
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A FRAMEWORK FOR SATISFYING INPUT

AND OUTPUT ENCODING CONSTRAINTS

by

Alexander Saldanha, Tiziano Villa, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/110

3 December 1990

(Revised November 19,1991)

A FRAMEWORK FOR SATISFYING INPUT

AND OUTPUT ENCODING CONSTRAINTS

by

Alexander Saldanha, Tiziano Villa, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/110

3 December 1990

(Revised November 19, 1991)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A FRAMEWORK FOR SATISFYING INPUT

AND OUTPUT ENCODING CONSTRAINTS

by

AlexanderSaldanha, TizianoVilla, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M90/110

3 December 1990

(Revised November 19,1991)

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720

A Framework for Satisfying
Input and Output Encoding Constraints

Alexander Saldanha* Tiziano Villa* Robert K. Brayton
Alberto L. Sangiovanni-Vincentelli

University of California - Berkeley CA

Abstract

Encoding is a significant stepin the synthesis of digital circuits. Three relevant encoding prob
lems are input,outputandstate encoding. Several algorithms havebeen proposed for theirsolutions
thatdecompose the probleminto symbolic minimization(yieldinga set of constraints) andconstraint
satisfaction. At least two exact formulations of the input encoding constraint satisfaction problem
exist. However, a more importantuse of encoding is in state assignment of finite state machines
where both input and output encoding constraints must be satisfied to obtain the most effective im
plementations. This paper first provesthatthe encoding problem is NP-complete. Then a framework
forthe simultaneous satisfaction of inputand outputencoding constraints is developed. We describe
an algorithm, polynomial in the number of symbols to be encoded, to check for the existence ofa so
lution for a set of input and output constraints. An efficient algorithmthat determines the minimum
number of encoding bits required to satisfy all the given constraints is provided. We demonstrate
how heuristic algorithms can be developed within the framework. Finally, the use of this frame
work in solving a variety of encoding problems with different cost functions is discussed. Results
on standard benchmarks are given for both exact andheuristic algorithms.

1 Introduction

There are two stagesof synthesis in which the circuit area may be minimized. The first is the conversion
of agiven register-transfer leveldescription withsymbolic inputs and/or outputs intoalogic-level imple
mentation by assigning binary codes to the symbolicvariables leading to efficientarea implementations.
This problem is termed theencoding problem. The second is logic optimization that is performed on the
implementation derived from the first stage. A wealth of contributions in the last decade advanced the
theory of logic optimization for different styles of implementation [3]. A successful paradigm used in
solving the encoding problembinds these two togetherby applying logic minimization on an unencoded
specification followedby a transformation of the minimized symbolic representation to acompatible bi
naryrepresentation [7]. Thus, encoding alsobecomes atwo phaseprocess; first, obtainingamulti-valued

*Research supportby SRC under contract 91-DC-008
Research support by DARPA under contract JFBI90-073

minimizedrepresentation together with a set of constraints on the codes of the symbolic variables, and
second, finding anencoding that satisfies the constraints. The constraints, if satisfied, are guaranteed to
produce anencoded two-valued representation of the same cardinality asthemultiple-valued minimized
representation.

The encoding problem may be targeted for either two-level or multi-level logic implementations.
Two-level implementations optimize the number of product-terms or the area of a Pla. Multi-level
implementations optimize the number of literals of atechnology-independent representation of the logic.
Optimality may also be based on more complex criteria, such as performance and testability [18]. For
two-level logic, an exact algorithm to implicitly generate all possible minimized symbolic covers of a
given unencoded description together withtheinducedencoding constraints is provided in [9]. Inthecase
of multi-level logic, constraints are generated by performing multiple-valued multi-level operations [13].

The various techniques for exact and heuristic encoding basedon multiple-valued minimizationof
two-level and multi-level logic, reported in [7, 6, 9, 13,4], produce one or more of four types of con
straints.

The first type are face-embedding constraints generated by themultiple-valued inputvariables (input
constraints). These constraints specify that a set of symbols is to be assigned to one face of a binary
H-dimensional cube, without any other symbol sharing the same face. An input constraint involving
symbols a, bandc is denotedby (a, 6, c). An encoding satisfying (a, 6, c) is given by a = 11,6 = 01, c =
00. The vertex 10cannot be assignedto any other symbol.

Two other types are dominance anddisjunctive constraints generated by the multiple-valued output
variables (output constraints). A dominance constraint (covering, denoted by >, e.g. a > b) requires that
thecode ofasymbol (a) bit-wise coverthecodeof another symbol (6). A disjunctive constraint specifies
that the code of a symbol (the parent symbol) is the bit-wise disjunction (or~ing, denoted by V, e.g.
a = 6V c) of the codes of two or more othersymbols (the children symbols). Finally, the minimization
procedure described in [9] produces disjunctive constraints with nestedconjunctive terms. They require
thatthecodeofa symbol be the bit-wise disjunction (denoted by V) of the conjunctions (and-ing, denoted
by A) of the codes of two or more symbols. An exampleis: (a A 6A c) V (a A d A e) V (a A / A g) = a.

An example containing input, dominance and disjunctive constraints is: (6,c), (c,d), (6, a), (a,d),
b > c, a > c, a = bV d. An encoding satisfying all constraints exists and the minimum code length is
two. A solution is a = 11,6 = 01, c = 00, d = 10.

A face embedding constraint is used to express several input termsof anoutput function by a single
term. This results in a smallercover for the output function. A dominance constraint is used to increase
the don't care set associated with an output function, wheneverthis leads to a smaller implementation.
A dominance constraint is useful only in conjunction with a related face embedding constraint, when
encoding both input and output variables. A disjunctive constraint is used to decrease the size of the
cover of an output function. This occurs if the input parts of the output corresponding to the parent
symbol are contained in each of the input parts of the outputs corresponding to the children symbols.
These constraints arisewith both face embedding and dominance constraints, when encoding both input
and output variables.

Disjunctive constraints with nested conjunctive terms are used in the exact encoding technique de
scribed in [9] to ensure that if a set of generalizedprime implicants is chosen as a solution, each minterm
asserts the same output combination as it would have in the original cover. Eachgeneralizedprimeimpli-
cantasserts the conjunction of the codes ofa groupof symbols in its output part. The output foraminterm
in a two-level implementationis then the disjunction of all the outputs asserted by the generalized prime

implicants that cover the minterm.
The origin and the effect of these constraints on the quality of the minimized result is described

in [7, 6, 9,13].

In this paper, we focus on the following problems. Given a setof encoding constraints returned by a
symbolic minimization procedure:

P-l: Determine whether the constraints are satisfiable.

P-2: Determine the binary codes that usea minimum number of bits and satisfy all the constraints.

P-3: Minimize a cost function of the constraints that are satisfiable usinga fixed numberof code bits.

Previous work on encoding constraint satisfaction has concentrated on solving input constraints,
alone. Exact algorithms and efficientheuristics for solving problems P-2 andP-3 are reported in [24,25].
An approximate solutionto P-3 basedon a theoryof intersecting cubes is describedin [20,10]. Problem
P-l is trivial for only input constraints. A solution to P-l and a heuristic algorithm to solve P-3 when
both input and output dominance constraints occur are provided in [6]. A solution to P-l when both
input and output constraints (including disjunctive constraints) are present is attempted in [9], but we
will demonstrate that the algorithm is incomplete. To date, to the best of our knowledge, no effective
algorithms exist for solving all three problems when all types of constraints occur.

In this paper we propose a framework and efficient algorithms to solve P-l, P-2 and P-3 for input
and output encoding constraints. A polynomial time algorithm to answer P-l and exact and heuristic
algorithms to solve P-2 and P-3 are provided. We solve P-3 with different cost functions, such as the
number of constraints satisfied and the number of cubes or literals required in theencoded implementa
tion. These algorithms also handle encoding don'tcares [6,13] and can beeasily extended toother types
of constraints. We also prove the NP-completeness of problems P-2 and P-3. This result has not been
shown previously, though it has been conjectured [6].

The approach usedhere is based on a formulation provided in [25] andrelated to the state assignment
technique employedby Tracey in 1966 [23]. We first demonstrate thedifficulty of theencoding problem
by provingit NP-complete in Section 2. Section 3 provides some definitions. In Section 4 an abstraction
of the problem is presented. In Section 5 we describe a new algorithm to satisfyinputconstraints alone.
This is extended to handle input and output constraints in Section 6. In Section 6.2 we first show that
a previous algorithm for checking the satisfiability of encoding constraints [9] is incomplete and we
providean alternate correctalgorithm. A heuristic algorithm is briefly sketched in Section 7. Extensions
of the framework to handle various types of constraints and cost functions are discussed in Section 8.
Substantial experimental results are provided in Sections 9 and conclusions are described in Section 10.

This paper is an extended version of [19].

2 Statement and complexity of the encoding problems

Three types of problems relatedto the satisfaction of input andoutput constraints were introducedinfor
mally in the Section 1. They are:

P-l: Determine whether the constraints are satisfiable.

P-2: Determine the binarycodes thatuse a minimum numberof bits and satisfy all the constraints.

P-3: Minimize a cost function of the constraints thatare satisfiable by a fixed number of code bits.

Problem P-l can be solved by a polynomial algorithm, as will be shown later. In this section we for
mally state P-2bothas a decision and anoptimization problem and show that thedecision (optimization)
version with input constraints alone is NP-complete (NP-hard).

Afew preliminary definitions arerequired. An n-dimensional hypercube (orn-cube) is a graph of 2n
venices labeled uniquely by the integers from 0 and2n - 1. An edge joins two vertices whose binary
representations of theirinteger labels differbyexactly onebit. Theminimum fc-cube thatcontains a given
subset of vertices of a n-cube (k < n) is the fc-face (or smallest face) spanned by the given vertices.

Decision version of P-2:

Instance: Set of input and outputconstraints defined on a set of symbols, 5, and a positive integerk.

Question: Is there a function / from S to the vertices of a fc-cube such that:

1. Symbols in the same input constraint are mapped to vertices spanninga face that does not
contain the image of any other symbol.

2. The binary labels of the images of the symbols satisfy the output constraints?

Optimization version of P-2:

Instance: Set of input and output constraints defined on a set of symbols, 5.

Objective: Find the minimum fc-cube and a function / from 5 to the vertices of the fc-cube such that:

1. Symbols in the same input constraint are mapped to vertices spanning a face that does not
contain the image of any other symbol;

2. The binary labels of the images of the symbols satisfy the output constraints.

Answering the decision versionfor differentdimensions repeatedly solves the optimization problem
(with a polynomial numberof calls to the decision procedure) and, of course, solving the optimization
problem answers the decision version for all dimensions. Clearly, by assigning a weight of 1 to each
constraint, P-2 can be seen as a special case of P-3. Hence, P-3 is no easier that P-2.

The decision version of P-2 with input constraints alone is defined asface hypercube embedding. To
prove that face hypercubeembedding is NP-complete a few more preliminaries are needed.

Agiven graph G = (V, E) is a subgraph of ann-cube if there is a function mapping vertices of G into
vertices of the n-cube that preserves the adjacency relations. G can be embeddedin an n-cube if G is a
subgraph of the n-cube. The problem of deciding whethera given graph is embeddable into an arbitrary
dimension hypercube has been shown to be NP-complete [12]. It has also been proved that even the
problemof deciding whether a graph can be embedded into a fixed-size hypercube is NP-complete [5].
The proof in [5] actually shows that the problem of determining whether a graph of 2k nodes can be
embeddedin a fc-cube is NP-complete. This result can be used to prove that face hypercube embedding
is NP-complete.

Theorem 2.1 Face hypercube embedding is NP-complete.

Proof Face hypercube embedding isin NP. The assignment ofsymbols tovertices can be non-deterministically
checked in polynomial time.

Suppose k is thedimension of the hypercube into which the face constraints composed of simbols
from set 5 must be embedded. Let us restrict face hypercube embedding to the instances where the
symbols involved in the face constraints are 2k and each face constraint involves only two symbols.
For these instances it is possible to define a graph G(V, E) induced by the face constraints. The set of
nodes V is in correspondence withthesymbols in S andthere is anedgebetween twonodes when thetwo
corresponding symbols are in the same face constraint. The set offace constraints can be embedded into a
fc-cube ifand only if the companion graph isasubgraph ofa A:-cube. Notice that inthis case the conceptof
face embedding reduces to the familiar notion of graph adjacency. Theproblem ofdetermining whether
a graph of 2k nodes is a subgraph of a fc-cube has been proved to be NP-complete by reduction from
3-partition [5]. Therefore the problem of determining whether for 2k symbols a set of face constraints
each withexactly two symbols can be embedded into a fc-cube is NP-complete. But this is a restricted
version of face hypercube embedding and hence the latter too is NP-complete. •

3 Definitions

Definition3.1 An encoding-dichotomy is a 2-block partition ofsymbols to be encoded. The symbols
in the leftblockare associated with thebit0 while those in therightblockare associated with thebit 1.
Ifan encoding-dichotomy is usedin generating an encoding, then one code bitofthe symbols in the left
block is assigned 0 while the same codebitis assigned Ifor the symbols in the right block.

Forexample, (sosi;S2S3) is an encoding-dichotomy in which soand51 areassociated withthe bit0 and 52
and 33 are associated with the bit I. This definitiondiffers from that of a dichotomy, defined in [23,25],
where a dichotomy allows the left block to assume either the encoding bit 0 or I. As will be shown later,
this extension is useful in describing output encoding constraints.

Definition3.2 Two encoding-dichotomies d\ and d2 are compatible if the left (right) block of d\ is
disjointfrom the right(left) blockofd2. Otherwise, d\ andd2 are incompatible.

Note again that this definitiondiffers from the definitionof compatibilitydescribed in [23, 25].

Definition3.3 The union oftwo compatible encoding-dichotomies, d\ andd2, is the encoding-dichotomy
whose leftandrightblocks are the union ofthe leftandright blocks ofd\ and d2, respectively.

The union operation is not defined for incompatibleencoding-dichotomies.

Definition 3.4 Anencoding-dichotomy d\ covers an encoding-dichotomy d2 if the leftandright blocks
ofd2 aresubsets respectively either ofthe leftandright blocks, or ofthe right andleftblocks of<k.

Forexample, (so; sis2) is covered by (S0S3; S1S2S4) and (S1S2S3; so), but not by (sosi; S2).

Definition 3.5 A prime encoding-dichotomy ofa given set ofencoding-dichotomies is one that is in
compatible withall encoding-dichotomies notcoveredby it.

A setof prime encoding-dichotomies generates an encoding as follows. Each prime generates one col
umn of the encoding, with symbols in the left (right) block assigned a 0 (I) in that column. For exam
ple, given the primeencoding-dichotomies (s0si;s2sz) and (S0S3; sis2), the unique encoding derived is
so = 00, si =01,S2 = 11 and S3 = 10.

Definition 3.6 An encoding-dichotomy violates an output constraint if the encoding bit generatedfor
the symbols inthe encoding-dichotomy doesnot satisfy the bit-wise requirementfor the output constraint.
A valid encoding-dichotomy is one that does notviolate anyoutput constraint.

Forexample, the encoding-dichotomy (so; S1S2) violates theconstraint so > si, since so is assigned bit
0 whereas s\ is assigned bit / by this encoding-dichotomy. Hence, sodoes not cover s\ in this bit. The
encoding-dichotomy (sosi; S2) does not violate this constraint.

4 Abstraction of the problem

The combinatorial problems of encoding constraints satisfaction can be abstracted as binate covering
problems.

We first recall the definition of binate covering for the benefit of the following discussion. Suppose
thata Boolean expression T is givenin product-of-sums form. Associate a cost wj to each literal aj of
a set oft literals, and say that a given assignment has cost:

WjCLj.

Consider the problem of finding an assignment of minimum cost that satisfies T. Writing T as an array
of cubes(thatforma matrixwithcoefficients fromtheset {0,1,2}), the problem can be statedas a binate
covering problem [16]: find a subset C of columns of minimum cost, such that for every row r,, either

1. 3j such that Uj = 1 and Cj e C, or

2. 3j such that Uj —0 and Cj gC.

In the unate covering problem, the coefficientsof T are only 1's and 2's and only the first condition must
hold.

Toillustratetheopeningstatement,supposethat the symbols a, 6,c andthe threeconstraints(a, 6),b>
c, b= aVc are given. Allpossible encodings can beconsidered byenumerating all the patterns thatyield
onebitof encodingto each symbol. Eachsuch bitpatternis termedan encoding column. Considerallpos
sible column encodings for the example, c\ = 001, c2 = 010, c3 = 011, c4 = 100,c5 = 101,c6 = 110,
where the order of symbols in a column is a, 6, c1. For each face constraintconsider the encoding di
chotomies that have the symbols of the face constraint in one block, and have one of the remaining
symbols in the other block [25]. In the given example, this is ab; c. Add the encoding dichotomies ex
pressingthe uniqueness of the codes In theexample, theseare a; 6, a;c, 6; c. Build a table whosecolumns
are the encoding columns and whose rows are the encodingdichotomies. Put a 1 in entry (i,j) if column
j covers row i. Foreach output constraint, add one row for each encodingcolumn that cannot be chosen

!Bitpatterns 000and 111 areexcluded because they carry no useful information.

a;b

a;c

c;b

ab;c

b>c

b>c

b=a+c

b=a+c

b=a+c

b=a+c

cl c2 c3 c4 c5 c6

1 1 1 1

1 1 1 1

1 1 1 1

1 1

0

0

0

0

0

0

0

0

Figure 1: Satisfaction ofconstraints as binate covering

if that output constraint must be satisfied and put a0 in the corresponding entry. In theexample, a > b
yields two rows, one has a 0 in the position of column ci, the other has a0 in the position of column C5.
Onecouldimagine morecomplex types of constraints thataddrowscarrying two ormoreOs andno 1to
denote that not all the corresponding columns can be selected at the same time to have the row covered.
The binate table of the given example is shown in Figure 1. A minimum column cover of the given
rows gives a minimum set of encoding columns that satisfy all given constraints. In the general case
this requires the solution of abinate covering problem. If only face constraints are present, the problem
reduces to a unate covering problem [23].

Insummary, solving problem P-l can bereduced to deciding whether a solution to abinate covering
problem exists, solving P-2 can be reduced to solving a binate covering problem, and solving P-3 can
bereduced to fixing thenumber of columns that can be used in a solution of a binate covering problem.
This may soundhopeless, since binatecoveringis a hard problem. In the next sections we will show that
problem P-l canbe decided by a polynomial time algorithm and that anefficientexactalgorithm can be
devised to solve P-2 on cases of practical interest. When an exact solution is not feasible, as in the case
of P-3, a heuristic algorithmhandlingdifferent cost functions is described.

5 Input constraint satisfaction

We first present a new algorithm for satisfying inputencoding constraints that, compared to previous
approaches [24,25], significantly improves the efficiency of the inputencoding process.

The encoding constraint satisfaction problem is a three step process. The first is the generation of
the encoding-dichotomies that represent the face embedding constraints [25]. Each face embedding
constraint generates several encoding-dichotomies. The symbols that are to be on a face are placed in
one block of each encoding-dichotomy representing that constraint, while the other block contains one

of the symbols not in the face. Thus, for n symbols si, S2,..., sn and a face embedding constraint that
requires the / symbols si,s2, ..,s/ to be in one face, we generate 2 (n - /) encoding-dichotomies each
with the symbols 3\, s2,..., s/ in one block (either left or right) and exactlyone of the remaining n - I
symbols in the other block.

These encoding-dichotomies exactly capture the face embedding constraints. We also require that
each symbol gets a distinct code. This is represented by an encoding-dichotomy with one symbol in
each block. We need to add only those uniqueness constraints that are not covered by the encoding-
dichotomies generated from the face-embedding constraints. When there are n symbols and noencoding
constraints, thenumber of uniqueness constraints is n2 —n; these would generate an exponential number
(2n - 2) of prime encoding-dichotomies.

The second step of encoding is the generation of prime encoding-dichotomies from the encoding-
dichotomies. [23] describes an approach similar to the process of iterated consensus for prime genera
tion in two-level logic minimization [2]. However, the number of iterations required to generate all the
prime encoding-dichotomies may be formidable even for small problems. Using this approach, several
different compatible mergings often yield the same prime encoding-dichotomy. This results in a sub
stantial waste of computation time [25]. In Section 5.1, we describe a methodof generating all prime
encoding-dichotomies and demonstrate its effectiveness in determining an exact solution.

The final step of encodingis to obtain a coverof the initial encoding-dichotomies using a minimum
numberof primes. This is aclassical unate covering problem andefficient branch andboundtechniques,
both for exact and heuristic solutions, are well known; hence we do notdiscuss this further in the paper.

5.1 Efficient generation of prime encoding-dichotomies

By definition, each prime encoding-dichotomy is a maximal compatible of the encoding-dichotomies
since it is notcompatible with anyencoding-dichotomy that it does notcover. As in [15], an incompati
bilitybetween two encoding-dichotomies, each represented by the literals a and 6respectively, is written
as (a+ 6). When the product of the sumterms representing all the pairwise incompatibilities is written
as an irredundant sum-of-products expression, a maximalcompatible is generated as the union of those
encoding-dichotomies whose literals are missing in any product term [15]. For example, assume that
we wish to find the maximal compatibles for five encoding-dichotomies, a, 6, c,d, e. Assume the incom
patibilities are (a + b)(a + c)(b + c)(c + d)(d + e). Then theequivalent irredundant sum-of-products
expression is acd + ace + bed+ bee. The four encoding-primes are then formed by the unions of the
missing literals, {6,e}, {6,c?}, {a, e}, {a,d}.

The problemis how to efficiently derive the equivalent sum-of-products expression fromthe product-
of-sums expression representing the incompatibilities. In the past, this has been performed using an
approach based on Shannon decomposition [15]. The complexity of performingthe recursive splitting
andmerging is exponential sincea binary tree is beingconstructed. It is not practical for anyreasonably
sized encoding problem. We describe an algorithm that can generate all the encoding-primes, but only
uses a linear number of recursivesplittingandmerging operations.

Sinceeach sum termin the product-of-incompatibilities expression hasexactly two literals, we adapt
theclassical 2-SAT algorithm to this problem2. The algorithm is described in pseudo-code in Figure 2.
Given a product-of-sums expression, a splitting variable, jc, is chosen. The product of all sum terms
containingx, call it xjexpr, when simplified consists of two terms, the first is x alone and the second is

2It is well known that 2-SAT is solvable in lineartime in the number of clauses.

the product ofalltheothervariables inxjexpr. A recursive call is applied to the product of the sum-terms
in the initial expression thatdo not contain jc, called reduced-expr. The two product terms, x„expr and
cs(reducedjexpr), are multiplied and single cube-containment is used to obtain the minimum sum-of-
products expression3.

This algorithm replaces anexponential number(in the numberofencoding-dichotomies)ofrecursive
calls by a linear number. Of course, theworst case complexity is linear in the final number of encoding-
primes, which may be exponential. In practice this does not happen, especially with highly constrained
problems. As already mentioned, the number ofencoding-primes in an unconstrained problem (no face
embedding constraints) isexponential innumber due totheuniqueness constraints. Each face embedding
constraintserves to reduce these encoding-primes.

The example in Figure 3 illustrates the complete inputencoding process. A set of inputconstraints
is shown and the corresponding initial encoding dichotomies are derived. The maximal compatibles
are generated by a procedure that recurs on the splitting variable. Variable 0 is chosen as first splitting
variable. The procedure returns the minimal product of the following two expressions: the first is the
product of all sum terms containing 0 (in this case simplified into 0 and 2345678) and the second is the
resultof the recursive call of the procedure on the sum terms thatdo not contain0. By minimal product
it is meant that the two expressions, when available after a series of recursive calls, are multipliedout
and then single cube-containment is performed on them. Once the maximal compatibles are found,
the primeencoding-dichotomies are easily obtained and a standard unate covering routine produces a
minimum subsetof primes thatcover all given initial encoding-dichotomies. Notice that to simplify the
examplewe have forced the symbol s\ to always be in arightblock. This reduces the numberof prime
encoding-dichotomies but does not affect the solution to the input encoding problem4.

6 Input and output constraint satisfaction

6.1 Output encoding constraints

A dominance constraint a > 6, requires that the encoding for a bit-wise covers the encoding for b.
This means that any prime encoding-dichotomy chosen in the final cover cannot have a in the left block
whilebis in therightblock. Hence, anyencoding-dichotomy thathasthis property may be deleted from
consideration.

A disjunctive constrainta = bV c, implies that the encoding for symbol a must be the same as the
bit-wise or of the encodings of b and c. This means that any prime encoding-dichotomy in a feasible
solution must have at least one of b and c appear in the same block as a. Any encoding-dichotomy that
does not possess this propertymay be deleted. This property is easily extended to the case where the
disjunctive constraint involves more than two symbols or has nested conjunctive constraints.

A preliminaryalgorithmfollows fromthediscussionabove. In the first step, the encoding-dichotomies
corresponding to the input constraints are generated. Next the prime encoding-dichotomies are gener
atedusing the algorithm described in Section 5.1; those that violate any of the dominance or disjunctive
constraints areeliminated. Finally, the remaining primes areused in selecting a minimum cover ofall the

3Single cube-containment can beused to find the minimum expression since the function isunate [2].
4In general, this symmetry cannot beexploited when there are both input and output constraints.

/* Given pairwise incompatibilities among a list of encoding-dichotomies
as a product-of-sums expression generate all encoding-primedichotomies.
Each sum term has two literals and there are n variables,

each corresponding to a distinct initial encoding-dichotomy. */

/* Convert 2-CNF to sum-of-products expression */
0(n) recursive calls */
procedure cs (expr) {

x = splitting variable
C = all sum terms with variable x

reducedjexpr = expr without the sum-terms in C
xjexpr = sum-of-product expression of C
return (ps (x^expr, cs(reduceduexpr)))

}

/* Obtain the product of two expressions.
exprl has 2 terms, where the first term is a single variable */
procedure ps (exprl, exprl) {

productjBxpr= product of exprl and exprl
result-expr = singlexube-containment-minimal (product-expr)
return (result-expr)

>

procedure primejdichotomy_generate (expr) {
result =cs (expr)

foreach (term T in result)

missing = list of variables not in T

new.primeJuchotomy = union of encoding-dichotomies
corresponding to missing

add new4?rimejdichotomy to prime Jist
return (prime Jist)

}

Figure 2: Efficient generation of prime encoding-dichotomies

10

Constraints (so.s2.s4) (so,si,s4) (si,s2,s3) (si,s3,s4)

Initial encoding - dichotomies 1: (si; s0S2S4) 2 : (S3;S0S2S4) 3 : (S3; sosis4) 4 : {s2\soSis4)
5 : (so;siS2S3) 6: (s4;5]S2S3)
7 : (so;siS3S4) 8 : (s2;siS3s4)

Deriving maximal compatibles (prime encoding —dichotomies)
c5((0+ 2)(0+ 3)(0+ 4)(0+ 5)(0+6)(0 +7)(0+ 8)(l + 2)(l + 3)(l+4)(l + 5)(l + 6)(l +7)(l + 8)(2+4)(2+ 5)(2+
6)(2+ 7)(2 + 8)(3 + 5)(3 + 6)(3 + 7)(3 + 8)(4 + 5)(4+ 6)(4 + 7)(5 + 8)(6 + 7)(6 + 8))

ps((0 + 2345678),cs((1 + 2)(1 + 3)(1 + 4)(1 + 5)(1 + 6)(1 + 7)(1 + 8)(2+ 4)(2 + 5)(2+ 6)(2 + 7)(2 + 8)(3 +
5)(3+ 6)(3 + 7)(3 + 8)(4 + 5)(4 + 6)(4 + 7)(5 + 8)(6 + 7)(6 + 8)))

ps((0+ 2345678), ps((1 + 2345678), cs{ (2+ 4)(2+ 5)(2+ 6)(2+7)(2+ 8)(3 + 5)(3 + 6)(3 + 7)(3 + 8)(4 + 5)(4 +
6)(4 + 7)(5 + 8)(6+7)(6 + 8))))

ps{ (0 + 2345678), ps((1 + 2345678),ps((2 + 45678),cs((3 + 5)(3 + 6)(3 + 7)(3 + 8)(4 + 5)(4 + 6)(4+ 7)(5 +
8)(6+7)(6 + 8))))))

ps{ (0+2345678), ps((1+2345678), ps((2+45678), ps((4+567), cs((3+5)(3+6)(3+7)(3+8)(5+8)(6+7)(6+8))))))

ps((0+ 2345678),ps((1 + 2345678), ps((2+ 45678),ps((4+ 567),ps((3+ 5678), cs((5+ 8)(6+ 7)(6+ 8)))))))

ps((0+ 2345678),ps((1 + 2345678), ps((2+ 45678), ps((4+ 567), ps((3+ 5678), ps((6+ 78), cs{ (5+ 8))))))))

ps((0+ 2345678), ps((1 + 2345678), ps((2+ 45678),ps((4+ 567), ps((3+ 5678), (56 + 68+ 78))))))

ps{ (0+ 2345678), ps((1 + 2345678), ps((2+ 45678),ps((4+ 567), (356 + 368 + 378 + 5678)))))

ps{ (0 + 2345678), ps((1 + 2345678), ps((2 + 45678), (3456 + 3468 + 3478 + 3567 + 5678))))

ps{ (0 + 2345678), ps((1 + 2345678), (23456 + 23468 + 23478 + 23567 + 25678 + 45678)))

ps{ (0 + 2345678), (123456+ 123468 + 123478 + 123567 + 125678 + 145678 + 2345678))

(0123456 + 0123468 + 0123478 + 0123567 + 0125678 + 0145678 + 2345678)

Maximal compatible sets {7,8} {5,7} {5,6} {4,8}
{3,4} {2,3} {0,1}

Prime encoding —dichotomies (s<)S2S4;siS3) (s3;sosiS2S4) (s2S3;sosis4) (s2;sosiS3S4)
(S()S4;SiS2S3) (S0S2JS1S3S4) (so;SiS2S3S4)

Minimum cover (soS2S4;si$3) (s2S3;sosis4) (sos4;siS2S3) (s<)S2;siS3S4)

Figure 3: Input encoding example

11

initial encoding-dichotomies representing the input constraints. If there is at least one initial encoding-
dichotomy that cannot be covered, then there is no solution.

This procedure may beused to answer two questions. The first is whether a feasible encoding exists
for a set of input and output constraints. The second is to find the minimum length encoding satis
fying the constraints, if it exists. An obvious drawback of this method is that many prime encoding-
dichotomies may be generated butlater deleted since they violate output constraints. Using the frame
work discussed above, we present an efficient algorithm that avoids the generation of useless prime
encoding-dichotomies.

6.2 Input and output constraint satisfaction

We motivate the constraint satisfaction procedure using the example in Figure 4 5. Given the input
and output constraints, 26 initial encoding-dichotomies are obtained. Consider the initial encoding-
dichotomies (s0;siS5) and (siss;so) that are generated from the face embedding constraint (si,ss).
Since s0 > s\, the encoding-dichotomy (s0;siss) is not allowed and is deleted from consideration. The
encoding-dichotomy (siss; so) is valid andwill beused in a feasible encoding. Consider the encoding-
dichotomy (si; S2S5). If this encoding-dichotomy is tobe expanded toavalid prime encoding-dichotomy,
symbol so is forced to be in the right block, since s0 > s2. Also, since si > S3, s3 must be in the left
block andsince s4 > 55, S4 is forced intotheright block. Thus, all valid encoding-dichotomies covering
this initial encoding dichotomy mustcoverthe"raised" dichotomy (S1S3; S0S2S4S5). Similarly, weobtain
the six raised encoding-dichotomies shown. On generating the primeencoding-dichotomies from these
raised encoding-dichotomies, we obtain five primes.

Definition 6.1 An encoding-dichotomy is raisedby adding symbols into either its left or right block as
implied by the output constraints.

Forexample, the encoding-dichotomy (so; S1S2) may be raised to the encoding-dichotomy (S0S3; S1S2).
Weuse thisdefinition in the contextof outputconstraints to restrict the number of primedichotomies to
be considered in an exact solution.

Definition6.2 An encoding-dichotomy is said to be maximally raised if nofurther symbols can be
addedintoeither the leftor rightblockby theoutput constraints.

The procedure raise-dichotomy in Figures 5 and 6 describes an algorithm that maximally raises an
encoding-dichotomy with respect to a set of output constraints.

When the problem is to determine if a set of constraints is satisfiable, we do not have to generate the
prime encoding-dichotomies. Instead we use the set of maximally raised valid encoding-dichotomies,
which are far fewer in number than the primeencoding-dichotomies. As shown below, this smallerset
of dichotomies is also sufficient to solve all the problems of interest.

We merely check if all the initial encoding-dichotomies are covered by the maximally raised and
validencoding-dichotomies. This conditionis formally statedbelow.

5An algorithm was provided in [9] tocheck for satisfiability ofinput and output constraints, by checking for conditions
thatensure non-conflicting inputandoutputconstraints. However, fortheexample inFigure4, forwhich nofeasible encoding
exists, thealgorithm in [9] statesthattheconstraints aresatisfiable. Except for theapproach described in thispaper, we know
of noefficient and correctalgorithms for checking satisfiability of mixed inputand outputconstraints.

12

Face embeddingif constraints :

(51,s5) (52,55) (54,55)
Dominance constraints :

so > si so > S2 SO > S3

so > S5 51 > 53 52 > 53

S4 > S5 55 > 52 55 > 53

Disjunctive constraints :
So = Si V S2

Initial encoding —dichotomies :
(soisiss) (5155;so) (SO? S2S5)
(S2S5; so) (So; S4S5) (S4S5; So)
(s\\s2s5) (5255;5l) (sf,S4S5)
(S4S5; S\) (52;5l55) (5is5;s2)
(s2\S4Ss) (5455; 52) (53J51S5)
(5is5;s3) (53; 5255) (5255;S3)
(sy,S4Ss) (5455;53) (s4;siS5)
(SIS5',S4) (54; S2S5) (52S5; S4)
(so; S3) (53; 5q)
Raised encoding —dichotomies :
(siS3',SoS2S4S5) (52S3;S05iS4S5) (S2S3S4S5; 5051)
(soSiS2S3S5;S4) (52S355;SoSi)
(S2S3S5; s4)
Uncovered initial encoding —dichotomies :
(soisiss)
(sissiso)

Figure 4: Example of feasibility check with input and output constraints

13

Theorem 6.1 Given a setofinput andoutput constraints, letI be the setof initial encoding-dichotomies
generated from the input constraints, including all uniqueness constraints. Let each valid encoding-
dichotomy in I be maximally raised to obtain a set of valid encoding-dichotomies D. An encoding-
dichotomy thatbecomes invalid on raising is deleted. The input andoutput constraints are satisfiable if
and only ifeach i G I is covered by some d G D.

Proof

If Part Considersome validmaximally raisedencoding-dichotomy d = (L\; R\), where L\ and R\ are
disjointsubsetsof the symbols to be encoded. Consider a symbol s £ d. There are no outputconstraints
that either require any of the symbols in L\ to cover s, or s to cover any of the symbols in R\. Otherwise
d is not raised maximally. So s may be added to either block of d. Add all symbols S = {s : s &d],
to the right block of d. There may be output constraintsamong the symbols in 5, but these are satisfied
since all the symbols in 5 are inserted into the right block. Hence, a valid encoding exists by merely
deriving the codes from all of the raised encoding-dichotomies that cover all encoding-dichotomies in I.
Only If Part Assume someencoding-dichotomy ie lis notcoveredbyanyof theencoding-dichotomies
in D. Then by merging compatible dichotomies in D> i can never be covered. Hence, no feasible solution
exists in this case. •

Theorem 6.1 can be extended to the case of disjunctions of nested conjunctions (extended disjunctive
constraints) that are generated by the minimization procedure given in [9]. Each such constraint causes
the correct output symbol to be produced for each input in an encoded cover. The form of an extended
disjunctiveconstraint for a minterm m, asserting output sm and a set of selected GPIs is:

(V A «) = sm
g€G s€Og

where G is the subset of the selected GPIs that cover m, and Og is the set of output symbols that the GPI
g asserts. By construction, [9], Wg, sm € Og; applying the distributive law, one gets:

sm A(V A S) = Sm
g€G seOg-Sm

This implies that,

(V A S)^*m
g€G a€Og-8m

Anexampleis(aA6Ac)v(aAdAe)v(aA/A#) = a,thatbecomesaA((6Ac)v(dAe)V(/A#)) = a,
andgives (b Ac) V (d A e) V (/ Ag) >= a. This constraint requires that for each bit of an encoding
wherea is assigned bit 7, both the states in at leastone of the three pairs (6,c), (d, e), and (/, g) must be
assigned bit 1.

The proof of Theorem 6.1 holds verbatim. This problem was conjectured to be NP-complete in [9],
but in fact is solved in polynomial time here.

An algorithm to check for the satisfiability ofinput and output constraints is shown in Figures 5 and 6.
Sincethe raising of each encoding-dichotomyis performedin time linear in the numberof symbols times
the number of initial encoding-dichotomies, the algorithm complexity is polynomial in the number of
symbols and constraints.

14

/* 5 is the set of symbols to be encoded */
procedure remove.invalid-dichotomies (D, constraints) {

/* to handle dominance and disjunctive constraints */
foreach (encoding-dichotomy d € D)

foreach (pair of symbols s,m e S)
if (s > m & s in left block & m in right block)

delete d

foreach (disjunctive constraint)
if (parent in left block & all children not in left block)

delete d

if (parent in right block & all children in left block)
delete d

/* to handle extended disjunctive constraints */
foreach (extended disjunctive constraint)

if (parent in right block &
one child ofeach conjunction in left block)
delete d }

/* d is a valid encoding-dichotomy */
procedure raise_dichotomy (dt constraints) {

do{
/* to handle dominance and disjunctive constraints */
foreach (symbol s e S)

if (s in left block &s > m)
insert m into left block of d

if (s in the right block &m> s)
insert m into right block of d

foreach (parent symbol s in a disjunctive constraint)
if (all children in the left block)

insert s into left block

if (all but one children are in left block &

s is in the right block)
insert last child into right block

/* to handle extended disjunctive constraints */
foreach (parent s in an extended disjunctive constraint e)

if (one child of each conjunction in the left block)
insert s into left block

if (one child of all but one conjunction are in left block &
s is in the right block)

insert all children of remaining conjunction into right block
} while (at leastoneinsertion within loop)

Figure 5: Feasibility check of input and output constraints

15

procedure check-feasible (constraints) {
I = generateJnitialjencodingjdichotomies (constraints)
D = removeJnvalidjdichotomies (I, constraints)
foreach (encoding-dichotomy d in D)

raise_dichotomy (d, constraints)
D = removeJnvalidjdichotomies (D, constraints)
foreach (encoding-dichotomy i e I)

if i is not covered by some d e D
return (INFEASIBLE)

return (FEASIBLE)

}

Figure 6: Feasibility check of input and output constraints

6.3 Exact input and output encoding

The complete algorithm for satisfying both input and output constraints is shown in Figure 7. Fol
lowing the generation of the initial encoding-dichotomies from the input constraints, those that violate
output constraints are deleted. The remaining encoding-dichotomies are raised maximally. Any raised
dichotomy that becomes invalid is deleted. If each of the initial encoding-dichotomies are covered by
at least one of the valid and maximally raised dichotomies, we proceed to determine a minimum code
length solution. All prime encoding-dichotomies are generated from the valid raised dichotomies. Us
ing an exact unate covering algorithm, a minimumcover of the initial encoding-dichotomiesby the valid
prime encoding-dichotomies yields the exact solution.

An example is given in Figure 8. Notice that, given the initial encoding-dichotomies (s2;sosi),
(sosi;S2), (S3; sosi), (s0si;s3), (so; si), (si; so), (S2; s3) and (S3; S2), thefollowing areremoved because
they are invalid: (sosi;s2) (it conflicts with si > S2), (sosi;s3) (it conflicts with so = si V S3) and
(50; 5i) (itconflicts with so > si). Byraising theremaining valid encoding-dichotomies oneobtains the
following raised encoding-dichotomies: (S1S2; S0S3) (from the initial encoding-dichotomy si; so, since
si > S2 forces S2 into the left block and so = si V S3 forces S3 int the right block) that subsumes the
validencoding-dichotomy (S2; S3), (S3; S2S1) (from S3; S2, since si > S2 forces si into the right block),
(52; sosi) and (S3; sosi) (the last twoare initialencoding-dichotomies unmodified by theraisingprocess).
Since each initial encoding-dichotomy is covered by some raised encoding-dichotomy, an encoding sat
isfying all constraints exists. It is found by computing the prime encoding-dichotomies obtained by the
raised encoding-dichotomies and solving a unate covering problem to determine minimum code-length
codes that satisfy the given constraints.

Theorem 6.2 Thealgorithm shownin Figure7 generates a minimum length encodingfor a set ofgiven
inputand output constraints, ifa feasible solution exists.

Proof Similar to that of Theorem 6.1. If a feasible solution exists it can be obtained from the maxi

mally raised and valid encoding-dichotomies by generating prime encoding-dichotomies and finding a
minimumcovering of the initial encoding-dichotomies. •

16

procedure exact_encode (constraints) {
I = generateJnitialjencodingjdichotomies (constraints)
D = removeJnvalidjdichotomies (J, constraints)
foreach (encoding-dichotomy d e D)

raise_dichotomy (d, constraints)
D = remove-invalidjdichotomies (D, constraints)
foreach (encoding-dichotomy i G i")

if i is not covered by some d e D
TQtam(INFEASIBLE)

P = prime-dichotomy.generate (D)
valid-primes = removeJnvalidjdichotomies (P, constraints)
mincov = minimumjcover (7, valid-primes)
return (derivccodes (mincov))

}

Figure 7: Exact encoding constraint satisfaction

Face embedding constraints :
(50,5l)
Dominance constraints :

so > si si > S2

Disjunctive constraints :
so = si V S3

Initial encoding —dichotomies :
(s2;sosi) (sosi;s2) (53; sos1)
(sosi;s3) (so;si) (si;so)
(52; S3) (53; s2)
Raised encoding —dichotomies :
(s2;sosi) (53;sosi) (S1S2;S0S3)
(53;5251)
Prime encoding - dichotomies :
(S2;S0S1S3) (52S3;SoSi) (S3;SoSiS2)
(S1S2; S0S3)
Minimum cover:

(5253; SOS1) (5lS2;S0S3)
Final encoding :
s0= 11, si = 10,S2 = 00,S3 = 01

Figure 8: Example of exact encoding with input and output constraints

17

7 Bounded length encoding

ProblemP-3 (c.f. Section 1)is defined as minimizing acost functionof the constraints that aresatisfiable
using a fixed number of bits. In practice, this problem is more relevant than problem P-2, where all
constraints must be satisfied with the minimum number of bits. The reason is that encoding problems
for logic synthesis often exhibit a trade-off between the code-length and the gain obtained by satisfying
all constraints. Increasing the code-length may off-set what is gained by satisfying all constraints. For
example, optimal encoding for finite state machines implemented by two-level logic may be viewedas
the process of generating a setof mixedinput and output constraints. Satisfying all the constraints may
require a long code-length which translates into extra columns of the pla than the minimum necessary.
This oftenresults in sub-optimal PLA area and also impacts the performance. The same reasoning applies
tomulti-level logic, where literal counts are used instead ofcubes. Therefore, logic synthesis applications
require an encoding algorithm that:

• Considers different cost functions.

• Minimizes a chosen cost function forencodings of fixed length.

There are three cost functions that are useful in such applications:

• The number of constraints satisfied.

• The number of product-terms in a sum-of-productrepresentation of the encoded constraints.

• The numberof literals in a sum-of-product representation of the encoded constraints [13].

We illustrate the meaning and technique of computation of the above-mentioned cost functions with
an example. Consider the following inputconstraints: (e, /, c), (e, d,g), (a, 6, d), (a, $r, /, d). To satisfy
all the constraints, a code-length of 4 bits is required. A solution is a = 1010, 6 = 0010, c = 0011,
d = 1110, e = 0111,/ = 1011, g = 1100. Suppose instead that the code-length is fixed to 3 bits. It
must be the case thatone or more input constraints are not satisfied, whatever3-bitencoding is chosen.
For a certain 3-bit encoding, the problem arises of computing its "goodness". Foreach input constraint
I, define a logic function Fi whose on-setcontains thecodes of the symbolsin the constraint and whose
off-set contains the codes of the symbols not in the constraint. The unused codes are in the don't care
set. For instance, given the previous encoding, the points in the on-set of F(e,/,c) are (0111,1011,0011),
those in the off-set are (1010,0010,1110,1100) while the don't care set contains the remaining unused
nine codes. If a constraint is satisfied, two-level minimization of // yields a single product-term. If a
constraint is not satisfied, there will be at least two product-terms in the minimized result. Thus, the
numberof product-terms is a measureof the satisfaction of the input constraints. For constraints arising
from encoding problems of two-levellogic, this is an appropriate cost function. In the procedure above,
cost function evaluation requires a number of two-level logic minimizations. In practice this may be
approximatedby a single logic minimization of a multi-output Boolean function, where each constraint
is represented by a unique output of a multiple output function. The number of literals of a two-level
implementation of the constraints can be computedin the sameway; hereliterals are countedinstead of
product-terms.

In Figure 9, a 3-bit encoding for the previous set of constraints is shown, togetherwith the product-
termsneeded to implement the encodedconstraints. The given 3-bitencodingviolates3 face constraints.
7 cubes and 14 literals are required to represent the encodedconstraints.

18

Oil

/ • /
/ 101

g

010y

/" /
000 / /I100

111

d

110

(e,f,c) •

(e,d,g)

(a,b,d)

(a,g,f,d)

{1-0,0-1}

{-U

{111,0-0}

{111,-0-}

Figure 9: Example of cost function evaluation

7.1 Heuristic algorithm for input constraints

Consider the input constraint satisfaction problem where a code of length c bits is desired minimizing
the number of violated constraints. This is an exact version of problem P-3. We require a selection
of prime encoding-dichotomies that must have two properties. First, the primes must ensure that each
symbol gets a unique code, that is, all the uniqueness constraints must be covered by the selected primes.
Second, the fewest face constraints must be violated. The only apparent way this can be done is to
enumerate all 2n_1 prime encoding-dichotomies (using n symbols) and then solve an exact weighted
unatecovering problem. Note that we desire a selection of primes that covers all uniqueness constraints,
yet the cost function is related to the constraints specified. This approach is clearly infeasible on all but
trivial instances of P-3.

Heuristic algorithms can be easily developed within the encoding framework presented in this paper.
In the this subsection we describe a heuristic algorithm based on the concept of encoding-dichotomies
to solve P-3 approximately.

The first phase of an exact solution to problem P-3 involves the enumeration of all 2""1 encoding
dichotomies that exist for n symbols. This step is termed candidate encoding-dichotomy generation (or
candidate generation in short). The second phase is to determine a selection of a fixed number of these
encoding dichotomies that minimize the desired cost function. This is termed selection. While candidate
generation is clearly exponential in the input size, in the selection phasea polynomial (in the code-length
c) number of sets of candidate encoding dichotomies have to be considered. A heuristic algorithm that
avoids this enumeration of encoding-dichotomies while retaining the structure of the exact approach is
detailed now.

The algorithm has three main phases: splitting of a set of symbols, merging of restricted encoding-
dichotomies and selection of the c best restricted dichotomies for a subset of symbols. The splitting
phaseis used to divide the given encoding problem into two smaller problems, each using one less code
bit. Assuming that each sub-problem is solved optimally, the solution for the original encoding problem

19

is generated by the steps of merging and selection.
Let a code of length c be desired for n symbols, si,..., sn. Consider a partition of the symbols into

two groups si,..., Sk and Sfc+i...sn. Let D\ be the c - 1 best encoding-dichotomies restricted to s\,..., s*..
Similarly, let D2 be the c - 1 best encoding-dichotomies restricted to sfc+i,..., sn. Then, the candidate
encoding-dichotomies for si,...,s„ is the set D = {(si...sjb;sfc+i...sn)} u D\ x D2 U D2 x D\. The
best selection of c dichotomies from D is used to obtain a desired encoding. By applying this technique
recursively until each partition contains a single symbol, a bounded-length encoding is achieved.

Definition 7.1 Let S = s\,s2,...,snbea set ofsymbols andlet Dbea set ofencoding dichotomies using
these symbols. Consider somesubsetofsymbols, P = s^, s^,..., sPk. The restricted dichotomies ofD
withrespect to P are the elements ofthe set Dp ofdichotomies obtainedby removing all symbols not in
P from each encoding-dichotomy d e D.

Splitting: We are interested in obtaining two sub-problems, each using one less code bit than the
given problem does. In splitting the symbols into disjoint partitions, the fewest constraints should be
violated. This is achieved by using a modification of the Kernighan-Lin [11] partitioning algorithm6.

Each partition P can be considered as yielding a dichotomy, dp. For example, the partition of n
symbols into two blocks of symbols {si,...,sjfc} and {s/t+i,...,sn} gives d = {(si...Sfc;sfc+i...s„)}. De
pending on the cost function being considered, each partition P is chosen to minimize the cost function
evaluated using dp. For example, if the number of face constraints is to be minimized, then P is chosen
such that the fewest face constraints (restricted to the symbols being partitioned) are violated by dp. If
the number of literals (or cubes) is being minimized, then P is chosen such that the maximum number of
restricted initial encoding-dichotomies are covered by dp. This corresponds to minimizing the number
of uncovered initial encoding-dichotomies. Thus, for the partitioning algorithm [11], the nodes are the
symbols being partitioned and the nets are either face constraints or initial encoding dichotomies. Since
the partitioning algorithm minimizes the number of nets that are cut, this suits the cost functions being
considered here.

The procedure is executed recursively for the symbols in each of the parts. Each partition again yields
candidate dichotomies restricted to the subset of symbols that appear in it. When only two symbols
remain, a single dichotomy that corresponds to the uniqueness constraint between them is generated.

Consider the example shown in Figure 3, where an encoding of length 2 is required to minimize the
number of literals in sum-of-product form. In the first step, at least four initial encoding-dichotomies
mustbe violatedby any partition for this example. Assume to choose the partition Pi = {so, si, S2, S4}
and P2 = {S3}. Further partitioning the symbols in Pi yields Pu = {so,S4} and P12 = {si,s2}, which
violates two of the initial encoding-dichotomies restricted to Pi (numbered 1 and 4 in the example).

Merging: Here the restricted dichotomies generated from each of the sub-partitions, say Pi and P2,
are merged to obtain a set of dichotomies that ensures unique codes for all the symbols in the merged
partition, P = Pi U P2. Since the sets of symbols in Pi and P2 are disjoint, each of the dichotomies in P

6This step can also be performed by using the notion of incompatibility between encoding-dichotomies. The prime
encoding-dichotomy that covers the maximumnumberof encoding-dichotomies is desired. Giventhe pairwiseincompatibil
itiesbetweenencoding-dichotomies, this can be obtainedby choosing the minimum cover of the pairwise incompatibilities
(cf. Section 5.1). We do not employ this technique since the number of incompatibilities is often enormous. Additionally,
the prime encoding-dichotomy is required to have a bounded number of symbols in each block, which requires a further
modification to the approach.

20

is a union of onedichotomy each from Pi and P2. Forthatpurpose, thecross-product of all dichotomies
generated from each of the sub-partitions is formed.

Consider partitions Pi = {s0, s\, s2, s4} and P2 = {s3} which are to be merged for the example of
Figure 3. Assume theencoding dichotomies chosen (by recursive application of this algorithm) forPi are
D\ = {(s0s4;sis2), (s0s2;sis4)}. The only choice for P2 is D2 = {(s3;)}. The merged dichotomies to
be considered are D = {(sosiS2S4;s3),(soS3S4;siS2),(soS4;siS2S3),(soS2S3;sis4),(soS2;siS3S4)}. The
best encodingof length 3 is chosen from this set by the next step.

Selection of best restricted dichotomies: The objective here is to generate those combinations of
dichotomies from each partition that maximally recover the constraints violated by the partitions in the
first step, whilecoveringall the uniqueness constraints. It is important to notethatwhenthe bestselection
of encoding-dichotomies restricted to a subset of symbols is sought, a global view of constraints (and
cost function) must be employed. This is done as follows for a subsetof symbols P = {pi, ...p*} with
candidate restricted encoding-dichotomies Dp. A cover of size cdp is desired. The constraints of the
entire problem are first restricted to the symbols pi, ...p*. Each selection of cdp encoding-dichotomies
from Dp is evaluated using the approach mentioned in the previous section. The cover that minimizes
thegiven cost function is chosen as the cdp bestrestricted encoding-dichotomies. This selection ensures
minimization of the cost function for all the symbols after the mergingstep is completed.

Continuing with the example of Figure 3, assume the merging step discussed above. The 3 best
encoding-dichotomies selected are (S0S1S2S4; S3), (S0S2; S1S3S4) and(S0S4; S1S2S3). Thisis done byeval
uatingall selectionsof size 3 from the set D that cover all uniquenessconstraints and minimize the literal
count. In the general case the number of evaluations can be restricted to some fixed number to reduce
the search space.

While some selection of partitions, in the splitting step, and some selection of dichotomies, in the
selectionstep, yield the best solution, it may not necessarilybeobtained without a complete evaluationof
all the possibilities in the partitioning and selection phases. However, a straightforward implementation
of the algorithm, without a complete branch and bound search, has shown promising results.

8 Extensions to other encoding constraints

In this section we illustrate that the formulation presented in Section 6 provides a uniform framework
for the satisfaction of various other known encoding problems.

8.1 Input encoding don't cares

The notionof an encodingdon't care was firstdescribedin [6],where it was pointedout that for a multi
valued literal, any binary coded implementationof the literal which contains the reduced implicant and
is contained by the expanded implicant in which it occurs, is valid. An example of how encodingdon't
cares are generated in the two-level case is given in [14]. A face constraint containing symbols a, band
e and with symbols c and d as encoding don't cares is denoted (a, 6, [c, d], e). This constraint specifies
that symbols a, 6,e must be assigned to one face of a binary ^-dimensional cube, with the don't care
symbols c,d free to share or not the same face, and no other symbol sharing the same face. These
encoding don't cares have been shown to be essential for determining good factors in deriving a multi
levelimplementation of a given multi-valued description [13].

21

A simple example shows that suboptimal solutions of P-2 are computed when inputencoding don't
cares are disregarded. Given the set of face constraints (a, 6), (a, c), (a, d), (a, 6, [c, d], e), a minimum
coverof primes contains 3 primes, e.g. (a, 6, e; d, /), (a, c,d; 6, e, /), (a, 6, d; c, e, /). If instead the en
coding don't cares are forced to be in the face constraint, i.e. (a, 6, [c, d], e) is replaced by (a, 6, c,d, e)
then aminimum cover of primes contains 4 primes, e.g. (a, 6, c,d, e; /), (a, 6, c; d,e, /), (a,c,d; 6, e, /),
(a,6,d;c,e,/). Also in the case that the encoding don't cares are forced not to be in the face con
straint, i.e. (a, 6, [c, d], e) is replaced by (a, 6, e) a minimum cover of primes contains 4 primes! e.g.
(a, 6, e; c,d, /), (a, 6, c; d, e, /), (a, d; 6, c, e, /), (a, c,d; 6, e, /).

The framework describedin Section 6 naturally handles encodingdon't cares in the face constraints.
Consider the face constraint (sosiS3[ss]), which implies that ss may or may not be chosen to be on the
same face as so, si andS3 in the final encoding. Converting thisconstraint toinitial encoding-dichotomies
is simplya matterof not generating the encoding-dichotomies (S0S1S3; ss) and (ss;s0sis3). The absence
of these dichotomies enables 35 to beeither inside oroutside the face that includes so, s1and S3 depending
on the minimality of the encoding. In presence ofencoding don't cares, a prime may give a bi-partition
of a proper subset of the symbols. For instance, if we consider the set of face constraints of the pre
viousexample (a, 6, e; d, /), (a, c, d; 6, e, /), (a, 6, d; c,e, /), the prime encoding dichotomies generated
by the extended definition of compatibility are: (a, 6, e; /), (a, 6,e;d, /), (a, 6,e; c, /), (a, b; c, d, e, /),
(a, c; 6, d,e,/), (a, d; 6, c,e, /), (a, 6, c; d, e, /), (a, c,d; 6, e, /), (a, 6, d; c,e, /), (a, 6, c,d; e, /). A mini
mum cover of 3 primes can be extracted out of them, as shown before.

The algorithms described for the feasibility check and exact encoding, shown in Figures 5, 6 and 7
respectively, extend naturally to encoding don't cares. Note that the satisfiability check algorithm de
scribed in [9] cannot be easily extended to handle encodingdon't cares without a significant penalty in
run-time. The encoding algorithm presented in [24] also cannot be extended to handle don't cares.

8.2 Distance-2 constraints

In [22,21,8] a condition foreasy and full sequential testability involved satisfyingencoding constraints
which specified that the encoding of a pairof states must be at leastdistance-2apart. This condition may
be easily satisfiedby ensuring that at least two primeencoding-dichotomies are selected in the minimum
cover that each have the two states in different blocks. Suppose that we want to keep a distance of 2
between the codes assigned to states a and b. Suppose that,of all primes, the pairs p\, P2 andP3, P4 have
the two states in different blocks. One at least of the two pairs must be chosen in a final cover. This can
be enforced by adding to the binate covering formulation the clauses

(pi +3l)(P2 + 6i)(p3 + 62)(P3 + 62X61 + 62),

where 61 and 62 are two new additional literals (columns of the table) that do not represent encoding
columns, but enforce the choice of other columns in a solution.

8.3 Other constraints

In [18], conditions for improved sequential testability were given which require the encodings to ensure
thatcertain face embedding constraints must not be satisfiedin addition to the faceembedding constraints
that must be satisfied. They are called non-face constraints. These constraints specify that a set of
symbols is to be assigned to oneface of a binary^-dimensionalcube, with at least anothersymbol not in

22

the set sharing the same face. A non-face constraint involving symbols a, 6and e is denoted by)a,6, e(.
An encoding satisfying the face constraints (a, 6), (6,c, d), (a, e) and (d, /) and the non-face constraint
)a,6,e(is given by a = 011,6 = 001,c = 101,d = 100,e = 111,/ = 110. The face spanned by the
codes of the symbols in the non-faceconstraint is 1andcontainsalso the code of the symbol c.

These constraints can be captured in our framework by extending the final covering step to a binate
covering, where sets of prime encoding-dichotomies that covertheencoding-dichotomies yielded by the
face embedding constraints which should not be satisfied are not allowed.

For each non-face constraint all minimal sets of prime dichotomies that cover the related face con
straint are computed. In the case of)a,6, e(the related face constraint is (a, 6, e) and the encoding
dichotomies are di = (a, 6,e;c),d2 = (a, 6, e;d),d3 = (a,6,e;/). Suppose that the minimal sets of
prime dichotomies thatcover d\, d2, d$ are {pi}, {p3>P4}, {P3>P5>P6}« We must add to the unate clauses
of the covering expression, these additional negative clauses:

For instance, (p3 + p5 + p6) savs tnat» when selecting for a minimum cover two primes in P3, ps,P6> the
third one cannot be chosen.

8.4 Limitations of dichotomy-based techniques

This section has illustratedhow new classes of encoding constraints, together with face and output con
straints, can be accomodated in the dichotomy-based frame. It is legitimate to ask what kind of con
straints, if any, cannot be naturally phrased with the language of dichotomies.

Such an example of unwieldy encoding constraints arechainconstraints. They can be found in [1],
whereatechnique forimplementing finite statemachines usingcounter-basedPla structures is presented.
State assignment is reduced there to a step of deriving face andchainconstraints and a step of satisfying
them. A chain constraintrequires that increasingbinarynumbers be assigned to the codes of the ordered
sequence of states. The firstelement in the chain can be given any code. For instance, a chain constraint
involving the ordered sequencea, 6,c, d, e, /, g, h, i is denotedby (a —6—c —d— e —/ —g —h —i) and
is satisfied by the encoding a = 0010, 6 = 0011, c = 0100, d = 0101, e = 0110, / = 0111, g = 1000,
h = 1001, i = 1010. For every pair of adjacent states in the chain the code of the right state is equal to
the code of the left state increasedby one in binaryarithmetic. As an example ofencoding problem with
face and chain constraints, consider the face constraints (6, c), (a, 6), and the chain (d-b-c- a). A
satisfying assignment is: a = 00,6 = 10, c = 11,d = 01.

Even though it is possible, for a given code length, to add to the covering expression clauses that
impose the chainingconditions, a straighforward solutionseems to requirea computationally expensive
implicit enumeration. The question of whether tighly coupled constraints, such as chain constraints, can
be couched usefully in the frame provided here is left open.

9 Results

Table 1 gives the results of using the exact encoding algorithm on a set of examples using both input
and output encoding constraints. These constraints were generated using an extension of the proce
duredescribed in [6] that also generates good disjunctive effects. The number of valid prime encoding-
dichotomies is shown in the third column. As seen from the table, all the examples with less than 50000

23

Name # States # Primes #Bits Time

(sees)
bbsse 16 1449 7 20

cse 16 201 7 3

dkl6 27 24316 12 1050

dkl6x 27 6205 12 530

dk512 15 35 9 1

donfile 24 673 12 17

exlinp 20 2023 9 45

keyb 19 189 9 4

kirkman 16 54 11 8

master 15 972 5 4

planet 48 > 50000 * *

si 20 469 7 10

sla 20 50 7 3

sand 32 2481 11 88

tbk 32 13 12 41

vmecont 32 > 50000 * *

* indicates results not available

Table 1: Exact input and output encoding

primes completed in very little CPU time on a DEC 3100 work-station. In the cases ofplanet there were
only nine dominance constraints and no disjunctive constraints, which led to almost no decrease in the
number of primes generated from the face constraints (exponential in the worst case). In the case of
vmecont there were only eight different face constraints (six of them had only two states), which led to a
hugenumberof primes beinggeneratedfromthe largenumberof unimplieduniqueness constraints. The
previousapproach suggested for prime generation in [25] could not completeon any of the examples.

Table2compares an implementationof the heuristicalgorithmdescribedin Section7.1 withNOVA [24]
for two-level implementations. The inputconstraints havebeengenerated callingthe two-level multiple-
valuedlogicminimizer ESPRESSO-MV [17]. In this case, the numberof face constraintssatisfied using
the minimum possible length for encoding are compared. While both programs perform comparably
withregard to the numberof constraints satisfied, our approach has a significant advantage compared
to NOVA whith respect to the number of cubes needed to implement in two-level form the input con
straints. This cost function is very important because it measures the advantage of satisfying a subset of
input constraints in a fixed code-length more precisely. Our algorithm in almost all cases needs fewer
cubes than NOVA. On the benchmark set it requires on average 13% fewer cubes and in some cases the
gain is more than 20%.

Table 3 compares our approach to simulated annealing for multi-level examples. Input constraints
withdon't cares are generatedby the multiple valuedmulti-level synthesis program MIS-MV [13] with
the number of factored form literals in the encoded implementation as cost function (in practice, the
number of literals in a sum-of-product representation of the encoded constraints is used as an approxi
mation to this cost function). Because of the presence of encoding don't cares and the cost function of

24

Name States # Constraints Constraints Cubes

NOVA ENC NOVA ENC

bbsse 16 5 3 3 12 8

cse 16 12 8 8 24 18

dkl6 27 33 25 20 43 48

dk512 15 10 8 9 12 11

donfile 24 24 8 11 48 39

exl 20 11 8 8 19 19

kirkman 16 25 9 9 58 58

master 15 3 3 3 3 3

planet 48 12 12 12 12 12

si 20 14 14 14 14 14

sand 31 7 6 6 8 8

styr 30 18 14 14 29 26

tbk 32 98 44 39 284 237

viterbi 68 6 6 6 6 6

vmecont 32 40 24 25 81 67

Constraints: Number of constraints to be satisfied

Constraints: Number of satisfied constraints

Cubes: Number of cubes in a two-level implementation of the constraints
NOVA: Encoding using NOVA[24], minimum code length
ENC: Heuristic encoding, minimum code length

Table 2: Two-level heuristic minimum code length input encoding

25

Name States Literals Time

SA ENC SA ENC

bbsse 16 162 164 3017 175

cse 16 229 236 3969 234

dkl6 27 336 380 27823 1523

dk512 15 82 85 2090 138

donfile 24 154 172 16265 935

kirkman 16 201 229 2621 322

master 15 392 398 2069 423

si 20 280 304 16297 833

fsand 31 763 737 1926 2332

ftbk 32 560 498 3774 4090

fviterbi 68 327 322 860 1013

fvmecont 32 378 364 2074 2883

SA: Simulated annealing (10 moves per step)
ENC: Heuristic encoding in minimum code length
Time SA/ END: Time ratiofor SA vs. ENC; includes run time for minimization script [13]
f: SA cannot complete with 10moves per step; SAlimited to 4 steps per move

Table3 : Multi-level heuristic minimum code length inputencoding

literals, simulated annealing was theonly known algorithm for solving this problem. We use two setsof
experiments to compare the effectiveness of our heuristic bounded-length algorithm versus the version
of simulated annealing algorithm implemented in MIS-MV. Minimum-length encoding is always used.
MIS-MV is run using a script that invokes the constraints satisfaction routine six times; five times to
perform a cost evaluation that drives the multi-valued multi-level optimization steps and one final time
to produce the actualcodes that replace the symbolic inputs [13]. Simulated annealing is calledthe first
five times with 1 pairwise code swap per temperature point, while the last call performed 10 pairwise
code swaps per temperature point. Simulated annealing does not complete on the largerexamples with
10 pairwise swaps per step. These examples are marked with a f in the table, and only 4 swaps were
allowed per temperature step for these examples. When using our heuristic algorithm, the full-fledged
encoderis called all six times. See [13] for a detailedexplanation of the scripts.

As can be seenfromTable3, our algorithm on average performs a littlebetterthansimulated anneal
ing in terms of literalcounts. This is significant especially in the largeexamples, where it reduces the
literalscounts up to 10%further than simulatedannealing. When our algorithm does worse it is within
5% of the simulated annealing result. However,a significantparameter here is the amount of time taken.
Simulated annealing consumes at least anorderof magnitude of time(twoorders or morefor largersized
examples)more than our algorithmwhen a betterquality solutionis desired, i.e. using 10 swaps per step.
On attempting to reduce the runtime to be comparable to our approach, a noticeable loss of optimization
qualitycompared to our approach may be observed in the table. Further improvements to the heuristic
encoding algorithm are still under investigation.

26

10 Conclusions

This paper has presented a comprehensive solution to the known constraint satisfaction problems aris
ing in the two-step encoding paradigm defined in the introduction. A theory has been provided and a
setof applications fully developed. We have shown that the problem of determining a minimum length
encoding to satisfy both input and output constraints is NP-complete. Based on an earlier method for
satisfying inputconstraints [25], we have provided the first formulation of an algorithm thatdetermines
the minimum length encoding that satisfies both input and output constraints. It is shown how this al
gorithm can be used to determine the feasibility of a set of input andoutput constraints in polynomial
timein thesizeof theinput. This formulation also provides auniform framework for solving avariety of
otherknown encoding constraints. While all previous exact formulations for the inputencoding problem
have failed to provide efficientalgorithms, an algorithm that efficiently solves the inputandoutput en
coding constraints exactly for a large standardbenchmark set has been described. An effective heuristic
procedure, which uses the framework provided, for solving input encoding constraints in both two-level
and multi-level implementations is also demonstrated.

References

1] R. Amann and U. Baitinger. Optimal state chains and state codes in finite state machines. IEEE
Transactions on Computer-Aided Design, February 1989.

2] R. Brayton, G. Hachtel, C. McMullen, andA. Sangiovanni-Vincentelli. Logic Minimization Algo
rithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

3] R. Brayton, A. Sangiovanni-Vincentelli, andG. Hachtel. Multi-level logic synthesis. The Proceed
ings of the IEEE, february 1990.

4] K-T. Cheng andV.D. Agrawal. State assignment for initializable synthesis. In The Proceedings of
the International Conference on Computer-AidedDesign, November 1989.

5] G. Cybenko, D. Krumme, and K. Venkataraman. Fixed hypercube embedding. Information Pro
cessing Letters, April 1987.

6] G. DeMicheli. Symbolic design of combinational and sequential logic circuits implemented by
two-level logic macros. IEEE Transactionson Computer-AidedDesign, October 1986.

7] G. DeMicheli, R. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for finite
state machines. IEEE Transactions on Computer-Aided Design, July 1985.

8] S. Devadas, H-T. Ma, R. Newton, and A. Sangiovanni-Vincentelli. Synthesis and optimization
procedures for fully andeasily testable sequentialmachines. InTheProceedings oftheInternational
Conference on Computer-Aided Design, November 1987.

9] S. Devadas andR. Newton. Exactalgorithms foroutputencoding, state assignment and four-level
Boolean minimization. IEEETransactionson Computer-AidedDesign, January 1991.

27

[10] C. Duff. Codage d'automates et theorie des cubes intersectants. Thise, Institut National Polytech-
nique de Grenoble, March 1991.

[11] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System
TechnicalJournal, February 1970.

[12] D. Krumme, K. Venkataraman, and G. Cybenko. Hypercube embedding is NP-complete. In Pro
ceedings ofSIAMHypercube Conference, September 1985.

[13] L. Lavagno, S. Malik, R. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Optimization of
multi-levellogic with multiple valuedinputs. In The Proceedings of the International Conference
on Computer-Aided Design, November 1990.

[14] L. Lavagno, T. Villa, and A. Sangiovanni-Vincentelli. Advances in encoding for logic synthesis.
In Progress in Computer Aided VLSIdesign, G. Zobrist ed. Ablex, Norwood, 1991.

[15] M. Marcus. Derivation of maximalcompatibles using Boolean algebra. IBM Journal of Research
and Development, November 1964.

[16] R. Rudell. Logic synthesis forVLSI design. Tech. ReportNo. UCB/ERL M89/49, April 1989.

[17] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA optimization.
IEEE Transactions on Computer-Aided Design, September 1987.

[18] A. Saldanha and S. Chandra. Synthesis for improved sequential controllability. Unpublished
manuscript, U.C. Berkeley, November 1990.

[19] A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A uniform framework for sat
isfying input and output encoding constraints. June 1991.

[20] G. Saucier, C. Duff, and F. Poirot. State assignment using a new embedding method basedon an
intersecting cube theory. In The Proceedings ofthe Design Automation Conference, 1989.

[21] P. Srimani. MOS networks and fault-tolerant sequential machines. Computers and Electrical En
gineering, 8(4), 1981.

[22] P. Srimani and B. Sinha. Fail-safe realisation of sequential machines with a new two-level MOS
module. Computers and Electrical Engineering, 1,1980.

[23] J. Tracey. Internal state assignment for asynchronous sequential machines. IRE Transactions on
Electronic Computers, August 1966.

[24] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment for optimal two-level logic
implementations. In IEEE Transactions on Computer-Aided Design, September 1990.

[25] S. Yang and M. Ciesielski. Optimum and suboptimum algorithms for input encoding and its rela
tionship to logic minimization. IEEE Transactions on Computer-Aided Design, January 1991.

28

