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Cellularneuralnetworks (CNNs) [1,2] area new parallel analog circuit architecture for image
processing. Although they discuss the extension of cellular neural networks to include cells
with a vector of state variables (multiple layers), the original papers by Chua and Yang intro
ducing CNNs deal mainly with networks composed of a two dimensional layerof cells with a
scalar state variable. This tutorial further develops the extension to multiple layers. Starting
by studying a simple subclass of single layerCNN, we gain insight into how the continuous
time/continuous state dynamics of the CNN performsome basic image processing tasks. This
insight aids in the design of several multi-layer CNNs. The design of these CNNs exploits
architectural similarities between CNNs and cellularautomata (CA), a parallel digital circuit
architecture useful in image processing. In fact, any single iteration operation possible on a
cellular automata (CA) as described in [3,4] canbe performed with a (possibly multi-layered)
CNN [5]. After discussing the relationship with CA, this chapter concludes by describing the
operations of several binary image processing CNNs which were designed using the results
presented here.

1. INTRODUCTION

Cellular neural networks (CNNs) havebeenintroduced [1,2] as a parallel analog circuit archi
tecture for image processing. They are composed of atwodimensional array of analog proces
sors or'cells.' Each pixel in the image plane has acell associated withit. Each cellcontains a
setof capacitors, thevoltage across which willbereferred toas the 'state' of thecell. A 'layer'
refers to the two dimensional array ofcapacitors formed by taking onecapacitor from each cell.
Thus, a single layer CNN has one capacitor percell. Each cell alsohas an inputvoltage asso
ciated with it. The currents through the capacitors in a cell are functions of theirvoltages, the
cell's input voltage and the voltages of the capacitors and inputs of thenearest neighbor cells.
Typically, thevoltages of some of thecapacitors of acell and/or theinput associated with it are
initialized to the value of the associated pixel in the image to be processed. The circuit is then
allowed to settle. The steady state outputs of thecells represent the result of the 'computation'



performed by the CNN.

Theoretically,due to the analog nature ofthe processors, CNNs can process graylevel images of
arbitrary precision. However, in practice uncertainties associated with VLSI fabrication andthe
input and output of analogvoltages limit the precisionobtainable. The CNN can also be used
for binary image processing as it can be designed to ensure that the steady state output of each
cell is either ±1. The key advantages of the analog approach are asynchronous fast operation
and a small cell size for VLSI design. Currently, work is being done in fabricating CNN chips
[6].

In this chapter, we restrict the discussion to the implementation of binary image processing
operations. Our results explain how the dynamics of the cells perform the processing of some
of the examples presented in [2]. These results provide a foundation for the design of more
complex applications by exploitingthe possibility of using multiple layer CNNs. To simplify
the discussion of the basic results, we begin by discussing single layer cellularneuralnetworks
before extending ourresults to the multiple layer networks. Section 2 describes single layer
cellular neural networks as introduced in [1]. Section 3 discusses some dynamical properties
of these networks. Section 4 extends the previous results to multiple layer neural networks.
Section 5 introduces cellular automata and shows how to use the results of Sections 3 and 4 to
mapcertain cellular automata operations ontoaCNN architecture. This mapping motivates the
design of the CNNs of thenext section. Section 6 provides numerous design examples before
Section7 summarizes the mainresults of this chapter.

Many ofthe ideaspresentedherehavebeen presented in othercontexts associated with artificial
neural networks, and will be familiar to those readers familiar the neural network literature. We
will identify these as they arise. However, sincethis chapter is meantto be of atutorial nature,
our treatment assumes no priorknowledge ofneuralnetworks.

2. SINGLE LAYER CELLULAR NEURAL NETWORKS

Since each pixel in the image plane has a cell associated with it, an L layer cellular neural
network designed toprocess an M byN pixel image iscomposed ofatwodimensional M by
N array of cells. Each cell of this CNN contains L capacitors and the state is an ^-dimensional
vector. Thus, each cell ofa single layer CNN contains asingle capacitor and thestate is ascalar
variable. The rest of this section assumes asingle layer CNN. The extension tomultiple layers
will be made explicit in Section 4.

Each cell ofasingle layer CNN will be denoted C(iJ) where 1< t < M and 1< j < N. The
output ytj ofC(i,j) isapiecewise-linear function ofits state v,,,-:

vu =/K;) = jk;+xl - j^' ~1'*
This function restricts the output ofeach cell tolie inthe interval [-1,1]. SeeFigure 1. Thestate
ofthe CNN, v, isdefined tobethe vector ofthe states of all the cells inthe network. Similarly,
theoutput ofthe CNN, y, isdefined tobethe vector of theoutput of thecells. Each cell also has
an associated input voltage. The input to the CNN, u, is defined tobethe vector ofthe inputs to
the cells. For binary image processing, +1 values ofinput and output are associated with image
pixels and -1 values with background pixels. When discussing boolean functions implemented
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Figure 1:The piecewise-linear sigmoid function is the only non-linearity in each cell ofa CNN.
This non-linearity maps the state to the interval [-1,1].

with CNNs, +1 is associated with the boolean value 'true' and -1 with 'false'.

The dynamical behavior of the CNN which determines the processing performed is provided
by allowing the current entering the capacitors of the cells to vary with the state of the array.
We impose two restrictions on this interaction. First, the current entering a cell's capacitor is
an affine function of the cell's state, its input and output, as well as the input and output asso
ciatedwith its nearestneighbors. The restriction to affine functions allows us to implement the
current using only linear voltagecontrolled current sources. The restriction to nearest neighbor
interactions is imposed to limit the number of interconnections between cells. Due to the com
plexity and number of interconnectionsrequired, a reasonably sized fully interconnected two
dimensionalnetwork, such asthe Hopfieldneural network [7], is practically impossible to build
with today's VLSI technology.

To clarify the term nearest, definethe distance between C(iJ) andC(m, n) by

d(ij;m,n) = maxflm- t|,|n - j|).

Using this metric,the r-neighborhood of cell C(i,j) is defined as

Nr(iJ) = {C(m,n)\d(i, j',m,n) < r; 1 <m< M;l < n < JV}.

For example, the 1-neighborhood of C(i, j) is a three by three square of nine cells centered at
C(iyj). Define r<> to be the minimum r suchthat for all t, j € {1,... M; 1,... N], the cells
whose outputsaffect the current through the capacitor of C(iJ) arein the r0 neighborhood of
C(i,j). The restriction to nearestneighborinterconnections requires r0to be much smallerthan
both M and N. For many applications, r0 will be 1 or 2.

Second, since image processing operations should often be invariant under translation of the
image, the interaction between each cell and its nearest neighbors must be uniform over the
entire array. Thus, the function determiningthe current throughthe capacitorofone cell of the
CNN uniquely determines the functions determining the currents through the capacitors of all
the cells in the entire array. Of course, the cells on the boundary of the array must be treated
separately. We discuss how to deal with these cells at the end of this section.
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Figure 2: The state equation of each cell of a single layer CNN can be implemented with the
above circuit consisting only of a capacitor, resistors, and voltage controlled current sources.
Iv{a, b) = A(a, 6)y,-+0,j+fc andIu(a, b) = B(a, 6)ul+a,i+t.

ChuaandYang [1] derivedthe stateequation ofeachcell ofthe CNN as the dynamicalequation
governing the circuit shown in Figure 2. Each capacitor is shunted to ground by a resistance
R. It is also driven by a bias current and linearvoltage controlled current sources which are
controlled by the inputs andoutputs of the cell andits nearest neighbors. The piecewise-linear
function mapping the state of each cellto its output is theonlynon-linearity in the cell. Making
the local interconnections and translation invariance explicit, the state equation of of C(iJ)
presented in [1] reduces to:

dv • v - r° r° r° r°
C~ST = --R+ £ £ *(«.«»♦..*«+ £ £ B(a,p)ui+ati+0 +I (1)

""- o=-ro/3=-r0 or=-ro/3=-r0

where r0 is defined above and C and R are positive constants. The coefficient A(a, ft) is the
gain of thevoltage controlled current source linking theoutput of C(i + a,j + p) to thecurrent
entering C(iJ). Note that it is independent of i and j. Similarly B(a,fl), the gain of the
voltage controlled current source linking theinput voltage associated with C(i + a, j + fi) with
thecurrent entering C(i, j), is also independent oft and j. J is abias current applied uniformly
to each cell.

Since this state equation is an affine function, it is uniquely specified by the coefficients of the
affine relation. These coefficients are defined to be the CNN's cloning template. Thus, the
values of A{-,•) £(•, •),I, C and R are thecloning template for thisCNN. Because of thetwo
dimensional and local nature of the interactions, it is convenient to express the coefficients of
A(-, •) and B(-, •) as 2r0 -f 1by 2r0 + 1matrices where the center element corresponds tothe
coefficient which weights theeffectof thecell's ownoutput orinput uponits state's derivative.
See (8) for an example with ro = 1.

Those familiar with the neural network literature will recognize the above equation as being
similar to that governing the dynamics of the Hopfield neural networks. However, the key
differences are that we restrict ourselves to local interconnections and use a piecewise linear
sigmoid nonlinearity. This non-linearity, in conjunction with the self feedback term from the
cell's output to its input current, allows for ±1 steady state outputs without the assumption
of infinite gain in the sigmoid non-linearity. Chua and Yang show show that the condition
A(0,0) > R~l ensures that each cell has a±1steady state output. Since wediscuss exclusively



binary image processing applications, unless specified otherwise we shall assume this condition
holds.

We made the assumption thatthe nearest neighbor interaction of each cell is uniformoverthe
entire array. In other words, the relationship between the derivative of each cell's state and
outputs of thecell's neighbors is the same for every cell. However, since in practice theCNN
array has a finite size, there isaproblem with cells which arc close tothe boundary ofthe array.
These cells maynot have the full complement of nearest neighbors that cells in the interior of
the array have. Thus, thedynamics ofthe cells cannot beuniform over thearray. Improperly set
boundary conditions may lead to strange effects propagating in from the edges ofthe array. In
the following, thecells which donothave the full complement ofnearest neighbors are referred
to as edge cells.

To compensate for the effect of finite array size, we canimagine thatthereare cells outside of
the array which complete the neighborhood of each edge cell. There are various choices for
the output states of these imaginary boundary cells. In the hole finding CNN discussed below,
the imaginary boundary cells output a constant +1 voltage. This boundary condition provides
a 'source' which drives the output voltages of the edge cells to +1. These cells in turn drive
the voltages of their neighbors to+1, and soon. This creates a 'wave' of cells with +1 output
voltage propagating intothe array. The hole finding CNN stops this propagation attheoutside
edges of the image objects with an appropriate choice of B. Onthe other hand, the boundary
cells of a layer can also be set to output a constant —1. In this case, the edge cells always
see the imaginary boundary cells as part of the background. Although there are many other
possible boundary conditions, only these twoboundary conditions are used intheexamples of
this chapter.

From the standpoint of VLSI implementation, the imaginary boundary cells do not add to the
number of cells which must be put on the chip. Instead of actually building boundary cells
outside of theCNN array to input totheedge cells, theboundary celleffectscan beincorporated
intothe dynamics of each edgecell. In fact, for the cases mentioned above, the change can be
made by simply altering the bias currentofeach edge cell.

3. DYNAMICAL PROPERTIES OF SINGLE LAYER CELLULAR NEURAL NET-
WORKS

This sectionbeginswith adiscussion ofanecessary andsufficient conditionforanoutputvector
to have an associated stable equilibrium point. Due to the local nature ofthe interconnections,
this condition is expressed as an implicit equation of a cell's input and output and the inputs
and outputs of its nearest neighbors which must be satisfied at each cell. Under certain circum
stances, the right hand side of this equationis the expression for the map from input and initial
conditions to the steady state output.

A CNN has symmetric coefficients if and only if >l(a, p) = A(—a, —ft). In this case, the dy
namics of the CNN operateto rninimize the following energy functional:



subject to the constraint that |y,-,;| < 1 for all ij. The existence of this functional ensures the
stability of all CNNs of thistype aswell as ameans of characterizing the dynamics of theCNN
as a gradient descent system. In the case of asymmetric coefficients, we haveno such energy
functional. However, recentlyaconnected component detecting CNN [8] anda imagethinning
CNN [9] have been developed using asymmetric coefficients. Not all CNNs with asymmetric
coefficients will be stable, but Chua and Roska have recently discovered some stability results
for CNNs with asymmetric coefficients [10].

It caneasily be shown thatany minimum {y,,,} of the aboveenergy functional such that yt|J- =
± 1 for all i,j must obey the following condition: For all t, j

Vi,j = sgn
11 a,&0,0 a,0

(2)

In fact, this condition is a necessary and sufficient condition for an output vector to be a stable
equilibrium point of the output dynamics, even in the case of asymmetric coefficients.

Claim 1 Assume the right handside of(2) is well defined (i.e., the quantityinside thesignum is
never zero) for all binary (±1) combinations of the input, u, andoutput, y, variables. A binary
output state, y = {y,,,} satisfies the implicit equation (2)for all i,j, ifand only if there exists
an equilibrium point v = {£,,,} of the CNN which mapsto $ through theoutput non-linearity.
Furthermore, thisequilibrium point is asymptotically stable and its basinofattractioncontains
the neighborhood in whichthestates ofall thecells are operating in the appropriate saturated
region ofthe piecewise-linear output non-linearity.

The proof of this claim is contained in the appendix. Essentially, Claim 1 states that if a CNN's
output satisfies (2) for all t, j, the output of the CNN will no longer change and the state con
verges to a stable equilibrium point, and vice versa. Due to the uniform local nature of the
interactions betweenthe cells of aCNN, thisnecessary andsufficientcondition is a single local
condition which must be satisfied for all cells in the array.

In general, even if there exists a binary output vector which satisfies (2), a CNN may not be
stable for all initial conditions norcan the state trajectories be easily predicted, short of simu
lating them. However, there exists aclass of single layer CNN which is stable regardless of the
symmetry of thecoefficients. In addition, for this class there is a simple explicit expression for
the map from inputandinitial conditions to steady state output.

Definition 1 A single layer CNN is saidto be inthe linear threshold class ifandonly if

A(a,/?) = 0 V(a,/9)^(0,0).

Thisdefinition prohibits anyinterconnections between thecellsofalinear threshold single layer
CNN, thereby considerably simplifying its dynamics. The state trajectories of the cellsdepend
only upon their own states and the external input. The corner detecting and edge detecting
CNNs of [2] are both in the linear threshold class.

For a linear threshold single layer CNN, (2) reduces to:

Vij = sgn (A(0,0) - !)&,- +£ B(a, fi)ui+aJ+0 +/
<**0

(3)

Analysis similar to that in [1] shows that assuming the input is constant, the right hand side



Figure 3: The function h(v) determines the contribution from the state of a linear threshold
single layer CNN to its derivative.

of this equation is exactly the map fromthe input andinitial conditions to steady stateoutput.
Partitioning the right hand sideof (1) intoa part, fc(v,,,), whichdepends uponvitjand a part, g,
which does not, the state equation of t>,j can be rewritten as

cir =h{Vi-j)+9
where

and

h(vitj) = --g +A(0,0)f(vitj)

9 = J2 B(Q' P)Ui+oj+0 +*
a,0

(4)

Figure 3 shows the graph of h(v).

In this case, g is constant. Figure 4 depicts the dynamic routes [11,12] for three characteristic
g values. If \g\ > A(0,0) - R~l > 0, then there exists only one equilibrium point for thecell.
Since this equilibrium point is globally asymptotically stable, the state of thecell settles to this
point. Ifgis positive, then the output ofthe cell is +1. In addition, since A(0,0) - R~l >0by
assumption, (A(0,0)-R'l)+g > -(A(0,0)-J*-l)+$f > 0.On the otherhand, ifg isnegative,
then the output of the cell is -1 and -(A(0,0) - R'1)+ g < (A(Q, 0) - R~l) + g < 0. If
|$| < A(0,0)-R~l9 then there exist two stable equilibrium points and one unstable equilibrium
point. If vitj < m'tyln-\, then the cell will settle to the stable equilibrium point which maps
to -1. Ifvtj > ™S*7ft» then the cell will settle tothe stable equilibrium point which maps
to 1. If Vij = ^Mjjfcfi-it then the initial condition lies exactly on the unstable equilibrium
point and theoretically, the output is equal to the initial condition for all time. However, in
practice, thermal noise will cause the the cell toeventually settle at one ofthe stable equilibrium
points, although we cannot tell which in advance. The case of \g\ = A(0,0) - R~x is also
somewhat problematic. In this case, there are two equilibrium points. One is stable while the
other isunstable. Theoretically, this case is identical tothe case where |#| < A(0,0) - Rr1.



Figure 4: The value of g determines the dynamic routes for a cell in the linear threshold layer,
(a) g < -(A(0,0) - RJ1). (b) \g\ < (A(0,0) - R^1). (c) g > (A(0,0) - Rjl).

However, in practice due to inevitable thermal noise, the trajectories will eventually approach
thestable equilibrium point. Fortunately, we willsee that for many applications inbinary image
processing, these twocases can beavoided. Ignoring these last twocases, thefollowing equation
summarizes the above results

lirny.\;W = sgn
t—oo

(A(0,0) - JT>)jfy(0) +£ B(a, 0)ui+a,Hf + J
<*,0

(5)

where |yf>i| < 1and yitj(0) = vitj(0) if \yitj\ < 1. The two problematic cases correspond to
situations in which the quantity inside the signum function is exactly zero and thus the right
hand side is undefined. Assuming g ^ 0, the analysis above also holds even if A(0,0) = R~l.
In this case, the ylo(0) term drops out and the steady state output of the cell depends solely on
the external input,

Theleft hand side of (5) is a signum function of an affine combination of theinput and the ini
tial condition of the output. This type of function iscommonly referred to as alinear threshold
function. Any boolean function which can be expressed inthis form must belinearly separable
by a hyperplane in thevariable space. Conversely, any boolean function of the input which is
linearly separable can beimplemented with aCNNsuch that thesignum function in (3) is well
defined (i.e., thequantity inside the signum isnever zero). See appendix. This fact implies that
any linearly separable boolean function of the input can be implemented using a CNN com
posed ofa single linear threshold layer. However, wecannot implement all linearly separable
boolean functions of the input and initial condition of the state as thecoefficient A(0,0) - i?"1
is constrained to be greater than orequal to zero.



Figure 5: The interconnections of a CNN are restricted to nearest neighbor couplings. This
figure illustrates the interconnections for acell in layer two of a three layerCNN.

In fact, the map (5) is exactly the same as the input/output map of the single layer perceptron
[13]. The limitations of the single layer perceptron were extensively studied in Minsky and
Papert's Perceptrons [14]. However, thecontinuous timedynamics and multiple layer capability
of CNNs extend the possible applications of CNNs beyond those of simple perceptrons. In
addition, this type of singlelayerCNN is only a small subset ofall possible single layerCNNs.

4. THE EXTENSION TO MULTIPLE LAYER CELLULAR NEURAL NETWORKS

As stated above, each cell of an L layer cellularneural network contains L capacitors and has
an associated L dimensional state vector. The output of the cell is also an L dimensional vector
where each component is the previously given piecewise-linear function of the corresponding
component of the state. The input can also be a vector, although for most applications so far
it has been a scalar. Thus, the coefficients C and R are L by L diagonal matrices of positive
coefficients. Each A(a, P) is alsoan L by L matrix,although not necessarily diagonal. B(a, P)
and J are L dimensional vectors. The treatment of the edge cells is completely analogous to
the single layer case, except that the imaginary boundary cells have vector valued output where
each element can be specified independently. This approach to multiple layer CNNs taken in
[2].

A completely equivalent way to view a multiple layer CNN is as an L by M by N array of
cells with scalar state variables. We adopt the latter interpretation as it simplifies the discussion
and is intuitively appealing as it emphasizes the grouping of the state variables into L layers
of M by N cells. Figure 5 illustrates the connectivity pattern of a single cell in layer 2 of a
three layer network with ro = 1. Often each layer will perform a different processing task. In
this interpretation, imaginary boundary cells with scalarvalued output are associated with each
layer. When dealing with multiple layer CNNs, cells andtheir states and outputs will be denoted
by Ck(iJ), Vk,i,j and y*,,,,-, where k e {1,... L} is the layernumber. We will generally drop
the subscript k for simplicity when dealing with single layer CNNs.

>ijtt/(a, P) denotes the fc, /-th element of the matrix A(a, p) which is the gain of the voltage
controlled current source linking the outputof Cj(i + a, j + p) to Ck(iJ). C*,Rk, andh are
the capacitance, resistance and bias current associated with each layer. Bk{a,P) denotes the
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&-th element of the vector £(a, p), which is the gain of the voltage controlled current source
linking the input associated withC(i + a, j + P) to Ck(i,j). Using the new notation, the state
equation governing the stateofCk(i,j) is:

c*%* =-t£*+E E^(«,*******+E A(«. />)**«,;+*+h (6)
This equation differs from that presented in [1] in that layers of higher index than k can affect
the dynamics of layer k. To ensure stability for multiple layer CNNs, Chua and Yang assumed
that layer k was connected only to the output of lower layers and that the coefficients were
symmetric within each layer. We change the definition to encompass the Radon Transforming
CNN presented here and theimage thinning CNN.

With this new notation, the previous results extend trivially tothe multiple layer case. Claim 1
can be applied to multiple layer CNNs by replacing (2) with(7),

Sktij = sgn[(AM(0,0)-^-)y\$ii+ £ Ak„{a,p)y^+a%M
/V* %er,/3?S*,0,0

+E Bk(<*> P)Ui+aj+0 +/*], (7)
a,0

forall&,t,j.

Although amultiple layer CNN cannot be in the linear threshold class, any layer ofamultiple
layer CNN can be.

Definition 2 The k-th layer ofamultiple layer CNN is in the linear threshold class ifand only

AM(a,0) = O V(a,/?)^(0,0).

This definition reduces to the previous definition in the single layer case.
Using multiple layer feedforward CNNs constructed oflinear threshold layers removes the re
striction to linearly separable boolean functions encountered by linear threshold single laver
CNNs. B y

Definition 3 ACNN is feedforward ifand only ifAktl = Ofor all k<l.
All multiple layer CNNsdefined in [1] are feedforward.

Assume all the layers ofafeedforward CNN with constant input are ofthe linear threshold class
such that 4*,*(0,0) = flf1 for all k> 1. The output of layer 1settles to aconstant given by
(5) since the input is constant. Once layer 1has settled, by the feedforward assumption the
input to layer 2is constant. Any initial conditions setup by the initial conditions of layer 2and
the effect of the transient response of layer 1are irrelevant to the final output of layer 2since
^2,2(0,0) =J?J by assumption. Iterating this argument for each successive layer, we see that
the steady state ofeach layer depends only upon the steady state outputs ofthe previous layers
and the input. Thus, the outputs of all the cells ofthe CNN depend only upon the input to
the CNN and the initial condition oflayer 1. Stability is guaranteed since the definitions ofa
feedforward CNN and alinear threshold layer rule out any feedback paths between the cells.
If in addition AM = Rj1, this type of CNN is equivalent to atwo dimensional array of feed
forward hidden layer neural networks [15] operating on the input to the CNN. A feedforward

- , -• -- • : ., -r= = 11



hidden layerneuralnetworkwith enough layers can implement any boolean function of its in
puts. Any boolean function of n variables can be decomposed into a sum of products of the
variables and their complements. The sums correspond to the boolean relation 'or' and the
products correspond to the boolean relation 'and'. It caneasilybeverified that each of theprod
ucts can be implemented using a singleperceptron. The output of all of these perceptrons can
be input to another perceptron which performs the summation.

5. THE RELATIONSHIP WITH CELLULAR AUTOMATA

5.1. Cellular Automata

Preston and Duff describe the theory and applications of cellular automata applied to image
processing in [3]. Much oftheirdiscussion assumes an architecture based on the CLIP4 machine
described by Duff and Fountain [4]. In CLIP4, each pixel in the image plane has a boolean
processing element (cell) associated with it. Each processing element is connected only to its
nearest neighbors. Although CLIP4 can process a 96 by 96 pixel image with 64 levels of gray
scale, the gray scale values must be held in memory external to the processing array. Preston
and Duff discuss primarily operations on binary images. In this case, the image can be held in
registers internal to the processor array. We discuss only the binary image processing case in
the following.

At each discrete time iteration, a supervising controller determines the computation to be per
formed by the processing array. Aside from steps for input and output of data, each iteration
consists essentially of two phases: a processing phase preceded by a propagation phase. In the
processing phase, all the cells' states are updated simultaneously. The value of the next state
of each cell is a boolean function of its current value and the inputs from its nearest neighbors.
This operation is referred to as a cellularlogic transform. The propagation phase establishes the
input values. The term, propagation, as used in [3,4] refers to the propagation of information
over the array. In the traditional definition of a cellular automata, each cell outputs its current
value to its neighbors. Preston and Duff refer to this as local propagation, as information is
only shared locally among nearest neighbor processors. Preston and Duff also allow for global
propagation. In this case, a cell will output a second signal to its neighbors based on the value
of its own state and whether it has received a similar signal from one of its neighbors. Infor
mation is 'propagated' globally throughout the array as the signal is passed from neighbor to
neighbor until a steady state is reached. For example, assume that the state of cells associated
with background pixels is 0 and the state of cells associated with image pixels is 1. If a cell
propagates a signal if it receives a propagation signal and its own value is 1, then a signal will
be propagated throughout a connected component in the image. Directional sensitivity can also
be added to the cell's input and output of the global propagation signal. This propagation phase
allows data to be passed over the entire array, overcoming some of the restrictions of the local
interconnectivity of the processing elements while preserving the nearest neighbor interaction.

The architecture of CLIP4 is very similar to that of the CNN. Both are composed of a two
dimensional array of simple processors connected only with nearest neighbors. In both cases,
the interaction between the neighboring elements is assumed to be uniform over the array. The
chief differences between CNNs and CA are that CNNs operate in continuous time and in a
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continuous state space, whileCA operate indiscrete timeand inadiscrete state space. However,
they can both operate onbinary images with binary input and output and processing involving
only nearest neighborinteractions. The natural question which arises iswhat types ofoperations
can be accomplished by both the CNN andCA.

52. Single Iteration Operations

Given enough layers, a CNN composed solely of linear threshold layers can implement any
boolean function of its input. Therefore, by taking the input of the CNN to be the image to be
transformed (the current state in the case ofCA), any single iteration CA operation involving
only localpropagationcanalso be accomplished by a CNNcomposedsolely oflinear threshold
layers. In particular, the logical convolution and binary mask matching operations of [3] can
be implemented with a linear threshold single layer CNN. To do this, set the B matrix equal to
the mask or the convolution kernel, set the current I equal to the negative of the corresponding
threshold, set A(0,0) = Rrl and set the inputequal to the image to be transformed.

This result can be extended to include global propagation. A CA cell will propagate a global
propagation signal based upon two factors: whether its current state is 1 or 0 and whether it has
received a propagation signal from one of its neighbors or not. Clearly, a propagation rule in
which a cell will propagate a signal if it has not received a propagation signal will not lead to
globalpropagation ofdata. In fact, a rule of this type essentially implements local propagation.
Global propagation over the array can only be accomplished by propagation rules in which a
cell propagates a signal if it has received a signal from one of its neighbors and some condition
on the value of the current state is satisfied. Thus, in this section we consider only rules of this
type.

In order to realize global propagation in a CNN, an additional layer is added to perform the
global propagation. The outputs of this layerare +1 if the cell is propagating a signal and —1
otherwise. The cellular logic transform is performed by a set of feedforward linear threshold
layers satisfying A^O,0) = Rj.1. Under these conditions, theoutputs of the linear threshold
layers will depend solely uponthe steady state of layer 1 (analogous to the propagation signal
from each cell) and the input (analogous to the current state of the CA for the case of single
iteration operations). This is clearly equivalent to global propagation of data in CA.

Since the other cases are quite similar, we discuss only the case where a cell will propagate a
signal if it hasreceived a signal andthe value ofits inputis +1. Consider the singlelayerCNN
defined by the following template:

A =

The coefficients have been normalized so that R = C = 1.0.

The analysis ofthe state trajectories forthisCNNturnsoutto be somewhatsimilarto theanalysis
for a linear threshold layer. The state equation of each cell is also given by (4). However, in
this case, g depends also on the outputs of othercells.

5 = 0.25 £ yi+aj+0 + 20.0ut|i - 18.0
or,0*O,O
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Note thatA(0,0) - R'1 = 0.25.

Consider cell C{i,j). If ultJ- = -\,g < -35.75 < -(A(0,0) - R~l) for all combinations of
nearest neighboroutputs. Thus, in steady state y,,y = -1. For uij = 1, g > A(0,0) - R-1 if
the output of at least oneof C(t, j) 's nearest neighbors is +1. If all of the outputs of C(i, j) 's
nearestneighbors are-1 then g = 0, andthe outputofthe CNN is equal to the initial output. If a
cell with an associated+1 input is initializedto+1, then the outputs ofits neighborswhich also
have an associated +1 input will be driven towards +1. In turn, the outputs of their neighbors
with associated +1 input will also be driven to+1. This provides the propagation.

There is one subtle point here. Even though a cell in the background directly adjacent to an
image component has -1 output in steady state, if initialized to +1 it might start propagation
through the adjacent image component due to the finite time required for the transition of its
output from+1 to -1. However,the CNN hasbeendesigned sothatthis transition is essentially
instantaneous compared to the time required to start propagation. In the worst case, a cell with
-f 1inputand-1 initial condition is surrounded by backgroundcellswith -1 inputand+1 initial
condition. The time derivative of the cell with+1 input decreases from 3.25 to a negative value
as the outputsof cells around it decrease from+1 to -1. The time derivatives of the cells with
-1 input in the 1-neighborhood of the cell with +1 input are always less than -36.25. Thus,
the outputs of the cells with -1 input decrease to -1 before the output cell with +1 input can
reach +1 and begin propagation. Thus, a cell will have +1 steady state output if and only if
it is associated with an image component and was either initialized to -f 1 or received a valid
propagation signal from a nearest neighbor.

This type of global propagation has beenused in the examplesofSection 6, as well as in a 'hole
filler' CNN [16] and a 'shadow detector' CNN [17]. One of the examples of Section 6 shows
how to incorporate directional sensitivityto the global propagation. Since bothlocalandglobal
propagation canbe implemented on a CNN, anysingle iteration CA operation consisting ofa
propagation phase(localor global) anda cellular logic transform can be accomplished witha
CNN.

5.3. Multiple Iteration Operations

Although the CNN can accomplish any single iteration CA operation, multiple iteration oper
ations are more difficult. If the operation requires a small number of iterations, CNN layers
designed to do each iteration canbe cascaded intoone large CNN on a single chip. To ensure
that the iterations are carried out sequentially, the capacitances ofeach layer are chosen sothat
thelayers corresponding tothe first iteration settle much faster than those corresponding tothe
second and so on. Some of the examples presented in Section 6 use this technique. However,
this is limited to operations with a small number of iterates since the capacitance and resis
tance values must be scaled to slow down the dynamics of progressive layers, leading quickly
tounpractically large capacitors and resistors for aVLSI chip. Alternatively, adigital controller
could start thelayers associated with each step of theCNN with theappropriate input and initial
conditions once thelayers associated withtheprevious step have settled. Inthis case, thelayers
associated with each step can be separated onto different chips.

For the rest of this section, we restrict the discussion to implementing CA whichcontinually it
erate the same cellular logic transform withonlylocal propagation. For aCA ofthistype,astate
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vector will be an equilibrium point if it is a fixed point of the boolean map governing the state
transitions. Due to the local interconnectivity of the CA, this condition is equivalent to a local
condition which must be satisfied at all cells in the array. For example, say the state transition
rule for cell (t, j) is s,j(<+1) = s(xi-ij(t), &,-,,(*), *<+i,i(<))» wheres(-) is aboolean function.
A state vector {xt|J} is anequilibrium point of theCA if andonly if a;,,,- = s(xi-\tj, x,j, Xi+iJ)
is satisfied at each cell of the array. Claim 1 showed that a similar condition for binary output
vectors holds for CNNs.

To emphasize the similarity with the CA case, consider the signum function in (7) to be aboolean
function since it maps {—1,1}" to {—1,1}. This equationprovidesa necessarycondition for a
CNN to execute aCA operation sincethe sameoutputvectors must be stablein both cases. Thus,
(7) provides a convenient starting point forconverting CA applications to CNN applications.

What if (7) is not satisfied for all fc, t, j? For a cellular automata the next state ofthe network is
given a boolean function of the current state. For a CNN, the continuous time/state dynamics
make the situation morecomplex. This is where the difficulty in designing cloning templates
for CNN's arises. However, we can obtain a weaker result.

Claim 2 Ifthe output vector y corresponding toastate vectorx does notsatisfy (7)forall fc, t, j,
then the state ofat least one the cells which does not satisfy (7) will enter the linear region of
thepiecewise-linear sigmoid outputfunction.

For a proof of this claim, see the appendix. Thus, the output states which do not satisfy (7)
for all fc, iy j are unstable. In fact, the proof of Claim 2 shows that for some time the states of
all the cells which do not satisfy (7) progress towards the linear region. Interestingly, a CA
implementation of thecorresponding signum function of theconnected component detector [8]
does settle to same steady state as the CNN for identical initial conditions. However, because
of the complex dynamical behavior associated with the continuous time/state dynamics of the
CNN, in general this signum function is not an approximate boolean function which the CNN
is implementing.

6. DESIGN EXAMPLES

6.1. Corner Extraction From a Noisy Image

This simple example uses the aboveresults to design a two layerCNN which extracts the cor
ners from a noisy image. In the process, we see exactly how the dynamical behavior of the
corner detecting CNN presented in [2] performs the desired processing, and how to use this
understanding theredesign thecorner detecting CNN sothat it can be incorporated intoamore
complex two layer CNN.

Consider the comer detecting CNN presented in [2]. Although the CNN easily detects the
corners of anoise free image, additive noise can result in false corner detection. For example,
Figure 6 shows the steady state output of the comer detecting CNN introduced in [2] when
presented with animageofthe letter'a' corrupted by Gaussian noise ofvariance 0.3. The noise
causes some corner pixels to bemissed and other pixels to be misclassified as corner pixels. It
would be helpful if the corner detection CNN could be combined the noise removal CNN also
presented in [2] to create atwo layer CNN which filters the image beforeextracting thecomers.
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Figure 6: The CNN presented in [2] must beredesigned todetect thecomers ofa noisy image,
(a)The originalnoisefree image, (b)The original imagecorrupted by zeromeanGaussiannoise
of variance 0.3. (c)The comersdetected using thecomerdetector of [2] on (a), (d)Thecomers
detected using the comer detector of [2] on (b). (e) The comers detected using the 'naively'
cascaded CNNs of [2] on (b). (f) The comers detected using the redesigned CNN on (b).
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One alternative is touse the noise removal CNN toremove thenoise from theinput image and
theninitialize the comerdetecting CNN to the steady state output of the noiseremoval CNN.
However, this operation requires an intermediate step in which the output must be read from
one chipand passed to another. Not only will this intermediate step take extratime, new noise
may be added to the image during this step and we have the same problem. A CNN which
simultaneously removes noise and extracts the corners would be more desirable.

If we proceeded rathernaively, we might cascade the noise removal CNN and corner detection
CNN presented in [2] by connecting the output of the noise removal layer to the input of the
corner detection layer andinitializing bothlayers to the same(noisy) image. The result of this
computationis shown inFigure 6. This CNN detects only thesame true comers that theprevious
one did, except for the comer associated with the tip of the serifof the 'a*. Adding the noise
removal layer has eliminated the false positives, buthas not solved the problem of the missed
comers.

Thestate equation ofthecomer detection cells sheds light onwhythetwoCNNs cannot simply
be cascaded as above. The cloning template of the corner detecting CNN is:

" -0.25 -0.25 -0.25
B= -0.25 2.0 -0;25

. -0.25 -0.25 -0.25

where R = C = 1.0. This CNN consists of a single linear threshold layer. Substituting the
actual parameters into (1) yields:

dvi 4 ——.C-jf- = vij +2.0f(vij) +2.0uiJ +0.2S £ u,+a>i+/3 - 3.0. (9)
ft.0*O,O

Since in the previous example the input of the CNN was connected to the output of the noise
removal layer, the input to the CNN is in fact time varying. Thus, the state trajectory of the
comer detection layer depends not only upon its own (noisy) initial conditions, butalso upon
the transient response of the noise removal layer.

Ideally, thecomer detection layer should operate onthesteady state output of thenoise removal
layer. The results of Sections 3 and 4 can completely characterize the processing taking place
and be used to redesign the CNN so that it will work properly when cascaded with the noise
removal CNN. Whenworking inisolation, thecorner detecting CNNis alinear threshold single
layer CNN with constant input. The input and initial conditions of theCNN are set equal tothe
input image, which is denoted by {/,,,}. Assume binary initial conditions and input. The map
from the input and the initial conditions tothe output steady state is explicitly given by (5):

Urn yitj(t) = sgnfoyfO) -I- 2.0u,-j + 0.2Sn_i - 0.25ni - 3.0]

where n_i and n\ are thenumbers ofneighbors inthe 1-neighborhood whose inputs are -1 and
+1respectively. Using the fact that Iitj = yitj(0) = uitjand n_i + ni = 8 simplifies the above
equation to

Mm yiJ(t) = sgn[(3.0/l(i - 3.0) + (2.0- 0.5n)].

where n is the number of neighbors of JlfJ which are +1. If Iifj = -1, then in steady state
yij = -1. If Iij = +1, then the steady state output of the CNN depends upon the sign of
(2.0-0.5ni). If n < 4, then lim,-«> yitj(t) = 1 since (2.0 - 0.5n) > 0. If nx > 4, then

A =

0.0 0.0 0.0

0.0 2.0 0.0

0.0 0.0 0.0
J = -3.0. (8)
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limt-oo yitj(t) = -1 since (2.0 - 0.5n) < 0. If n = 4, then (2.0 - 0.5n) = 0 and the
signum function is not defined. The state equation (9) shows that this is exactly one of the
problematic cases mentioned in Section 3. In this case, due to the inevitable thermal noise,
tink-n»yij(t) = -1. Summarizing, lim4_eoyu(t) = 1if and only if Jy = +1 and less than
five of7,-,/s neighbors are+1, otherwise lim,-,*, yu(t) = -1. Assuming that the CNN's initial
conditions and input are set equal to the image data, the steady state output of the CNN is a
simple linearly separable function of theimage data.

Using this fact, the cornerdetection layer can beredesigned so that the output depends only upon
the input to the CNN, independently ofthe initial conditions. Consider the following cloning
template.

"0.0 0.0 0.0 ] 1" -0.25 -0.25 -0.25 '
A= 0.0 1.0 0.0 B= -0.25 2.0 -0.25 I =-1.75.

. 0.0 0.0 0.0 J [ -0.25 -0.25 -0.25
Again R = C = 1.0. Substituting the above parameters into (5) yields:

timyitj(t) = sgn[2.0u,v, + 0.25n_, -0.25r*i - 1.75].

All ofthe dependence upon the initial conditions has been removed by setting A(0,0) = R~K
Further manipulating the above equation yields

finy«W = sgn[(10tty-2.0) +(2.25-0.5n)].

It can easily be verified that lim^c* yt|i(<) = 1if and only if C(i, j)'s input is +1 and less
than five ofC(i, j)'sneighbors' inputs are +1. In other words, given identical images, the two
CNNs will settie to the exact same steady state. The redesigned CNN has also eliminated the
problematic case where thermal noise was required to ensure the output settled to the desired
steady state.

Ifthe new comer detection layer is cascaded with the noise removal layer, the transient response
ofthe noise removal layer will still affect the state trajectory ofthe corner detection layer. How
ever, in steady state the output ofthe noise removal layer is constant. Afterthe transient response
ofthe noise removal layer has died out, the comer detection layer has constant input. The output
steady state ofthe comer detection layer is afunction only ofthis constant input, independent of
any initial conditions set up by the transient response ofthe noise removal layer. The new two
layer CNN settles to asteady state very close to the desired steady state. In fact, the pictures
differ only by the pixel associated with the tip ofserif ofthe V. That pixel has been removed
by the noise removal operation! This combined CNN has the additional advantage that only
thenoise removal layer need be initialized. Analysis similar to the above can also be used to
explain the processing of the edgedetection CNN [2].

6.2. Additional Examples

Equation (5) and the global propagation layer have been used to translate many other CA ap
plications presented in [3,4] to aCNN architecture. Here we present five examples ofCNNs
which:

1. Extract the holes in an image
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2. Extract objects containing holes

3. Extract objects larger than a 3x3 square

4. Extract objects containing specified image pixels

5. Compute theniinimal circumscribing octagonal convex hull

Below, the operation ofeach ofthese CNNs is described in detail by explaining the processing
performed by each layer. Each ofthese CNNs contains at least one global propagation layer
and possibly a linear threshold layer. The are all feedforward. Each linear threshold layer
satisfies Ak,k(0y0) = R^x so that its steady state depends only upon the steady state values
ofthe previous layers and the input Unless stated otherwise, the coefficients ofthe cloning
template have been normalized so that Rk = Ck = 1.0. Any zero elements of the cloning
template have been omitted and when possible, the matrices associated with the Ak„ and Bk
have been reduced to thelowest dimension possible.

In the following, assume that the background is 4-connected and that objects in the image are
8-connected. A region is 4-connected if each pixel in the region has one face in contact with
another pixel in the region. A region is 8-connected if each pixel in the region has one face or
comer in contact with another pixel in the region. This distinction between the connectivity of
the background and the connectivity ofthe image objects is necessary to ensure that the Jordan
curve theorem is satisfied.

Hole Extraction This CNN finds the holes in an input image. A hole for this application is
defined as a4-connected segment of background which is isolated from the edge ofthe image
plane by an 8-connected image component. This CNN has two layers. The image to be pro
cessed is presented as the input to the array. The cells oflayer 2whose steady state output is
+1 are associated with pixels contained inside the holes in the image. See Figure 7.
Layer 1fills in the background which is connected to the edge ofthe array using the global prop
agation described in Section 5. This layer is essentially the same as the hole filler ofMatsumoto,
Chua and Furukawa [16]. Cells in this layer are initialized to -1 but are +1 in steady state if
they have -1 input and share aface with another cell whose output is +1. To start propagation
from the edge ofthe array, the imaginary cells outside the boundary oflayer 1output aconstant
+1. Layer 2is alinear threshold layer which finds the pixels associated with cells whose input
and layer 1output are both -1, i.e., thepixels associated with the holes.

Hole Figure Extraction This CNN is similar to the previous one except itactually extracts the
objects which contain the holes in the image. This CNN is also atwo layer CNN. The image is
presented as the input to the CNN. The output oflayer2contains the objects in the image which
contain holes in their interior. See Figure 8.

In this case, both layers perform global propagation. Layer 1is exactly the same as above,
except the capacitors associated with this layer are much smaller than 1.0 so that its settling
time is much faster than that of layer 2. Layer 1is essentially in steady state for the entire
transient response oflayer 2. Layer 2is initialized to -1 and propagates a+1 signal through
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B - -1.0 I = -0.1

Aw-
-0.5 A,, - 1.0 B„ - -0.5 I - -0.5

2,2 2 2

(b)

Figure 7: Extraction of the holes in an image, (a) Sample input and output images, (b) The
CNN cloning template.
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Figure 8: Extraction of objects containing holes, (a) Sample input and output images, (b) The
CNN cloning template.
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Figure 9: Extraction of objects larger than a 3x3 pixel square, (a) Sample input and output
images, (b) The CNN cloning template.

image pixels associated with objectsnext to holes. To prevent propagation from the edges, the
imaginary cells outside the boundary of layer2 all outputa constant-1.

LargeObject Extraction This three layerCNN extractsthose figures in the input image whose
totalarea including holes contained in theirinterior contains a threeby three pixel square. The
imageis presented as the input to the CNN. The output of layer 3 contains the desired figures.
See Figure 9.

Layers 1 and 2 are global propagation layers and layer 3 is a linear threshold layer. Again
C\ < 1.0 so that the cells of layer 1 in the background adjacent to the edge settle to+1 steady
state output voltage during the initial moments of the transient response of layer 2. Layer 2
is initialized to —1 and its imaginary boundary cells output a constant —1. Propagation in
layer 2 is started from pixels at the center of 3x3 pixel squares contained in regions which
have not received a propagation signal in layer 1. Propagation is stopped at the boundary of
these regions. Layer 3 outputs the image pixels contained the the regions which received the
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Figure 10: Extraction of objects containing specified image pixels, (a) Sample input and output
images, (b) The CNN cloning template.

propagation signal in layer 2.

Specified Object Extraction Givenspecified image pixels, layer 3 ofthisthree layerCNN will
outputthe figures in the imagewhosetotal area including enclosedholescontains atleastone of
the specified image pixels. This CNN is also composed of two global propagation layers and a
linear threshold layer. However, unliketheprevious CNNs, someofthe information necessary
for processing is contained in the initial conditions of the array. The cells of layer 2 which
correspond to the specified image pixels are initialized to +1. The outputof layer 3 contains
objects of the imagewhich contain the pixelsspecified in layer2. See Figure 10.

Layer 1 is the same as the layer 1 of the previous examples. Again, C\ < 1.0 so that layer 1
settlesmuch faster than layer2, which subsequently propagates a signal through the unlabeled
regions of layer 1 containing a specified image pixel. To prevent propagation from the edges,
imaginary boundary cells for layer 2 output a constant -1. Layer3 is a linear threshold layer
which selects thoseimage pixels contained inside theregions receiving a propagation signal in
layer 2.
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Figure 11: Computation oftheminimal circumscribing octagonal convex hull, (a) Sample input
and output images, (b)The CNNcloning template.

Octagonal Hull Computation The output of layer 5 of this five layer CNN is the minimum
circumscribing convex set whose boundaries are restricted to lie parallel or at 45 degrees to
the coordinate axes. This CNN demonstrates the use of directional sensitivity in the global
propagation. See Figure 11.

Initial conditions of layer 1 through 4 are the image. Each of these layers propagates a signal
from the image in one of the four directions associated with the borders of the octagonal hull.
Toprevent signals propagating from the edges, the imaginary cells outside the boundary of the
array should all be -1. Layer 5 is a linear threshold layer which selects those pixels in the
intersection of the outputs of layers 1 through 4.
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Figure 12: (a) Forfixed values of po and #o theRadon Transform 7£(p0, #o) of an image 7(x, y)
is the line integral ofI(x, y) along line L. (b) Forfixed 80, thefunction 7l(p,90) is theprojection
of the image onto the line 9 = 9q.

6.3. A Radon Transforming CNN

Introduction Up to this point, linear threshold layers have been used as a means of working
around the effects of the continuous time/state dynamics. This example uses linear threshold
layers to produce a CNN whose operation depends critically upon the effects of the continuous
time dynamics of the CNN. The CNN described here computes one projection of the Radon
Transform of a binary image. For any given image, define I(x, y) to be the image intensity at
the point (x, y) in the image plane. The Radon Transform ofthe image is a function 1l(p, 6),
where p and 6 are polar coordinate variables. Forspecific values of po and 90, 7l(p0,90) is the
integral ofI(x, y) along the line which is perpendicular to the line $ = 90 and passes through
the point (p0,60). Thus, for fixed 60, the resulting one dimensional function V(p) = 7l(90, p)
is the projection ofthe image intensity onto the line 9 = 90. See Figure 12. Forbinary images,
the horizontal, vertical and diagonal projections are sufficient to compute the zeroth, first and
second moments of a region in a binary image. These moments can beused to find theposition
and orientation of that object [18].

The CNN template presented here finds the value of 7l(p,7r/2) for a binary image. In other
words, the CNN integrates the image intensity along the horizontal rows of the image plane.
To obtain the full Radon Transform, the image can berotated through all desired angles. The
output 7l(p, 7r/2) is presented as a histogram along the right hand side ofthe image plane.

An Infinitely Iterated Cellular Logic Transform In order to utilize the ideas presented in this
chapter, first consider one way to compute one projection of the Radon Transform of a dis-
cretized binary image using an infinitely iterated cellular logic transform. Since theprojection
operates on eachhorizontal line independently, to simplify the discussionconsider one horizon
tal line. For each pixel in the image plane, assign the value 1 to that pixel if it is in the image
and 0 otherwise. At each time step, image pixels which have a background pixel on their right
shift right. See Figure 13. In other words, the value of each pixel at time t + 1 is determined by
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r+1:

Figure 13: One iteration of the state transition rule which can compute one projection of the
Radon Transform of a binary image on a cellular automata. Image pixels with a background
pixel to their right at time i shift to the right in time t + 1.

1 c r c ,
t t t t+1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

Figure 14: The values which map to zero and one by the boolean function (10) are not separable
by a plane in (/, c, r) variable space

the following boolean function of the values at time t of the pixel (ct) and its left (lt) and right
(rt) neighbor pixels:

Ct+\ = ctrt-\- ltct. (10)

where ct is the complement ofct. The values of equation (10) are shown in graphical and tabular
form in Figure 14. The boundary conditions should be set up so that the cells on the left hand
side of the image plane have lt = 0 for all t and the cells on the right hand side have rt = 1
for all t. As time progresses, pixels continue shifting until they reach either the end of the row
in the image plane or another image pixel. In steady state, the pixels have all 'piled up' on the
right hand side of the image plane. Since the number of pixels in each row is preserved, the
resulting logical steady state is a histogram representation of the projection operation.

The CNN Cloning Template The CNN cloning template is shown in Figure 15 where Rk =
Ck = 1.0 for all k. Scaling the values to implementable values only changes the time scale of
the dynamics, but not the state trajectories. The CNN consists of three layers. The cells of the
layers 1 and 3 are initialized to -f 1 or -1 depending upon whether the corresponding pixel is in
the image or in the background. The cells of layer 2 are all initialized to —1. When the circuit
finally settles, the output states of layer 1 and layer 3 each contain the output histogram.
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Figure 15: The cloning template of the Radon Transforming CNN shows that it is composed
solely of linear threshold layers.

To see the similarity between the operation of the CNN circuit and the iterated cellular logic
transform, assume for the moment the state ofthe cells in layer 1is constant. Essentially, layers 2
and 3 compute the next logical state ofthe iterated cellular logic transform. Notice that all ofthe
layers are of the linear threshold class. Since the boolean function (10) is not linearly separable
in the (/, c, r) boolean variable space, one linear threshold layer is not sufficient to implement
this function. Based on the current state of layer 1, the cells whose outputs are +1 in layer 2
are those which correspond to pixels which should shift right in the next step of the iterated
cellular logic transform. The outputs of the other cells of layer 2 are —1. If the output of a cell
in layer 2 is +1, then the output of its corresponding cell in layer 3 is —1 and the output of the
cell to its right is +1. Otherwise the outputs of the cells of layer 3 remain equal to their initial
values. Thus, the output of layer 3 corresponds to the next logical state of the iterated cellular
logic transform. Note that the output of layer 2 and the initial conditions oflayer 3 are sufficient
to determine the next output of layer 3.

In actualoperation, the stateoflayer 1is not constant. The design ofthe A\$ coefficients ensures
that the outputs of layer 1 track the outputs of layer 3 with some delay due to the time constants
of the dynamics. In the circuit implementation, this delay is associated with the chargingand
discharging of the capacitors of layer 1. Heuristically, based upon the output of layer 1, the
output of layer 2 evolves toward the data required to update level 3. The output of layer 3
evolves toward the next logical state. Simultaneously, layer 1 evolves so that it reflects the
current state of layer 3 and so on.

This heuristic explanation might suggest a clocked operation. In fact, the layers operate asyn
chronously. As one layer updates the next, it will have some effect on its own state since the
network is not feedforward. However, each layer is 'insulated' from its own effect on the next
layer by a third layer. Each layer has the same time constant. The circuit works in a somewhat
clock-like manner due to the delays induced by the dynamics at each layer. These finite delays
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(a)

(b)

Figure 16: (a) Simulations of the Radon Transforming CNN indicate that it projects the image
intensity onto the vertical axis, (b) To obtain other projections ofthe Radon Transform, the input
image can berotated. Here the image has been rotated by 90 degrees to obtain the projection
onto the horizontal axis.

areessential to the correctoperation of this circuit.

Simulations of the circuit indicate that the circuit does settle to the desired steady state. See
Figure 16. It seems that passing the update information through a sequence of three layers
enables the circuit to preserve the total number of image pixels in the image. Although the
logic described above could beimplemented with only two layers, simulations run with only
two layers did not converge. A careful examination of the simulation results indicates that
the actual operation of the circuit cannot beapproximated by a clocked iterated cellular logic
transform. Although the operation does appear tomimic the operation ofaCAat the beginning
ofthe transient, toward the middle and end ofthe transient the pixels do not shift synchronously,
even in asingle row. SeeFigure 17. Since the shifting occurs only at therightmost end of each
horizontal connected component, synchronous shifting is not essential to the proper operation
of the circuit.

7. CONCLUSION

In this chapter, we have discussed a simple subclass of all the possible CNNs. Because the
state dynamics of these CNNs are so simple, we were able to derive an explicit map between
the input and initial conditions of the CNN to the steady state output. These results explain
how the dynamics perform the processing of some of the examples in [2]. This insight into
the operation of these CNNs has allowed us to redesign the corner detecting CNN of [2] to
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Figure 17: Although the Radon Transforming CNN has been developed using ideas from cel
lular automata, the CNN does not operate like aCA. Although pixels shift synchronously at the
start ofthe transient (a), as time progresses, the pixels shift asynchronously (b).

incorporate it into amore complex multi-layered CNN, as well as to design new binary image
processing applications for the CNN. The similarities between the architectures of CNNs and
CA have proved quite useful in designing new applications. In fact, we have shown that any
single iteration operation possible on a CA is also possible on a CNN. We also discuss the
extension ofthese results tomultiple iteration CA operations, although much work remains to
be done in this area. This paper has only described asmall subset ofthe possible CNNs, and
thus only asubset of the possible applications. Hopefully, the continuous time and continuous
state dynamics will enable the CNN to be applied to amuch richer class ofproblems.
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Figure 18: A + B is linearly separable, while A = £ is not.

APPENDIX

A Linearly Separable Boolean Functions and Multiple Layer Networks

For our purposes, we can view aboolean function ofnvariables, /, as amapping from {0,1}"
to {0,1}. In other words, / assigns a value of either zero or one to each vector of zeros and
ones. Ifwe interpret {0,1}" as asubset of£", / is linearly separable ifand only ifthere exists
avector a e £n and aconstant b€ » such that the following two inequalities are satisfied:

(a,x) > b Vx € {x € {0,1}" | /(x) = 1} (11)
(a,x)<6 Vx€{x6{0,l}"|/(x) = 0}. (12)

Geometrically, alinearly separable boolean function is afunction for which all the points which
map to 1lie on or to one side of an n- 1dimensional hypeiplane in ft" and all the points which
map to0 lie on the other side ofthe hypeiplane. For example, in two dimensions the function
A+ B is linearly separable while the function A= B is not. See Figure (18). In particular,
examination ofFigure 14 reveals that the boolean function (10) is not linearly separable.
If/ is linearly separable, we can always find avector£and aconstantS, such that the inequalities
in (11) and (12) are strict. To see this, assume that aand &satisfy (11) and (12). Take 6 =
min{fc - (a,x) | x € {0, l}n,/(x) = 0}. This minimum is greater than zero since it is the
minimum ofafinite set ofpositive numbers. The vector a=aand constant S= b- \6 satisfy
(11) and (12) with strict inequality. In other words, for any x € {0, l}n, (a, x) - 8^ 0. Thus,
any boolean function which is linearly separable can be implemented using signum functions
like those in equations (2),(5), and (7).

B Proofs of Claims 1 and 2

ProofofClaim 1

First assume that (2) is satisfied for all i,j. Define for each i,j
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*<J = R' E A(<*> fi^i+aj+fi +E B(<*> P)Ui+«J+P +* (13)

Clearly, v = {u^} will be an equilibrium point if fo = f(i>ij) for all t,/. Consider the case
where ylfi = 1. Then from (2),

(A(0,0) - R-l)yitj + E *(«. /%+«.;+/* +E *("> /*K+«.i+0 +* >0

Adding R'ly%j to bothsides yields

E A(a, W.+«,i+/J +E *(*> fl"**,*/* +' >*''fci

Multiplying through by R and noting that ft,,- = 1, we see that tyj > 1, i.e. f(vitj) = yf<i.
The case of yitj = -1 is proved similarly. Thus, f(vitj) = yt|i is true for all ij and v is the
associated equilibrium point.

Now take any binary outputvector, $, associated with anequilibrium pointv of the CNN. Then
the following equation must be satisfied for alli, j.

o= - jr!«w + E *(«.W.+«,i+/j+E *(«. ««*..**+J

Assume that&,, = 1. In this case, t)lfJ- > 1,which implies

o< -R'^ij +E M<*> 0)yi+a,j+0 +E *(«. ««*..** +*

The same statement holds for ytJ- = —1with the inequality reversed. Theequality is strict by
assumption andthe combination of the two statements results in (2).

To show asymptotic stability we must show that for each v = {v,ti} as defined in (13), there
exists ap > 0 such that for all v0 € B(v,p) = {v | ||v - vjj < />} the state trajectory
starting at v0 approaches v asymptotically. For this proof, we define ||v|| = maxij{\vij\}.
This definition is notrestrictive, since all norms on a finite dimensional Euclidean space are
topologically equivalent. Set p = miny{|0w - ft,;|}. This is well defined and greater than
zero as it is the minimumovera finite set of of numbers which are greater than zero since the
quantity in (2) is well defined. Essentially, we have chosen ourneighborhood such that all the
states are operating inthe saturated region of output nonlinearity. Now take any v0 € £(v, p)
and consider the state trajectory starting atv<>. Thestate of cellC(i, j) evolves according tothe
following ordinary differentialequation:

Cl ^ U.0 ot0 J
The quantity inbraces is the constant R~lvitj. Thus viti approaches v4,,- asymptotically for all
ij, implying that v approaches v asymptotically.

ProofofClaim 2

For consistency of notation with the proof of Claim 1, we prove Claim 2 for the single layer
case. The proof carries over to themultiple layer case by a slight change in notation.
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Since (2) is not satisfied for all i,j, there exists aset {i„, jJjjLi for which (2) is not satisfied.
U is the number of states for which (2) is not satisfied. As long as the output state of the
network isequal toJ,thecells ofthe networkevolve according to(14). However, for all (ij) e
{*n> i»J!£=i» the quantity in braces is less than one when vitj is greater than or equal toone (since
fa is equal to one) and greater than -1 when vitj is less than orequal to -1. Thus, in some
finite time the state ofone ofthe cells C(t, j) such that (t, j) e {t„, jiJi^i will enter the linear
region. It will notimmediately return to the saturated region since the quantity in braces is a
continuous function of theoutput of thenetwork and thus willremain close toitsoriginal value.
Once the state of some of the cells have entered thelinear region, the dynamics become much
more complex.
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