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Abstract

Oveisampled sigma-delta modulators are finding widespread use
in audio and other signal processing applications, due to their simple
structure and robustness against circuit imperfections. Exact analyses
of the system arecomplicated by the presence of a nonlinear element
— a one-bit quantizer. The response of most researchers who have
studied the system analytically has been to linearize the system and
apply standard linear theory, but this approach in general does not
yield correct results.

In this paper we apply theory from the field ofnonlinear dynamics
to provide an analytical description of thebehavior of the single-loop
modulator with leaky integrators. Integrator leak is inevitable in any
practical circuit implementation due to finite op amp gain. The re
sults obtained allow us to discuss in quantitative rather than quali
tative terms the robustness of the sigma-delta system to this circuit
imperfection.

•This work is supported in part by the Office of Naval Research under Grant N00014-
89-J-1402

fThe authors are with the Department of Electrical Engineering and Computer Science,
University of California, Berkeley, CA 94720,USA



I Introduction

Oversampled sigma-delta (E-A) modulation [1] has attracted much inter

est sinceit was first proposed almost twenty years ago, and the technique is

now finding widespread usein audio andother signal processing applications.

The basis of this method of analog-to-digital conversion is the exchange of
amplitude resolution for time resolution. By operating at sampling rates well

abovethe Nyquist rate, the number of quantization levels used to represent

the signal can be reduced. A major advantage of the E—A modulator lies

in its simple structure and its robustness against circuit imperfections and

component matching inaccuracy. In the simplest oversampled E—A modu

lator — the single-loop E—A system — a one bit quantizer is used together
with a discrete-time integrator inside a feedback loop. This basic structure

can be modified by adding more feedback loops or increasing the number

of quantization levels. Since such modifications increase the complexity of
the system and often giverise to instability, the most commonly used E—A

structures are the single- and double- (feedback) loop modulators.

Despite the simplestructure of the modulator, exact analyses of even the

single-loop system are highly non-trivial, due to the presence of a nonlinear

element — a one-bit quantizer — in the feedback loop. Many researchers

have approached the problem by linearizing the nonlinearity, thus allowing
standard linear theory to be applied. The results thus obtained, however, in
general do not yield correct quantitative or evenqualitative results.

Oneimportant feature of E—A modulation is the appearance of periodic
behavior, or limit cycles, in the output bit stream. Candy emphasised the
importance of this point by proposing the E—A system in a paper entitled
"A use of limit cycle oscillations to obtain robust analog-to-digital convert
ers*'[1]. As a result of this oscillatory behavior, the quantization noise of



the single-loop system is not white, but rather contains discrete spikes at

frequencies depending on the input. This "patternnoise" canbe particularly

objectionable in audio applications. Higher order systems suffer from this

problem to a lesser extent than does the single-loop system.

Circuit designers have found the performance of the E—A modulator to

be insensitive to the presence of circuit imperfections. To date, however,

no attempt has been made to study in a rigorous analytical way the effect

of such imperfections. In this paper we focus on the effect of imperfect

integration. We confine our study to the single-loop system because, as well

as being widely used [2,3], the single-loop systemismore amenable to analysis
than higher order modulators. Integrator leak is inevitable in any practical

realization of the modulator, due to finite op-amp gain. By deriving exact
analytical descriptions of the effect of such leak on the behavior of the system,

we can discuss in quantitative rather than qualitative terms the robustness

of the system.

We approach the problem using techniques from the theory of nonlinear

dynamics — in particular the field of symbolic dynamics [4]. With ideal
integrators and constant input, the output of the system (when averaged
over a "long enough" time period) equals the input. When integrator leak
is taken into consideration, however, the input vs. average output plot is no

longer linear, but rather has a fractal "staircase" structure. The resolution of

the modulator is limited by the width and displacement of these steps. The
results of our theoretical analysis are shown to agree exactly with computer
simulations.

Section II contains a description of the ideal E—A system. In Section

III the effect of integrator leak is included, and using graphical techniques
some qualitative features of the behavior of the system are derived. Section



IV contains the key equation which will be used to test for the existence of a

limit cycle, while Section V gives an algorithm, based on theEuclid algorithm
from number theory, to generate the structure of the limit cycles. Finally, in
Section VI thesetechniques are used to derive the input-output characteristic

of the system, and the implications of these findings are discussed. Proofs of
all lemmas and theorems are contained in the Appendix.

II Ideal Single-Loop System

The structure of the single-loop E—A modulator is as shown in Figure 1.

Figure 1

The only nonlinearity in the modulator is a one-bit quantizer whose out
put is 1 when its input is > 0; -1 when its input is negative. Since the
use of a one-bit quantizer implies minimal amplitude resolution, the system
operates at a sampling rate many times higher than the Nyquist rate. In

essence, time resolution is traded for amplitude resolution.

We will assume throughout this paper that the input to the modulator
is constant. Although this condition is rarely met in practice, the very high
sampling rate means that a time-varying input can be approximated by a dc
levelover relatively large time intervals.

The quantizer, together with a discrete-time integrator, operates in a
feedback loop as shown. If the integrator is ideal, its dc gain is infinite and
so the feedback connection forces the average value of the output to equal
the dc input x. The analog level can be retrieved by averaging the output
bit stream.



Assuming an ideal integrator and constant input ar, this system is de
scribed by the first-order difference equation

Wn+i = tin + x - sgn(un) (1)

The quantizer output is represented symbolically throughout this paper
by 1 (+1) and 0 (—1). The case of quantizer output ±A can be analyzed
using a scale change and results in no qualitative change in the behavior of
the system.

This ideal single-loop system has been studied by Friedman [5] and Gray
[6,7]. They have shown that for rational input the output bit stream is peri
odic, the average over a complete period being equal to x. With an irrational

input to the modulator the output is quasiperiodic. From the perspective of
dynamical system theory these results are an immediate consequence of the
fact that for states un which lie in the interval [g(x - 1), g(x +1)) the differ
ence equation (1) is topologically conjugate to the well-knowntranslation of
the circle

0n+i = (9n + k)mod 2ff (2)

As a model of a real E- A modulator this system is inadequate, since
any slight perturbation will produce a qualitative change in the dynamics.
A better model of the circuit is required — one which includes the effect of
circuit nonidealities.

Ill E—A System with Leaky Integrators

One major approximation made in modeling the single-loop system by (1)
is that the integrator is ideal. In any practical implementation of the mod
ulator, of course, circuit nonidealities will result in leaky integration [8], as
represented in Figure 2.



Figure 2

Taking integrator leak into account in the ideal single-loop E—A system,
we get. the more complete description

t*n+i = pun + g(x - sgn(un)) (3)

Clearly when p = g = 1 this reduces to the ideal case (1). In practice
finite op-amp gain will mean that p is less than 1, while capacitor mismatch
causes g to differ from 1.

As long as p - 1, the map (3) on the interval \g(x - l),g{x + 1)) is still
topologically conjugate to the translation of the circle (regardless of g) so
the qualitative features described in Section II still hold. If p > 1, we have
the possibility of chaotic behavior. Since practical considerations cause p to
be less than 1, this is the case which will be studied here. The input x will
be assumed to lie in the range (-1,1). [If x > 1 (resp. < -1) the output
bit stream will eventually be fixed at 1 (resp. 0).] The 1-d map u„ -* un+1
given by (3) takes the form shown in Figure 3.

Figure 3

Since this graph does not intersect the identity line id(u) = it, there are
no fixed points. Since p < 1,any trajectory {u,} will eventually reside in the

region g(x - 1) < u,- < ^(a: + 1). For this reason, we confine our attention to

the restricted map / : \g(x - l),g(x + 1)) -• \g(x - l),g(x + 1)) plotted in
Figure 4.

Figure 4

To locate limit cycles of / we must study the graph of the n-fold com

position fn — in particular the intersection of this graph with the identity



line. The following lemmas, proven in the Appendix, describe the structure

of/".

Lemma 1: fn : \g(x - l),g(x + 1)) -♦ \g(x - l),g(x + 1)) is one-to-one,
where fn(u) = /o/o/o---o f(u) [n times].

Lemma 2: Let Dn be the set of points in \g(x - l),g(x + 1)) where fn is
discontinuous. Then Dn = Dn-i U{u > g(x —1) | /n_1(u) = 0}.

Lemma 3: The graph of fn consists ofat most n+1 straight linesegments,
each of slope pn.

Lemma 4: For each n > 1 there exists u* e [g(x - l),g(x -hi)) such that
/ : [ti-,u- + 2g) -^ [g(x - l),g(x + 1)) given by

f(u\ = l /nW ifw*<u<(7(x + l)
JK } \fn(u-2g) iig(x + l)<u<x* + 2g

is monotone increasing.

Lemma 5: If /n(0) < 0 or /n(0") > 0 / has no limit cycle of period n.

Using these lemmas, we derive the following theorem, also proven in the
Appendix.

Theorem 6: Let N be the least positive integer such that fN(0) > 0 and
/^(O") < 0. 1 f has a globally asymptotically stable limit cycle of least
period JV.

Several key facts follow immediately from this theorem.

1. Theorem 6 gives two inequalitiesin x and p which must be satisfied if a

period N limitcycle is to exist. Since our interest is in the dependence

1/(*-)=Hm/(x-€)
€—0
e>0



of the limit cycles on the dc input x for fixed p, we can restate these
inequalities in the form xmin <x< a:max.

Example: A period-2 limit cycle exists ifff(g(x-l)) > 0and f(g(x -h 1)) < 0,
i.e. iff

P + l~ p+1

There are two possibilities for the period-3 limit cycles:

Case 1: x > (-p + 1)1(p + 1). A period-3 limit cycleexists hereiff

g_Z£±±<x<l£±P+±

Case 2: x < (p - l)/(p +1). A period-3 limit cycle exists here iff

tjilzl <x<zt+lzl

2. One could proceed in this fashion to locate all limit cycles of anyperiod
N. An equivalent but more efficient method will be given in Section V.

3. In the ideal single-loop E-A system each limit cycle could exist for a

fixed value of x only; the average value of the output over a complete
limit cycle being equal to a;. In the non-ideal case we see that each limit

cycle can exist over a range ofx values, introducing error between input
and output which depends on the integrator leak factor (1 —p).

4. Alllimit cycles are globally asymptotically stable — i.e. if a limit cycle
exists for a particular a;, all trajectories will converge to it, regardless
of initial condition. As a consequence of this fact we can say that for
fixed x and p there can exist at most one limit cycle.

8



5. Convergence to the limit cycle is asymptotic in the state space, the

spacein which we have studied the 1-d map. In the E—A system, how

ever, the output is not the state u,- but sgn(ui), which takes the values

±1 (represented symbolically by 1 and 0). From the above results we

know that if / has a limit cycle of period JV, the graph of fN consists

of N linear segments each of slope pF. It is proven in Lemma 7 of the

Appendix that the fcth iterate under / of any of the intervals of conti

nuity of /N, for any k > 1, will lie in either [0, g(x +1)) or [g(x -1), 0).
It follows that anytwostates lying onone of these N segments will give
exactly the same sequence of zeros and ones at the quantizer output.

In other words, although the quantizer input converges asymptotically

to the limit cycle, the quantizer output begins its limit cycle as soon

as the state Ui enters the region [g(x - l),g(x -h 1)).

IV Tsypkin's method

In Section III the 1-d map of (3) was used to derive certain properties of
the limit cycles in the leaky E-A system. Our goal is now to derive the

dependence of these limit cycles on the dc input x. This can be done using
the inequalities of Section III, but the computation is time consuming. In
this section and the next, we derive a more efficient procedure based on
techniques from number theory.

If a limitcycle of period N exists in the single-loop E—A system, wecan
sum equation (3) over the limit cycle to find the condition

a a N+k'1
Uk =T^x- tz^n £ ^+*"1"1'*S"W (4)

x * x P as*

for 1< k < N. We can use this equation to check for the existence ofa given



limit cycle, following the procedure:

1. substitute the assumed bit sequence for the sgn terms in (4);

2. calculate the resulting sequence of states t*,- in terms of a:, g, and p;

3. impose the conditions that these N u,- [quantizer inputs] must be of
such polarities as to give the assumed bit sequence at the quantizer
output;

4. calculate the range of possible values for x from the N inequalities in
step 3.

This is the basis of Tsypkin's method in relay control theory [9]. As an
example, let us derive the range of x values which result in the period-2 limit
cycle 10 at the quantizer output.

1. substitute in (4) the conditions sgn(ui) = 1, sgn(u2) = —1;

2. calculate u\, u2:

tii = 9 x -—(p-1)1-p l-p*KP '
u2 = -£-*-—S—(-p+i)

l—p 1 —p2 '

3. assign appropriate polarities:

T^-^-7^-r(p-l) > 0
1-p 1-p2 '

9 *-r^(-P+i) < ol - p l - p2

4. calculate the range of possible x values from step 3:

. > F^
i-p

X <

1+p

10



The necessary and sufficient condition for the existence of the limit cycle

10 is that the dc input lie in the range [jgji, i=f). Once again, this method of
analysis is exact, but is not useful in any comprehensive study as the amount
of labor required to test all possible limit cycles is excessive.

V Euclid algorithm

In [10] Hein and Zakhor show how the limit cycles in the ideal single-loop
E—A system are obtained by stepping through the tree of transition points
shown in Figure 5.

Figure 5

To find the limit cycle corresponding to a rational dc input x we start at

the top level by comparing x with 0 and setting the initial trajectory to 10.
If x > 0 we follow the right branch; otherwise we follow the left branch. We

continue through the treein this fashion, adding 1 (resp. 0) to ourtrajectory

each time we take the right (resp. left) branch. If at somelevelthe transition

point hit is equal to x, we stop, having found thelimit cycle. The limit cycle
corresponding to x = £, for example, is 10101.

In fact, following the method outlined in Section III would yield exactly
such a tree for the nonideal case, with the transition points replaced by
transition intervals whose bounds are functions of p. It can be shown in this

manner that the limit cycles which appear at the output of the leaky E-A
modulator are precisely those which appear in the ideal modulator. This

statement will not be proven at this point, as it will fall out as a natural

consequence of later analysis.

In [5], Friedman shows that the limit cycles which appear at the output
of the ideal single-loop E-A modulator with constant rational input x can

11



be obtained by applying a particular form of the Euclid algorithm to the
continued fraction expansion ofx. These limitcycles havethe property that

the zeros and ones are distributed as uniformly as possible in the output bit
stream. The difference between x and the average output as calculated over

N successive bits is minimal — when the average is taken over a complete
limit cycle this difference is zero. It is reasonable to begin our study of the
leaky single-loop structure by determining which of these limit cycles will
persist if p is decreased below 1. For reasons which will become clear later

we will use the following slightly modified form of the Euclid algorithm.

Algorithm: To find the limit cycle with a ones and (6 —a) zeros

(i) Form the continued fraction expansion ofa/b

tti +

Or2 +

<*3 +
1

•• + —

This fraction will be denoted [aa,a2,...,an] for convenience. Note that the
expansion is notunique: [aua2,..., an] and [au a2,...,a„-l, 1] correspond
to the same fraction. By disallowing expansions with final coefficient equal
to one we remove this ambiguity.

(ii) Define

So = 0

Si = lfO)01"1

Sit = Sft-afSb-O0*

12



S„ = Sn_2(Sn_1)a»

where (Sj)°k consists of the block Sj repeated a* times, and the a,- are the

coefficients of the continued fraction expansion.

Note that at each stage of the iteration the sequence S* is the shortest

possible sequence of zeros and ones where the fraction of ones present is
[c*i, a2,..., afc]. The zeros and ones are distributed as uniformly as possible
throughout each S*.

The sequences derived using this algorithm are identical to those derived
by any other of the many possible forms of the Euclid algorithm, modulo a
barrel shift. [A barrel shift is a shift with wraparound, so abode is a barrel
shifted version ofdeabc. Whenever we use the word shift we shall be referring
to a barrel shift.] Applying this algorithm to any of Friedman's examples,
for example, gives a shifted version ofthe sequences obtained by his method.

As in [5], S„ is the limit cycle at the output of the ideal single-loop system
with constant input x = 2a/b - 1. This value comes from the fact that a 1

(resp. 0) bit output corresponds to an analog value of 1 (resp. -1). The
average value over the limit cycle, so, equals a~(^"a). Since the ideal system
has infinite dc gain in the forward path, this limit cycle can exist only when
a: = 2a/b - 1

For convenience, given the bit sequence S = (su *2,..., sN) we define the
corresponding sequence V = (vls v2,..., vn) by

f 1 if 5, = 1
Vi~\ -1 if* =0

Before presenting an example of this algorithm, wedefine two moreterms

which will be ofuse later. In describing a limit cycle, a shift is clearly ofno

13



consequence. For reasons which will become apparent later, however, the

particular version of the limit cycle produced by this algorithm (as opposed
to any other version of the Euclid algorithm) is indeed significant. This
motivates the following definitions:

For n even we term S„ the R-sequence corresponding to Sn. The first
two bits of S„ in this case are 01. Interchanging these two bits gives the
L-sequence of S„. For n odd Sn begins with the bits 10 — we term this

the L-sequence of Sn and obtain the R-sequence by interchanging the first
two bits. It is proven in Lemma 8 of the Appendix that the L-sequence is a
shifted version of the R-sequence.

Example: To find the limit cycle with 24 ones and 31 zeros:

(i) Find the continued fraction expansion of 24/55, which is [2,3,2,3].

(ii) Calculate the S,-:

S0: 0

Sx : 10

S2 : 0101010

S3: 1001010100101010

S4: 0101010100101010010101010010101001010101001010100101010

S4 is the required limit cycle.

(iii) The R-sequence of 24/55 is S4. The L-sequence of 24/55 is

1001010100101010^10101010010101001010101001010100101010

Note that this is identical to the R-sequence if we shift the underlined

bit into first place. Lemma 8 through Corollary 13 of the Appendix prove

14



various properties of these sequences which will be of use in proving our main

theorems.

VI Derivation of x Bounds

Using the algorithm of Section V it is possible to determine all limit cycles

which occur in the ideal single-loop system with constant input. In order to

determine whether or not these limit cycles occur in theleaky system, we ap
ply the Tsypkin-type approach outlined inSection IVto S = (sx, s2,..., sN)
or, equivalents, V = (vuv2,...,vN). (Remember that *,- € {0,1} and
Vi e {-1,1}.) Restating (4) for this case, we find that the limit cycle S
(or V) can occur at the output only when

PN-1+pN-2-r...-rl >X~ p"-»+j>*-* +... +1 (5)
where kx and k2 (both < N) are chosen subject to the constraint v^ = -1
and Ufcj = 1. The denominators of both bounds in (5) are clearly the same:
they are just the (N - l)-th order polynomial inp with all coefficients equal
to one. We term this lN(p). To find the greatest lower bound on the range
of inputs which gives rise to the limit cycle S (or V) it is necessary to find
the shift k2 of V which maximizes the polynomial

subject to the constraint Vk* = 1. Call this maximal polynomial /(p). The
least upper bound is produced by finding the shift of V which minimizes the
polynomial

15



subject to the constraint v^ = -1. Call this rninimal polynomial r(p).
The bounds on x, so, are derived by finding the appropriate shifts of S

which produce r(p) and /(p). In fact it turns out that these shifts are those

given by the R- and L-sequences. Theorem 14 of the Appendix proves that
the L-sequence gives l(p) — the proof for r(p) is identical.

Theorem 14: Given S = (sus2i..., sN) (or, equivalehtly, V = (vu v2,..., vN))
and L = (s*,...,$*_i) the L-sequence of S. There exists no k such that

s-k = I and
AH-ife-l # N+fc-l

for any p,0 < p < 1.

Any limit cycle S obtained by the Euclidalgorithm can exist in the leaky

system iff l(p) < r(p), where, by Theorem 14, the coefficients of l(p) (resp.

r(p)) are given by the L-sequence (resp. R-sequence) of S. That this is
always true follows from the fact that the L- and R-sequences are identical

in all positions except the first two.

r(p) ~KP) =̂ .f'^'pl!>0 for p6(0,1) (6)
Thus any limit cycle which can exist at the output of the ideal S —A

system can also exist at the output of the leaky system. Figure 6 shows the

dependence of the average output over a limit cycle on the dc input x for
p = 0.8.

Figure 6

The plot was obtained bychoosing 20000 dcinput values uniformly spaced

in the interval [-1,1]. The form of the graph is that of the well known

16



devil's staircase [11], the qualitative form being replicated at varying levels

of resolution. The staircase contains a step at average output q, where q is

any rational number in the range (-1,1). From(6) it is clear that the width

of the steps corresponding to limit cycles with period N decreases with N.

The widest step is that corresponding to the limit cycle 01 (average output

0) and the next widest are those corresponding to limit cycles 101 (average
value |) and 100 (average value -|). Figure 7 shows the 27 widest steps
predicted by the analysis of Section V for p = 0.8.

Figure 7

The correspondence between theory and simulation is clear. (6) also
predicts that the width of the steps decreases as p approaches 1. Figure 8
shows the staircase for p = 0.99.

Figure 8

Figure 9 shows the locations of the 27 widest 6teps for varying x and p.

Figure 9

At p = 1, as expected, the widths of all steps shrink to zero, and the
"steps" are just the rational numbers. The difference between input and
average output is seen to be due to two features — the non-zero step width,
and the divergence ofthe step centers from their ideal values. Figure 10 shows
the resultant input-error plot for p=0.99 (the same value as in Figure 8).

Figure 10

17



One minor point to note is that the steps of the staircase can be taken to

be the closed intervals [xrain, a?max] instead of the half-open intervals [xmim xmax)
defined byour analysis. This is clear from study ofthe1-d map. Atx = xmas,
the graph of fN takes the form shown in Figure 11.

Figure 11

There are no fixed points, but the trajectories of fN converge to the
virtual fixed pointsat the rightmost endofeach segment, giving at the output

the same limit cycle that would be observed for any x inside the half-open
interval.

Finally, it was claimed earlier that the limit cycles derived using the Eu

clid algorithmare the onlylimitcycles that canappear. This is a consequence

of the following theorem, proven in the Appendix.

Theorem 15: The complement C of the projection onto the x-axis of the

devil's staircase has measure zero.

Assume another limit-cycle exists — one not given by the Euclid algo

rithm. Since all limit cycles are globally asymptotically stable, the a; values

which give rise to this limit cycle must lie in C. But both the 1-d map

approach and the Tsypkin approach tell us that any limit cycle that exists

in the system will persist over an interval of x values. Since C contains no

intervals, this new limit cycle cannot exist.

Theorem 15 indicates another major difference between the limit cycle
behavior of the leaky system and that of the ideal system. In the ideal

modulator, where p = 1, the set of inputs in the range (—1,1) which give
rise to limit cycles at the output has measure zero. If p > 1, however, the

complement of this set has measure zero. In other words, if p = 1 almost

18



no [in the probabilistic sense] inputs give rise to limit cycles, but as soon

as p is decreased below 1 almost all inputs give rise to limit cycles. This

qualitative changein behavior is a consequence of the fact that /, viewed as

a map on the circle, changes from a continuous map to a discontinuous one

as p decreases below 1.

VII Conclusions

The method presented in the paper allows us to determine exactly the effect
of integrator leak on the performance of the single loop E—A modulator with
dc input. These effects can be summarized as follows:

1. Each limit cycle that can appear at the output of the ideal modulator

can appear in the leaky system. The difference is that each limit cycle
persists over a range of inputs in the nonideal case.

2. Almost all [in the probabilistic sense] dc inputs give rise to a limit
cycle at the quantizer output. That is, if a: is chosen from a uniform

distribution on (-1,1), the probability that this input gives rise to a
limit cycle is 1.

3. The input versus average output characteristic takes the form of the

well-known devil's staircase. Only when the input is 0, 1 or —1 will the
average value of the output equal the input. For all other inputs the
finite dc gain of the integrators leads to a divergence between average
output and input. From Figure 9 we see that this difference is due to

two features: non-zero step width and divergence of steps from their
ideal (p = 1) locations.

19



4. For p close to 1, a Taylor series truncation can be used to show that

the error due to step divergence is approximately ±(1—p)x for | x |<
1—2(1 —p). This explains theunderlying trend of the graph of Figure
10. This error could easily be removed by introducing a gain in the
decoder.

5. No decoder could remove the error, due to non-zero step width. The

consequent loss of resolution is a highly nonlinear function of the input.

The greatest loss of resolution occurs in the neighborhood of the ratio

nal numbers with lowest denominators (after the affine transformation

described earlier). Around the dc input level 0, for example, the range
of inputs [-(1 - p)/(l + p), (1 - p)/(l + p)] will all give rise to the

same limit cycle at the output. Near dc input J, all inputs in therange

[(P2 -P+ l)/(^ +P+ 1M-P2+P+ IJAp2 +p+1)] produce the same
limit cycle. The width of each of these uncertainty intervals is, for p
close to 1, approximately 2pN-2(l-p)/N1 where N is the period of the
limit cycle.

6. The capacitormismatch factor g has no significant effect on the behav

ior described in this paper. The integrator leak is the crucial quantity.

We havenot discussed in this paper the effect of the oversampling ratio,

but our results could easily be modified to takethis intoaccount. Assuming a
simple averaging decoder, one can derive bounds on the input versus average

output plot wherethe average is now taken overM bits instead of a complete

limit cycle. In this way, circuit designers can quantify the trade-off between

oversampling ratio and op amp gain.
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A Appendix

Lemma 1: fn : [g(x - l),g(x + 1)) -* \g(x - l),g{x + 1)) is one-to-one,
where fn(u) = /o/o/o.-.o f(u) [n times].

Proof: Follows immediately from the fact that / is one-to-one.

Lemma 2: Let Dn be the set of points in (g(x —l),g(x + 1)) where fn is
discontinuous. Then Dn = Dn-X U{u > g(x - 1) | /""^(li) = 0}.

Proof: If fn~l is discontinuous at u, fn is also discontinuous at it. Thus

2>„_i C Dn. If /n_1(w) equals zero and u > g(x - 1), fn is discontinuous at
u. Thus £>„_! U{u > g(x - 1) | fn'l(u) = 0} C Dn.

Iffn-i is continuous at uand / is continuous at /n_1(u), fn is continuous
at u. Thus Dn C D„_i U{w > ^(x - 1) | fn-l{u) = 0}, and the lemma is
proven.

Lemma 3: The graph of fn consists of at most n+1 straight line segments,
each of slope pn.

Proof: By induction.

The statement clearly holds for n = 1.
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Assume the statement is true for n = k, so Dk has at most ib points.
Then Dk+i ( = Dk U{u > g(x - 1) | /*(«) = 0}) has at most k+ 1 points,
by Lemma 1. These points divide the domain of fk+l into at most k + 2

intervals. On each of these intervals /* is a continuous affine linear function

ofslope p* whose image does not include the origin. It follows that on each
ofthese intervals /*+1 = / ofk is a continuous affine linear function ofslope
p*+1.

Lemma 4: For each n > 1 there exists u*"€ [g(x - l),^(a: +.1)) such that
/ : [u%u* + 2$) -♦ [g(x - 1),$(* + 1)) given by

/M =J /n(u) ifti" <«<*(*+ 1)
• M; \/n(^-2flr) if5r(x + l) <u<u* + 2^

is monotone increasing.

Proof: By induction.

The statement is clearly true for n = 1, with um = 0. Assume it holds for

n = k.

CASE 1: Im(fk) C IR+ ( resp. Et"). Since / is monotone increasing on IR+
(resp. IR~), the property will hold for /*+1 with ul+i = u*k.

CASE 2: Im(fk) includes both positive and negative values. Say

( < 0 for g (x —1) < u < u
fk(u) I > 0 for it < u< um

[ <0 for um <u<g(x + l)
(The only other possibility, where the zero crossing of /* lies to the right of
um, is similar.)

Clearly /*+1 is increasing on each of [g (x-1), u), [w, um) and [w*, g (x+1)).
fk+1 is increasing at um since /fc((w")") > 0 and fk(um) < 0. Also, since

22



fk(g(x-l)) > fk(g(x+l)~) and both are negative we have fk+l(g(x-l)) >
fk+1(g(x + 1)"). Thus the property holds in this case also.

Lemma 5: If /n(0) < 0 or /n(0") > 0 / has no limit cycle of period n.

Proof: CASE 1: 0 g 7m(/n-1). In this case (by the proof of Lemma

3) the graph of / contains at most n straight line segments, each of slope
pn < 1. For / to have a limit cycle ofminimum period n, it is necessary that
the identity line id(u) = u intersect the graph of fn n times. However, if
/n(0) < 0 (respectively /n(0~) > 0), the segment of this graph immediately
to the right (resp. left) of the origin cannot intersect the identity line, so
there can be at most n —1 intersections and therefore no period n limit
cycle.

CASE 2: There exists u such that fn"l(u) = 0.

If u = g(x —1) the graph offn has at most n segments so, as in case 1,
there is no limit cycle of period n.

If u j> g(x - 1) then fn(u) = g{x - 1), fn(u~) = g(x + 1). In this
situation clearly neither the segment of the graph immediately to the right
nor that immediately to theleft of ucan intersect the identity line. Since two
of the possible n+ 1 segments are now known not to intersect the identity
line, there can be no limitcycle of period n.

Theorem 6: Let N be the least positive integer such that fN{0) > 0 and
fN(0~) <0. / has aglobally asymptotically stable limit cycle of least period
N.

Proof: Since N is the least positive integer satisfying the conditions, / has
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no limit cycle of period less than N.

fN(0)>0=> fN-l(g(x-l))>0

fN(0-)<0=* fN-\g(x+ 1))<0

It follows from the proof of Lemma 4 that the graph of fN is monotone

increasing on \g(x —l),g (x + 1)). Since

*(*-1) </"(*(*-1))</N(<T)<0

and / is monotone increasing on [g(x —1),0), there must be at least one

intersection point in [g(x - 1),0) where u = fN(u). Since / has no limit

cycleof period less than JV, there must be N such points and so / has a limit

cycleof period N. Global asymptotic stability follows immediately from the

form of the graph of fN.

Lemma 7: Given that / has a limit cycle of minimum period N, take the

kth iterate under / (where k is any positive integer) of any of the intervals of

continuity offN. The result is aninterval ineither [0, g(x+l)) or fe(ar-l),0).

Proof: By our previous results, (i) the graph of fN consists of N affine linear

segments, each of slope pN; (ii) fN(0) > 0 and /N(0") < 0; and (iii) fN is
monotone increasing on \g(x- l),g{x +1)). Thus the graph of fk for ib > N
consists of N affine linear segments, none of which can intersect the u-axis.

This proves the lemma for k> N.

Suppose that for some k < N theimage under /* ofone ofourN intervals
contains the origin at a non-boundary point. fN will then be discontinuous

at some non-boundary point of this interval, which is not possible. This

proves the lemma.
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Lemma 8: For k > 1, the sequence 5* obtained by interchanging the first

two bits of Sk is a shifted version of 5*.

Proof: Sk = Sjfe-2 (S*-i)0fc, so if we can show that the sequences 5jfe_2 Sk-i

and Sk-i 5fc-2 are identical but for the reversal of the first two bits then the

lemma is proven. We will proceed by induction.

Assume sequence 5,_2 5,_i is obtained from 5,_i 5,-2 by reversal of the

first two bits. Then S,-_i 5,- = S,-_i 5,_2 (5,-1)°", which is (by our assump

tion) identical to 5<_2 Si-i (5i_i)ai in all positions except the first two. But

5j_2 S;-i (5,-i)ai is Si5,--i-. Thus, since it is clear that 5i 52 and 52 Si are

identical inallpositions except thefirst two, it has been shown that sequences
5fc_2 Sk-i and 5*_i 5fc_2, for k > 2, are obtained from each other by reversal
of the first two bits.

The lemma as stated follows from this fact. Sk = 5*._2 (Sk-i)ah for Jb > 2,
so Sk-i Sk-2 (5fc_i)°*-1 is a shifted version of 5*. But Sk-i 5fc_2 (5jfe.1)or*-1
is obtained from 5fc_2 5fc_! (5/fc_i)°fc-1 (= Sk) by changing the first two bits,
proving the lemma. The case where ib = 1 is trivial.

Lemma 9: Given a subsequence r of 5jb+i, of length less than 7fc, the length
of 5jb. r is a subsequence of Sk. [Note: All inclusions are modulo a shift.]

Sk+i = 5fc_i (5jt)0fc+i. Clearly ifr is a subsequence of (5fc)a*+i it is a subse
quence of 5fc. Therefore we need only consider those r contained in

Sk Sk-i Sk = 5*_2 (Sk-i)a" Sk-i 5fc_2 (5*.!)°*.

We want to show that such an r is a subsequence of 5fc_2 (5jfe-i)°*. This is
trivial for all r which do not intersect all (ak + 1) of the Sk-i in the longest
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£*_! block. There are three cases to be considered:

(i) Sk.i(Sk.1)'"-Sk.1
r

(This notation signifies that the subsequence r is the concatenation of a
block from the end of 5*_2, ak Sk-i blocks and a block from the start of

5*-!.) Since the length of r is less than /*, and k = arfk-i + /*-2» r does not
contain the first two elements of 5fc_2- Thus r is also given by

5fc_15fc_2(5fc_1)**-15*._1,
r

by Lemma 8. This r is clearly a subsequence of 5*.

(ii) 5fc-1(5fc-1)«*-15*_1
r

Again by Lemma 8, r is also given by

5jb_15*-2(5*-1)or*-15fc-1,
r

so it is a subsequence of 5*.

(iii) Sk-i (Sk-i)*" 5fc_2.
r

Since the length of r is less than /*, r is given by

5fc-2(5Jfe.1)tt*5fc_2,
r

which is contained in 5*.
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Corollary 10: Given a subsequence r of Sk+i of length Ik, where the first

bit of r is the same as that of 5*. r is a shifted version of 5*.

Proof: It is easy to see, by induction, that for ib > 1, the first two bits of

Sk are of opposite sign. With this information, the proof of the corollary is
identical to that of Lemma 9, except for case (i), where we say "Since r has
length Iky and r has the same first bit as Sk (and therefore 5fc_2 )? r does
not contain thefirst two elements of5fe-.2 ", and case (iii), where we say
"Since r has length Ik w.

Lemma 11: Given r,rm subsequences ofSk of the same length.
Let Zr denotethe total number ofzeros in r, and Zr* denotethe total number
of zeros in r*.

Then | ZT - ZP. |< 1.

Proof: By induction. Thestatement is clearly true for ib = 1,2. Assume it
holds for k < i - 1. Recall 5,- = 5,_2 (5i-i)°<

If r has length less than /,-_i, Lemma 9 and the inductive assumption
imply | Zr - ZT. |< 1.

Otherwise, if r and r* are both subsets of (5(_1)aS the inductive assump
tion again implies \ Zr - Zr. |< 1.

Finally, suppose r is of the form

^Jt1 •••<^»'-1 ^»'-2 ^»'-i»»• 5 ,-_i
° Wta r b bits

(Once again, this notation signifies that r is the concatenation of the last
(/,_! - a) bits of 5t_a, a number of 5.-.J blocks, 5t_2, a number of S^ blocks
and the first (/,_, - b) bits of 5,^.) Since we have proven the lemma for the
case where r and r* are subsets of (5|_i)% we will use Lemma 8 to remove
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the 5i_2 term from consideration. If a ^ 1 and b^ 7,_2 - 1, Zr = Z?, where
f is given by

w5t,T2 5t_i... 5,-i = 5,-i... 5,-i if a ^ 1
a f 6 f

or ^5jrl5t-1...5t-2 -* 5^==L.^5»-i if 6^ /<-2 - 1
° f 6 r

It follows that the lemma holds if neither r nor r* has a = 1 and b = /,-_2 —1.

The only remaining case is that where r or r* is of the form

5i_i... 5,-_i 5,-«2 5j_i... 5 ,•_^ f i

In this case the length of r is M Z,_i. If 5;_2 begins with 0, ZT = Af Zs-^ +1;

if 5,_2 begins with 1, ZT = M ZSi.x - 1. But if 5,_2 begins with 0 Zr. is

either M Zs^ + 1 or M Zs^x. Similarly, if 5,_2 begins with 1 Zr. is either

AT ^5,.! —1 or M Zsi_x. The lemma holds in this case also.

Lemma 12: Given Sk with first element 1. No shift of Sk which keeps a 1

in the first position can move the zeros to a higher position. That is, if

ZShx,...r

denotes the number of zeros in positions 1 through r of 5*, there exists no

shift 5fc" of Sk beginning with 1 such that

ZSk{,...r > ZSkl,...r

for some r.

Proof: By induction. The statement holds for k = 1, 2. Assume it holds

for k < i —2. By Corollary 10, the first /,»2 bits of 5,- are a shifted version
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of S;_2. Thus to maximize the cumulative zero count over the first /,—2 bits

we must shift 5,- so that the first /,-3 bits are precisely 5<_3 (unshifted).
[This follows from the inductive assumption.] Lemma 8, together with the

inductive assumption, imply that our opening 5,-2 block must be followed

by an 5,-3 block. Since 5,- = 5,-2(5,-3(5M)°»-1)°«, the optimal shift is of
the form

5,-2 (5,-3 (5,-2)ai-1)^ 5,-2 (5,-3 (5,-2)^ r*-0-1 (5,-3 (5.-2)0'--1).

[Here we have used the fact that 5,-2 (5,-3(5,-2)0,-l)0< contains no "hidden"
5,-2 5*-3 blocks —this is aconsequence ofLemma 8.] It follows immediately,
since 5,-2 begins with a 1 and 5,-3 with a 0, that our optimal shift is given
by fi = a,-, i.e. the optimal shift is just 5,-.

One point remains to be mentioned, concerning the existence of an opti
mal shift. Suppose

zsklt„.r < zsi^r
but

zSki....t > zs-hl_t

— if this situation is possible there maynot be an optimal shift. Lemma 11
guarantees that this cannot happen, since in the above case

^fcr+l,...t - z5.r+i t=Z5fcli.., - Zsil t- Z5fcl_ +zstl r

>1 + 1,

contradicting Lemma 11.

Corollary 13: Given Sk with first element 0. ByLemma 8, the sequence Lk
obtained from Sk bychanging the first two bits is ashifted version ofSk. Lk
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is the shift of Sk which maximizes the cumulative zero total while keeping a
1 in the first position. That is, if

ZLkl,...r

denotes the number of zeros in positions 1 through r of £*, there exists no
shift Lk* of Lk beginning with 1 such that

Z^l„.r > zLklt.„r

for some r.

Proof: The existence ofan optimal shift is proven exactly as in Lemma 12.
ByCorollary 10 and Lemma 12 the optimal shift of Lk must begin with an
5jb_i block. By Lemmas 8 and 12, this Sk-i block must be followed by an
5fc-2 block. Since Lk = Sk-i Sk-2 ^-i)0*-1 the optimal shift is just Lk.

Theorem 14: Given 5 = (sus2y..., sN) (or, equivalently, V = (vu u2,..., vN))
and L = (s*,...,Sfc_i) the L-sequence of 5. There exists no ib such that
sk = 1 and

N+k-l . N+k-l

i=k «'=*

for any p,0 < p< 1.

Proof: Case 1: si = 1, so L = 5.

Let 5* be a shifted version of 5 with sj = 1. Let pi be the first element
where 5 and 5* differ, i.e.

Si = 5* if i < Hi

suLs* i£i = ni
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By Lemma 12 sm = 0 and s*t = 1. Let \i2 be the next element where 5
and 5* differ. By Lemma 11 s„2 = 1 and sj2 = 0.

£ J>"~' v,- - £**"' v? = 2pN-^ (l - p«-Mi) > o for 0 < p < 1
t=i «=i

Continue in this manner to enumerate all elements where 5 and S* differ.

By Lemma 12

stn = ° *£, = 1 for zodd

By Lemma 11

5w = 1 5Mt- = 0 for i even

Since 5* is a shifted version of5, the totalnumber ofsuch m is even, so
we can treat themin pairs. Considering the ^,-, /i,+1 pair, for i odd, we find

E J>Ar~,,*>.- E PN-'v,-=2p;v-^(l-p«^-w)>0 for0<p<l
i=/i,_1+1 ts/ii.^1

Summing over all such pairs yields a positive quantity, so the theorem
holds in this case.

Case 2: sa = 0, so L= 5 with the first two bits reversed. By Corollary 13,
L is the shift of 5 which maximizes the cumulative zero count. The proof is
from then on identical to that of Case 1.

Theorem 15: The complement C of the projection onto the x-axis of the
devil's staircase described in Section VI has measure zero.

Proof: The proof will consist of three stages. First we will derive an upper
bound on the length of the complementary intervals at each stage of the
formation of the devil's staircase. Then we will derive an upper bound on
the number of such intervals. Finally we will show that the sum of the lengths
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of these intervals tends to zero as the staircase is filled in. One minor point
to note is that we will consider the y-axis to represent not average output
but the fraction of ones in the limit-cycle. This is permissible as the two

quantities are related by an affine linear transformation. When we refer to

thestep "corresponding to rational number a™ we mean thestep representing
the limit cycle where the fraction of ones present is q.

Step 1: Define Bn to be the projection onto the ar-axis of the steps of the

staircase corresponding to rational numbers with denominator less than or

equal to N. Let Cn be the complement of this set in (—1,1) — clearly
Cn consists of a number of intervals and Cn Q Cjv-i. We will prove

that the length of each of these intervals is bounded above by the quantity

2p"-1/(p"-1 + ... + p+l).

Using the theory of Farey fractions [4, Ch 4], we know that if a and b
are rational numbers corresponding to neighboring steps of Bn then their

continued fraction expansions are of one of the following two forms:

«= ^ =[<*i»- ...tt„] and 6=-p =[ai,...,o„ +l] or

<*= j1= [<*i,...,<*n] and 6= j-= [ai,...,a„ - 1,2]
with da + db > N.

The length of the interval betweensteps a and b (with 6> a) is

h(p) ra(p) = /6(p).ldo(p) -ra(p).ldb(p)
UW Ufa) l4.(j>).U(p)

h(p)>lda(p) is a polynomial in poforder da+db - 2; thecoefficient of pk being

for da > dt,:

the sum of the coefficients of p° through p* in /&(p) for 0 < ib < a\ —1

the sum of the coefficients of p*-^1 through pib~1 in lb{p)
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for da < k < da + dh - 2

the sum of all coefficients in h(p) ior db < ib < da —1

for da < di,:

the sum of the coefficients of p° through p* in fc(p) for 0 < ib < da —1

the sum of the coefficients of pfc-<*»+1 through p^6-1 in /&(p)

for db - 1 < k < da + dh - 2

the sum of the coefficients ofp*-***1 through p* in lb(p) ioida<k<db-2

There are five cases to be considered:

(i) *= [on,..., an] < b= [au..., an + 1] (n even; 5n_2 begins with 01)

ra(p) has coefficients 5n_2(5„_i)°n

lb(p) has coefficients 5n_2(5n_1)°»5n_1 with the first two bits reversed

Since 5n_15n_2 isobtained from 5n_25n-i byreversing thefirst two bits, the
coefficients of h(p).lda(p) and ra(p).ld6(p) are identical in all positions except
the first. It follows that

h(p) _ ra(p) _ 2p*»+<**-2 2pda+rffc-2 2p^-x
UW U(P) " 1*(P).1*,(P) " lda+rffc-i(p) ^ Iat(p)

(ii) a = [au...,an + 1] < b= [au...,a„] (n odd; 5„_2 begins with 10)

ra(p) has coefficients 5n-2(5„_i)a"»5n_1 with the first two bits reversed
h(p) has coefficients 5n_2(5„_1)an
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By the argument of case (i), we find

U(P) U(p) "*"Mp)

(iii) a= [«!,..., a„] <6= [an,..., an -1,2] (n odd; 5n_2 begins with 10)

ra(p) has coefficients 5n_2(5n_i)ar» with the first two bits reversed

lb{p) has coefficients 5n-15n-2(5n-1)0~-15n_2(5n-1)0»-1 with the first two
bits reversed

By the argument of case (i), we find once again

Mp) r°(p) =...<2pn"1

(iv) a = [au..., a„ - 1,2] < b= [ai,..., an] (n even; 5„_2 begins with 01)

ra(p) has coefficients 5n_15n_2(5n_1)a"»-15n_2(5„-i)0»-1 with the first two
bits reversed

h(p) has coefficients 5n_2(5n_i)°" with the first two bits reversed

By the argument of case (i), we find once again

U(p) U(p) " 1n(p)

(v) Finally, it is easily seen that the outermost intervals of Cn have length
(2?A'-i)/(yv-» + ...+i).

Step 2: At stage m ofthe formation ofthestaircase thenumber ofsteps added
is at most m —1 (i.e. those steps corresponding to the rational numbers with

denominators < m). The total number of steps at stage N is, therefore, less
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than or equal to N(N —l)/2. If follows that the total number of intervals of

Cn is at most N(N - l)/2 -I-1.

Step 3: The total length of Cn is less than or equal to

which tends to zero as N tends to infinity, since p < 1. For any e > 0, in

other words, there exists a covering of C by intervals with total length less
than e. C, therefore, has measure zero.
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