
Copyright© 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copiesof all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

VECTOR QUANTIZATION CODE BOOK

DESIGN USING NEURAL NETWORKS

by

Thomas M. Parks

Memorandum No. UCB/ERL M90/111

3 December 1990

VECTOR QUANTIZATION CODE BOOK

DESIGN USING NEURAL NETWORKS

by

Thomas M. Parks

Memorandum No. UCB/ERL M90/111

3 December 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

VECTOR QUANTIZATION CODE BOOK

DESIGN USING NEURAL NETWORKS

by

Thomas M. Parks

Memorandum No. UCB/ERL M90/111

3 December 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Vector Quantization
Code Book Design Using Neural Networks

Thomas M. Parks

3 December 1990

Abstract

The Kohonen Self-Organizing Feature Map
algorithm is compared to the K-Means vec
tor quantization algorithm. Computation and
storage requirements are calculated for both
algorithms. A new algorithm which takes
advantage of the structured code book pro
duced by Kohonen's algorithm is introduced.
This algorithm offers a significant computa
tional savings over full-search vector quantiza
tion without imposing a storage cost penalty.
The results of simulation studies are presented
and the performance of the algorithms is com
pared.

1 Introduction

This paper evaluates the use of neural network
algorithms for vector quantization. Section 2
gives a brief overview of vector quantization,
followed by descriptions of the K-Means al
gorithm in Section 3 and the Kohonen Self-
Organizing Feature Map in Section 4. Com
putation and storage costs of these two algo
rithms are compared in Section 5. Simulation
results demonstrating the performance of the
algorithms are presented in Section 6. Sec-

*This report has been sponsored in part by the Air
Force Office of Scientific Research (AFOSR/JSEP) un
der Contract Number F49620-9O-C-0029.

tion 7 concludes with a discussion of issues

that deserve additional consideration.

2 Vector Quantization

A review of vector quantization techniques ap
pears in [MRG85]. Vector quantization in
volves the mapping of a continuous valued in
put vector x of dimension TV to a discrete val
ued reconstruction vector y of the same dimen
sion. The reconstruction vector typically can
only take on a finite number of values, M. The
set {#, 1 < i < M} of reconstruction vectors is
referred to as the code book, and the values yi
are the code vectors. Vector quantization can
also be thought of as a classification problem.
The input x is classified into one of M classes
d, and assigned the code vector yt- associated
with that class.

The quantization error which results when x
is coded as y can be quantified by a distortion
measure, d(x,y). The mean-square error dis
tortion measure, denoted by ^(x, y), is given
by the equation:

1 1 Nd2{Z,y) =^-y)T{x-y) =- J>*-!fr)4
fc=i

(1)
Given a finite training sequence x(t), which
is thought of as a random process, the goal
in designing the code book is to minimize the

1

expected value of the overall distortion

E[D] =V P(x e Ci) / d{x, yi)p(S)<&
(2)

where P(x € d) is the probability that x be
longs to class d, and p(x) is the probability
density function of x.

For the case where d(x,y) is the mean-
square error, the overall distortion is mini
mized when:

ft =7: £ £wLi
(3)

f€Ci

3 K-Means Clustering Al
gorithm

The K-Means clustering algorithm is also
known as the generalized Lloyd algorithm or
the LBG algorithm [MRG85, LRCG89]. It is
an iterative method for designing a code book
which converges to a local minimum. After
each iteration, it is necessary to perform a ter
mination test. Typically this involves measur
ing the decrease in overall distortion.

1. Initialize code vectors by a suitable
method.

2. Classify the entire training sequence x(<)
into the classes d by the nearest neighbor
rule:

x € Cj •«• d(x, yj) < d(xy yi), Vi f j

3. Update code vectors for each class by
computing the centroid:

where Li is the number of training vectors in
Ct. In other words, the code vector yi should
be the centroid of the class C,-.

For scalar quantization, which is a special
case of vector quantization, the coded outputs,
or quantization levels y, can be chosen to have
a non-uniform spacing to match the probabil
ity distribution of the input x and to minimize
the overall distortion. The quantization lev
els are closer together in regions where x has
a higher probability, and farther apart where
x has a lower probability. This implies that
the classes Ci associated with the quantiza
tion levels y,- are not of uniform size. They
are, however, all the same shape: they are all
segments of the real line.

In the more general vector quantization
problem, several properties of the input x can
be exploited: the dimensionality of the vector,
linear dependence among the vector elements
xjb, statistical dependence among the elements
xjb, and the shape of the probability density
function. In the case of scalar quantization,
only the last property could be exploited. De
pendencies among the vector elements restrict
the possible values of x, thus they can be ex
ploited by limiting the possible reconstruction
values y,-. Vector dimensionality allows the
classes d associated with the code vectors yi
to vary both in size and in shape.

w4e *(*>Li
£€Ci

4. Repeat by reclassifying training sequence
using new code vectors.

The initialization step here is left intention
ally vague. There aremany methods for choos
ing an initial code book. Since the algorithm
converges to a local minimum, one method of
obtaining a more global minimum is to train
using several different initial code books. Typ
ically, the initial code book is either random,
or is derived from a code book with M —1
code vectors. For the case of M = 1, the code
vector is just be the centroid of the training
sequence. Thus multiple code books can be
designed with increasing M, using the previ
ous result for the initial code book.

4 Kohonen's Self Organiz
ing Feature Map

The neural network algorithm described here
is the feature map algorithm developed by
Kohonen [KMS84, Lip87, Lip88]. The net
work consists of N input nodes, correspond
ing to the components X* of the input vector
x, and M output nodes. The output nodes
are arranged in a two-dimensional array, with
neighboring nodes designed to have similar re
sponses to the inputs. See Figure 1 for an
illustration.

Each output node has connections to each
of the inputs with weights. The weight for the
connection between input node k and output
node j is denoted by Wkj. The output of a
node is calculated by taking the dot product
of the input and the weights:

N

Oj = x^wj - y^xkwkj (4)
fc=i

The input is thus classified by the node with
the maximum output. Maximizing the output
value is equivalent to minimizing the mean-
square error:

1 Ndj = d2{xt Wj) - —£)(xfc - u/jkj)2 (5)
fc=i

Thus, the weight vectors w correspond to code
vectors of a vector quantizer.

The training algorithm is usually performed
in several phases, where different adaptation
constants are used in each phase. Here is a
brief description of the steps of the algorithm
during phase i. Notice that when weights are
updated, an entire neighborhood is updated.
This forces nodes which are neighbors in the
two-dimensional output array to have similar
responses to the input, resulting in an ordered
code book. This order can be exploited to save
computation, as will be discussed in Section 5.

Figure 1: Feature Map with N = 2, M = 16

1. Initialize weights to small random values.

2. Present a new input x(t).

3. Compute distortion dj for each output
node.

4. Select the output node J with the mini
mum distortion.

5. Update weights to node J and its neigh
bors:

Wj(t+l) = «Ji(t)-|-a(<)(x-t2;J(0),Vtl;i € Nj

6. Repeat by presenting the next input.

The neighborhood of node J is denoted by
the set of nodes Nj. The adaptation gain a(t)
is a function of time and distance:

a(t) = K(t)<rr*J(t)

1 - (t - Tj.Q
K(t) = IU

<r(t) = <Ti

Ti - r,_i

l-(t-T,--i)
n - r,_i

where Ki is the adaptation gain for phase t,
<Ti is the distance weighting factor for phase t,
tjj is the radius (or topological distance in the

(6)

(7)

(8)

output array) of the neighboring node j from
the selected node J, and r< marks the end of
training phase t.

When a neighborhood is updated, those
code vectors which are topologically more dis
tant from the selected node are changed less
than those which are closer. The amount of
adaptation decreases with time, allowing rapid
adaptation at the beginning of training so that
the code vectors can spread out to cover the
AT-dimensional space, and allowing slow adap
tation later to provide a stable result. A more
detailed description of the training process is
given when experimental results are discussed
in Section 6.

5 Algorithm Cost Com
parison

A full search vector quantizer is computation
ally expensive, both while designing the code
book during training, and while encoding vec
tors during normal operation. If the dimen
sion of the input vectors is N and there are M
code vectors, then a full search vector quan
tizer requires O(M) distortion computations
to compare an input vector to each of the code
vectors. The number of storage locations re
quired is O(NM) to hold the code book, and
O(NL) to store the training sequence, where
L is the number of training vectors. Typically
L > Af to allow many training samples for
each code vector, so storage of the training
sequence is a significant cost. Both the Koho
nen algorithm and the K-Means algorithm just
described are full search quantizers. There are
modifications which can be made to reduce the
computational cost at the expenseof increased
storage or increased distortion.

5.1 Taking Advantage of an Or
dered Code Book

The code book used in the Kohonen algo
rithm is arranged in a P-dimensional array,
with P = 2 typically. As pointed out ear
lier, this code book has some degree of order
since neighboring nodes are designed to have
similar responses to inputs. Intuitively, one
would expectthe nearest neighbors of the node
with minimum distortion to have smaller dis
tortions than the remaining nodes. I call this
type of order neighborhood order.

When the dimensionality of the code book
matches the dimensionality of the data, P =
N, I claim that in some cases the code book
of the Kohonen algorithm takes on what I call
sorted order. By this I mean that as one moves
through the P-dimensional output array, away
from the node with minimum distortion, dis
tortion increases monotonically. If this were
true, then a gradientsearch technique could be
used. In general, when P < N, the code book
does not achieve sorted order. This is because
the distortion is inherently an AT-dimensional
function: it is a function of the N components
of the code vectors. The code book maps this
iV-dimensional function onto a P-dimensional
function of the coordinates of the code vec
tors in the output array. The mapping onto a
lower-dimensional space may not preserve the
monotonic properties of the distortion func
tion. Exact characterization of the code book
structure required by the gradient search algo
rithm, examination of conditions under which
this structure can be constructed, and the de
sign of a training algorithm which is guaran
teed to produce this structure will be the sub
ject of future research.

Both the decimated search and the gradient
search algorithms, which are described below,
reduce the computationalcost of searching for
the node with minimum distortion without in
creasing code book storage requirements. The

decimated search algorithm assumes that the
code book has neighborhood order, but the
number of required computations, while re
duced, is still O(M). The gradient search re
quires the more restrictive sorted order, and
reduces the number of required computations
to 0{ tfM).

5.1.1 Decimated Search

Truong and Mersereau [TM90] have proposed
a decimated search algorithm which uses |£
two-level search trees. For example, when
P = 2, the distortion is first computed only
for the nodes in the even numbered rows and

columns of the output array. These nodes are
the roots of the search trees. Then the dis

tortion is computed for the neighbors of the
root node with the minimum distortion. The

neighboring nodes are the leaves of the search
trees. This algorithm requires only $> +3P—1
distortion computations, however this is still
O(M).

5.1.2 Gradient Search

The search algorithm presented here assumes
that the code book is in sorted order, and is
essentially a gradient search algorithm.

1. Start at the center of the code book array.

2. Compute the distortion for the current
code book vector and its nearest neigh
bors in the array.

3. Move to the code vector with the smallest

distortion.

4. If there are any neighbors whose distor
tion has not been computed, then repeat
by evaluating the distortions for the new
neighbors.

The algorithm terminates when there are no
new neighbors for which the distortion has not

been computed. This can happen when the
distortion of all the neighbors is higher than
that of the current node (i.e. there are no new
neighbors because we did not move to a neigh
bor in Step 3). It can also happen when we
move to a node and discover that there are no

new neighbors because we have reached the
boundary of the output array.

The P-dimensional output array is arranged
to be as square as possible, so at most vM
steps are required to reach the node with min
imum distortion. In this algorithm, a node
has 2P neighbors, so at each step, at most
2P computations must be made, giving an
upper bound of 2P KfM distortion computa
tions. The number of distortion computa
tions required has been reduced from O(M)
to 0{ y/M).

5.2 Using a Tree-Structured
Code Book

A common way to reduce the computational
cost of a full search vector quantizer is to use a
tree-structured code book [MRG85, LRCG89];
Using the K-Means algorithm, for example,
the training set is first divided into P classes
using K-Means. Each of the resulting classes
is then subdivided into P subclasses, again us
ing K-Means. This is repeated until there is a
total of M classes in the last level of the code
book tree. To find the code vector with the
minimum distortion, it is necessary to make
P computations at each of logp M levels, for
a total of P logp M distortion computations.
This method reduces the computation cost
from O(M) to 0(logP M), but the required
storage has increased. Previously, O(NM) lo
cations were required to store the code book.
Using this method,

(logpAf)-l

M £ />-' =
1=0

M-l

1-p-l (9)

code vectors must be stored. For P = 2, the
storage requirements for the code book are
doubled. However, this increase may be in
significant when compared to the storage re
quirements for the training sequence.

This brings up one great advantage that the
Kohonen algorithm has over K-Means. Be
cause the training vectors are presented se
quentially in the Kohonen algorithm, there
is no need to store the entire training set:
training can be done on-line. This sequential
presentation of the training vectors can cause
problems, though, because the resulting code
book depends on the order in which the train
ing samples are presented.

6 . Simulation Results

The Kohonen algorithm was implemented
with three training phases. Phase 1 is in
tended to have large adaptation gain and large
neighborhoods to allowvery rapid adaptation.
Phase 2 is intended to have moderate adapta
tion gain and fixed, small neighborhoods to
allow slow adaptation. Phase 3 is intended to
have small, fixed adaptation gain and small,
fixed neighborhoods to demonstrate the sta
bility of the adaptation.

During Phase 1, 0 < t < n, the size of the
neighborhood shrinks from including the en
tire array, to radius N\. A radius of 1 would
include only the 8 nearest neighbors, and a
radius of 0 would not include any neighbors.
The adaptation gain decays from K\ to al
most zero, and the distance term decreases
from <T\ to almost zero. During Phase 2,
Ti < t < Ti, the neighborhood radius remains
constant at iV2, and the adaptation terms de
cay from Ki and at to almost zero. During
Phase 3, T2 < t < r3, the neighborhood radius
remains constant at N$, and the adaptation
gain remains constant with terms K3 and a3.
Training ends at t = r3.

6.1 2-Dimensional Random Data

6.1.1 Training

The first example used a two-dimensional
training set of 4096 vectors with a uniform
probability distribution; the code book con
tained 64 vectors. Both the full search and
the gradient search versions of the Kohonen
algorithm were simulated. The following con
stants were used for both versions:

n = 16384 r2 = 32768 r3 = 6553(

Ni = l iV2 = l AT3 = 0

Ki = 1.0 K2 = 0.1 K3 = 0.01

<Ti = 1.0 (72 = 0.1 flT3 = 0.01

For Phase 1, both K\ and a\ are large, and
the initial neighborhood radius is the width
of the output array. This choice of values al
lows very rapid adaptation. For Phase 2, Ki
and 02 are each an order of magnitude smaller
than the values used in Phase 1; the neighbor
hood radius is constant and includes only the
nearest neighbors. This choice of values allows
gradual adaptation. For Phase 3, K3 and <r3
are each an order of magnitude smaller than
the values used in Phase 2; the neighborhood
radius is constant and includes no neighbors.
This choice of values allows very slow adapta
tion, and output nodes are allowed to adapt
independently.

The time constants n, r2, and r3 were cho
sen so that during Phase 1 and Phase 2, there
would be approximately 256 training vectors
for each code vector in each phase.

During training, a copy of the code book
was made after each time the 4096 training
vectors had been presented. This resulted in
a sequence of 16 evolving code books. Some
of the code books for the full search Koho
nen algorithm are illustrated in Figures 2—6.
The corresponding code books for the gradi
ent search algorithm are shown in Figures 7—
11. In the plots, lines are drawn connecting

Figure 2: Full Search Code Book: t = 4096,
SNR = 16.96 dB

each code vector to its topological neighbors
in the output array in order to demonstrate
the structure of the code book. If the code
book is in sorted order, then neighbors in the
P-dimensional output array will be neighbors
in the iV-dimensional vector space. If the code
book is not in sorted order, then some lines
drawn in the figures will cross. Figure 12 il
lustrates the unsorted code book produced by
the K-Means algorithm.

Note that the code book spreads out more
slowly in the gradient search version of the Ko
honen algorithm. This occurs because the ini
tial code book is not in sorted order, thus the
selected node is not always the one with the
minimum distortion. Once the code book is

in sorted order, the gradient search selects the
correct node.

6.1.2 Measurements

Using each of the 16 code books, the train
ing sequence and a separate test sequence were

Figure 3: Full Search Code Book:
SNR = 21.19 dB

t = 8192,

Figure 4: Full Search Code Book: t = 12288,
SNR = 26.13 dB

Figure 5: Full Search Code Book: t = 16384, Figure 7: Gradient Search Code Book: t
SNR = 28.53 dB 4096, SNR = 15.10 dB

t 1 1 t " r

Figure 6: Full Search Code Book: t = 65536, Figure 8: Gradient Search Code Book: t
SNR = 29.10 dB 8192, SNR = 21.18 dB

Figure 9: Gradient Search Code Book: t
12288, SNR = 26.15 dB

Figure 10: Gradient Search Code Book: t
16384, SNR = 28.53 dB

Figure 11: Gradient Search Code Book: t
65536, SNR = 29.05 dB

Figure 12: Unsorted K-Means Code Book

Training Set Test Set

Uniform 28.84 28.83

K-Means 29.12 28.63

Kohonen (full) 29.10 28.74

Kohonen (gradient) 29.05 28.70

vsnss-
VSJSS-

Table 1: Distortion Measurements

each coded and distortion measurements were

made. Figure 13 shows how the distortion,
or signal to noise ratio (SNR), evolved dur
ing training for both the full search and gradi
ent search versions of the Kohonen algorithm.
The gradual approach to the optimum SNR
during Phase 3 indicates that the Kohonen al
gorithm is stable and does converge. The K-
Means algorithm required 196 passes through
the training sequence, but the Kohonen algo
rithm required only 16 passes. In fact, after
only 4 passes through the training sequence,
the Kohonen algorithm had achieved a SNR
within 0.6 dB of the final value.

Table 1 compares the SNR for a uniform
quantizer, and for the K-Means and Kohonen
algorithms on both the training and test se
quences. Compare these values to the theo
retically optimum SNR of 28.85 dB for a uni
form quantizer. Note that because the train
ing and test sets are such small samples of the
underlying random process, this optimum is
not achieved by the uniform quantizer.

These distortion measurements were calcu

lated as follows:

2M0

TtaeilO3
taOO 2O00 30.00 40.00 J0.00 eojoo

Figure 13: Distortion During Training

tion. The signal to noise ratio is:

SNR= 10 log10l/D (11)

Notice that the final distortion measure
ment for the Kohonen algorithm is approx
imately the same as that obtained with K-
Means. Because the training and test se
quences were only small samples from a uni
form random process, they did not have a per
fectly uniform distribution. This explains the
relatively poor behavior of the uniform code
book: both vector quantization algorithms
produced code books which reflected the ac
tual distribution of the training sequence.

6.2 16-Dimensional Image Data

Training
°=it (jjh*«)-<°»f) <10)6-2

u t=i V *=i / 6.2.1

where L is the number of input vectors, and Jt
is the index of the output node with minimum
distortion for the input x(t). Equation 10 is
the expression for the average overall distor-

The second example used the 256 x 256 image
"girl" and broke it up into 4x4 blocks to form
4096 16-dimensional training vectors. The
code book contained 256 vectors, for an aver-

10

Training Set

K-Means 31.48

Kohonen (full) 30.64

Table 2: Distortion Measurements

age of 0.5 bits per pixel. Because the dimen
sionality of the output array was lower than
that of the data, P < N, the code book did not
achieve sorted order and the gradient search
version of the Kohonen algorithm exhibited
convergence problems. The results presented
here are for only the full search version of
the Kohonen algorithm and the K-Means al
gorithm. The following constants were used
for training:

n = 65536

Ni = 1
Ki = 1.0
a1 = 1.0

r2 = 131072

N2 = 1

K2 = 0.1
<72 = 0.1

r3 = 262144

AT3 = 0
K3 = 0.01
os = 0.01

6.2.2 Measurements

Figure 14 shows how the SNR evolved dur
ing training for the full search Kohonen algo
rithm. The K-Means algorithm required 328
passes through the training sequence, but the
Kohonen algorithm required only 64 passes.
After only 16 passes, the Kohonen algorithm
had achieved a SNR within 0.8 dB of the final

value. Figures 15-17 show the original image,
and those coded with the K-Means and Koho

nen algorithms. Table 2 compares the SNR for
the K-Means and Kohonen algorithms. Keep
in mind that these are distortion measure
ments for the training set only; there is no
separate test set.

11

r - TAlmA

/
/

f*f

Figure 14: Distortion During Training

Figure 15: Original Image: 8 bits/pixel

Figure 16: K-Means Coding: 0.5 bits/pixel,
SNR= 31.48 dB

Figure 17: Kohonen Coding: 0.5 bits/pixel,
SNR = 30.64 dB

7 Conclusion

The Kohonen algorithm does converge, as can
be seen in the examples presented in Section 6.
During Phase 3 the adaptation gain is held
constant instead of allowing it to decay to zero.
To keep the distortion low, it is necessary to
have a small adaptation gain, otherwise each
new input would produce a large perturbation.
A small adaptation gain, however, increases
the training time. A balance between training
time and distortion must be found on a case

by case basis.
I introduced a method of taking advantage

of the code book structure. In cases where
P = N, as in the first example, it works well
and seems not to have any convergence prob
lems. In the second example where P < N,
the code book did not exhibit the sorted or
der required by the search algorithm. For this
case, either the dimensionality of the output
array could have been increased, or the al
gorithm proposed by Truong and Mersereau
could have been used. Either of these search
methods could be used with a code book which
was designed using K-Means if the code book
were processed off-line after training to impose
the required order.

Tree-structured code books degrade perfor
mance. This is because classes are split with
out regard to the number of training samples
which belong to them. Thus it is possible to
form subclasses which have few or even no

training samples associated with them. Prun
ing away such classes from the tree can reduce
the code book size with only a minor increase
in distortion. The methods used by Gray and
Riskin [LRCG89] require the design of a full
tree-structured code book, followed by a prun
ing process which trades distortion for code
book size.

If neural network techniques could be used
to design a tree-structured code book, then
the same pruning methods could be applied

12

off-line after training was complete. One pos
sible way to design such a code book would be
to first set up the tree structure and initialize
the code vectors at all levels to random val

ues. Then adapt the nodes at all levels of the
code book as the inputs are presented. At each
level, the node with the minimum distortion
would be selected. Then the weights for that
node and its neighbors would be updated and
the same input would then be passed to the
next level. It would be interesting to examine
the convergence properties of this technique.

In conclusion, although the K-Means al
gorithm is optimal, it requires off-line train
ing where the entire training set is available
in storage. This precludes using K-Means [LRCG89]
in adaptive vector quantization applications.
The Kohonen algorithm is inherently adap
tive and requires no storage for the training
set; it can be trained on-line. In a process
where the underlying probability distribution
changes with time, such as video images, the
Kohonen algorithm would clearly be preferred.
The simple computations required for the Ko
honen algorithm also make it a viable can
didate for VLSI implementation. Apparently
the choice between K-Means and Kohonen de

pends on the specific application and hard
ware resources. Thus one is not superior to
the other, only more appropriate for certain
applications.

Acknowledgments

I would like to thank Dr. Avideh Zakhor for

her encouragement and suggestions. She also
provided the programs which I used to simu
late the K-Means algorithm.

References

[KMS84] T. Kohonen, K. Makisara, and

[Lip87]

[Lip88]

13

T. Saramaki. Phonotopic maps:
Insightful representation of phono
logical features for speech recog
nition. In IEEE Seventh Inter

national Conference on Pattern
Recognition, August 1984.

R. P. Lippmann. An introduc
tion to computing with neural nets.
IEEE ASSP Magazine, April 1987.

R. P. Lippmann. Neural network
classifiers for speech recognition.
The Lincoln Laboratory Journal,
1(1), 1988.

T. Lookabaugh, E.A. Riskin, P.A.
Chou, and R.M. Gray. Variable
rate vector quantization for speech,
image, and video compression. Un
published, April 1989.

[MRG85] J. Makhoul, S. Roucos, and
H. Gish. Vector quantization in
speech coding. Proceedings of the
IEEE, 73(11), November 1985.

[TM90] K. Truong and R. Mersereau.
Structural image codebooks and
the self-organizing feature map al
gorithm. In ICASSP, 1990.

