Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A FRAMEWORK FOR SATISFYING INPUT
AND OUTPUT ENCODING CONSTRAINTS

by

Alexander Saldanha, Tiziano Villa, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/110

3 December 1990
(Revised November 19, 1991)

A FRAMEWORK FOR SATISFYING INPUT
AND OUTPUT ENCODING CONSTRAINTS

by

Alexander Saldanha, Tiziano Villa, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/110

3 December 1990
(Revised November 19, 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

A FRAMEWORK FOR SATISFYING INPUT
AND OUTPUT ENCODING CONSTRAINTS

by

Alexander Saldanha, Tiziano Villa, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/110

3 December 1990
(Revised November 19, 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

A Framework for Satisfying
Input and Output Encoding Constraints

Alexander Saldanha* Tiziano Villaf Robert K. Brayton
Alberto L. Sangiovanni-Vincentelli

University of California - Berkeley CA

Abstract

Encoding is a significant step in the synthesis of digital circuits. Three relevant encoding prob-
lems are input, output and state encoding. Several algorithms have been proposed for their solutions
that decompose the problem into symbolic minimization (yielding a set of constraints) and constraint
satisfaction. At least two exact formulations of the input encoding constraint satisfaction problem
exist. However, a more important use of encoding is in state assignment of finite state machines
where both input and output encoding constraints must be satisfied to obtain the most effective im-
plementations. This paper first proves that the encoding problem is NP-complete. Then a framework
for the simultaneous satisfaction of input and output encoding constraints is developed. We describe
an algorithm, polynomial in the number of symbols to be encoded, to check for the existence of a so-
lution for a set of input and output constraints . An efficient algorithm that determines the minimum
number of encoding bits required to satisfy all the given constraints is provided. We demonstrate
how heuristic algorithms can be developed within the framework. Finally, the use of this frame-
work in solving a variety of encoding problems with different cost functions is discussed. Results
on standard benchmarks are given for both exact and heuristic algorithms.

1 Introduction

There are two stages of synthesis in which the circuit area may be minimized. The first is the conversion
of a given register-transfer level description with symbolic inputs and/or outputs into a logic-level imple-
mentation by assigning binary codes to the symbolic variables leading to efficient area implementations.
This problem is termed the encoding problem. The second is logic optimization that is performed on the
implementation derived from the first stage. A wealth of contributions in the last decade advanced the
theory of logic optimization for different styles of implementation [3]. A successful paradigm used in
solving the encoding problem binds these two together by applying logic minimization on an unencoded
specification followed by a transformation of the minimized symbolic representation to a compatible bi-
nary representation [7]. Thus, encoding also becomes a two phase process; first, obtaining a multi-valued

*Research support by SRC under contract 91-DC-008
tResearch support by DARPA under contract JEBI90-073

minimized representation together with a set of constraints on the codes of the symbolic variables, and
second, finding an encoding that satisfies the constraints. The constraints, if satisfied, are guaranteed to
produce an encoded two-valued representation of the same cardinality as the multiple-valued minimized
representation.

The encoding problem may be targeted for either two-level or multi-level logic implementations.
Two-level implementations' optimize the number of product-terms or the area of a PLA. Multi-level
implementations optimize the number of literals of a technology-independent representation of the logic.
Optimality may also be based on more complex criteria, such as performance and testability [18). For
two-level logic, an exact algorithm to implicitly generate all possible minimized symbolic covers of a
given unencoded description together with the induced encoding constraints is provided in [9]. In the case
of multi-level logic, constraints are generated by performing multiple-valued multi-level operations [13].

The various techniques for exact and heuristic encoding based on multiple-valued minimization of
two-level and multi-level logic, reported in [7, 6, 9, 13, 4], produce one or more of four types of con-
straints.

The first type are face-embedding constraints generated by the multiple-valued input variables (input
constraints). These constraints specify that a set of symbols is to be assigned to one face of a binary
n-dimensional cube, without any other symbol sharing the same face. An input constraint involving
symbols a, b and c is denoted by (a, b, ¢). An encoding satisfying (a, b, c)is givenbya = 11,b = 01,¢c =
00. The vertex 10 cannot be assigned to any other symbol.

Two other types are dominance and disjunctive constraints generated by the multiple-valued output
variables (output constraints). A dominance constraint (covering, denoted by >, e.g. a > b) requires that
the code of a symbol (a) bit-wise cover the code of another symbol (b). A disjunctive constraint specifies
that the code of a symbol (the parent symbol) is the bit-wise disjunction (or-ing, denoted by V, e.g.
a = bV c) of the codes of two or more other symbols (the children symbols). Finally, the minimization
procedure described in [9] produces disjunctive constraints with nested conjunctive terms. They require
that the code of a symbol be the bit-wise disjunction (denoted by V) of the conjunctions (and-ing, denoted
by A) of the codes of two or more symbols. Anexampleis: (e AbAc)V(aAdAe)V(aAfAg)=a.

An example containing input, dominance and disjunctive constraints is: (b,¢), (c,d), (b,a), (a,d),
b>c,a>c a=>bVd Anencoding satisfying all constraints exists and the minimum code length is
two. A solutionisa = 11,6 = 01,c = 00,d = 10.

A face embedding constraint is used to express several input terms of an output function by a single
term. This results in a smaller cover for the output function. A dominance constraint is used to increase
the don’t care set associated with an output function, whenever this leads to a smaller implementation.
A dominance constraint is useful only in conjunction with a related face embedding constraint, when
encoding both input and output variables. A disjunctive constraint is used to decrease the size of the
cover of an output function. This occurs if the input parts of the output corresponding to the parent
symbol are contained in each of the input parts of the outputs corresponding to the children symbols.
These constraints arise with both face embedding and dominance constraints, when encoding both input
and output variables.

Disjunctive constraints with nested conjunctive terms are used in the exact encoding technique de-
scribed in [9] to ensure that if a set of generalized prime implicants is chosen as a solution, each minterm
asserts the same output combination as it would have in the original cover. Each generalized prime impli-
cant asserts the conjunction of the codes of a group of symbols in its output part. The output for a minterm
in a two-level implementation is then the disjunction of all the outputs asserted by the generalized prime

implicants that cover the minterm.

The origin and the effect of these constraints on the quality of the minimized result is described
in[7, 6,9, 13].

In this paper, we focus on the following problems. Given a set of encoding constraints returned by a
symbolic minimization procedure:

P-1: Determine whether the constraints are satisfiable.
P-2: Determine the binary codes that use a minimum number of bits and satisfy all the constraints.
P-3: Minimize a cost function of the constraints that are satisfiable using a fixed number of code bits.

Previous work on encoding constraint satisfaction has concentrated on solving input constraints,
alone. Exact algorithms and efficient heuristics for solving problems P-2 and P-3 are reported in [24, 25].
An approximate solution to P-3 based on a theory of intersecting cubes is described in [20, 10]. Problem
P-1 is trivial for only input constraints. A solution to P-1 and a heuristic algorithm to solve P-3 when
both input and output dominance constraints occur are provided in [6]. A solution to P-1 when both
input and output constraints (including disjunctive constraints) are present is attempted in [9], but we
will demonstrate that the algorithm is incomplete. To date, to the best of our knowledge, no effective
algorithms exist for solving all three problems when all types of constraints occur.

In this paper we propose a framework and efficient algorithms to solve P-1, P-2 and P-3 for input
and output encoding constraints. A polynomial time algorithm to answer P-1 and exact and heuristic
algorithms to solve P-2 and P-3 are provided. We solve P-3 with different cost functions, such as the
number of constraints satisfied and the number of cubes or literals required in the encoded implementa-
tion. These algorithms also handle encoding don’t cares [6, 13] and can be easily extended to other types
of constraints. We also prove the NP-completeness of problems P-2 and P-3. This result has not been
shown previously, though it has been conjectured [6].

The approach used here is based on a formulation provided in [25] and related to the state assignment
technique employed by Tracey in 1966 [23]. We first demonstrate the difficulty of the encoding problem
by proving it NP-complete in Section 2. Section 3 provides some definitions. In Section 4 an abstraction
of the problem is presented. In Section 5 we describe a new algorithm to satisfy input constraints alone.
This is extended to handle input and output constraints in Section 6. In Section 6.2 we first show that
a previous algorithm for checking the satisfiability of encoding constraints [9] is incomplete and we
provide an alternate correct algorithm. A heuristic algorithm is briefly sketched in Section 7. Extensions
of the framework to handle various types of constraints and cost functions are discussed in Section 8.
Substantial experimental results are provided in Sections 9 and conclusions are described in Section 10.

This paper is an extended version of [19].

2 Statement and complexity of the encoding problems

Three types of problems related to the satisfaction of input and output constraints were introduced infor-
mally in the Section 1. They are:

P-1: Determine whether the constraints are satisfiable.

P-2: Determine the binary codes that use a minimum number of bits and satisfy all the constraints.

3

P-3: Minimize a cost function of the constraints that are satisfiable by a fixed number of code bits.

Problem P-1 can be solved by a polynomial algorithm, as will be shown later. In this section we for-
mally state P-2 both as a decision and an optimization problem and show that the decision (optimization)
version with input constraints alone is NP-complete (NP-hard).

A few preliminary definitions are required. An n-dimensional hypercube (or n-cube) is a graph of 2"
vertices labeled uniquely by the integers from 0 and 2" — 1. An edge joins two vertices whose binary
representations of their integer labels differ by exactly one bit. The minimum &-cube that contains a given
subset of vertices of a n-cube (k < n) is the k-face (or smallest face) spanned by the given vertices.

Decision version of P-2:
Instance: Set of input and output constraints defined on a set of symbols, .5, and a positive integer k.
Question: Is there a function f from S to the vertices of a k-cube such that:

1. Symbols in the same input constraint are mapped to vertices spanning a face that does not
contain the image of any other symbol.

2. The binary labels of the images of the symbols satisfy the output constraints?
Optimization version of P-2:
Instance: Set of input and output constraints defined on a set of symbols, S.
Objective: Find the minimum k-cube and a function f from S to the vertices of the k-cube such that:

1. Symbols in the same input constraint are mapped to vertices spanning a face that does not
contain the image of any other symbol;

2. The binary labels of the images of the symbols satisfy the output constraints.

Answering the decision version for different dimensions repeatedly solves the optimization problem
(with a polynomial number of calls to the decision procedure) and, of course, solving the optimization
problem answers the decision version for all dimensions. Clearly, by assigning a weight of I to each
constraint, P-2 can be seen as a special case of P-3. Hence, P-3 is no easier that P-2.

The decision version of P-2 with input constraints alone is defined as face hypercube embedding. To
prove that face hypercube embedding is NP-complete a few more preliminaries are needed.

A given graph G = (V, E) is a subgraph of an n-cube if there is a function mapping vertices of G into
vertices of the n-cube that preserves the adjacency relations. G can be embedded in an n-cube if G is a
subgraph of the n-cube. The problem of deciding whether a given graph is embeddable into an arbitrary
dimension hypercube has been shown to be NP-complete [12]. It has also been proved that even the
problem of deciding whether a graph can be embedded into a fixed-size hypercube is NP-complete [5].
The proof in [5] actually shows that the problem of determining whether a graph of 2* nodes can be
embedded in a k-cube is NP-complete. This result can be used to prove that face hypercube embedding
is NP-complete.

Theorem 2.1 Face hypercube embedding is NP-complete.

Proof Face hypercube embedding is in NP. The assignment of symbols to vertices can be non-deterministically
checked in polynomial time.

Suppose k is the dimension of the hypercube into which the face constraints composed of simbols
from set S must be embedded. Let us restrict face hypercube embedding to the instances where the
symbols involved in the face constraints are 2* and each face constraint involves only two symbols.
For these instances it is possible to define a graph G(V, E) induced by the face constraints. The set of
nodes V is in correspondence with the symbols in S and there is an edge between two nodes when the two
corresponding symbols are in the same face constraint. The set of face constraints can be embedded into a
k-cube if and only if the companion graph is a subgraph of a k-cube. Notice that in this case the concept of
face embedding reduces to the familiar notion of graph adjacency. The problem of determining whether
a graph of 2* nodes is a subgraph of a k-cube has been proved to be NP-complete by reduction from
3-partition [5]. Therefore the problem of determining whether for 2* symbols a set of face constraints
each with exactly two symbols can be embedded into a k-cube is NP-complete. But this is a restricted
version of face hypercube embedding and hence the latter too is NP-complete. |

3 Definitions

Definition 3.1 An encoding-dichotomy is a 2-block partition of symbols to be encoded. The symbols
in the left block are associated with the bit O while those in the right block are associated with the bit 1.
If an encoding-dichotomy is used in generating an encoding, then one code bit of the symbols in the left
block is assigned O while the same code bit is assigned 1 for the symbols in the right block.

Forexample, (30s1; s253) is an encoding-dichotomy in which sg and s, are associated with the bit 0 and s,
and s3 are associated with the bit /. This definition differs from that of a dichotomy, defined in [23, 25],
where a dichotomy allows the left block to assume either the encoding bit 0 or 1. As will be shown later,
this extension is useful in describing output encoding constraints.

Definition 3.2 Two encoding-dichotomies d, and d, are compatible if the left (right) block of d, is
disjoint from the right (left) block of d,. Otherwise, d, and d, are incompatible.

Note again that this definition differs from the definition of compatibility described in [23, 25].

Definition 3.3 The union of two compatible encoding-dichotomies, d, and d,, is the encoding-dichotomy
whose left and right blocks are the union of the left and right blocks of d\ and d,, respectively.

The union operation is not defined for incompatible encoding-dichotomies.

Definition 3.4 An encoding-dichotomy d, covers an encoding-dichotomy d, if the left and right blocks
of d are subsets respectively either of the left and right blocks, or of the right and left blocks of dy.

For example, (3so; s152) is covered by (sos3; s15284) and (s15253; s0), but not by (sos1; $2).

Definition 3.5 A prime encoding-dichotomy of a given set of encoding-dichotomies is one that is in-
compatible with all encoding-dichotomies not covered by it.

A set of prime encoding-dichotomies generates an encoding as follows. Each prime generates one col-
umn of the encoding, with symbols in the left (right) block assigned a 0 (/) in that column. For exam-
ple, given the prime encoding-dichotomies (sos1; s2s3) and (sps3; s152), the unique encoding derived is
Sp = 00,31 = 01,82 =11 and33 = 10.

Definition 3.6 An encoding-dichotomy violates an output constraint if the encoding bit generated for
the symbols in the encoding-dichotomy does not satisfy the bit-wise requirement for the output constraint.
A valid encoding-dichotomy is one that does not violate any output constraint.

For example, the encoding-dichotomy (so; s152) violates the constraint so > sy, since s is assigned bit
0 whereas s, is assigned bit / by this encoding-dichotomy. Hence, sy does not cover s, in this bit. The
encoding-dichotomy (ss; s2) does not violate this constraint.

4 Abstraction of the problem

The combinatorial problems of encoding constraints satisfaction can be abstracted as binate covering
problems.

We first recall the definition of binate covering for the benefit of the following discussion. Suppose
that a Boolean expression T is given in product-of-sums form. Associate a cost w; to each literal o of
a set of ¢ literals, and say that a given assignment has cost:

t
> wja;.
i=1

Consider the problem of finding an assignment of minimum cost that satisfies 7. Writing T as an array
of cubes (that form a matrix with coefficients from the set {0, 1,2}), the problem can be stated as a binate
covering problem [16]: find a subset C of columns of minimum cost, such that for every row r;, either

1. 3y suchthatt;; = 1landc; € C,or
2. Jj suchthatt;; =0andc; & C.

In the unate covering problem, the coefficients of T are only 1’s and 2’s and only the first condition must
hold. ‘

Toillustrate the opening statement, suppose that the symbols a, b, ¢ and the three constraints (a, b), b >
¢,b = aV care given. All possible encodings can be considered by enumerating all the patterns that yield
one bit of encoding to each symbol. Each such bit pattern is termed an encoding column. Consider all pos-
sible column encodings for the example, ¢; = 001,c; = 010,¢3 = 011,¢4 = 100,¢c5s = 101,¢6 = 110,
where the order of symbols in a column is a, b, c!. For each face constraint consider the encoding di-
chotomies that have the symbols of the face constraint in one block, and have one of the remaining
symbols in the other block [25]. In the given example, this is ab; c. Add the encoding dichotomies ex-
pressing the uniqueness of the codes In the example, these are a; b, a; c, b; c. Build a table whose columns
are the encoding columns and whose rows are the encoding dichotomies. Puta 1 in entry (2, 7) if column
J covers row ¢. For each output constraint, add one row for each encoding column that cannot be chosen

IBit patterns 000 and 111 are excluded because they carry no useful information.

6

cl c2 c3 c4 c5 cé

asc 1 1 1
c;b
ab;c 1 1
b>c 0

b>c 0

b=a+c
b=a+c 0

b=a+c 0

b=a+c

2 0 0

Figure 1: Satisfaction of constraints as binate covering

if that output constraint must be satisfied and put a 0 in the corresponding entry. In the example, a > b
yields two rows, one has a 0 in the position of column ¢y, the other has a 0 in the position of column cs.
One could imagine more complex types of constraints that add rows carrying two or more Os and no 1 to
denote that not all the corresponding columns can be selected at the same time to have the row covered.
The binate table of the given example is shown in Figure 1. A minimum column cover of the given
rows gives a minimum set of encoding columns that satisfy all given constraints. In the general case
this requires the solution of a binate covering problem. If only face constraints are present, the problem
reduces to a unate covering problem [23].

In summary, solving problem P-1 can be reduced to deciding whether a solution to a binate covering
problem exists, solving P-2 can be reduced to solving a binate covering problem, and solving P-3 can
be reduced to fixing the number of columns that can be used in a solution of a binate covering problem.
This may sound hopeless, since binate covering is a hard problem. In the next sections we will show that
problem P-1 can be decided by a polynomial time algorithm and that an efficient exact algorithm can be
devised to solve P-2 on cases of practical interest. When an exact solution is not feasible, as in the case
of P-3, a heuristic algorithm handling different cost functions is described.

5 Input constraint satisfaction

We first present a new algorithm for satisfying input encoding constraints that, compared to previous
approaches [24, 25], significantly improves the efficiency of the input encoding process.

The encoding constraint satisfaction problem is a three step process. The first is the generation of
the encoding-dichotomies that represent the face embedding constraints [25]. Each face embedding
constraint generates several encoding-dichotomies. The symbols that are to be on a face are placed in
one block of each encoding-dichotomy representing that constraint, while the other block contains one

7

of the symbols not in the face. Thus, for n symbols sy, sy, ..., s, and a face embedding constraint that
requires the / symbols sy, s, .., s; to be in one face, we generate 2 (n — [) encoding-dichotomies each
with the symbols sy, s, ..., 51 in one block (either left or right) and exactly one of the remaining n — !
symbols in the other block.

These encoding-dichotomies exactly capture the face embedding constraints. We also require that
each symbol gets a distinct code. This is represented by an encoding-dichotomy with one symbol in
each block. We need to add only those uniqueness constraints that are not covered by the encoding-
dichotomies generated from the face-embedding constraints. When there are n symbols and no encoding
constraints, the number of uniqueness constraints is n> — n; these would generate an exponential number
(2" — 2) of prime encoding-dichotomies.

The second step of encoding is the generation of prime encoding-dichotomies from the encoding-
dichotomies. [23] describes an approach similar to the process of irerated consensus for prime genera-
tion in two-level logic minimization [2]. However, the number of iterations required to generate all the
prime encoding-dichotomies may be formidable even for small problems. Using this approach, several
different compatible mergings often yield the same prime encoding-dichotomy. This results in a sub-
stantial waste of computation time [25]. In Section 5.1, we describe a method of generating all prime
encoding-dichotomies and demonstrate its effectiveness in determining an exact solution.

The final step of encoding is to obtain a cover of the initial encoding-dichotomies using a minimum
number of primes. This is a classical unate covering problem and efficient branch and bound techniques,
both for exact and heuristic solutions, are well known; hence we do not discuss this further in the paper.

3.1 Efficient generation of prime encoding-dichotomies

By definition, each prime encoding-dichotomy is a maximal compatible of the encoding-dichotomies
since it is not compatible with any encoding-dichotomy that it does not cover. As in [15], an incompati-
bility between two encoding-dichotomies, each represented by the literals a and b respectively, is written
as (a + b). When the product of the sum terms representing all the pairwise incompatibilities is written
as an irredundant sum-of-products expression, a maximal compatible is generated as the union of those
encoding-dichotomies whose literals are missing in any product term [15]. For example, assume that
we wish to find the maximal compatibles for five encoding-dichotomies, a, b, ¢, d, e. Assume the incom-
patibilities are (a + b)(a + ¢)(b + ¢)(c + d)(d + €). Then the equivalent irredundant sum-of-products
expression is acd + ace + bed + bee. The four encoding-primes are then formed by the unions of the
missing literals, {b, e}, {b,d}, {a, e}, {a,d}.

The problem is how to efficiently derive the equivalent sum-of-products expression from the product-
of-sums expression representing the incompatibilities. In the past, this has been performed using an
approach based on Shannon decomposition [15]. The complexity of performing the recursive splitting
and merging is exponential since a binary tree is being constructed. It is not practical for any reasonably
sized encoding problem. We describe an algorithm that can generate all the encoding-primes, but only
uses a linear number of recursive splitting and merging operations.

Since each sum term in the product-of-incompatibilities expression has exactly two literals, we adapt
the classical 2-SAT algorithm to this problem?. The algorithm is described in pseudo-code in Figure 2.
Given a product-of-sums expression, a splitting variable, x, is chosen. The product of all sum terms
containing x, call it x_expr, when simplified consists of two terms, the first is x alone and the second is

2]t is well known that 2-SAT is solvable in linear time in the number of clauses.

the product of all the other variables in x_expr. A recursive call is applied to the product of the sum-terms
in the initial expression that do not contain x, called reduced_expr. The two product terms, x_expr and
cs(reduced_expr), are multiplied and single cube-containment is used to obtain the minimum sum-of-
products expression®.

This algorithm replaces an exponential number (in the number of encoding-dichotomies) of recursive
calls by a linear number. Of course, the worst case complexity is linear in the final number of encoding-
primes, which may be exponential. In practice this does not happen, especially with highly constrained
problems. As already mentioned, the number of encoding-primes in an unconstrained problem (no face
embedding constraints) is exponential in number due to the uniqueness constraints. Each face embedding
constraint serves to reduce these encoding-primes.

The example in Figure 3 illustrates the complete input encoding process. A set of input constraints
is shown and the corresponding initial encoding dichotomies are derived. The maximal compatibles
are generated by a procedure that recurs on the splitting variable. Variable 0 is chosen as first splitting
variable. The procedure returns the minimal product of the following two expressions: the first is the
product of all sum terms containing O (in this case simplified into 0 and 2345678) and the second is the
result of the recursive call of the procedure on the sum terms that do not contain 0. By minimal product
it is meant that the two expressions, when available after a series of recursive calls, are multiplied out
and then single cube-containment is performed on them. Once the maximal compatibles are found,
the prime encoding-dichotomies are easily obtained and a standard unate covering routine produces a
minimum subset of primes that cover all given initial encoding-dichotomies. Notice that to simplify the
example we have forced the symbol s; to always be in a right block. This reduces the number of prime
encoding-dichotomies but does not affect the solution to the input encoding problem?.

6 Input and output constraint satisfaction

6.1 Output encoding constraints

A dominance constraint ¢ > b, requires that the encoding for a bit-wise covers the encoding for b.
This means that any prime encoding-dichotomy chosen in the final cover cannot have a in the left block
while b is in the right block. Hence, any encoding-dichotomy that has this property may be deleted from
consideration.

A disjunctive constraint a = b V ¢, implies that the encoding for symbol ¢ must be the same as the
bit-wise or of the encodings of b and c. This means that any prime encoding-dichotomy in a feasible
solution must have at least one of b and c appear in the same block as a. Any encoding-dichotomy that
does not possess this property may be deleted. This property is easily extended to the case where the
disjunctive constraint involves more than two symbols or has nested conjunctive constraints.

A preliminary algorithm follows from the discussion above. In the first step, the encoding-dichotomies
corresponding to the input constraints are generated. Next the prime encoding-dichotomies are gener-
ated using the algorithm described in Section 5.1; those that violate any of the dominance or disjunctive
constraints are eliminated. Finally, the remaining primes are used in selecting a minimum cover of all the

3Single cube-containment can be used to find the minimum expression since the function is unate [2].
“In general, this symmetry cannot be exploited when there are both input and output constraints.

/* Given pairwise incompatibilities among a list of encoding-dichotomies
as a product-of-sums expression generate all encoding-prime dichotomies.
Each sum term has two literals and there are = variables,

each corresponding to a distinct initial encoding-dichotomy. */

/* Convert 2-CNF to sum-of-products expression */
O(n) recursive calls */
procedure cs (expr) {
x = splitting variable
C = all sum terms with variable x
reduced_expr = expr without the sum-terms in C
x-expr = sum-of-product expression of C
return (ps (x_expr, cs(reduced_expr)))

}

/* Obtain the product of two expressions.
exprl has 2 terms, where the first term is a single variable */
procedure ps (exprl, expr2) {
product_expr = product of exprl and expr2
result_expr = single_cube_containment.minimal (product_expr)
return (result_expr)

}

procedure prime_dichotomy_generate (expr) {

result = cs (expr)

foreach (term T in result)
missing = list of variables not in T’
new_prime_dichotomy = union of encoding-dichotomies

corresponding to missing

add new _prime_dichotomy to prime list

return (prime_list)

}

Figure 2: Efficient generation of prime encoding-dichotomies

10

Constraints (50, 52, 53) (504 51, 54) (51,52, 53) (s1, 53, 54)

Initial encoding — dichotomies 1:(s1;505254) 2:(s3;505254) 3:(s3;505154) 4:(s2; $05154)

5: (30;818233) 6: (843313233)

7 : (s0; 515354) 8 : (52;515354)
Deriving mazimal compatibles (prime encoding — dichotomies)
cs((0+2)(0+3)(0+4)(0+5)(0+6)(0+7)(0+8)(1 +2)(1+ 3)(1 +4)(1+5)(1+6)(1 + 7)(1 +8)(2+4)(2+5)(2+
6)(2+7)(2+8)3+S5)3+6)3+7)(3+8)(4+5)(4+6)(4+T7)(5+8)(6+T7)(6+8))

ps((0 + 2345678),cs((1 + 2)(1 + 3)(1 + 4)(1 + 5)(1 + 6)(1 + T)(1 + 8)(2+ 4)(2+ 5)(2 + 6)(2 + 7)(2 + 8)(3 +
5)3+6)3+7)(3+8)(4+5)4+6)(4+T)(5+8)(6+7)(6+8)))

ps((0 + 2345678), ps((1 +2345678),cs((2 +4)(2+ 5)2+6)2+T)(2+8)(3+ 53+ 6)(3+ 7)(3+ 8} (4 + 5)(4 +
6)(4+T7)(5+8)(6+7)6+8))))

ps((0 + 2345678), ps((1 + 2345678), ps((2 + 45678),cs((3 + 5)(3 + 6)(3 + 7)(3 + 8)(4 + 5)(4 + 6)(4 + 7)(5 +
8)(6+7)(6+8))))))

ps((0+2345678), ps((1+2345678), ps((2+45678), ps((4+567), cs((3+5)(3+6)(3+7)(3+8)(5+8)(6+7)(6+8))))))
ps((0+2345678), ps((1 + 2345678), ps((2 + 45678), ps((4 + 567), ps((3 + 5678), cs((5+ 8)(6+7)(6+8)))))))
ps((0+2345678), ps((1+ 2345678), ps((2 + 45678), ps((4 + 567), ps((3 + 5678), ps((6+ 78),es((5+8))))))))
ps((0+ 2345678), ps((1 + 2345678), ps((2 + 45678), ps((4 + 567), ps((3 + 5678), (56 + 68+ 78))))))

ps((0 + 2345678), ps((1 + 2345678), ps((2 + 45678), ps((4 + 567), (356 + 368 + 378 + 5678)))))

ps((0+ 2345678), ps((1 + 2345678), ps((2 + 45678), (3456 + 3468 + 3478 + 3567+ 5678))))

ps((0+ 2345678), ps((1 + 2345678), (23456 + 23468 -+ 23478 + 23567 + 25678 + 45678)))

ps((0 + 2345678), (123456 + 123468 + 123478 + 123567 + 125678 + 145678 + 2345678))

(0123456 + 0123468 + 0123478 + 0123567 + 0125678 + 0145678 + 2345678)

Mazimal compatible sets {7,8} {5,7} {5,6} {4,8}
{3,4} {2,3} {0,1}

Prime encoding — dichotomies (s05254;5183) (s3;50815284) (8283:508154) (82; S0515354)
(s0sa; 515283) (S052; 515354) (S0; S1525354)

Minimum cover (s0s254;5153) (5253; 505154) (S054; 515253) (S052; 515354)

Figure 3: Input encoding example

11

initial encoding-dichotomies representing the input constraints. If there is at least one initial encoding-
dichotomy that cannot be covered, then there is no solution.

This procedure may be used to answer two questions. The first is whether a feasible encoding exists
for a set of input and output constraints. The second is to find the minimum length encoding satis-
fying the constraints, if it exists. An obvious drawback of this method is that many prime encoding-
dichotomies may be generated but later deleted since they violate output constraints. Using the frame-
work discussed above, we present an efficient algorithm that avoids the generation of useless prime
encoding-dichotomies.

6.2 Input and output constraint satisfaction

We motivate the constraint satisfaction procedure using the example in Figure 4 . Given the input
and output constraints, 26 initial encoding-dichotomies are obtained. Consider the initial encoding-
dichotomies (so; 8135) and (s;ss; so) that are generated from the face embedding constraint (s, s5).
Since sp > sy, the encoding-dichotomy (so; s155) is not allowed and is deleted from consideration. The
encoding-dichotomy (s1ss; so) is valid and will be used in a feasible encoding. Consider the encoding-
dichotomy (s1; s2s5). If this encoding-dichotomy is to be expanded to a valid prime encoding-dichotomy,
symbol sy is forced to be in the right block, since sy > s;. Also, since s; > s3, s3 must be in the left
block and since s4 > ss, 34 is forced into the right block. Thus, all valid encoding-dichotomies covering
this initial encoding dichotomy must cover the “raised” dichotomy (s;s3; s0s25485). Similarly, we obtain
the six raised encoding-dichotomies shown. On generating the prime encoding-dichotomies from these
raised encoding-dichotomies, we obtain five primes.

Definition 6.1 An encoding-dichotomy is raised by adding symbols into either its left or right block as
implied by the output constraints.

For example, the encoding-dichotomy (so; s152) may be raised to the encoding-dichotomy (sos3; s152).
We use this definition in the context of output constraints to restrict the number of prime dichotomies to
be considered in an exact solution.

Definition 6.2 An encoding-dichotomy is said to be maximally raised if no further symbols can be
added into either the left or right block by the output constraints.

The procedure raise-dichotomy in Figures 5 and 6 describes an algorithm that maximally raises an
encoding-dichotomy with respect to a set of output constraints.

When the problem is to determine if a set of constraints is satisfiable, we do not have to generate the
prime encoding-dichotomies. Instead we use the set of maximally raised valid encoding-dichotomies,
which are far fewer in number than the prime encoding-dichotomies. As shown below, this smaller set
of dichotomies is also sufficient to solve all the problems of interest.

We merely check if all the initial encoding-dichotomies are covered by the maximally raised and
valid encoding-dichotomies. This condition is formally stated below.

5An algorithm was provided in [9] to check for satisfiability of input and output constraints, by checking for conditions
thatensure non-conflicting input and output constraints. However, for the example in Figure 4, for which no feasible encoding
exists, the algorithm in [9] states that the constraints are satisfiable. Except for the approach described in this paper, we know
of no efficient and correct algorithms for checking satisfiability of mixed input and output constraints.

12

Face embedding constraints :

(31135) (32a 35) (84, 35)
Dominance constraints ; ,
S0 > 81 So > 82 Sp > 83
80 > 85 81 > 83 82 > 83
384 > 85 85 > 82 85 > 83
Disjunctive constraints :

S0=381V $

Initial encoding — dichotomies :

(s0; 5185) (81855 30) (805 8235)
(82355 30) (803 8435) (4555 30)
(815 8235) (82353 31) (815 8435)
(84353 1) (82; 5135) (81553 82)
(825 9435) (84853 82) (83 8185)
(81855 3) (s3; 5285) (s255: 83)
(835 5455) (84355 33) (845 8185)
(81853 34) (845 3235) (82853 34)
(05 83) (83; s0)

Raised encoding — dichotomies :

(8153; 50528485) (8253; 30915435) (828384855 5081)
(s081528355; 54) (283355 S081)

(8283855 34)

Uncovered initial encoding — dichotomies :

(803 5155)

(81555 %0)

Figure 4: Example of feasibility check with input and output constraints

13

Theorem 6.1 Given a set of input and output constraints, let I be the set of initial encoding-dichotomies
generated from the input constraints, including all uniqueness constraints. Let each valid encoding-
dichotomy in I be maximally raised to obtain a set of valid encoding-dichotomies D. An encoding-
dichotomy that becomes invalid on raising is deleted. The input and output constraints are satisfiable if
andonly if each i € I is covered by some d € D.

Proof
If Part Consider some valid maximally raised encoding-dichotomy d = (L;; R;), where L; and R, are
disjoint subsets of the symbols to be encoded. Consider a symbol s ¢ d. There are no output constraints
that either require any of the symbols in L, to cover s, or s to cover any of the symbols in R,. Otherwise
d is not raised maximally. So s may be added to either block of d. Add all symbols S = {s : s & d},
to the right block of d. There may be output constraints among the symbols in .S, but these are satisfied
since all the symbols in S are inserted into the right block. Hence, a valid encoding exists by merely
deriving the codes from all of the raised encoding-dichotomies that cover all encoding-dichotomies in 7.
OnlyIfPart Assume some encoding-dichotomy ¢ € I is not covered by any of the encoding-dichotomies
in D. Then by merging compatible dichotomies in D, ¢ can never be covered. Hence, no feasible solution
exists in this case.]
Theorem 6.1 can be extended to the case of disjunctions of nested conjunctions (extended disjunctive
constraints) that are generated by the minimization procedure given in [9]. Each such constraint causes
the correct output symbol to be produced for each input in an encoded cover. The form of an extended
disjunctive constraint for a minterm m, asserting output s,, and a set of selected GPIs is:

(V /\ $) = Sm

g€G s€0y

where G is the subset of the selected GPIs that cover m, and O, is the set of output symbols that the GPI
g asserts. By construction, [9], Vg, s,, € O,; applying the distributive law, one gets:

sa AV A 8)=5m

g€G s€0g—sm

This implies that,

(V. A 9)2sm
9€G s€0g-sm

Anexampleis (aAbAc)V(aAdAe)V(aA fAg) = a,thatbecomes aA((bAc)V(dAe)V(fAG)) = a,
and gives (A ¢) V (d A e)V (f A g) >= a. This constraint requires that for each bit of an encoding
where a is assigned bit /, both the states in at least one of the three pairs (b, ¢), (d, e), and (f, g) must be
assigned bit /.

The proof of Theorem 6.1 holds verbatim. This problem was conjectured to be NP-complete in [9],
but in fact is solved in polynomial time here.

An algorithm to check for the satisfiability of input and output constraints is shown in Figures 5 and 6.
Since the raising of each encoding-dichotomy is performed in time linear in the number of symbols times
the number of initial encoding-dichotomies, the algorithm complexity is polynomial in the number of
symbols and constraints.

14

/* S is the set of symbols to be encoded */
procedure remove_invalid_dichotomies (D, constraints) {
/* to handle dominance and disjunctive constraints */
foreach (encoding-dichotomy d € D)
foreach (pair of symbols s, m € S)
if (s > m & s inleft block & m in right block)
delete d
foreach (disjunctive constraint)
if (parent in left block & all children not in left block)
delete d
if (parent in right block & all children in left block)
delete d

/* to handle extended disjunctive constraints */
foreach (extended disjunctive constraint)
if (parent in right block &
one child of each conjunction in left block)
delete d }

/* d is a valid encoding-dichotomy */
procedure raise_dichotomy (d, constraints) {
do {
/* to handle dominance and disjunctive constraints */
foreach (symbol s € S)
if (s in left block & s > m)
insert m into left block of d
if (s in the right block & m > s)
insert m into right block of d
foreach (parent symbol s in a disjunctive constraint)
if (all children in the left block)
insert s into left block
if (all but one children are in left block &
s is in the right block)
insert last child into right block

/* to handle extended disjunctive constraints */
foreach (parent s in an extended disjunctive constraint e)
if (one child of each conjunction in the left block)
insert s into left block
if (one child of all but one conjunction are in left block &
s is in the right block)
insert all children of remaining conjunction into right block
} while (at least one insertion within loop)

Figure 5: Feasibility check of input and output constraints

15

procedure check_feasible (constraints) {

I = generate_initial encoding_dichotomies (constraints)
D = remove_invalid dichotomies (I, constraints)
foreach (encoding-dichotomy d in D)

raise_dichotomy (d, constraints)
D = remove_invalid_dichotomies (D, constraints)
foreach (encoding-dichotomy i € I)

if ¢ is not covered by some d € D

return (INFEASIBLE)

return (FEASIBLE)

Figure 6: Feasibility check of input and output constraints

6.3 Exact input and output encoding

The complete algorithm for satisfying both input and output constraints is shown in Figure 7. Fol-
lowing the generation of the initial encoding-dichotomies from the input constraints, those that violate
output constraints are deleted. The remaining encoding-dichotomies are raised maximally. Any raised
dichotomy that becomes invalid is deleted. If each of the initial encoding-dichotomies are covered by
at least one of the valid and maximally raised dichotomies, we proceed to determine a minimum code
length solution. All prime encoding-dichotomies are generated from the valid raised dichotomies. Us-
ing an exact unate covering algorithm, a minimum cover of the initial encoding-dichotomies by the valid
prime encoding-dichotomies yields the exact solution.

An example is given in Figure 8. Notice that, given the initial encoding-dichotomies (s;; s¢s1),
(s0815 52), (833 5081), (30515 83), (503 81)s (815 80), (825 53) and (s3; s2), the following are removed because
they are invalid: (sesi; s2) (it conflicts with s; > s3), (8081 83) (it conflicts with s = s; V s3) and
(s0; s1) (it conflicts with so > s;). By raising the remaining valid encoding-dichotomies one obtains the
following raised encoding-dichotomies: (s;s2; sos3) (from the initial encoding-dichotomy s,; s, since
81 > s, forces s; into the left block and sp = s; V s3 forces s; int the right block) that subsumes the
valid encoding-dichotomy (s2; s3), (83; s251) (from s3; s, since s; > s, forces s; into the right block),
(825 sos1) and (s3; sosi) (the last two are initial encoding-dichotomies unmodified by the raising process).
Since each initial encoding-dichotomy is covered by some raised encoding-dichotomy, an encoding sat-
isfying all constraints exists. It is found by computing the prime encoding-dichotomies obtained by the
raised encoding-dichotomies and solving a unate covering problem to determine minimum code-length
codes that satisfy the given constraints.

Theorem 6.2 The algorithm shown in Figure 7 generates a minimum length encoding for a set of given
input and output constraints, if a feasible solution exists.

Proof Similar to that of Theorem 6.1. If a feasible solution exists it can be obtained from the maxi-

mally raised and valid encoding-dichotomies by generating prime encoding-dichotomies and finding a
minimum covering of the initial encoding-dichotomies. =

16

procedure exact_encode (constraints) {
I = generate_initial_encoding_dichotomies (constraints)
D = remove._invalid_dichotomies (I, constraints)
foreach (encoding-dichotomy d € D)
raise_dichotomy (d, constraints)
D = remove_invalid_dichotomies (D, constraints)
foreach (encoding-dichotomy ¢ € I)
if ¢ is not covered by some d € D
return (INFEASIBLE)
P = prime_dichotomy_generate (D)
valid_primes = remove_invalid_dichotomies (P, constraints)
mincov = minimum_cover (I, valid_primes)
return (derive_codes (mincov))

Figure 7: Exact encoding constraint satisfaction

Face embedding constraints :

(30’ Sl)

Dominance constraints :

S0 > 8 81 > 82

Disjunctive constraints :

So=381Vs;3

Initial encoding ~ dichotomies :

(82; s0s1) (sos1382) (8353081)
(s081; 53) (03 1) (813 %0)
(s2; 83) (83:82)

Raised encoding — dichotomies :

(s2; %0%1) (s3:5081) (8182 %083)
(833 8281)

Prime encoding — dichotomies :

(s2; s08183) (82835 8081) (83 508152)
(3182; 083)

Minimum cover :

(82835 3081) (81825 8033)

Final encoding :

sp = 11,51 = 10,52 = 00,83 = 01

Figure 8: Example of exact encoding with input and output constraints

17

7 Bounded length encoding

Problem P-3 (c.f. Section 1) is defined as minimizing a cost function of the constraints that are satisfiable
using a fixed number of bits. In practice, this problem is more relevant than problem P-2, where all
constraints must be satisfied with the minimum number of bits. The reason is that encoding problems
for logic synthesis often exhibit a trade-off between the code-length and the gain obtained by satisfying
all constraints. Increasing the code-length may off-set what is gained by satisfying all constraints. For
example, optimal encoding for finite state machines implemented by two-level logic may be viewed as
the process of generating a set of mixed input and output constraints. Satisfying all the constraints may
require a long code-length which translates into extra columns of the PLA than the minimum necessary.
This often results in sub-optimal PLA area and also impacts the performance. The same reasoning applies
to multi-level logic, where literal counts are used instead of cubes. Therefore, logic synthesis applications
require an encoding algorithm that:

e Considers different cost functions.

¢ Minimizes a chosen cost function for encodings of fixed length.
There are three cost functions that are useful in such applications:

e The number of constraints satisfied.
o The number of product-terms in a sum-of-product representation of the encoded constraints.

o The number of literals in a sum-of-product representation of the encoded constraints [13].

We illustrate the meaning and technique of computation of the above-mentioned cost functions with
an example. Consider the following input constraints: (e, f,¢), (e, d, g9), (a, b,d), (a, g, f,d). To satisfy
all the constraints, a code-length of 4 bits is required. A solution is a = 1010, b6 = 0010, ¢ = 0011,
d = 1110, e = 0111, f = 1011, g = 1100. Suppose instead that the code-length is fixed to 3 bits. It
must be the case that one or more input constraints are not satisfied, whatever 3-bit encoding is chosen.
For a certain 3-bit encoding, the problem arises of computing its “goodness”. For each input constraint
I, define a logic function F; whose on-set contains the codes of the symbols in the constraint and whose
off-set contains the codes of the symbols not in the constraint. The unused codes are in the don’t care
set. For instance, given the previous encoding, the points in the on-set of F s, are (0111, 1011,0011),
those in the off-set are (1010, 0010, 1110, 1100) while the don’t care set contains the remaining unused
nine codes. If a constraint is satisfied, two-level minimization of f; yields a single product-term. If a
constraint is not satisfied, there will be at least two product-terms in the minimized result. Thus, the
number of product-terms is a measure of the satisfaction of the input constraints. For constraints arising
from encoding problems of two-level logic, this is an appropriate cost function. In the procedure above,
cost function evaluation requires a number of two-level logic minimizations. In practice this may be
approximated by a single logic minimization of a multi-output Boolean function, where each constraint
is represented by a unique output of a multiple output function. The number of literals of a two-level
implementation of the constraints can be computed in the same way; here literals are counted instead of
product-terms.

In Figure 9, a 3-bit encoding for the previous set of constraints is shown, together with the product-
terms needed to implement the encoded constraints. The given 3-bit encoding violates 3 face constraints.
7 cubes and 14 literals are required to represent the encoded constraints.

18

011 111

101

010 110

100

(e)f,c) —_— (l-oyo-l}

(e,d,g) — {--1

(a,b,d) — {111,0-0}

@a,g,f,d —> ({111,-0-}

Figure 9: Example of cost function evaluation

7.1 Heuristic algorithm for input constraints

Consider the input constraint satisfaction problem where a code of length c bits is desired minimizing
the number of violated constraints. This is an exact version of problem P-3. We require a selection
of prime encoding-dichotomies that must have two properties. First, the primes must ensure that each
symbol gets a unique code, that is, all the uniqueness constraints must be covered by the selected primes.
Second, the fewest face constraints must be violated. The only apparent way this can be done is to
enumerate all 2"~! prime encoding-dichotomies (using » symbols) and then solve an exact weighted
unate covering problem. Note that we desire a selection of primes that covers all uniqueness constraints,
yet the cost function is related to the constraints specified. This approach is clearly infeasible on all but
trivial instances of P-3.

Heuristic algorithms can be easily developed within the encoding framework presented in this paper.
In the this subsection we describe a heuristic algorithm based on the concept of encoding-dichotomies
to solve P-3 approximately.

The first phase of an exact solution to problem P-3 involves the enumeration of all 2"~! encoding
dichotomies that exist for n symbols. This step is termed candidate encoding-dichotomy generation (or
candidate generation in short). The second phase is to determine a selection of a fixed number of these
encoding dichotomies that minimize the desired cost function. This is termed selection. While candidate
generation is clearly exponential in the input size, in the selection phase a polynomial (in the code-length
c) number of sets of candidate encoding dichotomies have to be considered. A heuristic algorithm that
avoids this enumeration of encoding-dichotomies while retaining the structure of the exact approach is
detailed now.

The algorithm has three main phases: splitting of a set of symbols, merging of restricted encoding-
dichotomies and selection of the ¢ best restricted dichotomies for a subset of symbols. The splitting
phase is used to divide the given encoding problem into two smaller problems, each using one less code
bit. Assuming that each sub-problem is solved optimally, the solution for the original encoding problem

19

is generated by the steps of merging and selection.

Let a code of length c be desired for n symbols, s, ..., s,. Consider a partition of the symbols into
two groups sy, ..., S¢ and si4+1...5,. Let D be the ¢ — 1 best encoding-dichotomies restricted to sy, ..., Si.
Similarly, let D, be the ¢ — 1 best encoding-dichotomies restricted to sx41, ..., So. Then, the candidate
encoding-dichotomies for sy, ..., s, is the set D = {(s;...5k; Sk4+1.--Sn)} U Dy x D, U Dy x Dy. The
best selection of ¢ dichotomies from D is used to obtain a desired encoding. By applying this technique
recursively until each partition contains a single symbol, a bounded-length encoding is achieved.

Definition 7.1 Let S = sy, s, ..., S, be a set of symbols and let D be a set of encoding dichotomies using
these symbols. Consider some subset of symbols, P = s,,, 3p,, ..., Sp,. The restricted dichotomies of D
with respect to P are the elements of the set Dp of dichotomies obtained by removing all symbols not in
P from each encoding-dichotomy d € D.

Splitting: We are interested in obtaining two sub-problems, each using one less code bit than the
given problem does. In splitting the symbols into disjoint partitions, the fewest constraints should be
violated. This is achieved by using a modification of the Kernighan-Lin [11] partitioning algorithm®.

Each partition P can be considered as yielding a dichotomy, dp. For example, the partition of n
symbols into two blocks of symbols {si, ..., s} and {s+1, ..., Sn} gives d = {(s1...Sk; Sk+1---8n)}. De-
pending on the cost function being considered, each partition P is chosen to minimize the cost function
evaluated using dp. For example, if the number of face constraints is to be minimized, then P is chosen
such that the fewest face constraints (restricted to the symbols being partitioned) are violated by dp. If
the number of literals (or cubes) is being minimized, then P is chosen such that the maximum number of
restricted initial encoding-dichotomies are covered by dp. This corresponds to minimizing the number
of uncovered initial encoding-dichotomies. Thus, for the partitioning algorithm [11], the nodes are the
symbols being partitioned and the nets are either face constraints or initial encoding dichotomies. Since
the partitioning algorithm minimizes the number of nets that are cut, this suits the cost functions being
considered here.

The procedure is executed recursively for the symbols in each of the parts. Each partition again yields
candidate dichotomies restricted to the subset of symbols that appear in it. When only two symbols
remain, a single dichotomy that corresponds to the uniqueness constraint between them is generated.

Consider the example shown in Figure 3, where an encoding of length 2 is required to minimize the
number of literals in sum-of-product form. In the first step, at least four initial encoding-dichotomies
must be violated by any partition for this example. Assume to choose the partition P, = {so, 1, 32, S4}
and Pz = {33}. Further panitioning the symbols in P1 yields Pu = {So, 84} and Plz = {81, 32}, which
violates two of the initial encoding-dichotomies restricted to P, (numbered 1 and 4 in the example).

Merging: Here the restricted dichotomies generated from each of the sub-partitions, say P, and P;,
are merged to obtain a set of dichotomies that ensures unique codes for all the symbols in the merged
partition, P = P, U P;. Since the sets of symbols in P, and P, are disjoint, each of the dichotomies in P

SThis step can also be performed by using the notion of incompatibility between encoding-dichotomies. The prime
encoding-dichotomy that covers the maximum number of encoding-dichotomies is desired. Given the pairwise incompatibil-
ities between encoding-dichotomies, this can be obtained by choosing the minimum cover of the pairwise incompatibilities
(¢f. Section 5.1). We do not employ this technique since the number of incompatibilities is often enormous. Additionally,
the prime encoding-dichotomy is required to have a bounded number of symbols in each block, which requires a further
modification to the approach.

20

is a union of one dichotomy each from P, and P;. For that purpose, the cross-product of all dichotomies
generated from each of the sub-partitions is formed.

Consider partitions P; = {so, 51,52, 54} and P, = {s3} which are to be merged for the example of
Figure 3. Assume the encoding dichotomies chosen (by recursive application of this algorithm) for P; are
Dy = {(s0s4; 5182), (8052; s154) }. The only choice for P; is D, = {(s3;)}. The merged dichotomies to
be considered are D = {(s0515254; $3), (505354; 5152), (80543 315283), (S05253; S154), (S082; $15384)}. The
best encoding of length 3 is chosen from this set by the next step.

Selection of best restricted dichotomies: The objective here is to generate those combinations of
dichotomies from each partition that maximally recover the constraints violated by the partitions in the
first step, while covering all the uniqueness constraints. Itis important to note that when the best selection
of encoding-dichotomies restricted to a subset of symbols is sought, a global view of constraints (and
cost function) must be employed. This is done as follows for a subset of symbols P = {p,,...px} with
candidate restricted encoding-dichotomies D,. A cover of size cp, is desired. The constraints of the
entire problem are first restricted to the symbols py, ...px. Each selection of cp, encoding-dichotomies
from D), is evaluated using the approach mentioned in the previous section. The cover that minimizes
the given cost function is chosen as the cp, best restricted encoding-dichotomies. This selection ensures
minimization of the cost function for all the symbols after the merging step is completed.

Continuing with the example of Figure 3, assume the merging step discussed above. The 3 best
encoding-dichotomies selected are (sos15254; 33), (S052; 515334) and (soss; s15283). This is done by eval-
uating all selections of size 3 from the set D that cover all uniqueness constraints and minimize the literal
count. In the general case the number of evaluations can be restricted to some fixed number to reduce
the search space.

While some selection of partitions, in the splitting step, and some selection of dichotomies, in the
selection step, yield the best solution, it may not necessarily be obtained without a complete evaluation of
all the possibilities in the partitioning and selection phases. However, a straightforward implementation
of the algorithm, without a complete branch and bound search, has shown promising results.

8 Extensions to other encoding constraints

In this section we illustrate that the formulation presented in Section 6 provides a uniform framework
for the satisfaction of various other known encoding problems.

8.1 Input encoding don’t cares

The notion of an encoding don’t care was first described in [6], where it was pointed out that for a multi-
valued literal, any binary coded implementation of the literal which contains the reduced implicant and
is contained by the expanded implicant in which it occurs, is valid. An example of how encoding don’t
cares are generated in the two-level case is given in [14]. A face constraint containing symbols a, b and
e and with symbols ¢ and d as encoding don’t cares is denoted (a, b, [c, d], €). This constraint specifies
that symbols a, b, e must be assigned to one face of a binary n-dimensional cube, with the don’t care
symbols c,d free to share or not the same face. and no other symbol sharing the same face. These
encoding don’t cares have been shown to be essential for determining good factors in deriving a multi-
level implementation of a given multi-valued description [13].

21

A simple example shows that suboptimal solutions of P-2 are computed when input encoding don’t
cares are disregarded. Given the set of face constraints (a, b), (a,c), (a,d), (a,b,[c,d],e), a minimum
cover of primes contains 3 primes, e.g. (a,b,¢;d, f), (¢,¢,d; b, ¢, f), (a,b,d; c, e, f). If instead the en-
coding don’t cares are forced to be in the face constraint, i.e. (a,b, [c,d],) is replaced by (a, b, ¢, d,)
then a minimum cover of primes contains 4 primes, e.g. (a,b,¢,d, ¢; f), (a, b, ¢; d, ¢, f), (a,¢,d; b, e, f),
(a,b,d;c,e, f). Also in the case that the encoding don’t cares are forced not to be in the face con-
straint, i.e. (a,b,[c,d],e) is replaced by (a, b, e) a minimum cover of primes contains 4 primes, e.g.
(a,b,e;¢,d, f), (a,b,c;d, e, f), (a,d; b, c, e, f), (a,c,d; b, e, f).

The framework described in Section 6 naturally handles encoding don’t cares in the face constraints.
Consider the face constraint (sos;s3[ss]), which implies that ss may or may not be chosen to be on the
same face as so, 51 and s3 in the final encoding. Converting this constraint to initial encoding-dichotomies
is simply a matter of not generating the encoding-dichotomies (sos153; s5) and (ss; sos153). The absence
of these dichotomies enables ss to be either inside or outside the face that includes so, s; and s3 depending
on the minimality of the encoding. In presence of encoding don’t cares, a prime may give a bi-partition
of a proper subset of the symbols. For instance, if we consider the set of face constraints of the pre-
vious example (a, b, e; d, f), (a,c,d; b, ¢, f), (a, b,d; c, e, f), the prime encoding dichotomies generated
by the extended definition of compatibility are: (a, b, e; f), (a,b,¢;d, f), (a,b,¢; ¢, f), (a,b; c,d, e,),
(a’ G b, da € f)) (aa d; b? G¢€, f)’ (aa b’ G d’ 6, f): (av () d; b, ¢, f)7 (aa b7 d; Gé6 f)a (a'; ba () d’ €, f)~ A mini-
mum cover of 3 primes can be extracted out of them, as shown before.

The algorithms described for the feasibility check and exact encoding, shown in Figures 5, 6 and 7
respectively, extend naturally to encoding don’t cares. Note that the satisfiability check algorithm de-
scribed in [9] cannot be easily extended to handle encoding don’t cares without a significant penalty in
run-time. The encoding algorithm presented in [24] also cannot be extended to handle don’t cares.

8.2 Distance-2 constraints

In [22, 21, 8] a condition for easy and full sequential testability involved satisfying encoding constraints
which specified that the encoding of a pair of states must be at least distance-2 apart. This condition may
be easily satisfied by ensuring that at least two prime encoding-dichotomies are selected in the minimum
cover that each have the two states in different blocks. Suppose that we want to keep a distance of 2
between the codes assigned to states a and b. Suppose that, of all primes, the pairs p;, p» and ps, p have
the two states in different blocks. One at least of the two pairs must be chosen in a final cover. This can
be enforced by adding to the binate covering formulation the clauses

(21 +B1)(p2 + B1)(p3 +) (p3 + B2) (b1 + B2),
where by and b, are two new additional literals (columns of the table) that do not represent encoding
columns, but enforce the choice of other columns in a solution.
8.3 Other constraints

In [18], conditions for improved sequential testability were given which require the encodings to ensure
that certain face embedding constraints must not be satisfied in addition to the face embedding constraints
that must be satisfied. They are called non-face constraints. These constraints specify that a set of
symbols is to be assigned to one face of a binary n-dimensional cube, with at least another symbol not in

22

the set sharing the same face. A non-face constraint involving symbols «, b and e is denoted by)a, b, €(.
An encoding satisfying the face constraints (a, b), (b, ¢, d), (a, e) and (d, f) and the non-face constraint
)a,b,e(is given by a = 011,5 = 001,c = 101,d = 100,e = 111, f = 110. The face spanned by the
codes of the symbols in the non-face constraint is — — 1 and contains also the code of the symbol c.

These constraints can be captured in our framework by extending the final covering step to a binate
covering, where sets of prime encoding-dichotomies that cover the encoding-dichotomies yielded by the
face embedding constraints which should not be satisfied are not allowed.

For each non-face constraint all minimal sets of prime dichotomies that cover the related face con-
straint are computed. In the case of)a,b, e(the related face constraint is (a, b, e) and the encoding
dichotomies are d; = (a,b,e;¢),d> = (a,b,e;d),ds = (a,b,e; f). Suppose that the minimal sets of
prime dichotomies that cover dy, dy, d3 are {p:}, {p3, ps}, {p3, s, ps}. We must add to the unate clauses
of the covering expression, these additional negative clauses:

P1(Ps + P4)(P3 + Ps + Pe)-

For instance, (P, + Ps + Pg) says that, when selecting for a minimum cover two primes in ps, ps, pe, the
third one cannot be chosen.

8.4 Limitations of dichotomy-based techniques

This section has illustrated how new classes of encoding constraints, together with face and output con-
straints, can be accomodated in the dichotomy-based frame. It is legitimate to ask what kind of con-
straints, if any, cannot be naturally phrased with the language of dichotomies.

Such an example of unwieldy encoding constraints are chain constraints. They can be found in [1],
where a technique for implementing finite state machines using counter-based PLA structures is presented.
State assignment is reduced there to a step of deriving face and chain constraints and a step of satisfying
them. A chain constraint requires that increasing binary numbers be assigned to the codes of the ordered
sequence of states. The first element in the chain can be given any code. For instance, a chain constraint
involving the ordered sequence a, b, ¢, d, ¢, f,g,h,tisdenoted by (a —b—c—d—e— f —g—h—1i) and
is satisfied by the encoding a = 0010, b = 0011, ¢ = 0100, d = 0101, e = 0110, f = 0111, g = 1000,
h = 1001, : = 1010. For every pair of adjacent states in the chain the code of the right state is equal to
the code of the left state increased by one in binary arithmetic. As an example of encoding problem with
face and chain constraints, consider the face constraints (b, ¢), (a, b), and the chain (d —b—c—a). A
satisfying assignment is: a = 00,5 = 10,c = 11,d = 0Ol1.

Even though it is possible, for a given code length, to add to the covering expression clauses that
impose the chaining conditions, a straighforward solution seems to require a computationally expensive
implicit enumeration. The question of whether tighly coupled constraints, such as chain constraints, can
be couched usefully in the frame provided here is left open.

9 Results

Table 1 gives the results of using the exact encoding algorithm on a set of examples using both input
and output encoding constraints. These constraints were generated using an extension of the proce-
dure described in [6] that also generates good disjunctive effects. The number of valid prime encoding-
dichotomies is shown in the third column. As seen from the table, all the examples with less than 50000

23

Name # States | # Primes | # Bits | Time

(secs)
bbsse 16 1449 7 20
cse 16 201 7 3
dk16 27 24316 12 | 1050
dk16x 27 6205 12 530
dk512 15 35 9 1
donfile 24 673 12 17
exlinp 20 2023 9 45
keyb 19 189 9 4
kirkman 16 54 11 8
master 15 972 5 4
planet 48 [> 50000 * *
sl 20 469 7 10
sla 20 50 7 3
sand 32 2481 11 88
tbk 32 13 12 41
vmecont 32| > 50000 * *

* indicates results not available
Table 1: Exact input and output encoding

primes completed in very little CPU time on a DEC 3100 work-station. In the cases of planet there were
only nine dominance constraints and no disjunctive constraints, which led to almost no decrease in the
number of primes generated from the face constraints (exponential in the worst case). In the case of
vmecont there were only eight different face constraints (six of them had only two states), which led to a
huge number of primes being generated from the large number of unimplied uniqueness constraints. The
previous approach suggested for prime generation in [25] could not complete on any of the examples.

Table 2 compares an implementation of the heuristic algorithm described in Section 7.1 with NOVA [24]
for two-level implementations. The input constraints have been generated calling the two-level multiple-
valued logic minimizer ESPRESSO-MYV [17]. In this case, the number of face constraints satisfied using
the minimum possible length for encoding are compared. While both programs perform comparably
with regard to the number of constraints satisfied, our approach has a significant advantage compared
to NOVA whith respect to the number of cubes needed to implement in two-level form the input con-
straints. This cost function is very important because it measures the advantage of satisfying a subset of
input constraints in a fixed code-length more precisely. Our algorithm in almost all cases needs fewer
cubes than NOVA. On the benchmark set it requires on average 13% fewer cubes and in some cases the
gain is more than 20%.

Table 3 compares our approach to simulated annealing for multi-level examples. Input constraints
with don’t cares are generated by the multiple valued multi-level synthesis program MIS-MV [13] with
the number of factored form literals in the encoded implementation as cost function (in practice, the
number of literals in a sum-of-product representation of the encoded constraints is used as an approxi-
mation to this cost function). Because of the presence of encoding don’t cares and the cost function of

24

Name | States | # Constraints | Constraints Cubes
NOVA | ENC || NOVA | ENC
bbsse 16 5 3 3 12 8
cse 16 12 8 8 24 18
dk16 27 33 25 20 43 48
dk512 15 10 8 9 12 11
donfile 24 24 8 11 48 39
exl 20 11 8 8 19 19
kirkman 16 25 9 9 58 58
master 15 3 3 3 3 3
planet 48 12 12 12 12 12
sl 20 14 14 14 14 14
sand 31 7 6 6 8 8
styr 30 18 14 14 29 26
tbk 32 98 44 39 284 | 237
viterbi 68 6 6 6 6 6
vmecont 32 40 24 25 81 67

Constraints: Number of constraints to be satisfied

Constraints: Number of satisfied constraints

Cubes: Number of cubes in a two-level implementation of the constraints
NOVA: Encoding using NOVA [24], minimum code length
ENC: Heuristic encoding, minimum code length

Table 2 : Two-level heuristic minimum code length input encoding

25

Name States Literals Time

SA | ENC SA | ENC
bbsse 16 162| 164} 3017 175
cse 16 | 229 | 236 | 3969 | 234
dk16 27 |[336 | 380 | 27823 | 1523
dk512 15| 82 85| 2090 | 138
donfile 24 || 154 | 172 | 16265 | 935
kirkman 16 | 201 | 229 || 2621 | 322
master 15392 398 (2069 | 423
sl 201280 | 304 16297 | 833
tsand 311763 | 737 | 1926 | 2332
ttbk 321560 498 || 3774 | 4090
tviterbi 68 || 327 | 322 860 [1013
tvmecont 321378 364 || 2074 | 2883

SA: Simulated annealing (10 moves per step)

ENC: Heuristic encoding in minimum code length

Time SA / END: Time ratio for SA vs. ENC; includes run time for minimization script [13]
T: SA cannot complete with 10 moves per step; SA limited to 4 steps per move

Table 3 : Multi-level heuristic minimum code length input encoding

literals, simulated annealing was the only known algorithm for solving this problem. We use two sets of
experiments to compare the effectiveness of our heuristic bounded-length algorithm versus the version
of simulated annealing algorithm implemented in MIS-MV. Minimum-length encoding is always used.
MIS-MYV is run using a script that invokes the constraints satisfaction routine six times; five times to
perform a cost evaluation that drives the multi-valued multi-level optimization steps and one final time
to produce the actual codes that replace the symbolic inputs [13]. Simulated annealing is called the first
five times with 1 pairwise code swap per temperature point, while the last call performed 10 pairwise
code swaps per temperature point. Simulated annealing does not complete on the larger examples with
10 pairwise swaps per step. These examples are marked with a { in the table, and only 4 swaps were
allowed per temperature step for these examples. When using our heuristic algorithm, the full-fledged
encoder is called all six times. See [13] for a detailed explanation of the scripts.

As can be seen from Table 3, our algorithm on average performs a little better than simulated anneal-
ing in terms of literal counts. This is significant especially in the large examples, where it reduces the
literals counts up to 10% further than simulated annealing. When our algorithm does worse it is within
5% of the simulated annealing result. However, a significant parameter here is the amount of time taken.
Simulated annealing consumes at least an order of magnitude of time (two orders or more for larger sized
examples) more than our algorithm when a better quality solution is desired, i.e. using 10 swaps per step.
On attempting to reduce the runtime to be comparable to our approach, a noticeable loss of optimization
quality compared to our approach may be observed in the table. Further improvements to the heuristic
encoding algorithm are still under investigation.

26

10 Conclusions

This paper has presented a comprehensive solution to the known constraint satisfaction problems aris-
ing in the two-step encoding paradigm defined in the introduction. A theory has been provided and a
set of applications fully developed. We have shown that the problem of determining a minimum length
encoding to satisfy both input and output constraints is NP-complete. Based on an earlier method for
satisfying input constraints [25], we have provided the first formulation of an algorithm that determines
the minimum length encoding that satisfies both input and output constraints. It is shown how this al-
gorithm can be used to determine the feasibility of a set of input and output constraints in polynomial
time in the size of the input. This formulation also provides a uniform framework for solving a variety of
other known encoding constraints. While all previous exact formulations for the input encoding problem
have failed to provide efficient algorithms, an algorithm that efficiently solves the input and output en-
coding constraints exactly for a large standard benchmark set has been described. An effective heuristic
procedure, which uses the framework provided, for solving input encoding constraints in both two-level
and multi-level implementations is also demonstrated.

References

[1] R. Amann and U. Baitinger. Optimal state chains and state codes in finite state machines. /EEE
Transactions on Computer-Aided Design, February 1989.

[2] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimization Algo-
rithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[3] R. Brayton, A. Sangiovanni-Vincentelli, and G. Hachtel. Multi-level logic synthesis. The Proceed-
ings of the IEEE, february 1990.

[4] K-T. Cheng and V.D. Agrawal. State assignment for initializable synthesis. In The Proceedings of
the International Conference on Computer-Aided Design, November 1989.

[5] G. Cybenko, D. Krumme, and K. Venkataraman. Fixed hypercube embedding. Information Pro-
cessing Letters, April 1987.

[6] G. DeMicheli. Symbolic design of combinational and sequential logic circuits implemented by
two-level logic macros. IEEE Transactions on Computer-Aided Design, October 1986.

[7] G. DeMicheli, R. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for finite
state machines. IEEE Transactions on Computer-Aided Design, July 1985.

[8] S. Devadas, H-T. Ma, R. Newton, and A. Sangiovanni-Vincentelli. Synthesis and optimization
procedures for fully and easily testable sequential machines. In The Proceedings of the International
Conference on Computer-Aided Design, November 1987,

[9] S. Devadas and R. Newton. Exact algorithms for output encoding, state assignment and four-level
Boolean minimization. /EEE Transactions on Computer-Aided Design, January 1991.

27

(10] C. Duff. Codage d’automates et theorie des cubes intersectants. Thése, Institut National Polytech-
nique de Grenoble, March 1991,

[11] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System
Technical Journal, February 1970.

[12] D. Krumme, K. Venkataraman, and G. Cybenko. Hypercube embedding is NP-complete. In Pro-
ceedings of SIAM Hypercube Conference, September 1985.

[13] L. Lavagno, S. Malik, R. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Optimization of
multi-level logic with multiple valued inputs. In The Proceedings of the International Conference
on Computer-Aided Design, November 1990.

[14] L. Lavagno, T. Villa, and A. Sangiovanni-Vincentelli. Advances in encoding for logic synthesis.
In Progress in Computer Aided VLSI design, G. Zobrist ed. Ablex, Norwood, 1991.

[15] M. Marcus. Derivation of maximal compatibles using Boolean algebra. IBM Journal of Research
and Development, November 1964.

[16] R. Rudell. Logic synthesis for VLSI design. Tech. Report No. UCB/ERL M89/49, April 1989.

[17] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA optimization.
IEEE Transactions on Computer-Aided Design, September 1987.

[18] A. Saldanha and S. Chandra. Synthesis for improved sequential controllability. Unpublished
manuscript, U.C. Berkeley, November 1990.

[19] A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A uniform framework for sat-
isfying input and output encoding constraints. June 1991.

[20] G. Saucier, C. Duff, and F. Poirot. State assignment using a new embedding method based on an
intersecting cube theory. In The Proceedings of the Design Automation Conference, 1989.

[21] P. Srimani. MOS networks and fault-tolerant sequential machines. Computers and Electrical En-
gineering, 8(4), 1981.

[22] P. Srimani and B. Sinha. Fail-safe realisation of sequential machines with a new two-level MOS
module. Computers and Electrical Engineering, 7, 1980.

[23] J. Tracey. Internal state assignment for asynchronous sequential machines. IRE Transactions on
Electronic Computers, August 1966.

[24] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment for optimal two-level logic
implementations. In IEEE Transactions on Computer-Aided Design, September 1990.

[25] S. Yang and M. Ciesielski. Optimum and suboptimum algorithms for input encoding and its rela-
tionship to logic minimization. JEEE Transactions on Computer-Aided Design, January 1991.

28

