
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BEAR-FP Manual

Distribution 1.0

by

Massoud Pedram

Wei-Ming Dai
Margaret Marek-Sadowska
George Carvalho, Jnr.
Deborah Wang
Benjamin Chen

Memorandum No. UCB/ERL M90/118

December 20,1990

BEAR-FP Manual

Distribution 1.0

by

Massoud Pedram

Wei-Ming Dai
Margaret Marek-Sadowska

George Carvalho, Jnr.
Deborah Wang
Benjamin Chen

Memorandum No. UCB/ERL M90/118

December 20,1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BEAR-FP Manual

Distribution 1.0

by

Massoud Pedram

Wei-Ming Dai
Margaret Marek-Sadowska

George Carvalho, Jnr.
Deborah Wang
Benjamin Chen

Memorandum No. UCB/ERL M90/118

December 20,1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BEAR-FP Manual

Table of Contents

1

3

4

6

Introduction

I. Installation and User Interface

A. General Information

B. Getting Started 4
C. User Interface

o

D. Sample Layout °
II. Hierarchical Floorplanning with Integrated Pin Assignment and Global Routing

A. Clustering 20
B. Floorplanning ^
C. Global Routing 25
D. Channel Pin Arrangement 26
E. Shape Optimization 26

III. Routing

A. Overview ofthe Routing Process 29
B. The Global Router 30
C. Global Spacing 33
D. Iteractive Detailed Routing 33
E. Automatic Detailed Routing 36
F. Ring Route 36
G. Wire Widths Sizing 36

Appendix 1. Input/Output Format Specifications 33
Appendix 2. OCT Interface 56
Appendix 3. XDefaults 60
Appendix 4. Partial Summary of Commands 63
Appendix 5. Bugs 69
References 70

BEAR-FP Manual Introduction

Introduction

BEAR-FP is a macrocell-based layout system which builds on its predecessor, the BEAR sys
tem [1]. it uses BEAR's dynamic and efficient data representation, which unifies topological and
geometrical information, and BEAR's routing system. BEAR-FP, however, has a new floorplanning
procedure with integrated global routing and hierarchical pin assignment a new Steiner-tree global
router, a detailed channel pin arrangement procedure, and a timing-driven clustering and place
ment capability. BEAR-FP supports traditional macro-cell layout with routing channels as well as
channel-free layout style.

The guiding principle of BEAR-FP is that of stepwise refinement, which implies that the
geometrical positions and interface characteristics (shape and pin locations) of cells are deter
mined gradually and in a top-down fashion. For example, the positions of floating pins on cells are
initially determined based on minimizing total wire length in the chip. These positions are later
modified to honor channel capacity constraints at a minimal increase in wire length. Before
detailed routing, the pin positions within a channel can be changed to minimize the routing density.
As another example, the shapes of flexible cells aredetermined during the top-down floorplanning.
These shapes can be further optimized after global routing (when more detailed information about
connection paths exist).

BEAR-FP provides a complete pipeline from a net list specification of a circuit to a finished
layout. The user specifies various physical, timing and clustering constraints, controls the order
that various optimization tools are invoked and sets parameters to control the outcomes of these
procedures. BEAR-FP addresses the issue of performance optimization by including a scheme for
timing-driven layout that spans the entire layout process, i.e., the net-based timing constraints
influence the clustering, floorplanning, pin assignment andglobal routing steps.

BEAR-FP can be used for "early" floorplanning as well. In this mode, it does a quick floorplan
ning whose results can be used to guide the logic synthesis procedure by giving the logic design
tools information about the interface characteristics (shape and pin distribution) of the blocks and
about how the physical design process can impact the timing on certain critical paths ofthe logic.

This manual describes the BEAR-FP system in three sections. In section 1, installation
instructions and a detailed explanation of the user interface are given, as well as a step-by-step
example to help users get started. Clustering, floorplanning, pin assignment, and shape optimiza
tion are described in Section II. Although this part of the system is fully automated, the set of
parameters and graphic display features provided allow the user to tailor the results to suit their
individual needs. In Section III, routing and spacing processes are discussed. While we provide a
set of operations (or mechanisms), users have the freedom to choose when and how to apply
them. The appendices contain descriptions of the various data files BEAR-FP relieson.

BEAR-FP Manual Introduction

BEAR-FP runs on workstations which support the X-window system (currently X11, release
4). Users may customize the colors, font styles, and other parameters by setting the X defaults file
(Appendix 3). The BEAR-FP system has been integrated into the OCT framework (Appendix 2).

Acknowledgements

We are indebted to Professor Ernest Kuh for his guidance and support of our work on this
project. In addition to those mentioned in the references, we wish to thank Tim Collins, Sangjin
Hong, Denis Lee, and June Wang, who helped write and debug the C code. We are also grateful
to Tahani Sticpewich for compiling this manual and for accommodating our frequent changes and
last-minute corrections.

BEAR-FP Manual I- Installation and User Interface

I. Installation and User Interface

A. General Information

1. Hardware requirements.

• Disk Space: about 40 megabytes of disk space is required to compile the system on
Digital's DECstation 3100.

2. Software requirements.

• X-Window System, version 11, release 4.

• UNIX operating system. The system has been tested on Ultrix Worksystem V2.1, Rev.
14.

• C compiler: cc. The system has not been tested using gcc.

• Optional: OCT library.

BEAR-FP Manual

B. Getting Started

/. Installation and User Interface

This section of the manual gives step-by-step instructions to help you get BEAR-FP up and
running on your system.

1. Reading from the tape.

BEAR-FP is stored in the tar format so it can be read by any UNIX-like system. The blocking
factor of the tape record is 20, which should be the default on most systems. At any rate, this
parameter is already determined when reading in the tapes. To get BEAR-FP onto your system,
you should do the following:

a. Load the tape into your tape drive so that it is ready for reading. Be sure the write-protect
mechanism on the tape is activated to avoid accidental erasure of media.

b. Make a directory where BEAR-FP will reside. A typical command might be:

% mkdir /users/bear

This directory will be the one used for the rest of this guide.

c. Now you are ready to read from the tape.

% tar x /users/bear

This process will take a while depending on how fast your system is, so be patient.

d. When the prompt returns, the taping has been finished. Type

%cd /users/bear/BearFP_1.0_Tape/src

and then

%ls

to list the source directories that should be present:

Include globalSpacer placer
Installed grEditor polarBear
Unt gtGraph polarBearTest
Object iv rectSlice

bbl Interface list ringRouter
bearGrUtils localRouter routeDB

bearMM localSpacer St

bearMisc localVia textio

bfplnterface mac tileMapping
cluster magInterface tileProp
cpa misll tiles

BEAR-FP Manual '• Installation andUser Interface

entrap newC topChDecomposer
ezPlot newG ts
fpg newP uprintf
geoChDecomposer octlnterface utility
globalRouter pgRoute utiis

2. Compiling BEAR-FP.

To compile the system, some variables must be set describing the environment in which
BEAR-FP resides. Also, a few local directories must be installed before proceeding to compile
BEAR-FP.

a. The main Makefile must be edited to match the system. This file resides in
/users/bear/BearFP_1.0_Jape. You can use your favorite editor to do accomplish this task.
Find the place in the Makefilewhere you see:

BEARJDIR=/users/bear/BearFP_1.0_Tape

This specifies where the BEAR-FP system resides. In this case, the default directory matches
thedirectory previously recreated. If thedefault differed then /users/bear would be replaced by
the directoryspecified by the initial mkdlr command.

b. Indicate where the X11 libraries are located byfilling in the makefile variable X11 R4JJB_DIR.

c. Indicate where the X11 header files are located by filling in the makefile variable
X11R4JFLAGS.

d. Quit the editor. Be sure you are in the BEAR-FP directory. In this case, it is
/users/bear/BearFP_1.0_Tape. Now type:

% make Install

Thisdirective installs the directories necessary to support the BEAR-FP compilation and coding
environment, and then compiles all of the libraries, support modules, and BEAR-FP modules
and links them together. Note that the default configuration will contain the new placement
package, and that the runnable program called polarBear will reside in
/users/bear/BearFP_1.0_Tape/bin. If changes are made to the BEAR-FP code, the BEAR-FP
modules can be recompiled and linked by typing make debugbear

BEAR-FP Manual I. Installation and User Interface

C. User Interface

BEAR-FP's user interface is based on the X-Window System, and employs various types of
windows to converse with the user and display the status of the program. The console window is
the main window from which commands are issued. Chip windows graphically display the status
and characteristics of the current layout example. And interactive variable windows (IV) allow the
user to modify various parameters of the program.

1. The console window.

The console window of BEAR-FP is the main area from which the user directs program
action. Commands are specified in the UNIX tradition. Each command consists of a command
name followed by an optional listof arguments usually preceded by a'-'. Each command that has
optional arguments recognizes the -help option which causes a small summary of all the com
mand options to be printed out in the console window. (See appendix listing of available com
mands.) For primitive editing, a few simple key strokes have been defined. The last word of text
on a command line can be deleted by typing control-w fW), while the entire line may be deleted
with a control-u f U). The consolewindow may be closedbytyping control-d f D).

Unless a default geometry has been specified in the user's "/.Xdefautts (See XDefaults), the
program prompts the user to create the console window upon invoking the program. Once the
consolewindow has been placed, a prompt is displayed when the program is ready to accept com
mands. Holding down the middle mouse button on the window will display a menu of commands
directly related to the console.

Along the right side of the console window is a scroll bar window. Scrolling is controlled by
pushing mouse buttons in the scroll bar. The middle button scrolls to a particular spot in the win
dow. This operation causes the screen to scroll so that the center of the scroll bar indicator moves
to the current position of the mouse. The other two mouse buttons are used for scrolling down or
up some proportion of the screen. The left button causes the screen to scroll so that the line adja
cent to the mouse position becomes the top line of the screen. Thus, clicking near the top of the
scroll bar scrolls only a couple of tines while a click near the bottom will scroll almost an entire
screen. The right button causes the top line of the screen to scroll down to the currentposition of
the mouse.

2. The chip window.

The chip window of BEAR-FP is the main area in which the user can view the results of their
commands, it displays the current layout of the chip using graphical abstractions. Cells are
represented by rectilinear shapes. Pins are fixed-size squares usually placed along the inner
boundary of cells. Regions of the chip window can be magnified for closer inspection. Other
abstractions displayed in the manual are explained indetail below.

BEAR-FP Manual '• Installation and User Interface

3. Interactive variable windows (IV).

This form of dialog is specifically used to view and edit program variables. The appearance
of these dialogs is very distinct. Atitle describing the current operation is displayed at the top of
the dialog. All the interactive variables are shown on awindow, one on each row. Each vanable is
displayed with its description and a region containing its current value.

At any one time, the IV window maintains at most one active edit region where the variable
may be changed. All keyboard input anywhere in the IV window will be directed to this region.
Edit regions are activated by placing the mouse cursor over an edit region, and either clicking a
mouse button or pressing a key. This action is indicated by a cursor (a pointer under a line of
text) inside the active edit-region. The user is not allowed to enter more text than there is
space in the edit region component Changes are accepted only byacarriage return or end-of-file.
The original value of the variable can be restored by typing control-u fU) before accepting any
changes. Edit regions are usually denoted by adifferent color background where the value of the
variable is displayed. Edit regions whose background color matches the background color of the
entire window are read-only, unless buttons are present.

For integer or floating-point variables, two buttons are provided to change the value of the
variable. The"+" button has the following effect:
If the LEFT mouse button is pressed, the value of the variable is incremented by 1%, or by one for
integer variables.
If the MIDDLE mouse button is pressed, the value of the variable is incremented by 10%
If the RIGHT mouse button ispressed, the value of the variable isdoubled.

The "-" button has similar behavior, but the value of the variable is decremented. Integer vari
ables can be distinguished from floating point variables by the presence of a decimal point. For
variables with strings as values (except booleans), the plus and minus buttons advances or
reviews through a list of values that the user can choose. For boolean variables, one button is pro
vided for easy toggling of its state. Single buttons are also provided for directing actions such as
aborting the dialog.

BEAR-FP Manual I. Installation and User Interface

D. Sample Layout

This section of the manual describes a typical set of instructions that is used to complete the
routing of a chip. The data used here are located in
/users/bear/BearFP_1.0_Tape/src/polarBear/bearData, along with a number of other examples.

1. Starting the program.

The first step is to start the program:

% polarBear

Be sure your DISPLAY environment variable is set If it is not, the user may specify the
display on which to run BEAR-FP by typing polarBear -display cowabunga:0.0, where
cowabunga is the hostname of the destination machine.

2. Start log file.

At this point the BEAR-FP console windowwill be created and a prompt displayed. (See Fig.
1.)

This is BEAR-FP version 1*0 (made 20-Dec-90>
bearFP > .

Fig. 1.

Nowthe user should type:

bear> log sample.log

This creates a file in your current working directory called sample.log. It will contain all mes
sages echoed to the console window from the time the user invoked the command.

3. Read in the placement file for the chip.

Next type:

bear> ow -bbl testData/lccadl.r

BEAR-FP Manual I. Installation and User Interface

The command ow stands for open window and in this case has been used to read in an
example described in the BBL format which is located inthe directory named testData. This com
mand causes a window to be created in which the cell layout will be displayed (see Fig. 2).

BEAR : CHIP (testData/iccadl.r)
• • n—• • •—• •

••_

Fig. 2.

Note that the testData directory mentioned above is in your current working directory in this case.
Although not specified directly, one other file must exist in the same directory as iccadl.r. This file
is iccadl.tech. The format and usage of these files are described in greater detail in a separate
section of the manual.

4. Create a clustering tree with the new version of the cluster package.

Now that the initial placement file has been loaded, BEAR-FP is ready to optimize the place
ment. This step is optional and the user may proceed directly to routing. Usually, the first step in
placement optimization is the creation of a clustering tree. This task is accomplished by the ncl
comrhand. Remember that the mouse cursor must be in the chip window for this command to be
valid.

bear> ncl

After this command is entered, an IV (interactive variable) window will be created since more
information is required. (See Fig. 3a.) The user must specify the type of clustering algorithm. The
matching algorithm usually gives good results. Select this algorithm by placing the mouse cursor
over the box adjacent to the name and clicking the button. Then click the button over the Okay
box. Abort will close the dialog box and return input to the console window. After the choice has
been made, a message will be echoed to the console:

ncl -alg m

BEAR-FP Manual I. Installation and User Interface

This message is an abbreviation for the command specified by the dialog box. In the future,
the user may wish to enter the abbreviation instead of working with the dialog box.

New Cluster Package Algorithums
Hatching

Greedy

Annealing

File In

file name

TRUE
innm!

FALSE [in]
FALSE ini
FALSE [nil
bearData/iccadl♦ctree

Okay fci
Abort bd

Fig. 3a.

Next, an IVwindow is created centered around the current mouse position. (See Fig. 3b.)

New Cluster Package Variables
Quick route estimate

Channel free style

Timing driven

Timing Filename

Maximum Dimension Ratio

Maximum Area Ratio

Store Clustering Tree

Storage Filename

Prompting

Okay

Abort

TRUE

FALSE

TRUE

bearData/iccadl.timing

10

10

FALSE

cluster«tmp

FALSE

Fig. 3b.

Variables are displayed to allow the user to change the default values for the clustering parameters
(see section on Clustering and Placement). In general, the user accepts the default values within
IV windows. In this case, a click on the button adjacent to the Cluster cells label will accept the
defaults and begin generating the clustering tree. When the tree has been generated, this mes
sage will be displayed in the console window:

10

BEAR-FP Manual
I. Installation and User Interface

Clusteringis done.

And the prompt will return.

5. Placement of cells with thenew version of the placementpackage.

Now the placement of the cells can be computed. This task is done with the npl command.
bear>npl

An IV window will appear with default values in its fields. (See Fig. 4.) If the user chooses a
fixed target shape (fixed xor fixed y), the dimension value will be used and the aspect ratio value
will be ignored. Similarly, if the user wants to specify the aspect ratio of the target shape, the
aspect ratio value will be used and the dimension value will be ignored. In this case, all of the
defaults will be accepted by clicking the mouse over Okay. As with the cluster command, the
equivalent command line sequence is echoed to the console window:

npl-ar 1.00

New Placement Package Variables
Quick plan

Maximum loop count

Final optimization

Full enumeration

Tolerance

Wire Weight

Area Weight

Fixed X

Fixed Y

Dimension Value

Aspect Ratio

Aspect Ratio Value

Okay

Abort

TRUE

FALSE

FALSE

0.15

0.40

0.60

FALSE

FALSE

O.OOOe+00

TRUE

1.00

Fig. 4.

See the section on Clustering and Placement for details. The default value is printed in the
brackets and is accepted by a carriage return. This portion of the program usually takes some
time to finish. The conclusion of placement is signaled by a message:

11

BEAR-FP Manual I. Installation and User Interface

Placement is done.

and the command line returns.

6. Globalrouting.

Nowthat the placement is completed, the example is ready for global routing:

bear>gr

The congestion factor and timing mode must then be specified (See section on Global Rout
ing, III B):

Congestion Factor [0]:

An IV window similarto the cluster IV window will appear showing the default values. When
the global routing is done, the prompt will return.

7. Channel Pin Arrangement.

Now you may rearrange pinswithin some ofthe bottleneck tiles. Note that this is optional.

bear>cpa

An IV window wiil appear to assist you. Fig. 5 givesan exampleof a channel beforeand after
channel pin arrangement

Fig. 5.

12

BEAR-FP Manual I. Installation and User Interface

8. Shape optimization.

For further space minimization of the floorplan, the user may want to alter the shape of the
cell blocks but still stay within the technology constraints. This task is accomplished by the shape
optimizer command:

bear > so

Another IV window willemerge. (See Fig. 6.)

Shape Optimizer
Algorithm

Preferred Direction

Options

Layout Style

Maximum Iteration Count

Minimum Slack Size

Flex Filename

Optimize Placement

Abort

2-D

None

Best Slack

6BL

12

8

bearData/iccadl*flex

Fig. 6.

See the section on Shape Optimization (Sec. II E) for explanation of variables. Clicking the mouse
button next to Optimize Placement will begin the algorithm. When the algorithm is finished:

Shape Optimization finished

will be echoed, and the prompt will return to the console.

9. Global spacing.

Now the example is ready for further global spacing. First, horizontal compaction will be
invoked:

bear > hem

Horizontal compaction is done.

Similarly, vertical compaction is invoked:

13

BEAR-FP Manual I. Installation and User Interface

bear >ycm

Verticalcompaction is done.

10. Detailed routing.

The next step is the detail routing:

bear>dch

This command stands for "define channel." The chip window will be redrawn showing the
floorplan graph. (See Fig. 7.)

BEAR : CHIP (testData/iccadl.r)

•i-rt •

Fig. 7.

Independent channels will be highlighted. These channels are the valid channels that may
currently be routed. A channel is picked by clicking the mouse over two junctions on the floorplan
graph. At this point, this cursor will have changed from its normal cross to a circle that is to be
placed over a junction. The user will then be prompted:

Pick junction number one.

The user should then move the circle over an end junction of a highlighted channel and click
the left mouse button. If the user did not select a valid end junction, the error:

Picking junction failed.

will be echoed to the console window, and the console prompt will return. Choose the channel
marked (1) on Fig. 7. The second junction is specified in a similar manner.

Pick junction number two.

14

BEAR-FP Manual I. Installation and User Interface

When this junction is successfully chosen, an IV window is displayed showing routing param
eters. (See Fig. 8.)

Charwl Router

Available Channel Height |j8

Dd

Required Channel Height \S0

Target Channel Height p|:|l||
Use Nutcracker |||!ll
Vit RedacUon [lijll
Route Channel

Abort

UK

m

Fig. 8.

Nutcracker is a local spacing routine which attempts to compact the routing to fit the available
channel height. (See manual section on Detailed Routing.) All of the parameters are described in
the Detailed Routing section of the manual, however, two particular parameters should be noted:
available channel height and required channel height. If the required height is greater than the
available height, then the channel should notbe routed andthe command should be aborted. Oth
erwise, there is enough space to accommodate the routing, and the user should click on Route
Channel. Since sufficient space exists in this case, the channel can be routed.

When the routing is completed, the route cell will be drawn. The user can closely examine the
route cell by defining a region to magnify:

bear>ovi

Opening a window without any arguments allows the user to specify a region of a chip win
dow to display. The user will be prompted to:

pick a rectangle

to define the region. The mouse button should be clicked and held down while moving the mouse
itself to define the region. Once the button is released the window is created focused on that
region. (See Fig. 9.)

In any window except the console window, the user can zoom in, zoom out, magnify an area,
or pan the view. In this case, moving the mouse to the newly created region and typing:

bear>Z

will show more detail of the routing. To destroy this window, type:

bear ><control-d>

Now the user can define another channel (2):

15

BEAR-FP Manual I. Installation and User Interface

bear>dch

Pickjunction number one.

Pick junction number two.

At this point if the userdoes nothave enough space in the channel to fit the routing, the com
mand must be aborted and decompaction must be done. If the channel to be routed is a vertical
channel, horizontal decompaction is necessary. If the channel to be routed is a horizontal channel,
vertical decompaction must be done as in this case:

bear>vdcm

Vertical decompaction is done.

The program is aware ofthe amount of space thatthe channel lacks for routing. Thedecom
paction routines tries to adjust channel height accordingly so in the next attempt to define a chan
nel:

bear>dch

Pick junction number one.

Pick junction number two.

the available height is as close to the required height as possible. If the channel is noton a critical
path, however, the estimate may not be that close.

After routing a channel, it is always a good ideato run a decompaction routine to minimize the
number of attempts to define a channel. In this case it is:

Fig. 9.

16

BEAR-FP Manual I. Installation and User Interface

bear> hdcm

Horizontaldecompaction is done.

The rest of the example is routed similarly. When all of the channels are routed, the floorplan
will appear as in Fig. 10.

Fig. 10.

11. Resizing the parent cell.

Due to the compaction of cells, much space is left over in the parent cell, as can be seen in
Fig. 10. This parent cell can be resized by:

bear >rp

At this point the mouse cursor changes to a circle and the user must select a comer or edge
of the parent cell to drag to reduce the cell boundaries. In this case, the upper right corner of the
cell is appropriate to begin dragging. As in the open window command, a rectangular outline is
rubber-banded indicating the target size of the parent cell. When the resizing is finished, the con
sole window will display:

Resizing...done.

(See Fig. 11.)

If the cell blocks with routing are not centered in the parent cell, they can be moved all at
once using the transform cell command:

fcear>tc-lm

The -Im option specifies an interactive mode. When the circular cursor appears, the user
must hold down the mouse button on any of the cell blocks and move the mouse. The outline of

17

BEAR-FP Manual I. Installation and User Interface

all the cells will be displayed giving the user an idea of where the cells willbe oriented after releas
ing the button.

BEAR : CHIP (testData/iccadl.r)

i

i

1
i

i

1 W • •!•••••
i

l
i

i

i

i

i
i

»

181

.. i.—._.

| 11«.

11
fit!
1111
III

B'U

11.

Hfl

illil
1111

i...........„...< .JBiSJt

i^=3- • «rj. • i

Fig. 11.

12. Ring routing.

The final step in the routing process is the ring routing:

bear > xx

An IV window will be opened displaying the default filename for the output of the ring router.
When the ring router is finished, the layout is final. (See Fig. 12.)

13. Saving the example.

The user may want to save the example in CIF format. The command is:

bear> w -elf iccadl .elf

where Iccadl.elf is the name of the file to be written. A particulariyuseful feature of the save
command is the scaling option. The user could have typed:

bear>vi -elf Iccadl .elf -scale 5

All geometrical specifications in the CIF file will then be scaled by a factor of 5 in the horizon
tal and vertical directions.

18

BEAR-FP Manual I. Installation and User Interface

Fig. 12.

14. Leaving the program.

To leave the program, the user must move the mouse to the console window and type:

bear>cw

19

BEAR-FP Manual II. Hierarchical Floorplanning

II. Hierarchical Floorplanning with Integrated Pin Assignment and Global
Routing

During the early stages in the design of electronic systems, decisions are made which have a
dramatic effect on the quality (performance, density or area) of the resulting design. Choices must
be made in partitioning functions into physical cells and in choosing interface characteristics of the
cells such as size, shape and pin positions. These choices are difficult because their effects on
the final layout are hard to predict and may not become apparent until much later in the design
process. Floorplanning helps solve this problem. It is a procedure for allocating adequate area
and assigning shapes and pin locations to system modules minimizing the layout area. Extensions
are obtained if performance criteria, such as critical nets, interconnection length, and power dissi
pation are considered.

Our floorplanner is based on bottom-up clustering, shape function calculation, and top down
floorplan computation with integrated global routing and pin assignment. It performs shape function
estimation and assignment of macro-cell shapes, positions and pin locations, satisfying various
constraints as it does so.

Besides unifying several existing ideas, the floorplanner introduces the following new com
ponents:

(1) Accurate and dynamic routing area estimation during floorplan computation in order to avoid
an increase in the chip area after global routing.

(2) A systematic optimization procedure during the selection of suitable floorplan patterns that
integrates floorplanning, global routing and pin assignment.

(3) Extensions to incorporate timing issues by a novel timing-driven clustering technique, fol
lowed by bottom-up estimation of interconnection length for critical nets and multi-function
optimization procedure which includes a critical net length violation cost term.

(4) A new pin assignment technique based on linear assignment and driven by the global routing
solution.

(5) Accommodation of channel-free style layout which is especially useful when placing mixed
macro-cell and standard-cell assemblies.

A. Clustering

We initially generate a hierarchical representation of the circuit inthe form of a multi-way clus
ter tree. This tree is generated bottom-up and is obtained by minimizing connections among vari
ous cells [2]. However, to avoid a cell shape mismatch in the clusters that makes it difficult to find
a good placement for cells, shapes of the cells are also considered. Each leaf in the tree
corresponds to an actual cell and each intemal node (which we call a cluster node) represents a
collection of highly connected cells (or clusters of cells). The maximum branching factor in the tree
is restricted to a small value (e.g., 4). This restriction is necessary because the number of multi-
way floorplan patterns increases dramatically as the branching factor is increased. In addition, if
the branching factor is too large, the problem of finding a floorplan solution for a node in the tree

20

BEAR-FP Manual II. Hierarchical Floorplanning

becomes as complex as the general floorplanning problem. In the timing mode, the upper bound
net length constraints are used to modify the natural connectivities among blocks, and a cluster
tree reflecting the timing requirements is generated. (See [3].) Note that the current implementation
does not handle lower bound net length constraints.

The following description of the user interface of the BEAR-FP placement program assumes
that a chip window has been opened. In order to obtain a new placement, a hierarchical cluster
tree must be built. Placement is then performed by traversing the tree top-down and placing the
elements of each node optimally [4, 5]. The clustering algorithm can be invoked by typing ncl
while the cursor is in the chip window. A small pop-up window will ask the user to specify the type
of clustering that is desired. Four algorithms are available:

• Matching: generates a cluster tree by optimal pairwise matching of modules and clusters [2].

• Greedy: does clustering based on a greedy heuristic.

• Annealing: generates a cluster tree using simulated annealing.

• Input from File: reads the clustering tree directly from a file (see Appendix 1).

The best clustering results are often obtained by the matching algorithm. After the desired
algorithm is selected, a ClusterParameterwindowwill pop up. We shall describe each parameter,
its effect on the clustering procedure, a typical range of values for it, and its default value. In par
ticular, the matching algorithm parameter set is described. Parameters for other algorithms have
similar meanings and ranges of values (see following table):

Clustering Parameter Set

parameter range default

Quick Routing Area Estimation Flag TRUE, FALSE FALSE

Channel Free Flag TRUE, FALSE FALSE

Timing Flag TRUE, FALSE FALSE

Maximum Dimension Ratio 1.0 — 10.0 10.0

Maximum Area Ratio 1.0 — 10.0 10.0

Prompting Flag TRUE, FALSE FALSE

The user may specify default values for most of these parameters as indicated below with a
file using the -cf option of the ncl command (see Appendix 1).

1. Timing flag (newC.TimingFlag).

If this boolean flag is TRUE, the clustering algorithm will look for the timing file and will use
the net length constraints specified in that file to do timing-driven clustering. The floorplanning step
which follows will do timing-driven placement. At the end timing statistics regarding number of

21

BEAR-FP Manual II. Hierarchical Floorplanning

satisfied constraints will be printed on the standard output.

2. Quick routing area estimation flag (newC.QuickRouteEstFlag).

If this boolean flag is TRUE, the required routing area around a given cell Is estimated based
on the total number of pins attached to the cell. Otherwise, routing area is estimated based on the
topology in which the cell is placed and the probability that a connection passes through a particu
lar channel [6]. The first option is about 2-3 times faster and often produces reasonable routing
area estimates.

3. Channel free style flag (newC.ChannelFreeFlag).

If this boolean flag is TRUE, the routing area around all cells will be a minimum fixed value
(e.g., four track-track spacing). This option is useful to support channel free layout styles and
mixed standard-ceil (grouped intovirtual flexible macro-cells) and macro-cell layoutstyle.

4. Maximum dimension and maximum area ratios.

A clustering based only on connectivity information can result in a block shape mismatch that
makes it impossible for the placementalgorithm to avoid big dead space areas. It is our conjecture
that two blocks do not match if (a) their areas and (b) the length of their longer sides are
sufficiently different A simple implementation is to prohibit the merging of block pairs whose areas
or lengths differ by more than some ratio. The maximum dimension and maximum area ratios are
computed based on the distribution of block sizes and areas available for clustering at each level
of the hierarchy. Note that these parameters only appear in the dialog window for the matching
and greedy clustering algorithms.

5. Prompting flag.

If this flag is set to FALSE, the clustering algorithm will use the internally computed values for
the maximum dimension and maximum area ratios. If the flag is set to TRUE, itwill stop and ask
the user to enter new values (or accept the defaults) at each level of the hierarchy. The user may
wantto experiment with these ratios, however, the default values are often good.

B. Floorplannino

Each cell has a shape function that defines its height as a function of itswidth. (Fixed shape
cells are a subset of flexible shape cells. A fixed shape cell has a one-ortwo-point shape function
representing the cell and its rotation.) During the clustering phase, we generate the composite

22

BEAR-FP Manual II. Hierarchical Floorplanning

shape function for every cluster node by extending the procedure in [7, 8] to multi-way cluster
nodes with no pre-specified cut direction. (See [9].) These functions are used during the top down
floorplanning to guide the search for a good floorplanning solution.

In the top down phase we start from the root of the cluster tree and floorplan the nodes in a
breadth first manner. As a result of floorplanning a cluster node, we assign shapes and positions to
its child nodes and update the current partial floorplan solution. Next, we enter the pin assignment
and global routing phase for the node. We do an initial pin assignment which produces a solution
minimizing the total interconnection length. We then perform the global routing which produces
shortest connection paths for all nets. After global routing, If capacity constraints for some chan
nels are violated, we perform a new pin assignment which re-positions the floating pins to reduce
congestions in the over-subscribed channels. (The user controls the number of iterations between
global routing and linear-sum assignment. We have observed that one iteration will suffice.) The
process of the top down traversal of the cluster tree continues until the leaf level is reached [10].

In the timing mode, we sum the cost of violating the given constraints on each critical net.
This sum is then linearly added to other cost terms. The cost has the form of a penalty function.
That is, if the bound for a critical net is violated the cost rises sharply, else it is a linear function of
wire length.

The placer can be invoked by typing npl while the cursor is in the chip window. To start the
placer, a few input parameters are requested from the user (see following table):

Placement Parameter Set

parameter range default

Chip Goal Shape Fixed-X, Fixed-Y, Aspect-Ratio Aspect-Ratio

Fixed-X Dimension integer computed

Fixed-Y Dimension integer computed

Aspect-Ratio 0.2 — 5.0 1.0

Border Size greater than 1.25 1.5

Quick Plan Flag TRUE, FALSE FALSE

Max Loop Count 0 — 2 1

Final Optimization Flag TRUE, FALSE TRUE

Full Enumeration Flag TRUE, FALSE TRUE

Tolerance positive real number 0.15

Area Weight positive real number 0.6

Wire Weight positive real number 0.4

Critical Weight positive real number 1.0

The user may specify default values for most of these parameters as indicated below with a
file using the -cf option of the npl command (see Appendix 1).

23

BEAR-FP Manual It. Hierarchical Floorplanning

1. Determination of the chip goal shape.

The desired shape of the final layout can be specified in either of two ways: as goal aspect
ratio (ratio of width to height) or as a fixed width or height of one dimension of the layout The
default shape in either case is a square. Although it cannot be guaranteed that the spedfied goal
can be achieved exactly, the results are never far away from the desired value. Because the goal
shape plays an important role in the computation of the objective function, it is often helpful to play
around with this number to get the best result (for example, a change from 1.1 to 1.15 may have a
big impact).

2. Bordersize (newP.BorderSize).

This parameter specifies spacing between the edges of the core bounding box (rectangle
enclosing all placed blocks) and the edges of chip bounding box (rectangle defined by the off-chip
IO pads). This parameter is especially useful because of the following situation. Afterwe floorplan
a duster node, we delete the block representing the node and insert its child blocks into the tile
plane. We then do global spacing on the entire tile plane. It is assumed that if the core bounding
box is expanded to accommodate the child blocks, the core boundary will still lie within the chip
boundary. However, if the value of the BorderSize parameter is small, this assumption may be
violated and the floorplanning will abort. The solution is to increase the value of the parameterand
repeat the process. (This is a temporary hack.)

3. Full enumeration flag (newP.FullEnumFlag).

During the clustering phase, we compute the shape functions for each internal node in the
duster tree. During the top-down phase, we use the user-spedfied aspect ratio (or chip dimen
sions) at the root of cluster tree and then recursively compute the best shapes and positions for
the intemal nodes.

if this boolean flag is set to TRUE, we do a full enumeration of all floorplan templates, tem
plate orientations and cluster-to-room assignments and use a linear cost function (consisting of
area penalty, wire cost, and critical net bound violation cost) to find the best floorplanning solution.
(We use the bottom-up shape functions only to estimate areas of subclusters.) Otherwise, a point
on the shape function for the root node which satisfies the user spedfied aspect ratio is chosen
and, using hints saved during the bottom-up process, floorplan templates are assigned to internal
nodes of the cluster tree.

This step is then followed by an optimization procedure aimed at minimizing the total intercon
nection length or satisfying the timing constraints by switching cells across cuts. During this pro
cedure, we only enumerate various template orientations and those cluster-to-room assignments
which lead to little or no increase in floorplan area.

The objective function to be minimized is then a linear combination of wire cost and critical
net bound violation cost. The partial enumeration option is on average about three times faster
than the full enumeration.

24

BEAR-FPManual II. Hierarchical Floorplanning

4. Maximum loop count (newP.MaxLoopCnt).

The pin assignment step can be interwoven with the global router in order to assign pin posi
tions minimizing interconnection length and satisfying channel capadty constraints. The loop
count states the number of iterations between linear-sum assignment step and the global routing
step. In particular, a value of zero indicates pin assignment without any global routing iteration.

5. Final orientation optimization flag (newP.FmalOptFlag).

We always perform a greedy orientation optimization on the floorplan solution in order to
reduce wire length by mirroring or flipping fixed-shape cells. However, it is possible to perform an
exhaustive orientation optimization as well. If this boolean flag is set to TRUE, such optimization
will be performed on all dusters which contain at least one fixed-shape child cell. Since this step is
exhaustive enumeration of all possible reflections and uses the global net list, it tends to consume
CPU time. The result of greedy optimization is usually as good as those of exhaustive optimiza
tion.

6. Quick plan flag (newP.QufckPlanFlag).

This option has been provided for convenience. It is equivalent to setting
newP.FullEnumFlag to FALSE, newP.MaxLoopCount to zero and newP.FinalOptFlag to FALSE.
Once set, this flag overrides the settings of the three parameters mentioned above.

7. Cost function parameters.

Tolerance factor specifies the maximum amount by which the cost of a candidate floorplan
solution can exceed that of the best known floorplan solution in one of the components of the cost
function and still be considered for further evaluation (in terms of other cost components). Weight
factors give the relative weight of various cost components in the linear objective function. Inter
nally, the sum of cost coefficients is normalized to 1. Note that when newP.FullEnumFlag is set to
TRUE (FALSE), newP.FullEnum (newP.PartialEnum) parameters are read.

C. Global Routing

This global router operates on the floorplan graph and builds a minimal Steiner tree approxi
mation for each net The algorithm is presented in [11] and has the following steps.

INPUT: the floorplan graph which is an undirected distance graph G = (V, E, d) and a net, S.

25

BEAR-FP Manual //. Hierarchical Floorplanning

OUTPUT: a Steiner tree, T/y, for G and S.

(1) Insert the net pins into the floorplan graph. Let the undirected distance graph G =(V,E,d)
denote the augmented floorplan graph and S denote the newly created vertices representing
the net pins.

(2) Construct the complete undirected distance graph Gi = (V1t E1t tfi) from G and S.

(3) Find the minimal spanning tree, T1t of Gi.

(4) Construct the subgraph, G5, of G by replacing each edge in 7"i by its corresponding shortest
path in G.

(5) Find the minimal spanning tree, Ts, of Gs.

(6) Construct a Steiner tree, TH, from Ts by deleting edges in 7S, if necessary, so that all the
leaves in TH are Steiner points. It is shown that TH produced by this algorithm has a total

length no more than 2(1~) times that of the optimal tree where p is the number of net pins.

D. Channel Pin Arrangement

The global pin assignment procedure based on linear sum assignment does not find the
optimal pin locations within each routing channel, and therefore, must be followed by a channel pin
arrangement procedure. Our channel pin arrangement extends the algorithm for basic channels
developed in [12] to non-basic channels. In particular, it considers each bottleneck tile to be a
channel and if the pins on both sides are floating (i.e., there are no position or order constraints),
the given pin arrangement will be optimized.

E. Shape Optimization

Floorplanning procedure described above, chooses the best shape for a flexible cell from a
finite set of discrete shapes. The shape optimization procedure, however, assigns a shape to the
flexible cell by varying its aspect ratio (while keeping its area fixed) between a minimum and max
imum aspect ratio. The pin assignment performed during this procedure isa simple scaling of pins
on the sides of cell such that the relative spacings between pins are intact. The global router and
compactor must have been run on the chip prior to invoking the shape optimization procedure.
After resizing a cell, the global routing information around the cell is incrementally updated. The
shape constraints specified in .flex file are independent of the shape functions given in .bfp file.
Note that the current shape of the cell on the tile plane must be within the given aspect ratio
bounds for the cell.

26

BEAR-FP Manual 11. HierarchicalFloorplanning

This procedure is not robust, i.e., during dynamic updating of global route information some
nets may get disconnected which will cause the procedure to abort itself. In addition, since the
topology may drastically change after a cell is resized and repositioned, it is possible that the pro
cedure will runfor a long time before it terminates. (See subsection 6.)

To run the shape optimizer, the user should type so in the console window. The user can
specify a set of parameters to guide the shape optimizer. These parameters are as follows (see
following table):

Shape Optimization Parameter Set

parameter range default

Design Style BBL, SC, GA

Algorithm 1-D.2-D

Preferred Direction HORZ, VERT, NONE

Options BEST-SLK, HALF-SLK, FULL-SLK

Minimum Slack Size 1-128

BBL

2-D

NONE

BEST-SLK

8

1. Design style.

This parameter specifies the type of modules on the chip. This is required since the shape
optimizer must know which resizings are legal. In the current BEAR-FP release, only the General
Cellor Building Block (BBL) design style (which says that the module dimensions may be continu
ously changed in either direction subject to aspect ratio constraints) is supported, and other styles
(Standard Cell(SC) and Gate Array (GA)) are not.

2. Algorithm.

This parameter specifies whether one-dimensional or two-dimensional shape optimization
algorithms should be used. The 2-D algorithm performs simultaneous X- and Y- axis optimization.
After the global routing both the block sizes and the estimated routing densities around the blocks
are known. The longest or critical paths in either X- or Y- direction, which determine the extent of
the layout, can thus be computed. The 2-D algorithm iteratively reduces the layout area by picking
up a module with the largest resize capacity lying on a critical path (in either direction) and resizing
it so that the module dimension along the critical path is reduced. The process terminates when no
improvement in the layout area has been achieved after a certain number of previous iterations.
For small macrocell circuits (less than 15-20 blocks), this algorithm is very efficient and gives
excellent results. For larger circuits, because of the unpredictability of the changes made to the
underlying topology, the algorithm may have a long run-time. Therefore, we allow for a two-pass
1-Dshape optimization option (an X-direction pass followed by a Y-direction pass).

27

BEAR-FP Manual 11. Hierarchical Floorplanning

3. Preferred direction.

This parameter must be set to NONE when the 2-D algorithm is selected. With the 1-D algo
rithm, however, it specifies the direction in which the chip dimension will be reduced. The other
direction often remains unchanged. For large chips (> 15 modules), it is suggested that the 1-D
algorithm be used because it keeps the drcuit topology relatively unchanged and therefore is more
likely to quickly converge to good solution.

4. Options.

This parameter determines the amount by which a given flexible module is resized on each
iteration of the algorithm. The horizontal slack of a module is the amount by which the X dimen
sion of the module can be increased without increasing the chip X dimension. The vertical slack is
defined similarly. Consider a block which lies on the longest path through the horizontal space We
adjacency graph [13,14]. The Best-Slack resizes this block by an amount such that this block will
at worst be placed on the second longest path through the vertical adjacency graph. The Half-
Slack resizes the same block by half its slack in the vertical direction. The Full-Stack resizes this
block by all the available slack in the vertical direction. The Full-Slack terminates much faster but
often leads to poor optimization results. The program may even be trapped in a cycle whereby a
block is resized in opposite directions alternatively until the phenomenon is detected and the pro
gram is automatically terminated. The Half-Slack takes more conservative resizing steps and is
therefore slower. The Best-Slack has proven to be a good compromise between the speed of the
Full-Slack approach and the quality of the Half-Slack approach .

5. Minimum slack size.

This parameter specifies the stopping parameter for the shape optimizer. Whenever the hor
izontal orvertical slack for everymodule drops below the value of this parameter, the shape optim
izerterminates. Hence, the user may initially set the value of this parameter high (e.g. 32), and do
the shape optimization. If the rough shape optimization result is acceptable, the user reruns the
shape optimizer on the partially optimized chip, this time with a smaller value of Minimum Slack
Size (e.g. 2). It is recommended that the user compact the chip before doing shape optimization
so that the circuit topology becomes more representative of the final routed layout (See section
on the global spacer, III C).

When the shape optimizer is run, information about the block being resized and repositioned
at each iteration will be printed as standard output The block being resized will be highlighted. At
the end of the shape optimization phase the percentage of layout area reduction is printed to the
standard output.

6. Maximum iteration count.

This parameter specifies a different way for terminating the shape optimization procedure.
The procedure will terminate when the number of cell resizing — global route updating cycle
equals the value of the parameter. This is the preferred termination criterion.

28

BEAR-FP Manual III. Routing

III. Routing

A. Overview of the Routing Process

Routing in a building block environment is a complicated task. Not only is the routing region
irregular, but we also want to be able to move blocks during the routing process. The freedom to
move blocks is a mixed blessing. It enables us to achieve more compact layouts than in the static
case, but it complicates the problem tremendously. BEAR-FP can handle block movement during
the routing process and calls for a different routing data representation from that of conventional
systems.

In the routing process, we assume that the placement of blocks has been predetermined.
This placement is not completely rigid, but serves as a starting point. As we will see later, the ini
tial placement can be deformed during routing, when the amount of distortion and the method of
change depend on the user's actions. The starting placement can be arbitraryas long as blocksdo
not overlap, their sides are parallel to the x and y coordinates, and all cells are contained inside a
chip area spedfied by the user.

After the placement has been read into BEAR-FP, two tile planes are built. The horizontal tile
plane consists of horizontal tiles[15]; the vertical tile plane consists of vertical tiles. Each of the tile
planes has two kind of tile: so//cf tiles, which represent blocks; and space tiles, which cover the
routing area. In the horizontal plane, the routing area is dissected horizontally into maximal hor
izontal stripes. In the vertical tile plane, the routing area is dissected vertically. The command
show tile property can be used to view the tile planes. Invoking stp -h displays the horizontal tile
plane; stp -v displays the vertical tile plane.

During the routing process, the bottleneck tiles play a key role. Intuitively speaking, these are
tiles between the parallel edges of two neighboring modules, in the critical regions where conges
tion is most likely. Invoking stp -b displays the bottlenecktiles. For a more formal classification of
tiles, please refer to [13].

Thefirst step in the routing process is the determination oftopologies and rough placement of
all the nets. The nets' topologies and relative positions with respect to the blocks can be deter
mined automatically by using the global route command (invoked by gr). The information about
net routes is stored in the bottleneck tiles. The topology of a net may be viewed using the show
netproperty command (invoked by snp).

Since it is very difficult to determine a priori how much space is needed to accommodate all
the wires, block positions are adjusted after the global routing step. The adjustment is made by
using the compaction (invoked by cm) or decompaction (invoked by dem) commands. The user
may wish to perform one-dimensional spacing (invoked by hem for horizontal compaction, vcm for
vertical compaction, hdcm for horizontal decompaction and vdcm for vertical decompaction) in
order to move blocks and the global routes of nets so that the space between cells matches the
estimate provided by the global router. Compaction removes extra space, while decompaction

29

BEAR-FP Manual III. Routing

provides more space in congested areas of the chip.

Now we enter the detailed routing phase. The unrouted region is divided into straight chan
nels and/or L-channels. First subregions are ordered, then one of those which can be routed at
this time is selected. If we wish to select a straightchannel to be routed now, the deh command is
used. If we want to choose an L-channel, the dlch command is used. When deh or dlch com
mands are invoked, the legal channels are highlighted. When the detailed router completes its
task, two previously disjoint chunks of layout are merged into one larger block. The nets exiting
from the routed channel are fixed pins of the combined block. Such a combined block is called a
route block. The results of partial detailed routing are now used to adjust the blocks' placement by
performing the decompaction/compaction process again. After the adjustments, the remaining
routing region is split and ordered again, the next channel is chosen, and the loop is executed until
all the blocks are merged into one.

The last step is to connect this merged block to the pads on the periphery of the chip. This
task is performed by the ringroute command (invoked by rr).

There are also many useful commands for showing the nets' topologies, checking connec
tivity etc., or creating or modifying examples.

B. The Global Router

1. Automatic global routing.

The global router is invoked by typing the gr command. The purpose of the global router is to
determine the topologies and rough placement of wires on all unconnected nets. For each net, the
global router determines through which bottleneck tiles the net will pass. This information is stored
by means of pseudo pins which are attached to the open sides of bottleneck tiles. Each pseudo
pin has an internal and an external id. Two pseudo pins connected inside a bottleneck tile have
matching internal ids. Similarly, when the external ids of pseudo pins are the same, the pseudo
pins are connected between different bottleneck tiles. Pins of cells, I/O pins and pins of route cells
also have external and internal ids. Their internal ids axe always 0. If a pin is inside a bottleneck,
the external Id matches the internal Ids of corresponding pseudo pins; if a pin is outside a
bottleneck, the external id matches the external ids of appropriate pseudo pins.

The global router used in BEAR-FP takes a subregion in which routing has not yet been com
pleted and determines a cut which separates it into two smaller subregions. When a net has pins
or pseudo pins in both sides of the partition, the net crosses the cut line. For each such net,
pseudo pins are inserted along the cut line in appropriate bottleneck tiles. This cutting process
continues until each subregion on the list is free of bottlenecks. At each partitioning step, the
linear assignment algorithm is used to determine where the net will be placed. The number of nets
which can pass through a bottleneck tile is determined by the initial placement (geometrical dimen
sions of the tiles) and design rules (wire widths and spacings between them). The size of a
bottleneck is measured by its capacity. The amount of available space inside bottleneck tiles can

30

BEAR-FP Manual III. Routing

be decreased further by manually prerouting nets. The occupied space inside a bottleneck is
measured by its density. The global router tries to place nets in bottleneck tiles so that the density
(used space) does not exceed the capacity (available space) of each tile. If there is enough space
for all the nets to cross the current cut line, then the assignment is performed. When there is not
enough space, the global router increases the bottlenecks' capacities proportionally to their initial
capacities until there is enough space for all the nets to pass through. Thus if the initial placement
is too compact, the global router may produce many nets which do not take their shortest paths
because it will try to utilizethe existing area.

The global route command is controlled by a floating-point type parameter called the conges
tion factor. Its legal range is 0.0 to 1.0; its typical value is 0.0. This parameter controls the tradeoff
between modifying placement and taking longer paths for nets. Small values will cause small
modifications of the initial placement and, for placements with an underestimated routing area,
may result in nets taking detours. Large values (close to 1) will result in nets taking shorter paths
and more modified placement. A congestion factor larger than 0 artificially increases the capaci
ties of the bottleneck tiles, but only for the purpose of the global router. The bottleneck tiles which
are adjacent to the external bounding box are treated somewhat differently from the other
bottleneck tiles: nets are assigned to pass through them onlywhen necessary. This is because it
is usually quite difficult to determine the dimensions of the bounding box, so even if it is overes
timated, itwill not cause nets to take detours through these regions.

The global router can take into account spatial constraints imposed on some nets. To exe
cute this option the user has to set the timing mode to true in the dialog box, and then enter the
name of a file which contains the following information:

number_of_nets [int],

vertlca!Jayer_multipllcatlon_Jactor[float],

net_name [string], max_netjength [float].

There must be as many net_name, max_net_length pairs as the value of number_of_nets.
VerticalJayer_multipfication_factor\s a parameter by which the lengths of vertical wires are multi
plied in net length calculations; it is useful when wires on different layers have different conduc
tances. If this distinction is not needed then the value of verticalJayer_multiplicationJactors\\ou\6
be specified 1.0.

Adetaileddescription of the global router can be found in [16].

Limitations: The global router requires the capacity ofeverybottleneck tile to be at least wide
enough that one wire can pass through it. If a bottleneck tile does not fulfill this requirement a
warning message is printed and the command aborts.

2. Show commands which display results ofglobal routing.

31

BEAR-FP Manual HI. Routing

a. Show net properties (invoked by snp.) The user is prompted to choose a net by selecting one
of its pins. A net may also be selected by indicating its name on the command line (snp net-
Name). The specified net is then highlighted on the screen, snp -off turns off the net
highlighting.

b. Show tileproperties, stp -h displays horizontal tiles on the screen, stp -v displays vertical tiles,
stp -bp displays both planes, stp -b displays bottleneck tiles, and stp -co displays cells only.
When the stp -Ip command is invoked with the mouse on a bottleneck tile in a chip window
display, the list of pseudo pins attached to this bottleneck tile is printed.

c. Show pin properties. When the spp command is invoked, the user is prompted to choose a
pin. The coordinate positions, type, external ids, etc., of the selected pin are printed.

d. Show cell properties. The cell under the mouse is highlighted and information pertaining to it is
printed.

32

BEAR-FP Manual III. Routing

C. Global Spacing

After the global router completes its job, the topologies and positions of all nets with respect
to blocks are determined. Since it is quite difficult to estimate the routing area precisely, some
bottleneck tiles will have more nets passing through them than their sizes permit. Similarly, some
tiles will have less. The purpose of global spacing is to match the capacity of each bottleneck tile
with its density as much as possible while preserving the existing nets' topologies.

There are two steps in global spacing. The first, global decompaction, is invoked by dem. Its
goal is to increase the size of the chip as little as possible so that negative mismatches (i.e. more
nets than are allowed pass through a bottleneck) are eliminated. The second step, globalcompac
tion, is invoked by cm. Its goal is to reduce the size of the chip as much as possible without creat
ing negative mismatches. The global spacer, working in either mode, selects a ridge which is a
path through space tiles from one side of chip to the other. For horizontal
compaction/decompaction the ridge goes from the top to the bottom of the chip; for vertical
compaction/decompaction it goes from left to right. Ridges are chosen through bottlenecks with
mismatches and then all objects on the top or the right side of the ridge are moved to increase or
decrease the size of the ridge. For decompaction, ridges are selected from the smallest to the
largest mismatch. For compaction, ridges are selected from the largest to the smallest mismatch.
In addition, the ridges are selected alternately in the horizontal and vertical direction to preserve
the topology of the placement.

The cm command compacts all mismatched ridges, cm -I allows the user to compact one
ridge at a time.

The push command allows the user to manually select a ridge. First the user chooses a set of
adjacent tiles from one side of chip to the other. Then he or she is prompted to give the amount
that the ridge should be moved. The push command is invoked by pu for a horizontal ridge and
pu -v for a vertical ridge.

Detailed description of the global spacing algorithm can be found in [14]. Each time blocks
are moved, some bottleneck tiles may be destroyed and/or new ones created. Since we want to
preserve the nets' topologies, after block movement the net connectivities are updated in the back
ground. This process is invisible to the user and is not controlled by any external parameters.
Details of the updating algorithm can be found in [13].

D. Iteractive Detailed Routing

1. Detailed routing iterative loop.

Detailed routing repeatedly executes the following steps:

33

BEAR-FP Manual III. Routing

a. The unrouted region is broken into straight and L-channels which are ordered appropriately.
Please see [17] for details of the routing regions ordering algorithm. Horizontal channels can
change their vertical dimensions, vertical channels can change their horizontal dimensions and
L-channels can change both dimensions withoutaffecting previouslyrouted regions.

b. A straight channel or an L-channel is selected from those currently feasible. The channel is
defined by invoking the deh (straight channel), or the dlch (L-channel) command. These com
mands call detailed routers which perform routing but do not enter results into the data base.
The available channel height (current size of channel) and required channel height are
displayed on the screen. The user is prompted to either:

• Route the channel (store the results In the data base). This option is used when
the available height is not less than the required height and detailed compaction
is not used.

Attempt to decrease the channel height using detailed compaction by checking
the Nutcracker option on the screen and specifying the target height for the
channel.

• Abort the command. This option is used when the available channel height is
less than the required height.

c. If the previous channel route command was aborted due to a mismatch between available and
required space, then placement must be adjusted by the local decompaction/compaction,
manual move blocks (invoked by pu or pu -v), or transform cell commands.

•

2. Detailed routers.

The channel router Glitter does the detailed routing. It is a gridless, variable width router.
The deh command invokes Glitter on a straight channel; the dlch command invokes it on two
straight subchannels created by dividing the L-channel. Details of the detailed routing algorithms
can be found in [18] and [19].

When the deh command is invoked on the chosen channel, Glitter runs and displays the
number of tracks it needs to connect all the wires of the selected channel. In addition to Glitter's
results, the available height of the channel and the target height are displayed. Initially the target
height is set equal to the available height. The user can compact routing produced by Glitter by
decreasing the target height, setting the Nutcracker option to true, and checking route. This will
invoke the channel compactor Nutcracker. Nutcracker will attempt to compact the initial detailed
routing by inserting jogs. It will compact the channel as much as possible, but no more than the
specified target height. After completing its job, Nutcracker displays its results and the user is
prompted to either:

• Continue, if required and target heights match.

• Abort, if results are not satisfactory.

34

BEAR-FP Manual III. Routing

Glitter places horizontal wires on one layer and vertical wires on the other layer. This strategy
may lead to many more vias than necessary. By default the detailed routing is followed by a via
reducer which slides and removes unnecessary contacts. To turn this feature off, change the via
reduce option from trueto false in the box displayed by the deh command.

Detailed discussion of the algorithms used by the channel compactor and the via reducer can
be found in [20] and [21], respectively.

Glitter routes L-channels and displays the results. At this point results are not yet entered
into the data base and the user is prompted to either:

• Route channel (store in the data base) if horizontal and vertical adjustments
displayed are 0.

• Abort if router asks for horizontal or vertical adjustments.

Bydefault, unnecessary vias produced by the detailed router are removed by the via reducer.
To turn this feature off, change the via reduce option from true to false. Nutcracker cannot be
invoked on an L-channel.

3. Placement adjustments.

This step is used to adjust a channel region to match the requirement specified by the
detailed router. As we have seen inthe section on detailed routers, if the detailed routing does not
match the available area, the detailed routing command is aborted and the results are not entered
into the data base. Placement adjustment is performed to correct this situation. There are two
cases: either the available channel height was larger than required or it was smaller. In the first
case, local compaction and in the second case, local decompaction may be used to modify the
placement.

The local compaction step is used to compact the channel region to the number of tracks
required by the previous detailed route. The orientation of the channel determines which compac
tion command is needed. A horizontal channel requires vertical compaction (invoked by vcm); a
vertical channel requires horizontal compaction (invoked by hem). The compaction command
finds ridges across the chip and moves all blocks to the right or top of the ridge. If executed
immediately after deh, the compactor will find the ridge which passes through the recently aborted
channel. The amount the blocks are moved depends on the mismatch between the number of
tracks needed by the router and the actual height of the channel. The compactor will not select
ridges unless it results in a smaller chip area.

Local decompaction is used to add the number oftracks required to the channel thatwas pre
viously detail routed and aborted. The orientation of the channel determines which decompaction
command is needed. Ahorizontal channel requires vertical decompaction (the vdcm command); a
vertical channel requires horizontal decompaction (the hdcm command). Local compaction and
decompaction are based on similarprinciples.

35

BEAR-FP Manual ///. Routing

The user may manually select a ricige for compaction or decompaction by invoking pu (hor
izontal ridge) or pu -v (vertical ridge).

Another method of adjusting placement is to manually move the blocks. Moving blocks main
tains the global routing information and previously routed channels. To move a block manually,
the transform cellcommand is used. First tc is invoked. The user is then prompted to choose a
transformation: for manual cell moving, check the move option. Next, the user is prompted to
choose the type of move: delta x-yor interactive, dlch gives x,y measurements for the delta x-y
move. Finally the user is prompted to specify the cell on the screen.

E. Ring Route

The last step in detailed routing is ring route (invoked by rr), which connects the core of a
chip to the I/O pads at the periphery. The ring router expects all signal wires to be the same width.
Wires specified as power/ground can be ofarbitrary widths.

Limitations: Ring route cannot handle power pads at the comers ofthe bounding box or verti
cal constraints between power nets.

F. Wire Widths Sizing

We are developing code capable of determining the widths of power and ground nets so that
the area of wire segments is minimized while fulfilling electromigration and voltage drop con
straints. Details of the wire sizing algorithm can be found in [22]. A wire technology file will be
required in which the parameters needed will be listed. These parameters are as follows:

grid[float]: specifies how manymicrons correspond to one grid line;
conductance [float] (in A/V): specifies conductance of wires;

' curPerMicron [float] (in A/micron): electromigration constant
(i.e. the max branch current £ curPerMicron *width);

minWidth [int] (in grid lines): specifies
the minimum acceptable wire width;

timeSteps [Int]: specifies in how many time steps the calculations are to be performed
(usually 1);

flag [Int]: used to set appropriateparameters for wn.

There are three parameters which need to be set in wire net: electjtag, voltjlag and
feasibleJlag. When electJlag is 1, electromigration constraints are included in calculations; if it is
0 then they are not. When voltjlag is set to 1, voltage constraints are taken into account; if it is
set to 0 then they are not When feasiblejiag is set to 1, only a feasible solution is sought; if it is0

36

BEAR-FP Manual III. Routing

then an optimal solution is calculated.

These parameters are calculated as results of the following bitwise operations:

electjlag = PGR_ELECT_FLAG & flag

voltjlag = PGR_VOLT_FLAG & flag

feasibleJlag = PGR_FEASIBLE_FLAG & flag

where PGR_ELECT_FLAG = 01, PGR_VOLT_FLAG =02, PGR_FEASIBLE_FLAG = 04. Thus for
example, flag set to 05 causes electjlag = 1, voltjlag =0 and feasibleJlag = 1.

37

BEAR-FP Manual Appendix 1

Appendix 1. Input/Output Format Specifications

A. BBL Format for a Routing File

Input data in BBL format are spedfied in two files. The first file contains block dimensions
and pin-net information. It is called a routing file and its name must be something.r. The second
file contains descriptions of design rules and is called a technology file. Its name must be
something.tech. The first portion (up to the dot) of both files must be the same.

We encourage users to check the validity of their BBL files by using the -c option when open
ing a window with the ow command.

1. Rules for describing a module and terminals.

a. Only rectilinear modules are allowed.

b. If a placement is given then the spacing between any two adjacent modules must be
wide enough to allow one signal wire to pass between them.

c. The coordinates of the modules corners must each be on a separate line of the input
file in counter-clockwise order.

d. Every terminal must lie on a boundary of a module.

e. No terminal may lie on a comer of a module.

f. No two terminals may have the same coordinates.

2. The overall format for a BBL file.

Note that the smallest routing file allowed is a root module with no terminals.

SN <number of nets> <nl>

< root module >

[< one or more child modules >]

$

38

BEAR-FP Manual Appendix 1

3. The format for a single module of the BBL file.

MOD <nl>

<ox> <oy> [<mt>] <nl>

<module name> <nl>

<module type> <nl>

<cxl> <cyl> <nl>

<cx2> <cy2> <nl>

<cx3> <cy3> <nl>

<cx4> <cy4> <nl>

$ <nl>

T <nl>

[<tx> <ty> <net name> <routing direction> <terminal type> <nl>]

$ <nl>

4. Detailed description of a BBL file's syntax.

Please note that information enclosed in braces [] above is optional. Also all numbers are
expected to be integers, and finally no blank lines are permitted.

MOD

SN

T

$

<nl>

<ox> <oy>

<cxi> <cyi>

<tx> <ty>

<net name>

This is a marker that indicates the beginning of a module.

This marker must be the first thing in the file.

This is a marker that indicates the beginning of a terminal list. It must
always be present, i.e. even if there aren't any terminals.

This is a marker that indicates the end of a particular group of data.
Two of them in a row indicates the end of the file.

The new line character is used to terminate each line. Simply type a
carnage return when inputing the file.

This is the module's origin, which all of the coordinates in the module
are relative to. The origin of a child module is relative to the root
module.

A pair of coordinates indicating a comer of the module.

A pair of coordinates relative to the module's origin indicating the posi
tion of the terminal.

The name of the net that the terminal belongs to. It may be up to 40
characters.

<number of nets> The total number of nets.

39

BEAR-FP Manual Appendix 1

<mt>

<module type>

<terminal type>

<routing direction>

Optional module transformation which is applied to all of the modules
coordinates. 0, 3, 4, and 5 are legal values as follows: 0 for Identity
Transform; 3 for Transform module by 90 degrees; 4 for Transform
module by 180 degrees; 5 for Transform module by 270 degrees.

The type of the module. 1 and 0 are legal values as follows: 1 for the
root module; 0 for the other modules.

The type of terminal. At the moment 2 is the only legal value, and it
indicates that the terminal is fixed in place.

The routing direction of the terminal. 0,1, 2, and 3 are legal values as
follows: 0 if Pin is on WEST side of module; 1 if Pin is on SOUTH side
of module; 2 if Pin is on EAST side of module; 3 if Pin is on NORTH
side of module.

5. Sample BBL file.

A copy of this file may be found in
/users/bear/BearFP_1.0__Tape/src/polarBear/bearData/bblSample.r.

SN 2

MOD

0 0

bound

1

1000 1000

0 1000

0 0

1000 0

$

T

133 1000 netl 1 2

$

MOD

133 542

Mickey

0

411 306

0 306

0 0

411 0

$

T

411 190 net2 2 2

0 128 net2 0 2

40

BEAR-FP Manual Appendix 1

411 54 netl 2 2

$

ELKJU

703 145

Donald

0

146 510

0 510

0 0

146 0

$

T

76 0 netl 1 2

0 91 net2 0 2

$

MOD

183 202

Goofy

0

240 247

0 247

0 0

240 0

$

T

0 143 netl 0 2

202 0 net2 1 2

$

$

41

BEAR-FP Manual Appendix 1

B. BFP Format for a Routing File

Input data in the BFP (bear floor planning) format is specified in a number of text files. There
is a file with information about the cells and nets, a file with information about the design rules, and
additionally a file with a list of critical nets.

Againwe encourage users to check the validity of there BFP files by using the -C option when
opening a window with the ow command.

1. Rules fordescribing cells and pins.

a. Only four sided rectangular modules are allowed.

b. If a placement is given then the spacing between any two adjacent modules must be
wide enough to allow one signal wire to pass between them.

c. Every pin must lie on a boundary of a cell.

d. No pin may lie on a corner of a cell.

e. No two pins may have the same coordinates.

2. The overall format for a BFP file.

comments <nl>

Version 1.0 <nl>

TechFileName <technology file name> <nl>

BorderCellName <border cell name> <nl>

BorderCellOrigin <x> <y> <nl>

[BorderPin <border pin name> <net name> <side> <fraction> <nl>]
BorderCellShape <width> <height> <nl>

[<one or more child cells>]

3. The format for a single childcell.

CellName <cell name> <nl>

CellOrigin <x> <y> <nl>

[Pin <pin name> <net name> <pin type> <x> <y> <nl>]

42

BEAR-FP Manual Appendix 1

XnitCellShape <width> <height> <rotation flag> <nl>
[CellShape <width> <height> <rotation flag> <nl>]

4. Detailed description ofa routing file's syntax.

Please note that information endosed in braces [] above is optional. As far as coordinate
systems go, the border cell is considered to be absolute; allcells are relative to it. Pins are relative
to the lower left hand comer of the cell they belong to. (See Fig. 13.)

<fraction>

<height>

<pin type>

<rotation flag>

<side>

<width>

Border cell origin

O

Fig. 13.

This field mur be a real number between 0.0 and 1.0. It is used to deter

mine the posit; i of the border pin.

This field must be an integer greater than 0.

This field must be either "fixed" or "floating". Note that all of the pins in a
given cell must have the same value.

This field must be either TRUE or FALSE. A value of FALSE indicates that

one coordinate pair (width, height) will be added to the shape function,
where as a value of TRUE indicates that two coordinate pairs will be added
(width, height) and (height, width). (See Fig. 14.)

This field must be either N, E, S, or W and is used to indicate which side of
the border the given pin is on.

This field must be an integer greater than 0.

43

BEAR-FP Manual

<x> <y> A pair of integers.

height

O

initCellShape c d FALSE
ceUShape a b TRUE

Fig. 14.

(b,a)

(a,b)

5. Sample BFP file.

A copy of this file may be found in
/users/bear/BearFP_ 1.OJTape/src/polarBear/bearData/bfpSample.

Sample bearFP data file.

#

Version 1.0

TechFileName bearData/bfpSample.tech

Pins on the border cell are always fixed.

#

BorderCellName Apple

BorderCellOrigin 0 0

BorderPin pinl netl N 0.3

BorderPin pin2 net2 N 0.5

44

Appendix 1

width

BEAR-FP Manual Appendix 1

BorderPin pin3 netl E 0.6

BorderCellShape 650 650

#

This cell has a fixed shape and no pins

#

CellName Bannana

CellOrigin 50 500

InitCellShape 150 100 TRUE

#

This cell has a fixed shape and all fixed pins
#

CellName Kiwi

CellOrigin 50 350

Pin pin4 netl fixed 75 100

Pin pin5 net2 fixed 150 50

Pin pin6 net3 fixed 0 50

InitCellShape 150 100 FALSE

#

This cell has a fixed shape and all floating pins
#

CellName Mango

CellOrigin 50 200

Pin pin7 netl floating 75 100
Pin pin8 net2 floating undef 50
Pin pin9 net3 floating undef undef
Pin pinlO net4 floating undef undef
InitCellShape 150 100 TRUE

#

This cell has a flexible shape and all floating pins
#

CellName Peach

CellOrigin 50 50

Pin pinll netl floating undef undef
Pin pinl2 net2 floating undef undef
Pin pinl3 net3 floating undef undef
Pin pinl4 net4 floating undef undef
InitCellShape 150 100 TRUE
CellShape 100 75 TRUE

CellShape 100 50 TRUE

CellShape 100 25 FALSE

45

BEAR-FP Manual Appendix 1

C. Input Format for a Technology File

Below is a complete description of the format for a technology file.

1. The format fora technology file.

Ml_MinWireWidth <number> <nl>

M2_MinWireWidth <number> <nl>

Ml_MinWireSpacing <number> <nl>

M2_MinWireSpacing <number> <nl>

ViaSize <number> <nl>

MinOverLap <number> <nl>

2. Detaileddescription of a technology file's syntax.

Please note that all numbers are expected to be integers.

Ml_MinWireWidth

M2_MinWireWidth

Ml_MinWireSpacing

M2_MinWireSpacing

ViaSize

MinOverLap

<number>

<nl>

This keyword is followed by an even number bigger than or equal to two
that indicates the minimum width of a wire on metal one's layer. (See
Fig. 15.)

This keyword is followed by an even number bigger than or equal to two
that indicates the minimum width of a wire on metal two's layer. (See
Fig. 15.)

This keyword is followed by an even number that indicates the minimum
spacing between two wires on metal one's layer. (See Fig. 17.)

This keyword is followed by an even number that indicates the minimum
spacing between two wires on metal two's layer. (See Fig. 17.)

This keyword is followed by a number bigger than or equal to two that
indicates the size of a via. (See Fig. 16.)

This keyword is followed by a number that indicates the size of the over
lap. (See Fig. 18.)

An integer.

The new line characteris used to terminate each line. Simply type a car
riage return when inputting the file.

46

BEAR-FP Manual

3. Sample technology file.

A copy of this file may be found in .
/users/bear/BearFP_ I.OJTape/srcfiolarEtear/bearData/bblSample.tech.

Ml_MinWireWidth 20

M2_MinWireWidth 20

Ml_MinWireSpacing 10

M2_MinWireSpacing 10

ViaSize 25

MinOverLap 5

wire on metal 1

wire width

Appendix 1

wire on metal 2

Fig. 15.

minimum spacing between
two wires on a single layer

Fig. 17.

47

via size is the length of a
side of the inner square

Fig. 16.

wire on metal 1

minimum overlap

wire on metal 2

minimum overlap

Fig. 18.

BEAR-FPManual Appendix 1

D. Format For a Timing File

1. The overall format fora timing file.

comments <nl>

Version 1.0 <nl>

CriticmlNetList <nl>

<net name> <type> <length> <nl>

; <nl>

2. Detailed description of a timing file's syntax.

<net name> This field indicates the name of the critical net and must match one of the nets in

the BFP file.

<type> This field indicates the type of constraint the critical net is to have. At the moment
the only acceptable value is MAX, which means that the indicated length should
not be exceeded during the floorplanning/placement portion of the program.

<iength> This field contains an integer value.

3. Sample timing file.

A copy of this file which was generated with the timing option of the write command may be
found in /users/bear/BearFP__1.0_Tape/src/polarBear/bearData/bfpSample.timing.

The timing option is intended as a means of generating test data for the timing code of the
new cluster package. It looks at ten percent (or at least three) of all the nets with four or fewer
pins. For each one it calculates the steiner tree and then takes eighty percent of the length of this
tree as the proposed maximum length of the net.

Version 1.0

#

Critical nets for bearData/bfpSample

#

CriticalNetList

net2 MAX 627

net3 MAX 848

net4 MAX 216

48

BEAR-FP Manual Appendix 1

E. Format for a Flex File

Input data for the so (shape optimizer) command is specified with a text file as described
below.

1. The overall format for a flex file.

comments <nl>

Version 1.0 <nl>

FlexibleCellList <nl>

<cell name> <minimum aspect ratio> <maximum aspect ratio <nl>

; <nl>

2. Detaileddescription of a flex file's syntax.

<ceii name> This field indicates the name of a cell and must match one of the

cells in the BFP file.

<minimum aspect ratio A real number greater than 0 cooresponding to the minimum
aspect ratio (which is height / width) that the given cell may have.

<maximum aspect ratio A real number greater than 0 cooresponding to the maximum
aspect ratio (which is height / width) that the given cell may have.

Note thatthe current shape of the cell (when the command is used) must satisfy the minimum
and maximum aspect ratio constraints.

3. Sample flex file.

A copy of this file may be found in
/users/bear/Bea/FPJ.OJTape/src/polarBear/bearData/iccadl.flex.

Version 1.0

#

Input data for the so (shape optimizer) command that goes
with the cell data in bearData/iccadl.bfp

49

BEAR-FP Manual Appendix 1

#

FlexibleCellList

Bl 0.5 2.0

B2 0.25 2.0

B3 0.33 3.0

50

BEAR-FP Manual Appendix 1

F. Format for a Cluster Tree File

The text file described below is used by the ncl (new cluster) command to input and output a
cluster tree. Such a tree may have upto four branches per node, and leaf nodes are cells that
must all have the same level within the tree.

1. The overall format for a cluster tree file.

comments <nl>

Version 1.0 <nl>

One root cluster. <nl>

RootCluster <cluster name> <nl>

<cluster or cell name> <nl>

. .

; <nl>

One or more clusters. <nl>

Cluster <cluster name> <nl>

<cluster or cell name> <nl>

; <nl>

2. Detailed description ofa cluster tree file's syntax.

<ceil name> This is a string indicating the name of a cell and must match one of the cells
in the BFP file.

<cluster name> This is a string indicating the name of a cluster.

51

BEAR-FP Manual Appendix 1

3. Sample cluster tree file.

A copy of this file may be found in
/users/bear/BearFPjl .0_Tape/src/polarBear/bearData/iccad1 .ctree

Version 1.0

#

A posible cluster tree based on the data in bearData/iccadl.bfp
that may be used as input to the ncl (new cluster) command.
#

RootCluster R

E

F

6

Cluster E

A

B

Cluster F

C

Cluster G

D

Cluster A

Bl

Cluster B

B2

B3

Cluster C

B4

B5

Cluster D

52

BEAR-FP Manual Appendix 1

B6

B7

B8

53

BEAR-FP Manual Appendix 1

G. Sample Control File

A copy of this file may be found in
/users/bear/BearFP_1.0_Tape/src/polarBear/bearData/controlData.

#

This file contains default values for parameters used by the
new cluster and new placement modules.

#

newC.QuickRouteEstFlag FALSE

newC.ChannelFreeFlag FALSE

#

If newC.TimingFlag is FALSE that implies the following:
#

newP.FullEnum.CritWeight undef
newP.PartEnum.CritWeight undef
#

newC.TimingFlag FALSE

#

newP.TmpDir location of temporary files (can have '"')
#

#newP.TmpDir ~lolita/tmp

newP.BorderSize 1.5

#

If newP.QuickPlanFlag is TRUE that implies the following:
#

newP.MaxLoopCnt 0

newP.FinalOptFlag FALSE

newP.FullEnumFlag FALSE
#

newP.QuickPlanFlag FALSE

newP.MaxLoopCnt 1

newP.FinalOptFlag TRUE

newP.FullEnumFlag TRUE

newP.FullEnum.Tolerance 0.15

newP.FullEnum.AreaWeight 0.6

newP.FullEnum.WireWeight 0.4

newP.FullEnum.CritWeight 1.0

54

BEAR-FP Manual Appendix 1

newP.PartialEnum.Tolerance 0.15

newP.PartialEnum.WireWeight 1.0

newP.PartialEnum.CritWeight 1.0

55

BEAR-FP Manual Appendix 2

Appendix 2. OCT Interface

The following is a description of how to read from and write to OCT in BEAR-FP.

First, BEAR-FP must be executed before the read from or write to OCT commands can be
performed. To load a chip from the OCT database once BEAR-FP is running, use the open win
dow command:

ow -oct cellname viewname [outputjcellname [output_vlewname]]

Where cellname is the name of the OCT cell to be read, viewname is the name of the OCT
cell's view, and outputjcellname is the name of the OCTcell used temporarily in the reading pro
cess. Also, outputjcellname is the name of the OCT cell to be written back out when the write
command without any optional information, w -oct, is used later. (The default for the optional
outputjcellname is macout.) output_vlewname is the view name of the OCT cell which is tem
porarily used and is to be written back out. (Thedefault for the optional output_vlewname is the
same name as the viewname.) This temporarily used OCT cell is an exact copy of the OCT cell
described by cellname and viewname, but with two additional bags to facilitate reading and writ
ing back.

When writing to OCT in BEAR-FP, issue the following write command,

w -oct [[-r] outputjcellname output_vlewname]

where the -r option is for saving routing information to OCT and outputjcellname is the name of
the OCT cell to be written out to OCT. This name is only optional when saving an OCT cell that
has been read in by the open window command described above, has never been saved after
being read in, and has not been changed other than the placement of its cells. The default for the
optional outputjcellname is the same name as the outputjcellname used in the open window
command (above) when reading in from OCT. output_vlewname is the name of the OCT cell's
view to be written out and is also only optional under the same conditions as the ones described
just above inoutputjcellname of this command. The defaultfor the optional output_vlewname is
the same name as the output_vlewname used in the open window command (above) when read
ing in from OCT.

The write(back) command, w -oct, is a much faster write mechanism than the full write com
mand with options. It uses knowledge from the open window (read) command and only updates
the placement of the cells.

Example 1: Modify placement ofan OCT cell(chip) andsave using defaults.

(Open window commands are typed with the cursor in the BEAR-FP console window and all other
commands, write and close window, are typed with the cursor in the window displaying the cell
read in using open window.)

56

BEAR-FP Manual Appendix 2

ow -oct foocell foovlew

(Opens a window displaying the information read in from OCT cell, foocell, and view, fooview.

[placement modifications]

w-oct

(Saves the placement information in the window by writing the modifications to OCT cell default,
macout, and view default, fooview.)

cw

(Closes the window.)

Example 2: Modify placement of default OCT celljust written, save the resulting placement as
the new OCT celt's name while reading, and save placement and routing
modifications in a newly-createdOCTcell.

ow -oct macout fooview fooceiil foovlewl

(Opens a new window containing the previously saved OCT cell, macout, and view, fooview.)

[moreplacement modifications]

w-oct

(Saves the placement information in the window bywriting the modifications to OCT cell, fooceiil,
and view, fooviewl.) _

57

BEAR-FP Manual Appendix 2

[more placement modifications, routing, and/or creating, deleting, modifying new cells,
pins, and nets]

w -oct -r foocell2 foovlew2

(Saves the placement and routing information in the window by creating and writing to OCT cell,
foocell2, and view, foovlew2.)

cw

(Closes the window.)

Example 3: Read in a BBL file and save in the OCT database afterwards.

ow -bbl foobbl.r

(Opens a new windowdisplaying the information read in from the BBL file, foobbl.r)

[placement modifications and/orcreating, deleting, modifying new cells, pins, and nets]

w -oct foocell3 foovlew3

(Saves the placement information in the window by creating and writing to OCT cell, foocel!3, and
view, fooview3.)

cw

(Closes the window.)

Unless otherwise specified during the open window command with the OCT option, the
default output OCT cell name is macout and the view name is the same as the view name read in.
Any type of modifications can be done on the data that has been just read into BEAR-FP from
OCT with the open window command. After all the necessary changes have been made on the
data, the write command, w -oct, should be issued to write back only the placement data to the
default OCT cell and view. This write command can be used to write back placement data only

58

BEAR-FP Manual Appendix 2

once after every read from OCT. Thus, after a write back, the window must be closed and a new
window must be opened to read in the changed data for any new modifications made thereafter to
be saved properly. Alternatively, the full write command with all the options can be issued. This
action will write the placement and routing information to the newly created OCT cell and view
named in the options, if only placement data is to be written out to a new OCT cell and wew then
the full write command with all the options minus the -r option should be issued. Other types of
data such as BBL read into BEAR-FP by the open window command or new information created
inside BEAR-FP can be written to OCT by using the full writecommand with the options.

59

BEAR-FP Manual

Appendix 3. X Defaults

bearFP.BIackAndWhlte

bearFP.ReverseVideo

bearFP.Background

bearFP.Border

bearFP.BorderWIdth

bearFP.Foreground

bearFP.Font

bearFP.HIghllght

bearFP.Mouse

bearFP.Text

bearFP.Chlp.Cell

bearFP.Chlp.RouteCell

bearFP.Chlp.DummyCell

bearFP.Chlp.CellBorder

bearFP.Chlp.Pln

bearFP.Chlp.Background

bearFP.Chlp.hchannel

bearFP.Chip.vchannel

bearFP.Chlp.lchannel

bearFP.Chlp.Net1

bearFP.Chlp.HorzBottleNeckTlle

bearFP.Chlp.VertBottleNeckTIle

bearFP.Chlp.HorzDomlnantTlle

Appendix 3

If on, a black and white color scheme will be used even on
a color display so that programs that dump windows to
printers will work.

If on, reverse the definition of foreground and background
colors on black and white displays.

Determines the background color for all windows other
than the console window.

Determines the border color for all windows other than the

console window.

Detennines the border width for all windows other than the

console window.

Determines the foreground color for all windows other than
the console window.

Determines the font for text in all windows other than the

console window.

Determines the highlight color for all windows other than
the console window.

Determines the mouse cursor color for all windows.

Determines the color of prose printed in a window.

Determines the color of cells on the chip.

Determines the color of route cells on the chip.

Determines the color of dummy cells on the chip.

Determines the border color of all cells on the chip, the pin
color, as well as the color of the floor plan graph.

Determines the color of the pins for the chip.

Determines the background color of the chip.

Determines the horizontal channel color.

Determines the vertical channel color.

Determines the L-shaped channel color.

Determines the color of net one on the chip.

Determines the color of horizontal bottleneck tiles.

Determines the color of vertical bottleneck tiles.

Determines the color of horizontal dominant tiles.

60

BEAR-FP Manual

bearFP.Chlp.VertDomlnantTlle

bearFP.TF.Ieafl

bearFP.TF.Ieaf2

bearFP.TF.Ieaf3

bearFP.TF.Ieaf4

bearFP.TFJeafS

bearFP.TF.node

bearFP.TF.edge

bearFP.CIf.BNDO

bearFP.Clf.BND1

bearFP.Cif.BND2

bearFP.Cif.NC

bearFP.Cif.NM

bearFP.CIf.NP

bearFP.Cif.TRM

Appendix3

Determines the color of vertical dominant tiles.

Determines the color of leaf number one in the tree and
floorplan windows.

Determines the color of leaf number two in the tree and
floorplan windows.

Determines the color of leaf number three in the tree and

floorplan windows.

Determines the color of leaf number four in the tree and

floorplan windows.

Determines the color of leaf number five in the tree and

floorplan windows.

Determines the color of the nodes in the tree windows.

Determines the color of the edges in the tree windows.

Determines the color of elf boundary zero.

Determines the color of cif boundary one.

Determines the color of cif boundary two.

Determines the color of cif nMos contact cut color.

Determines the color of cif nMos metal color.

Determines the color of cif nMos polysilicon color.

Determines the color of cif text.

The following defaults are for the IV windows:

bearFP.Iv.Background

bearFP.Iv.BorderColor

bearFP.iv.BorderWIdth

bearFP.iv.ButtonColor

bearFP.Iv.CursorColor

bearFP.Iv.EdltBackground

Set the background color. Default is light grey on color
displays, black on monochrome.

Set the border color. Default is black on color displays,
white on monochrome.

Set the border width of the main IV window, and the border
around the edit region windows. Default is 1.

Set the color of the buttons. Default Is yellow on color
displays, white on monochrome. For best results, choose
a non-dark color.

Set the color of the mouse cursor. Default is green on
color displays, white for monochrome.

Set the background color of the edit region. Default is light
blue on color displays, black for monochrome.

61

BEAR-FP Manual

bearFP.Iv.EdltFont

bearFP.Iv.EdltFontColor

bearFP.iv.EraseValue

bearFP.Iv.Paddlng

bearFP.Iv.TextFont

bearFP.Iv.TextFontColor

bearFP.Iv.TitleFont

bearFP.Iv.TitleFontColor

Appendix 3

Specify the font to print the edit region. Default is 6x10.

Set the font color of the edit region. Default is red for color
displays, white for monochrome.

If on clear the edit region upon editing the variable. The
default is off. Note that data can still be recovered by
CONTROL_U.

Specifies the extra padding above and below each IV row
(text and variable). The default is 2.

Specify the font to print the documentation field. Default is
6x10.

Set the font color of the documentation field. Default is

blue for color displays, white for monochrome.

Specify the font to print the titie. Default Is 9x15.

Set the font color of the title Default is dark slate blue for

color displays, white for monochrome.

62

BEAR-FP Manual Appendix 4

Appendix 4. Partial Summary of Commands

1. General Commands

The following commands may be used in any window:

cw The close window command is used to close windows. Note that closing a window does
not save changes that may have been made. You must use the write command ifyou want
the changes to be saved.

help The help command lists all of the commands in alphabetical order along with some infor
mation about each one. In this way you may determine which commands can be included
in a script, as well as which windows a command may be used in.

log [logFlle]

The log command causes everything that is printed in the console window to be logged in
a file, until you enter another log command.

r [-options...]

The read command may be given the following options:

-bfp filename cell data in bearFP format

-bbl filename cell data in BBL format

-oct cellname viewname [[outputjcellname] [output_vlewname]]

-tech filename technology data (bbland oct only)

-np cells aren't placed

-C attempt to verify the validity of the data

ow [-options...]

The open window command may be given the following options:

-s duplicate window with same view

-bfp filename cell data in bearFP format

-bbl filename cell data in BBL format

-oct cellname viewname [[outputjcellname] [output_viewname]]

-tech filename technology data (bbl and oct only)

-elf filename cell data in CIF format

-np cells aren't placed

-C attempt to verify the validity of the data

v The version command prints the number of the current version of polarBear in the con
sole window.

63

BEAR-FPManual Appendix 4

2. Viewing Commands

The following commands may be used in cif and chip windows:

c The center command finds the boundary of the object being viewed (a cif file for instance)
and centers it within the window.

mag The magnify command allows you to enlarge a portion of a window to get a better view.
You are asked to pick a rectangle from within the window the mouse is in that defines the
area you want enlarged.

pan The pan command centers the windowaround the mouses current position.

z [amount]
The zoom out command enlarges the current view.

Z [amount]
The zoom In command shrinks the current view.

3. FloorPlanning Commands

ncl [-alg <m || g || a || f filename >] [-sf fileName] [-tf flleName] [-cf flleName] [-NDW]

The new clustering command may be given the following options:

-alg algorithms:
matching
greedy
annealing
file-in

-sf filename storage data file

-tf filename timing data file

-cf filename control data file

-NDW no dialog windows

npl [-m < x || y || r > <float>] [-cfflleName] [-NDW]

The newplacement commandmaybe given the following options:

-m indicate mode and value

(The allowed modes are x, y, and r followed by a fixed x dimen
sion, a fixed y dimension or an Xto Yaspect ratio.)

-cf filename control data file

-NDW no dialog windows

64

BEAR-FP Manual Appendix 4

cpa [-options...]

The channelpinarrangement commandmay be given the following option:

-NDW no dialog windows

4. Routing Commands

gr [-C] [-CW] [-NDW]

The global-route command may be given the following options:

-C check the connectivity of all the nets after the global routing has
been completed

-CW check the connectivity of all the nets after the global routing has
been completed and print warning messages

-NDW no dialog windows

rr [-via] [-NDW]

The ring-route command may be given the following options:

-via reduce vla's

-NDW no dialog windows

5. Other Commands

bg [-C] [-CW] [-n [netName]]

The buildgraph command may be given the following options:

-C check the connectivity of all the nets

-CW checkthe connectivity ofall the nets and print warning messages
-n [netName] check the connectivity of onlyone net

(If the name is not specified and no net is currently being
displayed then the user will be asked to indicate a net with the
mouse.)

Please note the graph of a net that goes through an L-channel will not be connected prop
erly.

rsscrlptFlle[-log][-l]

The run script command maybe given the following options:

-log the script file is a previouslygenerated log file

65

BEAR-FP Manual Appendix 4

-I use interactive mode

This command enables the user to have a sequence of commands automatically executed.
Two types of scripts are reconized. The default is a user generated file in which comments
begin with a '#' symbol and end with a new line. Alternatively a previously generated log
file may be used, by specifying the -log option. Note that in either case only commands
that return status may be used. To determine whether or not a command returns status
you may type its name followed by the -help option. Below is a sample script in the default
format.

#

Sample script

#

To use this script to give a demonstration start polarBear,

open a chip window from the console window, and then run this

script with the interactive option.
*

log bear.log

#

This is the sequence of commands to run the new placement package.

ncl -cf bearData/controlData

npl -cf bearData/controlData

Below this line are a few things you can do after placement

w -rst2 bear.rst2

cm -C

log

scp [cellName] [-off]

The showcellproperties command may be given the following option:

-off turn offcell high-lighting
-names toggle cell names (only)

When the off option is not indicated information about the cell is listed and the cell is high
lighted for your perusal. When the name of a cell is not given the cell directly under the
mouse is chosen.

sjp [-fp] [-mr]

The showjunction properties command may be given the following options:

66

BEAR-FP Manual Appendix4

-fp toggle floor plan graph (only)

-mr main room (only)

snp [netName] [-off]

The show netproperties command may be given the following option:

-off erase all of the nets that are currently being displayed

The command lists some information about the net and then high lights the net for your
perusal. There are two ways to indicate the net you want. When the name of a net is not
given you will be asked to select a net by picking one of its pins with the mouse. Alterna
tively you may specify the name of the net yourself.

spp [-p] [-off] [-mps]

The showpin properties command may be given the following options:

-p show pins (on/off)

-off turn off pin high-lighting

-mps print the minimum pin spacing

The command allows you to select a pin with the mouse. It then lists some information
about the pin and high lights the pin for your perusal.

stp [-co] [[-bp -h -v] [-b] [-d]] [-lp] [-bnl] [-ap] [off]

The show tileproperties command may be given the following options:

-co show cells only

-bp show both tile planes

-h show horizontal tile plane only

-v show vertical tile plane only

-b show bottleneck lines and tiles (on/off)

-d show dominant tiles (on/off)

-lp list the pseudo pins of the tile under the mouse

-bnl pick a bottleneck line and then list its pseudo pins

-ap arrange pins of the bottleneck tile the mouse is in

-off turn off bottleneck line high-lighting

When no options are given various properties of the tile directly under the mouse are
limned within the console window.

tc [[-dx #] [-dy #]] [-Im] [-mx] [-my] [-rt <X90>] [-rf <45,135>] [[-rsx #] [-rsy #] [<UL,LL,UR,LL>]]
[-lr]

The transform cell command may be given the following options:

-dx # move cell in x direction

67

BEAR-FP Manual

-dy# move cell in y direction

-Im interactive move

-mx mirror cell across x-axis

-my mirror cell across y-axis

-rt# rotate cell by multiples of 90 degrees

-rf# reflect cell across the line y = x or the line y = -x

-rsx## resize cell in x direction

-rsy## resize cell in y direction

-Ir interactive resize

w [-options...]

The write command may be given the following options:

-bfp filename use BearFP format

-bbl filename use BBL format

-oct [[-r] outputjcellname output_vlewname]

-oct writes back to OCT only if the data was pre
viously entered as follows: "ow -oct
cellname viewname"

-oct output_cellname output_vlewname

write the routing data back to OCT.

any errors that occur while saving the chip
will be listed here, (bfp, bbl and oct only)

write out technology data

use CIF format

write net list

write routing stats based on bounding boxes

write routing stats based on steiner trees

write statistics after ring router

use magic format (wiring only)

write out timing data

write out transform

no pin informationwill be printed

scale (float)

mirror about y axis (bbl only)

output window to PostScript

-r

-err

-tech filename

-elf filename

-rsto filename

-rstl filename

-rst2 filename

-rrst filename

-mag filename

-timing filename

-xform filename

-np

-s

-my

-ps

68

Appendix 4

BEAR-FP Manual References

References

1. Dai, W., Marek-Sadowska, M., Chen, B., Pedram, M., and Solden, S., "BEAR Manual," Electronics
Research Laboratory Memorandum No. UCB/ERL M89/36, October 1989.

2. M. Khellaf "On the Partitioning of Graphs and Hypergraphs," Ph.D. Diss., Dept IEOR, Univ. of Califor
nia, Berkeley, 1987.

3. Y. Ogawa, M. Pedram and E.S. Kuh, "Timing-Driven Placement for General Cell Layout," Proc. Int'l
Symposium on Circuits AndSystems, vol. 2, pp. 872-875, May 1990.

4. W. Dai, E.S. Kuh, "Simultaneous Floorplanning and Global Routing for Hierarchical Building-Block Lay
out," Proc. Int. Conf. on Computer-Aided Design, pp. 828-837,1986.

5. B. Eschermann, W. Dai, E.S. Kuh, and M. Pedram, "Hierarchical Placement for Macrocells," Proc. Int.
Conf. on Computer-Aided Design, pp. 460-463,1988.

6. W.M. Dai, B. Eschermann, E.S. Kuh and M. Pedram, "Hierarchical Placement and Floorplanning for
BEAR," IEEE Trans, on Computer AidedDesign, vol. CAD-8, no. 12, pp. 1335-1349,1989.

7. R.H.J.M. Otten, "Efficient floorplan optimization," Proc. of the International Conference on Computer
Design, pp. 499-502,1983.

8. L. Stockmeyer, "Optimal orientations of cells in slicing floorplan designs," Information and Control, vol.
57, pp. 91-101,1983.

9. M. Pedram and B.T. Preas, "A Hierarchical Floorplanning Approach," Proc. Int'l. Conf. on Computer
Design, pp. 332-337,1990.

10. M. Pedram, M. Marek-Sadowska and E. S. Kuh, "Floorplanning with Pin Assignment," Proc. Int. Conf.
Computer-AidedDesign, pp. 98-101,1990.

11. L. Kou, G. Markowsky and L. Berman, "A fast algorithm for Steiner trees," Acta Informatics, 15, pp.
141-145,1981.

12. J. Cong, "Pin Assignment with Global Routing," Proc. Int'l Conf. on Computer-Aided Design, pp. 302-
305,1989.

13. W. Dai, M. Sato, and E.S. Kuh, "A Dynamic and Efficient Representation of Building Block Layout,"
Proc. 24th Design Automation Conf., pp. 376-384,1987.

14. W. Dai and E.S. Kuh, "Global Spacing of Building Block Layout," Proc. VLSI Conf., pp. 161-173,1987.
15. J.K. Ousterhout, "Comer Stitching: A Data Structure Technique for VLSI Layout Tools," IEEE Trans, on

Computer-Aided Design, vol. CAD-3, no. 1,1984.

16. M. Marek-Sadowska, "Route Planner for Custom Chip Design," Dig. Tech. Papers, IEEE Int. Conf. on
Computer-aided Design, pp.246-249,1986.

17. W.M. Dai, T. Asanoand E.S. Kuh, "Routing Region Definition and Ordering Scheme for Building Block
Layout," IEEE Trans, on Computer-Aided Design, vol. CAD-4, no.3, pp.189-197,1985.

18. H.H. Chen and E.S. Kuh, "Glitter: A Gridless Variable-Width Channel Router," IEEE Trans, on
Computer-Aided Design, vol. CAD-5, no. 4, pp. 459-465,1986.

19. H.H. Chen, "Routing L-Shaped Channels in Nonslicing Structure Placement," Proc. of 24th Design
Automation Conf., pp. 152-158,1987.

20. X.M. Xiong and E.S. Kuh, "Nutcracker: An Efficient and Intelligent Channel Spacer," Proc. of 24th
Design AutomationConf., pp. 298-304,1987.

21. X.M. Xiong and E.S. Kuh, "The Constraint Via Minimization Problem for PCB and VLSI Design," Proc.
25th Design AutomationConf., pp. 573-578,1988.

22. R. Dutta and M. Marek-Sadowska, "Automatic Sizing of Power/Ground (P/G) Networks in VLSI," to
appear in Proc. 26th Design AutomationConf, 1989.

70

BEAR-FP Manual Appendix 5

Appendix 5. Bugs

1. Where to Reporta Bug

Please send electronic mail to:

bear@nowhere.Berkeley.EDU

2. How to Report a Bug

When you report a bug, we will need a copy of all the text files that were used as input to the
program. Please be sure to include the BFP description of the cells and the technology file. Ifyou
used a timing file, a cluster tree file, a flex file, or a control data file, please include it as well. We
will also need a complete list of all the commands that were called. The simplest way to record
them is to make a log of your session with the log command.

69

