal under any drcumstances due to cancellation effects from side paths,

redundancy removal may actually dow down the drcuit by making a slow false path become

active. The best known example of a circuit where this problem occurs is the carry-bypass

adder. Removing logical redundandes from a carry-bypass adder has for effect to remove

the bypass drcuitry, transforming the fast carry-bypass adder into a slow ripple-carry adder.

Redundancies can still be eliminated from drcuits with false paths without slowing down

the drcuit, possibly at the cost of some logic duplication, using the algorithm of Keutzer

Keutzer et al. [25]. In our experiments, we simply assume that all circuits have at least one
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circuit opt relabel gain

area delay area delay area delay

C1355 1192 24.21 1597 20.19 1.34 0.83

C1908 1358 28.24 1617 25.09 1.19 0.89

C2670 1796 20.86 2243 19.91 1.25 0.95

C3540 2857 32.88 4241 30.33 1.48 0.92

C5315 3693 29.31 5079 27.89 1.38 0.95

C6288 8272 95.47 10704 77.28 1.29 0.81

C7552 5322 27.83 8302 24.34 1.56 0.87

alu4 1977 29.24 2777 27.05 1.40 0.93

ampbpreg 3289 35.56 4162 20.66 1.27 0.58

ampbsm 1875 16.55 2390 12.69 1.27 0.77

amppint2 1353 11.29 1731 9.29 1.28 0.82

ampxhdl 1059 12.90 1259 11.62 1.19 0.90

apex6 1912 11.29 2429 10.12 1.27 0.90

des 8632 16.08 11540 17.40 1.34 1.08

dflgrcbl 730 10.39 803 10.18 1.10 0.98

fconrcbl 537 11.00 645 9.32 1.20 0.85

frg2 2367 13.17 2825 10.57 1.19 0.80

k2 2755 16.87 4784 14.36 1.74 0.85

kcctlcb3 557 9.26 810 6.39 1.45 0.69

pair 3956 16.40 5274 14.95 1.33 0.91

rot 1651 19.17 1966 15.69 1.19 0.82

sbiucbl 599 15.66 837 14.41 1.40 0.92

tfaultcbl 439 6.80 513 5.65 1.17 0.83

vda 1522 13.31 2269 12.32 1.49 0.93

x3 2033 10.97 2440 9.82 1.20 0.90

aver - - - - 1.31 0.86

Table 5.6: Effect of Rdabeling Heuristic

139

opt: minimum delay technology mapping of circuits optimized by misll
relabel: minimum dday technology mapping of the rdabeled, dustered circuits
gain: gain in area or in delay obtained by rdabeled clustering
area: area of the drcuit (MCNC Ub2 data divided by common divisor 464)
delay: dday of the drcuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains



140 CHAPTER 5. TECHNOLOGY INDEPENDENT DELAY OPTIMIZATIONS

algorithm relabelingJieuristic

maxjabel = maxugpo label(v)

foreach node v {

maxJabel(y) = maxjabel

}
foreach node v visited in topological order from outputs to inputs {

foreach node u € FANIN(v) {

if (label(v) < maxjabel(v) and label(u) == label(v)) {

increment = maxjabel(v) —label(u)

} else {

increment = max(0, mazjabel(v) —label(u) —1)

}
maxJabel(u) = mxa(maxJabel(u), label(u) + increment)

}
label(v) = maxJabel(v)

}
end relabelingJieuristic

Figure 5.7: Relabeling Procedure for Reducing Logic Duplication

active critical path. This hypothesis is satisfied by most circuits. Moreover, all circuits can

be made to satisfy this hypothesis by using Keutzer's algorithm.

We removed all redundandes from drcuits that were partially collapsed using

Lawler's algorithm. We applied the rdabeling heuristic described in the previous section.

The results are reported in Table 5.7. To identify redundandes, we used an improved

version of the automatic test pattern generation program Socrates [39] devdoped by Jacoby

et al. [23]. After redundancy removal, we ran the following misll commands: sweep;

eliminate -1; simplify -1, except on C3540. For C3540, eliminate -1 causes a large

increase in the sum of product representation of the drcuit which makes the use of Jacoby's

redundancy removal program impractical. We were unable to complete the removal of all

redundancies on one circuit, C6288, after 72 hours of cpu time on a DEC-3100. Jacoby's

redundancy removal program performs some limited form of factorization, which may bias
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circuit opt rr gain

area delay area delay area delay

C1355 1192 24.21 1417 19.98 1.19 0.83

C1908 1358 28.24 1570 25.94 1.16 0.92

C2670 1796 20.86 2216 17.36 1.23 0.83

C3540 f 2857 32.88 3836 28.68 1.34 0.87

C5315 3693 29.31 4909 26.91 1.33 0.92

C6288 8272 95.47 * * - -

C7552 5322 27.83 9550 25.34 1.79 0.91

alu4 1977 29.24 2209 26.55 1.12 0.91

ampbpreg 3289 35.56 2541 13.92 0.77 0.39

ampbsm 1875 16.55 2191 11.06 1.17 0.67

amppint2 1353 11.29 1761 9.30 1.30 0.82

ampxhdl 1059 12.90 1007 10.93 0.95 0.85

apex6 1912 11.29 2397 10.03 1.25 0.89

des 8632 16.08 11313 17.38 1.31 1.08

dflgrcbl 730 10.39 786 10.18 1.08 0.98

fconrcbl 537 11.00 680 8.80 1.27 0.80

frg2 2367 13.17 2420 10.30 1.02 0.78

k2 2755 16.87 4505 13.99 1.64 0.83

kcctlcb3 557 9.26 793 6.88 1.42 0.74

pair 3956 16.40 5145 14.10 1.30 0.86

rot 1651 19.17 1911 16.20 1.16 0.85

sbiucbl 599 15.66 782 12.01 1.31 0.77

tfaultcbl 439 6.80 486 6.38 1.11 0.94

vda 1522 13.31 2224 12.54 1.46 0.94

x3 2033 10.97 2465 9.51 1.21 0.87

aver - - - - 1.23 0.83

Table 5.7: Effect of Redundancy Removal after Clustering

141

opt: minimum delay technology mapping of circuits optimized by misll
rr: minimum delay technology mapping of the relabeled, clustered circuits

after redundancy removal
gain: gain in area or in dday obtained by clustering and redundancy removal
area: area of the drcuit (MCNC Ub2 data divided by common divisor 464)
delay: dday of the circuit (MCNC Ub2 data in nanoseconds)
aver: geometric average of the gains
*: timeout after 72 hours of cpu time on a DEC 3100
f: eliminate -1 was not applied before redundancy removal
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our results slightly in favor of area. Redundancy removal was effective at redudng the area

penalty incurred by clustering. On average, dustering followed by redundancy removal

increased area by 23% for a reduction in delay of 17%.

5.6 Conclusion

We presented in this chapter several technology independent techniques to reduce

drcuit delay. The simplest of these techniques, which consists in collapsing a circuit to

two levds of logic, is only applicable for a restricted dass of drcuits. For these drcuits,

collapsingmay yield impressive dday reductions. However, for most circuits, the cost in area

is too large for collapsingto be practical. As an alternative to full collapsing we introduced a

simple dustering technique that allowspartial collapsing,and realizes a compromise between

area increase and dday reduction. This dustering technique fits naturally in this thesis, as

it can be seen as a technology independent version of a tree covering algorithm allowing

overlaps. Comparing dustering with speedjip, we saw that dustering was more wasteful in

area, but gave better ddays and was more consistent. Clustering can be rendered less costly

in area and even more effident in delay by redudng overlaps between clusters whenever it

does not increase the number of levels of logic in the dustered network, and by using of

redundancy removal. Using clustering and redundancy removal, we were able to obtain, in

some cases, circuits that were faster than thdr collapsed versions for a fraction of the area.

We demonstrated that there is still a lot of potential for dday minimization beyond

technology mapping. More work needs to be done to exploit this potential at a more

moderate cost in area and cpu time than the small set of techniques presented in this

chapter.



Chapter 6

Conclusion

Bornons id cette carriere.

Les longs ouvrages me font peur.
Loin d'epuiser une matiere,

On n'en doit prendre que la fleur.
— LA FONTAINE

The main results of this work are as follows. We provided an exact solution to the minimum

dday tree covering problem based on piece-wise linear functions. We performed an extensive

study of fanout optimization heuristics, presented new complexity results, and introduced

a spectrum of fanout optimization algorithms. We devdoped a simple algorithm to apply

fanout optimization throughout an entirenetworkthat reduces dday at a very moderate cost

in area. To study the integration of tree covering and fanout optimization, we introduced

a technology independent dday modd that characterizes predsdy suboptimalities due to

imbalances in a network. This is the first technology independent dday modd that models

the delay through a node as a function of the arrival time distribution at anode. In addition,

this delay modd can be used to derive analytically optimal solutions in simple cases which

can be used to assess the optimality of algorithms. We showed the importance of the

technique used to evaluate the arrival times at the input of trees before fanout optimization,

and presented an efficient heuristic to solve this problem. We also experimented with

allowing tree covers to overlap, and showed significant delay reductions with this technique.

Finally we investigated technology independent delay optimization techniques based on

partialor total collapsing of logic, and showed that further delay reductions can be achieved

with these techniques possibly at a higher cost in area.

A surprising conclusion of our work is that it is important to ignore critical paths
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when performing dday optimization during logic synthesis. As confirmed by the experi

ments of Yoshikawa et al. [44], dday reduction on non-critical paths can create additional

slacks on those paths that can be exploited to reduce dday through critical paths. By

concentrating on critical paths only, dday optimization algorithms condemn themselves to

suboptimal solutions.

We now have at our disposal a spectrum of dday optimization techniques. Fanout

optimization is the cheapest technique in terms of area consumption, and should be given

top priority. Tree covering for dday comes in second. The area-dday tradeoff potential

of tree covering depends more heavily on the quality of the library used by the technology

mapper. In some cases tree covering can outperform fanout optimization, though we were

not able to demonstrate this fact in this thesis due to the confidentiality of some of our

libraries. Allowing overlaps between tree covers as well as technology independent collaps

ing algorithms followed by redundancy removal add to the arsenal of dday minimization

techniques.

More work needs to be done in technology independent dday optimization tech

niques. There are three main avenues of research: the devdopment of more accurate

technology independent dday models than the ones currently in use; the improvement

of collapsing algorithms in terms of area; the improvement of techniques based on kernel

extraction (speedjip) or observability don't-care sets in terms of cpu speed. In particular,

it would be interesting to investigate the use of the technology independent delay model

introduced in chapter 4 or a modd derived on similar ideas to drive technology independent

dday reduction algorithms. This dday modd is the first to propose a way to take into

account imbalances in arrival times as they occur in networks. A more fundamental issue

would be to understand when logic duplication is needed for delay reduction (we know that

redundancy is not needed, even in the presence of false paths [25]) in order to find more

economical ways to perform partial collapsing or tree overlapping.
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